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Zusammenfassung

Dynamische Prozesse von Elektronen sind in der Chemie von größter Wichtigkeit. So wer-
den lichtinduzierte Prozesse im Bereich der Photokatalyse genutzt, um durch Ladungstrans-
fer, Bindungsbrüche oder Elektronensolvatisierung verschiedenste Produkte zu erzeugen.
Auch im Bereich der Materialwissenschaften werden immer mehr solcher Prozesse bekannt
und verwendet, um zum Beispiel effizientere Solarzellen zu entwerfen. Selbst die Bildung
von Bindungen in Molekülen ist ein elektronendynamischer Prozess. Durch experimentelle
Fortschritte ist es mittlerweile sogar möglich, durch speziellen Laserpulse bestimmte
Prozesse und chemische Reaktionen gezielt auszulösen.
Um all diese Prozesse zu untersuchen, stellen computergestützte Simulationen ein un-
verzichtbares Werkzeug dar. Abhängig von der Größe der betrachteten Moleküle und der
angestrebten Genauigkeit resultieren durch die zugrundeliegenden quantenmechanischen
Eigenschaften dabei aber numerische Formeln, deren Berechnung selbst die Leistung von
modernen Supercomputern bei weitem übersteigt.
In dieser Dissertation werden drei Projekte vorgestellt, die moderne Anwendungsfälle der
Elektronendynamik präsentieren und aufzeigen, wie aktuelle Entwicklungen im Bereich
der Computertechnologie und des Softwaredesign genutzt werden können, um effizientere
und benutzerfreundlichere Programme zu entwickeln.
In dem ersten Projekt wird der inter-Coulombische-Zerfall (ICD), ein ultraschneller En-
ergietransferprozess zwischen zwei isolierten chemischen Strukturen, untersucht. Nach
Anregung einer Struktur wird die Energie auf die andere übertragen, welche dadurch
ionisiert wird. Der Prozess wurde bereits in Atomen und Molekülen nachgewiesen und
wird hier für Quantenpunkte untersucht, wobei Systeme mit mehr Quantenpunkten und
in höheren Dimensionen fürs Kontinuum als in bisherigen Studien betrachtet werden.
Ermöglicht werden diese aufwändigen Studien durch die Implementierung rechenintensiver
Programmteile des genutzten Heidelberger MCTDH Programmes auf Grafikprozessoren
(GPUs). Die durchgeführten Studien zeigen dabei, wie sich der ICD-Prozess mit mehreren
Partnern verhält sowie welche konkurrierende Zerfallsprozesse dabei auftreten und bi-
eten somit relevante Information für die Entwicklung von Technologien basierend auf
Quantenpunkten wie Quantenpunkt-Qubits für die Verwendung in Quantencomputern.



Zusammenfassung

Elektronendynamische Prozesse sind dabei nicht nur relevant in der Entwicklung neuer
Quantencomputer, sondern andersherum können Quantencomputer auch die Möglichkeit
bieten, Elektronendynamik mit deutlich mehr interagierenden Elektron und einem kleineren
Fehler durchzuführen, als es mit traditionellen Computern je möglich wäre. In einem
weiteren Projekt wurde deshalb ein Quantenalgorithmus entwickelt, der solche Simulationen
und deren Auswertung in Zukunft ermöglichen könnte.
Implementiert wurde der Quantenalgorithmus in das ebenfalls im Rahmen dieser Disserta-
tion entwickelte Dynamikprogramm Jellyfish. In dem Programm wird auf eine, an dem
Dataflow-Programming orientierte, grafische Benutzeroberfläche gesetzt, was gleichzeitig
zu einem modularen Aufbau führt. Die dabei entstehenden Module lassen sich flexibel
kombinieren, womit sich Jellyfish für verschiedenste Anwendungen einsetzen lässt. Hi-
erbei wurden neben Dynamikalgorithmen auch neuartige Analysemethoden entwickelt
und diese an Laser-getriebenen elektronischen Anregungen in Molekülen wie Wasserstoff,
Lithiumcyanid oder Guanin demonstriert. So wurden unter anderem die Generierung von
elektronischen Wellenpaketen sowie resonante Übergänge zwischen elektronischen Zustän-
den explizit zeitabhängig betrachtet und die Bildung des Excitons in solchen Prozessen
qualitativ anhand von Dichten als auch quantitativ durch sogenannte Excitondeskriptoren
wie Excitongröße oder Loch- und Partikelposition beschrieben.
Zusammengefasst werden in dieser Dissertation also sowohl neuen Erkenntnissen über
elektronendynamische Prozesse als auch neue Möglichkeit zur effizienteren Simulation
dieser Prozesse durch GPU-Implementierungen und Quantenalgorithmen präsentiert. Das
hierbei entwickelte Dynamikprogramm Jellyfish bietet dabei die Möglichkeit, auch in
vielen Weiteren Forschungen in diesem Gebiet genutzt und erweitert zu werden, um in
Zukunft zum Beispiel Simulationen mit einem Kontinuum wie in den ICD-Rechnungen zu
ermöglichen.
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Abstract

Electron dynamics processes are of utmost importance in chemistry. For example, light-
induced processes are used in the field of photocatalysis to generate a wide variety of
products by charge transfer, bond breaking, or electron solvation. Also in the field of
materials science, more and more such processes are known and utilized, for example, to
design more efficient solar cells. Even the formation of bonds in molecules is an electron
dynamics process. Through experimental progress, it is now even possible to trigger
specific processes and chemical reactions with special laser pulses.
To study all these processes, computer-aided simulations are an indispensable tool. De-
pending on the size of the molecules considered and the desired accuracy, however, the
underlying quantum-mechanical properties result in numerical formulas whose computation
far exceeds the capabilities of even modern supercomputers.
In this thesis, three projects are presented to demonstrate modern use cases of electron
dynamics and show how recent developments in computer technology and software design
can be used to develop more efficient and user-friendly programs.
In the first project, the inter-Coulombic decay (ICD), an ultrafast energy transfer process,
between two isolated chemical structures is investigated. After the excitation of one
structure, the energy is transferred to the other, which is ionized as a result. The process
has already been shown experimentally in atoms and molecules and is studied here for
quantum dots, focusing on systems with more quantum dots and higher dimensions
for the continuum than in previous studies. These elaborate studies are made possible
by implementing computationally intensive program parts of the Heidelberg MCTDH
program used on graphics processing units (GPUs). The performed studies show how the
ICD process behaves with multiple partners as well as which competing decay processes
occur and thus provide relevant information for the development of technologies based on
quantum dots such as quantum dot qubits for use in quantum computers.
Electron dynamics processes are not only relevant in the development of new quantum
computers, but conversely, quantum computers can also provide the ability to perform
electron dynamics with significantly more interacting electrons and a smaller error than
it would ever be possible with traditional computers. In another project, therefore, a



Abstract

quantum algorithm was developed that could enable such simulations and their analysis
in the future.
The quantum algorithm was implemented in the dynamics program Jellyfish, which was
also developed in the context of this dissertation. The program is based on a graphical
user interface oriented on dataflow programming, which simultaneously leads to a modular
structure. The resulting modules can be combined flexibly, which allows Jellyfish to
be used for a wide variety of applications. In addition to dynamic algorithms, novel
analysis methods were developed and demonstrated on laser-driven electronic excitations
in molecules such as hydrogen, lithium cyanide, or guanine. Thus, the generation of
electronic wave packets as well as transitions between electronic states were studied in an
explicitly time-dependent manner and the formation of the exciton in such processes was
described qualitatively by means of densities as well as quantitatively by so-called exciton
descriptors such as exciton size or hole and particle position.
Thus, in summary, this dissertation presents both new insights into electron dynamic
processes and new possibilities for more efficient simulation of these processes using GPU
implementations and quantum algorithms. The developed dynamics program Jellyfish
offers the potential to be used in many further studies in this area and to be extended
to allow for example simulations with a continuum like in the ICD calculations in the
future.
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1 Introduction

Computational simulations of interacting quantum systems have become an unmatched
tool for developments in chemistry, physics, pharmacy, materials science, and many other
fields. They make it possible to predict the properties of molecules without having
to synthesize them and thus to identify potential candidate molecules from millions of
structures for certain applications, as e.g. drugs,[6,7] catalysts,[8,9] photovoltaic cells,[10,11]

superconducting materials[12,13] or qubits in quantum computers.[14–16] The simulation
of such quantum systems is thus an indispensable tool to address challenges humanity is
facing, such as increasing resource scarcity or climate change.
In this dissertation, the focus lies on processes that are driven by the interaction of light
with matter and occur in the atto- to femtosecond range. Such processes can be understood
better and better with the experimental progress of the last years towards shorter time
scales and better resolutions. For example, observations down to the attosecond time
scale are possible using attosecond electron/ion pump-probe spectroscopy or attosecond
transient absorption and reflection spectroscopy.[17] Many processes that are nowadays
observed have already been described theoretically.[18–23] With the technical progress
that makes it possible to observe such processes also experimentally, the interest and the
possibilities of the theoretical side to improve and validate models increases as well.
The aim of this work is to further develop and apply the possibilities of such computer-
aided simulations for electron dynamic processes by new techniques. This thesis is divided
into three main topics. The first one deals with the inter-Coulombic decay, a light-induced
decay process in quantum dots. The second topic addresses the development of a new
dynamics program and the third the development of a quantum algorithm for electron
dynamics processes. In the following, this chapter briefly introduces these three areas of
interest. In chapter 2, the underlying theory is explained. A summary of the results is
given in chapter 3. Finally, all papers that are part of this thesis are collected in chapter 5.



1 Introduction

1.1 Simulation of the inter-Coulombic decay in quantum dots

The inter-atomic (or inter-molecular) Coulombic decay (ICD) process or short inter-
Coulombic decay is one of the dynamic processes mentioned earlier, which was described
theoretically before it was observed experimentally. The decay process has similarities
with the so-called Auger decay, which was already discovered in the 1920s.[24] Using atoms
as an example, these processes can occur after an electron has been ionized from an inner
orbital of an atom. Such an ionization can be caused, for example, by X-rays. In the case
of Auger decay, this usually core excited state decays when an electron in a higher orbital
de-excites to an energetically lower one and another electron is ionized by the released
relaxation energy (Fig. 1.1 a). However, in some cases, usually after an inner-valence
excitation, the relaxation energy is lower than the second ionization energy, making the
Auger decay energetically impossible. In these cases, another decay process can occur
in which the relaxation in one atom ionizes another atom (Fig. 1.1 b). This process was
already shown in 1997 by Cederbaum and co-workers[25] using the example of small HF
and H2O clusters and was called ICD.

Figure 1.1: Possible decay paths of an excited state in one or two neon atoms after ionization
of an inner electron. In a) the intra-atomic Auger decay and in b) the inter-atomic
ICD process are shown. Both processes are illustrated in the simplified Bohr atomic
model.

In 2003, Marburger and co-worker[26] provided the first experimental evidence for the ICD
process and shortly thereafter Jahnke et al.[27] measured the ICD electron and the two
ion fragments. In both of these studies, weakly bound homogeneous neon dimers were
used. In the meantime, ICD has been observed in many kinds of weakly bound systems,
including hydroxide ions in water,[28] water dimers,[29], and asymmetric clusters.[30,31] ICD
can also occur after the collision of high-energetic ions or electrons,[32–34] after electron
capture processes[35,36] or as a mechanism in DNA.[37]

With further theoretical studies, a number of interesting properties concerning the ICD
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1.1 Simulation of the inter-Coulombic decay in quantum dots

process were found. For example, a strong distance dependence for the ICD rate with R−6

was found due to the dipole-dipole interaction as it also occurs in the Förster resonance
energy transfer.[38–40] Also, the number of decay channels, and hence the ICD rate, increases
with the number of neighbors. For example, the ICD lifetime of a neon atom at a surface is
thus larger than in the bulk.[41] In situations where there is another monomer C between
the ionized monomer A+ and the electron emitter monomer B, the ICD process can be
much more efficient under the right energy conditions due to the virtual state A+C−B+.
This process is called superexchange ICD.[42]

ICD is not limited to atomic or molecular systems but could become important in quantum
dots for nanoelectronics in the future. Quantum dots are semiconductor materials in which
one or more spatial dimensions are confined to such an extent that they have individual
discrete energy levels instead of the typical band structures.[43,44] Even if they consist of
thousands of atoms, their behavior resembles that of single atoms due to these discrete
energy levels, which is why they are also called "artificial atoms". Due to advanced
synthesis possibilities, the electronic structure of quantum dots can be well-tuned through
different shapes and the use of different materials. Thus, conditions can be created for the
ICD decay to be used to design QD infrared photodetector.[45] Quantum dots can also be
used as qubits in quantum computers,[46,47] although decay processes occurring here are
usually undesirable and would change the quantum state unintentionally. Therefore, the
optimization of quantum dot properties to improve as well as suppress ICD processes is a
challenge for the use of quantum dots in nanoelectronics.
Although radiative and Auger decay in quantum dots has already been observed experi-
mentally and studied in detail, this is not the case for ICD. Theoretically, however, ICD in
quantum dots was already considered for the first time in 2011 by Cherkes and Moiseyev[48]

and this idea was taken up by scientists from Heidelberg and subsequently continued by
Bande and co-workers in Berlin.[49–53] The studies on ICD that are part of this thesis also
build on this preliminary research. In most of these works, the process is simulated with
explicitly time-dependent methods. Since it is impossible to consider quantum dots with
thousands of atoms directly, they are approximated by inverse Gaussian potentials and
the results are converted for suitable materials, mostly GaAs, using the effective mass
approximation. In previous studies, the Gaussian potential was used in one dimension (z)
and the motion of electrons in the other two spatial directions x and y was constrained by
infinite harmonic oscillator potentials. Such a one-dimensional system corresponds most
closely to so-called quantum dots in quantum wires. In addition to these one-dimensional
structures, two- and three-dimensional structures can also be manufactured and are rele-
vant. However, the simulation of these structures is significantly more complex due to

3



1 Introduction

the additional dimensions of the continuum. Besides dimers, the same methods can be
applied to clusters of three or more quantum dots, although again, there is a significant
increase in computational time with each additional quantum dot. However, since such
more elaborate calculations with more dimensions and quantum dots can give interesting
insights into the interplay of multiple processes, such as different ICD processes and other
decays at the same time, this work extends previous approaches in this direction. In doing
so, the technical possibilities for speed-optimizing such calculations through the use of
Graphic Processing Units (GPUs) will be demonstrated.

1.2 Development of an electron dynamics program

Quantum mechanical studies of atoms and molecules often consider only stationary
solutions to the equation of motion of electrons in the electrostatic field of fixed atomic
nuclei. The methods used to calculate these solutions are called electronic structure
methods and the stationary solutions are called electronic states. Numerous different
properties can be derived from the electronic states. For example, dipole moments,
charge distributions, but also spectra such as UV/Vis or X-ray absorption spectra can be
calculated. The application of electronic structure methods ranges over many different
disciplines, from quantum materials and nanotechnology to astrophysics.
The electronic structure also provides access to many dynamic processes and their prop-
erties. However, for the cases considered here, such as the ICD process with competing
decay channels, a purely stationary, i.e. time-independent, consideration is insufficient.
Although methods such as complex scaling can be used to determine ICD rates,[54] many
effects discussed later are not fully reflected. Also, the simulation of laser-driven electronic
excitations in atoms, molecules, or quantum dots, as used to initiate the ICD process,
is not accessible by time-independent methods due to the short time scales and strong
electronic fields.
In order to be able to consider such explicitly time-dependent processes, time-dependent
methods are needed. Since these are based on electronic structure methods, they are
similarly numerous, but existing implementations are much more limited. In the field of
electronic structure, there are extensive programs such as Orca,[55] Psi4,[56] PySCF,[57] to
name a few, which provide a variety of different methods and applications. However, the
existing electron dynamics programs are usually limited to one method and only a few
applications.
Similar to the methods for the calculation of electron dynamics, the methods for the
evaluation of time-dependent properties are rarely as advanced as their time-independent
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1.3 Development of an electron dynamics algorithm for quantum computers

counterparts. The visualization of time-independent orbitals, densities, and states has
long been a standard tool and is implemented in popular programs, while time-dependent
extensions of these properties have not even been developed. The one-particle transition
density matrix[58–62] also falls into this category. This matrix can be used to analyze
electronic transitions between static states by visualizing the exciton and quantifying
exciton properties such as the hole-particle separation. In the time-dependent domain,
however, these have not yet been used to observe the formation of excitons during electronic
excitation in a time-dependent manner.
In the second project of this thesis, the evaluation of the one-particle transition density
as well as the visualization of different densities and orbitals are transferred to the time-
dependent domain and its possible application will be demonstrated. The implementation
is done in the program Jellyfish, which is also part of this dissertation and represents a new
dynamics program, especially for the time-dependent configuration interaction method.
Jellyfish is intended to be applicable beyond this purpose and can be extended by further
methods in the future.

1.3 Development of an electron dynamics algorithm for
quantum computers

With the advance of computer technology, it is now possible to calculate the electronic
structure and dynamic processes of a wide range of systems, from single atoms and small
molecules to extended structures such as proteins or nanomaterials. However, the more
particles are considered and the larger the entanglement between them, the more difficult it
is to obtain accurate results. Although the exact equations leading to precise energies and
properties have been known since the advent of quantum mechanics in the 1920s, they can
only be solved exactly for the simplest systems. With each additional degree of freedom
added to a system, the Hilbert space in which the solutions lie becomes exponentially
larger. Methods for traditional computers, in which the full Hilbert space is used, suffer
from the curse of dimensionality and can never be used for extended structures. While it is
well known that often only a small part of the Hilbert space is physically accessible, which
has led to some more efficient and nearly exact methods such as the multi-configurational
self-consistent field method[63] or the density matrix renormalization group method,[64]

additional approximations are still required for systems with many interacting particles,
leading to significant deviations.
The fundamentally different approach of quantum computing could circumvent the problem.

5



1 Introduction

Already proposed by Feynman in 1982,[65] the idea is to use one well-controllable quantum
system to simulate another. In recent years in particular, progress in the realization
of quantum computers has continued to accelerate, so that now, more than 30 years
later, the first quantum computers can outperform traditional computers in a few special
tasks.[66] There are several approaches to developing a computer based on quantum physical
processes. Two important ones are adiabatic quantum computing (AQC)[67] and the boson
sampling model.[68] A third and the most commonly used approach, which was also used
in this thesis, is the quantum gate array model.[69] The model is based on so-called qubits,
which are, physically speaking, two-state systems. The qubits carry the information in
the form of a superposition of the two basis states. By combining qubits into a quantum
register and the possibility of entangling them completely, the usable Hilbert space of the
quantum register grows exponentially with the number of qubits. This Hilbert space can
be used to map the Hilbert space of another physical system. By specific manipulations
of the quantum register state, the realization of a universal, i.e. problem-independent,
quantum computer is thus possible.
The structure of a quantum computer, the operating conditions and the possibilities to
manipulate a state depend on the choice of qubits. Here, a number of different quantum
systems are considered and explored. Besides trapped ions,[70] superconducting coils[66,71]

and photons,[72,73] the already mentioned quantum dots[46,47] can also be used. The goal is
not only to generate as many entangled qubits as possible but also to reduce the interaction
between qubits and the environment. Through interaction with the environment and
application of operations such as the measurement of a qubit, decoherence occurs and
thus the loss of the quantum state, which complicates the application of longer algorithms.
These effects will never be completely suppressed, which is why quantum error correction
codes have been under development for some time.[74,75] Here, several error-prone physical
qubits encode an error-free logical qubit. However, the current systems with about 100
qubits[76] are not yet suitable to apply such complete error correction. Accordingly, current
quantum computers are error-prone and refer to the noisy intermediate-scale quantum
(NISQ) era.
Parallel to the technical progress, increasingly advanced quantum algorithms are developed
for a wide variety of applications. These are no longer limited to computations in quantum
systems,[77–79] but also offer solutions to problems in information technology such as
factorization of large numbers,[80] database searching[81] and many other areas such
as computer-aided drug design,[82,83] computational materials science,[84] or artificial
intelligence.[85] Some of these algorithms are designed to run on error-prone quantum
computers, such as variational quantum algorithms,[86,87] while others require a nearly
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1.3 Development of an electron dynamics algorithm for quantum computers

error-free quantum computer. While it is still unclear for NISQ devices how large the
benefit actually will be for useful applications, algorithms for error-free quantum computing
can often deliver exponential speedups over their traditional counterparts.
While various quantum algorithms are already available for the computation of electronic
structure,[78,79,88] both for error-prone and error-free quantum computers, relatively little
attention has been paid to the area of electron dynamics. However, this area in particular is
excellently suited as a field of application, since the physics of electrodynamics shows strong
parallels to the functional principle of a quantum computer and the necessary substeps
have already been developed for electronic structure algorithms. For example, the Jordan-
Wigner transformation[89] is used to translate a fermionic wave function into a bosonic
qubit wave function and algorithms such as those based on Trotter decomposition[90,91]

can be used to evolve this wave function in time subsequently.
In the third project of this dissertation, an algorithm for the simulation and analysis
of electron dynamics on error-free quantum computers was compiled from such smaller
substeps, implemented, and tested on the example of small molecules. Among other things,
propagation with non-Hermetian operators, which is a particular challenge for quantum
computing, was addressed. All algorithms were implemented in the already mentioned
dynamics program Jellyfish.

7



2 Theoretical Background

The following chapter presents the necessary theoretical foundations on which this thesis
is based. The first section 2.1 gives a short introduction to quantum mechanics and
the Schrödinger equation. Following, in section 2.2 methods used to solve the time-
independent Schrödinger equation and in section 2.3 methods to solve the time-dependent
Schrödinger equation are presented. The last section 2.4 contains an introduction to
quantum computing and the quantum algorithms used.

2.1 Fundamentals of quantum mechanics

The basic ideas of quantum mechanics were introduced in the 1920s to explain phenomena
that could not be adequately described with the existing picture of physics. The parts of
quantum mechanics relevant to this work and presented in the following were taken from
the books "Modern Quantum Chemistry" [63] and "Introduction to Quantum Mechanics: A
Time-Dependent Perspective" [92] as well as from the article [93]. To simplify the following
equations, atomic units are used. The elementary charge e, the mass of an electron me,
the reduced Plank constant ℏ, and 1/4πϵ0 are set to 1.

2.1.1 Schrödinger equation

The central object of this work is the time-dependent Schrödinger equation (TD-SE)

iℏ
∂

∂t
Ψ(x⃗, t) = ĤΨ(x⃗, t). (2.1)

It is a partial differential equation with respect to time t. Ψ is the wave function of the
system, which contains all information of the considered elementary particles at any time
and for any point in space. Ĥ is the Hamiltonian operator, which describes the behavior
and the interaction of the particles with each other and thus describes the energy of a
system

Ĥ = − ℏ2

2m
∇2 + V. (2.2)



2.1 Fundamentals of quantum mechanics

Here ∇ is the Nabla operator and describes the kinetic energy of the quantum mechanical
particles while V = V (r⃗, t) represents a potential function that can depend on both
coordinates and time. In most cases in the field of quantum chemistry and in a large part
of this work, molecules and thus Hamiltonians of the form

Ĥ = T̂e + T̂n + Ûee + Ûnn + Ûne = −
N∑

i

ℏ2

2me
∇2

r⃗i
−

M∑

A

ℏ2

2MA
∇2

R⃗A

+
N∑

i

N∑

j>i

e2

4πϵ0 |r⃗i − r⃗j |
+

M∑

A

M∑

A>B

ZAZBe
2

4πϵ0

∣∣∣R⃗A − R⃗B

∣∣∣
−

N∑

i

M∑

A

ZAe
2

4πϵ0

∣∣∣R⃗A − r⃗i

∣∣∣
(2.3)

are considered. The first terms describe the kinetic energy of N electrons T̂e with their
mass me and the kinetic energy of M nuclei T̂n with their corresponding masses MA. ∇ is
the Nabla operator for three dimensions {x, y, z} acting on the corresponding coordinate
vectors of the electrons or nuclei. Furthermore, the Hamiltonian contains the repulsive
Coulomb interactions between electrons Ûee and between nuclei Ûnn, which scale with the
inter-particle distances r⃗ and R⃗ and the charge numbers ZA, ZB for the nuclei and 1 for
electrons, respectively. The last term Ûne describes the attractive Coulomb interactions
between electrons and nuclei.
As seen in equation 2.3, the molecular Hamiltonian does not contain any time-dependent
terms, so the potential function V (r⃗, R⃗) depends only on the coordinates of the electrons
and nuclei. In such cases, the solution of the TD-SE can be written as the product of a
time-dependent function Φ(t) and a spatial function ψ(r⃗, R⃗) as Ψ(r⃗, R⃗, t) = ψ(r⃗, R⃗)Φ(t).
If both sides of the TD-SE in equation 2.1 are now divided by ψ(r⃗, R⃗)Φ(t),

iℏ
Φ̇(t)

Φ(t)
=
Ĥψ(x⃗)

ψ(x⃗)
(2.4)

is obtained. The variables are now separated and the left side depends on time only while
the right side depends exclusively on the spatial coordinates. To solve this equation, both
sides must equal the same constant, E, corresponding to the molecular system’s total
energy. For the left side, the differential equation

iℏΦ̇(t) = EΦ(t) (2.5)

is obtained, with the solution being

Ψ(x⃗, t) = ψE(x⃗)Φ0e
− i

ℏEt. (2.6)
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2 Theoretical Background

Here, Φ0 is a pure multiplicative factor which is absorbed in ψ(r,R) and is chosen in a
way that the normalization condition

∫ ∞

−∞
|Ψ(x⃗, t)|2 dx⃗ = 1 (2.7)

is fulfilled. From the right-hand side of equation 2.4, the time-independent Schrödinger
equation (TISE) is obtained as

ĤψE(x⃗) = EψE(x⃗). (2.8)

The TISE is an eigenvalue equation, where E is the eigenvalue or energy of an eigenfunction
or eigenstate ψ. The solutions of the time-independent Schrödinger equation allow the
prediction of all time-independent properties and observables and thus represent the
central equation for large areas of theoretical chemistry.

2.1.2 Electronic wave function

Solving the full Schrödinger equation is computationally expensive if not even unfeasible
for large systems. Hence attempts are made to simplify the equation by means of
approximations. One such approximation is the Born-Oppenheimer approximation. Since
an electron is more than 1800 times lighter than a proton, the motion of the electrons
can be assumed to take place on a faster time scale than the motion of the atomic nuclei.
The usually weak dynamical coupling between electron and nuclear motion is therefore
neglected in the Born-Oppenheimer approximation, allowing a separation of nuclear and
electronic degrees of freedom in the form of a product wave function

ΨTotal = ΨelΨnuc. (2.9)

This results in a single Schrödinger equation for the motion of the electrons and one for
the motion of the atomic nuclei. The electronic processes considered in this work occur on
time scales where the motion of the atomic nuclei can be neglected and accordingly, only
the solution of the electronic Schrödinger equation

ĤelΨel = EelΨel (2.10)

is relevant. Compared to the full Hamiltonian from equation 2.3, the terms for the kinetic
energy of the nuclei are set to zero and their Coulomb interactions to be constant. While
the kinetic energy of the atomic nuclei is always the same for a molecule and is accordingly
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2.1 Fundamentals of quantum mechanics

neglected, the Coulomb energy of the nuclei is calculated once for a nuclear configuration
and added to the electronic energy to obtain the total energy. The electronic Schrödinger
equation thus depends only parametrically on the nuclear coordinates.
While systems with only one electron like the hydrogen atom can be solved analytically,
leading to exact solutions like the well-known hydrogen orbitals, this is no longer the case
for many-electron systems. To solve the electronic Schrödinger equation for molecules,
an approach for a many-electron wave function is needed. One possible approach is the
so-called Hartree product in the form

Ψ(x⃗1, x⃗2, ..., x⃗N ) = ϕ1(x⃗1)ϕ2(x⃗2)...ϕN (x⃗N ), (2.11)

where ϕ denotes orbitals defined as one particle wave function. For such a product
approach to work, the Hamiltonian operator would have to be separable with respect
to the electrons, and therefore electrons would not interact with each other. However,
electrons interact with each other and fulfill the Pauli exclusion principle, which means
that single Hartree products are not suitable as electronic wave functions.
According to the Pauli exclusion principle, two electrons cannot be equal in all four
quantum numbers. The first three quantum numbers, the principal quantum number n,
the azimuthal quantum number l, and the magnetic quantum number ml, describe the
spatial shape of an orbital. The fourth quantum number, however, is the so-called spin
quantum number and does not appear in the solution of the time-independent Schrödinger
equation of the hydrogen atom. But it is part of the solution of the relativistic Dirac
equation for the hydrogen atom and has to be considered for the complete description of
an electron in a many-electron wave function. To do this, two spin functions α(ω) and
β(ω) are introduced. An electron is now described by a spin-orbital consisting of a spatial
(ϕ(r⃗)) and a spin part s(ω) as

χ(x⃗) = ϕ(r⃗)s(ω). (2.12)

Since the Hamiltonian does not depend on the spin of an electron, it is not sufficient to add
only the spin to the wave function to satisfy the Pauli exclusion principle. However, if the
wave function is required to be antisymmetric with respect to the exchange of space-spin
coordinates

Ψ(χ1, ..., χi, ..., χj , ...χN ) = −Ψ(χ1, ..., χj , ..., χi, ...χN ), (2.13)

then the Pauli exclusion principle is fulfilled. A wave function that fulfills this condition
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is the so-called Slater determinant. It is a linear combination of Hartree products in the
form

Ψ =
1√
N !

∣∣∣∣∣∣∣∣∣∣

χ1(x⃗1) χ2(x⃗1) · · · χN (x⃗1)

χ1(x⃗2) χ2(x⃗2) · · · χN (x⃗2)
...

...
. . .

...
χ1(x⃗N ) χ2(x⃗N ) · · · χN (x⃗N )

∣∣∣∣∣∣∣∣∣∣

. (2.14)

Each column describes one of the N spin orbitals while each row contains the coordinates of
one of the N electrons. Through this structure, each electron is related to each spin-orbital
and all electrons are indistinguishable. The prefactor 1√

N !
provides the normalization of

the wave function. Since a Slater determinant can be constructed from the list of occupied
orbitals χ1, χ2, ..., χN , a notation in the form of a “ket vector" has become common:
|χ1, χ2, ..., χN ⟩.

2.1.3 Second quantization

Some of the following methods rely on the formalism of the second quantization. This
is particularly the case for quantum computing algorithms. In second quantization, in
addition to the observables such as the energy, (particle) fields are also quantized. Instead
of assigning orbitals to electrons, occupations are now assigned to spin orbitals, meaning
there is no redundant information and the description of a state becomes easier. A Slater
determinant then written in terms of occupation numbers, is also called Fock state

|Ψ⟩ = |n1, n2, ..., nk, ...⟩, (2.15)

where nk is the number of electrons in the k-th spin-orbital, which are according to the
Pauli exclusion principle either nk = 0 or nk = 1. In addition, two new operators, the
electron field operators, are introduced. These allow electrons in a spin-orbital to be
created or annihilated, while at the same time ensuring the antisymmetrization of the
wave function.
The first operator is the creation operator for fermions â†p, which acts on a Fock state as

â†p|n1, n2, ..., 0p, ...⟩ = (−1)
∑p−1

j=1 nj |n1, n2, ..., 1p, ...⟩. (2.16)

The operator increases the occupation number of the spin-orbital χp, which corresponds
to the creation of an electron in the orbital while maintaining the antisymmetrization of
the wave function. As a result, two creation operators have an anticummutation relation
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2.1 Fundamentals of quantum mechanics

to each other

â†i â
†
j + â†j â

†
i = δij = {â†i , â

†
j}. (2.17)

Applying a creation operator to an already occupied spin-orbital yield 0. Thus, no two
electrons with the same four quantum numbers can be created and the Pauli exclusion
principle is fulfilled.
The second newly introduced operator is the annihilation operator âp which is defined as
an adjoint operator to the creation operator. It annihilates an electron in the spin-orbital
χp by its action on a Slater determinant and thus reduces the occupation number of the
spin-orbital by one as

âp|n1, n2, ..., 1p, ...⟩ = (−1)
∑p−1

j=1 nj |n1, n2, ..., 0p, ...⟩. (2.18)

Like the creation operator, the annihilation operator satisfies the anticommutator relation
and applying an annihilation operator to an already unoccupied orbital yields 0 again.
Moreover, the second quantization satisfies the condition of indistinguishable electrons,
since they do not even have an index to distinguish their coordinates from each other. In
the second quantization also a vacuum state |0̄⟩ = |0, 0, ..., 0⟩ is introduced as a normalized
state of the system without electrons from which any Slater determinant can be generated
by applying creation operators.
It can be shown that all linear operators acting on the Fock space can be represented as a
combination of such field operators. The one- and two-particle operators can be expressed
as

Ô1 =
∑

ij

⟨i|ĥ1|j⟩â†i âj (2.19)

and

Ô2 =
1

2

∑

ijkl

⟨ij|ĥ2|kl⟩â†i â
†
j âlâk, (2.20)

where i, j, k and l denote spin orbitals.
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2.2 Electronic structure theory

The calculation of electronic states in an electrostatic field of fixed atomic nuclei – which
means solving the time-independent Schrödinger equation in the framework of the Born-
Oppenheimer approximation – falls into the field of electronic structure theory. A number
of different approaches have already been developed for this purpose, and the used ones
are discussed in the following. The theory shown here is an extract from the textbook
"Modern Quantum Chemistry" [63] and the articles [93, 94].

2.2.1 Hartree-Fock

Using a single Slater determinant as an ansatz for the electronic wave function leads to
the Hartree-Fock (HF) method. The TISE is not solved directly but instead multiplied
with ⟨Ψ| from the left which results in

E = ⟨Ψ|Ĥ|Ψ⟩. (2.21)

The application of the Slater-Condon rules for orthonormal orbitals ⟨χi|χj⟩ = δij , leads to
an energy expression of the form:

EHF =
∑

i

⟨i|ĥ1|i⟩+
1

2

∑

ij

⟨ii|jj⟩ − ⟨ij|ji⟩, (2.22)

employing the definition of the one-electron integrals

⟨i|ĥ1|i⟩ =
∫
dx⃗1χ

∗
i (x⃗1)ĥ1(r1)χj(x⃗1), (2.23)

and two-electron integrals

⟨ij|kl⟩ =
∫
dx⃗1dx⃗2χ

∗
i (x⃗1)χj(x⃗1)

1

r12
χ∗
k(x⃗2)χl(x⃗2). (2.24)

Here all one electron operators are combined to ĥ1. It can be shown that the energy Ẽ
of a trial wave function Ψ̃ is always higher than the energy of the exact ground state Ψ0

with its ground state energy E0

Ẽ = ⟨Ψ̃|Ĥ|Ψ̃⟩ ≥ E0 = ⟨Ψ0|Ĥ|Ψ0⟩. (2.25)

To thus obtain a ground state energy and the corresponding Hartree-Fock orbitals, the
variational principle is applied to minimize the energy expression from equation 2.25. To
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preserve the orthonormality of the spin orbitals, Lagrange multipliers λij are introduced
(see below). The corresponding condition for the optimization is therefore

δF̂ ≡ δ


⟨Ψ|Ĥ|Ψ⟩ −

∑

ij

λij(⟨χi|χj⟩ − δij),


 , (2.26)

where F̂ is called the Fock operator. This equation gives rise to coupled integro-differential
equations in the form

ĥ1χk(x⃗1) +
∑

i

[∫
dx⃗2|χi(x⃗2)|2

1

r12

]
χk(x⃗1)−

∑

i

[∫
dx⃗2χ

∗
i (x⃗2)χk(x⃗2)

1

r12

]
χi(x⃗1)

=
∑

i

λkiχi(x⃗1). (2.27)

They furthermore can be combined into the form
[
ĥ1 +

∑

i

(Ĵi − K̂i)

]
χk = F̂χk =

∑

i

λkiχi, (2.28)

by introducing the Coulomb operator Ĵi

Ĵi(x⃗1) =

∫
dx⃗2|χi(x⃗2)|2

1

r12
(2.29)

and the action of the exchange operator K̂i

K̂i(x⃗1)χk(x⃗1) =

[∫
dx⃗2χ

∗
i (x⃗2)χk(x⃗2)

1

r12

]
χi(x⃗1). (2.30)

The Coulomb operator reflects the Coulomb interaction between the electrons. From
the form of the operator it can be seen that the Coulomb interaction of the electrons is
described independently by the mean Coulomb field of all other electrons and the explicit
interaction between two electrons is only approximated. The exchange operator results
from the antisymmetric form of the Slater determinant and, unlike the Coulomb operator,
has no classical interpretation.
Equation 2.28 has several possible solutions and usually a set of Lagrange multipliers ϵk is
chosen which satisfies the condition

λki = δkiϵk. (2.31)
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These Lagrange multipliers are also called orbital energies. Thus, the Hartree-Fock
equation results in the eigenvalue equation

F̂χk = ϵkχk. (2.32)

By using orbitals to describe a many-electron system, double counting of the interaction
between electrons occurs in the Hartree-Fock formalism. With correction for this doubling,
the Hartree-Fock energy based on the orbital energies ϵk is finally obtained as

EHF =
∑

k

ϵk −
1

2

∑

ij

⟨ii|jj⟩ − ⟨ij|ji⟩. (2.33)

Roothaan-Hall Equations

The solution of the Hartree-Fock equation 2.32 is carried out by an iterative procedure,
which is computationally expensive since the integrals of the orbitals at each point in space
have to be recalculated at each iteration step. Much more efficient is a method proposed
by Roothan.[95] The idea behind the method is the expansion of the spatial orbitals in a
set of static basis functions Φ

χi(x⃗1) =
∑

µ

ciµΦµ(x⃗1). (2.34)

Furthermore, the restriction that electrons with α- and β-spin always occur in pairs and
the corresponding spin orbitals share the same spatial part ϕ(x⃗) in equation 2.28 is made.
Accordingly, N spin orbitals can be replaced by N/2 spatial orbitals ϕ which yields the
Fock operator as

F̂ (x⃗1) = ĥ(x⃗1) +

N/2∑

i

2Ĵi(x⃗1)− K̂i(x⃗1). (2.35)

This approximation is commonly called restricted Hartree-Fock (RHF). While both elec-
trons with α- and β-spin in one orbital have the same contribution with respect to the
Coulomb operator, only one of the two electrons has a non-zero contribution with respect
to the exchange operator K. Accordingly, the exchange operator does not obtain a factor
of 2 during the transition from spin orbitals to spatial orbitals. Inserting the orbital
expansion into the Hartree-Fock equation 2.32 and multiplying by ⟨ϕν | from the left
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provides

∑

µ

ciµ⟨ϕν(x⃗1)|F̂ (x⃗1)|ϕµ(x⃗1)⟩ = ϵi
∑

µ

ciµSνµ. (2.36)

This equation is a matrix eigenvalue problem known as the Roothan equation

FC = SCϵ. (2.37)

Since common basis functions are not necessarily orthonormal, but this is a requirement
for the spatial orbitals, the overlap matrix S appears in the equations, which ensures the
necessary orthonormality of the orbitals. The orbital energies ϵ are the eigenvalues of the
Fock matrix F , and C is the matrix of the corresponding eigenvectors. Since the Fock
matrix depends on itself via the orbitals, the equation must be solved iteratively in a
so-called self-consistent field (SCF) procedure.

Basis sets

There is a number of possible approaches with individual advantages and disadvantages
for the description of orbitals through basis sets. The most obvious approach is using the
solutions of the hydrogen atom which are the Slater-Type-Orbitals (STO) in the form

ΦSTO = Nrn−1e−µrY m
l (δ,Φ), (2.38)

where N is the normalization factor, r the distance of the electron to the nucleus, Y m
l (δ,Φ)

the exact angular functions of the hydrogen orbitals and n as well as µ further numerical
parameters. Depending on the type of atom, several such STOs are used for each atom
with the corresponding atomic position as the origin. Basis sets based on STOs give good
results, particularly for the ground states in molecules. However, the calculation of the
corresponding integrals is time-consuming. Therefore, an alternative is the description
of such STOs as a linear combination of primitive Gaussian-type orbitals (GTOs) in the
form

ΦGTO
l = Y (l)

∑

i

αie
−βi(r−r0)2 , (2.39)

with Y (l) a function for the angular momentum l of the basis function. The integrals of
GTOs can be efficiently calculated analytically.
In general, the computation time of methods like Hartree-Fock depends directly on the
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number of basis functions used. For this reason, it is attempted to obtain the most accurate
results possible with the smallest possible number of basis functions. For the calculation
of the ground state but also low excited states, a number of highly optimized standard
basis sets based on GTOs have been developed.
For energetically higher excited states, the electron distribution is usually more complicated
since a significant fraction of electron density may be found further away from atomic nuclei.
In such situations, standard basis sets usually do not provide a satisfactory description
anymore and additional basis functions which cover this region far from the nucleus are
needed. For this purpose, single primitive Gaussian functions as they appear in GTOs
can be used where the exponents βi are developed in series as

βi = βγi−1, α, β > 0, γ ̸= 1 i = 1, 2, ..., N. (2.40)

Such a series of atom-centered basis functions are called even-tempered basis sets. They can
be added to standard basis sets to cover a larger space evenly, but have the disadvantage
that usually many basis functions are required, which makes them expensive to use.
If not only bound states are to be considered, but even continuum states, atom-centered
basis functions are rather unsuitable, because they can only describe the wave function in
a region just around the molecule.
To describe continuum functions nonetheless, grid-based basis sets can be used. Here, the
spatial region is divided uniformly along grid points. As a result, however, the amount of
resulting basis functions in grid-based methods leads to significantly longer computation
times. In addition, bound states are usually insufficiently described in such grid-based
methods. A solution to this problem is the combination of atom-centered and grid-based
basis functions to describe both bound and continuum states.

Electron correlation

In many cases, such as the hydrogen molecule, Hartree-Fock provides ground-state energies
that deviate by less than 5 % from the exact energy. However, this deviation is usually
already too large to explain and predict experimental findings. The reason for this
deviation is an inaccurate description of the wave function by a single Slater determinant
which leads to higher energies. The difference between the exact solution of the TISE and
the Hartree-Fock limit, which is the Hartree-Fock energy from a complete basis set, is
called correlation energy Ecorr

18



2.2 Electronic structure theory

Eexact = EHF + Ecorr. (2.41)

The term correlation energy is slightly misleading because Hartree-Fock already includes
correlation effects by the exchange term. Two electrons with parallel spins can never be at
the same point in space which is called Fermi correlation. However, correlations between
electrons due to their Coulomb interaction (Coulomb correlation) or due to the symmetry
or the total spin of the molecule are not described by Hartree-Fock.
Often, correlation effects are divided into static and dynamic correlations. Dynamic
correlation refers to the correlation between the motion of electrons, which is not fully
described in Hartree-Fock due to the description of one electron in an averaged Coulomb
field of all other electrons. Static correlation, on the other hand, occurs when the ground
state of a molecule can only be described by several energetically (nearly) degenerate
Slater determinants.
Both dynamic and static correlation can be included by using several Slater determinants
to describe a wave function. Since the Hartree-Fock Slater determinant and the resulting
molecular orbitals are usually used to generate further Slater determinants, these methods
are also referred to as post-Hartree-Fock methods.

2.2.2 Configuration interaction

The Hartree-Fock method yields as many molecular orbitals from K basis functions and
thus 2K spin orbitals. The Hartree-Fock Slater determinant for the ground state, also
called ground state configuration, consists only of the N spin orbitals with the lowest
orbital energy, where N is the number of electrons. By exchanging occupied spin orbitals
with unoccupied (virtual) spin orbitals, further configurations or Slater determinants can
be created from the Hartree-Fock reference |Ψ0⟩

â†aâi|Ψ0⟩ = |Ψa
i ⟩ = |χ1χ2...χa...χN ⟩. (2.42)

In second quantization, this exchange corresponds to applying an annihilator operator to an
occupied and a creation operator to an unoccupied orbital. In the configuration interaction
method, the total wave function is now described as a weighted linear combination of
configurations
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|Ψ⟩ =


c0 +

∑

ia

cai â
†
aâi +

∑

i<j
a<b

cabij â
†
aâiâ

†
bâj + ...


 |Ψ0⟩. (2.43)

If all possible configurations are included in the wave function – referred to as full configu-
ration interaction (FCI) – the exact solutions with respect to the electronic Schrödinger
equation in the used basis set is obtained. The expansion coefficients c can be determined,
for example, by constructing the Hamiltonian matrix ⟨Ψi|Ĥ|Ψj⟩, where Ψi and Ψj corre-
spond to individual configurations and subsequent (partial) diagonalization of this matrix.
The eigenvalues of the matrix correspond to the eigenenergies and the eigenvectors to
the expansion coefficients for different states. Unlike HF, where only the ground state is
determined, CI also allows the calculation of excited states. The matrix elements of the
Hamiltonian matrix can be calculated by using the Slater-Condon rules. Even if FCI gives
the exact solution except for the basis set error, it is unfeasible for most applications due
to its exponential scaling.
In order to carry out CI computations for larger systems nevertheless, the number
of configurations is systematically restricted, which is called truncated configuration
interaction. When only the singly excited configuration and the ground state configuration
are included, the configuration interaction singles (CIS) method is obtained. Since the
matrix elements between the ground state configuration and single excited configurations
are zero according to Brilloun’s theorem ⟨Ψ0|Ĥ|Ψa

i ⟩ = 0, there is no improvement of the
ground state and its energy in CIS. Nevertheless, CIS is suitable for the calculation of
singly excited states. If additionally doubly excited configurations are included, one speaks
of configuration interaction singles doubles (CISD). In CISD and higher truncation levels,
the ground states also incorporate correlation corrections.
The truncation of the CI wave function is an approximation that subsequently leads
to deviations in the energy and wave function. However, the degree of deviations for
CI depends on the size of the system, and the properties of size extensivity and size
consistency are violated.
An ansatz for a wave function based on multiple Slater determinants, which does not
suffer from these problems, is used in the Coupled-cluster (CC) method. In contrast to CI

20



2.2 Electronic structure theory

in equation 2.43, an exponential expansion is used here

|Ψ⟩ = exp(T )|Ψ0⟩ = exp



∑

ia

tai â
†
aâi +

∑

i<j
a<b

tabij â
†
aâiâ

†
bâj + ...


 |Ψ0⟩, (2.44)

where T is called the cluster operator. If T is now truncated to, for example, single
and double excitations (CCSD), higher excitations are nevertheless described by the
combination of single tai and double tabij amplitudes. Coupled-cluster thus usually provides
significantly better results than CI for the same number of considered configurations and
similar computational effort. However, the derivation and implementation of the working
equations are much more complicated than for CI.
However, both truncated CI and truncated CC, like other post-Hartree-Fock methods that
build on the HF ground state as reference configuration, have one additional problem.
In situations with high contributions of static correlation, such as dissociation processes,
these methods fail completely. A single Slater determinant is not sufficient in such near
degeneracy situations and, accordingly, the reference these methods build on is insufficient.

2.2.3 Multi-configuration self-consistent field

In order to describe static correlation, more than one configuration is necessary as a
reference. For this purpose, the approaches of Hartree-Fock and CI are combined and,
likewise in CI, a linear combination of Slater determinants is used as a wave function.
In addition to the expansion coefficients for the Slater determinants, the coefficients of the
involved spin orbitals are simultaneously optimized with respect to the ground-state energy
in a self-consistent field algorithm similar to HF. Compared to CI, this method requires
significantly fewer configurations for a sufficient description of the wave function, but the
optimization of basis set coefficients and CI coefficients at the same time is computationally
more expensive.
For the selection of Slater determinants in the MCSCF method, different schemes are
available. In the frequently used complete active space self-consistent field method
(CASSCF), molecular orbitals are divided into three categories. The first category are core
molecular orbitals for inner electrons, which are occupied twice. The area energetically
above these orbitals is the so-called active space. In this space, a certain number of
electrons is allowed to occupy all orbitals in any suitable combinations, resulting in the
desired configurations. The third region are virtual molecular orbitals which remain
unoccupied. The quality of the results from such a calculation is strongly dependent on
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the definition of the active space.
Similar to the HF wave function in single-reference methods, the wave function of an
MCSCF calculation provides the reference for a number of multi-reference methods. For
example, a CI calculation can be performed based on the MCSCF wave function in a
multi-reference configuration interaction (MRCI) calculation. Also, the idea to perform
coupled cluster computations with an MCSCF reference is also being explored (MRCC).

Configuration state functions

Even though Slater determinants have been used in equations so far in this work for the
sake of simplicity, they are usually not used in many methods in efficient implementations.
Instead, configuration state functions (CSF) are used. CSFs are linear combinations of
Slater determinants which are eigenfunctions of the squared angular momentum operator
ŝ2. Since the ŝ2 operator commutes with the Hamiltonian operator, matrix elements
in the Hamiltonian matrix between eigenfunctions with different eigenvalues to the ŝ2

operator are always zero. The Hamiltonian matrix can thus be split according to different
eigenvalues to the ŝ2 operator, which can be diagonalized separately. For a CI calculation,
this method is called spin-adapted CI. The same separation is also performed with respect
to the angular momentum operator in the z-direction ŝz, which also commutes with the
Hamiltonian. However, both Slater determinants and configuration state functions are
eigenfunctions of the ŝz operator.

2.2.4 Electronic state analysis

The ground state and excited states determined with the methods from the last chapter
can be analyzed afterward to get deeper insights into the system. In particular, expectation
values of further operators like the dipole moment µ⃗

µ̂ = −
N∑

i

r⃗i +
M∑

A

ZAR⃗A (2.45)

are of interest. Where r⃗i are electron coordinates, R⃗A are the nuclear coordinates, and ZA

are the charges of the nuclei. A number of thermodynamic properties and experiments
can be predicted from such expectation values, with the ground state being of particular
importance. However, to understand dynamical processes, e.g. induced by light, the
transition between states becomes relevant. Fermi’s golden rule derived from perturbation
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theory using a continuous wave with a weak intensity as an external perturbation

Γif =
2π

ℏ
|⟨ψi|µ̂|ψf ⟩|2ρ(Ef ), (2.46)

allows to determine approximate rates Γif for a transition from an initial ψi to a final
state ψf . ρ(Ef ) is the density of states at the energy of the final state Ef . This picture
is completed by further properties like the difference of the electron density of the two
involved states

∆ρij(r) = ⟨ψi|ρ̂(r)|ψi⟩ − ⟨ψj |ρ̂(r)|ψj⟩. (2.47)

Also, for a state-to-state transition starting from the ground state as the initial state, the
so-called one-particle transition density matrix (1PTDM[58,62]) can be constructed

γi0µν = ⟨ψi|a†µaν |ψ0⟩. (2.48)

This matrix helps to describe the resulting exciton of electron and electron hole by
determining properties such as the spatial extent and distance of the particle and hole
using further expectation values.

2.3 Electron dynamics

Even if, as already shown, various dynamic properties of a system can be extracted from
time-independent states, in the case of pulsed laser sources or stronger field strength,
explicit time-dependent considerations are necessary to obtain more realistic response
properties.
The inclusion of such a laser operator turns the time-independent Hamiltonian into a time-
dependent one, to which the time-independent states no longer represent eigenfunctions.
However, if changes in the potential happen slowly enough, a system remains in its
eigenstate according to the adiabatic theorem. Accordingly, tools such as Fermi’s Golden
Rule can be further used for such situations.
However, the systems considered in this thesis do not fall under the adiabatic theorem, so
methods for propagating a wave function and analyzing a time-dependent wave function
are needed and discussed in the following chapters.
The theory from the sections relies on the books "Introduction to Quantum Mechanics: A
Time-Dependent Perspective" [92] and "Multidimensional Quantum Dynamics: MCTDH
Theory and Applications" [96] as well as the articles [97–99] unless additionally stated.
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2.3.1 Propagator

For time-independent Hamiltonians the Schrödinger equation (Eq. 2.1) was separated into
a time-dependent and a time-independent Schrödinger equation (Eq. 2.4) by separating
the variables. For time-dependent Hamiltonian operators, this cannot be done directly.
Instead, by integrating the general solution

|Ψ(t)⟩ = Û(t, t0)|Ψ(t0)⟩. (2.49)

is obtained. Here Û(t, t0) is an operator which evolves an arbitrary wave function from
time t0 to point t in time. Û is unitary and has a propagator property, and thus can be
decomposed into individual propagators for smaller time steps.

Û(tN , t0) = Û(tN , tN−1)Û(tN−1, tN−2)...Û(t1, t0). (2.50)

Accordingly, the operator is referred to as a propagator in the following. The evolution for
a finite time can be decomposed into a product of infinitely small time steps δt with the
Hamiltonian at a fixed time. Analogous to the time-dependent Schrödinger equation with
time-independent Hamiltonian, the propagator for eigenstates ψn is now given as

Û(t, t0) = e−iEnδt (2.51)

and as

Û(t, t0) =
∑

n

e−iĤ(t)δt =
∑

n

e−iEnδt|ϕn⟩⟨ϕn| (2.52)

for a general wave function. In practical application, an infinitely small time step δt is
approximated by a finite time step ∆t, where, for reasons of numerical stability, the time
step must be chosen small enough for the results to converge. The propagation for a time
step is thus given as

|Ψ(t+∆t)⟩ = e−iĤ(t)∆t|Ψ(t)⟩. (2.53)

2.3.2 Time-dependent configuration interaction

Many theories in the field of electron dynamics are based on theories for solving the TISE.
This is also the case for the time-dependent configuration interaction (TD-CI) theory.
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2.3 Electron dynamics

Here, the same approach for a wave function as a superposition of Slater determinants or
configuration state functions is used. In contrast to time-independent CI to determine
stationary states, the expansion coefficients Ci(t) are time-dependent here

Ψ(t) =
∑

i

Ci(t)ψi. (2.54)

However, it is common for TD-CI to go beyond this and represent the wave function
as a superposition of static CI states. The CI states ψi remain constant throughout
the propagation and the time-dependent wave function has the same truncation as the
underlying CI states.
Even if using CI states as a basis requires a preceding CI calculation, the calculation of
these states often becomes necessary anyway due to their importance in the analysis of
the propagations. Thus, dynamics calculations usually start from the ground state, and
the population of states is used for evaluation. The population of a state is defined as
the overlap between this state and the time-dependent wave function and can be easily
determined in the state basis as

Pn(t) = |⟨ψn|Ψ(t)⟩|2 = |Ci(t)|2. (2.55)

Furthermore, the time-independent Hamiltonian matrix in the state basis is a diagonal
matrix, which simplifies the propagation of a time step as in equation 2.53 to

Ψ(t+∆t) =
∑

i

e−iEi∆tCi(t)Ψi, (2.56)

where the diagonal form makes the calculation of the matrix exponential trivial. Further-
more, since all off-diagonal elements of the Hamiltonian matrix in the state basis are 0,
there is no change in the state population during propagation without any additional
terms in the Hamiltonian. Only the (imaginary) phases of the states change depending on
their energies.

Laser potential

To observe a transfer of state populations, additional terms can be added to the time-
independent Hamiltonian. In this work, an external light source is included in the form
of a time-dependent potential V (r⃗, t) = µ̂F (t) to the molecular Hamiltonian. In this
thesis, laser pulses are the only explicitly time-dependent operator considered. The total
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Hamiltonian including an external laser pulse is given as

Ĥ(r⃗, t) = Ĥel(r⃗) + µ̂F (t), (2.57)

using the so-called semi-classical dipole approximation for the interaction with a laser. µ̂
represents the dipole operator already introduced in equation 2.45 and F (t) an external
oscillating electric field component of the form

F (t) = f0 sin(ω(t− tp)) cos
2(
π

2σ
(t− tp)), (2.58)

where f0 is the maximum amplitude, ω the excitation frequency and σ the pulse width.
Equation 2.58 describes a pulse with a cosine squared envelope centered at tp, therefore,
the total duration of the pulse action is two times the pulse width. Other shape functions,
like a Gauss envelope, for example, are possible but not used in this work. To perform a
controlled state-to-state transition, the excitation frequency can be selected according to
the excitation energy. Then the π-pulse condition

f0 =
2π

σµif
(2.59)

can be used to adjust the remaining parameters to the correct relationship. Here, µif
corresponds to the transition dipole moment between the selected initial ψi and final ψf

states, as in equation 2.46.

µif = ⟨ψi|µ̂|ψf ⟩. (2.60)

The π-pulse condition results from the rotating wave approximation (RWA) in the limit
for weak laser fields with only two states, and therefore a complete state-to-state transition
often does not occur for short and intense laser pulses because of three reasons. First,
short pulses have a broader spectral width, so that states that are near the target state
may be addressed by the laser. Furthermore, dynamic shifts of energy levels can occur
due to the coupling of permanent dipole moments with the laser field. Also, multiphoton
transitions often occur in intense laser fields.

Complex absorption potential

Lasers are not only used for transitions from one bound state to another state but also
to ionize systems due to strong laser fields. While it is experimentally easier to observe
ionization processes than the transitions between bound states, theoreticians face greater

26



2.3 Electron dynamics

challenges with a description of this process. Since the electron is no longer bound, it
is difficult to describe the corresponding continuum states sufficiently as shown in the
overview of various basis sets in section 2.2.1. Since basis functions are spatially confined,
an ionized electron is always reflected and interacts in an undesirable way with the
remaining electrons or the chosen simulation area. To prevent this, complex absorption
potentials (CAPs) can be used to remove electronic density under certain conditions.
CAPs are non-Hermitian operators of the form

V̂ = −iηW (2.61)

with η the CAP strength and W a function depending on the type of the CAP. Two types
of CAPs were used here. A spatial one where W is defined as a function in space[100,101]

or an energetic one that acts on a chosen subset of CI states by assigning a lifetime to
them depending on the orbital energies of the occupied spin orbitals.[21,102]

Split-Operator method

If an explicit time-dependent operator is added in addition to the molecular Hamiltonian
for a dynamics calculation, the execution of a dynamics calculation usually becomes
much more complex. The Hamiltonian is no longer a diagonal matrix in the state basis
and changes with time, so the matrix exponential must be calculated for each time step.
To minimize the computational effort, the split operator method can be used, which is
shown in the following example with an additional laser operator. In the first step, the
Hamiltonian operator in the matrix exponential is split into the three spatial directions of
the laser field and the time-independent Hamiltonian

ei(Ĥel+µ̂F̂ (t))∆t ≈


 ∏

q∈{x,y,z}

eiµ̂qFq(t)∆t


 eiĤel∆t. (2.62)

This decomposition is known as the Trotter product formula and is discussed in more detail
in section 2.4.3 with respect to quantum computing. The Trotter decomposition represents
an approximation for non-commutable operators, where the error for the first order scales
with O(∆t2). After the decomposition, transformation matrices Uq are determined for
the laser components, which diagonalize the dipole matrix into the corresponding spatial
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directions

Ψ(t+∆t) ≈


 ∏

q∈{x,y,z}

U †
q e

iµ̂qFq(t)∆tUq


 eiĤel∆tΨ(t). (2.63)

Since µ̂q are diagonal matrices in the new basis, the corresponding matrix exponentials
eiµ̂qFq(t)∆t can be efficiently determined. Because the matrix exponential of the time-
independent part always remains the same, it has to be determined only once. The
propagation is thus reduced to matrix multiplications which can be performed more
efficiently than the calculation of matrix exponentials at every time step.

2.3.3 Time-dependent Hartree Fock

Analogous to Hartree-Fock, a single Slater determinant can be used as a time-dependent
wave function. The resulting method is the time-dependent Hartree Fock method (TD-HF)
with the wave function

Ψ = Âχ1(t)χ2(t)...χN (t), (2.64)

where Â is the antisymmetrization operator. Compared to TD-CI, the TD-HF wave
function is time-dependent due to the time dependence of the spin orbitals, while these
remained constant in TD-CI. Various approaches based on the variational principles or
perturbation theory finally provide TD-HF equations for the time evolution of the orbitals.
Compared to TD-CI, the computational effort of a TD-HF propagation is significantly
lower due to the use of only one Slater determinant, but TD-HF also leads to significantly
less accurate results.

2.3.4 Multi-configuration Time-Dependent Hartree

In the field of time-dependent methods, the time-dependent extensions of Hartree-Fock
and CI can also be combined to describe dynamic processes in systems with large static
correlation. The time-dependent extension to the CASSCF method (section 2.2.3) is mainly
known as the multi-configuration time-dependent Hartree Fock (MCTDHF) method. Due
to limitations in the existing MCTDHF implementations, the related multi-configuration
time-dependent Hartree (MCTDH) method was used in this work, which differs from
MCTDHF mainly in the use of Hartree products instead of Slater determinants. The
MCTDH wave function for f degrees of freedom (DOF) described by the coordinates
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q1, ..., qf has the form

Ψ(q1, ..., qf , t) = Ψ(Q1, ..., Qp, t) =

n1∑

j1=1

...

np∑

jp=1

Aj1...jp(t)ϕ
(1)
j1

(Q1, t)...ϕ
(p)
jp

(Qp, t). (2.65)

Multiple system coordinates can be combined here to describe an artificial particle

Qk = (qa, qb, ...), (2.66)

which is constructed by mode combination and reduces the f DOFs to p "particles".
The wave function is represented as a weighted superposition of Hartree products of
so-called single-particle functions (SPF) ϕ(κ)jκ

(Qκ, t), where Aj1...jp(t) are the corresponding
coefficients. Thus, with each particle κ, nκ Hartree products are added to the wave
function and all Hartree products are extended by one SPF.
This generalized formulation of the MCTDH wave function is based on the fact that
MCTDH has already been used for a wide variety of systems from physics with a wide
variety of degrees of freedom, mostly for nuclear dynamics simulations. In this thesis, a
DOF is always a space dimension of a single electron. The three space dimensions and
one spin coordinate could be combined by mode-combination to describe one particle
(electron) κ. In this case, the SPFs would correspond to spin orbitals.
The MCTDH wave function is used in the following in a more compact form

Ψ(Q1, ..., Qp, t) =
∑

J

AJΦJ , (2.67)

where a composite index J = (j1...jp) is introduced. Aj describes the coefficient

AJ = Aj1...jp(t) (2.68)

associated to J and ΦJ the associated Hartree product

ΦJ = ϕ
(1)
j1

(Q1, t)...ϕ
(p)
jp

(Qp, t). (2.69)

Setting all nκ = 1 in the MCTDH wave function (Eq. 2.65), the wave function is reduced to
a single Hartree product and corresponds to the time-dependent Hartree ansatz. Compared
to the so-called standard method, where a wave function similar to the TD-FCI wave
function is used with Hartree products instead of Slater determinants, nκ < Nκ is truncated
in the MCTDH method.
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While for the standard method and TD-CI only the expansion coefficients and for TD-H
and TD-HF only orbitals are time-dependent, this applies for both in MCTDH, i.e.,
expansion coefficients and SPFs are time-dependent and have to be propagated in time
simultaneously. Similar behavior with respect to orbitals and expansion coefficients has
already been shown for HF, CI, and MCSCF for time-independent methods.
Since Hartree products are used in MCTDH, the wave function, as discussed in section 2.1.2,
does not satisfy the Pauli exclusion principle due to lack of antisymmetrization and is
thus unsuitable for fermions. However, this missing antisymmetrization can be restored
by antisymmetrization of the A-tensor

Aj1...jk...jl...jp(t)
!
= −Aj1...jl...jk...jp(t). (2.70)

Furthermore, it is necessary to use the same set of SPFs for all Hartree products to ensure
the indistinguishability of electrons.
The form of the wave function and the use of grid-based basis sets for the description of
SPFs lead to the result that bound states and continuum states can be described equally,
even in situations with high static correlation, with only a few SPFs. However, due to
the time dependence in the A tensor and the SPFs, the method is computationally very
expensive and can only be used for small electronic systems.

Equations of motion

The MCTDH equation of motion i.e. the equations describing the time evolution of a
system, can be derived using a variational principle. Here the Dirac-Frankel variational
principle

⟨δΨ|Ĥ − i
∂

∂t
|Ψ⟩ = 0 (2.71)

is used. Before this variational principle can be applied, however, further restrictions have
to be made concerning the SPFs. On one hand, they should be orthonormal

⟨ϕ(κ)j |ϕ(κ)k ⟩ = δjk, (2.72)

on the other hand, the wave function should be unique, which is achieved by a Hermitian
constraint operator

i⟨ϕ(κ)j |ϕ̇k
(κ)⟩ = ⟨ϕ(κ)j |ĝ|ϕ(κ)k ⟩. (2.73)
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Without this operator, due to the flexibility of the wave function, the same time evolution
could be achieved either by changing the coefficients or the SPFs. The choice of ĝ is made
in a way that the computational effort is as small as possible. By inserting the wave
function into the Dirac-Frenkel variational principle, the differential equations for the
time-dependent coefficients

iȦ = KA (2.74)

and differential equations for each set of SPFs

iϕ̇
(κ)

= (1− P (κ))(ρ(κ))−1H(κ)ϕ(κ) (2.75)

are obtained. K is the Hamiltonian matrix with the elements

KJL = ⟨ψJ |Ĥ|ψL⟩. (2.76)

Three new operators appear in the equation of motion. The first one is the projection
operator P (κ) which appears as (1− P (κ)) and ensures that the SPFs represent the best
possible basis for the description of the wave packet at any time. If the SPFs represent a
complete basis, their time dependence is dropped and the already mentioned standard
method is preserved.
For the two other operators, ρ(κ) and H(κ), the single hole wave function

Ψ(κ)
a =

∑

j1

...
∑

jκ−1

∑

jκ+1

...
∑

jp

Aj1...jκ−1ajκ+1...jp(t)ϕ
(1)
j1
...ϕ

(κ−1)
jκ−1

ϕ
(κ+1)
jκ+1

...ϕ
(p)
jp

(2.77)

is introduced, where the κ-th particle is removed, leaving the hole a.

H(κ)
ab = ⟨Ψ(κ)

a |Ĥ|Ψ(κ)
b ⟩ (2.78)

is thus a mean-field operator and correlates the motion between the different SPF sets.
The last operator ρ(κ) is the density operator as it already appeared in section 2.2.4. The
matrix elements are given here as

ρ
(κ)
ab = ⟨Ψ(κ)

a |Ψ(κ)
b ⟩. (2.79)

Since entries close to zero are obtained in the density matrix for energetically high states,
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linear dependencies of rows and columns can occur in the matrix. Because such a singular
matrix cannot be inverted, as it is necessary for equation 2.75, a regularized density matrix
in the form

ρ(κ)
reg = ρ(κ) + ϵ exp

(
−ρ(κ)

ϵ

)
(2.80)

is used. The general MCTDH equation of motion is obtained by adding the constraint
operator ĝ as

iȦ =

(
K−

∑

κ

ĝ(κ)

)
A (2.81)

for the coefficients and

iϕ̇
(κ)

=
[
(g(κ))T + (1− P (κ))(ρ(κ))−1H(κ)

]
ϕ(κ) (2.82)

for the SPFs. Depending on the choice of the constraint operator, different SPFs are
obtained, which can be transformed into each other by a unitary transformation and
therefore describe the same space. A typical constraint operator is ĝ(κ) = 0, with which
one recovers the EOMs from the equations 2.74 and 2.75. Alternatively, the one-particle
terms of the corresponding Hamiltonian are often used as a constraint operator.

Discrete variable representation and Hamiltonian form

To solve the MCTDH equation of motion (Eq. 2.81 and 2.82), elements of the Hamiltonian
matrix (Eq. 2.76) as well as the mean-field matrix (Eq. 2.78) have to be determined
repeatedly by integration. To simplify this multidimensional integration and to make
MCTDH efficient, the SPFs are expanded in a basis of so-called primitive basis functions

ϕ
(κ)
j (Qκ) =

Nκ∑

k=1

a
(κ)
kj χ

(κ)
k (Qκ). (2.83)

The number of primitive basis functions Nκ is different from the number of SPFs nκ
in equation 2.65. The primitive basis functions are orthonormal in a discrete variable
representation (DVR). The matrix representation of the position operator q̂v in a basis of
such DVR functions χ(κ)

k for the coordinate qv is a diagonal matrix

⟨χ(ν)
i |qν |χ(ν)

j ⟩ = q
(ν)
j δij . (2.84)
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In this way, the corresponding eigenvalues of the position operator q̂ν represent a set of
grid points in the chosen DVR basis. To determine the integrals for local potentials V (Qκ),
which act only on one coordinate, it is now sufficient to evaluate the potentials only at
the DVR points

⟨χ(1)
i1
...χ

(f)
if

|V |χ(1)
j1
...χ

(f)
jf

⟩ = V (q
(1)
j1
, ..., q

(f)
jf

)δi1j1 ...δif jf . (2.85)

If several degrees of freedom d are combined into particles by mode combination and
multidimensional SPFs are used, SPFs are expanded as a sum of products of primitive
basis functions. For two DOFs q1 and q2, for example, as

ϕ
(1)
j (Q1) =

N1∑

k1=1

N2∑

k2=1

a
(1)
k1k2j

χ
(1)
k1

(q1)χ
(2)
k2

(q2). (2.86)

Depending on the degree of freedom, different functions can be used as DVRs. For example,
harmonic oscillator DVRs are suitable for vibrational motion, and exponential and sine
DVRs for free motion without periodic boundary conditions.
If the Hamiltonian can be expressed in a product form as a sum of products of single-particle
operators

Ĥ(q1, ..., qf ) =

ns∑

r=1

crh
(1)
r (Q1)...h

(p)
r (Qp), (2.87)

the multidimensional integrals can be expressed as a sum of products of lower dimensionality
d

⟨ϕ(1)j1
...ϕ

(p)
jp

|Ĥ|ϕ(1)k1
...ϕ

(p)
kp

⟩ =
ns∑

r=1

cr⟨ϕ(1)j1
|ĥ(1)|ϕ(1)k1

⟩...⟨ϕ(p)jp
|ĥ(p)|ϕ(p)kp

⟩. (2.88)

By using DVRs, these integrals have only the dimensionality Nd where N is the number
of primitive basis functions and d is the dimensionality of the corresponding particle. As
shown before, these integrals can be computed efficiently. Potentials acting on more than
one particle, like the Coulomb interaction, have to be approximated by a product form
accordingly

V app(Q
(1)
i1
, ..., Q

(p)
ip

) =

m1∑

j1=1

...

mp∑

jp=1

Cj1,...,jpν
(1)
j1

(Q
(1)
i1

)...ν
(p)
jp

(Q
(p)
ip

). (2.89)

33



2 Theoretical Background

In the MCTDH program used, the implemented POTFIT and multigrid POTFIT (MGPF)
methods can be used for this purpose.

Imaginary time evolution

Since dynamics calculations are usually started from an eigenstate, most often the ground
state with time-independent Hamiltonian, and other states may also be relevant for
evaluations, it must also be possible to determine these in the MCTDH framework.
However, unlike in the TD-CI method, in MCTDH the time-independent Schrödinger
equation is not solved directly. Instead, the imaginary time evolution method is used.
The method starts with an arbitrary trial wave function, which can be represented as a
linear combination of the time-independent eigenstates

Ψ(t0) =
∑

n

cn(t0)ψn. (2.90)

As shown in section 2.3.2 on TD-CI, the propagation of such a wave packet can be written
with the state phases explicitly as

Ψ(t) =
∑

n

cn(t0)e
−iEntψn. (2.91)

If the real time t is exchanged by an imaginary time τ = it, the states no longer change
their phase depending on the corresponding state energies En but decay with a decay rate
proportional to these energies. The ground state with the lowest energy decays the slowest
so that the renormalized wave function in the long imaginary time limit corresponds to the
ground state. If the trial wave function has no overlap with the ground state, the excited
state with the lowest energy and overlap with the trial wave function is obtained. This can
be used to determine higher energy states by choosing the trial wave function orthogonal
to undesired states. The imaginary time evolution method is referred to as relaxation in
the context of MCTDH. Furthermore, with a method called improved relaxation, several
states can be calculated at once. To make this possible, the wave function must be able to
represent several electronic states simultaneously and the use of a CMF (Constant Mean
Field) scheme for the propagation is necessary. Here, the matrix elements KJL and the
product of the inverse density and mean-field matrices (ρ(κ))−1H(κ) are only re-evaluated
every few propagation steps as they change much slower than the MCTDH coefficients
and the SPFs.
In order to perform the actual propagations in MCTDH in both real and imaginary time, a
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number of other algorithms such as the Runge-Kutta method or Davidson diagonalization
are needed. However, since these are more technical details, they will not be discussed in
this thesis.

2.4 Quantum computing

The electron dynamics methods already mentioned always compromise accuracy and
the number of interacting particles. Accurate calculations with many electrons are
impossible on traditional computers due to their quantum mechanical properties. As
already mentioned, one solution could be the simulation of one quantum system with the
help of another in the form of quantum computing. There are different models of quantum
computing which can differ drastically in the physical implementation and the algorithms.
In this work, only the quantum circuit model is discussed and used. Also, this chapter does
not address the realization and suitability of physical systems, but instead focuses on the
development of quantum algorithms only. The basic principles and quantum algorithms
presented here were largely compiled from the works [78, 79].

2.4.1 Qubits and quantum gates

The quantum circuit model has certain similarities with traditional computers. Traditional
computers use logic gates like AND, OR, and NOT which act on information in the form
of bits. A bit represents a binary number (usually "0" or "1"). In the quantum circuit
model, quantum gates instead act on the corresponding basic unit of information, the
qubit. A qubit can represent more than just two different states, instead it can represent
any state in a two-dimensional Hilbert space. The basis vectors of the Hilbert space are
called |0⟩ and |1⟩ and correspond to the so-called computational basis. A general state of
a qubit can thus be written as

|ψ⟩ = α|0⟩+ β|1⟩ =
(
α

β

)
, (2.92)

where α and β can be complex α, β ∈ C and the state is normalized |α|2 + |β|2 = 1. If a
qubit is now measured in the computational basis, the states |0⟩ or |1⟩ are always obtained
with the corresponding probabilities |α|2 and |β|2.
If several qubits are combined into a quantum system, the state space of the system is
given as the tensor product of the individual qubit state spaces. The state of an n qubit
system is accordingly described as a vector in the 2n dimensional Hilbert space spanned
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by the tensor product of the n qubits. States can be distinguished between product states
and entangled states. While product states can be decomposed into tensor products of
pure states of fewer qubits like

1√
2
(|00⟩+ |10⟩) = 1√

2
(|0⟩+ |1⟩)⊗ |0⟩, (2.93)

this is not possible for entangled states like

1√
2
(|00⟩+ |11⟩). (2.94)

A pure state is a state that can be described by a single ket vector. A mixed state, on
the other hand, is a statistical ensemble of pure states. While for pure states the density
operator is given as ρ̂ = |Ψ⟩⟨Ψ|, for mixed states it is defined as

ρ̂ =
∑

j

pj |Ψj⟩⟨Ψj | (2.95)

where pj are the probabilities for the corresponding states Ψj . The use of the density
matrix instead of state vectors allows, for example, to simulate noisy quantum computers
where such mixed states occur. In addition, the density matrix can be used to decompose
entangled states of the system AB into mixed states for the corresponding subsystems A
and B. The resulting form is called a reduced density matrix.
In the following, for states consisting of n qubits as in equation 2.94, the qubit on the
rightmost side of the ket vector is counted as the zeroth qubit and the qubit on the leftmost
side is counted as the (n − 1)th qubit. This ordering is different from the ordering for
spin orbitals in the previous chapters but is common in quantum computing. With this
ordering, binary numbers can be written directly using the computational basis such as
|5⟩ = |1⟩|0⟩|1⟩ = |101⟩. At the beginning of a quantum algorithm, the n-qubits to be used
are first initialized to a well-defined state such as the state |0̄⟩ = |0⟩⊗n = |0⟩ ⊗ ...⊗ |0⟩.
Then this state is manipulated by the quantum circuit and measured at the end to extract
the desired information. A quantum circuit consists of qubit gates that act on one or
more qubits. A qubit gate is always a unitary transformation and can be written as a
unitary matrix acting on the basis states. Typical single qubit gates which are used in the
following are the so-called Pauli gates corresponding to the Pauli matrices

X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
, (2.96)
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the single qubit rotation gates

Rx(θ) = e−iθX/2, Ry(θ) = e−iθY/2, Rz(θ) = e−iθZ/2 (2.97)

as well as the Hadamard, T, and S gates

H =
1√
2

(
1 1

1 −1

)
, T =

(
1 0

0 eiπ/4

)
, S =

(
1 0

0 i

)
. (2.98)

The most relevant of the multi-qubit gates is the controlled-NOT gate (CX), which can
entangle and disentangle two qubits with each other

CX = |0⟩⟨0|C ⊗ IT + |1⟩⟨1|C ⊗XT . (2.99)

Here, C denotes the control, and T the target qubit. The gate flips the target qubit by
a Pauli-X quantum gate if the control qubit is in state |1⟩. The matrix representation
acting on the two-qubit basis |i⟩C ⊗ |j⟩T is given as

CX =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



. (2.100)

The Hadamard gate, T gate, and CX gate represent a universal set of quantum gates,
which means that any further one or multi-qubit gate can be represented as a combination
of these gates. Mathematically, a quantum circuit of k quantum gates can be written as

|ϕ⟩ =
∏

k

U ik,jk
k (θ⃗k)|0̄⟩ (2.101)

where U ik,jk
k (θ⃗k)| is the corresponding unitary gate acting on the qubits ik (and jk). θ⃗k

is an additional parameter, as it occurs, for example, in single qubit rotation gates. An
example for a quantum circuit consisting of H, Rx and CX gates is

CX0,1R1
x(π)H

0|00⟩ (2.102)
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and creates the state

1√
2
(|01⟩+ |10⟩). (2.103)

Easier to read than the mathematical notation from equation 2.102 is the visualization of
such a circuit as given in Fig. 2.1 for the same example with subsequent measurement of
the qubits.

|0⟩ H

|0⟩ Rx(π)

Figure 2.1: Visualization of the quantum circuit from equation 2.102 in which the state 1√
2
(|01⟩+

|10⟩) is generated. Additionally, both qubits are measured in the computational
basis.

The expectation value of the measurement of a qubit i corresponds to the expectation
value to the corresponding Pauli-Z operator ⟨ψ|Zi|ψ⟩. Thus, for the determination of
the expectation value, it is necessary to repeatedly prepare the state |ψ⟩ and to measure
the state. If the state |0⟩ is measured, the measurement corresponds to the eigenvalue
+1 and for the state |1⟩ to the eigenvalue −1. The average over the measurements
then corresponds to the expectation value. Expectation values for Pauli-X and Pauli-Y
operators can be determined by measurement after corresponding previous single qubit
rotations. The measurement of multi-qubit operators like ZiZj corresponds to the product
of the measurements of Zi on qubit i and Zj on qubit j. Since the Pauli operators and
the identity matrix form a complete basis, the expectation values to any other single or
multi-qubit operator can be determined using the expectation values of Pauli operators
and strings of Pauli operators.

2.4.2 Fermion-qubit mapping

In order to use quantum computing for fermionic problems, it is necessary to map systems
with indistinguishable fermions to distinguishable qubits. Such mappings, in the following
also referred to as encodings, are possible in the first as well as in the second quantization.
In this work mapping in the second quantization will be discussed exclusively. Each
fermionic state in Fock space must be mapped to a qubit state in Hilbert space, and
the action of the fermionic creation and annihilator operators must be reflected by qubit
operators.
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The first mapping of a fermionic system to a bosonic one was already introduced in 1928
with the Jordan-Wigner transformation.[89] Here a mapping between 1-dimensional spin-
1/2 chains and fermions on a chain was developed. Fermionic creation and annihilation
operators are encoded by spin operators. The transformation is used in different forms,
among others for tensor network methods, and can also be used as a mapping for quantum
computing.
In the Jordan-Wigner transformation, the occupation state of a spin-orbital f is transferred
to a qubit q as state |0⟩ for unoccupied spin orbitals and as state |1⟩ for occupied spin
orbitals, respectively

|f1, f2, ..., fN ⟩ → |qN−1, qN−2, ..., q0⟩, fp = qp ∈ 0, 1. (2.104)

Note again that spin orbitals and qubits are sorted in different ways. While for FCI the
number of Slater determinants and the corresponding coefficients to be stored increase
exponentially with the number of spin orbitals, in quantum computing only as many
qubits as spin orbitals are necessary to represent the same wave function.
The creation and annihilation operators â†p and âp increase and decrease the occupation
number of an orbital p by one and can cause a sign change (phase vector) due to the
antisymmetrization principle of fermions. The translation of these operators to qubits is
given in the Jordan-Wigner transformation as

âp = Q̂p ⊗ Zp−1 ⊗ ...⊗ Z0, â
†
p = Q̂†

p ⊗ Zp−1 ⊗ ...⊗ Z0 (2.105)

with

Q̂p = |0⟩⟨1| = 1

2
(X + iY ), Q̂†

p = |1⟩⟨0| = 1

2
(X − iY ). (2.106)

The operators Q̂†
p and Q̂p change the occupation number of the corresponding spin-orbital,

while the sequence of Z-operators corresponds to the phase vector and thus ensures
the antisymmetrization of the fermionic wave function. Since creation and annihilation
operators can be translated into a product of Pauli operators (Pauli strings), the full
molecular Hamiltonian can also be translated into a linear combination of products of
Pauli quantum gates

39



2 Theoretical Background

Ĥ =
∑

ij

⟨i|ĥ1|j⟩â†i âj +
1

2

∑

ijkl

⟨ij|kl⟩â†i â
†
j âlâk =

∑

r

hrP̂r =
∑

r

hr
∏

s

σ̂rs . (2.107)

hr corresponds to the one- and two-electron integrals (hij and 1
2⟨ij|kl⟩) from equations 2.23

and 2.24 and Pr to the sequences of creation and annihilation operators (â†i âj and â†i â
†
j âkâl).

σ̂rs represents one of the quantum gates I, X, Y or Z acting on the s-th qubit. I corresponds
to the "zeroth" Pauli matrix, whose matrix representation is the identity matrix. The
application of an I quantum gate would not change a state in this case. r indexes the
terms of the Hamiltonian operator.
While the occupation of a spin-orbital in the Jordan Wigner transform is encoded locally
on only one qubit, the phase vector of fermionic field operators â†i and âi leads to nonlocal
operators acting on many qubits simultaneously. This makes the JW transform simple but
leads to quantum circuits with many quantum gates and long runtimes in the following
quantum algorithms. Alternative encodings like the parity encoding or the Bravyi-Kitaev
encoding[103] are more complicated but can reduce the number of quantum gates in many
cases.

2.4.3 Quantum algorithms

Hamilton simulation

The problem to propagate an initial state under a given Hamiltonian with a quantum
computer, i.e. to applying the propagator e−iĤt is called Hamiltonian simulation. There are
several approaches to approximate the propagator by a short quantum circuit, the simplest
and oldest being the Lie-Trotter-Suzuki decomposition, also called Trotter decomposition
in the following.[90,91] As in the methods for traditional computers, the total propagation
time is first divided into small time steps ∆t. Now, for each time step, the Hamiltonian
is divided into terms ĥj as local as possible which are equal to the corresponding Pauli
strings from equation 2.107. The propagator of a time step is now decomposed into several
exponential parts according to the Lie-Trotter-Suzuki decomposition. The first-order
Trotter decomposition yields

e−iĤ∆t = e−i
∑

j ĥj∆t ≈
∏

j

e−iĥj∆t +O(∆t2). (2.108)

The Trotter decomposition is only an approximation since the individual terms of the
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Hamiltonian ĥj do not commute with each other. The error depends on the size of the time
step. Higher orders of the Trotter decomposition lead to smaller errors, but also to more
exponential terms and later to more quantum gates. The general Trotter decomposition is
given as

e−iĤ∆t = e−i
∑

j ĥj∆t ≈


∏

j

e−iĥj∆t/N




N

. (2.109)

The number j of local terms ĥj scales polynomially with the number of spin orbitals
due to the two-body properties of the Coulomb interaction between electrons. Each of
the exponential terms is then translated into a quantum gate sequence. The number of
quantum gates in the Trotter decomposition and all other product formula approaches
therefore also scale polynomially O(poly(1/ϵ)) depending on the encoding, the product
formula, the molecule, and the accuracy ϵ. For typical molecules, a scaling of approximately
O(N6) with the number of spin orbitals has been shown. TD-FCI, on the other hand, as
a counterpart to Hamiltonian simulation on traditional computers, scales exponentially.
In addition to the Trotter decomposition, there are other approaches for the Hamilto-
nian simulation, some of which are much more efficient. These include multi-product
formulas,[104,105] Taylor series expansion,[106,107] qubitization,[108,109] and several more.

Hadamard Test

Unlike propagation methods for traditional computers, quantum computing does not allow
direct access to the wave function. When measuring the qubit state, the wave function
would collapse and only a Slater determinant with a probability corresponding to the
expansion coefficient is obtained. Reading out the complete wave function is exponentially
expensive and storing all coefficients would require exponentially much memory, thus
negating the main advantage of quantum computing. However, the full time-dependent
wave function is rarely needed to evaluate electron dynamics calculations anyway. Although
the wave function is used in traditional methods to obtain time-dependent expectation
values and population, these quantities can be obtained in quantum computing by other
algorithms. One possibility used in this work is the Hadamard test[110] which allows to
obtain the expectation value for an arbitrary unitary operator Û .
For the Hadamard test an auxiliary qubit is needed, which is not used to describe the
fermionic wave function. Such auxiliary qubits are called ancilla qubits. The ancilla qubit
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is initialized in the |0⟩ state and subsequently brought into an equal superposition of the
basis states 1

2(|0⟩+ |1⟩) by a Hadamard gate. The total qubit state is then

1

2
(|0⟩+ |1⟩)⊗ |Ψ⟩. (2.110)

Next, the unitary operator Û is applied, controlled by the ancilla qubit, resulting in the
overall state

1

2
(|0⟩ ⊗ |Ψ⟩+ |1⟩ ⊗ Û |Ψ⟩). (2.111)

In the next step, a Hadamard gate is applied again, and the state

1

2
(|0⟩ ⊗ (I + Û)|Ψ⟩+ |1⟩ ⊗ (I − Û)|Ψ⟩) (2.112)

is obtained. In the last step, the ancilla qubit is measured and the states |0⟩ and |1⟩ with
the probabilities

|0⟩ : 1
4
⟨Ψ|I + Û †)(I + Û)|Ψ⟩, |1⟩ : 1

4
⟨Ψ|I − Û †)(I − Û)|Ψ⟩ (2.113)

are obtained. The difference between the two probabilities corresponds to

1

2
⟨Ψ|(Û † + Û)|Ψ⟩ = Re⟨Ψ|Û |Ψ⟩ (2.114)

and thus to the real part of the expectation value of Û .
The measurement will be repeated several times. For the case that the state |0⟩ is measured
the value 1 will be stored and for the case that the state |1⟩ is measured the value −1 will
be stored. The average of the values over many measurements then corresponds to the
real part of the expectation value. To obtain the imaginary part of the expectation value
of Û , the state

1

2
(|0⟩ − i|1⟩)⊗ |Ψ⟩ (2.115)

has to be prepared before applying the operator Û . This is achieved by applying the
phase gate S to the ancilla qubit after the first Hadamard gate. The Hadamard test for
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measuring the real part of Û is visualized as a circuit in Fig. 2.2.

|0⟩ H H

|Ψ⟩ U

Figure 2.2: Quantum circuit of the Hadamard test to determine the real part of the expectation
value to Û . The upper line represents an ancilla qubit which is initialized in the |0⟩
state, while the other lines represent qubits that together encode the wave function
|Ψ⟩ whose expectation value to Û is to be determined.

The number of measurements necessary to obtain an expectation value with the accuracy
ϵ is O(1/ϵ2). In the Hadamard test, the wave function is measured only indirectly and
consequently modified but not completely collapsed. Instead, the state (I ± Û)|Ψ⟩

√
(2) is

obtained, which can be further used for other algorithms.

Quantum Imaginary Time Evolution

While imaginary time evolution, as shown in section 2.3.4, is a good method to determine
eigenstates and their eigenenergies, the same approach is not directly suitable for quantum
computers. Although one can prepare states like the Hartree-Fock ground state on
a quantum computer and propagate them with Hamiltonian simulation methods, the
substitution of real time with imaginary time leads to a propagator which is no longer
a unitary operator. Accordingly, such a propagator cannot be translated into quantum
gates. Nevertheless, there are approaches to perform a similar propagation, for example,
the quantum imaginary time evolution (QITE)[111] approach. The idea behind QITE
is to exchange non-Hermitian operators ĥl by unitary operators Âm after a Trotter
decomposition. The new operator should have the same effect on the states as the old one,
but preserve the norm of the wave function, which is not given for non-unitary operators

|Ψ′⟩ = c−1/2e−ĥl∆t|Ψ⟩ = e−i∆tÂm |Ψ⟩. (2.116)

c is the change in the norm that would follow from applying the non-unitary propagator.
The norm change can be determined on a quantum computer by measuring the expectation
value of ĥl

c = 1− 2∆t⟨Ψ|ĥl|Ψ⟩+O(∆t2). (2.117)
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While ĥl acts only locally on a few qubits, it may be the case that Âm has to act on
considerably more k qubits or even all qubits due to the correlation of the qubits. Âm is
now expanded into operators acting on the k qubits. For this purpose, for example, Pauli
operators can be used

Âm =
∑

i1...ik

am,i1...ik σ̂i1 ...σ̂ik ≡
∑

I

am,I σ̂I . (2.118)

With the definition of

|∆0⟩ =
|Ψ′⟩ − |Ψ⟩

∆t
, |∆⟩ = iÂm|Ψ⟩, (2.119)

the target is to minimize the difference ||∆0 −∆|| to find the expansion coefficients am,I .
For real coefficients, this corresponds to minimizing the quadratic equation f(al)

f(al) = f0 +
∑

I

bIam,I +
∑

IJ

am,ISIJam,J (2.120)

with
f0 = ⟨∆0|∆0⟩,

bI = i⟨Ψ|σ̂†I |∆0⟩ − i⟨∆0|σ̂I |Ψ⟩,
SIJ = ⟨Ψ|σ̂†I σ̂J |Ψ⟩.

(2.121)

The minimum of the equation is obtained by solving the linear equation

(S + ST )am = −b. (2.122)

For molecular systems in particular, the problem with the QITE algorithm is that all
qubits are correlated and the dimensions of SIJ and bI increase exponentially with the
number of spin orbitals. Therefore, the QITE algorithm shown here scales worse than
algorithms for traditional computers. However, modifications have already been developed,
such as for the step-merged QITE algorithm in Gomes et al.,[112], which can limit the
dimensions by approximations and lead to a polynomial scaling and therefore an advantage
over traditional computers. Furthermore, the QITE algorithm can be used not only for
imaginary time evolutions, but also for real time evolutions in open quantum systems, i.e.,
systems with non-Hermitian operators like the CAP operator.
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3.1 Interparticle Coulombic decay in three quantum dot
arrangements

In the first project of this thesis and thus papers [1, 2], the ICD process in model systems
for three QDs was studied. Here, previous studies on this topic were built upon and
extended. Quantum dots are represented as inverse Gaussians, and thus the potential of
an N quantum dot system V̂QD is represented as

V̂QD(r⃗) =
∑

q

−Dqe
−bq(r⃗−r⃗q)2 , (3.1)

where Dq is the depth, bq the width and r⃗q the position of a Gaussian q. Two types of
QDs are involved in the ICD process. The first type is called photon emitter (A). These
are quantum dots with multiple bound one-electron levels. The second type is called
photon acceptor (B) or electron emitter. As shown schematically in the introduction in
section section 1.1, the ICD process is possible when one or more photon emitters are in
an excited state A∗. In the process, the energy of a photon emitter is transferred to a
photon acceptor via the exchange of a virtual photon. The photon acceptor is thereby
ionized B0 → B++ e− while the photon emitter deexcites into an energetically lower state,
here the ground state A0. Thus, the energy condition

E(A∗)− E(A0) > E(B0)− E(B+) (3.2)

must be fulfilled for the ICD process. Excess energy is transferred to the ICD electron as
kinetic energy. The rate of the process can be approximated according to Averbukh et
al.[40] as
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ΓICD = N
3

4π

(
c

ωph

)4 τ−1
A σB
R6

(3.3)

with the assumption that the wave functions on the different quantum points do not
overlap. σB is the absorption cross-section of the ICD electron in state B0 at the virtual
photon energy Eph, τ−1

A is the rate of spontaneous emission of the excited electronic state
A∗, ωph is the frequency of the virtual photon and N is the number of photon acceptor
quantum dots.
In this work, two different arrangements were investigated, which are shown in Fig. 3.1.
In each inverse Gaussian, only one electron is bound. In the first arrangement from [1]
(Fig. 3.1, left panel), a photon emitter with depth DA = 2 a.u. and width bA = 0.25 a.u.
is placed between two photon acceptors with depth Db = 2 a.u. and width bB = 1 a.u.,
where this is a two-dimensional system. This results in one-electron state energies of
A0 = −1.128 a.u., A∗ = −0.413 a.u. and B0 = −0.527 a.u. A∗ is thereby, depending on
the angle, almost doubly degenerate. In the second arrangement from [2] (Fig. 3.1, right
panel), a one-dimensional system consisting of one photon acceptor with depth DB = 1

a.u. and width bB = 1 a.u. between two photon emitters with depth DA = 1 a.u. and
width bA = 0.25 a.u. is considered. Here the one-electron state energies are given as
A0 = −0.693 a.u., A∗ = −0.196 a.u. and B0 = −0.477 a.u.
Even if the energies for the many-electron states like B0A

∗B0 do not correspond exactly
to the sums of the one-electron states, E(B0A

∗B0) ̸= E(B0) + E(A∗) + E(B0), because
of the Coulomb interaction, the difference is relatively small due to the relatively large
distances between the quantum dots. Therefore, it can already be estimated from the
one-electron states, whether the energy condition for ICD (Eq. (3.2)) is fulfilled.
For both potentials considered, the MCTDH method[96] was used in the Heidelberg
MCTDH program.[113] The Hamiltonian for both systems is given as

Ĥ =
∑

i

(
T̂i + V̂ QD

i + V̂ CAP
i

)
+
∑

i

∑

j<i

1

rij
. (3.4)

where V̂ CAP
i is a spatial CAP (cf. section 2.3.2).
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Figure 3.1: Illustration of the two quantum dot arrangements considered. (left) for a system
with two external photon acceptor quantum dots and one photon emitter quantum
dot in two spatial dimensions. (right) for an arrangement with one photon acceptor
between two photon emitter quantum dots along one spatial dimension. Denoted by
A0 and A∗ are the bound one-electron states in the photon emitters and by B0 the
bound state in the photon acceptors. In the one-dimensional case (right) the electron
density of the corresponding one-electron states is shown in pink dashed lines.

Dynamics with one photon emitter and two photon acceptors

A potential quite similar to the potential with one photon emitter between two photon
acceptors (Fig. 3.1, left panel) has already been investigated in previous work.[52] In one
spatial dimension, it was shown both analytically and numerically that the ICD rate
doubles compared to the same system with only one photon acceptor. However, due to the
one-dimensional approach, effects occur that lead to strong oscillations of the ICD rate
with the variation of the distance, which are not accounted for in equation Eq. (3.3). One
reason for the oscillations is that the ICD electron in a one-dimensional system is limited
in motion by the Coulomb potential of the remaining electrons. For ICD in two quantum
dots, it could already be shown that the transition from the one-dimensional model to a
two-dimensional model can drastically reduce this constraint and thus the oscillations.[51]

However, this transition is accompanied by a doubling of spatial dimensions and thus
DOFs, and is computationally more demanding.
To reduce the computing time, it was first evaluated to what extent the use of graphics
processors (GPUs) is possible. In the standard Heidelberg MCTDH implementation
employed, only the central processing units of a computer (CPUs) are used. Each
processor has computational cores and each core can perform one computational operation
at a time. While CPUs have a few very fast cores that can also perform complicated
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calculations efficiently, GPUs are equipped with as many cores as possible that are,
however, significantly slower and limited in the possible computing operations. Thus, a
meaningful application of GPUs would be computations that can be divided into many
simple computational operations to be executed in parallel. In such cases, a GPU can
execute significantly more operations at the same time than a CPU.
For smaller test calculations, the functions that require the longest accumulated time were
first determined by profiling the program. This revealed that most of the time is needed
for simple matrix routines such as matrix multiplications, in which the use of GPUs is
possible since the elements of the product matrix can be calculated independently from
each other simultaneously. To implement the parallelization, the Fortran 77 code of the
corresponding matrix routines was translated into Fortran 90 code and OpenACC was
used to implement the corresponding compiler instructions. An already implemented
parallelization, which performs different matrix multiplications in parallel on different
CPU cores, can be used in addition to the GPU parallelization. Using the improved
relaxation calculations for this project as an example, a speedup factor of 3.2 was achieved
compared to the same calculations using CPU parallelization only.
The modified MCDTH version was then used to determine ICD rates in a linear configu-
ration with two photon acceptors and one photon emitter at different distances. For this
purpose, an improved block relaxation was first performed to determine the initial state
B0A

∗B0 and then this state was propagated using the Hamiltonian of Eq. (3.4). Due to
the 2-dimensional potential, two degenerate initial states are available, both providing the
same ICD rate. The distance dependence of the ICD rate in Eq. (3.3) was removed by
multiplying by R6, revealing that the ICD rate in the three quantum dot arrangement is
twice as fast as in an arrangement with only two quantum dots, i.e., with only one photon
acceptor. Furthermore, in this two-dimensional case, the already mentioned distance-
dependent oscillations in the rates are significantly lower than in the one-dimensional
reference case considered in [52].
Unlike the one-dimensional case in previous works, angles between quantum dots other
than 180° are possible in this system and have also been considered. In such cases, the
two excited states in the middle quantum dot are no longer degenerate and yield different
ICD rates. Nevertheless, it could be shown that with an equal superposition of both
excited states as initial state almost the same ICD rate as in the linear case is obtained.
All results thus indicate that in an arrangement with a central photon emitter and N

photon acceptors arranged in an enclosing circle, N times the ICD rate of a corresponding
two quantum dot system is obtained. This behavior has already been shown for atomic
systems by Öhrwall et al.[41]
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Dynamics with two photon emitters and one photon acceptor

In the second setup investigated in this thesis, which has a photon acceptor between
two photon emitters (Fig. 3.1, right panel), the determination of ICD rates is much more
complicated than in the previously studied system because more states are involved and a
number of processes can occur simultaneously. It is possible that an ICD process starts
from a singly-excited resonance (SE) as well as from a doubly-excited resonance (DE).
A single excitation can be followed by ICD through ionization of the photon acceptor
quantum dot (SE-ICD) or by energy transfer between the photon emitters (SE-ET). Using
an initial state in which both photon emitters are excited, i.e. a doubly-excited resonance,
even three competing ICD processes are possible. The photon acceptor can be ionized by
the energy from the de-excitation of one photon emitter (DE-ICD) as well as by the energy
from the simultaneous de-excitation of both photon emitters (DE-CICD). In addition,
ionization of one excited photon emitter is possible by the energy of the second photon
emitter (DE-exICD). To determine the influence of these individual processes on the total
decay of the initial state, rates of two-electron ICD processes can be used additionally.
Rates between one excited photon emitter and one photon acceptor (2e-ICD) as well as
for two excited photon emitters (2e-exICD) are considered. The third empty quantum dot
is either left unoccupied or removed, which can lead to different observations in each case.
All these possible processes are summarized in Fig. 3.2.
Also in this work, analytical rate equations for all processes were derived using the Wigner-
Weisskopf theory. For the ICD rates that refer to processes in which the central quantum
dot is ionized via virtual photon transfer from one photon emitter (SE-ICD, DE-ICD, and
2e-ICD) a proportionality with R−6

AB was derived, where SE-ICD and DE-ICD should be
twice as fast as 2e-ICD. The DE-exICD and 2e-exICD processes, in which a photon emitter
quantum dot is ionized, show an R−6

AA dependence. However, since the AA distance is
twice as large as the AB distance, the rates also tend to be lower. Again, it was derived
that the rate in the three-electron case DE-exICD should be twice that of the two-electron
case 2e-exICD. Proportionality to R−6

AA was also determined for the energy transfer SE-ET.
To determine the rate for the DE-CICD process, it is decomposed into two two-electron
subprocesses, which finally yields a proportionality with R−12

AB .[114,115] Thus, the rate for
DE-CICD decreases much faster with quantum dot distance than all others.
After analytical consideration, decay rates were numerically determined for the SE, and DE
resonances as well as for the two two-electron states mentioned above at different distances
between the quantum dots. It was found that several properties lead to deviations from the
predicted rates. For distances in the interval RAB = [14, 31] a.u. the distance dependence
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Figure 3.2: Possible electronic dynamics processes with one photon acceptor between two photon
emitter quantum dots. All processes involving three electrons start with either one
(SE) or both (DE) photon emitters excited. The processes are either an energy
transfer (ET) or ICD process, separately referred to as exICD when one photon
emitter quantum dot itself is ionized and as CICD when the energy of two photon
emitters is required for ionization. Blue arrows symbolize the de-excitation of an
electron, green arrows symbolize the excitation or ionization of an electron, and red
arrows symbolize energy transfer via a virtual photon.

derived from the Wigner-Weisskopf theory with R−6
AB was observed in the decay rates of

both three electron resonances. As in the previous system the distance dependence is
largely affected by oscillations. Outliers at larger distances can be attributed to numerical
instabilities, while deviations at smaller distances were traced back to various physical
effects, arising, for example, from the electron delocalization over several QDs. Moreover,
it was shown for the two-electron processes 2e-ICD and 2e-exICD that an additional
quantum dot, even if unoccupied, can both accelerate and slow down decay rates for
various reasons, especially at small quantum dot distances.
It is particularly notable that the ICD rates in three electron calculations are not twice
as large as the corresponding two electron rates but are several orders of magnitude
smaller. A crucial reason for this is that in the three-electron case, the ICD electron is
"trapped" between the Coulomb potentials of the remaining electrons and has to tunnel
through the Coulomb barrier, which slows down the decay. An exception to this trend
was found in the decay of the DE resonance at a distance of RAB ≈ 25 a.u., where a
so-called shape-resonance-enhanced decay occurred. For the analysis, not only decay rates
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were considered but also time-dependent populations, as they can only be determined by
explicitly time-dependent methods. In the case of the dynamics of SE resonances, the
distance dependence of the ET process could be observed, which became visible, especially
at larger distances, and showed an R−3

AB dependence contrary to the original prediction.

3.2 Development of a new program for simulation and novel
analysis of electron dynamics

The largest project of this dissertation deals with the development of a new dynamics
program for the TD-CI method. Unlike popular electronic structure methods or the
MCTDH method originally developed for nuclear quantum dynamics, previous TD-CI im-
plementations are limited in scope to the specific applications of the developers. Moreover,
these programs usually cover only a small part of the workflow required for a TD-CI calcu-
lation, which makes the use of various programs for preparation and analysis calculations
necessary.
To combine simulation and analysis in a single program suite with a graphical interface
Jellyfish was developed and presented in paper [3]. In this process, new analysis methods
for time-dependent wave functions, presented in [4] and discussed later in this section, were
also developed and implemented. The goal was a universal and simple-to-use dynamics
program.
In detail, this resulted in five requirements for Jellyfish. First of all, it should be possible
to combine small partial calculations into individual calculations by means of a flexible
approach in order to allow broad use of the program. These successive partial calculations
should be interactive, step-by-step executable, in order to be able to use previous steps to
adapt later ones. All of this should be as user-friendly and efficient as possible regarding
computing time. In addition, the program should be easily expandable with new partial
calculations.
In order to fulfill all these requirements, the approach of dataflow programming was
used. Individual partial calculations are developed as self-contained modules that can be
instantiated as nodes and combined to form a directed graph, also referred to as a network.
The nodes in such a network can now be computed one by one with each node passing
on its results to the connected nodes as input. Creating and working with such graphs
does not necessarily require a graphical user interface, however, this has been developed
for Jellyfish to simplify the process. The complete user interface with a network for a
complete TD-CI calculation is shown in Fig. 3.3.
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Figure 3.3: Screenshot of the JellyfishGUI main window. In the center is the NodeEditor where
individual partial calculations in the form of nodes can be combined into a network
for various applications. The modules that are available for this are listed on the left
and can be added by drag and drop. After selecting a module in the NodeEditor,
method-specific settings can be made on the right side. Via the menu bar in the
upper area, new files can be created as well as project files be loaded and saved. The
log for the project is displayed in the lower area.

The editor for modifying the network is located in the center of the user interface above
the program log. After selecting a node in the network, module-dependent parameters
can be set or functions executed on the right-hand side. The executable functions can
range from the calculation of the node, such as the dipole moment, through supporting
functions such as the optimization of a laser pulse, to the opening of own programs such as
the visualization of electron densities. The left area contains a list of all available modules
and allows to add them to the network. Modules are sorted into categories in the list for
a better overview and are subdivided into so-called plugins ("Basics", "Orcainterface",...)
in an instance above. The plugins are mainly relevant for the development of new code.
These are files that can add functionalities to a program after it has been compiled. In
the case of Jellyfish, several modules are compiled into such a plugin, and the resulting
library file is then loaded by the program. Thus, for the development of new modules, it
is not necessary to modify or recompile the existing code.
Plugins can thus be developed completely independently and exchanged between users.
Besides JellyfishGUI the Jellyfish version with graphical user interface, JellyfishCMD was
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developed as a command line version for use on remote systems such as HPC systems.
JellyfishCMD uses the same plugins without additional modifications and can load and
save Jellyfish files (.jlf) created with JellyfishGUI and perform the calculations in the files.
Together with the program, four plugins were developed and published on GitHub at
https://github.com/FabianLangkabel/Jellyfish. The first plugin "Basics" contains
methods to perform the complete workflow of standard TD-CI calculations. For molecules,
structures can be loaded, basis sets based on Gauss type orbitals (GTO) such as standard
basis sets from Basis Set Exchange[116] can be read in, or even-tempered basis sets can be
generated and all subsequently required integrals with respect to the molecular Hamiltonian
can be calculated. Building on the integrals, a restricted Hartree-Fock calculation can
be performed with further modules from the plugin. Subsequent transformation of the
integrals into molecular and spin orbitals finally allows the execution of a time-independent
CI calculation. For the resulting CI states, (transition) dipole moments or so-called exciton
properties can be calculated by further modules. Thus, starting from a molecular structure,
all preparatory steps necessary for a TD-CI calculation can be performed.
For the TD-CI calculation itself, a propagator module is available which uses the split
operator method and other technical optimizations such as parallelization or the restriction
of the CI space for efficient propagation. The same module can be used to extract and export
properties such as state populations from the time-dependent wave function. The time-
dependent Hamiltonian can be flexibly composed with different modules, with additional
modules available for the CAP operators and laser potentials shown in section 2.3.2. In
addition to the operators appearing in molecules, model potentials such as electron binding
potentials can also be added to the Hamiltonian.
Although it is possible to perform electronic structure calculations with Jellyfish to
enable the whole TD-CI workflow in one program, it was never the goal to compete in
coverage and efficiency with established programs in that area. Instead, an interface to the
electronic structure program ORCA was developed. This "ORCA Interface" plugin reads
the "Molecular structure, basis set definition, MO coefficients, and CI coefficients" from an
output of a CIS or linear response time-dependent density functional theory (LR-TDDFT)
calculation.
The third plugin contains modules for the propagation of a wave function on quantum
computers (simulators) as well as methods for the preparatory steps and subsequent
analysis. Methods for simulation of electron dynamics, which are possible with this plugin,
are discussed in detail in section 3.3 and paper [5] of this thesis.
The last plugin "Visualization" focuses on the visualization of properties of the time-
independent and time-dependent CI wave functions. The goal was to transfer the analyses
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of orbitals and densities, which are traditionally used on stationary wave functions, to the
explicitly time-dependent domain and to extend them for this purpose. This topic will be
discussed in more detail later in this section. The visualization was directly integrated
into the JellyfishGUI. The routines for the calculation of the orbitals and densities on
a three-dimensional grid were optimized to such an extent that it is possible, even for
large molecules, to inspect orbitals and densities "on the fly" in a time-independent and
time-dependent manner. This is made possible, among other things, by truncating the
basis functions at a certain radius and precomputing all basis functions in their local area.
These "local areas" can then be added up much faster on the final grid, compared to
evaluating each basis function at each grid point.
The possibilities of Jellyfish were demonstrated with different examples. One of them shows
the application of electron dynamics in inverse Gaussian model potentials, as presented in
the previous section, for the modeling of quantum dots. Unlike the grid basis sets used in
MCTDH, three-dimensional GTO-based basis sets were used here. The process considered
in the example was a laser-driven ionization process and not an ICD process, but the
Hamiltonian was composed of the same terms including a similar CAP (cf. section 2.3.2).
Thus, it could be shown that Jellyfish already offers the technical possibilities to be used
also in such model systems and not exclusively in molecular systems as in the following
examples.
In the molecular examples shown, the main focus was on the newly developed possibilities
for visualizing and analyzing the properties of excitons upon laser excitation. The starting
point for the calculation of the exciton properties is an exciton wave function, which for
time-independent considerations, is composed of the initial ground state ψ0 and the target
state ψf as

χexc(r⃗h, r⃗e, t) =

∫
...

∫
ψ0(r⃗h, r⃗2, ..., r⃗N ) · ψf (r⃗e, r⃗2, ..., r⃗N )dr2, ..., drN . (3.5)

By using eigenstates as initial and final states and considering only CI singles wave
functions, the exciton wave function is a single-particle wave function that can be written
in the basis of spin orbitals as the one-particle transition density matrix (1PTDM) shown
in Eq. (2.48). If the target state is now exchanged for the time-dependent wave function
Ψ(t) in a time-dependent expansion, the "1PTDM" is obtained as

γt0µν = ⟨Ψ(t)|â†µâν |ψ0⟩. (3.6)
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In contrast to the time-independent case, however, Ψ(t) is not orthogonal to the initial
state, which means that the exciton wave function is no longer a one-particle wave function.
To restore this picture, the non-orthogonal part was projected out (1− |ψ0⟩⟨ψ0|) |Ψ(t)⟩.
A singular value decomposition of the 1PTDM after the projection

γ0t(t) = U(t)ΣV T (t) (3.7)

leads to a new set of spin orbitals with which the exciton wave function can be written as

χexc(r⃗h, r⃗e, t) =
∑

K

σK(t)ψh
K(r⃗h, t)ψ

e
K(r⃗e, t). (3.8)

The ψh
K(r⃗h, t) and ψe

K(r⃗e, t) orbitals are called natural transition orbitals (NTOs) and are
divided into hole and particle orbitals. Here, σK(t) corresponds to the occupation of the
corresponding orbitals. However, in the time-dependent view, the wave function was not
normalized after the ground state was projected out, and therefore also NTO densities
like the NTO hole density

ρNTO
h (r⃗h, t) =

∑

K

σK(t)2ψh
K(r⃗h, t)

2 (3.9)

are also no longer normalized. At the beginning of a propagation in the initial state, the
norm of the exciton wave function is zero, so there is no hole and particle. As the excitation
progresses during laser irradiation, the norm of the exciton wave function increases and
the formation of the hole and the particle can be observed. In order to not only visualize
NTO holes and particles but also quantify their properties, various exciton descriptors
defined among others by Dreuw and coworker[61] were transferred to the time-dependent
domain.
In addition to the analysis of the 1PTDM, electron densities and the difference in electron
density between the initial state and the time-dependent wave function, ∆ρt0(r⃗) =

ρ(t, r⃗)− ρ0(r⃗), were also considered. While these densities can also provide information on
hole and particle shape, they can additionally be determined for truncation levels other
than TD-CIS. Furthermore, the difference densities between a time step and the previous
time step were analyzed. This gradient density, ∆ρt(r⃗) = ρ(t, r⃗)− ρ(t−∆t, r⃗), shows the
"electron flow" between the time steps.
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The new tools were first used to benchmark and gain new insights into already well-studied
laser excitations in the hydrogen and lithium cyanide molecules.[4] For the hydrogen
molecule, the excitation from the ground state to the first excited singlet state, and for
lithium cyanide, an excitation to a charge-transfer state were studied. Excitations with
a weak long as well as an intense short π pulse were performed for both molecules. In
the case of weak pulses, the target states were almost completely populated, while in the
case of short pulses, a large number of excited states were populated by the intense laser,
generating electronic wave packets. For lithium cyanide, the exciton descriptors, laser field
intensity, and dipole moment along the bond axis determined in this process are shown in
Fig. 3.4, left for the long laser pulse and right for the short laser pulse.

Figure 3.4: Summary of LiCN excitation dynamics with a long, weak (left) and a short, intense
(right) π pulse. In both, different exciton descriptors such as the hole-particle distance
Ω⟨zh→e⟩exc as well as the time-dependent dipole moment µz along the molecular
bonds (z direction) are shown. For the long laser pulse excitation, the exciton
descriptor values for a complete state-to-state transition to the target state are
additionally plotted in gray on the right-hand side. For the intense laser pulse, the
field strength is shown in pink. Figure adapted from [4].

In the case of a long-pulse excitation, the smooth formation of an exciton by the descriptors,
newly introduced in [4] with abbreviations, can be observed. While the hole position
Ω⟨zh⟩exc is aligned on the positive side along the z axis parallel to the C-N bond and
thus on the cyanide group, the corresponding particle position Ω⟨ze⟩exc localizes more
and more on the negative side along the z axis on the lithium atom. In particular, the
distance between particle and hole, Ω⟨zh→e⟩exc, reflects this separation, which constitutes
a charge-transfer process. The displacement of the electron can also be seen in the dipole
moment change µz which increases from −3.7 a.u. to 2.7 a.u. From the size of hole Ωσh,z

and particle Ωσe,z, it can be seen that the hole is much more localized than the particle.
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For the short pulses, the participation of several states leads to much more complex
dynamics. Again, the hole Ω⟨zh⟩exc and the particle position Ω⟨ze⟩exc as well as the
distance between the two Ω⟨zh→e⟩exc show that a separation of the hole and particle
occurs along the molecular axis. However, the distance between the hole and the particle
is shorter than in the case of the long laser pulse. The oscillations in the hole position
and size are relatively small, the hole is therefore quite stationary. The electron can move
much more freely in the significantly more delocalized valence orbitals, which is reflected
in the larger oscillations of the position and size of the electron. It should also be noted
that in cases where an electronic wave packet has been generated, these dynamics continue
after the end of the laser pulse (t = 200 a.u.).
Similar dynamics were obtained for the excitation in the hydrogen molecule with the
difference that for the selected target state, a π∗ state on the H-H bond, hole, and particle
are not separated and spatially overlap.
Most of these discussed properties can also be qualitatively concluded by plotting the
electron and NTO densities. In this application Jellyfish is not limited to small molecules
but also allows visualization of larger molecules such as the nucleobase guanine, which is
discussed in the submitted publication [3] of this thesis. In this context, Fig. 3.5 shows
snapshots of the difference density ∆0, the density gradient ∆t, and the NTO densities
ρNTO
h and ρNTO

e for a nearly complete π-pulse excitation from the ground state to the first
excited state. The zero crossing t = 1000 a.u., the minimum t = 992 a.u., and maximum
t = 1008 a.u. of the central laser cycle as well as the last time step t = 2000 a.u. were
chosen as time points for the snapshots.
Comparing the NTO densities of all time steps with each other, the hole and particle
formation can be seen with the growth of the corresponding densities. Even in the central
and thus most intense laser cycle, the laser is relatively weak and the changes within
the periode of one cycle are small. Both hole and particle are delocalized over almost
the entire molecule in this excitation and no separation is seen. The density difference
also includes the shape of the particle and hole, although this is much more difficult to
identify due to their overlap. As a result of resonant excitation, the density difference is
displaced by the laser field, with the displacement being maximum at the zero crossings
of the laser intensity as in t = 1000 a.u. While the deflection of the density lags behind
the laser intensity in time, the density gradient reflects the change in only one time step
and becomes largest when the laser intensity is also at an extreme point, as is the case for
t = 992 a.u. and t = 1008 a.u.
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Figure 3.5: Visualization of the excitation dynamics of guanine using a resonant π-pulse. The
first column shows the difference density between the time-dependent electron density
and the ground state density. The second column shows the gradient density, which
corresponds to the difference density with respect to the previous time step. The
NTO hole densities and NTO particle density are shown in the third and fourth
columns. Figure adapted from [3].

3.3 Quantum compute algorithm for electron dynamics

In the third project, covered in the paper [5], the goal was to develop a quantum algorithm
for the electron dynamics processes shown previously, the implementation of the algorithm
in a Jellyfish plugin, and the application of the algorithm for the computation of laser-
driven dynamics in molecules. The three steps that have to be transferred from dynamics
methods for traditional computers to quantum computing are the preparation of an initial
state, the propagation of this state with time-dependent Hamiltonians, and the following
extraction of information and properties from the wave function.
The focus of this work was mainly on the propagation and extraction of properties,
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rather than the state preparation of an initial state. Therefore the ground state of a FCI
calculation from "traditional" quantum chemistry was used as an initial state. Since the
quantum computer was only simulated, the ground state could be directly transferred to
the qubits as an initial state by using the Jordan-Wigner transformation (cf. section 2.4.2),
and the use of a state preparation algorithm could be omitted. Here, each spin orbital
is mapped to a qubit after transforming basis functions to molecular orbitals. For real
quantum computers, for example, the QITE algorithm presented in section 2.4.3 can be
used to prepare the ground state starting from the Hartree-Fock-Slater determinant.
For the Hamilton simulation used for the propagation, the Lie-Trotter-Suzuki decomposi-
tion (cf. section 2.4.3) was employed. The total propagation time was decomposed into
small time steps with a time-independent Hamiltonian for each time step. Subsequently,
the Hamiltonian was decomposed into its individual terms ĥj using the Trotter-Suzuki
decomposition, and the resulting propagators e−iĥj∆t were translated into quantum gates.
While this translation of Hermitian propagator terms is possible directly with the Trotter
decomposition and thus propagations with molecular Hamiltonians and laser fields can be
performed, this is not the case for non-Hermitian operators. In such cases, the propagator
terms do not represent unitary transformations. The problem occurs, for example, when a
CAP operator (cf. section 2.3.2) is used to simulate ionization processes. For propagations
in imaginary time, where the same problem was already studied in detail,[111] the QITE
algorithm from section 2.4.3 was developed, which can also be used for the non-Hermitian
CAP operators in real-time evolutions.
Apart from the errors of the time decomposition and the Lie-Trotter-Suzuki decomposition,
the Hamilton evolution is exact in the underlying basis and therefore on the same level
as a TD-FCI calculation. Accordingly, reading and storing the quantum computer wave
function on a traditional computer is not useful and in most cases impossible, since
this wave function, like the FCI wave function, is also composed of exponentially many
configurations. However, as shown in the examples in the previous chapter, it is not
necessary either. Instead, properties like exciton descriptors or the time-dependent dipole
moment can be read out. For this purpose, the Hadamard test algorithm introduced in
section 2.4.3 was used to determine the dipole moment as the expectation value of the
dipole operator from Eq. (2.45) after each time step. However, the dipole operator is not
unitary as it is necessary for the Hadamard test. Therefore, the operator

Û = e−iµ̂∆x (3.10)
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was used instead in the Hadamard test. From the expectation value of Û the dipole
moment can be obtained. Since the dipole moment is real, it is sufficient to determine
the real part or the imaginary part of the eigenvalue to Û . The translation of Û into
quantum gates is similar to the translation of the propagator for a time step, where ∆x is
a multiplicative factor chosen to minimize the error of the Trotter decomposition.
All these partial algorithms can now be combined into a complete algorithm. Starting from
state |0̄⟩ the initial state is prepared and propagated to the time step for the measurement
of the dipole moment and then the Hadamard test is performed. To get the expectation
value of the dipole moment, the whole algorithm has to be repeated several times. For
the propagation, all non-Hermitian terms are replaced by Hermitian terms using the
QITE algorithm. In order to obtain the time-dependent dipole moment for different time
points, the entire algorithm has to be repeated for different propagation durations as well.
Although the Hadamard test and QITE algorithms require many measurements, they can
scale polynomially and thus offer advantages on a true error-free quantum computer over
exponentially scaling FCI algorithms for traditional computers.
Modules for the preparation of a CI state, the Jordan-Wigner transformation of time-
independent and time-dependent operators, as well as propagation with and without
Hermitian operators combined with the Hadamard test have been implemented in a
Jellyfish plugin along with tools for the extraction and evaluation of data such as states. For
the simulation of quantum algorithms, a quantum computer simulator directly embedded
in the plugin can be used.
The functionality of the algorithm was demonstrated for several examples against a TD-FCI
reference. In the first examples, similar to the previous section, laser-driven state-to-state
transition and the creation of an electronic wave packet in molecules were performed. For
this purpose, hydrogen and lithium hydride were chosen.
For the generation of a wave packet with a short π-pulse in lithium hydride, the upper
panel of Fig. 3.6 shows the populations of the states with the highest populations using
the quantum algorithm (dashed) and TD-FCI (solid). In the lower panel of the same
figure, the laser pulse used and the time-dependent dipole moment determined with the
Hadamard test (purple) and TD-FCI (red) are shown.
It should be noted that the populations were read directly from the quantum computer
simulator without modifying the state, which is impossible for real quantum computers.
The populations show that the dynamics can be reproduced almost exactly by the
quantum algorithm with a proper choice of parameters. The dipole moment could also be
satisfactorily reproduced. For the decomposition in time steps, a fixed time step size of
0.2 a.u. was used and for the determination of the dipole moment, the Hadamard test was
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Figure 3.6: Comparison of simulations of the laser excitation of LiH by a short π pulse between
the TF-FCI method and the quantum algorithm presented. In the upper panel the
populations Pi(t) of the most relevant states are shown (TD-CI populations with
solid lines and quantum algorithm populations in dashed lines). In the lower panel,
both the laser pulse (gray) and the determined time-dependent dipole moment (red
for TD-CI and blue for the quantum algorithm) are shown. Figure adapted from [5]

repeated 20000 times at each time step. For ∆x in Eq. (3.10) a value of 0.2 was chosen.
In addition to examples with Hermitian operators, the algorithm was also demonstrated
for laser-driven ionization dynamics in a hydrogen molecule that includes a CAP operator.
Again, the dynamics of TD-FCI could be reproduced almost exactly, as shown by equal
time-dependent populations and the time-dependent norm.

3.4 Overall conclusion

Although some of the projects presented were fundamentally different in the methods used,
systems considered, and goals, each project contributed to expanding the capabilities of
electron dynamics methods. Electron dynamics is increasingly attracting the interest of
experimentalists and theorists, as new technologies provide more and more insights into
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these processes and the processes themselves become more and more relevant for current
and future technologies such as nanotechnology or quantum computing.
With the publications [1, 2] of this thesis, new details about the ICD process in quantum
dots were presented which can help, for example, to design better quantum dot qubits.
On the other hand, a GPU implementation of the existing MCTDH code was developed,
allowing more complex computations with more electrons and a higher dimensionality
than before.
In papers [3, 4], the TD-CI program Jellyfish, newly developed in this work, was presented.
Jellyfish allows the simulation of many-electron dynamics processes, such as laser excitations
in molecules, and is more comprehensive, user-friendly, and, most importantly, easier to
extend than previous programs in this field. Here, not only a platform for the actual
propagation but also novel analysis tools for time-dependent excited states were created
that even allow to visualize the processes.
In the last publication of this thesis [5], it was shown how quantum computers can be used
in the future for such electron dynamics simulations using a new quantum algorithm which
was also implemented in Jellyfish. With the advancing development in quantum computing
and the newly developed algorithm, electron dynamics simulations with molecular sizes
and accuracies beyond the reach of traditional computers may be possible in the future.
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ABSTRACT

In a pair of self-assembled or gated laterally arranged quantum dots, an electronically excited state can undergo interparticle Coulombic
decay. Then, an electron from a neighbor quantum dot is emitted into the electronic continuum along the two available dimensions. This
study proves that the process is not only operative among two but also among three quantum dots, where a second electron-emitting dot
causes a rate increase by a factor of two according to the predictions from the analytical Wigner–Weisskopf rate equation. The predictions
hold over the complete range of conformation angles among the quantum dots and over a large range of distances. Electron dynamics was
calculated by multiconfiguration time-dependent Hartree and is, irrespective of the large number of discrete variable representation grid
points, feasible after having developed an OpenACC graphic card compilation of the program.
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I. INTRODUCTION

For more than two decades, the interparticle Coulombic decay
(ICD) process created a stir.1–7 Theoreticians and experimen-
talists from disciplines ranging from atomic cluster physics8–17

over biomedicine18,19 to nanophysics20–22 traced ICD and found
it being effective in various systems. This general presence orig-
inates probably from the astonishing simplicity of the process.
Nothing more happens than that an inner-valence excited or ion-
ized electronic structure relaxes into its ground state efficiently
because a neighboring structure has a valence electron that can
take up the excess energy via Coulomb interaction only and is
ionized in response. Many studies in the experimental disciplines
were governed by energetic and structural considerations, i.e., one
would know which Coulomb explosion products are collected in
ion and electron detectors and what energy they have and recon-
struct from this the progression of ICD8,9,17 or one would record

photoelectron spectra.23–25 A recent alternative is the pump–probe
technique.16,26 The vast majority of theories considers initial res-
onances, final ionized states, and Coulomb interaction integrals,
which are challenging, as highly excited and continuum states are
to be calculated accurately.2,4 Eventually, nuclear dynamics calcu-
lations aid to simulate the Coulomb explosion and deliver kinetic
energy releases.10,27–31 They were recently combined with electron
dynamics.32

Indeed, as ICD is an ultrafast electronic decay process, it is
of high interest to investigate it in the short-time domain of elec-
tron dynamics. This holds two interconnected challenges. One is
the number of electrons, which, for reasons of computational fea-
sibility, can only be in the order of ten, at least if highly corre-
lated wavefunction-based methods are used. The other is electron
correlation itself, which is essential to an accurate computation of
the Coulomb interaction that is mediating ICD. Thus, in using the
multiconfiguration time-dependent Hartree (MCTDH) method33,34

J. Chem. Phys. 154, 054111 (2021); doi: 10.1063/5.0037806 154, 054111-1

Published under license by AIP Publishing



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

with antisymmetrization, a body of research works on the tran-
sient nature of ICD was formed to benchmark the fundamentals of
ICD. Gaussian binding potentials were used, which represent the
essentials of the electronic structure of atoms or molecules, in that
they reflect a quasi-atomic structure. Moreover, they are established
models for quantum dots (QDs).

The gains drawn from elucidating the electron dynamics dur-
ing ICD so far are the following. First, the decays of two-site triplet35

or singlet36 ICD resonance states were shown in an effectively one-
dimensional model, where the ICD electron can only leave along
the coordinate connecting the two binding potentials, as was found
likewise in the case of quantum wells.37,38 The frequently consid-
ered analytical and approximate rate equation for well-separated
subsystems39,40 was confirmed in a separation-dependence study,
showing that the Coulomb interaction of two neighbors alone deter-
mines the rate. However, it also revealed that a one-dimensional
continuum is a special case in which rates are subject to oscilla-
tions around the monotonic behavior predicted from the asymptotic
formulae. Second, the relative energy of electronic levels, modified
in QDs through geometries, was shown to affect the ICD rate par-
tially in a systematic way,41 but partially also in a non-trivial way.42

Third, it was shown that both electron capture43,44 and electro-
magnetic oscillating fields45,46 can initiate ICD. Fourth, the decay
is altered by the level atom or potential vibrations.47 Fifth, the role
of an additional potential was elucidated from three viewing angles.
When being at a long distance and only shallow or even repulsive,
which means the extra potential can be interpreted as an impurity
in the QD framework, a non-trivial alternation of the ICD rates
is discovered.48 When being a somewhat deeper binding poten-
tial in a short distance from the two partners undergoing ICD, the
extra site, a QD of other geometry or material composition, sup-
ports superexchange ICD.49 In addition, when a full-depth binding
potential is added, i.e., another QD of the same material as the oth-
ers, it acts as a participator in a three-electron ICD process.50 This
means among others that it supports the prefactor for the number
of neighbors N predicted from the aforementioned analytical rate
equation.39,40

Just recently, the ICD rate equation was also confirmed in
electron dynamics calculations in two-electron systems with a two-
dimensional electronic continuum.48,51 The respective potentials
correspond to laterally arranged self-assembled52–54 or electrostati-
cally confined QDs.55 Therefore, the dynamics rates showed much
less pronounced oscillations with parameter variations in compari-
son to the analytical monotonic rate as a function of the respective
parameter, where the parameter considered so far was the inter-QD
distance. In the past years, it was found that the related electron-
transfer mediated decay process of three atoms depends on their
exact constellation.56 We assume the same for ICD. Therefore, we
consider in this study systems of three binding sites with a two-
dimensional continuum and a two-dimensional conformation space
for their arrangement.

For the realm of electron dynamics calculations in QD models,
this attempt is a novelty because it bridges the knowledge on three
electrons in three sites50 and the knowledge on a two-dimensional
continuum.48,51 We anticipate a reduction of rate fluctuations and an
increase in the rate by a factor of two compared to the ICD rate with
one neighbor only. The unknown regarding the physics is the role of
the spatial arrangement of the three potentials in a straight or angled

row. Moreover, previous calculations with three electrons and more
with two continuum dimensions showed an increase in computa-
tion time within the Heidelberg MCTDH program57,58 due to the
required increase in basis size in a discrete variable representation
(DVR).57,59,60 Therefore, an essential technical development accom-
panies this work, which is namely a compilation and parallelization
of MCTDH on graphics processing units (GPUs).

After introducing the method, model (Sec. II), and parameter-
ization (Sec. III A), we hence introduce the GPU setup of MCTDH
(Sec. III B). In the results, we discuss the latter at first (Sec. IV A),
before we reveal the electronic structure (Sec. IV B) and dynamics in
the linear (Sec. IV C 1) or angled (Sec. IV C 2) arrangement of the
three sites and lead all to a concise conclusion (Sec. V).

II. THEORY

The method utilized to investigate ICD of an electronically
excited state of one QD in the neighborhood of two other QDs allow-
ing for ionization is the multiconfiguration time-dependent Hartree
method (MCTDH)33,34 in the Heidelberg implementation.57,58 By
imposing appropriate antisymmetry constraints to the wavefunc-
tion, MCTDH allows us to solve the electronic time-dependent
Schrödinger equation for the three-electron-in-three-QD problem.
The method has proven successful for the investigation of three
QDs in a nanowire.50 Here, it is going to be extended for later-
ally arranged QDs with a two-dimensional continuum, for which
a model has been developed in another work considering two
electrons.48,51

The electronic Hamiltonian contains the typical operators of
the kinetic energy, the QD binding potential, the Coulomb interac-
tion, and the complex absorbing potential (from left to right) and
reads

Ĥ =∑
i

⎛⎝T̂i + V̂QD
i +∑

j<i r̂
−1
ij + iŴi

⎞⎠. (1)

Here, the indices i, j = 1, 2, 3 run over the two or three elec-
trons of the two comparative sets of calculations. The potential
V̂QD
i reflects the two or three QDs from which electrons can be

emitted into a two-dimensional unconfined (continuum) region.
Two-dimensional Gaussians,

V̂QD
i (xi, zi) =∑

q
−Dq ⋅ exp{−bq[(ẑi − zq)2 + (x̂i − xq)2]}, (2)

as functions of xi and zi serve their description. q refers to the light-
absorbing (A) and the two identical electron-emitting (E, E′) QDs.
The central QD is the light-absorbing one and accommodates the
energy levels A1 and A0, where the higher is twofold degenerate with
respect to the two dimensions x and z if only the isolated AQD is
considered. The isolated outer, electron-emitting QDs accommo-
date each only one level, E0 and E′0. Note that in the two-QD case, no
E′QD and third electron is considered. The remaining variables of
Eq. (2) are the QD positions xq and zq on the respective coordinates
as well as the potentials’ depths Dq and their widths’ parameters
bq = 4ln(2)/r2

q , connecting to the half widths at half maximum rq.
They are tuned such that EA1 > EE0 > EA0 and that the excitation
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energy in the AQD, ωA = EA1 − EA0, exceeds the ionization energy
IP = −EE0 to assure that ICD is energetically allowed.35

The Coulomb interaction among every two electrons, i.e.,
the essential mediator to ICD, is given in the approximate two-
dimensional representation51

r̂−1
ij ⇒ [r̂2

ij + α2 ⋅ e−βr̂ij]−1/2. (3)

rij = ∣ri − rj∣ → √(xi − xj)2 + (zi − zj)2 is the distance between
electrons i and j. Furthermore, a regularization through α and β
reduces the Coulomb interaction to a finite value at the coinci-
dence point of both electrons. This is necessary for the numeri-
cal stability within the MCTDH framework, in which a pseudo-
spectral basis in the form of a finite discrete variable representation
(DVR)57,59,60 is used. Another important aspect is the required sum-
of-products form of the four-dimensional interaction [Eq. (3)]. The
multi-grid potfit (MGPF)61 routine was proven to do this transfor-
mation in conjunction with a computationally inexpensive and suffi-
ciently accurate truncation of the number of single-particle potential
terms.51

Ŵi are the complex absorption potentials (CAPs)62–65 that
apply to each electron. They also apply to each of the six spatial coor-
dinates ci = xi, zi in the positive and negative direction ±. Therefore,
they are defined by

iŴi = i∑
ci
∑± Ŵ±

ci = iη ∣ci − c±i ∣nΘ(ci − cn,p
i ). (4)

The mathematical form of a CAP is a half-sided (Heaviside function
Θ) nth order polynomial with onset c±i . Through its strength η, it
is tuned such that it optimally absorbs the continuum parts of the
MCTDH wavefunction.

The core method is to solve the MCTDH equations of
motion33,34 that arise when introducing the MCTDH wavefunction
into the Dirac–Frenkel variational principle. This solves the time-
dependent electronic Schrödinger equation. The wavefunction is, in
the whole series of papers on QD-ICD, here for the first time six-
dimensional with coordinates c1, . . ., c6 = x1, x2, x3, z1, z2, z3 and
reads

Ψ(c1, . . . , c6, t) =∑
j1
. . .∑

j6
Aj1 ,...,j6(t) 6∏

κ=1
φ(κ)jκ (cκ, t). (5)

φ(κ)jκ (cκ, t) are a total of jκ single-particle functions (SPFs) for
each degree of freedom κ. A...ja ,jb ,...(t) = −A...,jb ,ja ,...(t) and
A...,ja ,ja ,...(t) = 0 antisymmetrize the wavefunction.

ICD is the decay of a resonance state Φres, which has its three
electrons in the E0, E ′0, and A1 levels of the three respective QDs.
Due to the rotational symmetry of the isolated AQD, the excited state
of the central potential is twofold degenerate. Therefore, the three-
QD array has two resonances as well. Block improved relaxations
using the Hamiltonian of Eq. (1) without the CAP operator are used
to generate the two initial states as eigenstates to that reduced Hamil-
tonian. Applying then the real-time equations of motion under
utilization of the full Hamiltonian reveals the decay of the initial

wavepacket. It is quantified through the squared autocorrelation
function

∣a(t)∣2 = ∣⟨Φres∣Ψ(t)⟩∣2 = e−Γt/h̵, (6)

i.e., the projection of the time-dependent wavefunction Ψ(t) on the
resonance function Φres. Its exponential slope can be fitted to deliver
the ICD rate Γ. All what was described is identical for two QDs occu-
pied by two electrons when removing the E′QD and the respective
third electron coordinates.

This comparison of the two- and the three-electron case leads
to the relative rates for the respective processes. Although rates
can be obtained numerically via electron dynamics calculations,
a rationale from analytic consideration will significantly support
the understanding of the underlying processes and their interre-
lation. Such an analysis is available for two-site ICD systems in a
Wigner–Weisskopf framework39,40 based on the general golden rule
ansatz. This leads [under the conditions of separability of the wave-
function into a product of single-electron state functions ϕ, no over-
lap of ϕ, negligible exchange, exclusion of antisymmetrization, and
deliberate assignment of certain electrons (lower index to ϕ) to
certain QD levels (upper index)] to a two-electron rate,35,39

Γ2e = ∣⟨ϕA0
1 ϕC2 ∣r̂−1

ij ∣ϕA1
1 ϕE0

2 ⟩∣2. (7)

Equation (7) signifies that the single-electron states that underlie the
resonance state [ket of Eq. (7)] and the multitude of final states (bra),
including one electron in the continuum C, are Coulomb coupled in
the form of two independent dipole transitions of the same energy
in the AQD and the EQD subsystem.

The same type of derivation in the same framework of condi-
tions has been formulated for a three-site system with three elec-
trons.50 For the single-ionization ICD energy condition 2 ⋅ IP > ωA> 1 ⋅ IP, which is subject to the present study, i.e., for the case in
which one of the two EQDs is ionized during ICD, the three-electron
rate becomes

Γ3e = ∣2−1/2⟨ϕA0
2 ϕC3 ∣V23

C ∣ϕA1
2 ϕE

′0
3 ⟩⟨ϕE0

1 ∣ϕE0
1 ⟩

+ 2−1/2⟨ϕC1 ϕA0
2 ∣V12

C ∣ϕE0
1 ϕA1

2 ⟩⟨ϕE′03 ∣ϕE′03 ⟩∣2. (8)

Comparing Eqs. (7) and (8), hence, reveals Γ3e = 2 ⋅ Γ2e in agreement
with the general equation

Γ(N+1)e = N ⋅ Γ2e (9)

for (N + 1) electrons in (N + 1) subsystems, indicating a linear
dependence of the rate on N, the number of neighboring sites.39,40

III. COMPUTATIONAL DETAILS

A. Parameterization

The potentials defined in Eq. (2) were parameterized in a way
to fulfill the energy condition for the two-electron and the single-
ionization three-electron ICD process, to meet an experimentally
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TABLE I. Parameterization of the binding potentials of Eq. (2). min and max indicate
the ranges for parameter variations.

Units Atomic SI

DA 2.0 a.u. 20.6 meV
bA 0.25 a.u. . . .
2rA 3.33 a.u. 36.07 nm
DE 2.0 a.u. 20.6 meV
bE 1.0 a.u. . . .
2rE 1.67 a.u. 18.03 nm
Rmin 10 a.u. 108.30 nm
Rmax 25 a.u. 270.75 nm
αmin 30○ . . .
αmax 180○ . . .

meaningful material fabrication, and to allow for a reasonable scan
over a number of inter-QD distances and angles. The computations
in MCTDH are based on a parameterization in atomic units and
such is the output. This allows comparison with the studies of others
on ICD in QDs.49,66 In order to make the numbers readable to QD
experts as well, they are converted into material-specific numbers for
GaAs in SI units45 by considering the dielectric constant and effec-
tive mass of an electron in that material.67 Table I summarizes all the
parameters that define the binding potentials. For the angle and dis-
tance scans, the minimal and maximal values (min, max) are listed.
Note that the parameterization with respect to the x and the z coor-
dinate is identical. The potential for R = 108.3 nm and α = 90○ is
shown in Fig. 1.

The MCTDH program requires further parameterization of
the other operators, the DVR basis, and other technical factors. A

sine DVR with 140 points was employed in a range [−541.8 a.u.;
541.8 a.u.] ([−50 a.u.; 50 a.u.]). The multi-grid potfit61 represen-
tation of the regularized Coulomb potential with α = 0.1 a.u. and
β = 100 a.u. is defined as in the first study on two-dimensional poten-
tials.51 This means that the fine grid of 140 points per coordinate is
supplemented by a coarse grid of only 35 points. The CAPs located
on every end of the grid starting at c±i = ±325.0 nm (±30 a.u.) have
the order n = 4 and the strength η = 8.6997 ⋅ 10−6.

MCTDH block improved relaxation calculations68,69 with
jκ = 144 (52) SPFs [cf. Eq. (5)] in each coordinate were used to
find the resonance states of two (three) electrons in two (three) QDs
among the first 156 (240) states within 1.2 a.u. in time (or 0.08 ps in
SI units of GaAs). The initial function for the relaxation was the anti-
symmetrized product of single-electron eigenfunctions representing
a quartet configuration. The single-electron functions themselves
were one of the ground state A0 and one (two) of the lowest state
on the full grid, which offer an optimal starting condition to both
bound and continuum parts of the target state functions. The reso-
nances were state nos. 143 and 144 (99 and 100), respectively. They
were identified by their density pattern of an s-atomic orbital-like
density on the two EQDs and a p-atomic orbital-like density on the
AQD (cf. Figs. 3 and 4). Thus, the gained resonance wavefunctions
were used as initial states for the MCTDH propagations. Here, only
jκ = 8 SPFs served as functional basis. Propagations were done for
10 000 a.u. in time (638.93 ps).

B. Graphic card programming

In order to shorten the runtimes of the computations within
the MCTDH Heidelberg package57,58 in its version MCTDH84.16,
the usage of a graphics processing unit (GPU) compilation was

FIG. 1. Three-dimensional representa-
tion of the three two-dimensional Gaus-
sians for R = 108.3 nm and α = 90○.
The horizontal black lines reflect the geo-
metric position of the majority of electron
densities concerned with the indicated
energetic positions of the single-electron
levels E0 and E′ in each outer QD, as
well as A0 and the two (near-)degenerate
A1 in the central QD.
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considered. Therefore, test computations (lower dimensional prop-
agations and relaxations) were performed using the GNU com-
piler collection (GCC) profiling tool gprof. They were ana-
lyzed based on flat profiles, i.e., summary tables listing the
total time the program needs to execute each function, as
well as call graphs, showing which function calls which other
function how often. Based on this profiling, routines for matrix
multiplications and routines for the multiplication of matrices
with three-dimensional tensors were found to be particularly
time-consuming. In total, these routines required up to 90% of the
computing time. However, they are highly parallelizable and, in
particular, each section is simple enough to allow for paralleliza-
tion with GPUs. To this end, the respective routines were translated
from Fortran77 to Fortran90 and compiler instructions for using
GPUs were implemented in OpenACC. The program was compiled
with the GCC9 compiler, which supports the OpenACC standard in
version 2.5. MCTDH itself parallelizes superordinate routines that
distribute the individual subroutines (matrix multiplications and
others) onto the central processing unit (CPU) cores. Then, one spe-
cific GPU is assigned to each of them such that as many GPUs as
CPU cores can be used.

IV. RESULTS

A. Technical improvements: GPUs

The modified MCTDH version is first applied to exem-
plary relaxation and propagation computations on three-QD three-
electron ICD systems with different numbers of CPU cores and
GPUs. Propagations showed a significant increase in computing
time by a factor of up to 100 when using GPUs, irrespective of their
exact number. The reason is that the multiplied matrices and ten-
sors have so few entries (based on only eight SPFs for each degree of
freedom) that the additional time needed to transfer the data from
the main memory to the GPUs’ memory and back clearly outweighs
the gain in computation time on the GPU. Per contra, relaxation
calculations use significantly more SPFs (52), which leads to much
larger matrices and tensors, so that the gain in computation time
on the GPUs trumps the time needed to transfer the data and a
speedup is possible. Figure 2 shows the speedup in a bar chart for
different combinations of GPU and CPU cores for a block improved
relaxation calculation, however, with a factor four shorter relax-
ation duration than what it needed in the typical calculations of this
study. The increasing number of CPUs applies to different groups
of bars plotted from left to right, whereas the color code marks
the number of GPUs that increases within each group of bars also
from left to right. The test calculations were performed on com-
puters with two Intel Xeon Gold 6136 CPUs and up to four P100
GPUs.

While doubling the number of CPU cores from 1 to 2 and from
2 to 4 without using GPUs (blue bars) almost halves the computing
time, doubling from 4 to 8 CPUs only reduces the computing time
by a factor of 1.4. Any further increase of the cores (not shown in
Fig. 2) does not lead to significant reductions of the computing time,
meaning that the internal parallelization via CPU cores is exhausted
with eight CPU cores. However, the additional use of GPUs for the
previously mentioned routines reduces the computing time. If only

FIG. 2. Bar diagram on the compute time of a representative block-improved
relaxation calculation as a function of the number of CPUs (abscissa) and GPUs
(color-coded bars in groups).

comparably few compute units are GPUs (compare the blue and
orange bars for four and eight CPU cores), then the gain in compute
time is marginal because the relative load of the GPU is high. How-
ever, if two or four GPUs are used together with as many as or more
CPU cores (last two group of bars), a speedup factor of up to a 3.2
can be gained, as in the example of eight CPU cores with four GPUs
compared to eight CPU cores without GPUs. This setting allows us
to perform the relaxation calculations needed for this study (factor
four longer compared to Fig. 2) in reasonable time, i.e., within 20 h
compared to otherwise 63 h in pure CPU parallelization and 355 h
without parallelization.

B. Electronic structure

In the description of the ICD resonances (Sec. II) and the
parameterization of the potentials (Sec. III), it was said that the cen-
tral QD, the AQD, supports a ground state electronic level at energy
EA0 = −11.62 meV (−1.128 a.u.). There are further two degenerate
single-electron states with energy EA1 = −4.25 meV (−0.413 a.u.),
which resemble atomic p-type orbitals perpendicular to each other.
The resonant excitation energies in either direction are thus
ωA = 7.37 meV (0.715 a.u.).

The two EQDs are equal in shape and support one nodal-free
bound state only at energy EE0 = −5.43 meV (−0.527 a.u.), which
is the inverse to the ionization potential IP = 5.43 meV. With this
energetics, the excitation energy in the central QD exceeds once the
ionization energy, allowing thus for single-ionization ICD, i.e., in
which only one of the EQDs is ionized.50 This choice was made
because calculations on systems that support ωA > 2IP showed also
only single-, but no double-ionization, ICD and were at the same
time significantly less stable.50

The three-electron states are composed of the above described
one-electron orbitals. Their true wavefunctions are of course influ-
enced by the Coulomb interaction among electrons, but this does
not change the fundamental level occupation underlying each of the
states. The ground state has one electron in each QD in the lowest
level. Therefore, it is denoted by E0A0E ′0.
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The resonances are actually the states most relevant for this
work as they have a finite lifetime and decay via ICD. They have
two ground state electrons in the EQDs and an excited electron in
the AQD. The latter can be in one of the two degenerate levels of the
isolated AQD, which compare to p-type atomic orbitals. They are
perpendicular to each other, but only in the linear array (α = 180○),
they align with the z and x axis. In general, the array’s symmetry
enforces the orbitals to be either parallel to the axis connecting the
two EQDs or perpendicular to it, as can be rationalized by inspect-
ing the densities in Figs. 4(a) and 4(b). Thus, the states are termed
E0A∥1E′0 and E0A⊥1E′0, respectively.

Their energies depend on the exact geometric arrangement of
the three QDs, as is visualized in Fig. 5 for fixed R = 108.3 nm
and varying angles α. It is most straightforward to analyze at first
the overall trends of both curves, as both energies increase with a
decrease in angle by about 1.5 meV. This trend originates in the
increasing overlap of the electrons located on the EQDs. If they are
distant by 2R = 216.6 nm (20 a.u.) in the α = 180○ case, they con-
tribute 1/R = 0.52 meV (0.05 a.u.) to the total energy through their
Coulomb interaction. At the high-energy side of α = 30○, the two
EQDs are as near as 56.06 nm (5.176 a.u.). This leads to a Coulomb
energy contribution of 1/R = 1.99 meV (0.193 a.u.) and ultimately
explains the overall increase in Fig. 5. The interesting aspect is, how-
ever, the relative energy of the parallel (red) and the perpendicular
(yellow) case. In the linear array, the resonance state E0A∥1E′0 has a
density in which the electron on the AQD directs as much as pos-
sible toward the EQDs [Fig. 3(a)]. This must lead to the highest
possible orbital overlap of the electrons on the AQD and the EQDs,
which is the origin of the higher resonance energy displayed in Fig. 5
(red line) at α = 180○. In contrast, the density of the perpendicular
state E0A⊥1E′0 [cf. Fig. 3(b)] reveals the lowest orbital overlap in a lin-
ear arrangement and thus the lower energy (yellow line). When α
is small, the energy contribution of the interaction of electrons in
the EQD and the AQD for the parallel resonance E0A∥1E′0 (red line)
drops compared to that as in the linear arrangement, which may
be rationalized from the density representation in Fig. 4(a). In con-
trast, the same energy contribution in the perpendicular resonance
E0A⊥1E′0 increases with decreasing α [orange in Fig. 5; state density in
Fig. 4(b)]. This is the origin of the crossing of the total energy curves
at α ≈ 90○.

C. Electron dynamics

1. Linear array
First, we investigate the distance dependence of ICD in a lin-

early arranged array of QDs. This is done in comparison for two and
three QDs/electrons to confirm the validity of the rate prediction
Γ3e = 2Γ2e from the analytic Wigner–Weisskopf derivation39,40 for
a system with two continuum directions. This will complement our
confirmation of the rate equation for QDs in a nanowire support-
ing a one-dimensional continuum for the ICD electron50 and studies
of others on atoms,39,40 where ICD electrons leave the system in all
three spatial dimensions.

As we have shown in previous studies on nanowires35,50 and
self-assembled QDs,51 oscillations of the truly realized rates around
the asymptote ∝R−6 are to be expected. Hence, a sample of

FIG. 3. Surface-projection plots of three-electron ICD resonance state densities for
the linear array with α = 180○ and R = 108.3 nm as a function of the coordinate
axes x and z: (a) z-polarized resonance with A∥1 and (b) x-polarized resonance
with A⊥1 .

severalR is needed to evaluate the rate ratio from the averages Γ3e/Γ2e

= Γ3e ⋅ R6/Γ2e ⋅ R6.50

Different to what was investigated in a quasi-one-dimensional
case,50 two resonances are available for ICD. Let us start with the
z-polarized parallel resonance (E0A∥1E′0) whose density is visualized
in Fig. 3(a) for three electrons. In Fig. 6, the rates for its decay mul-
tiplied by R6 are shown as functions of R. The blue solid line cor-
responds to Γ3e ⋅ R6, and the orange solid line corresponds to Γ2e

⋅ R6. As anticipated, both the rates oscillate around their averages
shown as blue and orange dashed lines. Note that the rates for the

FIG. 4. Surface-projection plots of three-electron ICD resonance state densities for
the angled array with α = 90○ and R = 108.3 nm as a function of the coordinate
axes x and z: (a) resonance with A∥1 and (b) resonance with A⊥1 .
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FIG. 5. Energies E of the three-electron resonance states E0A
∥
1E
′
0 (red line) and

E0A⊥1 E′0 (yellow line) as functions of the angle α for fixed R = 108.3 nm.

previously investigated Γ2e case51 were obtained only for a smaller
span of R. This is because the technical parameters (cf. Sec. III)
have been optimized for the new three-QD case but lead to tech-
nical instabilities for two QDs. The maximum (average) span of
oscillations is 26.9% (9.1%) in the three- and 22.4% (10.9%) in the
two-electron case. This amount of oscillation is in the order of mag-
nitude of the formerly found deviations of 50% (24%) for a two-
dimensional continuum and thus much smaller than the respective
oscillations of 222% (85%) when only a one-dimensional continuum
is available, where the ICD electron has no possibility (other than
limited tunneling) to circumvent the Coulomb barrier imposed by
the bound electron(s).51 The ratio is Γ3e/Γ2e = 2.10 with a standard
deviation of 0.33. This means that it supports the predicted factor 2
from the Wigner–Weisskopf theory.

The same type of analysis is made for the decay of the
x-polarized resonance state (E0A⊥1E′0) with the density shown in

FIG. 6. R6-normalized rates of the ICD of the E0A
∥
1E
′
0 resonance in a linear QD

arrangement as a function of the inter-QD distance R. The blue lines correspond
to the three-QD case, and the orange ones to the two-QD case. The actual values
are drawn as solid lines, and their averages are drawn as dashed lines.

Fig. 3(b). The data can be found in Fig. 7 with the same color and
line-style coding as before. Again the three-electron ICD is faster by
a factor of two. We obtain exactly Γ3e/Γ2e = 1.98(0.28), where the
standard deviation is given in parentheses. This means that despite
the fact that ICD rates are in general smaller for the x resonance than
for the z resonance, which confirms earlier results,51 the asymptotic
equation keeps its generality.

2. Angled array
Another feature of SA QD arrays, in particular, and sys-

tems with a two-dimensional continuum, in general, is the option
to arrange the individual QDs in a non-linear fashion. Here, we
investigate the behavior of the R6-normalized ICD rate as a func-
tion of the angle α that determines the QD constellation. Again,
the two resonances (E0A∥1E′0 and E0A⊥1E′0) with their densities
shown in Figs. 4(a) and 4(b) are available for the decay. Elec-
tron dynamics is only calculated exemplarily for three inter-QD
distances R = 108.3 nm, 119.1 nm, and 130.0 nm (10, 11, 12
a.u.) for the sake of saving computer power. As Γ is known to
oscillate as a function of R, we used the results at the three dis-
tances to average at each angle over Γ3e∥ ⋅ R6 and Γ3e⊥ ⋅ R6. Although
an average over three data points is statistically not robust, one
can at least deduce trends for the angle-dependence of the ICD
rate.

Figure 8 shows that Γ3e∥ ⋅ R6 (red line) increases with increasing

α, while Γ3e⊥ ⋅ R6 (yellow line) contrarily decreases. This behavior is
obviously caused by the overlap of the lobes of electron density that
can be seen in Figs. 3 and 4, which directly connect to the Coulomb
interaction, as was discussed in Sec. IV B. The p-shaped density con-
tribution on the central AQD of the parallel resonance (E0A∥1E′0) in
the linear case [Fig. 3(a)] lies exactly along the array’s z axis. This
is the case of highest density overlap. When the array gets angled,
the E0 and E′0 density contributions from the two emitter QDs
move away from the central QD’s orbital axis. Hence, the Coulomb

FIG. 7. R6-normalized rates for the ICD of the E0A⊥1 E′0 resonance ICD in a liner QD
arrangement as a function of the inter-QD distance R. The blue lines correspond
to the three-QD case, and the orange ones correspond to the two-QD case. The
actual values are drawn as solid lines, and their averages are drawn as dashed
lines.
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FIG. 8. R6-normalized ICD rates as a function of α. Γ3e∥ ⋅ R6 (red), Γ3e⊥ ⋅ R6 (yellow),
and their sum (green, top line) are displayed. The dashed line reflects the overall
average rate.

interaction decreases and likewise the rate Γ3e∥ also decreases. The
contrary is true for Γ3e⊥ . The density of an electron in the perpendic-
ular A⊥1 level points maximally away from the densities of electrons
in the two E0 levels when α = 180○. When the angle is small, the
density contributions on the EQDs are near that lobe of the A⊥1 den-
sity, which is enclosed by the angle α. The crossing point of both
curves lies near α = 90○. The sum of both rates and its average are
shown as the green solid and dashed lines in Fig. 8. It reflects the
overall ICD rate with three electrons, which turns out to be, besides
statistical fluctuations, independent of the bending angle within the
array. This is an important finding in conjunction with the analytical
rate equation, which states that the rate increases with the num-
ber N of equidistant electron emitters irrespective of their relative
arrangement.40 Indeed, we find a rate ratio of Γ3e/Γ2e = 2.15(0.28),
where for Γ2e we use the sum of average rates obtained from
Figs. 6 and 7.

In studies on Ne clusters, it was found that the N-neighbor
rates would increase stronger than linearly only when the num-
ber of neighbors gets large.2,39 This was explained by the increas-
ing overlap of electron density on the neighbors that come close
together. Although in this study the two emitter QDs approach
one another closely, no increase in the overall rate is observed at
low angles. Either 30○ is not enough to reveal an enhancement
effect or the electron overlap among electrons on only two sites is
not sufficient. Both these support the analytical prediction on rates
increasing by factors of N for small numbers of neighbors even
more.40

V. CONCLUSION

The three-site interparticle Coulombic decay was investigated
by means of electron dynamics calculations in a multiconfiguration
time-dependent Hartree framework for the special case that a two-
dimensional emission continuum is available for the ICD electron.
The technical aspects of this study center around the expensive com-
putations of this two-dimensional continuum on a large discrete
variable representation grid and for three electrons. They became

feasible through the recently introduced multi-grid potfit repre-
sentation of the Coulomb interaction potential and an OpenACC
graphic card compilation of MCTDH developed in this study. In
using finally 8 CPU cores with 4 GPUs, the computing time for relax-
ation calculations reduces to 31.7% compared to no-GPU usage and
5.8% of what would be needed on a single CPU core. This speedup
strategy makes computations in even higher dimensions (more
electrons or continuum dimensions) accessible. Further speedup
may be achieved in coding GPU parallelization into the MCTDH
code.

The physics results of this study close the knowledge gap in
the three-site three-electron ICD process, which was previously
only investigated for both an unconfined three-dimensional con-
tinuum and a strongly confined one-dimensional continuum for
the cases of atom clusters and QDs in a nanowire, respectively.
Here, self-assembled or gated laterally arranged QDs are exem-
plarily studied for enabling a general understanding on ICD with
a two-dimensionally unconfined electron. The findings are com-
pared to the analytical Wigner–Weisskopf rate equation prediction
in showing, as studies in the other systems, that the ICD rate is
a function of the number of electron emission sites adjacent to a
single excited site in their center. The result is stable for changes
in the arrangement of the emitters varied through distances and
angles.
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Abstract: A detailed analysis of the electronic structure and decay dynamics in a symmetric system
with three electrons in three linearly aligned binding sites representing quantum dots (QDs) is given.
The two outer A QDs are two-level potentials and can act as (virtual) photon emitters, whereas
the central B QD can be ionized from its one level into a continuum confined on the QD axis upon
absorbing virtual photons in the inter-Coulombic decay (ICD) process. Two scenarios in such an
ABA array are explored. One ICD process is from a singly excited resonance state, whose decay
releasing one virtual photon we find superimposed with resonance energy transfer among both A
QDs. Moreover, the decay-process manifold for a doubly excited (DE) resonance is explored, in
which collective ICD among all three sites and excited ICD among the outer QDs engage. Rates for
all processes are found to be extremely low, although ICD rates with two neighbors are predicted to
double compared to ICD among two sites only. The slowing is caused by Coulomb barriers imposed
from ground or excited state electrons in the A sites. Outliers occur on the one hand at short distances,
where the charge transfer among QDs mixes the possible decay pathways. On the other hand, we
discovered a shape resonance-enhanced DE-ICD pathway, in which an excited and localized B∗ shape
resonance state forms, which is able to decay quickly into the final ICD continuum.

Keywords: interatomic Coulombic decay; electron dynamics; quantum dots; continuum confinement;
Coulomb barrier

1. Introduction

The inter-Coulombic decay process (ICD) transforms energy of an inner valence
excited or ionized atom (A) into kinetic energy of an electron ionized from a nearby other
atom (B) [1]. The initial state is a Feshbach resonance state [2], delocalized over both atoms,
which decays by the two-electron rearrangement. In the past 25 years, ICD was observed
and/or theoretically predicted for many different electronic systems, including noble gas
clusters [3,4], molecular ensembles [1], biomolecules [5], fullerenes [6,7], and quantum
dots (QDs) [8,9], where in the latter the hole level is not necessarily the inner-valence state.

Effectively, ICD is a radiationless energy-transfer (ET) process, which is mediated by
the Coulomb interaction among the two involved partnering sites’ electrons, from which the
ICD rate is deduced. This resembles the Förster resonance energy transfer (FRET) among
chromophores [10], but leads as a surplus not to a final bound but to a final continuum
state. Both processes, nonetheless, can be recast into coupled dipole transitions on either
site. In this sense, they nail down an asymptotic distance dependence of the rate via the
inverse sixth power of the distance between photon donor and acceptor, as was formulated
individually for the specific conditions of FRET [11] and of ICD [12,13].

Scientific intuition and simple rationalization suggest clearly that ICD must depend on
several more characteristics of the full chemical systems rather than only particle distance,
all the more so the less pointlike the acceptor and donor become, as has been compared
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extensively for FRET [14]. For ICD, this effect was studied in the context of geometrical
changes of QDs as ICD partners [15], but also in the context of polarization effects in
adjacent molecules [16]. Moreover, the spatial confinement of the ionization continuum
to two [17] or even one dimension [8] was found to cause significant deviations from the
predicted ICD rate. Finally, neighboring sites may alter the rate already when they form
only a barrier or a temporal electron binding site [18]. A strong rate increase can be observed
when neighbors with virtual orbitals stabilize the wave function when being located at
short distances from the ICD participants allowing for electronic coupling (superexchange
ICD) [19–22]. However, even for well-separated and electronically decoupled neighbors,
it was found that an increasing number (N) of neighbors of either A [23,24] or B [25,26]
type makes ICD at least N times faster [13,27]. The effect depends on the specific geometric
arrangement of the neighbors [26,28,29] as well as on the initially excited state. If, for
example, two sites A are both excited, they may undergo excited ICD (exICD) between each
other [23,30–34] or collective ICD (CICD) together with B, requiring multiple simultaneous
energy-transfer processes to bring up the ionization energy for B [24].

Despite this first characterization of the listed ICD pathways, their occurrence and
interplay is still rather unexplored. If, for example, asymptotic formulae were used for the
prediction of the decay, each possible channel is treated individually [23,24], whereas the
electron dynamics treatment includes the full multitude of decay channels [25,26]. However,
electron dynamics calculations were not yet done for the ABA system, which was more
intensely studied otherwise. Hence, in this paper we target a linearly aligned ABA systems
with an electronic confinement along the alignment direction. Such an example is a model
for quantum dots in a nanowire, as may be encountered in quantum networks. Moreover,
we distinguish two initial resonances states, a singly excited (SE) and a doubly excited
(DE) one and compare which processes occur at what inter-QD distance and how they
contribute ICD.

In Section 2.1 the pathways are introduced via asymptotic equations, and in
Sections 2.2 and 3 the model and the electron dynamics treatment is explained. In the
result Sections 4.2.1 and 4.2.2, the rates are shown for the complete processes and for indi-
vidual subprocesses in comparison in order to explain the unexpected lowering of rates
compared to that of the regular two-site ICD process.

2. Theory
2.1. Pathways of the Inter-Coulombic Decay in a Linear ABA Array

The regular ICD process, an inherent two-electron effect, will occur in its extension by
three electrons on three sites along different pathways simultaneously, depending on the
underlying electronic structure of the model system. Here, we explicitly focus on a system
composed of two two-level sites A and one one-level site B located exactly in their center as
underlying all schematic representations in Figures 1 and 2. The outer sites A are separated
by the distance RAA, whereas the central site B in the coordinate origin is distant from
each of the other sites A by RAB = RAA/2. Owing to this arrangement, every two-electron
subprocess introduced below has an isoenergetic and symmetry-equivalent counterpart.

The two lowest-energy excited states localized in the array are A∗BA and ABA∗, in
which one site A is in its excited state. By design of the energetic model it is a Feshbach
resonance state [2], which is termed the SE resonance state throughout. With the ICD
boundary condition for energies, ∆EA > IPB, imposed, which says that the excitation
energy ∆EA of the A site has to be larger than the ionization potential IPB of the B site,
A∗BA can decay into AB+A via regular ICD among only two of the neighbors participating,
the third one remaining a spectator. This is sketched in the lower panel (b) of Figure 1 (on
the left-hand side) with the relaxing site A being encircled in turquoise and the electron-
emitting site B in brown, according to the persistent color code for this section ignoring for
the moment the inactive black site. As said, the process can happen among the central B
and either of the left- or right-hand side A.
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Figure 1. Overview of decay processes of up to three electrons on three Coulomb-coupled sites ABA
in linear arrangement. The decaying (a) doubly excited (DE) and (b) singly excited resonances are
shown in the center of each panel. To the left in (a) and (b) the standard inter-Coulombic decay (ICD)
among two sites is shown with relaxation (turquoise) of the electron of site A (orange) and ionization
(brown) of the electron from B (green). To the right, the coupled energy-transfer (ET) among the two
sites A (orange electrons) is depicted, resulting in an excited-state ICD (exICD) for the DE resonance
(a) and a Förster-like transfer for the SE resonance (b) not leading to ionization. In the DE case, a
collective ICD (CICD) through two-photon transfer from relaxation of both A (turquoise) can lead to
ionization of the central site B (brown) as shown along the upward direction.

Figure 2. Representation of the three-QD array ABA for a distance RAA = 28 a.u. parametrized
according to Table 1. In the negative energy range the single-electron levels A (turquoise), B (green),
and A∗ (orange) are displayed together with the respective densities |φ|2. Furthermore, the geometric
parameters of the binding potential (Equation (9)) are illustrated.

Table 1. Energies in a.u. of single- (E1e) and three-electron states (E3e), in the latter case for the
minimum and maximum distance, Rmin

AA = 20 a.u. and Rmax
AA = 70 a.u., respectively.

E1e E3e Rmin
AA Rmax

AA

EA∗ −0.196 EA∗BA∗ −0.613 −0.797
EB −0.477 EA∗BA −1.113 −1.295
EA −0.693 EABA −1.613 −1.793

The rate ΓICD for a regular two-site ICD process A∗B→ AB+ + e− in diverse chemical
systems was in the past computed through various types of time-independent [35–40] as
well as time-resolved [8] methods, which prove the validity of a simplified rate equation
derived from the Wigner–Weisskopf theory [12,13]. Therein, one electron is assumed to
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undergo spontaneous radiative decay A∗ → A and the other photoionization B→ B+ + e−.
The respective general golden rule ansatz is

ΓICD ∝ 2π|〈φA
1 φB+

2 |r̂−1
12 |φA∗

1 φB
2 〉|2. (1)

In this spin-free ansatz, one assumes separability of the wave function into a product
of nonoverlapping single-electron orbital functions φ and negligible exchange for the well-
separated electrons enumerated 1 and 2, which we will also anticipate for all following
derivations of this type. The respective decaying state is coupled by the Coulomb interaction
operator r̂−1

12 to a multitude of final continuum states. One core result of Equation (1) for the
distance dependence is ΓICD ∝ R−6

AB, which originates from the coupling of the two dipole
transitions on the two subunits A and B. Another is that the rate increases linearly with the
number N of neighbors [13,27], which will manifest itself in the following discussion.

For the SE decay process, the golden rule ansatz of Equation (1) is extended to three-
orbital wave functions [25]. The final state is clearly φA

1 φB+
2 φA

3 . On the other hand, the
decaying state must be an equal superposition of one excited outer site and one in its
ground state, i.e., 2−1/2(φA∗

1 φB
2 φA

3 + φA
1 φB

2 φA∗
3 ). Considering that the Coulomb interaction

r̂−1
ij always couples only two electrons, it allows the factorization of the rate equation into

ΓICD
SE ∝ 2π|2−1/2〈φA

1 φB+

2 |r̂−1
12 |φA∗

1 φB
2 〉〈φA

3 |φA
3 〉

+ 2−1/2〈φB+

2 φA
3 |r̂−1

23 |φB
2 φA∗

3 〉〈φA
1 |φA

1 〉|2. (2)

Note that the only terms that are unity are those for which the overlap is kept among
the φi orbitals factorized from the Coulomb integral (rightmost factor). In the absolute
square of the Coulomb integrals (and the prefactors) we identify the two-electron ICD rate
of Equation (1); hence

ΓICD
SE = 2 · ΓICD. (3)

Beyond the interaction among the A and B site, a pathway that involves coupling
of the two outer A sites shall be mentioned. As identical two-level systems, they are
candidates for a Förster resonance energy transfer among the electrons depicted in orange
in Figure 1b, whereas the green one is spectating [14]. This means that while the excitation
on one site decays (turquoise circle), the other site is being excited but not ionized, i.e.,
A∗A → AA∗. An ET-rate equation can be set up in the spirit of the ICD rate equation,
resulting in

ΓET
SE ∝ 2π|2−1/2〈φA∗

1 φA
3 |r̂−1

13 |φA
1 φA∗

3 〉〈φB
2 |φB

2 〉
+ 2−1/2〈φA

1 φA∗
3 |r̂−1

13 |φA∗
1 φA

3 〉〈φB
2 |φB

2 〉|2. (4)

According to Förster theory it likewise leads to a proportionality ΓET
SE ∝ R−6

AA [14]. ET
is a reversible process in which at any time A∗ levels are populated to a constant amount.
Therefore, ICD is always likewise possible either with the A QD on the one side or the
other. Moreover, ET does not lead to ionization, so that the rate of Equation (4) will not
integrate into an overall decay rate for the three-electron SE system which thus remains
ΓSE = ΓICD

SE following R−6
AB.

In the upper panel (a) of Figure 1, all decay channels of a DE are collected. Given the
single-electron levels available on the three sites, this resonance is A∗BA∗. The regular ICD
process among two sites A and B is available for the SE resonance (to the left); here, keeping
one spectating two-level site in its excited states A∗ thus leads to the symmetry-equivalent
final states A∗B+A and AB+A∗. The rate is given through the Wigner–Weisskopf deriva-
tion [13,25–27] as
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ΓICD
DE ∝ 2π|2−1/2〈φB+

2 φA
3 |r̂−1

23 |φB
2 φA∗

3 〉〈φA
1 |φA

1 〉
+ 2−1/2〈φA

1 φB+

2 |r̂−1
12 |φA∗

1 φB
2 〉〈φA

3 |φA
3 〉|2

= 2 · ΓICD. (5)

Next, there is also a process based on the Coulomb coupling of the electrons at both
sites A (orange) as shown toward the right-hand side of Figure 1a. It resembles the
resonance energy transfer that had been discussed for the SE decaying state and an ICD
process at the same time. In addition, one excitation decays into its ground state A∗ → A
(turquoise circle). The transferred energy is sufficient to ionize the other site (brown circle)
according to A∗ → A+. The process, which we term here excited ICD to distinguish it from
regular ICD, has been formulated before [23]. The rate equation is set up as

ΓexICD
DE ∝ 2π|2−1/2〈φA+

1 φA
3 |r̂−1

13 |φA∗
1 φA∗

3 〉〈φB
2 |φB

2 〉
+ 2−1/2〈φA

1 φA+

3 |r̂−1
13 |φA∗

1 φA∗
3 〉〈φB

2 |φB
2 〉|2 (6)

based on the fact that there may be two symmetry-equivalent pathways leading to the two
final states ABA+ and A+BA. In terms of the decay behavior, this does not differ from
any ICD process with lower exited states, i.e., it obeys the same distance behavior R−6

AA as
well as other relations which are deduced from the Wigner–Weisskopf rate equation. Note
that in a collinear arrangement, the maximal distance among both sites A, RAA = 2RAB,
may cause a significantly lower rate ΓexICD << ΓICD nonetheless, whereas some bent
arrangements may cause a closer proximity among both A than among A and B, leading
thus to a very fast exICD.

Note that the creation of a DE initial state is particular here, and can be achieved,
e.g., by a very short [23] or intense pulse [30,31]. There had been a theoretical study on
neon dimers undertaken with the Fano–Stieltjes approach, which considers exICD for
neon distances shorter than the distance where the asymptotic formula might become
valid [23]. It was followed by the derivation of analytical equations of motion for the
electron dynamics combined with nuclear dynamics on the excited state potential energy
surfaces [30] and ultimately confirmed experimentally in neon dimers [31] also for decay
cascades including higher excited neon states in clusters [32]. The exICD was also shown
for helium droplets, where it was found to scale with the number of neighbors [33,34].

Much more unexplored are the collective ICD processes [24], in which all electrons
participate. In a two-photon energy transfer, the central site B is ionized (and excited,
superscript +∗) in that both sites A deexcite simultaneously, as depicted toward the top
in Figure 1a. Note, if B was DE into a bound state, the process would be a special form of
resonance energy transfer called energy pooling [14].

The Wigner–Weisskopf formulation for the CICD three-electron process based on
two-electron interactions uses second-order perturbation theory [24], giving as rate ansatz
for our A∗BA∗ example system

ΓCICD
DE ∝ 2π ∑

t

∣∣∣∣∣∣
〈φA

1 φB+∗
2 φA

3 |r̂−1
ij |Φt〉〈Φt|r̂−1

ij |φA∗
1 φB

2 φA∗
1 〉

EA∗BA∗ − Et

∣∣∣∣∣∣

2

. (7)

Here, the transitions of the three electrons are split into virtual two-photon pro-
cesses with different intermediate configurations t. Those can be either the state resulting
from two A relaxations, 2A∗ → 2A, the state after the B ionization with two photons,
B → B+∗ + e−, or the states after a regular or excited ICD process, i.e., one state out of
ABA, A∗B+∗A∗, 2−1/2(AB+A∗ + A∗B+A) or 2−1/2(AB + BA). No matter which one is
chosen, both Coulomb integrals in our QD formulation give a dependency R−3 for the
dipole–dipole transition in the short-range resonance-energy transfer regime [14] appli-
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cable to the distance and transferred energies encountered in the ABA system. As the
two integrals in Equation (7) multiply and are being squared, the rate for CICD follows
R−12

AA . However, with R−12
AA the rate ΓCICD decreases much more quickly than that of regular

ICD, making CICD generally noncompetitive at long distances. Hence, CICD could only
be seen under rigorous energy constraints excluding regular and excited ICD. This can
be rationalized by being an unlikely three-particle process [23]. Only at short distances
might it dominate other decay channels, but for such cases, Fano–ADC calculations on
Kr2Ar clusters resulted in lower rates than were predicted by the asymptotic formula [24].
Note that in the first work on CICD on Kr2Ar clusters, the authors have assumed one
of the interatomic distances to be as large as the wavelengths of the transferred photon
(approximately 100 nm) and hence one integral obey R−2 [24].

Conclusively, with three contributions, the overall rate for DE-ICD,
ΓDE = ΓICD

DE + ΓexICD + ΓCICD, is richer than for SE, where we can, however, expect a
lowering importance of contributions from left to right. For the dominating rate ΓICD

DE , a
rate doubling is expected with an additional rate increase of the latter terms.

Moreover, any other decay processes can be largely excluded for the underlying model.
The occupation of each few-level site with only a single electron as well as the energetics
within the system exclude the occurrence of an Auger–Meitner process [41,42], to which
ICD has to be compared in core-excited or ionized atoms and molecules. Then, we exclude
any nuclear motion of the atoms forming one site. In cases of the sites being atoms or small
molecules, instead, the nuclear motion was found to lead to fluctuating ICD rates [4,43–47].
For the sites being quantum dots, they would not move with respect to one another but
rather, internally. However, such phonon-mediated dissipation was found to not compete
with ICD unless their distances become very large [48]. Finally, the most straightforward
radiative decay of the excited state A∗ is known to be significantly slower than the discussed
energy-transfer processes for any of the studied ICD materials [8].

2.2. Electron Dynamics in Model Potentials

The purpose of this study is to investigate the interplay of several simultaneously
available ICD and related processes’ channels in the context of fully correlated electron-
dynamics computations. For computational feasibility and for some freedom in designing
a few-level electronic structure, model potentials are used to reflect the three electron-
binding sites ABA. Furthermore, this arrangement allows us to deliberately remove the
spectator electron and its binding site for the discussed two-electron subprocesses, so that
we target the role of the respective spectator electron site with those two, which are active
participators in the process. In particular we can also reformulate the model into a single-
electron picture for the ICD electron, setting up effective potentials imposed by neighboring
sites and electrons, which is another means for interpretation of the full three-electron
dynamics observed.

The specific potentials displayed in Figure 2 are models for quantum dots in a
nanowire [8,25], in which the electronic motion occurs in one dimension along the z
direction only, such that the two other Cartesian coordinates can be omitted [49]. The
respective one-dimensional electronic Hamiltonian in atomic units for N electrons and M
QDs reads

Ĥ =
N

∑
i=1

(
−1

2
∇2

zi
+

M

∑
k=1

V̂QD
k (zi) + V̂CAP(zi) +

N

∑
j<i

r̂−1
ij

)
. (8)

The summands define the kinetic energy, the QD confinement potential for each QD
k, as well as the complex absorbing potential (CAP) for each electron i and the Coulomb
interaction between the two electrons i and j.

The electronic structures of QD conduction bands open to a nanowire environment
are represented by Gaussian potentials shown in Figure 2 and given by

V̂QD
k (zi) = −Dk exp

(
−bk(ẑi − zk)

2
)

. (9)
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Here, bk relates to the widths of the Gaussian potential and is reproducing the QD
extension along the nanowire, and zk marks the position. Throughout this study, the
electron-emitting QD B with one electronic level is placed in the origin of the z axis and
is framed by one or two two-level QDs A at positions −RAB only or ±RAB. RAA is the
distance between the minima of the respective potentials of the A-type QDs. Dk is finally
the depth of the binding potential, and the energetic zero point marks the onset of the
continuum for unconfined electrons.

The last single-electron operator of Equation (8) is a CAP with

V̂CAP(zi) = −i
(

ŴL
z + ŴR

z

)
. (10)

Already anticipating the concepts of electron dynamics introduced below, the CAP
hinders a continuum ICD electron wave packet from backscattering onto the QD system
at the edges of the finite grid by transferring it into the imaginary space. Actually, two
CAP operators

ŴL,R
z = η |z− zL,R|n Θ(±(z− zL,R)). (11)

are placed to the left (L) and the right (R) side of the QD array along the negative and
positive z direction, respectively. They are defined through the strength parameter η, the
order n, the onset position zL,R and the Heaviside step function Θ, which ensures that the
CAP vanishes for |z < zL,R|.

The Coulomb-interaction operator essentially mediating ICD, is by virtue six-dimen-
sional and nonseparable. Because the two interacting particles are in a one-dimensional
model, here an effective Coulomb potential,

V̂(z)ij =

√
π

2
exp

(
z2

ij

2

)
erfc

( zij√
2

)
, (12)

is used [49,50]. It is derived for the case of a wire potential with a strong harmonic oscillator
confinement in x and y directions, the excited states of which are energetically inaccessible
here, such that the wave function can be separated and x and y components integrated.

For analysis reasons, we define an effective potential for the ICD electron j in B [8]. To
this end, the electrons i occupying single-particle bound states φn(zi) with n = A or A∗ of
the two A QDs and their Coulomb repulsion with the B electron are added to the general
binding potential giving

V̂eff(zj) =
M

∑
k=1

V̂QD
k (zi) +

(N−1)

∑
i=1
〈φn(zi)|r−1

ij |φn(zi)〉. (13)

In order to execute electron dynamics simulations, the N-electron wave packet is given
in the antisymmetrized multiconfiguration time-dependent Hartree (MCTDH [51,52]) form

Ψ(z1, . . . , zN , t) =
n1

∑
j1

. . .
nN

∑
jN

Aj1,...,jN (t)
N

∏
κ=1

ϕ
(κ)
jκ (zκ , t). (14)

The antisymmetry in electron exchange is introduced by a condition on the expan-
sion coefficients,

Aj1,...,jl ,...,jk ,...,jN (t) = −Aj1,...,jk ,...,jl ,...,jN (t), (15)

thus realizing a quartet state for three electrons. Furthermore, a number of nκ single-particle
functions (SPFs) ϕ

(κ)
jκ (zκ , t) for each degree of freedom (DOF) κ (each electron here) is used

and expressed in a time-independent basis set as

ϕ
(κ)
jκ (zκ , t) =

Nκ

∑
i1=1

cκ,jκ
iκ (t)χ(κ)

iκ (zκ), (16)
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where cκ,jκ
iκ (t) are the time-dependent expansion coefficients and χ

(κ)
iκ (rκ) is a primitive

basis function. On the basis level, those are ultimately implemented within a discrete
variable representation (DVR) [53–55].

MCTDH approximates the solution of the time-dependent Schrödinger equation by
using the Dirac–Frenkel variational principle to derive equations of motion for the MCTDH
expansion coefficients and SPFs, which are propagated in time.

All desired observables for the interpretation of the dynamical processes of the elec-
trons in the QD systems are obtained from the propagated wave packet. The absolute
square of the projection of the time-dependent wave function Ψ(t) onto the initial wave
function Ψ(0), i.e., the squared autocorrelation function, gives information about the decay
process via the decay rate Γ [8], which is obtained by fitting the exponential slope to

|a(t)|2 = |〈Ψ(0)|Ψ(t)〉|2 = e−Γt. (17)

To analyse the populations of the different single-electron states s, a projection

Ps(t) = N|〈φs|1N |Ψ(t)〉|2 (18)

of the time-dependent N-electron wave function on the respective one-electron wave
function φs with s = A, A∗, B is performed, including a projection on an N-electron identity
matrix 1N . For continuum states, we are reintroducing the continuum contribution into
their population [56].

3. Computational Details

MCTDH calculations are executed with the Heidelberg program [53,57]. A sine DVR in
the interval [−100, 100] with 300 grid points represents the primitive basis. CAPs are placed
at zL,R = ±50 a.u. The CAP order is set to n = 3 and the strength to η = 9.5 · 10−7 a.u.
Furthermore, the effective Coulomb operator (Equation (13)) is brought into a sum-of-
products form by using the potfit subroutine [58].

For block improved relaxations [59,60] in the CAP-free system, which give the eigen-
states with discretized continuum, typically nκ = 48 SPFs are used for each mode. In
rare cases of numerical instabilities during relaxation, the number of SPFs is increased
to at most 80 SPFs. In the propagations nκ = 8 SPFs are sufficient. In both types of
MCTDH calculations, a constant mean fields integrator (CMF) is applied with an accuracy
of 10−2 a.u. or 10−8 a.u. for the relaxation and propagation calculations, respectively. CMF
step sizes are fixed to 0.1 a.u. in relaxations and variable in propagations. The SPFs are
relaxed (propagated) by using the Runge–Kutta method of order 8 with an error tolerance
10−6 (10−8) a.u. and an initial step size of 0.1 a.u. Improved relaxation furthermore requires
a Davidson routine to diagonalize the vector of MCTDH-coefficients, using here a maximal
order of 800 and an accuracy of 10−6 a.u. The one-dimensional initial functions are chosen
as Gaussian functions. Their width is 2.0 a.u. To propagate the vector of MCTDH coeffi-
cients, the short iterative Lanczos algorithm is used with an order of 15 and a step size of
10−8 a.u. The total propagation time is chosen differently for the systems (104–105 a.u.) to
ideally reveal the decay happening at different rates.

The binding potential of the respective QD system is defined in Equation (9), with
either two or three QDs, M = 2, 3. The depth of the respective binding potential is always
D = 1 a.u. and the sizes of the QDs are chosen to be bA = 0.25 a.u. and bB = 1.0 a.u. A scan
over the distance between the outer QDs is performed in the interval RAA = [20, 70] a.u.

4. Results
4.1. Electronic Structure

The present work focuses on the dynamical processes undergone by three electrons
in three linearly aligned QDs. Figure 2 depicts the Gaussian binding potential model for
the QD array which is designed such that the central QD is of B type with one energy
level and the outer two of A type. The corresponding one-electron energy level values are
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listed in the two leftmost columns of Table 1. The model was designed such that the energy
difference between the two levels on site A, ∆EA, is always larger than the ionization energy
of B, IPB. This implies that already only one excited outer electron in a state A∗ suffices to
open the ICD pathway, whereas ET is possible anyway. Likewise, for two excited electrons
in two states A∗ all SE and DE pathways sketched in Figure 1 shall be accessible.

An overview of energies and electron densities |Ψ(0)|2 of the three-electron eigen-
states with respect to increasing distance RAA between the outer QDs is given in Figure 3
and in Table 1 as obtained from MCTDH relaxation calculations. In panels (a) and (c),
corresponding to distances RAA = 20 and 70 a.u., both localized resonance states of interest
can be identified by density inspection. The DE resonance A∗BA∗ depicted as dark green
top line has the highest energy listed (EA∗BA∗ = −0.613 a.u. for RAA = 20 a.u.). Its density
clearly indicates the even distribution of electrons onto the QD. One electron is in QD B
occupying its only state and hence showing a Gaussian-type density, while excited states
A∗ of the other two QDs are occupied such that the local density there has a node centered
on the QD. Upon increase of the distance RAA, the state energy clearly drops due to the
significantly decreasing Coulomb interaction of electrons on each pair of sites A or B.

Figure 3. The energies of the key localized states of the three-electron three-QD system are displayed
as a function of distance RAA (panel (b)). From bottom to top ground state (ABA), first continuum
state of type AB+A, lower of SE resonances A∗BA, first continuum state of type A∗B+A, and DE
resonance A∗BA∗ are displayed. The normalized three-electron densities |Ψ(0)|2 in the left- and
rightmost panel are leveled by the respective state energies at the given distance RAA = 20 a.u. in (a)
and 70 a.u. in (c).

The SE resonance (light green, third from top), which is twofold, degenerates into
ABA∗ and A∗BA serving both as initial states for the two processes presented in Figure 1b
at RAA = 20 a.u. It has with EA∗BA = −1.113 a.u. a lower energy than the DE resonance by
the approximately 0.5 a.u. corresponding to the energy difference among A and A∗, which
likewise applies to all shorter distances as well. The local electron density on the outer QDs
has a broad and flat peak due to the superposition of the A∗ and A density contributions,
whereas the local density contribution on B remains unchanged compared to A∗BA∗. The
other, degenerate state (not shown) has generally the same density profile. The E− RAA
profile (b) follows the same trend as of the DE resonance and likewise does the ground
state. It has three localized electrons ABA and EABA = −1.613 a.u. at RAA = 20 a.u. Both
electrons on the A side occupy the lower state of the two-level system and have a narrow
Gaussian-type density like the electron occupying B (thick black bottom line in Figure 3).
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Energetically in between the ground state and each of the resonances, there are the
onsets of the two series of ICD continua into which the respective DE and SE resonances can
decay. For the SE resonance this continuum sets on at EAB+A = −1.309 a.u. (RAA = 20 a.u.).
It consists of states of type AB+A, meaning that there are two electrons localized in the A
levels of the outer QDs, whereas no electron resides in the central QD. The third electron
establishes density outside the area of the QDs, which is not visible from the representation
in Figure 3, because it particularly spreads beyond z = ±70 a.u. Compared to the localized
states the energy slope (b) is less steep here, because the electron from B has moved toward
the edge of the grid and is basically not contributing to the Coulomb interaction, which is
then mainly composed of interaction of two electrons in both A sites of amount R−1

AA only.
The other series of continuum states resulting from the ICD of the DE resonance

sets has densities revealing the displayed A∗B+A-type (and nearly isoenergetic inverted
AB+A∗-type states, not shown). Again, the B side is not populated, whereas one outer QD
is populated in the excited and one in the ground state. As can be seen on the right-hand
side of the density in panel (c) and on the left-hand side in panel (a), the emitted electron
assembles outside the QD region and also beyond the area shown ([−40, 40] a.u.). Note
that the contribution of the emitted electron in (a) has nodes for z ≤ −15 a.u. and sets
on energetically at EA∗B+A = −0.702 a.u. (RAA = 20 a.u.). As the first continuum states
typically has no nodes, here we have certainly not fully converged the continuum in the
improved block-relaxation computation. This does not affect the intuitive understanding
of the state manifold, but the shape of the E− RAA curve (b), which is not as flat as seen
for the other continuum. The propagation is later executed in another functional basis and
will therefore not suffer from an inaccurate state representation here.

Although the energy difference between the two initial states for ICD is nearly constant
with increasing RAA, the energy difference among them and the onset of their ionization
continuum decreases. The kinetic energy of the ICD electron decreases likewise. Moreover,
for the one-dimensional continuum we have observed effects that depend on the continuum
electron’s energy in conjunction with effective repulsive Coulomb barriers established by
the remaining bound electrons in their final states f [8,17,25,61,62]. The effective poten-
tials (Equation (13)) established for the DE- and the SE-ICD final state are shown in Figure 4
as dark and light green lines relative to the pure binding potential (Equation (9)) in black.

Figure 4. Illustration of the three-QD array ABA potential (black) displayed for RAA = 28 a.u.
within [−0.045, 0.152] a.u. Furthermore, the effective Coulomb barriers resulting from electron
configurations with the electron from B in the continuum, i.e., A∗B+A (dark green), AB+A (light
green) and AB+ (blue), respectively, as well as effective Coulomb barriers resulting from excited ICD
electron configurations, i.e., ABA+ (dashed dark green), are represented.
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The DE final state (dark green) is a superposition state of A∗B+A and AB+A∗ and
shows a maximal barrier height of E f

B = 0.054 a.u. Only when the electron ionized from B
has sufficient kinetic energy to overcome this barrier can the decay process be expected to
occur unhindered, which is the case for all RAB < 17 a.u. (cf. Table 2). Otherwise situations
may occur in which the electron is reflected from the Coulomb barriers and thus might
be trapped in between both QDs or where the rate oscillates as a function of RAB. For
the SE resonance, the barrier height in the final state AB+A is E f

B = 0.070 a.u. It is higher,
because an electron in the A ground level has a larger contribution to the effective potential
compared to an electron in the A∗ excited level. The ICD electron overcomes the barrier for
distances below RAB = 25 a.u. This distance is larger despite the higher barrier, because
the SE resonance is higher above its continuum than the DE resonance (cf. Figure 3). For
comparison the two-electron two-QD setup would establish one effective barrier maximum
at Veff = 0.056 a.u. hindering all electrons with RAB ≥ 15.5 a.u. Finally, one effective
potential is shown for the final state of the exICD of the DE resonance, i.e., ABA+ (dark
green, dashed). Here, the two remaining electrons establish a huge barrier around the B
QD of E f

B = 0.152 a.u., however due to the large kinetic energy of the exICD electron not
leading to its hindrance within the analyzed range of distances (only for RAB > 35.0 a.u.).

Ultimately, all single-electron state energies increase within the effective potential,
whereby a state in the AB+A potential is higher than in the A∗B+A potential, e.g. the
energy of the A level in the DE potential is EA(RAA = 28) = −0.599 a.u. and in the AB+A
potential EA(RAA = 28) = −0.528 a.u.

Table 2. Barrier energies E f
CB and minimal distances R f

AB from which the kinetic energy of electron

B (for exICD A) drops below E f
CB are given for the effective Coulomb barriers resulting from final f

electron configuration of the DE, SE, regular ICD, and exICD process.

DE SE ICD exICD

E f
CB (a.u.) 0.054 0.070 0.056 0.152

R f
AB (a.u.) 17.0 25.0 15.5 > 35.0

4.2. Electron Dynamics

In the following, the electron dynamics of the decays of the DE and SE resonances
is presented in terms of rates Γ computed from the absolute square of the autocorrelation
function (Equation (17)), the norm as function of time, and the transient population of
single-electron states (Equation (18)). In addition to the overall three-electron dynamics, a
comparison with related two-electron dynamics of subprocesses in all three or only two
QD potentials is offered for the DE electron configuration.

Figure 5 collects all decay rates as function of the distance RAA (top abscissa) and RAB
(bottom abscissa) in a double-logarithmic representation. As all processes are considered
extensions to regular ICD among two electrons on two sites (cf. Figure 1, left), the top
Γ− RAB curve (blue crosses) applies to this regular ICD among only two electrons, and
its sketch is displayed right next to the graph. Furthermore, a solid blue line is the fit of
the R−6

AB Wigner–Weisskopf asymptote to the data. The rates follow the general asymptotic
trend, but oscillate, which was observed likewise for slightly modified QD pairs earlier and
can be explained by the Coulomb barrier hindering the free motion of the ICD electron
within the one-dimensional continuum; however, they sometimes allowing for tunneling
(at highest Γ), leading to an effect beyond three orders of magnitude [8,25,61,62]. Here
for paired QDs, the blockade sets on from RAB > 15.5 a.u. (cf. Table 2). Similar to these
former results is the order of magnitude of the average rates, e.g., 10−3 a.u. at RAB ≈ 12 a.u.
and 10−5 a.u. at around twice that distance [8,25,61,62]. Note that the other curves of
Figure 5 are going to be discussed whenever the respective processes are discussed in the
following sections.
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Figure 5. Double-logarithmic representation of the decay rates Γ as function of interdot distance RAB

(top abscissa RAA) for the decay processes arising from the SE and DE initial electron configuration
(light and dark green large dots). The configurations are shown on the right side (bottom) also for
related two-electron processes (above) in the order of their decay rates. On top, the two-QD processes
(blue, dark green crosses) are shown, followed by the two-electron, three-QD processes (blue, dark
green small dots); the empty/removed QD is depicted as a half circle on the right. The asymptotic
regime for regular, SE-, and DE-ICD is indicated by the rates’ least-squares fit to R−6

AB shown as solid
lines in the corresponding color.

4.2.1. Dynamics of the Doubly Excited Resonance

The decay of the three-electron three-QD DE resonance A∗BA∗ into the two symmetry-
equivalent states A∗B+A and AB+A∗ is the topic of this chapter. The most straightforward
means to verify this expected decay is to inspect the level populations Ps(t) in conjunction
with the norm N(t) as a function of time. The ones of RAB = 10 a.u. (Figure 6) exemplify
the behaviour for nearly all distances, for which the only distinguishing feature is the
increasing duration of the process with distance (very few outliers will be discussed later).
After an equilibration time of 300 a.u. for the initial noneigenstate, the decrease of the
norm (solid dark-purple line) during propagation is exponential. It follows the decay of
the squared autocorrelation function used to deduce the decay rate ΓICD

DE (Equation (17)).
The decay comprises the emission of the B-type electron (dotted light-purple lines) and its
absorption by the CAP along with the relaxation of the A∗ electron (decreasing dashed line)
into the A state (increasing dashed-dotted line). The behavior is the same as was observed
for any regular two-electron ICD [8,61].

The rate of the DE resonance decay for all studied distances RAB is displayed as dark
green bold dots in Figure 5. The graph sets on at 4.63 · 10−4 a.u., two orders below that of
regular ICD, and firstly decreases quickly for 10 a.u. ≤ RAB ≤ 14 a.u. by nearly three orders
of magnitude and then establishes its R−6

AB trend within 14 a.u. ≤ RAB ≤ 35 a.u., leading in
this larger range again to a decrease by more than two orders of magnitude. Two major
differences in comparison to the two-electron ICD rate (blue crosses) jump to the eye: on
the one hand, the A∗BA∗ decays neatly, but less systematically, and follows the asymptote
with only few obvious outliers around 25 a.u. and 32 a.u.

On the other hand, counterintuitively, the rates in the R−6
AB regime are all in the range

of ΓDE ≈ 10−7–10−9 a.u. and thus orders of magnitude smaller than the regular two-
electron ICD rates of ΓICD

DE ≈ 10−3.5–10−5.5 a.u. This disproves the original hypothesis
ΓDE = ΓICD

DE + ΓexICD + ΓCICD of Section 2.1 for the one-dimensional continuum model
system (cf. Figure 1), which postulated already a speeding according to ΓICD

DE = 2ΓICD plus
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contributions from the expectedly less relevant exICD and CICD processes. Given the trend
of rates only, we cannot distinguish exICD with its R−6

AA trend from ICD following the same
asymptote. The only process we can exclude is CICD, as no trend R−12

AA , e.g., along a steeper
asymptotic slope, is seen in the asymptotic regime in the data points.

Figure 6. Time propagation of the norm N(t) (dark purple, solid) as well as the single-state pop-
ulations Ps(t) (light purple) of A∗ (dashed), A (dashed-dotted), and B (dotted) in % shown for
RAB = 10 a.u.

For the very low rates, inhibition of the ICD electron by the remaining bound electrons
is of greatest importance. Two main profiles arise depending on the number of electrons
surrounding the ICD electron. In two-electron systems as the one of regular ICD or the
exICD system, the ICD electron populates an outermost QD. The related effective potentials,
blue AB+ and dashed dark green ABA+ in Figure 4, respectively, have side-dependent
barrier heights. By contrast, if the ICD electron is emitted from B in three linearly aligned
QDs, a symmetric barrier is established along both emission directions (dark and light
solid green lines), confining the electron from B. Here, the motion of the B electron is twice
as restricted as in the two-electron systems and asymmetric exICD system. The rates are
three orders lower. The amount of this lowering derives from the oscillations for regular
ICD. The rate maxima (minima) correspond to a decay resulting in the continuum electron
on one side (both sides) [8]. In the latter case, hindered electron tunneling through the
effective barrier causes ICD slowing by two to three orders of magnitude. The emission of
B within the three-electron dynamics involves tunneling through the effective barriers on
both sides to which the B electron is evenly emitted. With the quantified barrier hindrance
effect, the average rates for the DE decay (R−6

AB asymptote in Figure 5) are indeed three
orders lower than that of the averaged regular-ICD rates. Oscillations are flattened out due
to the symmetry of the system. Based on electron dynamics in two-dimensional binding
potentials with two-dimensional continua, in such systems a reduction of rates due to
effective barriers can be expected to be less significant [17], such that in a continuum
fully open in all directions, the asymptotic predictions with even a rate enhancement are
supposedly fulfilled.

Having understood the overall rate trend, open questions remain on the short-distance
behavior, the two additional processes CICD and exICD, and the rate outlier at RAB ≈ 25.0 a.u.
To address the first, all three potential subprocesses are investigated individually, starting
with the regular two-electron ICD process now in a three-QD setting with one empty QD A
placed on the positive z axis. The rate is given as small blue points in Figure 5, compared to
the blue-crossed rate of ICD in two QDs. Over large ranges of RAB ≥ 15.5 a.u., where the
single-electron wave functions obey the asymptotic nonoverlapping condition, the rates
are almost identical. They display the same oscillations known from the two-electron two-
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QD case as caused by the Coulomb barrier of the electron remaining in A and massively
determining the electron emission direction [8]. However, at smaller distances the rates
turn out much lower in the presence of one empty A-type QD. The evolution of the electron
density distribution in Figure 7 can explain this observation. It shows that the electron
density in the initially empty QD A at z = +14 a.u., which should only be a spectator,
increases over time as in this nonasymptotic regime charge transfer (CT) is not excluded.
Density accumulates in its lower A level, and is therefore no more available to ICD. This
means that solely the presence of one nearby potential already slows the decay process. At
the shortest RAB, this CT effect determines the overall rate ΓDE in Figure 5 as here the small
blue points are matching the large dark green ones for the DE decay.

Figure 7. Illustration of the electron density distribution weighted to its maximal value for three
propagation timesteps. The initial wavefunction has electron density corresponding to two electrons
in one A∗ state and in B separated by RAB = 14 a.u., but no density in the other A site.

CICD was already excluded by rationalization, hence, of the other subprocess, exICD,
remains for close investigation. The excited ICD process among the two outer QDs can be
modeled for two electrons both in two and in three QDs. The respective graph symbols
in Figure 5 are dark green crosses and small points. In general, the rates are decreasing
and cover values of about 10−3.5–10−6 a.u. that are nearly identical for large RAB ≥ 16 a.u.
where CT among QDs is excluded. There, rates oscillate with a similar period as those of
regular ICD of A∗B, but with a significantly lower amplitude. This goes back to the fact
that the exICD electron stems from a higher energy state, has therefore a higher kinetic
energy, and is conclusively much less affected by the Coulomb barrier of the remaining
electron (cf. Figure 4, dark green, solid line). The Γ− RAB trend does over long ranges not
follow the asymptotic R−6

AA trend, as was likewise observed for atomic clusters [23,32,34],
but projections PS(t) on the state occupations (not shown) confirm exICD.

Another proof is the density inspection relating to the two-electron AA∗ decay in
Figure 8. Panel (a) reveals that the density strictly shows occupation of the A∗ levels of the
two only QDs A. It actually decreases over time, which is not seen due to renormalization.
The sole observation is a widening of the local densities above both QDs due to the constant
leak out of the continuum electron from both A∗ levels.

As for short distances RAB < 16 a.u. one finds again a discrepancy among the decay
rates for two and three QDs with the difference to regular ICD that here the additional
QD does not slow down the decay process as before, but actually speeds it up (small dark
green dots above crosses in Figure 5). A hint for this behaviour can be gained from the
electron density evolution with an additional empty B QD (Figure 8b). This empty well
allows electron density to transfer into the B state and thus gives rise to regular ICD of A∗B.
As ICD is obviously the faster decay pathway compared to exICD, the rate in the three-QD
system is higher. Conversely, we can state that exICD is accelerated solely by the presence
of one additional empty potential with a virtual B level in the vicinity. The process itself is
not unknown. It was characterized in the context of atoms as superexchange ICD [19–22].
Here, we observe a similar rate increase for the two-electron exICD at shortening distances.
As, moreover, the overall rate for three-electron DE decay at shortest distance increases,
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this presumably has the same origin, because the B level constantly gets unoccupied by
regular ICD and allows for superexchange ICD.

Figure 8. Comparison of the normalized electron density distribution of exICD of a two-electron
A∗A∗ state in two (a) and three QDs (b) for three propagation time-steps and RAA = 28 a.u.

For the larger separations 17 a.u. ≤ RAB ≤ 35 a.u. the R−6
AB Wigner–Weisskopf predic-

tion and the Coulomb barriers dictate the rates. In the remainder of this section, we shall
explicitly analyse the dynamic properties of the processes at distances where rate outliers
occur. Around 31.5 a.u. < RAB < 34 a.u. a few rates deviate from the asymptote. The
detailed analysis of the respective densities, populations, and energies does not, however,
reveal any exceptional behaviour here, so we must assume that at these small rates, the
limit of numerical accuracy is reached.

The most prominent outliers toward extremely large ΓDE are in the range
24.5 a.u. < RAB < 27 a.u. The rates at RAB = 25 and 25.5 a.u. lie almost exactly on
the rate curve for regular two-electron ICD.

In Figure 9a, the level occupations Ps(t) (light-purple lines, dashed for A∗, dashed-
dotted for A, dotted for B), autocorrelation |a(t)|2 with the initial resonance (dark purple),
and the norm (light purple, solid line) are collected for RAB = 25 a.u. As uniform to all
decays studied, the norm decays exponentially on the full time scale of the process. In
almost all other cases (e.g., Figure 6) level populations and squared autocorrelation have
followed this monotonic trend, but in the time close-up of 50 · 103 a.u. in Figure 9a, they
appear to oscillate strongly and periodically, the autocorrelation and the B population
(dotted) in particular by about 50% reduction and rebuild. The population evolution of
the two excited levels in the outer QDs (both dashed with different spacing) largely follow
the autocorrelation in altering by half of the amount (25%), whereas the populations of
the two ground states of the outer two-level QDs (dashed-dotted with different spacing)
oppose. This suggests that a partial inversion of the population occurs in the respective
two-level A sites, during which the energy is transferred to the B electron and exciting
it. The specialty at this exclusive distance is that the B electron then can deexcite again.
However, the three-QD system had been designed to have a single level in the B QD only
and any excitation of the B electron should be into the continuum leading to disappearance
of it into the CAP. Thus the question arises as to which type of state B∗ is excited by.
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Figure 9. The DE decay’s single-state populations Ps(t) (light purple, interrupted), as well as the
norm N(t) (light purple solid) and the squared autocorrelation |a(t)|2 (dark purple solid) as function
of time for RAB = 25 a.u. in (a). The three individual states s examined are A∗ (dashed), A (dashed-
dotted), distinguishable by tight or loose markers for right or left QD, and B (dotted). In (b) the
normalized electron density distribution |Ψ|2/ max(|Ψ|2) is presented for three characteristic time
steps of the propagation.

The electron density distributions in panel (b) for three critical time steps of the
evolution shall give clarification. The initial electron density distribution shows a clear
A∗BA∗ state. At the turning point of minimal A∗ and B of panel (a), i.e., after 15 · 103 a.u.,
the density on the outer QDs is a mixture of A and A∗ density. Further density appears in
between the A-sites centered around the B-level density peak, but filling almost all the area
to the outer QDs. This indicates the excited B electron being trapped between the electrons
in the A QDs. This way, the B electron remains in the QD region and is available to energy
back-transfer to the A sites. And indeed, after another half period of oscillation, the initial
distribution of electron density is almost regained. In the following the oscillations continue
as typical for plain resonance-energy transfer [14].

A look at the effective potential for the final DE configuration at RAB = 25 a.u. and is
associated single-electron B∗ state energy and density shall contribute to the understanding
of why the process becomes so fast in this given setting (Figure 10b). The effective potential
(green line) has two maxima at each side surrounding both A QDs. They are narrow
near their peaks but widen quickly. Above the B side, this causes the formation of a very
wide and flat potential well covering a range of approximately z ∈ [−20; 20] a.u. Above
the B ground state, which energetically locates in the narrow B potential with energy
−0.459 a.u., an excited state B∗ localizes in this wide, upper well at energy 0.030 a.u. such
that the excitation energy is matching the one available through A∗ → A relaxation. This
B∗ state’s electron density piles up left and right of the B site limited to the other side by
the effective potential barriers. Its shape resembles the density contribution discovered
in Figure 9b, which made the wave function available for the oscillatory energy transfer
seen in Figure 9a. In addition B∗ energetically locates where the tunneling barriers are very
narrow. This setting suggests that we found a shape resonance in the effective potential.
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Figure 10. Illustration of the density |Ψ|2 of the B∗ single-electron state (thin, grey line) in the
effective potential of the final DE electron configuration (thick, dark green line) for (a) RAB = 10 a.u.,
(b) RAB = 25 a.u., and (c) RAB = 35 a.u.

The localized B∗ state exists within a small range of distances only (where rates are
high, Figure 5). If RAB increases, the effective potential widens and the state’s energy drops
(Figure 10c). The B∗ is there facing wider and relatively high barriers, makes tunneling
less likely and a shape-resonance decay thus significantly slower. On the other hand, if the
distances RAB decrease, the energy of B∗ increases above the effective Coulomb barrier,
which occurs at energies RAB = 15.5 a.u. The associated B∗ density (Figure 10a) becomes
delocalized and effectively that of a true continuum state.

The existence of a resonance state alone cannot lead to a high DE-ICD rate. Ener-
getically, the shape resonance of the effective potential must occur at the energy of the
three-electron final state, i.e., at the kinetic energy of the outgoing B electron, and likewise
of the initial state, which are themselves determined by the geometry of the three-QD
system. In Figure 11a the density of the AB∗A∗ three-electron resonance is shown for
which panel (b) presents the energy (grey) in comparison to the DE decaying state’s en-
ergy (black). Obviously, the crossing is near RAB = 25 a.u., which matches the region of
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the largest DE-ICD rates. In all other regions in which there is no energy matching, the
distance-dependent rates ΓDE align to the R−6

AB asymptote (cf. Figure 5).

Figure 11. (a) Density |Ψ|2 of the three-electron shape-resonance AB∗A∗ (grey) at RAB = 25 a.u. and
(b) its state energy E (grey) compared to the energy of the initial electron DE state A∗BA∗ (black) as
function of RAB.

Therefore, we found here a shape resonance-enhanced pathway to the decay of the
A∗BA∗ state, which is in all other cases a Feshbach resonance decay only. The pathway
can only exist in systems with a continuum confinement and is available for very few
energy settings. During the shape resonance-enhanced decay, the electronic configuration
belonging to the shape resonance is reached quickly (within 15 · 103 a.u., Figure 9). It then
decays efficiently into the final states A∗B+A and AB+A∗, as shape resonances always
decay faster than two-electron Feshbach resonances (e.g. the ICD initial state) [8] .

4.2.2. Dynamics of the Singly Excited Resonance

In the following, we will focus on the dynamical processes of the SE resonance A∗BA,
which include regular ICD among QDs A and B, as well as the Förster-like resonance energy
transfer among the two outer QDs A (cf. Figure 1, bottom), where the latter, however,
should not lead to a decay in competition with ICD. The expectation formulated for the
decay is straightforwardly ΓSE = ΓICD

SE . To recall, the SE resonance is a superposition of the
two symmetry-equivalent eigenstates with a single excitation of either of the outer QDs,
the left (A∗BA) or right (ABA∗). Therefore, every quantitative analysis (e.g., rates) is made
according to this superposition.

Figure 5 shows ΓSE as light green bold dots, revealing it to be the lowest overall
rate at most inter-QD separations. The ΓSE-RAB graph divides into two ranges with
different decay behavior. The rates at the short-distance range RAB ≤ 14.0 a.u., where the
asymptotic equations are not valid, decrease steeply and are nearly equal to the DE rates.
For larger distances RAB ≥ 14 a.u. the SE rates drop below the DE rates and then follow
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the R−6
AB asymptote. Overall outliers toward lower rates in both zones are the process at

RAB = 11 a.u. and those from RAB > 30 a.u. The latter very low rates drop significantly
below the asymptote and are artifact of the numerical limits of the calculations.

To understand the decay behavior, we can benefit from our investigations of DE
processes. In SE processes, neither accelerating nor decelerating short-range CT effects can
be observed. An acceleration effect would require an enhancement of the population of
an A∗B state. In the DE case, this was obtained through CT of the A∗ electron from the
other site to B. Here, the corresponding tunneling would have to be from the lower A
level with narrow density, which is energetically and in terms of overlap not favorable.
Compared to the DE resonance, the SE resonance energy is almost twice as low (Figure 3),
hence there are fewer ionization channels below. In the long-distance region of the ΓSE-RAB
graph, SE dynamics does, like DE dynamics, follow the asymptote R−6

AB without drastic rate
oscillations as known from the regular ICD. The reason for this flatness is the symmetry
of the effective barrier forming the B electron confinement. The rates are even one order
slower as it has a significantly higher effective barrier to tunnel (cf. Figure 4).

As there are neither marked outliers in the behavior of Γ, nor does CT at short distances
apply, the last analysis is directed to the observation of ET among the outer QDs as a
potential side process to ICD. The norm and level populations of the three-electron SE
dynamics are therefore compared for four representative distances (Figure 12). The initial
wave functions for the analyses are obtained from the improved block relaxation and
mostly represent neither a complete superposition nor a pure eigenstate of A∗B+A and
AB+A∗, but actually their linear combinations. An even superposition, where the right
QD is occupied in the A (dashed-dotted) and the A∗ (dashed) level each by 50% arises
for the case RAB = 10 a.u. (Figure 12a, light purple lines). An identical occupation holds
for the left QD (not shown). Over time, the population of the A∗ levels reduces toward
0%, i.e., the A levels’ occupation inverts. At the same time the B population (dotted) and
the overall norm (solid line) both decrease exponentially from 100% according to ΓSE as
depicted in Figure 5. This is in principle the behavior as expected for a regular two-electron
two-QD ICD process [56], but first traces of ET among both A QDs are evident from the
numerical data.

This gets more pronounced and even visible from the propagation, when going to the
larger distances, RAB = 13 a.u. (Figure 12a, dark purple), RAB = 21 a.u. and RAB = 34 a.u.
(light and dark purple in panel (b) with a longer observation time), where the dominance
of ICD decreases. The decay becomes inherently slower, such that the B population and the
norm remain majorly at their initial 100% in the displayed time window. In these scenarios,
the level populations of the outer QDs display dominantly Förster-like ET dynamics by
periodically inverting between A∗ and A of the coupled dipoles over time, and overall
A∗A 
 AA∗. For RAB = 13 a.u. the full inversion is beyond the displayed data in (a), while
the inversion or transfer time is 56 · 103 a.u. for RAB = 21 a.u. and 257 · 103 for RAB = 34 a.u.
By using similar data for further distances we observe the transfer rate, the inverse of
the transfer time, decrease with increasing RAB. This is not surprising, as energy transfer
processes also depend on Coulomb interaction (Equation (4)). Here, ET rates follow an
R−3

AB trend. This indicates that not all assumptions of a dipole–dipole transition are valid in
the present system, because the short-range ET in atomic and molecular systems of typical
electron excitation energies is supposed to be the coupling of dipole transitions leading to
the well-known R−6

AB dependence (Section 2.1). However, in other studies it was shown
that the R dependence is not trivially predictable in significantly altered geometries and
systems [14]. There is intermediate-range transfer with an R−4

AB dependence and long-range
energy transfer with a R−2

AB rate dependence depending on the relation of size of the ET
partners and the wave length of the transferred virtual photon. Besides the plain theory,
distance dependencies of R−3

AB and R−5
AB have also been reported [63].
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Figure 12. Single-state populations PS(t) (interrupted lines) and norm N(t) (solid) in % as function
of the propagation time for the SE decay. In (a) the left ordinate and light purple lines belong
to RAB = 10 a.u., whereas dark purple lines and the right ordinate correspond to RAB = 13 a.u.
In (b) projections corresponding to RAB = 21 a.u. (34. a.u.) are indicated in light (dark) purple. The
five individual states examined are A∗ (dashed), A (dashed-dotted), each tight or loosely for right or
left QD in (a), and B (dotted).

The absolute rates for this ET are all in the range of 10−5 a.u. for the wide range
of distances given. Explicitly, they are 4.78 · 10−5 a.u. > ΓET

SE > 0.39 · 10−5 a.u. within
15.0 a.u. < RAB < 34.0 a.u. If comparing the rates with ΓSE = ΓICD

SE in Figure 5, their
crossing occurs near RAB = 11.0–13.0 a.u., which matches the distance from which on CT of
populations is overlaying ICD (Figure 12).

5. Conclusions

This paper comprises the study of the interparticle Coulombic decay process in an
array of three linearly aligned binding sites with two virtual-photon donors A at the
edges and an electron emitter B in the center. This ABA system design was chosen to
provide a delineation of information to previously studied three-site ICD processes. To
complement this, we investigate two possible excitation scenarios. In the SE scenario, only
one photon donor is initially excited, whereas in the DE process, both A sites are. This
work’s investigations explore the electronic structure of the model system and, moreover,
give a detailed description of the dynamics of three electrons in three linearly aligned QDs.

In a rationalization of possible subprocesses along with the formulation of their
Wigner–Weisskopf rates, we analytically confirm predictions of at least a rate doubling with
doubling of the number of photon emitters in agreement with previous findings. However,
because this rate doubling is not confirmed by highly correlated electron dynamics, but
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rather a strong rate decrease is found, all subprocesses are disentangled and studied
individually. These are namely two-electron regular ICD for both initial states, for the DE
case additionally excited ICD among only to excited photon emitters and collective ICD of
three electrons, and for the SE case resonance energy transfer among the outer sites.

The breakdown into the individual subprocesses in conjunction with geometrical and
energetic analyses revealed that a third, empty, site can affect the rates due to its ability to
bind the electronic wave packet of a nearby neighboring site, which can in cases enhance
(by superexchange ICD), and in others decrease the overall rates, depending on whether
the electrons Coulomb interact more or less as a result of such charge transfer. Furthermore,
linking information on the evolution of state energies and effective Coulomb barriers with
inter-QD distance to dynamic quantities such as decay rates and population analyses
provides insight into rate evolutions and relative speed of subprocesses.

For longer distances, a significant slowdown of the three-electron dynamics occurs
compared to that of two electrons. We attribute this effect to the effective barriers hindering
the ICD electron in the one-dimensional continuum to travel to any direction. In the SE
case, those barriers are higher; hence, a generally more significant rate slowing is observed.
This means that in the asymptotic regime, the decay of the SE or DE resonance would be
overlaid by phonon-mediated dissipation [48] or radiative decay [8], which both have rates
of about 10−6 a.u.

In the DE case, at a certain distance between sites, a synergistic effect of continuum
confinement, energy levels, and Coulomb interaction emerges a shape-resonance pathway
with an extraordinarily large rate. Here the B electron is initially excited into a localized,
but nonetheless extended wave packet above the B site, from where it can decay quickly
into the continuum.

Author Contributions: Conceptualization, J.-L.S. and A.B.; methodology, J.-L.S., F.L. and A.B.; soft-
ware, F.L.; validation, F.L.; formal analysis, J.-L.S.; investigation, J.-L.S.; resources, A.B.; data curation,
J.-L.S.; writing—original draft preparation, J.-L.S. and A.B.; writing—review and editing, J.-L.S., F.L.
and A.B.; visualization, J.-L.S.; supervision, A.B.; project administration, A.B.; funding acquisition,
A.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Volkswagen Foundation through the Freigeist Fellowship
No. 89525.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is available upon request from the authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cederbaum, L.S.; Zobeley, J.; Tarantelli, F. Giant Intermolecular Decay and Fragmentation of Clusters. Phys. Rev. Lett. 1997,

79, 4778–4781. [CrossRef]
2. Feshbach, H. Unified theory of nuclear reactions. Ann. Phys. 1958, 5, 357. [CrossRef]
3. Morishita, Y.; Liu, X.J.; Saito, N.; Lischke, T.; Kato, M.; Prümper, G.; Oura, M.; Yamaoka, H.; Tamenori, Y.; Suzuki, I.H.; et al.

Experimental Evidence of Interatomic Coulombic Decay from the Auger Final States in Argon Dimers. Phys. Rev. Lett. 2006,
96, 243402. [CrossRef] [PubMed]

4. Sisourat, N.; Kryzhevoi, N.V.; Kolorenc, P.; Scheit, S.; Jahnke, T.; Cederbaum, L.S. Ultralong-range energy transfer by interatomic
Coulombic decay in an extreme quantum system. Nature Phys. 2010, 6, 508–511. [CrossRef]

5. Unger, I.; Hollas, D.; Seidel, R.; Thürmer, S.; Aziz, E.F.; Slavíček, P.; Winter, B. Control of X-ray Induced Electron and Nuclear
Dynamics in Ammonia and Glycine Aqueous Solution via Hydrogen Bonding. J. Phys. Chem. B 2015, 119, 10750. [CrossRef]
[PubMed]

6. Averbukh, V.; Cederbaum, L.S. Interatomic Electronic Decay in Endohedral Fullerenes. Phys. Rev. Lett. 2006, 96, 053401.
[CrossRef]

7. De, R.; Magrakvelidze, M.; Madjet, M.E.; Manson, S.T.; Chakraborty, H.S. First prediction of inter-Coulombic decay of C60 inner
vacancies through the continuum of confined atoms. J. Phys. B 2016, 49, 11LT01. [CrossRef]



Molecules 2022, 27, 8713 22 of 23

8. Bande, A.; Gokhberg, K.; Cederbaum, L.S. Dynamics of interatomic Coulombic decay in quantum dots. J. Chem. Phys. 2011,
135, 144112. [CrossRef]

9. Cherkes, I.; Moiseyev, N. Electron relaxation in quantum dots by the interatomic Coulombic decay mechanism. Phys. Rev. B 2011,
83, 113303. [CrossRef]

10. Förster, T. Energiewanderung und fluoreszenz. Naturwissenschaften. Naturwiss 1946, 33, 166. [CrossRef]
11. Stryer, L.; Haugland, R.P. Energy transfer: A spectroscopic ruler. Proc. Natl. Acad. Sci. USA 1967, 58, 719–726. [CrossRef]

[PubMed]
12. Santra, R.; Cederbaum, L.S. Non-Hermitian electronic theory and applications to clusters. Phys. Rep. 2002, 368, 1. [CrossRef]
13. Averbukh, V.; Müller, I.B.; Cederbaum, L.S. Mechanism of Interatomic Coulombic Decay in Clusters. Phys. Rev. Lett. 2004,

93, 263002. [CrossRef] [PubMed]
14. Jones, G.A.; Bradshaw, D.S. Resonance Energy Transfer: From Fundamental Theory to Recent Applications. Front. Phys. 2019,

7, 100. [CrossRef]
15. Weber, F.; Aziz, E.F.; Bande, A. Interdependence of ICD rates in paired quantum dots on geometry. J. Comput. Chem. 2017,

38, 2141. [CrossRef]
16. Stumpf, V.; Brunken, C.; Gokhberg, K. Impact of metal ion’s charge on the interatomic Coulombic decay widths in microsolvated

clusters. J. Chem. Phys. 2016, 145, 104306. [CrossRef]
17. Haller, A.; Peláez, D.; Bande, A. Inter-Coulombic Decay in Laterally Arranged Quantum Dots Controlled by Polarized Lasers.

J. Phys. Chem. C 2019, 123, 14754–14765. [CrossRef]
18. Guskov, V.A.; Langkabel, F.; Berg, M.; Bande, A. An Impurity Effect for the Rates of the Interparticle Coulombic Decay.

QUARKS Braz. Electron. J. Phys. Chem. Mat. Sci. 2020, 3, 31928. [CrossRef]
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Ultrafast electron dynamics has made rapid progress in the last few years. With Jellyfish

we now introduce a program suite that enable to perform the entire workflow of an

electron-dynamics simulation. The modular program architecture offers the flexible

combination of different propagators, Hamiltonians, basis sets and more. Jellyfish can

be operated by a graphical user interface, which makes it easy to get started for non-

specialist users and gives experienced users a clear overview of entire functionality. The

temporal evolution of a wave function can currently be executed in the time-dependent

configuration interaction method (TDCI) formalism, however, a plugin system facilitates

the expansion to other methods and tools without requiring in-depth knowledge of

the program. Currently developed plugins allow to include results from conventional

electronic structure calculations as well as the usage and extension of quantum-compute

algorithms for electron dynamics. We present the capabilities of Jellyfish on two examples

to showcase the simulation and analysis of light-driven correlated electron dynamics. The

implemented visualization of various densities enables an efficient and detailed analysis

for the long-standing quest of the electron-hole pair formation.
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I. INTRODUCTION

Over the last years, there have been significant experimental advances in the field of spec-

troscopy that allow further insights into ultrafast processes. For example, thanks to attosecond

electron/ion pump–probe spectroscopy, insights into the attosecond timescale are possible.1 Such

experiments help to understand the light-matter interaction in great detail for a variety of materials

ranging from small molecules to nanostructures. Ultrafast electron dynamics plays a central

role in the intricate ionization processes with strong fields of diatomic molecules, i.e. high-

harmonics generation,2,3 charge migration processes in organic molecules,4,5 charge transfer in

heterogeneous photocatalytic processes,6 or energy transfer in semiconductor nanostructures.7,8

In many studies of photo-induced processes in biological systems, few electronic states are

considered with the focus on nuclear dynamics computations and the involvement of conical

intersections, which play a significant role in the UV damage- and protection-mechanisms

of DNA,9 for example. The photochemical properties, however, are inherently the result of

a state manifold, detailed understanding of radiation-induced electronic mechanisms, and the

determination of excitation time scales and lifetimes of the states are of central interest.

Also in inorganic materials, the investigation of electronic processes in the time domain

experiences a raising interest. One famous example are semiconductor quantum dots (QDs) that

are increasingly gaining in importance for the usage as qubits in quantum computers,10,11 for

example. For the understanding of the capabilities of QDs as qubits, dynamical manipulation

processes are investigated.12 Moreover, undesired side effects are studied in order to estimate and

suppress their influence.13,14 These can be, among others, the Auger decay within a quantum

dot15,16 or the inter-Coulombic decay process between two or more QDs.7,17 Both processes lead

to the ionization of a QD and may decohere desired qubit states.

Even if many dynamical properties of a system like ionization rates or absorption spectra

can be predicted from time-independent properties like transition dipole moments or excitation

energies, the faster the considered processes happen and the more electronically excited states

are involved, the more it is necessary to simulate the processes explicitly and to solve the time-

dependent Schrödinger equation for the considered time period.

The methods used for this purpose are often extensions of the corresponding time-independent

theories. There are single-reference methods, like time-dependent Hartree-Fock (TDHF)18,19

or time-dependent configuration interaction (TDCI)20–22 to propagate a wave function in time
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explicitly. Also, time-dependent methodologies that propagate a reduced density matrix ρ in

time to include effects of dissipation exist.23,24 Multi-reference time-dependent methods like

multiconfiguration time-dependent Hartree-Fock (MCTDHF)25,26 are needed for situations with

high static correlation like a photo-induced dissociation, for example. Even for the static density-

matrix renormalization group (DMRG) methodology27,28 there is a possibility for real-time

evolutions by combining it with time-evolving block decimation (TEBD).29

For electronic structure calculations various programs like ORCA,30 Psi4,31 Q-Chem,32

PySCF33 and many more are available for academic users and commercially, which were

developed over decades by large user and developer communities. They cover all steps from

reading in and optimizing molecular structure to determining properties like nuclear magnetic

resonance shielding parameters, dipole moments, vibrational and optical spectra at highest

efficiency. This is not the case for most codes in the field of electron dynamics methods due

to the younger age of the research field and the relatively smaller research community. Hence,

available code is currently limited to executing the essential dynamic steps. This means that at the

current state to perform and illustrate such dynamics calculations, several programs are needed

and intermediate results have to be handled through various input and output files. A possible

procedure for TDCI calculations as done for example by Weber et al.34 consists of four steps.

After geometry optimization, the molecule and basis set is read into ORCA to calculate the ground

and all excited states using CI. The ORCA output file is then used in ORBKIT35–37 to determine

the full dipole matrix. Based on the ORCA output file and the dipole matrix, a ρ-TDCI calculation

is performed using the GLOCT program.24 Finally, the time-dependent wave function is analyzed

and properties of interest are extracted. As can be seen from the example, many programs or tools

are often designed for a single purpose – a single propagation method or a certain use case – and

little attention was given to the possibility of successively extending them.

In this work, we introduce a platform with the program Jellyfish, which carries out electron

dynamics simulations starting from the electronic structure calculation and ending with the

visualisation of densities in motion in a single program. The main objective of the Jellyfish

package is to provide a single program suite that is most easily expandable without becoming

complicated for developers and users. These targets are obtained by a module and a plugin

system. Individual partial calculations such as the calculation of dipole moments, the reading-in

of a molecular geometry, for example, are developed as separate modules. These modules use the

results of other modules and additional parameters for the successive calculations and then provide
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output for the following modules. In this way, flexible computational workflows can be assembled

by modules for a large variety of application purposes. Uncomplicated creation and modification

of a workflow is possible through the graphical interface (GUI) that employs a NodeEditor to

logically assemble and connect the modules. The incorporation of such a NodeEditor was inspired

from other fields like 3D design, where the use of such a system has become a common interface.

In combination with the use of a GUI instead of solely text-based input and output files allows an

intuitive way of using the program. This makes it especially easy for new users to get started with

the dynamics simulations.

Furthermore, a plugin system is underlying the code that allows to develop and compile

modules independent from the main Jellyfish code. Several modules are bundled to a plugin and

dynamically loaded into Jellyfish through an interface. New or modified methods and modules

can thus be easily exchanged and published as plugins. To simplify the exchange of modules and

the further development of Jellyfish, the code at its present state as well as the existing plugins

is published under open source license. The plugins developed so far, have focused on the TDCI

method, the visualization of time-independent and time-dependent wave functions, densities and

orbitals, as well as fundamental quantum computing algorithms. With the functions available so

far, Jellyfish can thus be used immediately for a number of dynamics problems without further

development.

The paper is divided into four sections. In the section II. Design and Implementation, the exact

requirements for Jellyfish are formulated and it is explained in how far these requirements are

met by the design of the program. Here, the already mentioned module and plugin systems as

well as the graphical user interface and the used file format are discussed. The next section III.

Capabilities discusses which functions in the form of modules and plugins are already available

with the release of the program. The section IV. Example Applications deals with two examples,

which have been computed and evaluated with Jellyfish and demonstrate the functionality and

flexibility of the program as well as key functions of the already implemented methods. In the last

section V. Conclusion the main aspects and possibilities of the presented program are summarized.

II. DESIGN AND IMPLEMENTATION

The main objective of Jellyfish is to provide a platform that performs all steps necessary for a

TDCI calculation and its visualization in a single program suite. To do so, a chain of calculations
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and their post-processing can be set up in a consistent manner so that the users do not have to

handle several programs and formats. That way, the margin for errors is reduced and, for example,

conflicts due to updates for the data transfer from one program to the next can be avoided. In

addition, the following demands were made for the development of Jellyfish:

1. Flexible: Jellyfish aims to provide a general interface in which various Hamiltonian, basis

sets, wave function analysis tools, and other partial calculations can be arbitrarily combined

as desired. For example, it should be possible to perform dynamics not only in molecules

but also in a general electron-binding model potential. Also, a variety of propagators and

time-dependent methods exist besides TDCI simulations. The time-dependent Hamiltonian

also varies from application to application and may include, for example, interaction with

external laser fields to compute laser-driven dynamics or complex absorption potentials to

simulate ionization processes.

2. Extensible: The open-source Jellyfish code shall enable users to develop their own modules

or routines. If possible, the development of extensions should not require in-depth

knowledge of the program architecture and no or as little as possible modification of the

existing program code.

3. User- and developer-friendly: Jellyfish should be user-friendly and self-explanatory. The

goal is to keep the barrier to use the program and development of new code as low as

possible.

4. Interactive: Often simulations require the evaluation of prior calculations and therefore

cannot be automated. For example, for light-driven simulations the knowledge of target

state properties are needed to determine the parameters of an external field. Jellyfish should

enable such an analysis with subsequent adjustment and evaluation of the calculation on the

fly, without the need to close the program and save and read in data in the form of various

input and output files.

5. Efficient: Like almost all programs in the field of quantum theory, Jellyfish should run as

efficiently as possible to allow for fast processing and the largest possible systems. Not only

should it be written as an efficient code, but it should also enable to run calculations on

headless servers and in combination with common parallelization options like MP, MPI or

CUDA.
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FIG. 1. Program architecture of Jellyfish. JellyfishCore contains the basic definitions of the plugin and

module system and is linked to both plugins and programs to enable the necessary communication. The

plugins contain the individual modules for Jellyfish and are dynamically loaded into the programs as a

shared library.

The C++ programming language is chosen for these purposes as it is inherently object oriented

and a widely used. C++ allows the compilation of very efficient code, for which a large number

of libraries are available. Especially the application framework Qt which was used for the

development of the here presented user interface was crucial.

A. NodeEditor / Visual Dataflow Programming

In order to meet the above requirements in an optimal way, Jellyfish orients on dataflow

programming. In dataflow programming, a program is modeled as a directed graph in which

data runs through various operations and is modified by them. This approach is realized in this

work by a graphical user interface with a NodeEditor. Such approaches were already successfully

used in programs from other fields, for example in 3D and game design. Each partial calculation or

execution – may it be the reading in of a molecular geometry or carrying out an electronic structure

calculation – is not only developed as a module but also represented graphically in a network in

the NodeEditor by an individual node in form of a box with input and output slots, as displayed in

Fig. 2. The implementation of such a partial calculation and everything associated with it is called

a module, and instances of a module are called nodes. In a project, there can be several nodes

instantiated from a module. For example, two nodes for generating basis sets. The nodes have
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different identifiers to distinguish them. The network that is built from nodes is also referred to as

a project in the following.

The input slots on the left side of a node box represent data types, for example, a matrix, and

the output slots on the right of a node can be connected arbitrarily with the input slots of other

nodes, as long as they have the same data type. The data is then propagated from one node to

another and shared between the connected nodes. The node that creates the data (output node)

always holds the data, while the nodes that use the data as input receive a reference (pointer) to

that data. Such an approach allows the flexible construction of individual calculations for the most

flexible purposes and can be extended or connected arbitrarily to other or new modules without

having to modify existing code. Furthermore, the graphical approach avoids complicated input

formats so that Jellyfish can be handled in a much more self-explanatory way than is possible

by pure command line interfaces. Example networks for various simulations are published along

with the code. Since a network of nodes can be extended and modified arbitrarily, even if other

nodes are already calculated, calculations can be performed and modified interactively step by

step. Furthermore, a new node may be added to the network from any type of source code in form

of a plugin, see next subsection.

The underlying definitions of modules, nodes, connection and project files as well as the related

functionalities have been developed as JellyfishCore. JellyfishCore is compiled as a static library

and forms the fundament for the Jellyfish architecture.

B. Plugins

To separate the code of the modules from the user interface and to simplify the development

of new modules, several modules are combined into one plugin. For example, different analysis

modules were combined into the analysis plugin. The compilation of the plugins is independent

of the user interface. The plugins are based on the JellyfishCore and contain the NodeRegistry,

which creates, destroys, and stores instances of previously defined modules. Additionally, they

have an interface which allows communication with the main program. Plugins are compiled as

shared libraries, then placed in a plugin folder of the Jellyfish installation, dynamically loaded and

included. As a blueprint, the C++ library micoplugins is used and heavily modified in house for

our specific application purposes. This plugin structure allows modules or entire plugins to be

easily added without having to modify or recompile the other program parts. Plugins can thus be
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FIG. 2. Screenshot of the main window of the JellyfishGUI. Shown is the network to read in the electronic

structure calculation from an ORCA log file to carry out a laser-driven electron dynamics simulation: (a)

NodeEditor, central window in which modules can be selected, connected, disconnected and executed; (b)

List of available plugins and their modules; (c) Detailed settings for the modules chosen; (d) Project log

file; (e) Tabs for open of projects, to switch between projects.

developed separately and easily exchanged.

C. JellyfishGUI

JellyfishGUI is the primary input program with its graphical interface and a screenshot of the

main window is shown in Fig. 2. On the left side it offers a list including a search function, which

displays all available modules and offers the possibility to add them as a node to the network via

drag and drop to the central part, the NodeEditor. In this space, see Fig. 2, the connecting and

disconnecting of NodePorts is done. To include a NodeEditor in the Qt based user interface the

library QtNodes38 is adapted to the JellyfishCore and included in the code.

By selecting a node in the NodeEditor, node-dependent details and setting options are displayed

on the right-hand side. In the example shown in Fig. 2, the propagation module was selected,

which is why propagation parameters such as the number of time steps and their size can be set
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accordingly. Also further functions or whole windows for individual nodes can be integrated.

In the case of the propagation module, for example, a whole window is available behind the

"Analyse Propagation" button in the figure, which is described in more detail in section IV A.

Other examples for such additional function are the export of a laser pulse as ASCII file or the

integration of the subprogram for the analysis of time-dependent electron densities as it was done

in the Visualization plugin. Furthermore, the main window, shown in Fig. 2, offers the view of a

project log, as well as the possibility to work on several projects at the same time by tabs and, of

course, the loading and saving of project files.

D. JellyfishCMD

For the usage on headless servers in an HPC environment, JellyfishCMD was developed. It

is a command-line interface allowing the calculation on individual nodes or entire node networks

and, therefore, can be managed through scripts. A typical procedure for expensive computations

in Jellyfish is the creation of a project in JellyfishGUI, the execution of the calculation on an HPC

with JellyfishCMD, and subsequent evaluation with JellyfishGUI.

E. File Format

All data of a project are stored in a single Jellyfish file (file name extension .jlf). It is a ZIP

archive created and read by employing the zlib and libzip libraries. Besides the computed data

objects, e.g. excited state energies, or time-dependent populations and alike, this archive also

contains module files that store information about the nodes and their connections in a JSON

(JavaScript Object Notation, using the JSON for Modern C++ library39) format. In JSON file, the

type of node and its unique GUID (Globally Unique Identifier, generated by the library stduuid)

as well as its status – computed, not computed – are stored. To avoid multiple storage in memory,

the data always belongs to the node in which it was calculated, while all connected nodes are

assigned pointers to this data. Computed results are stored in files composed of the node GUID

and a name of the result,“DensityMatrix" for example. All this data is also written directly into

the JLF archive and read from it. The form in which the data is stored can be selected individually

in each plugin. Saving the data as a binary file to save storage and to enable faster saving and

loading is conceivable, the focus, however, was placed on being able to read the data as easily
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as possible with external programs. Thus it is stored accordingly in plain text. The choice of a

ZIP archive as format for the JLF files has on the one hand the advantage that it accounts for less

storage space due to the compression that ZIP archives provide. On the other hand, objects are

stored in separate, unique files in the archive, which simplifies the external access through scripts

and programs. For example, the module file can be accessed and modified by a Python or shell

script for further post-processing.

III. CAPABILITIES

A. Basic Plugin

The goal of the Basic Plugin is to provide all functionalities needed to prepare time-

dependent configuration interaction simulations. For such simulations various modules have

been implemented, starting from reading geometries of molecules or general binding potentials,

through a Hartree-Fock section with its evaluation of one- and two-electron integrals and the time-

independent configuration interaction calculation, to subsequent propagation of the wave function.

The first module allows the reading of molecular geometries in Cartesian coordinates (XYZ file

format), the selection of a basis set and the assignment of a charge. Spherical as well as Cartesian

Gaussian basis sets can be selected. The most common Pople and Dunning standard basis sets

are readily implemented and more can be downloaded from Basis Set Exchange40 in the same

format as for Gaussian or Psi4. However, the addition of further basis functions with flexible,

custom-made parameters is also possible. For example, it is possible to add any arbitrary set of

basis functions, e.g., an even-tempered basis set as used for the example in section IV B.

For the calculation of various one- and two-electron integrals the library libcint41 was included

in the plugin. Further integrals between basis functions and arbitrary potentials, which are not

analytically available, can be computed numerically on a grid and added to the total Hamiltonian.

For this purpose, the library muparser was embedded, which allows the parsing of input functions.

To calculate the electronic structure, a restricted Hartree-Fock (RHF) and a configuration

interaction module is available. The CI module is based on Slater determinants and can

perform calculations at any CI truncation level. Also available are modules for the necessary

orbital transformations from atomic orbitals to molecular and spin orbitals, respectively. The

implemented electronic structure code is kept as simple as possible and is currently still inefficient,
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which makes it suitable only for small calculations. As an alternative, however, an interface to the

ORCA program package is provided. In a single module, it reads geometry, basis set, Hartree-Fock

results and CI- or TDDFT-states from an ORCA log file and can be used for further processing,

e.g., for the visualization of orbitals and stationary states or for time-evolution, as demonstrated

in Sec. IV A. The development of a plugin which integrates other external electronic structure

programs directly is planned. The open-source program package Psi4, for example, over the

supplied application programming interface (API) for C++ would be suitable as an ideal interface.

As outlined before, subsequent to an electronic structure calculation, correlated electron

dynamics simulations by TDCI can be carried out and visualized by corresponding modules. For

the time evolution, a module is currently available that propagates the system on the basis of the

CI states in time steps using the split operator technique.

For the set-up of a propagation several options are available. The propagation module offers

the choice for the initial state, i.e., the ground state and simultaneously any excited state as well

as the possibility to limit the number of CI states used during propagation. In addition to the time-

independent Hamiltonian from the previous steady-state CI calculation, other time-independent

operators can be added to the operator, both Hermitian or also non-Hermitian ones, where an

example for the latter is a complex absorbing potential (CAP). In the case of the CAP, two options

are available. A spatial, spherical CAP, which is defined by a radius around the center of the

system,42 or an energetic CAP, which is defined by the energy of virtual molecular orbitals.

Finally, time-dependent simulations are possible through the inclusion of the propagation

module and a laser module. The network of a TDCI propagation when starting from a ORCA

calculation is displayed in Fig. 2. The interaction with a laser field in TDCI is treated in the semi-

classical dipole approximation V ext(t) = µ ·~F(t). The laser module allows to set-up of an external

electric field~F(t) and an input-connection for the dipole matrix of the CI states, µ = 〈 f |µ̂| i〉. For

the calculation and display of the dipole matrix another module is implemented which also uses

the libcint library for integration.

The modulation of a laser pulse is also available as a own module. The pulses have the form

~F(t) = ~f0 · r(t,ω) · s(t) (1)

where s(t) defines the envelope function and r(t,ω) the driving field function of the pulse.

Variations for these functions are readily available. In addition to the amplitude f0 and frequency

ω of the pulse, the pulse duration can be specified in atomic time units or in terms of number
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of laser cycles. As polarization either a linear polarization with an arbitrary direction vector

or a left or right rotating polarization can be used. The defined laser pulse can be visualized

directly in the GUI before it is used in the propagation. More complicated pulses that cannot be

modulated with these options can be imported from an externally generated ASCII file. After a

propagation, properties like the populations, the norm of the wave function or the time-dependent

dipole moment can be displayed and saved in the propagation module.

In many functions matrices or tensors are used in the program. For these and most operations

from linear algebra, like matrix multiplications, eigenvalue determination and so on, the library

Eigen43 was used. Eigen has very efficient implementations of the functions, most of them also

including parallelization via OpenMP.

B. Read External Plugin

The aim of Jellyfish is not to provide “another" HF/post-HF program suite for electronic

structure calculations but rather to enable their post-processing with visualizations and/or time-

dependent simulations. Even if the Basic Plugins provides these routines for electronic structure

calculations, they are, as already mentioned, not yet optimized and thus comparatively slow.

The ORCA program allows such calculation in a more efficient form and a Read External

Plugin that reads the log file is included in the Jellyfish release. That way also methods that are

not included in the Basic Plugin can be used for Jellyfish processing. For example, it is possible to

carry out light-driven dynamics simulations with Jellyfish by importing configuration interaction

singles (doubles) (CIS(D)) or linear-response time-dependent density functional theory in Tamm-

Dancoff approximation (LR-TDDFT) calculations, as presented in the example in section IV. Both

methodologies improve on the system energetics while retaining the simple form of the CIS wave

functions. In CIS(D), the double excitations are included as perturbative corrections44 to the

ground and excited state energies via an energy correction, while the wave functions are still

the CIS wave functions. The CIS(D) method has the advantage of working with a CI matrix of

the same size as CIS, while at the same time accounting for an improved treatment of electron

correlation. In LR-TDDFT correlation is incorporated through the use of the exchange potential

and excited states are obtained by orbital transitions with the ground state configuration as a single-

reference. This makes it possible to construct a CIS-like pseudo wave function which then can be

used in the TDCI methodology. The Read External Plugin has therefore a module, which makes
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Property Formula stationary time-dependent

Basis function/Atomic orbital χ(~r) Ë

Molecular orbital φ(~r) Ë

Molecular orbital density |φ(~r)|2 Ë

Local densities ρi(~r) Ë Ë

Difference densities ∆0 = ρi(~r)−ρ j(~r) Ë Ë

Gradient densities ∆t = ρ(t,~r)−ρ(t−∆t,~r) Ë

Natural transition orbitals φ NTO(~r) Ë

Natural transition orbital densities ρNTO(~r) Ë Ë

TABLE I. List of available visualization options for orbitals and electronic state properties

the import of basis set, molecule geometry, Hartree-Fock or Kohn-Sham orbitals as well as CI

vectors and energies from an ORCA log file possible.

C. Visualization plugin

A special focus in the program development was given to the visualization plugin. The goal

was to develop modules that enable visualization of wave functions and electron densities with a

focus on laser-driven electron dynamics. Visualizations are implemented in two modules, one for

stationary and one for time-dependent orbitals and densities and properties as listed in Tab. I. As a

basis for the visualization, the VTK library has been directly linked into the plugin and a window

to display orbitals and densities in terms of 3-dimensional isosurfaces has been developed, which

can be called directly from the JellyfishGUI.

These plot modules offer the choice to also display the molecular structure (stick and ball)

as well as a coordinate system. Besides the display of static atomic orbitals χ(~r), molecular

orbitals φ(~r), and local state densities ρ(~r), several possibilities to analyse excited states are

offered through difference densities (between states ∆0 or between time steps ∆t) as well as natural

transition orbitals (NTOs φ NTO(~r)) and their state NTO densities ρNTO(~r)45,46 for both static and

time-dependent situations, as summarized in Tab. I.

The modules for the visualizations of static and time-dependent properties have a similarly

structured window. A screenshot of the developed visualization front end, Plot Orbitals and
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States, is shown in Fig. 3. Here, the time-dependent difference density for the nucleobase guanine

is shown as an example. The visualization windows shows four areas. In the central panel

(a) wave function objects, like orbitals or densities are displayed and can be viewed in free

rotation controlled by the mouse of keyboard. On the left side of the window (b), the object

to be plotted/rendered can be selected (cf. Tab. I, depending on the selection further options may

become available). Along with a choice of the object type, certain time step or a time interval can

be specified. The control of the graphics settings is on the right side of the window (c). Here, the

object colors can be chosen along with graphics settings that control the quality, resolution and

speed, as well as options to display additional objects like the molecular structure, a xyz axis, and

the display of a time stamp. To enable to view a video "on-the-fly" in the main display window

even for larger polyatomic molecules, a radius to truncate basis functions was introduced. This

section also has options to export the in (a) displayed Objects/arrangement as a frame or as a

movie. A log file (d) showing updates on the rendering and export progress is given below the

main plotting window.

The spacial extend of orbitals and densities is represented by a isosurface composed of the

sum of the basis function contributions. Their positive and negative values are displayed in two

different colors. To additionally highlight their compactness or diffuseness, an option to also show

multiple isosurfaces is available.

D. Quantum Computing Plugin

Additionally to the above outlined traditional way of simulating TDCI dynamics, Jellyfish also

was used to develop algorithms for quantum computing.47 Quantum computing promises for great

advancement in electronic structure theory48–50 as well as quantum dynamics.51 Likewise, the field

of electron dynamics would benefit from quantum computers and would make exact calculations in

much larger molecules finally feasible. The quantum computing plugin for Jellyfish introduces all

necessary modules to perform electron dynamics calculations on a quantum computer simulator.

For gate-based quantum algorithms, the library QuEST,52 which provides highly parallelized code,

is embedded. Even noisy quantum computers can be simulated with QuEST. Modules available in

the quantum computing plugin include the Jordan-Wigner53 transformation of time-independent

operator and laser fields to translate the integrals of molecular orbitals into weighted Pauli strings

for the quantum computer. For propagation, a module for Hamiltonian simulation based on
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FIG. 3. Screenshot of the visualization module, Plot TDCI Densities, for time-dependent electron densities.

(a) In the central window the wave function objects are rendered. In this case the difference density, ∆0,

between the ground state and the time-dependent density is shown; (b) The left panel allows the selection

of density and the time frame. This selection menu changes depending on the chosen type of density; (c)

Control options for the visualization, like the color and number of isosurfaces, as well as graphics settings

controlling the picture quality and export functions; (d) The lower frame displays the log file of executed

actions and error messages.

Trotter decomposition54,55 is available, as well as an extension with the quantum imaginary time

evolution (QITE)56 algorithm to simulate ionization as well. Time-dependent expectation values

can be determined with the help of a module for the Hadamard test.57 More information about the

complete algorithm developed with it can be found in Langkabel et al..47

IV. EXAMPLE APPLICATIONS

A. Electronic transition in guanine

As a first example to illustrate the capabilities of the Jellyfish package in a many-electron

simulation, a photoexcitation of the nucleobase guanine is presented. Guanine (2-amino-6-
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oxopurine) is an aromatic heterocyclce consisting of a 6-membered and a 5-membered ring

and has a total of 76 electrons. As a building block of DNA, it has been part of numerous

photochemical studies. Highly accurate and computationally demanding multiconfigurational and

and multireference electronic structure calculations were employed to compute the (minimum

energy) reaction paths e.g., to study the efficiency of radiation-free decay mechanisms.58 A

comprehensive study on guanine tautomers, for example, discusses spectra and geometries

employing CIS and CASSCF.59 There, also electron density difference plots have been employed

to illustrate the effect of structural changes. High-level computations of a reaction path are

restricted to a few photochemically relevant excited states that are involved in the main electronic

transitions. The here presented simulations can complement the picture by focusing on the initial

excitation step the vertical photo-absorption employing a state manifold.

The network for such a computation is displayed in Fig. 2. Here, the Read External plugin is

employed to read in the results of an ORCA calculation in order to carry out a state-selective

excitation and to visualize the resulting many-electron dynamics. The dynamics is treated

by the hybrid time-dependent density functional theory/configuration interaction (TDDFT/CI)

formalism:35,60 In a first step, the structure of guanine is optimized at CAM-B3LYP/cc-pVTZ level

of theory using the ORCA package. From this geometry a total of 10109 singlet excited states

are obtained using LR-TDDFT in the Tamm-Dancoff approximation. The output, namely the

molecular geometry, basis set definition, orbitals, pseudo-CIS eigenvectors, and the corresponding

state energies, is then read in and stored by the Read External module.

Once the wave function is available, the calculation of dipole matrices, µi, j;q = 〈ΨCIS
i |µ̂q|ΨCIS

j 〉,
is done using the Dipole Matrix module. It provides useful information on the state properties. The

transition dipoles on the off-diagonal lay out which states can be addressed by optical excitation.

The permanent dipoles on its diagonal allow a first estimation about the character of an induced

transition. The picture is often supplemented by a visual inspection of the involved orbitals, in

Jellyfish done by the Plot Orbtials and States module. Details on how fast a how fast a state-

specific transition can be obtained within a large excited states manifold and what pulse intensities

or shapes are necessary, can only be answered by explicit time-dependent numerical simulations.

In Jellyfish they are available through the propagation module. In the following an exemplary

excitation to a specific state is outlined.

The first excited state of our LR-TDDFT calculation was selected as the target for a state-

to-state transition. It is a bright state with reasonably large transition dipole moments: µ0,1 =
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FIG. 4. Selected static properties of the first excited state of the guanine molecule: (a) LUMO, (b) HOMO,

and (c) difference density between ground and first excited state, ∆10

.

(−0.788,−0.936,0.010) ea0 thus making it easy to be addressed by linearly polarised laser field.

The target state is located 0.200 Eh (5.442 eV) above the ground state and consists primarily

of a HOMO-LUMO transition (82%). These two frontier orbitals are depicted Fig. 4 (a) and (b).

Excitation to this state involves a reorganization of the electronic π system with respect to the

ground state as depicted by the difference density, Fig. 4 (c). It reveals the overall rearrangement of

π orbitals on almost all atomic centers upon excitation. The red isosurfaces show the withdrawal

of electronic density while the green ones show the gain and, thus the excitation can clearly be

characterised as 1(ππ∗) state.

To obtain this rearrangement of stationary densities, a full population inversion between ground

and target state has to be induced by a laser pulse. This may be achieved by more or less

complex shaped pulses, in the following, however, a resonant excitation by a so-called π pulse

with optimized parameters to obtain the targeted transition, is presented.

In the following the photoexcitation by a cosine squared laser pulse with the duration of 2σ =

2000 h̄/Eh(48 fs) is presented. Regarding the conditions for a π pulse, f0 = π h̄/σ |µi, f |, this

duration is resulting in a moderate maximum field amplitude of 0.002 Eh/ea0. The propagation

was performed in 5000 time steps with a step size of 0.4 h̄/Eh in the basis of the 1500 energetically

lowest pseudo-CIS states.

The time-dependent state populations, Pi(t) = |〈Ψi|Ψ(t)〉|, and the time-dependent dipole

moment as a result of the π pulse excitation are shown in Fig. 5. Note in passing that for this

figure, both the state populations as well as the time-dependent dipole moment have been exported

from Jellyfish and plotted by an external program. As seen, the populations smoothly interchange
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FIG. 5. Time-dependent dipole moment (gray) and the population of the ground (blue) and target (orange)

states of guanine during a state-to-state transition by a π pulse.

with minute oscillations originating from the half-cycles of the oscillation laser field. At the end of

the pulse, however, the target state population (orange curve) nearly reaches the maximum value

of 1 and the ground state population (blue curve) nearly completely drops to 0. That means, the

state-to-state transition is incomplete, which can be due to several effects. For one, the coupling

of the permanent dipole moments to an intense external field can modify the transition energy

so that it becomes time-dependent (dynamic Stark effect). Furthermore, a short laser pulse has a

relatively broad spectral width, so that also neighboring states can be reached by the pulse. The

incompleteness in this particular case, however, is mostly due to multi-photon transitions to higher

excited states, as seen in the sum population of ground and target state (green curve). Inspection

of the entire state population revealed that a multitude of states at integer multiples of the incident

laser frequency have gained very small occupations (< 1%) during the pulse excitation.

The time-dependent dipole moment, plotted in gray, starts at the total permanent dipole moment

of the ground state (|µ0|= 2.549 ea0) and shows distinct oscillations during the excitation. These
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oscillations coincide with frequency and the evolving intensity of the laser pulse. At the end

of the pulse (2000 a.u.) the time-dependent dipole moment has almost reached the value of the

permanent dipole moment of the target excited state of |µ1| = 2.178 ea0. Since the excitation is

not complete, by the end of the propagation an electronic wave packet has been created, so that

the dipole moment is noticeably oscillating (and would continue to oscillate even after the pulse is

off).

Aside from these quantifiable observables, the depiction of densities gives detailed information

of the electronic redistribution in terms of their spacial extend and their localization at atomic

centers. Especially the view of the evolution in time can be insightful. For the purposes of the

program presentation, a short Jellyfish animation is provided. Please visit Ref. [7] for a more

comprehensive description and Jellyfish analysis of an excitation to a charge transfer state.

A video of four different density representations over the period of the central laser cycle from

900 h̄/Eh to 1100 h̄/Eh can be found in the supporting information. This animation is also

summarized in a sequence of snapshots in Fig. 6 at significant point of the laser cycle. For a

carrier frequency of h̄ω = 0.2 Eh the zero crossings of the center optical cycle are roughly at

t = 984 h̄/Eh, t = 1000 h̄/Eh, and t = 1016 h̄/Eh, so that the minimum and maximum field

strengths are reached around t = 992 h̄/Eh and t = 1008 h̄/Eh, respectively.

In the first column of the figure the time-dependent difference density is shown where the red

isosurface corresponds to a loss and the green isosurface to a gain of local density. The second

column displays the gradient density with blue isosurfaces indicating a gain and pink a loss of

electron density. In the last two columns the NTO densities for hole (gray) and particle (blue) are

rendered.

Before looking at the progressions on certain atomic centers, the four displayed densities seem

to be divided in two groups. Apparent at first sight is that both NTO densities on the right, ρNTO
e/h ,

evolve much less dynamically but rather show a smooth and steady increase in volume, while the

two kinds of difference densities on the left, ∆0 and ∆t , show more complex structures along rapid

oscillations. Note, the stationary electron-hole NTO density and the difference density are in the

CIS formalism mathematically equivalent. This is not the case during an laser excitation. The

time-dependent NTOs show the formation of hole and particle in terms of the rising population in

the excited states, cf. Fig. 6 Thus, the NTOs are essentially excited state quantities/properties, since

they are calculated with the ground state contributions are being removed to ensure orthogonality

during time propagations (cf. Ref.47)
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FIG. 6. Sequence of density snapshots shows the excitation process of guanine by a resonant π pulse during

the most intense central laser cycle. The first column shows the difference density with respect to the

ground state, the second the difference with respect to the previous time step’s density, the third the NTO

hole density, and the fourth the NTO particle density.

However, the two types of difference densities are calculated directly from the field-dependent

densities and therefore show pronounced oscillations that coincide with the slopes of the external

field. The oscillations of ∆0 mirror the oscillations of the dipole moments, compare Fig. 6, while

the induced flow of current at this time is visualized by the gradient density ∆t .
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For the difference densities the picture of p orbitals on atomic centers being perpendicular to

the ring plane is true for certain times only. That is, when the slope of the optical cycles is zero,

e.i., when an laser cycle reached its maximum or minimum. In between these significant points in

time, the isosurfaces reflecting loss and gain have complex shapes similar to heavily distorted d

orbitals with contributions of loss and gain at opposite sides of a single atomic center.

The participation of certain atomic centers in the density rearrangement is not equally

distributed. For example, among the hetero atoms the oxygen atom of the carbonyl group is

showing more loss than gain in average, while the adjacent carbon atom gets involved only after

first third of the propagation (not shown) showing mostly the deposition of electronic density

once the laser strength has become more intense. Same applies for the nitrogen atom N7 in the

5-membered ring, it seems rather inert during the first third of the pulse.

Furthermore, while the three hydrogen atoms of the 5- and 6-membered rings do not participate

much, the two hydrogen atoms of the methylidene group show an active involvement in the

rearrangement of electronic density. This activity during the pulse excitation is not apparent from

the analysis of stationary densities (only slightly suggested from the HOMO and LUMO figures).

B. Laser Ionization in Quantum Dots

Dynamics simulations by means of propagating an electronic wave function can be done in an

explicitly atomistic descriptions but also by model potentials. To illustrate the capabilities of the

Jellyfish package we present a model potential description of a quantum dot and its light-induced

ionization process. QDs are semi-conductor nanomaterials. Their optical and electronic properties

can be controlled through their size and shape or by gating through external electrodes and can be

captured by effective mass model potentials, e.g., Gauss functions46,61,62 of the form

V̂ QD =−D · e−br2
, (2)

where D is the depth and b a measure of the width of the quantum dot in atomic units. Here the

parameters for b and D are 0.2a−2
0 , 2 Eh, respectively, which is supposed to resemble a gallium-

arsenide QD from experimental data.61 Standard basis sets have been optimized for bound states

of atoms of the periodic table but not for Gauss potentials. However constructing custom-made

basis sets following the systemics known for atoms can be done in the form of an even-tempered

basis set, generated with the corresponding module in Jellyfish. Even-tempered basis functions
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centered at the coordinate origin are defined according to

φ = xaxyayzazeαβ i−1r2
, i = 1,2, ...,N , (3)

where a j is the angular momentum in the corresponding spatial direction. They cover the

Hilbert space evenly, which allows them to represent both bound and continuum states. Due to

their squared exponential form, they can be computed efficiently with the same integrators as

for standard basis sets. For our example, two sets of even-tempered basis functions with total

angular momentum a = ax +ay +az = 0, α = 0.07, β 0 = 1.5, and N = 11, as well as with angular

momentum a = 1, α = 10−4, β 0 = 1.8, and N = 21 were chosen. Smaller values for β 0, i.e.,

more diffuse Gaussians, can lead to linear dependencies. Here, the model potential is considered

for two electrons occupying both the single bound state available. From a full-CI calculation a

ground state energy of −1.149 Eh was obtained and an ionization energy of εHOMO = 0.277 Eh

was determined using Koopmans’ theorem. To simulate ionization in this system a cos2 laser

pulse (Eq. (1)) as shown in the bottom panel of Fig. 7 (c) was used with a frequency of h̄ω = 0.057

Eh, corresponding to a typical 800 nm Ti-sapphire laser, with a maximum amplitude of f0 = 0.2

Eh/ea0 and a pulse duration of 700 h̄/Eh (17 fs). The laser intensity was chosen to promote

an electron above the ionization barrier. Free propagation of an unbound electron, however, is

restricted due to the use of atom-centered basis sets. To compensate for such numerical issues a

spherical complex absorbing potential in real space, cf. section III A was introduced to the total

Hamiltonian. The CAP has a quadratic rise sitting on a distance from the origin of 15 a0. It has a

quadratic fall-off until the maximum value of 10 Eh is reached.63 The necessary integrals between

the CAP and the basis functions were obtained by numerical integration on an even spaced grid

between [−25a0;25a0] with 200 grid points. Propagation was performed for 1600 time steps with

a step size of ∆t = 0.5 h̄/Eh using all 5041 CI states as basis. All steps for the calculations the

evaluation was also performed directly in the JellyfishGUI. Here, the time-dependent populations

were calculated and displayed as shown in the screenshot in Fig. 7 (a).

States that have an overlap of at least 1 % at any point in time to the total time-dependent wave

function are displayed in the corresponding window. The highest of these states (state 76) has

an excitation energy of 0.770 Eh. All states except the ground state are continuum states and the

ionization progression is reflected in the time-dependent norm, as displayed in the screenshot in

Fig. 3 (b). From the populations it can be seen that already at a slow increase of the laser amplitude

starting at about 100 h̄/Eh first transitions into energetically low continuum states (58, light green
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FIG. 7. JellyfishGUI screenshots from subwindows for the evaluating of driving laser field and time-

dependent properties. (a) Population of all states with an overlap of at least 1 % with the wave function, (b)

norm, (c) lase pulse.

and 67, yellow) takes place. However, the ground state and these continuum states have very

little overlap with the CAP, so that the norm barely changes. With higher amplitudes, starting at

200 h̄/Eh the electron is excited into energetically higher continuum states, which have a larger

overlap with the CAP, i.e. the continuum electron has a higher kinetic energy and the electron

density of the corresponding states is thus removed from the system more quickly. With decreasing
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laser amplitude excitation into continuum states stops. At the same time the electron density of

previously populated continuum states is completely removed so that after the termination of the

pulse only population in the ground state remains.

V. CONCLUSION

Electron dynamics is a very active research field where experimental techniques and theoretical

developments are rapidly evolving. Unlike in the related field of electronic structure methods, the

existing dynamics programs are mostly limited to a few specific methods and systems. With

Jellyfish, we have developed a program that provides a flexible, user- and developer-friendly

environment. This is possible on the one hand by the graphical user interface which allows the

flexible set-up of a simulation through a nodal network, as well as the control of input parameters.

On the other hand, the Jellyfish code is build strictly modular, thus, it is easily extendable by

self-written modules.

The methods implemented so far focus on the TDCI methodology with the corresponding

plugins for light-driven dynamics simulations, both on traditional and on quantum computers.

TDCI plugins also exist in form of a visualization front end to produce snapshots and animations

of various densities and wave function properties.

This report demonstrated the application possibilities and flexibility of Jellyfish on two systems.

The first example describes and illustrates the state-selective excitation in the guanine molecule.

Extended excited-state analysis revealed not only the character of the induced rearrangement of

electronic density but also the region and timing of the most significant of these changes. In the

second example the ionization dynamics in model potential simulations by an intense laser pulse

and the ionization yields by the introduction of a CAP operator was presented.

ACKNOWLEDGMENTS

The authors are grateful for financial support from the Volkswagen Foundation through the

Freigeist Fellowship no 89525. They also thank Paul Anton Albrecht and Manuel Güterbock

who contributed to the development of Jellyfish and Alejandro Saenz for discussing the usage

of even-tempered basis sets in model potentials. Finally, we acknowledge the computational

resources of the Helmholtz-Zentrum Berlin and thank in particular Robert Grzimek for his support

24



in establishing the development environment.

DATA AVAILABILITY STATEMENT

The code is made available under the GPL-3.0 licence on github: https://github.com/

FabianLangkabel/Jellyfish

REFERENCES

1R. Borrego-Varillas, M. Lucchini, and M. Nisoli, Reports on Progress in Physics 85, 066401

(2022).
2P. Saalfrank, F. Bedurke, C. Heide, T. Klamroth, S. Klinkusch, P. Krause, M. Nest, and J. C.

Tremblay, in Chemical Physics and Quantum Chemistry (2020), pp. 15–50.
3B. S. Ofstad, E. Aurbakken, Ø. S. Schøyen, H. E. Kristiansen, S. Kvaal, and T. B. Pedersen,

WIREs Computational Molecular Science (2023).
4A. I. Kuleff and A. Dreuw, The Journal of Chemical Physics 130, 034102 (2009).
5I. Barth, J. Manz, Y. Shigeta, and K. Yagi, Journal of the American Chemical Society 128, 7043

(2006).
6F. Buchner, T. Kirschbaum, A. Venerosy, H. Girard, J.-C. Arnault, B. Kiendl, A. Krueger,

K. Larsson, A. Bande, T. Petit, et al., Nanoscale 14, 17188 (2022).
7F. Langkabel and A. Bande, The Journal of Chemical Physics 154, 054111 (2021).
8P. Krause, J. C. Tremblay, and A. Bande, The Journal of Physical Chemistry A 125, 4793 (2021).
9S. Matsika and P. Krause, Annual Review of Physical Chemistry 62, 621 (2011).

10B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard, Nature Physics 3, 192 (2007).
11D. Li and N. Akopian (2021), arXiv:2107.05960 [quant-ph].
12P. Parafiniuk and R. Taranko, Physica E: Low-dimensional Systems and Nanostructures 40, 3078

(2008).
13A. Bechtold, D. Rauch, F. Li, T. Simmet, P.-L. Ardelt, A. Regler, K. Müller, N. A. Sinitsyn, and

J. J. Finley, Nature Physics 11, 1005 (2015).
14D. Buterakos and S. D. Sarma, PRX Quantum 2, 040358 (2021).
15V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi,

Science 287, 1011 (2000).

25



16L.-W. Wang, M. Califano, A. Zunger, and A. Franceschetti, Physical Review Letters 91, 056404

(2003).
17A. Haller, D. Peláez, and A. Bande, The Journal of Physical Chemistry C 123, 14754 (2019).
18C. Bardos, F. Golse, A. D. Gottlieb, and N. J. Mauser, Journal de Mathématiques Pures et

Appliquées 82, 665 (2003).
19B. Zhang, J. Yuan, and Z. Zhao, Computer Physics Communications 194, 84 (2015).
20P. Krause, T. Klamroth, and P. Saalfrank, The Journal of Chemical Physics 123, 074105 (2005).
21L. Greenman, P. J. Ho, S. Pabst, E. Kamarchik, D. A. Mazziotti, and R. Santra, Physical Review

A 82, 023406 (2010).
22J. A. Sonk, M. Caricato, and H. B. Schlegel, The Journal of Physical Chemistry A 115, 4678

(2011).
23J. C. Tremblay, T. Klamroth, and P. Saalfrank, The Journal of Chemical Physics 129, 084302

(2008).
24J. C. Tremblay, S. Klinkusch, T. Klamroth, and P. Saalfrank, The Journal of Chemical Physics

134, 044311 (2011).
25D. J. Haxton, K. V. Lawler, and C. W. McCurdy, Physical Review A 83, 063416 (2011).
26T. Sato, Y. Orimo, T. Teramura, O. Tugs, and K. L. Ishikawa, in Springer Series in Chemical

Physics (2018), pp. 143–171.
27S. R. White, Physical Review Letters 69, 2863 (1992).
28S. R. White, Physical Review B 48, 10345 (1993).
29A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal, Journal of Statistical Mechanics: Theory

and Experiment 2004, P04005 (2004).
30F. Neese, F. Wennmohs, U. Becker, and C. Riplinger, The Journal of Chemical Physics 152,

224108 (2020).
31D. G. A. Smith, L. A. Burns, A. C. Simmonett, R. M. Parrish, M. C. Schieber, R. Galvelis,

P. Kraus, H. Kruse, R. D. Remigio, A. Alenaizan, et al., The Journal of Chemical Physics 152,

184108 (2020).
32Y. Shao, Z. Gan, E. Epifanovsky, A. T. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn,

J. Deng, X. Feng, et al., Molecular Physics 113, 184 (2014).
33Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo, Z. Li, J. Liu, J. D. McClain, E. R.

Sayfutyarova, S. Sharma, et al., WIREs Computational Molecular Science 8 (2017).
34F. Weber, J. C. Tremblay, and A. Bande, The Journal of Physical Chemistry C 124, 26688 (2020).

26



35G. Hermann, V. Pohl, J. C. Tremblay, B. Paulus, H.-C. Hege, and A. Schild, Journal of

Computational Chemistry 37, 1511 (2016).
36V. Pohl, G. Hermann, and J. C. Tremblay, Journal of Computational Chemistry 38, 1515 (2017).
37G. Hermann, V. Pohl, and J. C. Tremblay, Journal of Computational Chemistry 38, 2378 (2017).
38D. Pinaev, Qtnodes. node editor, https://github.com/paceholder/nodeeditor (2017).
39L. Niels, Json for modern c++, https://github.com/nlohmann (2022).
40B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson, and T. L. Windus, Journal of Chemical

Information and Modeling 59, 4814 (2019).
41Q. Sun, Journal of Computational Chemistry 36, 1664 (2015).
42J. Muga, J. Palao, B. Navarro, and I. Egusquiza, Physics Reports 395, 357 (2004).
43G. Guennebaud, B. Jacob, et al., Eigen v3, http://eigen.tuxfamily.org (2010).
44M. Head-Gordon, R. J. Rico, M. Oumi, and T. J. Lee, Chemical Physics Letters 219, 21 (1994).
45F. Langkabel, P. A. Albrecht, A. Bande, and P. Krause, Chemical Physics 557, 111502 (2022).
46A. Bande, in Chemical Modelling (Royal Society of Chemistry, 2022), pp. 91–152.
47F. Langkabel and A. Bande, Journal of Chemical Theory and Computation 18, 7082 (2022).
48Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson, M. Kieferová, I. D. Kivlichan,

T. Menke, B. Peropadre, N. P. D. Sawaya, et al., Chemical Reviews 119, 10856 (2019).
49S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X. Yuan, Reviews of Modern

Physics 92, 015003 (2020).
50J. Lee, D. W. Berry, C. Gidney, W. J. Huggins, J. R. McClean, N. Wiebe, and R. Babbush, PRX

Quantum 2, 030305 (2021).
51P. J. Ollitrault, A. Miessen, and I. Tavernelli, Accounts of Chemical Research 54, 4229 (2021).
52T. Jones, A. Brown, I. Bush, and S. C. Benjamin, Scientific Reports 9 (2019).
53P. Jordan and E. Wigner, Zeitschrift fuer Physik 47, 631 (1928).
54H. F. Trotter, Proceedings of the American Mathematical Society 10, 545 (1959).
55M. Suzuki, Communications in Mathematical Physics 51, 183 (1976).
56M. Motta, C. Sun, A. T. K. Tan, M. J. O’Rourke, E. Ye, A. J. Minnich, F. G. S. L. Brandão, and

G. K.-L. Chan, Nature Physics 16, 205 (2019).
57D. Aharonov, V. Jones, and Z. Landau, Algorithmica 55, 395 (2008).
58A. Giussani, J. Segarra-Martí, D. Roca-Sanjuán, and M. Merchán, in Topics in Current

Chemistry (2013), pp. 57–97.
59I. Pugliesi and K. Müller-Dethlefs, The Journal of Physical Chemistry A 110, 13045 (2006).

27



60P. Hoerner, M. K. Lee, and H. B. Schlegel, The Journal of Chemical Physics 151, 054102 (2019).
61A. Bande, K. Gokhberg, and L. S. Cederbaum, The Journal of Chemical Physics 135, 144112

(2011).
62I. Cherkes and N. Moiseyev, Physical Review B 83, 113303 (2011).
63P. Krause, J. A. Sonk, and H. B. Schlegel, The Journal of Chemical Physics 140, 174113 (2014).

28



5.4 Making optical excitations visible – An exciton
wavefunction extension to the time-dependent
configuration interaction method

Fabian Langkabel, Paul Anton Albrecht, Annika Bande and Pascal Krause
Chem. Phys. 557, 111502 (2022)
DOI: doi.org/10.1016/j.chemphys.2022.111502
URL: https://doi.org/10.1016/j.chemphys.2022.111502

This article was published in Chemical Physics, 557, F. Langkabel, P. A. Albrecht,
A.Bande, P. Krause, Making optical excitations visible – An exciton wavefunction exten-
sion to the time-dependent configuration interaction method, 111502, Copyright Elsevier
(2022)

Figure 5.4: Graphical abstract. Reprint with permission from Langkabel et al. [4] (Copyright
Elsevier (2022))

Author contributions: The project was conceived by AB, PK, and FL. Code devel-
opments were performed by PA and FL. PK and FL performed calculations with the
developed code in the examples shown and created all figures and videos. The manuscript
draft was written by PK and FL. All authors contributed to bringing the manuscript into
the final form.

https://doi.org/10.1016/j.chemphys.2022.111502


Chemical Physics 557 (2022) 111502

Available online 2 March 2022
0301-0104/© 2022 Elsevier B.V. All rights reserved.

Making optical excitations visible – An exciton wavefunction extension to 
the time-dependent configuration interaction method 

Fabian Langkabel a,b, Paul Anton Albrecht a,b, Annika Bande a,*, Pascal Krause a 

a Theory of Electron Dynamics and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin, Germany 
b Physical and Theoretical Chemistry, Institute of Chemistry and Biochemistry Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany   

A R T I C L E  I N F O   

Keywords: 
Correlated electron dynamics 
Time-dependent Schrödinger equation 
Density visualization 
Time-dependent natural transition orbitals 
Optical excitation 

A B S T R A C T   

We report the animation and analysis of laser-driven many-electron dynamics by means of time-dependent local 
densities and quantities derived from the one-particle transition density matrix, such as time-dependent natural 
transition orbital densities, particle and hole positions and exciton size. The time-dependent configuration 
interaction method was used to revisit studies on hydrogen molecule and lithium cyanide by Saalfrank and 
coworkers and our study shines new light on the optical transitions in these small molecules to benchmark the 
implemented time-dependent exciton properties. One focus of our simulations is the comparison of the local 
densities to the quantities of the two-body exciton wavefunction for resonant excitations leading either to state- 
to-state transitions or to the creation of a wave packet.   

1. Introduction 

Electrons interacting with photons give rise to an astonishing wealth 
of fascinating phenomena. Modern experimental techniques further 
reveal details of the intricate processes of the electronic motion for 
various material classes ranging from atoms over small molecules to 
large clusters and extended structures. Since for the design of modern 
electronic devices the knowledge of the time scales of electronic pro-
cesses is of utmost importance, advances in time and spatial resolution 
have been made also in the theoretical description that enable a deep-
ening insight into the effects of light-matter interaction. The increasing 
number of publications in the field of correlated ab initio simulations 
emphasizes the interest of understanding optical excitations in the time 
domain [1–7], just to name a few very recent ones. 

The theoretical frameworks that enables to capture the electron 
dynamics while maintaining the single-electron picture in an explicitly 
time-dependent fashion can be multi-reference descriptions as the time- 
dependent multiconfiguration self-consistent field method (TD-MCSCF), 
also known as multiconfiguration time-dependent Hartree–Fock 
(MCTDHF) [8–14], and single-reference descriptions like time- 
dependent coupled cluster (TD-CC) [2,6,15,16], hybrid time- 
dependent density functional theory/configuration interaction (hybrid 
TDDFT/CI) [17,18], also known as time-dependent Tamm-Dankov 
approximation (TD-TDA) [19], and last but not least, time-dependent 

configuration interaction (TD-CI) [20–27]. 
The TD-CI method has proven to capture the fundamental electronic 

response properties within the bound-state manifold since the Coulomb 
interaction of the created electron-hole pair is naturally included. The 
description of electronic correlation can be systematically improved 
towards the full-CI solution. The laser-induced excitation was success-
fully modeled within the bound-state manifold [21,28], e.g., addressing 
charge transfer states [5,29–32]. Systematic extensions have been 
implemented also to the Hamiltonian, e.g., to include the coupling with 
the continuum via an absorbing potential in real or energy space. Such 
methods have shown to be very successful for the simulation of ioniza-
tion processes [7,33–35], including high-harmonics generation [36–39]. 

Steady progress is being made in formulations that further provide 
intuitive understandings of the underlying processes through visuali-
zation and analysis of electron-hole pairs for the description of elec-
tronically excited states. Simple visualization of molecular orbitals 
(MOs) or excited state densities does not sufficiently explain properties 
and dynamics, especially for larger system or for very short excitation 
times when electron correlation becomes more relevant. The local 
density does not provide enough information on the excited state dy-
namics because it remains relatively unaltered throughout the process. 
Capturing the characteristics of excited states, however, can be achieved 
through concepts like dipole-induced transition orbitals [40], which 
employ an approximate set of electron-hole orbitals, or by Dyson 
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orbitals [41,42] when ionization is considered. Moreover, conditional 
electron densities have been used to visualise excited state correlation 
by electron and hole quasi-particles [43]. 

Already in the 1970s, the idea to obtain an observable measure for 
the analysis of excited states was formulated in terms of transition 
densities [44,45]. In particular, the one-particle transition-density ma-
trix (1TDM), which can be regarded as an exciton wavefunction, can be a 
key parameter in the understanding of electronic excited states 
[43,46–49] and is easy to evaluate even for larger systems. Furthermore, 
a singular value decomposition of the 1TDM gives access to natural 
transition orbitals (NTOs). Their graphical representation renders a vi-
sual understanding of the excitation. The consideration of the 1TDM and 
the associated hole and particle NTO densities provide a compact rep-
resentation and can be compared to the local densities, for example. 
Such an exciton-based evaluation is independent of the underlying or-
bitals and allows an easy differentiation of excited states via properties 
like the separation of hole and particle. Furthermore, the evaluation can 
be applied to different excited-state approaches, allowing comparison of 
exciton properties across methods. 

For a visual tracking of electron dynamics, it would be desirable to 
transfer the above concepts of NTOs, or more generally of 1TDMs, to the 
time domain. In the frameworks of algebraic diagrammatic construction 
(ADC), Dutoi et al. have derived the related one-particle difference 
density [50] and visualized the natural orbitals of electrons and holes for 
an alkane scaffold [51], a conjugated π system and a chain of three Ne 
atoms [52]. 

In this work, we like to follow the exciton wavefunction analysis and 
present a derivation and implementation of an explicitly time- 
dependent version of these properties. Besides the direct depiction of 
NTOs and local densities for the illustration of the change of hole and 
electron position driven by light, also exciton descriptors are introduced 
to quantify and accompany the visualization of some local densities. For 
the first application of such a time-dependent exciton analysis, this work 
is revisiting laser-driven simulations on H2 [53] and LiCN [29]. These 
two studies describe the laser conditions under which on the one hand a 
state-to-state transition can be induced in a controlled fashion or on the 
other hand a wave packet is formed. 

All dynamics computations and analyses of this study are performed 
with the Jellyfish TD-CI program package that is developed in our group. 
Due to its modular structure it allows the flexible execution of TD-CI 
including the underlying electronic structure calculations such as Har-
tree–Fock or CI at any truncation level. Jellyfish comes with a graphical 
user interface (GUI) that enables flexible compilation of calculations or 
the implementation of interfaces to other quantum chemistry programs 
like ORCA [54]. Additionally it contains graphics modules using the 
open-source library VTK for on-the-fly rendering of stationary and time- 
dependent wavefunctions or orbitals, respectively. These modules are 
implemented so that the user can control various parameters like iso-
surface values, plot range, resolution, or color scheme, for example. 
They enable the export of video animations and snapshots of the time- 
dependent wavefunctions as presented in this work. Further details of 
the Jellyfish package will be given soon in a separate publication. For this 
study, however, we developed several modules that enable post- 
processing of dynamical simulations. Here, we present the imple-
mentation of the aforementioned excited state analysis by means of the 
1TDM, as well as the visualization of various wavefunction densities. 

As the title suggests, one driving force of this study is the possibility 
to visualize the quantum mechanical process of the light-induced exci-
tation of the electronic system. The results of the computations are 
summarized and interpreted in figures and text for a printable copy, 
however, we would like to encourage the reader to view as well the 
videos provided along this publication. 

This paper is organized as follows: in Section 2 the theoretical 
background for the analysis of laser-induced electron dynamics is 
introduced with a special focus on time-dependent local densities and 
1TDM descriptors. Section 3 presents and discusses the electron 

dynamics on H2 and LiCN in terms of time-dependent exciton properties 
and local densities. Section 4 concludes the most significant results and 
gives an outlook. Atomic units (e = ℏ = me = 4πε0 = 1) are used if not 
stated otherwise. 

2. Theory 

2.1. Time-dependent CI in a nutshell 

The many-electron dynamics driven by an external light source can 
be computed numerically from the time-dependent Schrödinger equa-
tion (TDSE) 

i∂t|Ψel(t)〉 =
[

Ĥel + μ̂→⋅ F→(t)
]⃒
⃒
⃒Ψel(t)〉, (1)  

provided that the electronic wavefunction, |Ψel(t)〉, at a given initial 
time, t0, is known. Here, the electronic Hamiltonian is Ĥel = T̂el +

V̂el,el + V̂el,nuc. The oscillating external field F→(t), e.g., a laser pulse is 
treated in the semi-classical dipole approximation, since the molecular 
systems under study are relatively small in size compared to the elec-
tromagnetic wavelength. Specifically, we use linearly polarized 
cos2-shaped laser pulses of the form: 

F→(t) = f
→

0⋅sin(ω(t − tp))⋅cos2( π
2σ(t − tp)) with the carrier frequency, ω, 

and the pulse width, σ centered at tp. The molecular dipole operator for a 

system composed of N electrons and NA nuclei is given by μ̂→ =

−
∑N

i r→i +
∑NA

A ZA R→A. 
The expansion of the electronic wavefunction in CI eigenfunctions, 

Φi, 

|Ψel(t)〉 =
∑

i
Bi(t)|Φi〉, (2)  

leads to the time-dependent CI methodology and reduces Eq. (1) to the 
propagation of the time-dependent expansion coefficients Bi(t). This 
way, time-dependent populations, for instance, are expressed by Pi(t) =

|〈Φi|Ψ(t)〉|2 = |Bi(t)|2. In the results, we present laser-driven dynamics 
simulations with wavefunctions obtained from the configuration inter-
action singles (CIS), the configuration interaction singles doubles 
(CISD), and the configuration interaction singles including perturbative 
doubles corrections (CIS(D)). In CISD, the ground state wavefunction 
includes electron correlation due to singly- and doubly-excited de-
terminants, while the CIS ground state is equal to the Hartree–Fock 
ground state. In CIS(D), the wavefunctions remain at CIS level, however, 
their energies (ground state included) contain perturbative corrections. 
Further details to the TD-CI methodology are outlined elsewhere 
[29,36]. 

2.2. Time-dependent density and difference densities 

The time-dependent local density can be computed from the CI 
expansion (Eq. (2)) as [18,55] 

ρCI(r, t) =
∑

k
|Bk(t)|2〈Φk|ρ̂(r)|Φk〉+ 2

∑

k

∑

l<k
Re(B*

k(t)Bl(t))〈Φk|ρ̂(r)|Φl〉.

(3)  

The matrix elements 〈Φk|ρ̂(r)|Φl〉 are evaluated from the CI amplitudes, 
Bk(t), and follow the Slater-Condon rules. With that, the difference of the 
local densities from the wavefunction at two different times can be 
calculated as 

ρ(r,t)− ρ(r,t′)=
∑

k

∑

l
Re(B′*

k (t
′)B′

l(t
′))〈Φk|ρ̂|Φl〉−

∑

k

∑

l
B′*

k (t
′)B′

l(t
′)〈Φk|ρ̂|Φl〉.

(4)  

Two kind of difference densities Δρ(r, t) are of particular relevance: for t′
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being the initial time, the difference density ρ(r, t) − ρ(r, t = 0) ≡ Δ0(t)
traces the evolution of the local density with respect to the initial state. 
For t′ being the previous time step, the difference 
ρ(r, tn) − ρ(r, tn− 1) ≡ Δt(t) captures a step-wise change of the density 
reflecting the time-progress as computed by Eq. (1) and will be called 
gradient density in the following. Both time-dependent difference 
quantities, Δ0(t) and Δt(t), will be used to visualize the dynamical 
process. 

2.3. One-particle transition density matrix 

The local (difference) densities provide information on the multi- 
electron system as a whole. The one-particle transition density matrix 
enables to gain insight into the dynamics in the excited state alone. By 
adopting the analysis of static excited state properties derived from the 
1TDM, also termed exciton wavefunction [47,49,56], we present a time- 
dependent variant of the same. It is the matrix between the ground state 
〈Φ0| and, in this case, the time-dependent wavefunction |Ψ(t)〉 given 
explicitly as 

χexc(rh, re, t) =
∫

…
∫

Φ0(rh, r2,…, rN)⋅Ψ(re, r2,…, rN , t)dr2,…, drN , (5)  

where N is the number of electrons, ri the spatial-spin coordinates of ith 
electron, and rh and re are the hole and particle (electron) coordinates, 
respectively. From a singular value decomposition (SVD) of this matrix 
natural transition orbitals (NTOs) for the electron-hole pairs are ob-
tained in case stationary functions are used. 

By formulating the time-dependent version of the exciton wave-
function, however, Φ0 and Ψ(t) cannot be assumed to be orthogonal at 
all times. At the start of propagation, when Ψ(t = 0) = Φ0, such an 
“exciton wavefunction” would correspond to the density matrix of the 
ground state Φ0 and the time-dependent dipole moment would directly 
relate to the time-dependent “particle-hole” distance defined below. 
However, the corresponding NTO densities derived from the 1TDM then 
can no longer be termed “particle” or “hole” densities. In order to 
maintain the single-particle orbital picture of electron and hole, only the 
component of Ψ(t) that lies in the orthogonal complement space of Φ0 is 
considered for our time-dependent analysis. This is achieved by the 
projection (1 − |Φ0〉〈Φ0|) |Ψ(t)〉 that removes the ground state contri-
bution from the time-dependent wavefunction in the following deriva-
tion and analysis of exciton properties. 

The matrix representation of the one-particle transition density in 
the basis of the underlying spin orbitals is given as 

γt0
μν(t) = 〈Ψ(t)

⃒
⃒
⃒â†

μ âν

⃒
⃒
⃒Φ0〉, (6)  

where â†

μ and âν are the creation and annihilation operators to the spin 
orbitals χμ and χν, respectively. 

For configuration interaction singles, γt0
μν can be calculated from the 

expansion coefficients of the time-dependent wavefunction Bj(t) and the 
wavefunction amplitudes of the underlying CI eigenstates Ca

i,j as γt0
μν(t) =

∑
jBj(t)δμaδνiCa

i,j. Here, Ca
i,j is the excitation coefficient from occupied 

orbital i to virtual orbital a for the j-th eigenstate. 1 

By introducing time-dependent NTOs, an alternative and even more 
compact representation of the exciton wavefunction is obtained 

χexc(rh, re, t) =
∑

K
σK(t)ψh

K(rh, t)ψe
K(re, t), (7)  

where each of the K NTO pairs corresponding to a singular value σK is 
composed of a hole state ψh

K and an electron state ψe
K. They can be 

obtained from a SVD of the transition density matrix 

γ0t(t) = U(t)ΣVT(t), (8)  

such that the hole NTOs become 

ψh
K(r, t) =

∑

q
UqK(t)χq(r) (9)  

and the electron NTOs 

ψe
K(r, t) =

∑

q
VqK(t)χq(r). (10)  

With Eq. (9) the NTO hole density can be defined as 

ρNTO
h (rh, t) =

∑

K
σK(t)2ψh

K(rh, t)2
. (11)  

The NTO electron density is obtained analogously. 
The norm of the 1TDM quantifies the single excitation component of 

the excitation from Φ0 to Ψ(t)

Ω(t) ≡ 〈χexc(t)|χexc(t)〉 =
∑

μν

(
γ0t

μν(t)
)2

=

∫

χexc(rh, re, t)2drhdre. (12)  

The normalization can also be expressed in matrix elements as 

Ω(t) = tr
(
γt0(t)Sγ0t(t)S

)
, (13)  

where S represents the overlap matrix in the basis of the Hartree–Fock 
orbitals. 

The exciton wavefunction can be analyzed more deeply by expec-
tation values to operators of interest 

〈Ô〉exc(t) =
1

Ω(t)
〈χexc(t)|Ô|χexc(t) 〉, (14)  

where the operators are composed of electron and hole multipole mo-
ments [47]. This expression can be used to compute exciton quantities 
that further characterize the electron-hole pair creation and it spatial 
evolution in the excited states. For example, the distance between the 
centroids of electron and hole is given as 

dh→e =
⃒
⃒〈rh − re〉exc

⃒
⃒, (15)  

and complementary to this is the exciton size, which is defined as the 
root-mean-square separation between electron and hole position 

dexc =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅〈⃒
⃒rh − re|

2
〉

exc

√

. (16)  

Similar to the exciton size, the hole size is calculated as 

σh =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

〈r2
h〉exc − 〈rh〉

2
exc

√

(17)  

and analogously for the particle size. 
Removing the ground state from the total wavefunction makes a 

renormalization necessary to recover the time-dependent contribution 
of the excited states for the time-dependent treatment. That means, the 
exciton quantities given above are multiplied by the norm of the exciton 
wavefunction. For example, the time-dependent particle-hole distance is 
calculated as Ω(t)⋅dh→e for the evaluation of dynamics. Additionally, the 
time-independent values for the normalized exciton wavefunction as 
derived from the stationary state analysis [47] are noted in the respec-
tive figures for comparison. 

2.4. Computational Details 

The numerical propagations have been carried out using an operator 
splitting technique [57] with a time step of Δt = 0.2ℏ/Eh. Visualization 

1 In a Hermitian formalism like CI, the exchange of bra and ket state corre-
sponds to the Hermitian conjugate of the transition density matrix 

(
γ0t)T

= γt0. 
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of the different densities by three isosurfaces with gradually decreasing 
transparency is chosen to capture the gradient of the fall-off of density. 
Except for the time-independent CIS(D)2 calculations, which were per-
formed with ORCA program package[54], all calculations shown were 
performed with the newly developed program Jellyfish, i.e., electron 
structure and dynamics calculations as well as all shown evaluations. A 
working version can be obtained upon request from the authors and a 
polished version will be released under an open source license in 2022. 

3. Results and Discussion 

3.1. Dynamics in the hydrogen molecule 

In this section, we are revisiting a study of Saalfrank and coworkers 
on the H2 molecule [53]. The visualizations provide further insight on 
the excitation process as a result of two of pulse intensities. A compar-
ison of underlying wavefunctions is given and the analysis through the 
time-dependent exciton wavefunction. 

The stationary CI states of the hydrogen molecules are calculated for 
a fixed bond length of R0 = 1.401a0 employing the aug-cc-pVDZ basis 
set [58,59]. CIS, CIS(D), and CISD singlet states are used for the time 
propagations. In all calculations, the first singlet excited state (1Σu 
symmetry) is dominated by a HOMO–LUMO transition and accessible by 
optical excitation from the ground state by a relatively large transition 
dipole moment parallel to the bond axis, μ0,1;z = 〈Ψ0|μ̂z|Ψ1〉, of 
1.012 ea0 (2.573 Debye) for CIS and 0.994 ea0 (2.525 Debye) for CISD. 

In accordance to the dipole selection rules, a z-polarized pulse cre-
ates a nodal plane perpendicular to this axis, reflecting a σ→σ* transition 
of one electron. Such a state-to-state transition can be achieved by so- 
called π pulses. For the used cos2 pulse envelope the relation between 

π pulse duration, σ, and its field amplitude, f
→

0 is given by σ⋅ f
→

0 =

π/ μ→0,1. In the following, the dynamics due to two z-polarized pulses are 
presented: a “short” and intense π pulse (σ = 50ℏ/Eh (1.2fs), f0;z =

0.062Eh/ea0,1.35⋅1014 W/cm2) and a “long” one with moderate in-
tensity (σ = 1000ℏ/Eh (24.2fs), f0;z = 0.003Eh/ea0, 3.15⋅1011 W/cm2), 
both with the same carrier frequency resonant to the first excited state of 
ωCIS

0,1 = 0.466Eh/ℏ, ωCIS(D)

0,1 = 0.466Eh/ℏ, and ωCISD
0,1 = 0.465Eh/ℏ, 

respectively. 
At first, before describing the full excitation process, a comparison of 

the dynamics as a consequence of three TD-CI methods is discussed. This 
comparison is presented in Fig. 1 and in the Animation in the Supple-
mentary in terms of local densities, ρCI(t) (yellow surfaces), difference 
densities, Δ0(t) (green and red isosurfaces), and gradient density, Δt(t)
(pink and blue) for the TD-CIS, TD-CIS(D), and TD-CISD. The green and 
red isosurfaces of the difference density show the increase and decrease 
of local electronic density when compared to the initial, ground state 
density. As an additional measure, only available in the time regime, the 
gradient density, Δt(t), is introduced. It evaluates the difference density 
to the previous time step, and therefore visualizes the dynamics as 
computed by the time-dependent Schrödinger equation, Eq. (1). Nega-
tive values of Δt(t) are represented by pink isosurfaces and illustrate the 
loss of local density with respect to the previous time step, while positive 
values illustrate the increase of electronic density by blue isosurfaces. 

Shown in panel (A) of Fig. 1 are the local and the difference densities 
at the start and at the end of propagation for the three TD-CI methods in 
comparison. The local densities of the ground state display the well- 
known ellipsoid of the binding 1Σg state. At the end of propagation the 
first excited state with σ* character has a population of P1 = 0.999 for all 
methods. The local densities at the end of the propagation reflect the 

expected transition of a single electron by a reduced ellipsoidal core and 
a more diffuse density aside of the nuclear position with a clear inden-
tation in the center. This transition of a single electron from the core to 
the valence regions is much more clearly seen in the difference density, 
where electron density was removed from the center (red surfaces) and 
has moved to the outer sides of each H atom (green surfaces). These 
densities are essentially identical for all underlying CI methodologies. 
Noteworthy is that the final TD-CISD local density shows somewhat 
more compactness in the center, the overall differences, however, are 
rather small. 

The density redistribution upon excitation establishes during the 
whole propagation and a close view on the dynamics around the mid- 
point of the propagation is also discussed. The Animation in the Sup-
plementary shows the dynamics at every computed time step for the 15 
central laser cycles. Fig. 1(B) summarizes this animation in a compact 
manner by displaying snapshots during the central optical cycle (around 
t = 1000ℏ/Eh, also plotted in panel (B), middle), where the laser in-
tensity reaches its maximum for TD-CIS on the left and TD-CISD on the 
right side, respectively. 

Best seen in the animation is how the local density oscillates along 
the molecular axis due to the z-polarized field. During each laser cycle, 
the amount of density gain in the valence regions increases as the dy-
namics of the difference density confirms. The electronic density, 
however, is lagging behind the oscillations of the driving field as seen in 
the time-dependent dipole moment. Known from classical mechanics, 
this is the signature of an excitation at the transition frequency, where a 
phase shift of π/2 is observed. As a consequence, at the pulse maxima, 
the local densities show a symmetric distribution while at time steps 
where the field strength is zero, the local density is displaced towards the 
positive z direction. In this regard, Δ0(t) visualizes the oscillations of the 
charges as monitored by the time-dependent dipole moment. 

The gradient density shows the flow of the electron density in the 
moment of this time step. For the sake of readability, we term positive 
and negative gradient density in the following as “transient particle” 
(blue isosurfaces) and “transient hole” (pink isosurfaces). The oscilla-
tions of Δt(t) are in phase with the laser pulse cycles. The transient hole 
has its maximal extent when the optical cycle reaches a maximum and it 
is minimal when the field is crossing zero.3 While the transient holes and 
particles have a symmetric distribution along the bond axis just after 
maximal field strength. They are interchanging their positions in a 
particular way: while both minimize their spatial extent, the transient 
hole shrinks and moves along the H-H bond. Meanwhile, the transient 
particle is never to be found between the atoms but instead surrounding 
the transient hole by forming a ring torus for a single time step (seen in 
the video at t = 1000.4ℏ/Eh, for example). 

Comparing the TD-CIS, TD-CIS(D), and TD-CISD methods across the 
video sequence, the density progressions are virtually indistinguishable. 
This is literally illustrating that even for the most sensitive local density 
evaluation, the gradient density, no differences have manifested and, in 
the case of a single-electron process, the dynamics can be regarded as 
independent of the underlying CI level. While Fig. 1 presents the dy-
namics by mere illustration, a more quantitative approach is provided in 
the following by TD-CIS(D) propagations. 

The full excitation process to the first excited state can be viewed in 
the Animation in the Supplementary. Fig. 2 summarizes these TD-CIS(D) 
dynamics. In addition to the above presented local densities of the many- 
body wavefunction, ρCI(t) and Δ0(t), also time-dependent NTO densities, 
ρNTO(t) are introduced as defined in Eq. (11). Furthermore, the time- 
dependent exciton descriptors like the hole and particle positions, 
their size (Eq. (17)), the hole-particle distance (Eq. (15)), as well as the 
exction size (Eq. (16)) are used to evaluate and quantify the dynamics. 

The difference density at the end of the propagation (Δ0(t =

2 The MP2 double corrections to the CIS energies have been calculated 
employing the resolution of identity algorithm with an automated auxiliary 
basis set. 

3 Note, in the current Jellyfish implementation the laser is starting at the first 
time step, not at the zeroth and is therefore shifted by 0.2 ℏ/Eh. 
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2000ℏ/Eh, red and green isosurfaces) compares very well to hole and 
electron NTO densities (gray and blue isosurface). In the time-dependent 
view, however, differences among the densities are clearly visible. While 
the electron NTO densitiy, ρNTO

e (t), majorly rises in spatial extent – due 
to increasing NTO orbital population –, the difference density Δ0(t)
shows an explicit time dependence. In the first third of the pulse dura-
tion, negative and positive difference densities are created at the atomic 
centers and interchanging their positions with the pulse cycles (the 
above mentioned phase shift of π/2 is hardly noticeable on this time 
scale). Then, around the halftime, when the pulse reaches its maximum, 

the negative difference density (red surfaces) becomes more localized 
around the atomic bond in the shape of an ellipsoid and remains slightly 
oscillating in this region during the end of the propagation. At the same 
time the positive difference density – the gain of local density (green 
surface) – oscillates at the outer regions of the atomic centers while 
increasing its spatial extent at each cycle until the oscillation dies out 
with decreasing pulse intensity. The oscillations of the difference density 
can be directly correlated to the time-dependent dipole moment (green 
curve of the center plot). 

The NTO density for the electron (blue isosurfaces) and the hole 

Fig. 1. Shown are various densities at different times from the propagation with the long π pulse of the width σ = 1000ℏ/Eh. Panel (A) shows the local density ρCI(t)
(yellow isosurfaces) at the initial and the final time and the density difference Δ0(tend) (positive density in green and negative in red isosurfaces) at the final time. 
Panel (B) depicts several snapshots of the local density, difference density, Δ0(t), and density gradient, Δt(t), as a result of the single cycle in the center of the π pulse 
(shown in the central plot). The CIS and CISD densities are on the left and right side. The atomic positions are marked as crosses on top of the isosurfaces. A video of 
this Figure content is available in the Supplementary.  

Fig. 2. Summary of the H2 excitation dynamics using the “long” π pulse. Shown on the left are difference densities (red and green isosurfaces), and NTO densities for 
electron and hole (blue and gray isosurfaces) for selected times. Shown in the right is the z component of the time-dependent dipole moment (green) together with 
various time-dependent exciton properties: hole and particle position (gray, blue), hole-particle distance (red), hole and particle size (dashed gray, blue), and the 
exciton size (orange). Local densities (yellow isosurfaces) are given for the initial and the final time. The atomic positions are indicated by crosses on top of some 
isosurfaces. Values for the exciton wavefunction employing the stationary analysis according to [47] are noted in gray color on the left y axis. A video of this Figure 
content is available in the Supplementary.  
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(gray) do not show much of this oscillation. Both NTO densities mostly 
rise in their spatial extent with increasing occupation. This volume in-
crease of both NTO densities is well reflected by the smooth rise of their 
corresponding exciton quantifiers, the sizes for hole, particle, and 
exciton (dashed blue, dashed gray and dashed orange lines). The small 
noticeable oscillations of the electron NTO density are captured by its 
position expectation value, Ω(t)〈zp〉 (blue solid line, magnified by a 
factor of 25), while the hole position, monitored by Ω(t)〈zh〉 (gray solid 
line), remains at its position around the hydrogen bond. Thus, the 
expectation value for the particle-hole distance, Ω(t)〈zp→h〉 (red solid 
line, also magnified by a factor of 25), is entirely composed of the po-
sition of the electron. 

The same analysis is applied for the optical excitation with the short 
π pulse as seen in the Animation in the Supplementary and summarized 
in Fig. 3. For this intense pulse, a coherent superposition of excited 
states, an electronic wave packet, is created. Here, the laser pulse con-
sists of eight optical cycles only and dynamics become noticeable early 
in the propagation. Compared to the smooth state-to-state transition of 
the previous case, here, the local density (yellow) shows not only a very 
dynamical behavior in its outer isosurface, but also in its core ellipsoid. 
Δ0(t) illustrates this motion in terms of difference to the ground state. 
Theses oscillations are well captured by the time-dependent particle 
NTO density, ρNTO

e , that reproduces the progression of the positive dif-
ference density in terms of shape and spatial extent. But the hole NTO 
density cannot reproduce the dynamics as they are visible in the nega-
tive difference density (red isosurfaces). Since the ground state of the H2 
molecule is composed of one doubly occupied MO only, the hole density 
necessarily corresponds to the density of that MO and further dynamics 
in the hole is not to be expected. The particle wavefunction, on the other 
hand, results from multiple occupied virtual orbitals, thus depicting a 
dynamical shape. 

As expected and seen in the animation, or on the right-hand side 
panel of Fig. 3, the hole density solely increases its spatial extent, 
quantified by Ωσh,z (dashed gray line), while its position, Ω〈zh〉exc (solid 
gray), remains constant at 0ℏ/Eh. All of the exciton quantities are hence 
determined by the particle properties. Like the exciton size (dashed 

orange line) rises jointly with the particle size (dashed blue), the hole- 
particle distance (solid red line) is ruled by the position expectation 
value of the electron (solid blue) and both oscillate equally around the 
molecular center even after the pulse is off. Their oscillation amplitudes 
differ from the time-dependent dipole moment (solid green line) since 
the exciton quantities are computed by excluding the ground state, they 
record the dynamics in the excited states alone. As a consequence, the 
oscillations of the hole-particle distance scales with increasing popula-
tion of the excited states. 

3.2. Charge transfer dynamics in LiCN 

The collinear three-atomic LiCN molecule is a much favored test 
system for a light-induced charge transfer (CT) along the molecular axis 
[5,31]. In this section, again, an illustrative update to the dynamics 
simulations by Saalfrank and coworkers [29] is given. Here, their level 
of theory and their comparison of optical excitation by two different π 
pulses is reproduced. Specifically, the electron dynamics from excitation 
with a “short” π pulse of a width of σ = 100ℏ/Eh (2.4fs) and a field 
strength of f0;x = 0.103 Eh/ea0 (3.7⋅1014 W/cm2) is compared to a 
“long” π pulse of a width σ = 2000ℏ/Eh (48.4fs) and a field strength of 
f0;x = 0.005 Eh/ea0 (9.24⋅1011 W/cm2). The ORCA program package 
[54] is used to carry out the electronic structure calculation at CIS(D)/6- 
31G* [60] level of theory with LiCN being oriented parallel to the z axis 
at fixed internuclear distances of RLi− C = 3.683a0 and RC− N = 2.168a0. 
Freezing four core electrons leads to 204 singlet CIS(D) states, all of 
which are included in the subsequent TD-CIS(D) simulations. 

LiCN in the ground state has an ionic character (Li+CN− ) leading to a 
permanent dipole moment of μ0;z = − 3.707 ea0 ( − 9.422 Debye), while 
the target CT state is twofold degenerate and has a permanent dipole of 
μ2/3;z = +2.802 ea0 ( + 7.122 Debye). Optical excitation to the partic-
ular CT state, thus, is accompanied by a large change of the dipole 
moment which reflects the transfer of negative charge, i.e., electron 
density, from the HOMO localized on the CN group to the LUMO 
localized on the Li atom. The transition to either of the degenerate CT 

Fig. 3. Summary of the H2 excitation dynamics using the “short” and intense π pulse. Shown on the left are difference densities (red and green isosurfaces), and NTO 
densities for electron and hole (blue and gray isosurfaces) for selected times. Shown in the right is the z component of the time-dependent dipole moment (green) 
together with the laser pulse (pink) and various time-dependent exciton properties: hole and particle position (gray, blue), hole-particle distance (red), hole and 
particle size (dashed gray, blue), and the exciton size (orange). Local densities (yellow isosurfaces) are given for the final time. The atomic positions are indicated by 
crosses on top of some isosurfaces. A video of this Figure content is available in the Supplementary.  
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states is possible due to a large transition dipole moment along the x or y 
direction. The corresponding transition dipole moments are μ0,2;x =

0.306 ea0, μ0,2;y = − 0.003 ea0 and μ0,3;x = − 0.003 ea0, μ0,3;y =

− 0.306 ea0. The excitation to the CT state is addressed by an x-polar-
ized π pulse, where the small transition dipole moment along y is 
omitted for the sake of simplicity. 

First, the laser-driven dynamics as a consequence of the long-pulse 
excitation is discussed. Animation in the Supplementary and Fig. 4 
show the local (difference) and NTO densities, as well as the progression 
of the exciton descriptors along the molecular axis. The electron density 
for LiCN (yellow isosurfaces) depicts only small changes during laser 
excitation since only one electron out of 16 is promoted to a virtual 
orbital. The circular indentation between the Li atom and the CN group 
reflects the ionic character of this compound and is not affected by the 
CT. 

The transfer of charge from the CN group to the Li atom can already 
be seen in the time-dependent dipole moment (green curve) along the z 
direction. It changes smoothly from the value of the ground state to 
almost the one of the excited state which reflects the target state pop-
ulation of 97% at the end of the propagation. A more detailed view is 
provided by the local difference density and the NTO densities. The 
respective exciton properties allow a quantification of the CT character. 
The hole position and size (solid and dashed gray) change by about 
1.0 a0 and remain located on the CN group. The particle position (solid 
blue) changes by about − 5.6 a0 while its size (dashed blue) increases 
about 2.2 a0. In terms of charge separation, the recorded − 6.5 a0 for the 
hole-particle distance (solid red) and 7.0 a0 for the exciton size (dashed 
orange) even exceed the molecular size of − 5.9 a0, the distance between 
the Li and the N atom. The creation of the hole on the CN group and the 
creation of a particle at the Li atom, are captured by the visualization of 
the difference and the NTO densities. The NTO densities allow a general 
description of the hole and particle formation. The local difference 
density captures the oscillations along the laser polarization. In the 

beginning of the propagation rapid oscillations along the x direction on 
the CN group are visible. During the cause of increasing field strength, 
negative difference density, a hole, is manifesting on this side while on 
the other side, at the Li atom the positive difference density is accu-
mulating in an oscillatory manner. At the end of the pulse, the difference 
densities and the respective hole and particle NTO densities have a very 
similar shape and spatial extent. 

The dynamics due to the short pulse can be viewed in Animation in the 
Supplementary and its summary in Fig. 5. The excitation with an intense 
pulse, again, creates a coherent superposition of excited states. This elec-
tronic wave packet leads to rapid oscillations in all quantities persistent 
even after the pulse is off at t = 200ℏ/Eh. A complete interpretation is 
limited since single- and multi-photon transitions from the ground state as 
well as between the excited states are induced by the intense laser field. 
Hence, the exciton wavefuntion is composed of excitations from and to 
multiple MOs in LiCN and dynamics in both hole and particle NTO den-
sities are expressed more pronounced. While for the long pulse the hole 
density is dominated by a transition from a single π orbital on the CN 
group, the hole density for the short pulse originates from transitions from 
lower-lying σ orbitals. As a consequence, the hole density exhibits more 
dynamics extending also to the Li atom. Nonetheless, the hole remains 
localized as it originates from binding orbitals only. The corresponding 
particle ends up in valence orbitals so that the particle NTO density (blue 
isosurfaces) exhibits large changes in shape and the delocalization extends 
over the whole molecule for this short pulse excitation. The diffuse dis-
tribution also becomes evident in the particle size (dashed blue line), which 
oscillates around a larger value than in the case of the long pulse. The 
comparatively larger delocalization manifests also in large values of par-
ticle position (solid blue) and hole-particle distance (solid red) and exciton 
size (dashed orange). In the case of multiple orbital contributions, the 
dynamic shapes of the NTO densities much closer reflect the positive and 
negative difference densities over the time since the whole process is more 
dominated by the dynamics in the excited states. 

Fig. 4. Summary of the LiCN excitation dynamics using the “long” π pulse. Shown on the left are difference densities (red and green isosurfaces), and NTO densities 
for electron and hole (blue and gray isosurfaces) for selected times. Shown on the right is the z component of the time-dependent dipole moment (green) together 
with various time-dependent exciton properties: hole and particle position (gray, blue), hole-particle distance (red), hole and particle size (dashed gray, blue), and the 
exciton size (orange). Local densities (yellow isosurfaces) are given for the initial and the final time. The atomic positions are indicated by crosses on top of some 
isosurfaces. A video of this Figure content is available in the Supplementary.  
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4. Conclusions and Outlook 

Making optical excitations visible and moreover quantifying the re-
sults of light-driven excited state dynamics is a long-standing quest in 
the electron dynamics community, both for the experimentalists and the 
theorists. In this TD-CI study we have derived time-dependent quantities 
for the excited states from the one-particle transition density matrix, 
such as natural transition orbital densities, position expectation values 
for hole and particle, or the estimation of sizes for hole, electron, and 
exciton. This exciton wavefunction extension to TD-CI was implemented 
into our group-owned program Jellyfish. The time-dependent 1TDM 
quantities were supplemented with the local density and two kinds of 
difference densities as complementary time-resolving analysis tool. The 
small molecular systems H2 and LiCN served as test systems for resonant 
π pulse excitations that either induce a pure excited state population by a 
long pulse or create an electronic wave packet as a consequence of a 
short and intense pulse. 

For H2, the TD-CIS, TD-CIS(D), and TD-CISD method were compared 
but showed no obvious differences with respect to the considered den-
sities in the state-to-state transitions. This confirms that both the ground 
and the respective excited state densities can be satisfactorily described 
with the underlying CIS wavefunction. For the propagation with the 
long laser pulse, the local (difference) densities oscillate in the laser 
field, while the NTO densities do not exhibit such dynamics but rather 
increase in space. Here, the hole NTO density remains localized at the 
molecular center, while the electron occupies the more diffuse valence 
regions outside the H-H bond. For the short pulse propagation, where a 
coherent superposition of excited states was created, the exciton de-
scriptors show non-trivial progressions that provide further information 
about the dynamics in the multiply populated excited states. 

LiCN served as a benchmark system for a charge transfer excitation. 
This transition was archived by a long π pulse. The charge transfer was 
visible in all densities except for the local density. Parallel to the 

changing dipole moment, the difference density reflected the flow of 
electron density from the CN group to the Li atom. Same was observed 
for the NTO densities as the particle has build up on Li while the hole 
emerges at the CN group, resulting in an increased hole-particle dis-
tance. The exciton descriptors have proven to be useful in describing 
such a charge transfer. For the creation of a wave packet by the short and 
intense pulse, the NTO densities well depicted the transitions from 
lower-lying MOs and thus expressing an explicit time dependence in the 
electron and the hole NTO densities. 

The time-dependent exciton properties reflect what is visualized by 
the NTO densities and thus serve as a good measure to quantify their 
evolution in time. This is even more apparent for intense pulses leading 
to complicated wave packet dynamics. Its arising complexity is not 
easily describable by the use of spatial densities. Instead, the exciton 
properties facilitate interpretation through stable average values at the 
end of the pulse and can capture the electron dynamics in the excited 
states. 

Beyond the time-dependent exciton properties we presented tran-
sient hole and particles through the gradient densities, shown here, to 
our knowledge, for the first time. They are a measure only available in 
the time regime and we plan further application and analysis of this 
property. To capture more of the complex excitation process, the time- 
dependent NTO densities may be extended by their phase information 
through coloration of the isosurface [52]. In terms of underlying 
methods, a comparison of the dynamics, as obtained, with other 
methods, e.g., from the hybrid TDDFT/CI methods, will be illustrative. 

Besides these purely scientific considerations, the visualization itself 
is holding promising didactical opportunities for students of all chemical 
disciplines that seek an understanding of optical excitations. Specifically 
for theoretical chemistry, the program Jellyfish will proof to be a useful 
teaching instrument to foster an intuitive understanding for the quan-
tum mechanical origin of dynamics. Due to its graphical interface and its 
modular structure, setting up dynamics calculations is simple and time- 

Fig. 5. Summary of the LiCN excitation dynamics using the “short” and intense π pulse. Shown on the left are difference densities (red and green isosurfaces), and 
NTO densities for electron and hole (blue and gray isosurfaces) for selected times. Shown on the right is the z component of the time-dependent dipole moment 
(green) together with the laser pulse (pink) and various time-dependent exciton properties: hole and particle position (gray, blue), hole-particle distance (red), hole 
and particle size (dashed gray, blue), and the exciton size (orange). Local densities (yellow isosurfaces) are given for the final time. The atomic positions are indicated 
by crosses on top of some isosurfaces. A video of this Figure content is available in the Supplementary.  
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dependent densities and properties are obtained straightforwardly for 
analysis. 
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