38 research outputs found

    Effects of Electron and Ion Irradiation on Two-Dimensional Molybdenum-Disulfide

    Get PDF
    Since their discovery at the beginning of the 21st century, two-dimensional (2D) materials have emerged as one of the most exciting material groups offering unique properties which promise a plethora of potential applications in nanoelectronics, quantum computing, and surface science. The progress in the study of 2D materials has advanced rapidly stimulated by the ever-growing interest in their behavior and the fact that they are the ideal specimen for transmission electron microscopy (TEM), as their geometry allows to identify every single atom. Their morphology – 2D materials consist of “surface” only – at the same time makes them sensitive to beam damage, since high-energy electrons easily sputter atoms and introduce defects. While this is in general not desirable – as non-destructive imaging is aimed at – it allows to precisely quantify the damage in TEM and even pattern the 2D material with atomic resolution using the electron beam. Alternatively, patterning of 2D materials can be achieved using focused ion irradiation, which makes studying its effect on 2D materials relevant and essential. In this thesis, we theoretically study the effects of electron and ion irradiation on 2D materials, exemplarily on 2D MoS2 . Specifically, we address the combined effect of electronic excitations and direct momentum transfer by high-energy electrons (knock-on damage) in 2D MoS2 using advanced first-principles simulation techniques, such as Ehrenfest dynamics based on time-dependent density functional theory (DFT). Here, we stress the importance of the combined effect of ionization damage and knock-on damage as neither of these alone can account for experimentally-observed defect production below the displacement threshold – the minimum energy required for the displacement of an atom from the pristine system. A mechanism of defect production relying on the localization of the electronic excitation at the emerging vacancy site is presented. The localized excitation eventually leads to a significant drop in the displacement threshold. The combination of electronic excitation and knock-on damage may in addition to beam-induced chemical etching explain the observed sub-threshold damage in low voltage TEM experiments. Apart from non-destructive imaging, electrons may be used to modify the 2D material intentionally. In this light, we consider the electron-beam driven phase transformation in 2D MoS2 , where the semiconducting polymorph transforms into its metallic counterpart. The phase energetics and a possible transformation mechanism under electron irradiation are investigated using DFT based first-principles calculations. The detailed understanding of the interaction of the electron beam with the 2D material promises to improve the patterning resolution enabling circuit design on the nanoscale. Ion irradiation employed in focussed ion beams (FIB), e.g., the helium ion microscope (HIM) constitutes another tool widely used to pattern and even image 2D materials. Ion bombardment experiment usually carried out for the 2D material placed on a substrate are frequently rationalized using simulations for free-standing systems neglecting the effect of the substrate. Combining Monte Carlo with analytical potential molecular dynamics simulations, we demonstrate that the substrate plays a crucial role in damage production under ion irradiation and cannot be neglected. Especially for light ions such as He and Ne, which are usually used in the HIM, the effect of the substrate needs to be considered to account for the increased number of defects and their broadened spatial distribution which limits the patterning resolution for typical HIM energies.Seit ihrer Entdeckung Anfang des 21. Jahrhunderts haben sich zwei-dimensionale (2D) Materialien zu einer der spannendsten Materialklassen im Forschungsfeld aus Materialwissenschaft, Physik und Chemie entwickelt. Ihre einzigartigen Eigenschaften versprechen eine Vielzahl potentieller Anwendungen in der Nanoelektronik, fĂŒr Quantencomputer und in der OberflĂ€chenwissenschaft. BeflĂŒgelt durch das wachsende Interesse an ihrem Verhalten und der Tatsache, dass sie die idealen Proben fĂŒr die Transmissions-Elektronen-Mikroskopie (TEM) darstellen – ihre Geometrie erlaubt es, jedes einzelne Atom zu identifizieren – sind die Forschungen an 2D-Materialien rapide vorangeschritten. Ihre Morphologie – 2D-Materialien bestehen nur aus “OberflĂ€che” – bedingt zugleich ihre SensitivitĂ€t bezĂŒglich StrahlschĂ€den. Hochenergetische Elektronen lösen sehr leicht Atome aus dem 2D-Material und induzieren Defekte. Obwohl dies im Allgemeinen unerwĂŒnscht ist – Ziel ist eine nicht-destruktive Bildgebung – erlaubt es doch prĂ€zise Einblicke in die Schadensentstehung im TEM. Überdies können 2D-Materialien mit Hilfe des Elektronenstrahls mit atomarer Auflösung strukturiert werden. Alternativ kann die Strukturierung des 2D-Materials ĂŒber fokussierte Ionenstrahlung erfolgen, weshalb es lohnenswert erscheint, auch deren Effekt auf 2D-Materialien zu untersuchen. In dieser Arbeit werden die Effekte von Elektronen- und Ionenstrahlung auf 2D-Materialien aus theoretischer Sicht exemplarisch an 2D-MoS2 untersucht. Besonderes Augenmerk liegt dabei auf dem kombinierten Effekt von elektronischer Anregung und dem direkten ImpulsĂŒbertrag durch hochenergetische Elektronen (Kollisionsschaden) in 2D-MoS2 , der durch die Anwendung von Ab-Initio-Simulationstechniken wie der Ehrenfest-Molekulardynamik, basierend auf zeitabhĂ€ngiger Dichtefunktionaltheorie (DFT), studiert wird. Dabei liegt die Betonung auf der Kombination beider Effekte, da weder Ionisierungs- noch KollisionsschĂ€den allein die experimentell beobachtete Defekterzeugung unterhalb der Displacement Threshold – der notwendigen Mindestenergie, um ein Atom aus dem reinen Material herauszulösen – erklĂ€ren. Ein möglicher Mechanismus der Defekterzeugung, basierend auf der Lokalisierung der elektronischen Anregung an der entstehenden Vakanzstelle, wird vorgeschlagen. Die lokalisierte Anregung fĂŒhrt dabei schließlich zu einem signifikanten Absinken der Displacement Threshold. Die Kombination von elektronischer Anregung und Kollisionsschaden trĂ€gt neben strahlinduzierten chemischen Reaktionen zur ErklĂ€rung der beobachteten SchĂ€den unterhalb der Displacement Threshold in Niederspannungs-TEM-Experimenten bei. Neben nicht-destruktiver Bildgebung können Elektronenstrahlen auch dafĂŒr benutzt werden, 2D-Materialien gezielt zu modifizieren. In diesem Sinne wird der elektronenstrahl-induzierte PhasenĂŒbergang in 2D-MoS2 , bei dem sich das Material von einem halbleitenden in einen metallischen Zustand transformiert, betrachtet. Die Phasenenergetik und ein möglicher Transformationsmechanismus werden unter Zuhilfenahme von DFT-basierten Ab-Initio-Simulationen untersucht. Das detaillierte VerstĂ€ndnis der Interaktion des Elektronenstrahls mit dem 2D-Material verspricht dabei die Strukturierungsauflösung zu verbessern und ermöglicht Schaltkreisdesign auf der Nanoskala. Fokussierte Ionenstrahlen, wie sie in Ionenstrahlinstrumenten – wie dem Helium-Ionen-Mikroskop (HIM) zum Einsatz kommen – stellen ein weiteres hĂ€ufig verwendetes Werkzeug zur Modifikation sowie zur Bildgebung von 2D-Materialien dar. Ionenstrahlexperimente – ĂŒblicherweise mit dem auf einem Substrat platzierten 2D-Material durchgefĂŒhrt – werden hingegen oft mit Simulationen fĂŒr freistehende 2D-Materialien rationalisiert, wobei jegliche Einwirkung des Substrats vernachlĂ€ssigt wird. Die Kombination von Monte-Carlo-Simulationen mit Molekulardynamik-Simulationen (auf der Basis analytischer Potentiale) in dieser Arbeit verdeutlicht, dass das Substrat eine wichtige Rolle in der Defekterzeugung spielt und nicht vernachlĂ€ssigt werden kann. Besonders fĂŒr leichte Ionen, wie He und Ne, wie sie typischerweise im HIM zum Einsatz kommen, sollte der Effekt des Substrats berĂŒcksichtigt werden. Dieses fĂŒhrt fĂŒr typische Ionenenergien im HIM – im Vergleich zum freistehenden 2D-Material – zu einer ansteigenden Anzahl an Defekten und einer breiteren rĂ€umlichen Defektverteilung, welche die Strukturierungsauflösung begrenzt

    Detailed Numerical Simulation of Multi-Dimensional Plasma Assisted Combustion

    Get PDF
    Interaction between flames and plasmas are the guiding thread of this work. Nanosecond Repetitively Pulsed (NRP) discharges are non-thermal plasmas which have shown interesting features for combustion control. They can interact with flames not only through heat, but also chemically by producing active species. In this work, fully-coupled plasma assited combustion simulations are targeted. To achieve this goal, plasma discharge capabilities are built in the low temperature plasma code, AVIP. The corresponding numerical methods, as well as validation cases regarding each set of equations, are first presented. To simulate plasma discharges, the coupled drift-diffusion equations and the Poisson equation are considered. AVIP is coupled to the AVBP code which solves the reactive Navier-Stokes equations to describe combustion phenomena. In a second part, we start by constructing and validating a fully-detailed chemistry for methane-air mixtures in zero-dimensional reactors before reducing it for multi dimensional simulations. The multi-dimensional streamer simulation capabilities of the code are then assessed using simple chemistries. All the validated parts of the code come together in a fully detailed simulation of ignition using NRP discharges. We finish by discussing phenomenological models built upon the knowledge that we gained from fully-detailed simulations. In a last part, finally, attempt to solve the Poisson and generalized Poisson equations using neural networks, which have a potential for speedup compared to classical linear solvers, is carried out

    New Development of Theoretical and Computational Methods for Probing Strong-Field Multiphoton Processes

    Get PDF
    The study of the strong-field multiphoton processes is a subject of much current significance in physics and chemistry. Recent progress of laser technology has triggered a burst of attosecond science where the electron dynamics plays a vital role in underlying physics. The nonlinear strong-field phenomena, such as multiphoton ionization, multiphoton resonance, high-order harmonic generation, etc, are beyond the perturbative regime and demand novel theoretical approaches for better understanding. This dissertation aims at developing new theoretical and computational methods with innovative spatial and temporal treatments, and delivering comprehensive studies of strong-field multiphoton processes explored by the proposed methods. The time-dependent Voronoi-cell finite difference method is a new grid-based method for electronic structure and dynamics calculations of polyatomic molecules. The spatial part is accurately treated by the Voronoi-cell finite difference method on multicenter molecular grids, featuring high adaptivity and simplicity. The temporal part is solved by the split-operator time propagation technique, allowing accurate and efficient non-perturbative treatment of electronic dynamics in strong fields. The method is applied to self-interaction-free time-dependent density-functional calculations to probe multiphoton processes of polyatomic molecules in intense ultrashort laser fields with arbitrary field-molecule orientation, highlighting the importance of multielectron effects. The generalized Floquet theory is extended for the investigations of an atom in intense frequency-comb laser fields and a qubit system driven by intense oscillating fields. For the frequency-comb laser generated by a temporal train of pulses, the many-mode Floquet theory is extended to treat the interaction of an atom and a series of comb frequencies, demonstrating coherent control of simultaneous multiphoton resonance processes. For the strongly driven qubit, the Floquet theory is extended and its analytic solution is derived to explore multiphoton quantum interference in the superconducting flux qubit

    1999 LDRD Laboratory Directed Research and Development

    Full text link

    Development and application of ab initio electron dynamics on traditional and quantum compute architectures

    Get PDF
    Electron dynamics processes are of utmost importance in chemistry. For example, light-induced processes are used in the field of photocatalysis to generate a wide variety of products by charge transfer, bond breaking, or electron solvation. Also in the field of materials science, more and more such processes are known and utilized, for example, to design more efficient solar cells. Even the formation of bonds in molecules is an electron dynamics process. Through experimental progress, it is now even possible to trigger specific processes and chemical reactions with special laser pulses. To study all these processes, computer-aided simulations are an indispensable tool. Depending on the size of the molecules considered and the desired accuracy, however, the underlying quantum-mechanical properties result in numerical formulas whose computation far exceeds the capabilities of even modern supercomputers. In this thesis, three projects are presented to demonstrate modern use cases of electron dynamics and show how recent developments in computer technology and software design can be used to develop more efficient and user-friendly programs. In the first project, the inter-Coulombic decay (ICD), an ultrafast energy transfer process, between two isolated chemical structures is investigated. After the excitation of one structure, the energy is transferred to the other, which is ionized as a result. The process has already been shown experimentally in atoms and molecules and is studied here for quantum dots, focusing on systems with more quantum dots and higher dimensions for the continuum than in previous studies. These elaborate studies are made possible by implementing computationally intensive program parts of the Heidelberg MCTDH program used on graphics processing units (GPUs). The performed studies show how the ICD process behaves with multiple partners as well as which competing decay processes occur and thus provide relevant information for the development of technologies based on quantum dots such as quantum dot qubits for use in quantum computers. Electron dynamics processes are not only relevant in the development of new quantum computers, but conversely, quantum computers can also provide the ability to perform electron dynamics with significantly more interacting electrons and a smaller error than it would ever be possible with traditional computers. In another project, therefore, a quantum algorithm was developed that could enable such simulations and their analysis in the future. The quantum algorithm was implemented in the dynamics program Jellyfish, which was also developed in the context of this dissertation. The program is based on a graphical user interface oriented on dataflow programming, which simultaneously leads to a modular structure. The resulting modules can be combined flexibly, which allows Jellyfish to be used for a wide variety of applications. In addition to dynamic algorithms, novel analysis methods were developed and demonstrated on laser-driven electronic excitations in molecules such as hydrogen, lithium cyanide, or guanine. Thus, the generation of electronic wave packets as well as transitions between electronic states were studied in an explicitly time-dependent manner and the formation of the exciton in such processes was described qualitatively by means of densities as well as quantitatively by so-called exciton descriptors such as exciton size or hole and particle position. Thus, in summary, this dissertation presents both new insights into electron dynamic processes and new possibilities for more efficient simulation of these processes using GPU implementations and quantum algorithms. The developed dynamics program Jellyfish offers the potential to be used in many further studies in this area and to be extended to allow for example simulations with a continuum like in the ICD calculations in the future

    Modelling of polymer-carbon nanotube heterojunctions for photovoltaic applications

    Get PDF
    115 p.Semiconducting single-walled carbon nanotubes (s-SWNT) are promising materialsfor efficient organic photovoltaics (OPVs). Unfortunately, the implementation of s-SWNTs has so far not lead to the expected increase in power conversion efficienciesof OPVs. For this reason, we want to study the electronic processes within polymer-SWNT heterojunctions. Transient spectroscopy provides direct information aboutphotoexcitation processes in blends. We modelled the transient spectrum of apolymer:fullerene:s-SWNT blend using Linear Response. Based on our results, weare able to explain the structure transient spectra of s-SWNT systems and theelectronic dynamics linked to it. Further, we studied the internal quantum efficiencyof different donor/acceptor blends by carrying out calculations of the Landauer-BĂŒtticker conductance of prototypical donor/acceptor heterojunctions. We find adependence of the conductivity on the level alignment. By improving the levelalignment of the polymer and SWNT through the use of larger band gap SWNTs,one may obtain a dramatic improvement in OPV efficiency. In summary, our resultsprovide a deeper insight into the photoexcitation and electronic processes ofpolymer-carbon nanotube heterojunctions and thus support the development of moreefficient polymer-SWNT OPVs

    Calculation of NMR Parameters in a Modern Relativistic Density Functional Framework: Theory, Implementation, and Application

    Get PDF
    In dieser Arbeit wird die relativistische Theorie der exakten Entkopplung (engl. exact two-component theory, X2C) auf chemische Verschiebungen und Kopplungskonstanten der Atomkerne in der Kernspinresonanz-Spektroskopie (engl. nuclear magnetic resonance, NMR) angewandt, um damit Spektren von MolekĂŒlen mit schweren Elementen zu interpretieren und vorherzusagen. Da der NMR-Abschirmungstensor und der Kopplungstensor von der Elektronendichte in KernnĂ€he abhĂ€ngt, wird fĂŒr die akkurate Berechnung eine relativistische Allelektronentheorie benötigt. In X2C wird die relativistische Entkopplung in einer Matrixform realisiert, wobei unkontrahierte oder primitive Basisfunktionen genutzt werden, was zu erhöhten Dimensionen fĂŒhrt. Ebenso mĂŒssen fĂŒr die Ableitungen der Entkopplungsmatrix fĂŒr NMR-Parameter Antwortgleichungen erster und zweiter Ordnung gelöst werden. Dies fĂŒhrt folglich zu einem hohen Rechenaufwand. In dieser Arbeit wird die diagonale, lokale NĂ€herung der unitĂ€ren Entkopplung (engl. diagonal local approximation to the unitary decoupling transformation, DLU) fĂŒr NMR-Parameter hergeleitet und in einen Computercode implementiert. Diese NĂ€herung reduziert den Rechenaufwand um eine Potenz ohne dabei zu einem nennenswerten Verlust an Genauigkeit zu fĂŒhren. Die Antwortgleichungen werden nur innerhalb der atomaren Blöcke gelöst, sodass der Rechenaufwand fĂŒr die Ein- und Zweielektronen Terme balanciert wird. Das Modell der endlich ausgedehnten Atomkerne wird fĂŒr das skalare Potential und das Vektorpotential genutzt, da gerade die Fermi-Kontakt-Wechselwirkung der NMR-Kopplungskonstanten stark auf die Elektronendichte am Kernort reagiert. Insbesondere fĂŒr die sechste Periode ist dieses Modell von Bedeutung und muss fĂŒr eine genaue Berechnung berĂŒcksichtigt werden. Ebenso wird die Optimierung von BasissĂ€tzen auf Grundlage der analytischen Ableitungen erst mit diesem Modell möglich. FĂŒr die chemische Verschiebung werden optimierte BasissĂ€tze auf double-, triple-, und quadruple-ζ\zeta Niveau prĂ€sentiert. Somit wird X2C zusammen mit den etablierten NĂ€herungen fĂŒr die Zweielektronen-Integrale zu einem nĂŒtzlichen Werkzeug fĂŒr die Berechnung der NMR-Spektren von Hauptgruppen- und Übergangsmetall-Verbindungen. Die Elektronenkorrelation wird im Rahmen der Dichtefunktionaltheorie (DFT) bis zur vierten Stufe der Jakobsleiter zum exakten Funktional berĂŒcksichtigt, d.h. bis zu (lokalen) Hybridfunktionalen. Die paramagnetische Stromdichte wird hierbei fĂŒr die kinetische Energiedichte genutzt, um einen eichinvarianten Formalismus zu gewĂ€hrleisten. Im Rahmen dieser Arbeit werden die ersten formal eichinvarianten Berechnungen von NMR-Kopplungen mit entsprechenden Funktionalen prĂ€sentiert. Die Implementierung nutzt einen verallgemeinerten Algorithmus zur Lösung der Antwortgleichungen, der fĂŒr beliebige Eigenschaften gĂŒltig ist. Es werden nur die fĂŒr die Eigenschaft spezifischen Integrale benötigt. Die Effekte des Hamiltonian, des Basissatzes und der Dichtefunktional-NĂ€herungen werden ĂŒber das Periodensystem evaluiert. Die entwickelte Theorie und die Implementierung werden auf organometallische Phosphorverbindungen angewandt und so die Phosphor-Metall pπ\pi-pπ\pi Bindung erklĂ€rt. DarĂŒber hinaus konnte die AromatizitĂ€t des rein metallischen Clusters [Th@Bi12_{12}]4−^{4-} auf Basis einer Analyse der magnetisch induzierten Stromdichte und experimenteller Befunde bestĂ€tigt werden. Nach heutigem Stand ist dies die grĂ¶ĂŸte rein metallische aromatische Verbindung. Im Zuge dieser Analyse wurden die Ringströme aller bekannten rein metallischen Aromaten und der typischen organischen Aromaten sowie der Heteroaromaten berechnet. Ein Vergleich mit dem Ringstrom des Clusters [Th@Bi12_{12}]4−^{4-} zeigt, dass dieser einen großen Strom fĂŒr 2 π{\pi}-Elektronen aufweist. Daher erweitert [Th@Bi12_{12}]4−^{4-} das Konzept der π\pi-AromatizitĂ€t und verschiebt dessen Grenzen

    SIMULATING SEISMIC WAVE PROPAGATION IN TWO-DIMENSIONAL MEDIA USING DISCONTINUOUS SPECTRAL ELEMENT METHODS

    Get PDF
    We introduce a discontinuous spectral element method for simulating seismic wave in 2- dimensional elastic media. The methods combine the flexibility of a discontinuous finite element method with the accuracy of a spectral method. The elastodynamic equations are discretized using high-degree of Lagrange interpolants and integration over an element is accomplished based upon the Gauss-Lobatto-Legendre integration rule. This combination of discretization and integration results in a diagonal mass matrix and the use of discontinuous finite element method makes the calculation can be done locally in each element. Thus, the algorithm is simplified drastically. We validated the results of one-dimensional problem by comparing them with finite-difference time-domain method and exact solution. The comparisons show excellent agreement
    corecore