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Résumé: Les interactions entre flammes et plasmas sont le fil directeur de ce travail. Les
décharges nanoseconde répétées (NRP en anglais) sont des plasmas hors-équilibre qui ont
montré des caractéristiques intéressantes pour le contrôle de la combustion. Ces décharges
peuvent interagir avec les flammes à travers non seulement un effet thermique, mais aussi
un effet chimique à travers la production d’espèces réactives tel que les radicaux. Dans cette
thèse, des simulations entièrement couplées de combustion assistée par plasma sont visées.
Pour ce faire, la simulation de décharges plasmas a été implémentée dans le code de plas-
mas froids AVIP. Les méthodes numériques, ainsi que de nombreux cas de validations pour
chaque ensemble d’équations, sont tout d’abord présentées. Ces équations comprennent les
équations de dérive-diffusion couplées avec l’équation de Poisson pour les décharges plasmas.
AVIP est couplé à AVBP qui résout les équations de Navier-Stokes réactives pour décrire la
combustion. Dans une deuxième partie, nous commençons par construire une chimie détaillée
pour les mélanges méthane-air à travers des calculs de réacteurs 0D. Cette chimie est ensuite
réduite pour être applicable à des calculs multi-dimensionnels. La capacité d’AVIP à simuler
des décharges plasmas, aussi appelés streamers, est ensuite montrée sur des chimies simples.
Toutes les parties du code sont enfin rassemblées dans un calcul multi-dimensionel enitère-
ment couplé pour étudier l’allumage d’un mélange méthane-air en utilisant des décharges
NRP. Au vu de l’expérience gagnée sur ces simulations entièrement couplées, des modèles
phénoménologiques sont proposés. Dans une dernière partie, des réseaux de neurones sont
utilisées pour résoudre l’équation de Poisson. Ceux-ci ont le potentiel pour accélérer les
simulations plasmas par rapport aux solveurs linéaires classiques.
Mots-clés: Combustion Assistée par Plasma, Méthodes Numériques, Réseaux de Neurones,
équation de Poisson



Abstract: Interaction between flames and plasmas are the guiding thread of this work.
Nanosecond Repetitively Pulsed (NRP) discharges are non-thermal plasmas which have
shown interesting features for combustion control. They can interact with flames not only
through heat, but also chemically by producing active species. In this work, fully-coupled
plasma assited combustion simulations are targeted. To achieve this goal, plasma discharge
capabilities are built in the low temperature plasma code, AVIP. The corresponding numer-
ical methods, as well as validation cases regarding each set of equations, are first presented.
To simulate plasma discharges, the coupled drift-diffusion equations and the Poisson equation
are considered. AVIP is coupled to the AVBP code which solves the reactive Navier-Stokes
equations to describe combustion phenomena. In a second part, we start by constructing
and validating a fully-detailed chemistry for methane-air mixtures in zero-dimensional reac-
tors before reducing it for multi-dimensional simulations. The multi-dimensional streamer
simulation capabilities of the code are then assessed using simple chemistries. All the vali-
dated parts of the code come together in a fully detailed simulation of ignition using NRP
discharges. We finish by discussing phenomenological models built upon the knowledge that
we gained from fully-detailed simulations. In a last part, finally, attempt to solve the Poisson
and generalized Poisson equations using neural networks, which have a potential for speedup
compared to classical linear solvers, is carried out.
Keywords: Plasma Assisted Combustion, Numerical Methods, Neural Networks, Poisson
equation
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Nomenclature

Below are lists of the main Acronyms, Roman characters and Greek characters used through-
out this work. This is not an exhaustive list and clashes are sometimes encountered.

Symbol Description
BC Boundary condition
CFL Courant-Friedrichs-Lewy
DL Deep Learning

EEDF Electron Energy Distribution Function
GRI Generalized Riemann Invariants
HLL Harten Lax van Leer
HLLC Harten Lax van Leer Contact
ISG Improved Scharfetter Gummel

KAUST King Abdulla University of Science and Technology
LW Lax-Wendroff
LLW Limited Lax-Wendroff
MLPs Multilayer perceptrons
NRP Nanosecond Repetitively Pulsed (discharges)

NSCBC Navier-Stokes Characteristic Boundary Conditions
NS Navier-Stokes
PAC Plasma Assisted Combustion
RH Rankine Hugoniot
RK Runge-Kutta
SGD Stochastic Gradient Descent
SG Scharfetter Gummel

Table 1: Acronyms
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Symbol Description
A Matrix
a Sound speed
B Magnetic field
cp Specific heat capacity at constant pressure
D Diffusion coefficient
G Green function or Gibbs free energy
es Sensible energy
E Total non-chemical energy
et Total energy
E Electric field
F Flux for euler and drift-diffusion equations
F0 Electron Energy Distribution Function
fα Distribution function of species α
J Current density
kB Boltzmann constant
Lek Lewis number of species k
n Number density
p Pressure
qi Charge of species i
q Heat flux
Q Partition function
Q̇j Molar reaction j rate
R Perfect gas constant
Sph Photoionization source term
s0
L Laminar flame speed

Sck Schmidt number of species k
T Gas temperature
Te Electron temperature
u Scalar variable or velocity
u Mean velocity of the mixture
U Vector of conservative variables
V Velocity or voltage
W Drift-velocity or vector of primitive variables
W Mean molecular weight of the mixture
Wk Molecular weight of species k
Yk Mass fraction of species k

Table 2: Roman characters
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Symbol Description
β Sweby limiter parameter
Γ Particle density flux
δ0
L Thermal layer thickness
ε0 Vacuum permittivity
η Viscosity coefficient
θ Cylindrical coordinates angle
λ Thermal conductivity
λD Debye length
µ Mobility coefficient
µk Chemical potential of species k
ρ Mass density
σ Cross-section or activation function
τ Cell of the computational domain
φ Electromagnetic potential
ψ Wave function
Ω Domain of computation
Ω̇ Interior of computation domain
∂Ω Border of computation domain
ωp Plasma oscillation pulsation frequency

Table 3: Greek characters
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Introduction: Flames and plasmas

Contents
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1.3 Thesis objectives and outline . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Combustion challenges and needs

Combustion is and will be in the near future the primary source of energy in the world due to
the high efficiency and flexibility of combustion engines. At the time of writing, it accounts
for more than 80% of the world energy production. The impact on air pollution and climate
change is however a major concern of the combustion of fossil fuels and needs to be adressed
[Chu and Majumdar, 2012].

In ground transportation, the development of new combustion engines such as the HCCI
(Homogeneous Charge Compression Ignition) engine [Lu et al., 2011] offers higher compres-
sion ratios with lower combustion temperature by relying on very lean premixed combustion.
This leads to higher engine efficiency and lower pollutant emissions but these gains come
with unpredictable ignition timings and less stable flames.

Concerning air transporation, the enhancement of combustion efficiency and emission
is also possible through leaner combustion [Tacina et al., 2004]. However in-flight relight
capabilities at high altitudes and combustion instabilities are of major concern in those
regimes.

In ground power generation and industrial furnaces, flameless combustion regimes [Cava-
liere and de Joannon, 2004] are investigated and seem to be a promising technique to adress
the efficiency and emission challenges of combustion. This technology also relies on ultra-lean
conditions with a low temperature reaction zone.

1.2 Plasma assisted combustion: a new way to enhance com-
bustion

Plasmas, the fourth state of matter, have shown capabilities of enhancing radical production
as well as decreasing the ignition delay. Therefore plasma assisted combustion might be
the solution to these combustion challenges as shown in the reviews of Ju and Sun [2015],
Starikovskiy and Aleksandrov [2013].
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Figure 1.1: Plasma discharges overview taken from Ju and Sun [2015].

There is a wide variety of plasma discharges shown in Fig. 1.1 which can enhance combus-
tion in three ways summarized in Fig. 1.2: thermally, kinetically and with a transport effect.
Plasma discharges are controled by the reduced electric field E/N where E is the electric
field and N the neutral gas density. This reduced electric field in turn controls the electron
temperature and the electron density which are the two main parameters that discriminate
different discharges.

An important notion to define is equilibrium for plasma discharges. To create a plasma
discharge, a high voltage difference is imposed between two electrodes which accelerate elec-
trons (more details in Chap. 2). At the onset of the discharge, electron temperature Te
deviates substantialy from the gas temperature Tg. As long as Te � Tg the plasma is a
thermally non-equilibrium one with respect to the gas. If the plasma is maintained for a
certain amount of time, electron temperature and gas temperature equilibrate (Te ' Tg)
through elastic collisions between electrons and neutrals and we obtain a thermal equilib-
rium plasma. During this thermalization process, electrons are basically heating the gas
and causing a temperature increase (left part of Fig. 1.2). The arc and spark discharges
of Fig. 1.1 are equilibrium plasmas that only use the thermal effect of plasmas to impact
combustion.

During the non-equilibrium phase of a plasma, the highly energetic electrons are able to
excite vibrational and electronic quantum states of neutrals (central pathway of Fig. 1.2).
The amounts of vibrational and electronic population created are far from the Boltzmann dis-
tribution given by the canonical ensemble so that we have achieved statistical non-equilibrium
on top of thermal non-equilibrium. These excited species are highly reactive and are able
to create radicals which can also be formed by electron-impact reactions on neutrals. There
is not one way to keep non-equilibrium plasmas and all the highest electron temperature
plasmas of Fig. 1.1 from Corona to Nanosec use different approaches that focus more on the
kinetic pathway enhancement of Fig. 1.2.

Finally charged species are subject to electric and magnetic forces and a transport ef-
fect can be achieved by plasmas (right pathway of Fig. 1.2). Accelerated charged species
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Figure 1.2: The schematic of major enhancement pathways of plasma assisted combustion
taken from Ju and Sun [2015].

can breakdown the large fuel molecules to smaller fragments thus changing the combustion
process. Alternatively, the ionic wind produced by charged species can also alter the flow
velocity.

In this work, plasma discharges of small duration are used to obtain non-equilibrium
plasma discharges: the Nanosecond Repetitively Pulsed (NRP) discharges. Since Kruger
et al. [2002] showed that NRPs were able to maintain a non-equilibrium plasma state at
atmospheric pressures, multiple experimental and numerical studies of NRP discharges have
been performed.

Barbosa et al. [2015] showed the benefits of using such discharges on premixed swirl
burners, representative of real industrial burners. In this experiment, NRP discharges ex-
tended the burner lean extinction limit and produced robust and stable flames in ultra-lean
conditions. Another study in Xu et al. [2016] compared NRP discharges against conventional
spark discharges and showed faster kernel expansion using the former.

Numerical studies of plasma discharges have been performed in Celestin [2008], Tholin
[2012] using simplified chemistry in air and H2-O2 mixtures. A complete methodology to
simulate NRP discharges has been laid out in these works to assess the influence of gap
distance, radius of curvature of electrodes, applied voltage on the discharge propagation.
To take into account NRPs in combustion simulations, a phenomonological model has been
developed in Gracio Bilro Castela [2016] using the three major pathways of Fig. 1.2. A
simpler model has also been used in Maestro [2018] only accounting for thermal effects.

1.3 Thesis objectives and outline

This thesis has focused on the detailed numerical simulation of plasma assited combustion.
A previous code at CERFACS, AVIP, has been written for simulation of low-temperature
plasmas in Hall-effect thrusters Joncquieres [2019]. A complete rewriting of AVIP to be able
to simulate both Hall-effect thrusters plasmas and plasma discharges in the same code has
been carried out.
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The first part of this thesis is dedicated to plasma assisted combustion modelling. Basics
of plasma physics in Chap. 2 are presented where important plasma phenomena are detailed.
We then focus on turbulent combustion equations with the reactive Navier-Stokes equations
in Chap. 3. Descriptions of premixed, non-premixed in laminar and turbulent conditions are
given with the most important thermodynamic relations in gas mixtures. Finally Chap. 4
presents the plasma assisted combustion set of equations considered for the numerical simu-
lation of NRP discharges in air and methane-air mixtures.

The numerical methods implemented in AVIP to simulate plasma assisted combustion are
described in a second part. General definitions and properties of numerical schemes as well
as the data structure of AVIP are given in Chap. 5. The Poisson equation is the subject of
Chap. 6 where, besides presenting the AVIP numerical discretization, general properties and
canonical solutions are given. Plasma species are described with drift-diffusion equations in
AVIP which consist in advection-diffusion-reaction equations and their numerical integration
is detailed in Chap. 7. Robust numerical schemes for gas mixture equations have been
developed in this work for unstructured meshes and are presented in Chap. 8.

Numerical simulations of plasma assisted combustion are performed in the third part.
Zero-dimensional computations are first presented with the creation of a new chemistry
compiled from all across the litterature where validation against real cases is performed.
The capability of AVIP to simulate plasma discharges is then carried out with a comparison
to a streamers code benchmark as well as other works. The simulation of multi-dimensional
plasma assisted combustion with reduced chemistry is finally performed on several cases
in air and methane-air mixtures. These simulations fully couple reduced non-equilibrium
plasma and combustion chemistries. Knowledge gained by these simulations allow to extend
and precise the phenomological model of Gracio Bilro Castela [2016] and is presented in a
last part.

Finally, work related to plasma simulations and neural networks is presented: the resolu-
tion of the Poisson equation with neural networks is attempted for plasma simulations. Since
this topic is not directly related to the main body of this thesis, it can be read independenty
and some redundances with the previous parts are present. The basics of deep learning
are first recalled where the central backpropagation algorithm is detailed. Then a study of
using convolutional neural networks to solve the Poisson and screened Poisson equations is
performed.
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Modeling Plasmas and Combustion





Chapter 2

Plasma physics
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2.1.1 The fourth state of matter . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 The occurence of plasmas in nature . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Application of plasma physics other than PAC . . . . . . . . . . . . . . 9

2.2 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Charge phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Particle orbit theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Statistical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 From Boltzmann to a fluid model . . . . . . . . . . . . . . . . . . . . . . 11
2.2.5 The Boltzmann model for collisions . . . . . . . . . . . . . . . . . . . . 13
2.2.6 Drift-diffusion model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Important plasma phenomena . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Electron-plasma oscillation . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 The Debye Shielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.3 The plasma sheath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Streamer Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.1 Electron avalanche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Townsend Breakdown Mechanism . . . . . . . . . . . . . . . . . . . . . 24
2.4.3 Streamer Discharge Theory . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.4 Photoionization Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 General properties of plasma

A general overview of plasma physics is given here and adapted from [Bittencourt, 2004,
Chap. 1]. Simple definitions and examples of plasmas in nature are given with applications
outside PAC.

2.1.1 The fourth state of matter

A plasma is a wide variety of macroscopically neutral substances containing many interacting
free electrons and ionized atoms or molecules, which exhibit collective behavior due to the
long range Coulomb forces.
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It is the fourth state of matter after the solid, liquid and gaseous states. By heating a
solid, liquid or gas, the atoms or melocules acquire more thermal kinetic energy until they
are able to overcome the binding potential energy. At sufficiently elevated temperatures an
increasing fraction of the atoms will possess enough energy to overcome, by collisions, the
binding energy of the outermost orbital electrons, and an ionized gas or plasma results.

They are two main ways to produce plasma: either by photoionization i.e. by asborbing
incident photons whose energy are equal to or greater than the ionization potential of the
absorbing atom, or with a gas discharge, i.e. an electric field is applied across a gas which
creates an avalanche of ionization.

The properties of a plasma depend on the type of particle interactions and its behavior
display collective effects. In a plasma charge-charge and charge-neutral interactions are
separated, they occur in respectively strongly ionized and weakly ionized plasmas.

Plasmas display a wide range of properties depending on the conditions in which they
are created but they do have some common properties : they are good electrical/thermal
conductors, for all of them the lower mass-electrons diffuse faster than ions generating a
space charge and they all have an ability to sustain wave phenomena.

2.1.2 The occurence of plasmas in nature

With the progress made in astrophysics and in theoretical physics during the last century,
it was realized that most of the matter in the known universe, with few exceptions such as
the surface of cold planets (like the Earth), exists as plasma.

The sun, which is our nearest star and upon which the existence of life on Earth funda-
mentally depends, is a plasma phenomenon. Its energy output is derived from thermonuclear
fusion reactions of protons forming helium ions deep in its interior and the consequent ther-
monuclear reactions keep the entire sun gaseous. Plasma erupted from the sun’s surface can
be seen in Fig. 2.1.

Figure 2.1: Plasma erupted from the sun, taken from https://www.livescience.com.

These eruptions produce a plasma called the solar wind which can travel great distances.
Solar wind can disturb the Earth’s magnetic field and produce the well-known polar lights
shown in Fig. 2.2.

The Ionosphere, which is a part of the atmosphere which envelopes the Earth from an
altitude of approximately 60 km to several thousands of kilometers, is another example of

https://www.livescience.com
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Figure 2.2: Picture of Aurora, taken from https://en.wikipedia.org/wiki/Aurora.

plasma. The ionized particles in the ionosphere are produced during the daytime through
absorption of solar extreme ultraviolet and X-ray radiation by the atmospheric species.

2.1.3 Application of plasma physics other than PAC

A wide variety of plasma experiments have been performed in laboratories to aid in the
understanding of plasma, as well as to test and help expand plasma theory. The progress in
plasma research has led to a wide range of plasma applications. Plasma assisted combustion
is obviously one of them but this section highlights other ones.

The most important application of man-made plasmas is in the control of thermonuclear
fusion reactions, which holds a vast potential for the generation of power. Nuclear fusions
is the process whereby two light nuclei combine to form a heavier one, the total final mass
being slightly less than the total initial mass. The mass difference (∆m) appears as energy
(E) according to Einstein’s famous law E = (∆m)c2, where c denotes the speed of light.
The nuclear fusion reaction is the source of energy in the stars, including the sun.

The magnetohydrodynamic (MHD) energy generator converts the kinetic energy of a
dense plasma flowing across a magnetic field into electrical energy [Sherman, 1966]. MHD
generators are different from traditional electric generators because they operate without
moving parts to limit the upper temperature: the moving conductor is in this case a hot
conductive ionized gas.

Plasma propulsion systems for satellites are based on a process that converts electri-
cal energy into plasma kinetic energy, that is, the reverse of the MHD generator process.
Among them, Hall-effect thrusters have received increased attention recently [Taccogna and
Garrigues, 2019]: they generate thrust by accelerating charged species using the Hall effect.
An example of Hall-effect thruster from Safran is shown in Fig. 2.3.

2.2 Governing equations

The plasma governing equations are detailed in this section. The Maxwell equations are first
recalled to solve the electromagnetic fields. The particle orbit theory which is the basis of

https://en.wikipedia.org/wiki/Aurora
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Figure 2.3: Picture of a PPS®5000, taken from https://www.safran-group.com.

PIC simulations is then briefly presented. The remaining part of this section is dedicated
to the derivation of the plasma fluid equations from the Boltzmann equation and is adapted
from [Raimbault, 2018, Chap. 2].

2.2.1 Charge phenomena

To model plasma we need the Maxwell equations to get the electric field E and the mag-
netic field B. Those two fields appear in the momentum and energy equations of the fluid
formulation of plasma physics. The Maxwell equations are as follows Jackson [1999]:

∇×E = −∂B
∂t

(2.1)

∇×B = µ0(J + ε0
∂E
∂t

), J = 1
δV

∑
i

qivi (2.2)

∇ ·E = ρq
ε0
, ρq = 1

δV

∑
i

qi (2.3)

∇ ·B = 0 (2.4)

where qi and vi are respectively the charge and speed of each charged particle, δV is a
suitably chosen small volument element, ρq is the global charge density, J is the global
current density, ε0 is the vacuum permitivity and µ0 is the vacuum permeability.

2.2.2 Particle orbit theory

Each charged particle of plasma is treated individually and for each one Newton’s second
law is solved. In the case of uniform electrostatic, magnetostatic field and a uniform and

https://www.safran-group.com
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constant external force Fext (e.g. the gravity):

m
dv
dt

= q(E + v×B) + Fext (2.5)

where m is the particle mass,q is the particle charge, v is the speed. The particle velocity
can be expressed as follows:

v(t) = Ω× rc + E⊥ ×B
B2 +

qE‖
m

t+ v‖(0) + Fext ×B
qB2 (2.6)

where the parallel and perpendicular directions are defined in reference to the magnetic field
B, Ω = −qB/m is a vector whose norm is called the cyclotron frequency, the vector rc is
interpreted as the particle position vector with respect to the point G (the center of gyration)
in the plane perpendicular to B which contains the particle.

The first term is associated to the cyclotron motion, the second term is called the plasma
drift velocity, the third term is the uniform acceleration due to the electric field, the fourth
one is the initial condition and the last one is the drift due to the external force.

2.2.3 Statistical approach

A plasma is a system containing a very large number of interacting charged particles that
can be described using a statistical approach through the use of a distribution function fα
for each species α present in the plasma. The Boltzmann equation describing a system of N
particles α in phase space (r,v,t) is :

∂fα
∂t

+ v · ∇fα + a · ∇vfα =
(
δfα
δt

)
c

(2.7)

where a is the total acceleration and ∇v = ∂/∂v the gradient in velocity space.
The Vlasov equation is commonly used to model plasma. The collisions are neglected

and it considers that the plasma particle motions are governed by the applied external fields
plus the internal fields :

∂fα
∂t

+ v · ∇fα + 1
m

[Fext + q(Ei + v×Bi)] · ∇vfα = 0 (2.8)

where Ei and Bi are internal smoothed electric and magnetic fields due to the presence and
motion of all charged particles inside the plasma.

2.2.4 From Boltzmann to a fluid model

From the Boltzmann equation, the number of particles per unit volume, the number density,
is defined as :

nα =
∫
v
fα(r,v, t)d3v (2.9)

This relation shows that f/n defines a normalized probability density function that will be
noted F in the following. Let a(r,v,t) be a molecular property defined in the phase space.
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The average value of a is then:

〈a〉(r, t) = 1
nα(r, t)

∫
v
a(r,v, t)fα(r,v, t)d3v (2.10)

where nα is the number density. This average value gives access to all macroscopic variables.
Let us insist on the fact that 〈a〉(r, t) is a function of r and t, the integration over velocity
space allows to define molecular properties in the physical space of position and time.

From now on the α subscript is ommited for more clarity. The characteristic function of
a probability density function is its Fourier transform :

F̂ (k) =
∫
eik·vF (r,v, t)dv = 〈eik·v〉 (2.11)

By developing in series the exponential :

〈eik·v〉 = 1 + i〈k · v〉+ i2

2 〈(k · v)2〉+ . . . (2.12)

Products such as 〈vxvyvz...vx〉 appear in this development. These terms are associated to
the concept of moments of a probability density function. More precisely, the kth moment
of the distribution function F is :

Mk(r, t) =
∫

vv . . .v︸ ︷︷ ︸
k times

Fdv = 〈vv . . .v〉 (2.13)

where the product used here is the tensor product. The information contained in the Fourier
transform being tantamount to the information contained in the initial function it is clear
that the knowledge of all the moments is equivalent to the knowledge of the initial function.
We can also note that the higher the moment, the more information about the tail in velocity
space of the probability density function we get.

To get the fluid equations the Boltzmann equation is then multiplied by a(v) and inte-
grated over velocity space. The general transport equation is finally derived:

∂〈na(v)〉
∂t

+∇r · 〈na(v)v〉 = 〈F
m
· ∇vna(v)〉+

∫
a(v)

(
δf

δt

)
c
d3v (2.14)

where ∇r = ∂/∂r is the gradient with respect to position and ∇v is the gradient with respect
to velocity.

The following macroscopic properties are defined as follows :

• The mean velocity V = 〈v〉

• The peculiar velocity w = v−V

• The kinetic pressure P = nm〈ww〉

• The temperature T = kbm
3 〈w

2〉

• The heat flux q = nm
2 〈w

2w〉
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where v = |v| and w = |w|. Setting a = 1,mv,mv2/2, we retrieve the continuity, momentum
and energy equations:

∂n

∂t
+∇ · Γ =

∫ (
δf

δt

)
c
d3v (2.15)

∂nmV
∂t

+∇ ·D = nq(E + V×B) +
∫
mv

(
δf

δt

)
c
d3v (2.16)

∂nε

∂t
+∇ ·H = nqE ·V +

∫ 1
2mv

2
(
δf

δt

)
c
d3v (2.17)

with the total energy ε = 〈12mv2〉 = 1
2mV

2 + 3
2kBT , the particle flux Γ = nV, the momentum

flux D = P + nmVV and the total energy flux H = nεV + q + P ·V.

2.2.5 The Boltzmann model for collisions

2.2.5.1 Collision parameters

Let us consider two species α and β with their respective distribution function fα and
fβ. fα(r,vα, t)d3vα is the number of particles per unit volume with speeds between vα
and vα + d3vα and fβ(r,vβ, t)d3vβ is the number of particles per unit volume with speeds
between vβ and vβ + d3vβ.

The number of collisions, dQαβ, between α and β particles per unit volume and per unit
time, having speeds equal to vα (with d3vα uncertainty) and vβ (with d3vβ uncertainty),
causing diffusion in the elementary solid angle dΩ is:

dQαβ = fα(vα)d3vαfβ(vβ)d3vβvαβσαβ(vαβ,Ω)dΩ (2.18)

This relation defines the differential cross section σαβ. A cross section must be associated
with each type of collision (elastic collisions, inelastic collisions including ionization, exci-
tation, attachment). In the case of inelastic collisions, a threshold effect is observed: cross
section are equal to zero below a certain value. The calculation of these cross sections is in
general very difficult and sometimes need to include quantum effects.

The plasma fluid equations are invariant in space and time and it can be thus shown that
cross sections are equal for a reaction and its inverse

σαβ→α′β′ = σα′β′→αβ (2.19)

This relation is known as the microreversibility property. The total cross section Σαβ(v)
is also defined where information on angles is lost:

Σαβ(vαβ) ≡
∫
σαβ(vαβ,Ω)dΩ (2.20)

Three important quantities depending on the total cross section are also the collision rate
Kαβ, the collision frequency ναβ and the mean free path λαβ:
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Kαβ ≡ Σαβ(vαβ)vαβ (2.21)

λ(vαβ) ≡ 1
nβΣαβ(vαβ) (2.22)

ναβ ≡ nβKαβ = nβΣαβvαβ = vαβ
λαβ(vαβ) (2.23)

The corresponding macroscopic physical quantities can be defined with an averaging
using the distribution functions.

Some of the important interactions between plasma particles can be analyzed using a
central force law:

Fαβ = Cαβ
raαβ

(2.24)

where rαβ is the distance between the particles, and Cαβ and a are constants which
depend on the interaction. The important cases are a = 2, a = 5 and a → ∞. In what
follows, the functional dependence on the relative speed of each parameters described above
is recalled.

1. a = 2: Coulomb interaction. This case describes interactions between charged particles:
electron-electron, electron-ion, ion-ion.

Fαβ(rαβ) ∝ 1
r2
αβ

=⇒ σαβ(vαβ) ∝ 1
v4
αβ

=⇒ Kαβ, ναβ ∝
1
v3
αβ

(2.25)

2. a = 5: charge-induced dipole interaction. This case corresponds to the interaction
between a charged particle and a polarizable atom. The polarization occurs only if the
relative speed between the two particles is not too big otherwise it is simply a hard
spheres interaction. This interaction can also be used to describe ion-corresponding
atom interaction.

Fαβ(rαβ) ∝ 1
r5
αβ

=⇒ σαβ(vαβ) ∝ 1
vαβ

=⇒ Kαβ, ναβ = Cte (2.26)

3. a → ∞: hard spheres interaction. This interaction can be used for an interaction
between a charged particle and a non-polarizable atom. It can also be used to describe
short range atom-atom interaction (at longer range the van der Waals potential is
needed).

Hard spheres =⇒ σαβ(vαβ) = Cte =⇒ Kαβ, ναβ ∝ vαβ (2.27)

The last two interaction types where either the collision frequency or the mean free-
path is independent of the relative speed of the particles are two limit models that allow
simplifications in the case of weakly-ionized plasmas.
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2.2.5.2 The Boltzmann collision integral

In this section, one derivation of the collision term (δfα/δt)c in the Boltzmann equation is
presented. It was originally obtained by Boltzmann [1872] and applicable to low density
neutral gases.

In the weakly ionized plasmas of interest, the dominant interactions are the ones between
charged and neutral particles. Contrary to the long range Coulomb interactions, Boltzmann
integral can be applied to these interactions.

The integral collision (δfα/δt)c represents the variation of the number of particles per
phase space unit volume d3rd3v and per unit time of α particles as a result of collisions with
β particles (typically electron-neutral, ion-neutral or neutral-neutral).

The hypotheses made in this calculation are as follows:

• collisions are binary (diluted gas)

• collisions are local and instantaneous

• speeds of particles before collisions are uncorrelated

Variations of the number of particles α in the d3rd3v phase space volume during dt due
to collisions with β particles have two origins:

• a loss of particles having speed vα before collision and v′α after collision. From the
definition of the differential cross section:

dN−α = d3rdt
∫

vβ

∫
Ω
vαβσαβ(vαβ)fα(r,vα, t)fβ(r,vβ, t)dΩd3vαd3vβ (2.28)

• a gain of particles having speed v′α before collision and vα after collision. From the
definition of the differential cross section:

dN+
α = d3rdt

∫
vβ ′

∫
Ω
v′αβσ

′
αβ(v′αβ)fα(r,v′α, t)fβ(r,v′β, t)dΩd3v′αd3v′β (2.29)

where σ′αβ(v′αβ) ≡ σα′β′→αβ(v′αβ,Ω).

Since: (
δfα
δt

)B
c

d3vαd3rdt = dN+
α − dN−α , (2.30)

the general expression for the integral collision is:

(
δfα
δt

)B
c

d3vα =
∫

vβ ′

∫
Ω
v′αβσαβ(v′αβ)fα(r,v′α, t)fβ(r,v′β, t)dΩd3v′αd3v′β (2.31)

−
∫

vβ

∫
Ω
vαβσαβ(vαβ)fα(r,vα, t)fβ(r,vβ, t)dΩd3vαd3vβ

where only the micro-reversibility property was used i.e. σαβ→α′β′ = σα′β′→αβ.
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2.2.5.3 Contributions of elastic collisions on plasma fluid equations

To obtain the fluid model from Boltzmann’s equation an integration on velocity space is
needed, therefore to evaluate the impact of elastic collisions on the fluid equations an evalu-
ation of the quantity

Sel
lα =

∫
a(vα)

(
δfα
δt

)el

c
d3vα (2.32)

where a(vα) represents the considered moment considered and l its corresponding num-
ber (l = 0, 1, 2 in the derivation of the fluid equations presented here). By using spe-
cific properties of elastic and binary collisions v′αβ = vαβ, d3v′βd3v′α = d3vβd3vα and
σαβ→α′β′ = σα′β′→αβ, this term is reduced to:

Sel
lα =

∫∫∫
[a(v′α)− a(vα)]vαβσαβ(vαβ)fαfβdΩd3vαd3vβ (2.33)

One interesting thing to notice about this expression is that when β = α i.e. the collisions
are between identical particles, it yields Sel

α = 0. Collisions between identical particles do
not influence the plasma fluid equations. However in plasmas there are multiples species to
ensure a global neutrality and the collisions contribute to the fluid equations.

1. Continuity equation From a(vα) ≡ 1:

Sel
0α = 0 (2.34)

2. Momentum equation a(vα) ≡ mαvα is taken here. In the case of elastic collisions the
variation of momemtum is:

mαv′α −mαvα = µαβ(v′αβ − vαβ) = µαβ[−(1− cos θ)vαβ + vαβ sin θe⊥] (2.35)

By introducing this new expression in the integral that defines Sel
1α, it yields:

Sel
1α = −µαβnαnβ

∫∫
vαβKαβ

fα
nα

fβ
nβ

d3vαd3vβ (2.36)

where the momentum transfer cross section σtαβ, the collision frequency ναβ, the reac-
tion rate Kαβ and the reduced mass µαβ are defined by the following relations:

σtαβ ≡
∫

(1− cos θ)σαβdΩ (2.37)

ναβ ≡ nβσtαβvαβ (2.38)
Kαβ ≡ σtαβvαβ (2.39)

µαβ ≡
mαmβ

mα +mβ
(2.40)

3. Energy equation By setting a(vα) ≡ mαv
2
α/2 and using the expression of the energy

transfer in a binary collision:
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Sel
2α ≡

∫ 1
2mαv

2
α

(
δfα
δt

)B
c

d3vα (2.41)

= −καβnαnβ
〈(1

2mαv
2
α −

1
2mβv

2
β + mβ −mα

2 vα · vβ
)
Kαβ

〉
(2.42)

where 〈. . . 〉 indicates an integration with the two normalized distribution functions and
καβ is the energy transfer coefficient defined by:

καβ ≡
µαβ
mαmβ

(2.43)

To go further into the computation of those terms, the dependence of the reaction rate
Kαβ on the relative speed vαβ is needed. This is equivalent to specify the collision cross
section and needs to be done case by case.

2.2.6 Drift-diffusion model

An approximation of the plasma fluid equations is often made when simulating plasmas
leading to the so-called drift-diffusion model. When the mean free path of the charged
particles (electrons and ions) is small compared to the characteristic lengths of the plasma,
the species undergo lots of collision before any significant acceleration. In these conditions,
the inertia forces can be neglected compared to the other forces:

−∇pα + nαqα(E + Vα ×B)−mαnα
∑
β 6=α

ναβ(Vα −Vβ) ' 0 (2.44)

In the case of weakly ionized plasmas, dominant collisions are the ion-neutral and electron-
neutral ones. Therefore the only species β in the equation above are the neutral species. Be-
ing insensitive to the electromagnetic forces, the neutral species velocity can be considered
small compared to the charged species i.e. Vβ � Vα. The force resulting from collisions
with neutral particles is given by:

−mαnαnβ
∑
αβ

ναβ(Vα −Vβ) ≈ −mαnαναVα (2.45)

where ναn ≡ να since the only collisions considered here are the one with neutral particles.
Finally Eq. (2.44) yields:

Vα = − kBTα
mανα

∇pα
pα

+ qα
mανα

(E + Vα ×B) (2.46)

2.2.6.1 Non-magnetized collisional plasmas

In the case where there is no magnetic field B = 0, and the classic drift-diffusion model is
retrieved:

Vα = µαE−Dα
∇pα
pα

(2.47)
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where µα and Dα are transport coefficients, respectively called mobility and diffusion coeffi-
cient:

µα ≡
qα

mανα
Dα ≡

kBTα
mανα

(2.48)

and these two coefficients are related through the Einstein relation:

Dα

µα
= kBTα

qα
(2.49)

The drift-diffusion equation clearly shows that the origin of the fluid speed for electrons
or ions is the existence of gradients in the plasma (such as potential, density or temperature).
It can also be noted that the pressure gradient contains in the general case two contributions
from the temperature gradient and the density gradient:

∇pα
pα

= ∇Tα
Tα

+ ∇nα
nα

(2.50)

In most drift-diffusion models the temperature gradient is considered negligible and only
the density gradient is kept.

2.2.6.2 Magnetized collisional plasmas

When the magnetic field is not equal to zero, the fluid speed is not anymore given explictly
by Eq. (2.46) and writes:

Vα = µα(E + Vα ×B)−Dα
∇pα
pα

(2.51)

However this vector equation is linear for the speed and can be solved through some
vector manipulation. The demonstration can be found in [Raimbault, 2018, p. 61-62] and
the speed can be divided into three components:

V ≡ V‖ + V⊥ + V× (2.52)

‖ referring to the direction of the magnetic field, ⊥ to the direction of the electic field
perpendicular to the magnetic field and × to the third direction with respect to the first two
and that forms a direct base. The expressions of these speeds are as follows:

V‖ = µ‖E‖ −D‖
∇‖pα
pα

(2.53)

V⊥ = µ⊥E⊥ −D⊥
∇⊥pα
pα

(2.54)

V× = µ×E⊥ × b−D×
∇⊥pα
pα

× b (2.55)

(2.56)

where b is the normalized vector giving the direction of the magnetic field: b ≡ B/||B||.
The transport coefficients are given by:
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µ‖
µ

=
D‖
D

= 1, µ⊥
µ

= D⊥
D

= 1
1 + (ωc/ν)2 ,

µ×
µ

= D×
D

= ωc/ν

1 + (ωc/ν)2 (2.57)

where ωc ≡ qB/m is the cyclotron frequency. In the directions parallel and perpendicular,
the solutions with the presence of the magnetic field are formally the same as without any
magnetic field but with different transport coefficients.

2.3 Important plasma phenomena

Three important plasma phenomena covering different aspects of plasma physics are pre-
sented in this section taken from [Bittencourt, 2004, Chap. 11]. The canonical plasma
oscillation is first developed: it is the simplest interaction of plasma species and electromag-
netic fields. The Debye shielding and effective electric field felt by an individual particle is
then discussed. Finally basics of plasma sheath are recalled.

2.3.1 Electron-plasma oscillation

One of the fundamental properties of plasma is its tendency to maintain electric charge
neutrality on a macroscopic scale under equilibrium conditions. When this macroscopic
charge neutrality is disturbed, large Coulomb forces come into play and tend to restore the
macroscopic charge neutrality. Since these Coulomb forces cannot be naturally sustained in
the plasma, it breaks into high-frequency electron plasma oscillations i.e. the large Coulomb
forces disappear but they trigger the plasma oscillations. These oscillations enable the plasma
to maintain on average its electrical neutrality.

The simplest closed system of macroscopic transport equations that can be formed is
known as the cold plasma model. This simple model encompasses only the equations of
conservation of mass and of momentum. The highest moment of the distribution function,
appearing in the momentum equation, is the kinetic pressure dyad, which, in this model, is
taken equal to zero. It yields the following equations :

∂n

∂t
+∇ · Γ = S (2.58)

ρm
D

Dt
u = nq(E + u×B) + A− uS (2.59)

∇ ·E = ρ

ε0
(2.60)

where ρm is the mass density, ρ is the charge density, u the averaged velocity over phase
space, q the charge, n the number density, E and B the electric and magnetic fields. A is
the collision term in the momentum conservation equation (integral term in (2.16)) and S is
the source term due to collision in the mass conservation (integral term in (2.15)).

To study the characteristics of the electron plasma oscillations we can use the cold plasma
model, in which the particle thermal motion and the pressure gradient force are not taken
into account as well as the source term. That way only the electric field influence is taken
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into account. We shall neglect ion motion (since its mass is way larger than that of the
electron) and assume a very small electron density perturbation such that :

ne(r, t) = n0 + n′e(r, t) (2.61)

where n0 is a constant number density and |n′e| � n0. Similarly we assume that the electric
field E(r, t) and the velocity ue produced are first-order perturbations depending only on the
position. Note that the electric field doesn’t need to be one dimensional anymore and that
the result is therefore more general in this case. The linearized continuity and momentum
equations become :

∂n′e(r, t)
∂t

+ n0∇ · ue(r, t) = 0 (2.62)

∂ue(r, t)
∂t

= − e

me
E(r, t) (2.63)

where e is the elementary charge.

In the momentum equation we have assumed that the rate of momentum loss from the
electron gas due to collisions Aα is negligible. Considering singly charged ions, the charge
density is given by

ρ(r, t) = −e[n0 + n′e(r, t)] + en0 = −en′e(r, t) (2.64)

where the ion density is considered to be constant and uniform, and equal to n0. Therefore
the Poisson equation yields :

∇ ·E = − e

ε0
n′e(r, t) (2.65)

Eqs. (2.62), (2.63) and (2.65) constitute a complete set of equations to be solved for the
variables n′e,ue and E. Taking the divergence of Eq. (2.63), using Eq. (2.62) to substitute
for ∇ · ue and Eq. (2.65) to eliminate ∇ ·E we obtain :

∂2n′e
∂t2

+ ω2
pn
′
e = 0 (2.66)

ωp =
√
nee2

meε0
(2.67)

Therefore the density varies harmonically in time at the electron plasma frequency ωp.
In fact, all first-order perturbations have a harmonic time variation at the plasma frequency
ωp. To justify this statement it is convenient to start with the assumption that all first-order
quantities vary harmonically at the pulsation ω. Thus Eqs. (2.62) and (2.63) become :
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n′e = − i
ω
n0∇ · ue (2.68)

ue = − ie

ωme
E (2.69)

which yields :
n′e = − n0e

ω2me
∇ ·E (2.70)

Substituting this expression for n′e into Eq. (2.65) yields :

(1− ω2
p/ω

2)∇ ·E = 0 (2.71)

which shows that a nontrivial solution requires ω = ωp. Therefore all perturbations vary
harmonically in time at the electron plasma frequency. These oscillations are stationary and
longitudinal.

2.3.2 The Debye Shielding

The Debye length is a measure of the distance over which the influence of the electric field of
an individual particle is felt by the other charged particles : there is a shielding of electrostatic
fields in a plasma. This Debye length is :

λD =
√
ε0kBT

nee2 (2.72)

We can note than :

vth =
√
kBT

me
= λD × ωp (2.73)

To illustrate this phenomenon, let’s consider a plasma whose equilibrium state is per-
turbed by an electric field due to an external charged particle. We assume the test particle to
have a positive charge +Q, and choose a spherical coordinate system whose origin coincides
with the position of the test particle. We are interested in determining the electrostatic
potential φ(r) that is established near the test charge Q due to the combined effects of the
test charge and the distribution of charged particles. We assume one population of electrons
and ions with opposite charges and in the far field ne(∞) = ni(∞) = n0.

This is a steady state problem under a conservative electric field E = −∇φ(r). It can
be shown [Bittencourt, 2004, Chap. 7] that when perturbed by a conservative force, a
Maxwellian distribution is perturbed in such a way that : ne(r) = n0 exp

(
+ eφ
kBT

)
ni(r) = n0 exp

(
− eφ
kBT

)
From Maxwell Gauss’ equation (2.3) one gets :



22 CHAPTER 2. PLASMA PHYSICS

∇2φ(r)− 2
λ2
D

φ(r) = −Q
ε0
δ(r) with eφ(r)� kBT (2.74)

The resolution of this equation yields :{
φ(r) = φc(r) exp

(
−
√

2r
λD

)
φc(r) = Q

4πε0

φc is the potential created by the particle of charge Q in the absence of plasma. φ becomes
much less than this ordinary Coulomb potential once r exceeds the distance λD called the
Debye length.

2.3.3 The plasma sheath

When a material body is immersed in a plasma, the body acquires a net negative charge
and therefore a negative potential with respect to the plasma potential. In the region near
the wall of the body there is a boundary layer, known as the plasma sheath, in which the
electron and the ion number densities are different, this boundary layer is of the order of the
Debye length.

Let’s consider a wall immersed in a plasma as depicted in Fig. 2.4. The random particle
flux Γα going in the direction to the wall yields for a species α [Bittencourt, 2004, Chap. 7] :

Γα = nα

√
kBTα
2πmα

(2.75)

where nα, Tα and mα are the particle density, temperature and mass of species α.
Initially electron and ion densities are equal in the bulk of the plasma and the electron

temperature is way higher than the ion temperature such that Γe � Γi. Therefore the wall
in contact with the plasma accumulates negative charge which creates a negative potential
at the wall. This negative potential repels the electrons and attracts the ions, so that the
electron flux decreases and the ion flux increases. Eventually the negative potential becomes
large enough in magnitude to equalize the rate at which electrons and ions hit the surface.
At this floating negative potential the wall and the plasma reach a dynamical equilibrium
such that the net current at the wall is zero.

2.4 Streamer Physics

Before reviewing gas discharge theory, it is necessary to define two important concepts:
gas discharge and electrical breakdown. The term discharge is applied to any flow of electric
current through ionized gas, and to any process of ionization of the gas by the applied electric
field. In the most general sense the electrical breakdown is the process of transformation of
a nonconducting material into a conductor as a result of applying to it a sufficiently strong
field. If the applied field is strong and lasts long enough, a self-sustaining discharge, no
matter of what kind, is ignited by breakdown. The mechanism of streamers described below
is part of the conventional breakdown theory and is adapted from Liu [2006], Yuri P. Raizer
[1991] and [Fridman, 2008, Chap. 4].
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Figure 2.4: Diagram showing the variation of the eletrostatic potential φ(x) and the number
densities ne(x) and ni(x) inside the plasma sheath near an infinite plane wall.

2.4.1 Electron avalanche

If an electron appears in the gap between two planar electrodes, which establish a uniform
field, it will accelerate due to the electric field force and collide with the neutral molecules.
If the electric field is strong enough, the energy gained by the electron between collisions will
enable it to ionize the neutral molecules. As a result, there will be two electrons: the incident
one (primary electron) and the new one (secondary electron). Those electrons can repeat
the same collision ionization process, and the total number of electrons will exponentially
increase. The increasing of the number of electrons acts as an avalanche, called an electron
avalanche which is illustrated in Fig. 2.5.

The avalanche develops both in time and in space, and mathematically it can be described
by the following equation:

dne
dx = αne (2.76)

or equivalently

ne(x) = ne0 exp(αx) (2.77)

where ne0 and ne are the electron number density at the starting point of the avalanche
and at point x, respectively; α is the Townsend ionization coefficient that gives the electron
production per unit length.
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Figure 2.5: Evolution of an avalanche in a gap between cathode (C) and anode (A).

2.4.2 Townsend Breakdown Mechanism

The Townsend breakdown mechanism originates from the work on discharges in low pressure
gases and is the classical theory of gas discharge. In Fig. 2.5, the electron avalanche proceeds
in the opposite direction to the electric field, and electrons reach and disappear at the anode.
Ions produced in the collision ionization are slowly drifting toward the cathode. Having
reached the cathode, an ion knocks out an electron with a certain probability. This process
is called ion bombardment. The electron then undergoes a new avalanche, whose ions again
bombard the cathode to knock out new electrons. The cycle can be repeated again and again,
as long as the uniform field is maintained [Raizer, 1998, p.10]. To sustain the breakdown
process, Townsend theory relies on the bombardment of ions on the cathode to release seed
electrons to initiate electron avalanches. Due to their large mass, ions move much slower
than electrons, which results in a large time lag for the development of breakdown according
to Townsend theory [Raizer, 1998, p.11].

If the gap size d and the probability for an electron to be knocked out from the cath-
ode by ion bombardment is γ (called the secondary emission coefficient for the cathode), a
self-sustaining discharge will occur if the following condition is satisfied, i.e, positive ions gen-
erated by the electron avalanche must produce at least one electron to start a new avalanche:

γ[exp(αd)− 1] = 1 (2.78)

The left side of this equation represents the number of secondary electrons generated
by the ions colliding at the surface. It must be at least equal to one for the breakdown to
sustain itself. The discharge is self-sustained in a sense that it can maintain itself in a steady
state of primitive reproduction of electrons in the discharge volume, when the total outflow
of electrons and ions through the boundaries is fully compensated by the inflow due to the
emission of secondary electrons from the cathode and production of both types of species
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in the discharge volume due to ionization. Therefore, the Townsend breakdown mechanism
is a mechanism of ignition of a self-sustaining discharge in a gap, controlled by secondary
electron emission from the cathode. The ignition potential Vt (or equivalent critical electric
field Et) for a Townsend breakdown depends on the gas, the material of the cathode, the gas
pressure p, and the inter-electrode gap size d. The actual dependence is commonly expressed
as:

Vt = B(pd)
C + ln(pd) or Et

p
= B

C + ln(pd) (2.79)

where B and C are constants and specified by the properties of the gas and the material
of the electrodes.

2.4.3 Streamer Discharge Theory

The above-discussed Townsend mechanism of breakdown, which is relatively homogeneous
and includes the development of independent avalanches, takes place usually at pd < 200
Torr cm. At larger pd values, the avalanches essentially disturb the electric field and are no
longer independent, which leads to the streamer mechanism of discharges. Streamer discharge
theory was put forward in the 1930s to explain spark discharges. The theory is based on the
concept of a streamer. Streamers are narrow filamentary plasmas, which are driven by highly
nonlinear space charge waves. The dynamics of a streamer is mostly controlled by a highly
enhanced field region, known as a streamer head, and the streamer polarity is defined by the
sign of the charge in its head. A schematic illustration of a positive streamer propagating in
an ambient electric field is given in the left panel of Fig. 2.6. The right panel of the figure
gives the distribution of electron density, electric field and space charge along the central axis
of the streamer that is usually considered having cylindrical symmetry. The propagation of
the positive streamer is the same as the direction of the ambient electric field. A large
amount of space charges exists in the streamer head (the shaded region in the figure), which
strongly enhances the electric field in the region just ahead of the streamer, while screening
the ambient field out of the streamer channel (the region behind of the streamer head). The
peak space charge field can reach a value about 4-7 times the breakdown field Ek. The large
space charge field results in very intense impact ionization occurring in the streamer head.
This ionization rapidly raises the electron density from its ambient value to the level in the
streamer.

The channel of the streamer extends to the head region. In this sense, streamers are called
space charge waves. The ionization in the streamer head proceeds as electron avalanches
(Fig. 2.7). Multiple electron avalanches move towards the head of the streamer in the figure,
increase the electron density rapidly to the channel density, and neutralize the net space
charges in the head, while leaving positive ions in the trail of the avalanches. It has been
known that the photoionization process is needed to generate seed electrons ahead of the
streamer in order to initiate the electron avalanches. The large electric field in the head leads
to existence of many high energy electrons in this region, and the collisions of those electrons
with neutral molecules not only ionize neutral molecules but also excite those molecules. The
excited states of molecules can radiate photons (wavy arrows in Fig. 2.7), and those photons
can ionize neutral molecules beyond the head region which provide seed electrons ahead of
the streamer for an electron avalanche.
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Figure 2.6: Schematic of a positive streamer propagating in an ambient field

Figure 2.7: Illustration of a cathode-directed (positive) streamer: (a) propagation of the
positive streamer;(b) electric field near the streamer head.

The above discussion is about positive streamers. For negative streamers, the same large
electric field also appears in the streamer head and the streamer develops in a similar manner
as the positive one (i.e, as ionization wave). However, there exists the opposite polarity of
space charges in the streamer head, and the propagating direction of a negative streamer is
opposite to the ambient electric field but the same as the drifting direction of electrons as
can be seen in Fig. 2.8. Therefore it is possible that the drifting electrons initiate electron
avalanches ahead of the streamer tip, which enables the streamer to advance forward without
the participation of the photoionization process. However, since the speed of a streamer can
reach as high as one tenth of the speed of light that is much larger than the drift velocity of
electrons, it is still expected that the photoionization process plays an essential role in the
development of a negative streamer.
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Figure 2.8: Illustration of an anode-directed (negative) streamer: (a) propagation of the
positive streamer;(b) electric field near the streamer head.

2.4.4 Photoionization Model

In the streamer process the photoionization of O2 is caused by the radiation in the region
of the spectrum 980 < λ < 1025Å. The radiations in this interval are produced due to
the radiative transitions from three singlets of N2 to the ground state. The model from
Zheleznyak et al. [1982] is presented here as well as the two and three-exponential Helmholtz
models for photoionization in air explained in Celestin [2008].

2.4.4.1 Integral model

In Zheleznyak et al. [1982], the number of ionization events dQph in volume dV2 per unit
time owing to the absorption of photons emitted per unit time from the superposition of
elementary volumes dV1 of the source at a distance r = |r1 − r2| (Fig. 2.9) can be expressed
in the form dQph = SphdV2 where

Sph = dQph
dV2

=
∫
V1

φ(r)
4πr2 dV1 (2.80)

φ(r) =
∫
εfξfkfe

−kf rdf (2.81)

and where εf is the emissivity of the gas (εfdf is the number of photons emitted per unit
volume per unit time in the frequency interval [f, f + df ]), kf is the absorption coefficient,
and ξf is the probability of ionization through absorption of a photon with frequency f . The
integral (2.81) can be approximated as a sum over frequency regions ∆f characterized by
different values of the absorption coefficient:

φ(r) =
∑
i

ξiqi
∆fi

∫
∆fi

kfe
−kf rdf (2.82)
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Figure 2.9: Geometry of the photoionization model

where ξi is the average value of ξf in the interval ∆fi and qi =
∫
∆fi

εfdf . In the
980 < λ < 1025Å range, the absorption coefficient of O2 is a sharp function of frequency:

kf = k1

(
k2
k1

)(f−f1)/(f2−f1)
(2.83)

where k1 = χminpO2 , k2 = χmaxpO2 , and χmin = 0.035Torr−1cm−1 and χmax = 2Torr−1cm−1

are, respectively, the minimum and maximum absorption cross section of O2 in the interval
980-1025Å. By considering the interval 980-1025Å as a single frequency range:

φ(r) = ξq

r ln(k2/k1)(e−k1r − e−k2r) (2.84)

q is the average number of photons emitted per unit time per unit volume in the frequency
range 980-1025Å and can be expressed as:

q = pq
p+ pq

q0 (2.85)

where pq
p+pq is a quenching multiplier, p is the pressure and pq is the quenching pressure of

the singlet states of N2. q0 is the emissivity in the absence of quenching and can be expressed
as:

q0 = ν∗
νi
νine (2.86)

where ν∗ is the effective ionization frequency, νi the ionization frequency and ne the
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electron density. In the end Zheleznyak model yields:

φ(r) = pq
p+ pq

ξ
ν∗
νi
νineg(r) (2.87)

g(r) = exp(−χminpO2)− exp(−χmaxpO2)
r ln(χmax/χmin) (2.88)

2.4.4.2 Two and three-exponential Helmholtz models for photoionization in air

To compute the photoionization source term a volume integral needs to be calculated at
every point of the mesh which is extremely costly. To minimize the cost, another coarser
grid could be defined and the source term could be reinterpolated on the initial grid. Another
way of solving this photoionization source term is presented here using an exponential fit of
the g function in Eq. (2.88). This function is interpolated as follows:

g(r)
pO2

= pO2r
∑
j

Aje
−λjpO2r (2.89)

Here j is equal to 2 or 3 depending on the degree of precision wanted for the interpolation.
The coefficients for the two and three-exponential Helmholtz models are given in 2.1 and
2.2. The graphs of the real g(r) function and the exponential fits are given in Fig. 2.10.

j Aj [cm−2Torr−2] λj [cm−1Torr−1]
1 0.0021 0.0974
2 0.1775 0.5877

Table 2.1: Parameters of the two exponential model

j Aj [cm−2Torr−2] λj [cm−1Torr−1]
1 1.986× 10−4 0.0553
2 0.0051 0.1460
3 0.4886 0.89

Table 2.2: Parameters of the three exponential model

By doing so the photoionization source term becomes a sum of three source terms:

Sph(r) =
∑
j

Sjph(r) (2.90)

Sjph(r) =
∫
V ′

I(r′)AjpO2e
−λjpO2R

4πR dV ′ (2.91)

where R = |r− r′|. Each Sphj satisfies the following equation:

∇2Sjph(r)− (λjpO2)2Sjph(r) = −Ajp2
O2I(r) (2.92)
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Figure 2.10: g(r) and its exponential fits.
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This chapter is dedicated to turbulent combustion. Thermodynamic relations of gases
relevant to the subsequent sections and chapters are first recalled. Different formulations
of the Navier-Stokes equations are then presented with an emphasis on cylindrical frames
as axisymmetric simulations are carried out in this thesis. Next the complete equations for
reacting flows are laid out with specific relations concerning multispecies mixture of gases.

3.1 Thermodynamic relations

Classical thermodynamics relations are given in this section. Any non-reactive system in
thermodynamic equilibrium is completely described by the basic thermodynamic variables p
(pressure) and v = V/m = 1/ρ (specific volume). Temperature can be introduced through a
thermal equation of state:

T = T (p, v) (3.1)

which is here the perfect gas law for ideal gases.
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To close the Euler equations we need a caloric equation of state relating internal energy e
to pressure and density. In fact for the Euler equations only this equation of state is needed:

e = e(p, ρ) (3.2)

The first principle for the specific internal energy states that for a closed system (no
transfert of matter) de = δq + δw i.e. the change in internal energy is due to the work done
on the system and the heat transmitted to the system. If the work done on the system is
only due to pressure forces then δw = −pextdv. If the system is going through a reversible
transformation then pext = p.

The second law introduces a new state variable, the specific entropy, such that ds = δq/T

for a reversible process and ds > δq/T for an irreversible one. Thus we get

de = Tds− pdv (3.3)

from which the canonical equation of state e = e(s, v) is obtained. Other state functions
can be defined such as the enthalpy h = e + pv = h(s, p), the Helmholtz free energy f =
e − Ts = f(T, v) and the Gibbs free energy g = h − Ts = g(T, p). If a thermal equation
of state v = v(p, T ) is given then one can define the volume expansivity α and isothermal
compressibility β:

α = 1
v

(
∂v

∂T

)
p

(3.4)

β = −1
v

(
∂v

∂p

)
T

(3.5)

Using the cycle rule and the chain rule we can obtain

(
∂s

∂v

)
T

=
(
∂p

∂T

)
v

= α

β
(3.6)(

∂e

∂v

)
T

= T
α

β
− p (3.7)

In general when an addition of heat δq leads to an increase in temperature δT the ratio
c = δq/δT is called the heat capacity of the system. The heat capacity at constant volume
and constant pressure are then defined as:

cv =
(
∂e

∂T

)
v

= T

(
∂s

∂T

)
v

(3.8)

cp =
(
∂h

∂T

)
p

= T

(
∂s

∂T

)
p

(3.9)

The speed of sound is another variable of fundamental interest. Given p = p(ρ, s) it is
defined as
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a =
√(

∂p

∂ρ

)
s

. (3.10)

3.1.1 Ideal gases

For ideal gases the fundamental equation of state pv = RT holds. This implies that

α = 1
T

and β = 1
p

=⇒
(
∂e

∂v

)
T

= 0 (3.11)

The internal energy is thus only a function of temperature e = e(T ). It is possible to
relate cp and cv via the general relation

cp − cv = α2Tv

β
(3.12)

which reduces to the classical cp−cv = R for ideal gases. Defining the ratio of heat capacities
γ = cp/cv one obtains:

cv = R

γ − 1 (3.13)

cp = γR

γ − 1 (3.14)

From kinetic theory and statistical physics it is known that each translational and rota-
tional degree of freedom accounts for an energy of RT/2, so that the heat capacity for such
molecules is

cv = M

2 R (3.15)

where M is the number of degrees of freedom. From this heat capacity the caloric equation
for ideal gases, an exact equation for entropy s and the expression for the sound speed a are
retrieved:

e = p

ρ(γ − 1) (3.16)

s = cv ln
(
p

ργ

)
+ s0 (3.17)

a =
√
γp

ρ
(3.18)

In reality, the activation of degrees of freedom depend on temperature so that the heat
capacity cv is not constant but a function of temperature.

3.1.2 Covolume and van der Waals gases

Taking into account the volume of molecules leads to the covolume equation of state
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p(v − b) = RT (3.19)

where b is the covolume and for which the internal energy and sound speed are given by

e = p(1− bρ)
ρ(γ − 1) (3.20)

a =
√

γp

(1− bρ)ρ (3.21)

Finally the attractive forces between molecules are taken into account in the van der
Waals equation of state

(
p+ c

v2

)
(v − b) = RT (3.22)

3.2 Navier-Stokes equations

The Navier-Stokes equations in cartesian and cylindrical frames are discussed in this section
as both types of frames are used in the simulations of this thesis. In tensor form the Navier-
Stokes (NS) equations are given by the following system of equations valid in all types of
coordinates frames:

∂U
∂t

+∇ · F = 0 (3.23)

where

U =

 ρ

ρu
ρE

 and F = FC + FD =

 ρu
ρu⊗ u + pI
(ρE + p)u

+

 0
−τ

−τ · u + q

 (3.24)

where ρ is the mass density, u is the speed, E is the total energy per mass unit, p is the
pressure, τ is the viscous flux and q the energy flux vector. The total flux is splitted into
a convective part FC and a diffusive part FD. The Navier Stokes equations reduce to the
Euler equations if FD = 0 i.e. no diffusion is taken into account.

3.2.1 Cartesian coordinates

In 3D cartesian coordinates, the Navier-Stokes equations are explicitely given by

Ut +∇ · (FC + FD) = 0 (3.25)
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with

U =


ρ

ρux
ρuy
ρuz
ρE

 FC =


ρux ρuy ρuz

ρu2
x + p ρuxuy ρuxuz

ρuyux ρu2
y + p ρuyuz

ρuzux ρuzuy ρu2
z + p

(ρE + p)ux (ρE + p)uy (ρE + p)uz


and

FD = −


0 0 0
τxx τxy τxz
τyx τyy τyz
τzx τzy τzz

τxiui − qx τyiui − qy τziui − qz



3.2.2 Axisymmetric conditions

z

y

x

θ

er

eθ

r − z plane

Figure 3.1: Cylindrical frame in r − z plane

In axisymmetric configurations we have ∂

∂θ
= 0. Expansions of tensor operators in

cylindrical coordinates are recalled in Appendix. C as well as their proofs. Multiplying by
r Eq. (C.13) and setting t = ρu ⊗ u + pI − τ the Navier-Stokes equations in axisymmetric
conditions are given by

∂rU
∂t

+∇2D · (rFC
rz + rFD

rz) = SCrz + SDrz (3.26)

where
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U =


ρ

ρur
ρuθ
ρuz
ρE

 FC
rz =


ρur ρuz

ρurur + p ρuruz
ρuθur ρuθuz
ρuzur ρuzuz + p

(ρE + p)ur (ρE + p)uz

 SCrz =


0

ρuθuθ + p

−ρuruθ
0
0

 (3.27)

and

FD
rz = −


0 0
τrr τrz
τθr τθz
τzr τzz

τxiui − qx τziui − qz

 SDrz =



0
−2η urr − λ

(
ur
r + ∂ur

∂r + ∂uz
∂z

)
η
(
∂uθ
∂r −

uθ
r

)
0
0


(3.28)

This allows us to solve the Euler equations only in a two-dimensional mesh while the flow
is actually three-dimensional. As depicted in Fig. 3.1, the mesh is only in the r-z plane but we
can solve for the azimuthal velocity. Two difficulties arise: the need to include the radiuses
in the discretization and geometrical source terms. The latter make the equations non-
conservative and special care must be taken when applying them. We can further simplify
the above expressions as in streamer simulations for example, setting all the θ variables to
zero:

U =


ρ

ρur
ρuz
ρE

 SCrz =


0
p

0
0

 SDrz =


0

−2η urr − λ
(
ur
r + ∂ur

∂r + ∂uz
∂z

)
0
0

 (3.29)

Another derivation of these equations with somewhat different notations can be found in
[Nishikawa, 2017, 3.7, 4.11].

3.3 Governing equations for reacting flows

3.3.1 Conservation equations for reacting flows

A reactive mixture ofN species is considered. Compared to classical Navier-Stokes equations,
each species k in the mixture must be tracked individually. The species react which each other
and the rate at which the species react requires specific modeling [Poinsot and Veynante,
2012]. The primitive variables are thus:

• the density ρ = m/V

• the velocity field of the mixture u

• one variable for energy or temperature
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• the mass fractions of each species Yk = mk/m

We also introduce the mole fractions of each species Xk = nk/n. In the following, all
state functions (such as the mass enthalpy h) with small letters are mass quantities, when
superscript m is applied these are molar quantities (molar enthalpy hm) and finally when
a capital letter is used it is the total quantity (H = mh = nhm). The perfect gas law
generalizes to a mixture by defining partial densities ρk = ρYk and partial pressures pk such
that:

ρ =
N∑
k=1

ρk (3.30)

pk = ρk
R

Wk
T (3.31)

p =
N∑
k=1

pk = ρRT

W
(3.32)

where R is the perfect gas constant, Wk the molecular weight of species k, p the pressure of
the mixture and W the mixture molecular weight given by

1
W

=
N∑
k=1

Yk
Wk

(3.33)

W =
N∑
k=1

XkWk (3.34)

Various energies can be defined and depending on the situation one formulation can be
more appropriate than the other. The sensible energy esk represents the part of the energy
of a species that varies with the temperature while the energy ek of species k includes the
constant formation enthalpy. These energies are defined by:

esk =
∫ T

T0
cvkdT −

RT0
Wk

(3.35)

ek = esk + ∆h0
f,k (3.36)

where ∆h0
f,k is the mass enthalpy formation of species k at temperature T0. When working

at constant pressure, the enthalpies defined as hsk = esk + pk/ρk hk = ek + pk/ρk are more
relevant. Finally from these definitions the sensible es and total non chemical E energies are

es =
∑
k

Ykesk (3.37)

E = es + 1
2u2 (3.38)
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In total non-chemical energy ρE formulation, the reactive Navier-Stokes equations are [Poinsot
and Veynante, 2012, Chap. 1]:

∂ρ

∂t
+∇ · (ρu) = 0 (3.39)

∂ρu
∂t

+∇ · (ρuu + pI− τ) = ρ
N∑
k=1

Ykfk (3.40)

∂ρE

∂t
+∇ · [(ρE + p)u− τ · u + q] = ω̇T + Q̇+ ρ

N∑
k=1

Ykfk · (u + Vk) (3.41)

∂ρYk
∂t

+∇ · [ρYk(u + Vk)] = ω̇k (3.42)

where p is the pressure, τ the viscous stress tensor, fk the mass force acting on species k,
q the heat flux, ω̇T the heat release rate due to combustion, Q̇ an external energy source,
ω̇k the mass production rate of species k and Vk the diffusion velocity of species k into the
mixture. The energy equation is derived from the total energy equation and several other
formulations are possible [Poinsot and Veynante, 2012, Chap. 1.1.5]. The total non chemical
energy equation is the one that is used throughout the simulations of this thesis.

3.3.2 Diffusion modelling

Diffusive effects can be found in the momentum, energy and species k conservation equations
and their modelling is discussed in this section. In the Newtonian approximation, the viscous
stress is given by Toro [2009], Nishikawa [2017]

τ = 2ηd + λ(∇ · u)I (3.43)

where d = 1
2(∇u +t ∇u) is the deformation tensor, η the viscosity coefficient and λ the

second viscosity coefficient. The bulk velocity is defined as

ηb = 2
3η + λ (3.44)

so that molecular theory tells us that for monoatomic gases ηb = 0 which agrees well with
experiments whereas for polyatomic gases ηb 6= 0. Setting ηb = 0 is called Stokes’ hypothesis
(1845). The viscosity coefficient can be approximated by the Sutherland formula:

η = C1

[
1 + C2

T

]−1√
T (3.45)

where C1 = 1.46× 10−6 and C2 = 112 K for air.
For a reactive mixture the energy flux is

q = −λ∇T + ρ
N∑
k=1

hkYkVk (3.46)

where λ is the thermal conductivity. Molecular theory tells us that λ is directly proportional
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to η so that the Prandtl number

Pr = cpη

λ
(3.47)

is very nearly constant. For air and 200 ≤ T ≤ 1000 K, its value is close to 0.7.
The diffusion velocities of species k into the mixture are given by the Hirschfelder and

Curtiss approximation [Hirschfelder et al., 1954]:

Vk = −Dk
∇Xk

Xk
+ Vc (3.48)

where Vc = ∑
kWkDk∇Xk/W is a correction velocity to ensure mass conservation. This is

a simplified model as a complete description of species diffusion is very costly [Giovangigli,
1999]. The Lewis number Lek and Schmidt number Sck are defined to compare species
diffusions with respectively the thermal diffusion and momentum diffusion:

Lek = Dth

Dk
(3.49)

Sck = ν

Dk
= PrLek (3.50)

3.3.3 Chemical reactions and equilibrium

3.3.3.1 Chemistry description

The N species considered here react following M reactions denoted by:

N∑
k=1

ν ′kjMk =
N∑
k=1

ν ′′kjMk (3.51)

where ν ′kj and ν ′′kj are the reactive and products stochiometric coefficients. The net
stochiometric coefficients are νkj = ν ′′kj−ν ′kj and by mass conservation the following equations
are enforced:

N∑
k=1

νkjWk = 0 (3.52)

The mass production rate of species k can now be expanded over all reactions j

ω̇k =
M∑
j=1

ω̇kj =
M∑
j=1

νkjWkQ̇j (3.53)

where Q̇j is the rate of reaction j given by a balance between the forward and backward
reactions

Q̇j = Kfj

N∏
k=1

[Xk]ν
′
kj −Krj

N∏
k=1

[Xk]ν
′′
kj (3.54)

The forward reaction rates Kfj often take the form of the Arrhenius law
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Kfj = AfjT
βj exp

(
− Ea
RT

)
(3.55)

where the Afj is preexponential factor, βj the temperature exponent and Ea the activation
energy. Given a forward reaction rate Kfj , the backward or reverse reaction rate Krj can
be computed through

Krj = Kfj( pa
RT

)∑N

k=1 νkj exp
(

∆S0
j

R − ∆H0
j

RT

) (3.56)

where ∆S0
j is the reaction j entropy change and ∆H0

j the reaction j enthalpy change.

3.3.3.2 Chemical equilibrium

The meaning of chemical equilibrium is discussed in this section. The steps leading to
Eq. (3.56) are detailed with the introduction of the Gibbs free energy. For a chemical
reaction the equilibrium constant is defined as the balance between forward and backward
rates:

Keq = Kfj

Krj
( pa
RT

)∑N

k=1 νkj
(3.57)

To express the rate constant Keq, we introduce the Gibbs free energy G of the system as

G = H − TS (3.58)

where H is the total enthalpy of the system and S the total entropy. For a constant pressure
process δQ = dH and from the second law assuming furthermore an isothermal process
[Lieberman and Lichtenberg, 2005, Chap. 7] such that

dG = dH − TdS ≤ 0 (3.59)

If we let G = G(T, p, nk) define the state of the system, we obtain by differentiation

dG =
(
∂G

∂T

)
p,nk

dT +
(
∂G

∂p

)
T,nk

dp+
N∑
k=1

(
∂G

∂nk

)
T,p,ni 6=k

dnk (3.60)

where the first partial derivative can be identified and the chemical potential µk is defined

(
∂G

∂T

)
p,nk

= −S (3.61)(
∂G

∂p

)
T,nk

= V (3.62)(
∂G

∂nk

)
T,p,ni6=k

= µk (3.63)
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From Eqs. (3.61) and (3.62) and using the Euler theorem for a single substance the chemical
potential for a gas is found to be

µk(T ) = µ0
k(T ) +RT log

(
xkp

pa

)
(3.64)

Finally chemical equilibrium is considered at constant pressure and temperature so that in
the end

dG = 0 =⇒
N∑
k=1

µkdnk = 0 (3.65)

=⇒ Keq(T ) = exp
(
−∆G0(T )

RT

)(
pa
RT

)∑N

k=1 νkj
(3.66)

In the end the backward rates are computed from the forward rates using

Krj = Kfj( pa
RT

)∑N

k=1 νkj exp
(

∆S0
j

R − ∆H0
j

RT

) (3.67)

where ∆S0
j is the reaction j entropy change and ∆H0

j the reaction j enthalpy change.

3.4 Combustion

Flames may be classified into four categories shown in Fig. 3.2. These categories are based
on two criterions: mixing and turbulence. In a premixed flame, reactants are mixed before
entering the combustion chamber whereas mixing occur inside the combustion chamber for
non-premixed or diffusion flames. A brief overview of premixed and non-premixed flames is
recalled here. More details can be found in [Poinsot and Veynante, 2012, Chap. 2 to 6].

3.4.1 Premixed flames

Considering the global combustion reaction of fuel and oxidizer as follows

ν ′FF + ν ′OO→ Products (3.68)

the mass stochiometric ratio s is defined

s =
(
YO
YF

)
st

= ν ′OWO

ν ′FWF
(3.69)

and the mixture equivalence ratio is then

φ = s

(
YF
YO

)
(3.70)

The equivalence ratio indicates if the mixture is lean (φ < 1), i.e. the oxidizer is in
excess, or rich (φ > 1), i.e. the fuel is in excess. Most burners operate in lean or close to
stochiometric conditions.
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(a) Laminar premixed flame. (b) Turbulent premixed flame.

(c) Laminar diffusion flame. (d) Turbulent diffusion flame.

Figure 3.2: Four flame configurations.
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Fuel + Air

Reactants

Products

Heat release Temperature

Fresh gases
Preheat

Reaction
Postflame

Burnt gases

Figure 3.3: Canonical premixed flame configuration (top) and structure (bottom).
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One dimensional laminar premixed flames are the canonical flames of combustion. It is
one of the few configurations where theoretical, computational and experimental results exist
and are compared thoroughly [Poinsot and Veynante, 2012, Chap. 2]. They also represent
the building block of turbulent flames with the flamelet theory. One-dimensional laminar
flames represent a propagating front between the burnt gases to the fresh gases which reaches
a constant propagation velocity s0

L at steady state. In the flame reference frame the governing
equations yield

ρu = cst = ρ1sL (3.71)

ρ1s
0
L

dYF
dx = d

dx

(
ρD

dYF
dx

)
+ ω̇F (3.72)

ρ1cps
0
L

dT
dx = d

dx

(
λ

dT
dx

)
−Qω̇F (3.73)

A typical premixed flame structure is given in Fig. 3.3. Several characteristic zones can
be identified from left (fresh gases) to right (burnt gases):

• the preheat zone, chemically inert, where heat diffuses progressively from the reaction
zone and increases gas temperature

• the reaction layer where the fuel is decomposed in smaller hydrocarbons which react
with radicals to create secondary species

• the post-flame region where secondary species are transformed in final products of the
reaction

The laminar flame speed is an important quantity to assess the quality of simulations
compared to experiments. Simplifying assumptions allow to obtain theoretical expressions of
the laminar flame speed [Poinsot and Veynante, 2012, Chap. 2] which exhibits the following
relationship

s0
L ∝

√
DthA (3.74)

where A is the preexponential factor of the global reaction considered. Various flame thick-
nesses can be defined in premixed flames:

• the diffusion thickness

δ = Dth

s0
L

∝

√
Dth

A
(3.75)

• the thermal layer thickness
δ0
L = Tb − Tf

max(|∇T |) (3.76)

• the reaction layer thickness

δr = δ0
L

β
(3.77)
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3.4.2 Diffusion flames

Premixing can sometimes be unpractical or unsafe to do and in this case combustion must
be done in a non-premixed way: these are the diffusion or non-premixed flames. Diffusion
flames are not studied in this work and only a brief explanation is given for completeness.

Mixing occurs inside the combustion chamber for a diffusion flame as shown in Fig. 3.4
and therefore two states must be considered: the fuel injection and the oxidizer injection.
On each side (diffusion zones in Fig. 3.4) the gas is either too rich or too lean to burn and
only when the two streams interact combustion can occur. The most-efficient combustion
is obtained when local stochiometry is close to one (reaction zone in Fig. 3.4). Contrary to
premixed flames, no reference speed or thickness can be defined for diffusion flames. They
are simpler to design and safer to use but at the cost of lower combustion efficiency.

Stream 1: Oxidizer

Stream 2: Fuel

Fuel

Oxidizer

Heat release

Temperature

Diffusion Reaction Diffusion

Figure 3.4: Canonical diffusion flame configuration (top) and structure (bottom).

3.5 Turbulent Combustion

A quick overview of turbulent combustion is given here, although no simulation involving
turbulence is performed in this thesis. The models developed for PAC in the thesis are
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however applicable to turbulent combustion and could be the subject of future works.

3.5.1 Basics of turbulence

In the Navier-Stokes equation the Reynolds number compares the contribution of the inertia
forces and the viscours forces in the momentum equation

Re = ||u||L
ν

(3.78)

where L is a characteristic length of the flow. As this number increases the Navier Stokes
equations become chaotic and their sensitivity to perturbations such as small changes in
initial conditions or boundary conditions is increased [Pope, 2000]. Systems much simpler
than the Navier-Stokes equations like the Lorentz system also share this sensitivity and their
behavior is well understood in the study of dynamical systems.

In a turbulent flow compared to a laminar flow, the velocity field u(x, t) becomes random
because of the chaotic behavior of the Navier Stokes equations. A multitude of vortices of
varying size, called eddies, are convected by the mean flow. These eddies interact with each
other and can exchange energy. Kinetic energy is dissipated through a cascade process shown
in Fig. 3.5 where three distincit regions can be identified when looking at the energy spectra
of those eddies:

1. The integral zone corresponds to the eddies of largest size lt with characteristic
velocity u′t. Turbulent kinetic energy is produced at these scale. The size of these
eddies is of the order of magnitude of the characteristic length of the problem.

2. The largest eddies break down into smaller ones in the inertial zone where there is a
transfer of energy from low to high frequency.

3. In the dissipation zone, the viscous forces dominate and the energy is dissipated as
heat by the kinematic viscosity ν. The typical length scale is the Kolmogorov length
scale ηK and the following relationships hold

ηK =
(
ν3

ε

)1/4

u′K = (νε)1/4 (3.79)

3.5.2 Turbulent premixed flames

Turbulent premixed combustion is the result of the interaction between the turbulent eddies
and the premixed flame front. To assess the interaction between both characteristic times are
used. The premixed flame has a chemical characteristic time τc = δ0

L/s
0
L whereas turbulence

can be characterized by two typical time scales: the time scale of the largest eddies τt =
lt/u

′
t and smallest eddies τK = ηK/u

′
K . Two dimensionless numbers are used to describe

turbulent/flame interactions:

• The Damköhler number Da compares the integral time scale τt with the chemical time
scale τc:
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Figure 3.5: Turbulent spectra for homogeneous isotropic turbulence.

Da = τt
τc

(3.80)

For Da� 1, the time scale of turbulence is much larger than the chemical time step so
that turbulence does not affect the flame structure: it is the so-called flamelet regime
where the turbulent flame front can be assimilated to a collection of laminar flame
elements called flamelets. On the other hand, for Da � 1, the turbulent time scale
is much smaller than the chemical time scale so that the reactants and products are
mixed by turbulent motion before reacting. This corresponds to the well stirred reactor
limit.

• The Karlovitz number Ka compares the smallest turbulence time scale with the chem-
ical time scale:

Ka = τc
τK

= δ0
L

ηK

u′K
s0
L

(3.81)

The Reynolds, Damköhler and Karlovitz numbers are related through Re = Da2Ka2

[Maestro, 2018] so that a diagram of the various combustion regimes can be constructed
following Peters [2000] shown in Fig. 3.6.

3.5.3 Turbulent diffusion flames

Differently from premixed flames, diffusion flames do not have intrinsic properties, their
structure is governed by the scalar dissipation rate which is directly linked to the turbulent
strain rate. Establishing a universal combustion diagram is thus more difficult compared to
the premixed flame case.



48 CHAPTER 3. TURBULENT COMBUSTION

Figure 3.6: Combustion regime diagram for premixed combustion from Peters [2000].
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4.1 NRP discharges

As stated in the introduction, NRP discharges are non-equilibrium discharges which are
thermally and statistically in non-equilibrium. Both parts of this statement are made clear
in this section: thermal non-equilibrium is taken into account by computing the electron
energy distribution function (EEDF) which is presented in the first section. Excited states,
which play a central role in NRP discharges, are then described. This finally leads to explain
the meaning of statistical non-equilibrium of excited populations.

4.1.1 Thermal non-equilibrium and EEDF

In NRP discharges, a high-voltage difference is applied between two electrodes for a short
amount of time, on the order of tens of nanoseconds. The electric field induced accelerates
electrons and collisions with neutrals change the electron distribution function so that it is
not a Maxwellian distribution anymore. Electrons are associated to a set of cross-sections
each representing a collision process. We will now detail the governing equations of the
electron energy distribution function (EEDF). Starting from the Boltzmann equation for the
electron distribution fe:

∂fe
∂t

+ ve ·
∂f

∂r + ae ·
∂f

∂ve
=
(
δfe
δt

)
c

(4.1)
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4.1.1.1 Two-term approximation

We assume a two-term expansion (isotropic and anisotropic part) of the electron distribution
function [Raimbault, 2018, Chap. 1]:

fe(r,ve, t) = f0(r, ve, t) + ve
ve
· f1(r, ve, t) (4.2)

Reinjecting Eq. (4.2) into Eq. (4.1) and integrating over the solid angle the first and
second moments of Boltzmann’s equation yields the following coupled equations for the
isotropic f0 and anisotropic f1 parts of the electron distribution function:

∂f0
∂t

+∇r ·
(
ve
3 f1

)
− 1
v2
e

∂

∂ve

(
v2
e

eE
3m · f1

)
=
(
δf0
δt

)
c

(4.3)

∂f1
∂t

+∇r(vef0)− ∂

∂ve

(
eE
m
f0

)
=
(
δf1
δt

)
c

(4.4)

Three types of processes are dominant for electrons: elastic collisions with neutrals whose
massM are way larger than that of electrons m. Electrons can change the internal structure
of the neutral particules so that excitation and ionization are possible after a collision at
sufficient speed. Starting from Eq. (2.31), elastic processes yield the following form for the
collision parts [Raimbault, 2018, Chap. 2]:

(
δf1
δt

)el

c
= −νm (ve) f1(r, ve, t) (4.5)(

δf0
δt

)el

c
= m

M

1
v2
e

∂

∂ve

[
v2
eνm (ve)

(
vef0 + kTn

m

∂f0
∂ve

)]
(4.6)

where νm = nnσ
t
en is the momentum frequency collision, σten the momentum cross-section,

nn the neutral density, Tn the neutral temperature. Inelastic collisions are derived the same
way starting from Eq. (2.31):

(
δf0
δt

)exc

c
= v′e
ve
νexc(v′e)f0(r, v′e, t)− νexc (ve) f0(r, ve, t) (4.7)(

δf0
δt

)ion

c
= 4 v

′
e

ve
νion

(
v′e
)
f0(r, v′e, t)− νion (ve) f0(r, ve, t) (4.8)

where νion and νexc are respectively the ionization and excitation collision frequencies. The
practical resolution of Eqs. (4.3) and (4.4) requires additional simplifications [Hagelaar and
Pitchford, 2005]: the electric field and the collision terms are uniform, the anisotropic part of
the distribution function is directed along the electric field. Performing a change of variable
to go to electron volt energy space ε:
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E = Eez, f1 = f1ez

ε = 1
2mv

2/e =
(
v

γ

)2
with γ =

√
2e
me

f(v, cos θ, z, t) = f0(v, z, t) + f1(v, z, t) cos θ

Eqs. (4.3) and (4.4) become [Hagelaar and Pitchford, 2005]

∂f0
∂t

+ γ

3 ε
1/2 ∂f1

∂z
− γ

3 ε
−1/2 ∂

∂ε
(εEf1) = C0 (4.9)

∂f1
∂t

+ γε1/2∂f0
∂z
− Eγε1/2∂f0

∂ε
= −Nσmγε1/2f1 (4.10)

where C0 = (δf0/δt)c represents the change in f0 due to collisions. The right hand side of
Eq. (4.10) contains the total gas density N and the total momentum-transfer cross-section
σm consisting of contributions from all possible collision processes k with gas particles:

σm =
∑
k

xkσk (4.11)

where xk is the mole fraction of the target species of the collision process. For elastic
collisions, σk is the effective momentum transfer (same as σten above). For inelastic collisions,
σk is the total cross section.

We assume furthermore a decoupling of energy and time/space dependences for both f0
and f1:

f0,1(ε, z, t) = 1
2πγ3F0,1(ε)n(z, t) (4.12)

where F0 is the electron energy distribution function. The EEDF F0 is moreover normal-
ized following: ∫ ∞

0
ε1/2F0 dε = 1 (4.13)

4.1.1.2 Growth of the electron density

Three different assumptions can be made regarding the dependence of the electron density.
In all cases the Eq.4.9 reduces to:

− γ

3
∂

∂ε

((
E

N

)2 ε

σ̃m

∂F0
∂ε

)
= C̃0 + R̃ (4.14)

where R̃ is the growth-renormalization term, it ensures that F0 remain normalized in the
case of net electron production.

• No growth model: the electron density is supposed to be independent of time and
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space.
σ̃m = σm and R̃ = 0 (4.15)

• Temporal growth: the electron density is supposed to be independent of space.

σ̃m = σm + ν̄i
Nγε1/2 with 1

ne

∂ne
∂t

= ν̄i (4.16)

R̃ = − ν̄i
N
ε1/2F0 (4.17)

• Spatial growth: the electron density is supposed to be independent of time.

R̃ = α

N

γ

3

[
ε

σm

(
2E
N

∂F0
∂ε

+ α

N
F0

)
+ E

N
F0

∂

∂ε

(
ε

σm

)]
with α ≡ − 1

n

∂n

∂z
= − ν̄i

w
(4.18)

σ̃m = σm (4.19)

4.1.1.3 Collision terms

The collisions are separated between between neutral-electron (subscript k for the neutral
k) and coulomb collisions (subscript e):

C̃0 =
∑
k

C̃0,k + C̃0,e (4.20)

Elastic collisions The simplifying assumptions are applied to Eq. (4.6) so that the collision
term in BOLSIG+ formulation reads

C̃0,k= elastic = γxk
2m
Mk

∂

∂ε

[
ε2σk

(
F0 + kBT

e

∂F0
∂ε

)]
(4.21)

Inelastic collisions In the same way as for the elastic collisions, Eqs. (4.7) and (4.8) are
adapted to the BOLSIG+ formulation to yield

C̃0,k= inelastic = −γxk [εσk(ε)F0(ε)
− (ε+ uk)σk (ε+ uk)F0 (ε+ uk)]

(4.22)

C̃0,k= ionization = −γxk [εσk(ε)F0(ε)
−2 (2ε+ uk)σk (2ε+ uk)F0 (2ε+ uk)]

(4.23)

C̃0,k= attachment = −γxkεσk(ε)F0(ε) (4.24)

Electron-electron collisions A detailed account of Coulomb collisions and the derivation
of the corresponding cross-section can be found in [Bittencourt, 2004, Chap. 21]. This yield
in the end the following term for electron-electron Coulomb collisions:

C̃0,e = a
n

N

∂

∂ε

[
3A1F0 + 2

(
A2 + ε3/2A3

) ∂F0
∂ε

]
(4.25)
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4.1.1.4 Equation for the EEDF

In the end the actual solved equation for the EEDF is a stationary drift-diffusion equation
in energy, which reads

∂

∂ε

(
W̃F0 − D̃

∂F0
∂ε

)
= S̃ + R̃ (4.26)

where

W̃ = −γε2σε − 3a n
N
A1

D̃ = γ

3

(
E

N

)2 ε

σ̃m
+ γkBT

e
ε2σε + 2a n

N

(
A2 + ε3/2A3

)
σε =

∑
k=elastic

2m
Mk

xkσk

S̃ =
∑

k=inelastic
C̃0,k

4.1.2 Excited states

Excited states of molecules and atoms play a major role in plasma assisted combustion.
Recalling Fig. 1.2, the kinetic pathway of plasma assisted combustion relies heavily on the
creation of excited species which in turn produce heat and radicals. The different possible
excitations of molecules are recalled: rotational excitation, vibrational excitation and elec-
tronic excitation where for atoms only electronic excitation is possible. Simple canonical
models for rotational and vibration are laid out for diatomic molecules to build some intu-
ition about them. Reminders on quantum mechanics and statistical physics can be found in
Appendix B.

4.1.2.1 Rotational excitation - the rigid rotor

A diatomic molecule can be represented by a system of two atoms of mass M separated by
a distance R linked by a potential. In classical mechanics, if the interatomic distance R is
at an equilibrium position, the molecule has rotation energy:

Erot = L2

2I (4.27)

where I = MR2/2 is the moment of intertia of the system and L is the angular momentum
with respect to the center of gravity. We consider for quantum mechanics the angular
momentum operator L̂ to deduce the energy levels and eigenfunctions of rotational levels.

Energy levels and eigenfunctions The spherical harmonics are the eigenfunctions of
the observable L̂2 associated to the eigenvalue J(J + 1)~2 with degeneracy gJ = 2J + 1:

L̂2YJ,m(θ, φ) = J(J + 1)~2YJ,m(θ, φ) (4.28)
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Hence the energy levels are retrieved as

Erot(J) = J(J + 1) h2

8π2I
= J(J + 1)kBθr (4.29)

where I is the momentum of inertia of the rotor (considered as a constant), k is the Boltzmann
constant, J is the rotational quantum number and

θr = h2

8π2IkB
(4.30)

is the characteristic rotational temperature.

Partition function The statistical weight (the degeneracy) of a rotational level is gJ =
2J + 1 so that the rotational partition function writes

Qrot =
∞∑
J=0

(2J + 1)e−J(J+1)θr/T (4.31)

The rotational characteristic temperature of diatomic species is usually small, and there-
fore, for T � θr, the sum can be approximated by an integral yielding

Qrot ≈
∫ ∞

0
(2J + 1)e−J(J+1)θr/TdJ =

∫ ∞
0

T

θr

d
dJ e−J(J+1)θr/TdJ = T

θr
(4.32)

This approach has to be slightly changed for homo-nuclear diatomic molecule due to the
Pauli’s exclusion principle to yield where a factor 2 appear in the denominator so that in the
end

Qrot = T

σθr
(4.33)

with σ = 1 for heteronuclear molecules and σ = 2 for homonuclear molecules.

4.1.2.2 Vibrational excitation

For a diatomic molecule the two atoms can move relative to each other around their equilib-
rium position. Quantum description of such movement yields the vibrational levels of such
molecules.

Energy levels and eigenfunctions A harmonic oscillator is a system which consists of a
particle of mass m elastically connected to a center x0 by a restoring force F = −K(x−x0).
The reference position and potential are chosen such that x0 = 0 and V0 = 0. Hence total
energy is given by:

E = 1
2mẋ

2 + 1
2mω

2x2 (4.34)

This energy is always positive and since the potential tends to infinity when |x| → ∞, there
are only bound states. In quantum mechanics, the Hamiltonian has the following form:

Ĥ = p̂2
x

2m + 1
2mω

2x̂2, (4.35)
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We solve the stationary Schrödinger equation to find the eigenvalues and eigenfunctions
of our problem: (

− ~2

2m
d2

dx2 + 1
2mω

2x2
)
ψ(x) = Eψ(x). (4.36)

We are only interested in square-integrable functions since there are only bound states.
Natural units appear in this problem (the length a =

√
~/(mw) and energy ~ω) which leads

to the following change of variables:

ε = E

~ω
y = x

a
(4.37)

and the time-independent Schrödinger’s equation becomes:

1
2

(
y2 − d2

dy2

)
φ(y) = εφ(y) (4.38)

Solutions to this differential equation are Hermite functions:

φv(y) = cve−y
2/2Hv(y) with

{
cv = (

√
π 2n n!)−1/2

Hv(y) = (−1)ney2 dn

dyn

(
e−y

2
) (4.39)

with the corresponding eigenvalues:

εv = n+ 1
2 (4.40)

Finally the dimensional solutions are

ψv(x) = π−1/4
√

2v v! a
e−x2/2a2

Hv(x/a) (4.41)

Ev =
(
v + 1

2

)
~ω (4.42)

Partition function The eigenfunctions have no degeneracy and from Eq. (4.42) the par-
tition function writes

Qvib =
(
eθν/2T − e−θν/2T

)−1
= e−θν/2T

1− e−θν/T
(4.43)

where θν = hν
kB

is the characteristic vibrational temperature. The internal energy is retrieved
from the partition function as

Uvib = 1
2Nhν + Nhν

ehν/kT − 1
(4.44)

It should be noted that energy of vibrational levels included in the partition function are
referred to the bottom of the potential curve. On the other hand, we can refer the energy level
to the ground state (v = 0), obtaining the new partition function and vibrational internal
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energy:

Qvib = (1− e−hν/kT )−1 (4.45)

Uvib = Nhν
ehν/kT − 1

(4.46)

Towards more realistic vibrational models The harmonic oscillator model is a good
approximation near the equilibrium position of the diatomic molecule but more complex
potential shapes are needed when considering higher energy levels. A better approximation
is given by the Morse potential Capitelli et al. [2012]

V (r) = De[1− exp{−β(r − re)}]2 (4.47)

where De is the depth of the potential well and re is the equilibrium position. The energy
levels and eigenfunctions of the vibrational levels of nitrogen are given in Fig. 4.1. Near the
bottom of the potential curve the eigenfunctions and energy levels are quite similar but the
higher the energy the larger the difference between the two models.
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Figure 4.1: Ground state N2 vibrational levels for Harmonic Oscillator and Morse potentials.
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4.1.2.3 Electronic excitation

Electron excitation is the transfer of a bound electron to a more energetic, but still bound
state. For diatomic molecules, each electronically excited state is composed of vibrational
states which are in turn composed of rotational states. This is illustrated for N2 in Fig. 4.2.
In plasma discharges, this electron excitation is the result of electrons colliding with neutral
at high velocities induced by the electric field. These electronically excited states are very
reactive and can relax to the ground states through several mechanisms: photon emission or
collisional quenching. The latter will be of central importance for plasma assisted combustion
using NRP discharges.

4.1.3 Statistical non-equilibrium

In classical combustion chemistry, the excited species populations are in a state of statistical
equilibrium described by Eq. (B.32). In NRP discharges, the out-of-thermal equilibrium
electrons collide with neutral particles and are able to excite them in proportions far above
their equilibrium values: on top of thermal non-equilibrium we also have therefore statistical
non-equilibrium. By using the simple rigid rotor and harmonic oscillator for a diatomic
molecule the thermodynamic properties of the ideal diatomic gas can be retrieved [Kee
et al., 2017, Chap. 10]:

H = 7
2NkBT +NkBθv

exp(−θv/T )
1− exp(−θv/T ) −ND0 (4.48)

Cp =
(
∂H

∂T

)
P

= 7
2NkB +NkB

θ2
v

T 2
e−θv/T

(1− e−θv/T )2 (4.49)

S = −
(
∂F

∂T

)
V,N

= NkB

[
ln V

Nλ3
T

+ 7
2 + θv

T

e−θv/T

1− e−θv/T
− ln

(
1− e−θv/T

)
+ ln

(
T

σθr

)]
.

(4.50)

where D0 is the dissociation energy of the ground state of the diatomic molecule. The
activation of the vibration levels of a diatomic molecule are seen in the second term of Cp
where it transitions from 7/2NkB tp 9/2NkB. Hence the statistical equilibrium assumption
is central in the thermodynamic description of gas mixtures and special care must be taken
when the excited species are in substantial amounts as in NRP discharges.

4.2 Governing equations in AVIP

AVIP is a non-structured code written in Fortran for the numerical simulation of weakly-
ionized plasmas. It is based on the same structure as the combustion code AVBP and has
been developed at CERFACS since 2015.

A first version of the code was introduced in Joncquieres [2019] to simulate Hall-Effect
(HE) thrusters plasmas. During this PhD, the code has been rewritten to take into account
streamer simulations for PAC, leveraging object-oriented paradigms in Fortran for integration
of different types of plasma modeling. Hence AVIP is now a non-structured code for fluid
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Figure 4.2: Quantum levels of N2 taken from Steinfeld [1986].
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simulations of both Nanosecond Repetitively Pulsed (NRP) discharges in Plasma Assisted
Combustion (PAC) and Hall-Effect (HE) thrusters.

Governing equations from previous chapters are recalled with the two main fluid formula-
tions for simulations of weakly ionized plasmas: plasma Euler equations [Bittencourt, 2004]
and plasma drift-diffusion equations [Raimbault, 2018]. The plasma species equations are
coupled to the previous EEDF and to the Poisson equation for computation of the eletric
field. These equations are supplemented by the reactive Navier-Stokes equations for the
mixture which will be relevant for PAC.

4.2.1 Electromagnetism

In plasma simulations, the electric E and magnetic B fields appear in the transport equations
and need to be computed. Magnetic field B is only used in HE thrusters simulation where
it is constant and is negligible for NRP discharges simulations so that the electric field can
be computed from the electromagnetic potential E = −∇φ. The electromagnetic potential
is governed by the Poisson equation supplemented by boundary conditions [Jackson, 1999]:

∇2φ = − ρ

ε0
in Ω̇ (4.51)

φ = φD on ∂ΩD (4.52)
∇φ · n = −En on ∂ΩN (4.53)

where Ω̇ denotes the interior of the domain, ∂ΩD the Dirichlet boundary, φD its imposed
potential, ∂ΩN the Neumann boundary and En its associated impsoed normal electric field.

In a numerical simulation (4.51) becomes a linear system A φ = b and a linear system
solver must be used to get the potential.

Some models such as the ambipolar diffusion give the electric field from different param-
eters and also need to be incorporated in the code [Celestin, 2008].

4.2.2 Transport equations

Depending on the level of precision wanted, each charged species i has its own set of transport
equations. Three kind of transport equations are wanted, with decreasing precision: plasma
Euler equations, drift-energy and drift-diffusion equations [Raimbault, 2018]. For plasma
assisted combustion the gaseous flow also needs to be solved.

4.2.2.1 Plasma Euler equations

The plasma species can be described using Euler equations presented in Chap. 2:

∂Ui

∂t
+∇ · Fi = Si (4.54)

with
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Ui =

 ρi
ρiVi

ρiEi

 Fi =

 ρiVi

ρiViVi + PiI
(ρiEi + Pi)Vi

 Si =

S0i
S1i
S2i

 (4.55)

and

S0i =
∫
mi

(
δfi
δt

)
c
d3vi (4.56)

S1i = niqi(E + Vi ×B) +
∫
mivi

(
δfi
δt

)
c
d3vi (4.57)

S2i = niqiE ·Vi +
∫
miv

2
i

2

(
δfi
δt

)
c
d3vi (4.58)

where Vi = 〈vi〉 is the mean velocity over phase space. These sets of equations are relevant
in Hall-effect thrusters modeling Joncquieres [2019] and are not further discussed.

4.2.2.2 Drift-diffusion and drift-energy equations

For the modeling of plasma discharges the simplified version of the plasma Euler equations
neglecting inertia forces, the drift-diffusion equations, are considered:

∂ni
∂t

+∇ · Γi = S0i with Γi = niµiE−Di∇ni (4.59)

The energy equation can be added and simplified in a similar manner yielding the drift-
energy model which is the above equation supplemented by [Raimbault, 2018, Chap. 3]:

∂niεi
∂t

+∇ ·Hi = S2i with Hi = niεiβiE−Gi∇niεi (4.60)

Inclusion of the non-equilibrium electrons mean that the drift-diffusion equations are
coupled with the EEDF equations which must be solved.

4.2.2.3 Gas mixture of neutral particules

The reactive Navier Stokes equation are solved for a mixture of N species:

∂ρ

∂t
+∇ · [ρu] = 0

∂ρu
∂t

+∇ · [ρuu + pI− τ] = ρ
N∑
k=1

Ykfk

∂ρE

∂t
+∇ · [(ρE + p)u− τ · u + q] = ω̇T + Q̇+ ρ

N∑
k=1

Ykfk · (u + Vk)

∂ρYk
∂t

+∇ · [ρYk(u + Vk)] = ω̇k

(4.61)
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The gas mixture and drift-diffusion equations are coupled through the chemistry: ω̇k in
the NS equations and S0i in the drift-diffusion equations are taken from a common chemistry.
More details are given in Chap. 11 when the fully coupled PAC simulations will be presented.

The above set of equations (plasma and reactive flow) are solved with specific numerical
methods that are presented in the next chapters.





Part II

Numerical Methods for PAC





Chapter 5

Introduction to Numerical Methods
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In this thesis, two types of equations are solved numerically: elliptic equations (the Pois-
son equation) and hyperbolic equations (the drift-diffusion and reactive Navier-Stokes equa-
tions). This chapter provides general definitions about numerical schemes and discretizations
that are common to the next three chapters. The concepts of consistency, stability and con-
vergence are recalled in a way that is correct for all the types of equations studied. Then
general definitions about numerical methods are recalled and the choices made in AVIP are
detailed. Some toy cases and coding of fundamental algorithms relevant to all the numerical
developments of AVIP can be found at https://github.com/lionelchg/NumMaths.

A publication related to the AVIP code that summarizes the main features of the code
presented in the subsequent chapters can be found on ArXiV: Cheng et al. [2021]. It is meant
to be updated with any major development of the code.

5.1 Fundamentals of Numerical Methods and Numerical Math-
ematics

5.1.1 Consistency, stability and convergence

The general definitions of consistency, stability and convergence shown here are taken from
[Quarteroni et al., 2007, Chap. 2]. Let us consider the problem to find x such that

F (x, d) = 0 (5.1)

where d is the set of data on which the solution depends and F is the functional relationship
between x and d. We restrict the study to direct problems where F and d are given and
x is the unkwown. In the case of the Poisson equation d is the charge density and F the
Laplacian whereas for hyperbolic problems F is a non-linear differential operator and d the
flow parameters.

https://github.com/lionelchg/NumMaths
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Definition 5.1 (Well-posedness or stability of a problem). The problem is well-posed if it
admits a unique solution which depends continuously on the data. Continuous dependence
on the data means that small perturbations of d leads to small perturbations in the solution
x. For a given δd, the subsequent change δx such that

F (x+ δx, d+ δd) = 0 (5.2)

satisfies

∀η > 0 ∃K(η, d) ||δd|| < η =⇒ ||δx|| < K(η, d)||δd|| (5.3)
A numerical method for solving a well-posed problem will consist in a sequence of ap-

proximate problems

Fn(xn, dn) = 0 n ≥ 1 (5.4)

and the expectation is that xn → x, dn → x and Fn approximates F as n → +∞. n refers
to the discretization of the problem which for elliptic differential equations is only a spatial
discretization but for hyperbolic differential equations is a space and time discretization.
Definition 5.2 (Consistency of a numerical method). The numerical method is said to be
consistent if

Fn(x, d) = Fn(x, d)− F (x, d)→ 0 when n→ +∞ (5.5)

The numerical method is said to be strongly consistent if Fn(x, d) = 0 for any value of n.
Definition 5.3 (Convergence). The numerical method is said to be convergent if

∀ε > 0 ∃n0(ε) ∃δ(n0, ε) > 0 : (5.6)
∀n > n0(ε) ∀||δdn|| < δ(n0, ε) =⇒ ||x(d)− xn(d+ δdn)|| < ε (5.7)

where d is an admissible data for the problem, x(d) is the corresponding solution and xn(dn+
δdn) is the solution of the numerical problem with data dn + δdn.

Convergence is achieved if the solution of the numerical discretization of the problem
tends to the actual exact solution of the problem. The link between convergence and stability
is found in the famous Lax-Richtmeyer theorem:
Theorem 5.1 (Lax-Richtmeyer). For a consistent numerical method, stability is equivalent
to convergence.

5.1.2 Discretization methods and data structures

5.1.2.1 Finite Difference for structured grids

Finite difference discretization is the most straightforward way of discretizing derivatives
using Taylor expansions. It requires however structured grids where each point, in an n-
dimensional space, is located at the intersections of n families of lines and must lie on one,
and only one line, of each family [Hirsch, 2007, Chap. 4].
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Figure 5.1: Examples of structured grids.

In a structured grid, one index per dimension is used to store the data, e.g. ijk in three
dimensions, so that access to neighboring points and use of high-order discretizations is easy.
Examples of structured grids are given in Fig. 5.1.

5.1.2.2 Finite Volume for structured and unstructured grids

The Finite Volume (FV) Method is applicable on both structured and unstructured grids.
This method uses an integral formulation of the partial differential equations of interest and
is directly conservative [Lamarque, 2007, Hirsch, 2007].

Unstructured grids work natively on triangles in 2D and tetrahedra in 3D where an
example is given in Fig. 5.2. No point can be found at the intersections of families of lines
and the one-index per dimension storing of data is thus not possible. Points need to be
numbered separately and connectivity tables, i.e. the nodes composing each element, are
defined. Interaction between distant nodes is more involved and costly in this case, making
the development of high-order schemes harder than for finite difference methods.

5.1.2.3 Finite Element for unstructured grids

In the Finite Element Method, the physical variables are expanded using trial functions and
the equations are recast in a weak formulation. More mathematically involved, this method
produces higher order schemes than the Finite Volume Method but is also more computa-
tionally expensive. The Finite Element Method reduces to the Finite Volume Method for
P1 trial functions with lumping of the mass matrix [Lamarque, 2007, Chap. 4].

5.2 Numerical Methods for Plasmas and Combustion equa-
tions in AVIP

5.2.1 Data structure and type of methods

AVIP shares the same datastructure and metrics as AVBP which are detailed in depth in
[Lamarque, 2007, Chap. 4]. Hence unstructured meshes are considered with data stored at



68 CHAPTER 5. INTRODUCTION TO NUMERICAL METHODS

Figure 5.2: Examples of an unstructured grid.

the vertices of the mesh and Finite Volume schemes have been developed. We thus consider
the integral formulation of a conservation law in its general form without source terms:

d
dt

∫
Ω

U dV +
∫
∂Ω

F · ndS = 0 (5.8)

The possible control volumes associated to such a discretization is now discussed. There
are three choices: cell-centered, vertex-centered or cell-vertex methods. In cell-centered
methods, the variables are stored in the cell centers and the flux are applied at the cell faces,
hence vertices are only present to mark off the different control volumes. In vertex-centered
methods, the variables are stored at the vertices and the conservation laws are applied in
the dual volumes of the mesh. Finally a cell-vertex methods used in AVBP computes part
of the residuals at the cells before scattering them to the vertices which has been shown to
be more robust to mesh deformations [Suli, 1989].

5.2.2 Nomenclature and notations

All the nomenclature and notations used in the following Chaps. 6 and 7 concerning the
computational grid or mesh are summarized below:

– Ω is the open set which corresponds to the domain of integration. Nomenclature from
topology is adopted to indicate the interior of the domain Ω̊ and the boundary of the
domain ∂Ω = Ω/Ω̊ where Ω is the closure of Ω

– τ is a cell of the domain, Vτ is the cell volume, nτv the number of vertex of the cell

– i, j, k are nodes of the domain. To each node i is associated a volume Vi, ∂Vi is the
boundary of the nodal volume, ∂̊Vi = Ω̊ ∩ ∂Vi is the interior boundary of the nodal
volume, ∂V b

i = ∂Ω∩ ∂Vi is the boundary of the nodal volume which is also a boundary
of the domain
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– E(i) is the set of elements (or cells) for which i is a vertex

– f is a face of a nodal surface or an element

– Sτi,j is the surface normal of the edge (i, j) in cell τ which is oriented from i to j. Sτi is
the surface associated to node i in cell τ , pointing inward towards the cell center and
defined as a linear combination of the adjacent faces:

Sτi = −nd
nfv

∑
f⊂i

Sτf (5.9)

where nd is the number of dimensions of the computational grid, nfv the number of
vertices on the face f . The cell dependence τ of the normals is sometimes omitted to
alleviate notations.

Individual triangular and quadrangular cells with the different normals defined above
are shown in Figures 5.3a and 5.3b. Triangular and quadrangular domains are depicted in
Figures 5.4a and 5.4b where nodal volumes are drawn.

i j

k

∂Vi ∩ τ
Sτi Sτij

Sτik

(a) Triangular cell

i j

l k

∂Vi ∩ τ

Sτi Sτij

Sτil

(b) Quadrangular cell

Figure 5.3: Metrics definitions in 2D cells.

Finally for a vector variable U(x, t) the nodal average, which is the physical quantities
that the scheme is working on, is defined as

Ui(x, t) = 1
Vi

∫
Vi

U dV (5.10)

The order of convergence of the different numerical schemes studied throughout the
following three chapters are assessed by computing the L2 norm of the error of the nodal
average for a scalar variable u defined by:

L2(εu) =
√∑

i Vi(ũi − ui)2∑
i Vi

(5.11)
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Figure 5.4: 2D meshes with nodes i and j belonging respectively to the interior and the
boundary of the domain for triangular and quadrangular elements. Neighboring cells be-
longing to E(j) are shown for both cases.
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where ũ is the exact solution of the problem at hand. This formulation corresponds to Option
1 of Wang et al. [2013] and is the most natural error estimation in the framework of AVIP.

5.2.3 Cylindrical frames

In this work, axisymmetric conditions, i.e. ∂
∂θ = 0, are often considered. This saves a

lot computational time as a three-dimensional simulation can be carried out using a two-
dimensional mesh. A typical cylindrical frame in the (z, r) plane is shown in Fig. 5.5. In
the following numerics chapters, the Poisson and plasma transport equations discretizations
in cylindrical coordinates are thus presented along with their classical cartesian coordinates
discretizations. Geometrical source terms appear for the Euler and Navier-Stokes equations
which require special care for proper integration.

The elements and surfaces considered in this 2D mesh are actually tores in this setting
as illustrated in Fig. 5.5 and it should be always kept in mind that although we are solving
the equations on a 2D mesh the geometry is in fact three dimensional.

z

r

Computational domain

Cell τ

Figure 5.5: Axisymmetric nodal volumes.

Two important results relevant to the finite volume method in cylindrical geometries
are the following Pappus-Guldinus theorems illustrated in Figs. 5.6 and 5.7 which deal with
volumes and surfaces of revolution [Harris and Stoecker, 1998]. These theorems are used
to compute fluxes and volumes in axisymmetric formulations of the Poisson equation and
transports equations.

Theorem 5.2 (First Pappus–Guldinus theorem). The surface area A of a surface of revolu-
tion generated by rotating a plane curve C about an axis external to C and on the same plane
is equal to the product of the arc length s of C and the distance d traveled by the geometric
centroid of C:

A = s× d (5.12)

Theorem 5.3 (Second Pappus–Guldinus theorem). The volume V of a solid of revolution
generated by rotating a plane figure F about an external axis is equal to the product of the
area A of F and the distance d traveled by the geometric centroid of F. (Note that the centroid
of F is usually different from the centroid of its boundary curve C.) That is:

V = A× d (5.13)
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Figure 5.6: Illustration of the first Pappus-Guldinus theorem with a cylinder surface.
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Figure 5.7: Illustration of the first Pappus-Guldinus theorem with a cylinder volume.
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The Poisson equation, necessary to simulate plasmas, is presented in this chapter. The
first section is a theoretical presentation of the equation, where some analytical solutions are
derived to give insights about the behavior of the equation on canonical geometries. The
second section deals with the discretization of the Poisson equation which becomes a linear
system on computational grids. In a third section, a brief and concise presentation of linear
solvers is given with an emphasis on iterative solvers. Finally test cases to validate the
implementation of the Poisson equation in AVIP are detailed in the last section.

6.1 An overview of electrostatics

Most of the material presented in this section is taken from Jackson [1999]. The Poisson
equation relates the electromagnetic potential φ to the charge distribution ρ:
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∇2φ = − ρ
ε0

(6.1)

Without source terms ρ = 0, the equation reduces to the Laplace equation.

6.1.1 General solution to the free space problem

Without boundary surfaces a general solution of the Poisson equation is given by:

φ(x) = 1
4πε0

∫
V ′

ρ(x′)
|x− x′|dV

′ (6.2)

A key equality for the proof is the following relationship which will be relevant in the
following sections:

∇2
( 1
|x− x′|

)
= δ(x− x′) (6.3)

where δ is the Dirac delta function. The proof of this relationship along with some defini-
tions and properties of distributions relevant to the Dirac delta function (which is in fact a
distribution) are given in Appendix. E.

6.1.2 General solution of the Poisson equation with boundary conditions

In numerical simulations, the domain is delimited in space so that appropriate boundary con-
ditions are imposed through Dirichlet or Neumann boundary conditions so that the problem
becomes: 

∇2φ = − ρ
ε0

in Ω̊

φ = φD on ∂ΩD

∂φ

∂n
= −En on ∂ΩN

(6.4)

(6.5)

(6.6)

where Ω̊ denotes the interior of the domain, ∂ΩD denotes the Dirichlet boundary, ∂ΩN the
Neumann boundary. These boundary conditions are the appropriate ones to ensure that a
unique and well-behaved solution will exist in the bounded region Ω.

6.1.2.1 Uniqueness of the solution with Dirichlet or Neumann boundary con-
ditions

To show the uniqueness of the solution of the potential with Dirichlet or Neumann boundary
conditions, we start from Green’s first identity [Jackson, 1999, Chap. 1.8] with arbitrary well
behaved functions ψ and φ:∫

Ω
(ψ∇2φ+∇ψ · ∇φ)dV =

∮
∂Ω

ψ
∂φ

∂n
dS (6.7)

Let’s suppose that there are two potentials φ1 and φ2 that satisfy the same Poisson
equation with the same boundary conditions:
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∇2φi = − ρ
ε0

in Ω (6.8)

φi = φd or Ei · n = Ed on ∂Ω (6.9)

Let us take the difference A = φ2 − φ1 which is solution of:

∇2A = 0 in Ω (6.10)
A = 0 or ∇A · n = 0 on ∂Ω (6.11)

Applying the first Green identity [Jackson, 1999, Chap. 1] on φ = ψ = A:∫
Ω
|∇A|2dV = 0 =⇒ A = constant (6.12)

For Dirichlet boundary conditions this constant is then null since A = 0 on the bound-
ary ∂ΩD, therefore the potentials φ1 and φ2 are strictly equal. For Neumann boundary
conditions, potentials are equal up to a constant.

6.1.2.2 Formal solution of electrostatic boundary-value problem with Green
function

Starting from the solution in free space which rests heavily upon the following equality
Eq. (6.3) we generalize this equality by introducing Green functions G(x,x′) that satisfies:

∇2G(x,x′) = δ(x− x′) (6.13)

with

G(x,x′) = 1
|x− x′| + F (x,x′) (6.14)

∇2F (x,x′) = 0 (6.15)

Hence G(x,x′) is the sum of the free space solution with an added function which is
solution to the Laplace equation and accounts for the boundary conditions. Using Green’s
theorem on φ and G yields:

φ(x) = 1
4πε0

∫
ρ(x′)G(x,x′)dV ′ + 1

4π

∫ (
G
∂φ

∂n′
− φ∂G

∂n′

)
dS′ (6.16)

This equation has the problem of having to specify Neumann and Dirichlet boundary
conditions on the same boundaries. This is solved by setting appropriate conditions on
G(x,x′). For example for Dirichlet boundary conditions we impose that:

GD(x,x′) = 0 on ∂Ω (6.17)

so that the general solution is:
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φ(x) = 1
4πε0

∫
ρ(x′)GD(x,x′)dV ′ − 1

4π

∫
φD

∂GD
∂n′

dS′ (6.18)

For Neumann boundary conditions, the mean value of the potential over the boundary
surface is included in the solution [Jackson, 1999, Chap. 1.10]:

φ(x) = 〈φ〉S + 1
4πε0

∫
ρ(x′)GN (x,x′)dV ′ − 1

4π

∫
GNEn′dS′ (6.19)

6.1.2.3 The Poisson equation as a functional minimum

The Poisson equation can be deduced from variational principles using the electric energy.
Let us consider the following functional:

I(ψ) = 1
2

∫
V
∇ψ · ∇ψdV −

∫
V
gψdV (6.20)

Making an infinitesimal change in ψ, ψ → ψ+ η, the functional I changes by an amount:

δI =
∫
V
∇ψ · ∇ηdV −

∫
V
gηdV (6.21)

=⇒ δI =
∫
V

(−∇2ψ − g)ηdV +
∫
∂V

η
∂ψ

∂n
dS (6.22)

Hence this functional is at an extremum provided that:

η = 0 on ∂V (6.23)
∇2ψ = −g (6.24)

Setting g = ρ/ε0, ψ = φ and multiplying the functional I by ε0 we get the energy
functional:

E(φ) =
∫
V

[
ε0
2 (∇φ)2 − ρφ

]
dV (6.25)

This energy is at an extremum (it is in fact a minimum) if the potential φ satisfies the
Poisson equation. Two terms are competing against each other in this energy functional: the
electric energy ε0E2/2 and the potential energy.

6.1.3 General solution of the Poisson equation in a rectangular cartesian
geometry

The general solution of the Poisson equation in a canonical case is derived here in order to
get insights about how the Poisson equation behaves: from the propagation of boundary
conditions to the diffusion of charge density. A simple three-dimensional rectangular box of
size (Lx, Ly, Lz) shown in Fig. 6.1 is considered (note that directions are either written in
(x, y, z) or (x1, x2, x3) form, the second form allowing to index directions). On each of the
boundary faces Dirichlet and Neumann boundary conditions are considered. We separate
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Figure 6.1: Rectangular box considered for the Poisson problem.

the general problem in two sub-problems by linearity: the RHS problem with zero boundary
conditions, i.e. the values of the Dirichlet and/or Neumann boundary conditions are set to
zero with a non-zero charge density, on one hand and the zero RHS boundary conditions,
i.e. a zero charge density with non-zero Dirichlet and/or Neumann boundary conditions on
the other hand. The resolution of each problem is carried out in the paragraphs below.

6.1.3.1 Zero Dirichlet and Neumann interior problem

From Eqs. (6.4) to (6.6) we consider the zero boundary conditions problem:
∇2φ = − ρ

ε0
in Ω̊

φ = 0 on ∂ΩD

∂φ

∂n
= 0 on ∂ΩN

(6.26)

(6.27)

(6.28)

We need to find the Green function associated to this problem. From Eqs. (6.18) and
(6.19), φD = 0 and En = 0 is imposed and by setting the average value of the potential
to zero the following general form is retrieved for both Dirichlet and Neumann boundary
conditions:

φ(x) = 1
4πε0

∫
ρ(x′)G(x,x′)dV ′ (6.29)

The expansion in an orthonormal basis of the Green function of the problem is now
sought. Starting from a slightly more general problem of finding the Green function of the
following elliptic equation [Jackson, 1999, Chap. 3.10]:

∇2
xG(x,x′) + [f(x) + λ]G(x,x′) = −4πδ(x− x′) (6.30)

the eigenvalues and eigenvectors (λn, ψn) of the problem are

∇2ψn + [f(x) + λn]ψn(x) = 0 (6.31)

The expansion of the Green function in the orthonormal basis of the eigenvectors is now
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given by [Jackson, 1999, Chap. 3.12]:

G(x,x′) = 4π
∑
n

ψ∗n(x′)ψn(x)
λn − λ

(6.32)

For the Poisson equation f(x) = 0 and λ = 0. The orthonormal eigenfunctions of the
problem now need to be found:

(∇2 + k2
nml)ψnml = 0 (6.33)

The three-dimensional eigenfunction is the product of one-dimensional eigenfunctions
such that ψnml = ψnψmψl (again indices for each direction are either denoted n,m, l or
n1, n2, n3). In each direction, three configurations are possible in the two limits (0, Li) of
the boundaries: Dirichlet boundary conditions, Neumann boundary conditions and mixed
boundary conditions. The orthonormal eigenfunctions for each type of boundary conditions
are as follows:

Dirichlet ψn(x) =
√

2
Lx

sin
(
nπx

Lx

)
(6.34)

Neumann ψn(x) =
√

2
Lx

cos
(
nπx

Lx

)
(6.35)

Dirichlet−Neumann ψn(x) =
√

2
Lx

sin
[
nπ

Lx

(
x− Lx

2

)]
(6.36)

Injecting the general eigenfunction in each direction ψn into Eq. (6.32) yields

G(x,x′) = 4π
+∞∑
ni=1

∏nd
i=1

2
Li
ψni(x′i)ψni(xi)∑nd
i=1

(
πni
Li

)2 (6.37)

6.1.3.2 Boundary conditions problem

We now turn to the Laplace problem associated to Eqs. (6.4) to (6.6) where the effect of
non-zero boundary conditions can be observed:

∇2φ = 0 in Ω̊
φ = φD on ∂ΩD

∂φ

∂n
= −En on ∂ΩN

(6.38)
(6.39)

(6.40)

We thus need to solve the Laplace equation with non-trivial boundary conditions in
cartesian coordinates. We first describe the resolution in two dimensions with the specific
case of a non-zero Dirichlet boundary at the bottom φ(x, Ly) = Vu(x) and zero potential on
the three remaining boundaries shown in Fig. 6.2. The 2D Laplace equation reads:

∂2φ

∂x2 + ∂2φ

∂y2 = 0 (6.41)
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Figure 6.2: 2D model Laplace problem considered.

Separating variables for the potential, the following equalities are obtained:

φ(x, y) = X(x)Y (y) (6.42)

=⇒ 1
X

∂2X

∂x2 + 1
Y

∂2Y

∂y2 = 0 (6.43)

=⇒ 1
X

∂2X

∂x2 = −α2 and 1
Y

∂2Y

∂y2 = α2 (6.44)

=⇒ φ = e±iαxe±αy (6.45)

With these boundary conditions, the following choice of basis functions for φ satisfying
the boundary conditions is:

φn = sin(αnx) sinh(αny) with αn = nπ

Lx
(6.46)

Hence the general form of the potential is given by the following series expansion:

φ(x, y) =
+∞∑
n=1

An sin
(
nπx

Lx

)
sinh

(
nπy

Lx

)
(6.47)

The sequence (An) is determined by the potential at the top Vu since φ = Vu is imposed at
this boundary:

φ(x, Ly) = Vu(x) =
+∞∑
n=1

An sin
(
nπx

Lx

)
sinh

(
nπLy
Lx

)
(6.48)

By orthogonality of the Fourier series functions the coefficients are given by the following
integral:

An = 2
Lx sinh

(
nπLy
Lx

) ∫ Lx

0
Vu(x) sin

(
nπx

Lx

)
dx (6.49)

To solve the problem with other settings of boundary conditions the base functions
Eq. (6.46) need to be adapted. We separate the total boundary conditions problems into
four sub-problems in two dimensions and six in three dimensions setting one boundary at
the prescribed value and all the other ones at zero. In the direction of the non-zero boundary
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condition sinh is taken if it is a non-trivial Dirichlet boundary condition (just like above)
and cosh is taken if it is a non-trivial Neumann boundary condition. For the other directions
the choices of the basis functions are made according to Eqs. (6.34)-(6.36).

6.2 Numerical integration of the Poisson equation

The discretization of the Poisson equation in structured meshes using finite differences is
presented first in cartesian and cylindrical geometries. In a second part the unstructured
discretization of the Poisson equation implemented in AVIP is detailed. The Laplacian cells
and matrices of the underlying linear systems are also exhibited for canonical configurations
in both structured and unstructured meshes.

6.2.1 Finite difference formulations

This section is dedicated to the discretization of the Poisson equation on structured grids.
First the discretization of the Laplacian on interior nodes is considered in cartesian and
axisymmetric geometries and then the boundary conditions are dealt with. In this section
the index i refers to the x direction and the index j refers to either the y (Cartesian co-
ordinates) or the r (axisymmetric coordinates) direction. The Poisson equation reduces to
a linear systems Aφ = b in numerical simulations whose coefficients depend on the chosen
discretization, i.e. the formula used for the Laplacian.

6.2.1.1 Cartesian

In Cartesian coordinates, the Laplace operator is simply a sum of second order derivatives
so that

∇2φ = ∂2φ

∂x2 + ∂2φ

∂y2 (6.50)

Using second order centered schemes for both derivatives, the Laplace operator for an
interior node is

∇2φi,j = φi+1,j + φi−1,j − 2φi,j
∆x2 + φi,j+1 + φi,j−1 − 2φi,j

∆y2 (6.51)

6.2.1.2 Cylindrical

We denote by (r, θ, x) the cylindrical coordinates. In axisymmetric conditions, the partial
derivative with respect to the angle θ in cylindrical coordinates of all the physical values are
equal to zero. Hence we are considering variables in the (r, x) plane. The operators on a
scalar fields φ(r, x) an vector field u(r, x) in axisymmetric conditions become:
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∇φ = ∂φ

∂x
ex + ∂φ

∂r
er (6.52)

∇ · u = ∂ux
∂x

+ 1
r

∂rur
∂r

(6.53)

∇2φ = ∂2φ

∂x2 + 1
r

∂

∂r

(
r
∂φ

∂r

)
(6.54)

The radius ri,j associated to each node in two-dimensions has to be corrected for the axis
nodes as the radius of the center of gravity associated to the nodal volume (which in the
case of axis nodes is not the same point as the node itself).

6.2.1.3 Boundary conditions

After construction of the matrix for all the interior nodes, boundary nodes need to be treated
separately. Dirichlet boundary conditions are enforced in the matrix by simply putting 1.0
coefficients for the Dirichlet nodes. As an illustration in 1D, the discretized Poisson matrix
with Dirichlet boundary conditions is given by:

A =



1 0 . . . . . . 0
1 −2 1 . . . 0
... . . . . . . . . . ...
0 0 1 −2 1
0 . . . . . . 0 1

 (6.55)

Neumann boundary conditions are imposed by using a ghost node method for second or-
der accuracy and the resulting one-dimensional matrix for a left-Neumann and right-Dirichlet
boundary Poisson problem is

A =



−2 2 . . . . . . 0
1 −2 1 . . . 0
... . . . . . . . . . ...
0 0 1 −2 1
0 . . . . . . 0 1

 (6.56)

6.2.2 Vertex-Centered Finite Volume formulation

6.2.2.1 Cartesian geometry

We integrate the Poisson equation Eq. (6.4) in the nodal volume Vi for an interior node i
(i.e. such that ∂V b

i = ∅):∫
Vi

∇2φdV =
∫
∂Vi

∇φ · ndS =
∑

τ∈E(i)

∫
∂Vi∩τ

∇φ · ndS (6.57)

The gradient is supposed to be constant inside each cell τ so that it can be extracted
from the integral yielding



82 CHAPTER 6. THE POISSON EQUATION

∫
Vi

∇2φdV =
∑

τ∈E(i)
∇φτ ·

∫
∂Vi∩τ

ndS =
∑

τ∈E(i)
∇φτ ·

∑
j∈S(i)∩τ

Sτi,j (6.58)

The value of this constant gradient inside cell τ is computed from the Green-Ostrogradski
theorem:

∇φτ = 1
Vτ

∫
∂Vτ

φn dS (6.59)

= 1
Vτ

∑
f∈F (τ)

φfSf (6.60)

where F (τ) are the set of faces of an element τ and n denotes undimensionalized normals.
Note that Si has the dimension of a surface in 3D or a length in 2D. Following the definition
of nodal normals Eq.(5.9) the gradient can be rewritten as [Lamarque, 2007, Chap. 4]:

∇φτ = − 1
Vτnd

∑
k∈τ

φkSk (6.61)

which in the end yields:∫
Vi

∇2φdV =
∑

τ∈E(i)
− 1
Vτnd

∑
k∈τ

φkSk ·
∑

j∈S(i)∩τ
Sτi,j (6.62)

The following relation is exact in the case of triangular, tetrahedral and holds for regular
quadrangular and hexahedral elements [Auffray, 2007]:∑

j∈S(i)∩τ
Sτi,j = Sτi /nd (6.63)

which yields ∫
Vi

∇2φdV =
∑

τ∈E(i)

∑
k∈τ

[
−Sk · Si
Vτn2

d

]
φk. (6.64)

Finally with the integration of the charge density the following equation is obtained from
the integration of both sides of the Poisson equation:

∑
τ∈E(i)

∑
k∈τ

[
Sk · Si
Vτn2

d

]
φk = ρiVi

ε0
(6.65)

Eq. (6.65) defines a linear system, i being the line and k the column of the matrix for
all i and k taking the values of all the inner nodes of the partition. One interesting feature
of this matrix in cartesian coordinates is its symmetry. The Laplacian operator matrix A
is computed with node normal vectors and primal cell volumes where each coefficient aij
stands as:

aij =
∑
ij∈τ

[
−Si · Sj
Vτn2

d

]
(6.66)
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where the sum is performed over the cells for which ij is an edge.
Remark on the implementation: The linear system solved in AVIP is in fact the

one obtained from:
−∇2φ = ρ

ε0
(6.67)

6.2.2.2 Axisymmetric configuration

The solution of Poisson’s equation in an r − z axisymmetry geometry is needed in streamer
simulations. First integration over the nodal volume is performed, here the volume is dV =
rdrdθdz: ∫

Vi

∇2φ dV =
∫
Vi

∇2φ rdrdθdz. (6.68)

By assuming axisymmetric conditions i.e. ∂/∂θ = 0, using Green’s theorem, summing over
the neighboring cells and assuming constant gradient within a cell, it yields:∫

Vi

∇2φdV = 2π
∫
Ai

∇ · (r∇φ)dA (6.69)

= 2π
∫
∂Ai

r∇φ · ndl (6.70)

=
∑

τ∈E(i)
2π
∫
∂Ai∩τ

r∇φ · dl (6.71)

=
∑

τ∈E(i)
2π∇φτ ·

∫
∂Ai∩τ

rdl (6.72)

In this section, all the normals denoted n are homogeneous to a length. The cell gradient
is discretized as in the last section with nodal normals (note here that the gradient is really
2D here, all the axisymmetric information is contained with the radius):

∇φτ = − 1
Aτnd

∑
k∈τ

φknk. (6.73)

Using the notations from Fig. 5.3a, for a triangle the remaining integral yields:∫
∂Ai∩τ

rdl =
rτ + rτij

2 nτij + rτ + rτik
2 nτik (6.74)

From Auffray [2007]:
nτij = 1

6(ni − nj) (6.75)

In the end:∫
∂Ai∩τ

rdl = 1
24 [(4rτ + 2ri + rj + rk)ni − (2rτ + ri + rj)nj − (2rτ + ri + rk)nk] (6.76)

For the quadrangular cell from Fig. 5.3b, using similar relations the resulting integral
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yields:∫
∂Ai∩τ

rdl = 1
16 [(4rτ + 2ri + rj + rl)ni − (2rτ + ri + rj)nj − (2rτ + ri + rl)nl] (6.77)

From these relations an equation similar to Eq. (6.65) can be obtained yielding a different
linear system: the radiuses introduced break the symmetry of the linear system matrix.

6.2.3 Boundary conditions

Two kind of boundary conditions are implemented in AVIP for the Poisson equation: Dirich-
let and Neumann boundary conditions. In practice the laplacian discretization is computed
for all nodes and then boundary conditions are applied on the Poisson matrix.

6.2.3.1 Neumann boundary conditions

For a Neumann boundary condition node i, e.g. in Figs. 5.4a and 5.4b, integration of the
Poisson equation yields ∫

Vi

∇2φdV =
∫
∂̊Vi

∇φ · ndS +
∫
∂V bi

∇φ · ndS (6.78)

The first term in the right hand side is discretized as detailed in the sections above.
Introducing the node normal boundary Sbi , which is the weighted sum of the face boundary
normals shown in Fig. 6.3, the second term reduces to∫

∂V bi

∇φ · ndS = ∇φ · n||Sbi || (6.79)

j

i

k

τ1

τ2

Sτ1
f

Sτ2
f

Si = Sτ1
f + Sτ2

f

Figure 6.3: Boundary conditions normals.

The Neumann boundary condition is imposed by modifying the right hand side of the
Poisson equation with the normal electric field En from Eq. (6.6). Using Eq. (6.65), the
complete discretized line for a Neumann boundary condition node i in the Poisson matrix is
thus

∑
τ∈E(i)

∑
k∈τ

Sk · Si
Vτn2

d

φk = ρiVi
ε0
− Ein||Sbi || (6.80)
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Neumann boundary conditions are thus natural conditions for the Poisson equation in
this vertex-centered formulation. Indeed when a boundary node is discretized using the
laplacian discretization and nothing else is applied a zero Neumann boundary condition is
implied.

6.2.3.2 Dirichlet boundary conditions

Dirichlet boundary conditions are enforced the same way as for the structured meshes in
Section. 6.2.1.3, by imposing a one coefficient on the matrix and setting the imposed value
in the right hand side of the linear system.

6.2.4 Laplacian cells for canonical meshes

The discretization of the Poisson equation is studied by looking at the coefficients of the
Poisson matrix for the cartesian and axisymmetric formulations. We first look at the dis-
cretization coefficients given by Eq. (6.65) in 2D for two different kinds of triangles: triangles
cutted from squares and equilateral triangles. The classical five point molecule is retrieved
for the first case, which is exactly the same discretization as the structured discretization
Eq. (6.51), whereas a seven point molecule is retrieved for equilateral triangles.

-4 1

1

1

1
(a) Triangular elements

−2
√

3
1/
√

31/
√
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√

3 1/
√

3
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√

3 1/
√

3

(b) Equilateral triangles

Figure 6.4: Laplacian cells for the 2D cartesian discretization of the Poisson equation
Eq. (6.65).

The matrices for the two kind of triangles studied above yield for the first cell at the axis
the coefficients show in Fig. 6.5. The top-bottom symmetry is broken in this case so that
the matrix is clearly non-symmetric for axisymmetric conditions.

The Laplacian cell for quadrangular elements using Eq. (6.65) is shown in Fig. 6.6. This
discretization is not the same as for the cutted squares shown in Fig. 6.4a and there is an
odd-even decoupling of the solution. This is problematic as two groups of nodes are separated
by this discretization that never interact with each other which can lead to instabilities. This
discretization is however valid and the proof can be carried out using the multi-dimensional
Taylor expansion below
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Figure 6.5: Laplacian cells in axysymmetric formulation.

φi+n,j+m =
+∞∑
k=1

1
k!

[
i∆x ∂

∂x
+ i∆y ∂

∂y

]k
φi,j (6.81)

-2

0.50.5

0.5 0.5

Figure 6.6: Quadrangular elements Laplacian cells in 2D.

To circumvent this odd-even decoupling a procedure is applied whenever quadrangular
elements are present in the mesh by creating virtual elements to discretize the quadrangular
as cutted quadrangular so that the resulting Laplacian cell is Fig. 6.4a. The procedure is
summarized in Fig. 6.7. The quadrangular element τ is cutted in half along the diagonal into
two virtual triangles τ1 and τ2. The four vertices of τ , originally numerotated from 1 to 4,
are given virtual indices shown in the corresponding color of the virtual element in Fig. 6.7.

6.3 Linear systems

The Poisson equation is discretized following the numerical methods described in the previous
section to yield a linear system of the form

Ax = b (6.82)
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Figure 6.7: Stabilized version of quadrangular discretization.

where A is the Poisson matrix with boundary conditions, x is the potential vector and b the
charge density with boundary conditions.

A brief overview of linear system solvers is given in this section with emphasis on Krylov
solvers which are used in practice: Conjugate Gradient and GMRES. Some linear algebra
material such as basic definitions, properties and theorems can be found in Appendix. D.
Proofs are omitted throughout this chapter but the interest reader can find them in Quar-
teroni et al. [2007], Saad [2003].

6.3.1 Preconditioning

Preconditioning is an important block of linear system solvers. It is a step that is applied
before and/or after the solver to stabilize the system. We first define the condition number
of a matrix.

Definition 6.1 (Condition number). Given a matrix norm || · ||, the condition number of a
matrix A is given by

K(A) = ||A|| ||A−1|| (6.83)

A condition number is defined for each norm that we choose and the condition number
for the 2-norm is called the spectral condition number because it is related to the singular
values of the matrix:

K2(A) = σ1(A)
σn(A) (6.84)

where σ1 and σn are respectively the highest and lower singular values of the matrix.

Property 6.1 (Distance singular matrices). The distance of matrix A to the set of singular
matrices is

dist(A) = min{||δA||/||A|| : det(A+ δA) = 0} (6.85)

This distance is related to the condition number as

dist(A) = 1/K(A) (6.86)
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and hence all invertible matrices A+ δA satisfy

||δA|| ||A−1|| < 1 (6.87)

Hence the condition number of a matrix tells us how far the system is from being ill-
conditioned, the lower the condition number the more stable the system.

This statement is made more precise by the following forward analysis. The floating
point representation of number implies that all numbers are represented with a given degree
of accuracy represented by the machine precision. For a designed linear system this mean
that the matrix A and right hand side b are perturbed by δA and δb, respectively. We
consider the perturbation on the solution δx that is solution of the perturbed system:

(A+ δA)(x+ δx) = b+ δb (6.88)

The perturbation on the solution given perturbed matrix and right-hand side are governed
by the following inequality:

||δx||
||x||

≤ K(A)
1−K(A)||δA||/||A||

( ||δb||
||b||

+ ||δA||
||A||

)
(6.89)

We would expect for a stable system to have a perturbed solution close to the actual
solution, i.e. a low value of ||δx||/||x||. The higher the condition number, the higher the
norm of the perturbation can be so that the actual computed solution can diverge from the
actual solution of the linear system.

Hence for a given linear system Ax = b the goal of preconditioning is to reduce the
condition number of the system by solving an equivalent linear system which has the same
solution. Three kinds of preconditioning are possible:

1. Left preconditioning P−1Ax = P−1b

2. Right preconditioning AP−1y = b and y = Px

3. Centered preconditioning P−1
L AP−1

R y = b and y = PRx

In each case we expect to have K(P−1A) < K(A) so that the system would be more stable.

6.3.2 Condition numbers of cartesian and cylindrical matrices

From the above properties and relations, the condition number is a critical quantity to assess
the difficulty to solve a linear system. The comparison of cartesian and cylindrical matrices
of the Poisson equation discretization is carried out here to understand what the difference
is between the two formulations.

A 1D-domain with n nodes is considered with a Neumann condition at one end and a
Dirichlet boundary condition at the other end. The cartesian matrix reads
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A =



−2 2 . . . . . . 0
1 −2 1 . . . 0
... . . . . . . . . . ...
0 0 1 −2 1
0 . . . . . . 0 1

 (6.90)

whereas the equivalent cylindrical matrix reads

A =



−4 4 . . . . . . 0
1/2 −2 3/2 . . . 0
... . . . . . . . . . ...
0 0 (n− 3/2)/n −2 (n− 1/2)/n
0 . . . . . . 0 1

 (6.91)

These discretizations are obtained by the square-cutted triangles shown in Fig. 6.4a
and 6.5a in the y direction. The spectral condition number K2(A) for these two matrices
is shown in Fig. 6.8. The spectral condition numbers increase as the number of nodes
increase which is expected: the bigger the size of the system the harder it is to solve. The
cylindrical formulation (red plain curve) seems to be slightly more stable than the cartesian
formulation (blue dashed curve) as the cylindrical spectral condition number is smaller for
a given resolution. An important property that is lost however for the cylindrical matrix is
the symmetry property for which fast solvers exist as shown in the following section.
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Figure 6.8: Spectral condition number at different resolutions for cartesian and cylindrical
matrices.

6.3.3 Iterative solvers

Two kind of linear system solvers exist: direct solvers and iterative solvers. Iterative solvers
are less memory intensive and faster than their direct counterparts. In the context of a HPC
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code these methods are preferred although direct methods are more robust and accurate but
more memory intensive.

As will be seen from the results shown below iterative solvers require a deeper analysis
of the considered linear system to be efficient. This is because convergence is certain only
assuming certain matrix properties whereas for a non-singular matrix a simple direct method
such as LU always yields a solution.

In iterative methods we try to find a sequence of vectors that tend to the desired one,
solution of the system Ax = b

x = lim
k→+∞

x(k) (6.92)

where k is iteration number. Given an initial guess x(0) the following iteration procedure is
performed where B is called the iteration matrix:

x(k+1) = Bx(k) + f k ≥ 0 (6.93)

For consistency we must have x = Bx + f or equivalently f = (I − B)A−1b. This
procedure converges if and only if ρ(B) < 1. A general method to devise consistent linear
method consists in splitting the matrix A = P − N where P is called the preconditioner.
From this splitting the iteration procedure writes

Px(k+1) = Nx(k) + b k ≥ 0 (6.94)

This decomposition can be directly linked with the iteration matrix as B = P−1N .
Finally another common rewriting of the iteration procedure with such a decomposition is
the following one:

x(k+1) = x(k) + P−1(b−Ax(k)) = x(k) + P−1r(k) (6.95)

Method Iteration Matrix P N
Jacobi BJ = I −D−1A D E + F
JOR BJω = ωBJ + (1− ω)I - -

Gauss-Seidel (D − E)−1F D − E F
SOR B = (I − ωD−1E)−1(ωD−1F + (1− ω)I) - -

Table 6.1: Common iterative methods following the A = P −N decomposition.

Eqs. (6.93), (6.94) and (6.95) are all equivalent and all iterative methods can be written
done in either of these forms and some of them are recalled in Table. 6.1.

6.3.3.1 Basic iterative methods

The Jacobi, Gauss-Seidel and their relaxation counterparts JOR and SOR are recalled in
Tab. 6.1. For these methods convergence results exist and the main ones are laid out next.

Theorem 6.1. If A is a strictly diagonally dominant matrix by rows, then the Jacobi and
Gauss-Seidel methods are convergent.
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Theorem 6.2. If A is symmetric positive definite, the Gauss-Seidel method is monotonically
convergent with respect to || · ||A.

Theorem 6.3. If the Jacobi method is convergent then JOR method is convergent for 0 <
ω ≤ 1.

6.3.3.2 The Gradient and Conjugate Gradient methods

For a positive definite matrix A we define the energy of the linear system

E(y) = 1
2y

TAy − yT b (6.96)

The gradient of the energy is ∇E = Ay − b so that for the solution of the system x we
have ∇E = 0, i.e. the solution is at an extremum of the energy functional. From a Taylor
expansion in multiple dimensions

E(y) = E(x+ (y − x)) = E(x) + 1
2 ||y − x||

2
A (6.97)

so that the extremum is in fact a minimum. The goal is to update the residuals in the
direction of steepest gradient.

The Gradient method [Quarteroni et al., 2007, Chap. 4] uses a Richardson iteration
method as follows

x(k+1) = x(k) + αkr
(k) (6.98)

where the direction of update is simply the gradient direction since r = ∇E and the optimal
parameter for convergence is

αk = r(k)T r(k)

r(k)TAr(k) (6.99)

The Conjugate Gradient Method is an improvement of the Gradient Method which finds
the optimal direction along which the solution is updated at each iteration. The algorithm
reads for each iteration k

αk = p(k)T r(k)

p(k)TAp(k) (6.100)

x(k+1) = x(k) + αkp
(k) (6.101)

r(k+1) = r(k) − αkAp(k) (6.102)

β(k+1) = (Ap(k))T r(k+1)

(Ap(k))T p(k) (6.103)

p(k+1) = r(k+1) − βkp(k) (6.104)

A comparison of the Gradient Method and the Conjugate Gradient Method is shown in
Fig. 6.9 for a simple 2 × 2 matrix. The Conjugate Gradient corrects the direction towards
the global minimum directly whereas the Gradient Method zigzags around.
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Figure 6.9: Gradient Method (GM) and Conjugate Gradient (CG) comparisons.

As for the convergence of the CG method, we have the following theorem.

Theorem 6.4. Let A be a symmetric and positive definite matrix. Any method which em-
ploys conjugate directions to solve the linear system Ax = b terminates after at most n steps,
yielding the exact solution.

Hence for symmetric positive definite matrices, the CG method should be the first option
to consider. For not too non-symmetric, i.e. symmetry broken by the boundary conditions
only, it is also reasonable to consider CG as the best linear solver. However for matrices
whose inner part is non-symmetric such as in the cylindrical case it is not clear whether or
not CG is the best option.

6.3.3.3 The Multigrid method

We now turn to a particular class of methods, the multigrid methods, which solve differential
equations using a hierarchy of discretizations. Solving linear systems using multiple scales
have proven to be very effective especially on elliptic problems: they are scalable as their
complexity on specific cases is O(n) where n is the number of unknowns [Falgout, 2006].

Multigrid methods is built upon two complementary processes: smoothing (or relaxing)
and coarse-grid corrections. The application of a smoother, which is a simple iterative method
such as the Gauss-Seidel method presented in Section. 6.3.3.1, is carried out in each different
resolution. The transfer from a finer resolution to a coarser one is done through restriction
operators and from coarser to finer resolutions through interpolation or prolongation opera-
tors. This process is illustrated in Fig. 6.10 where the restriction operators are denoted by
Ri and the prolongation operators by Pi.

6.3.3.4 The PETSc solver

In AVIP, we have decided to use the PETSc library (Version 13.4 at the time of writ-
ing) [Balay et al., 2021] to solve linear systems. The previously used Maphys software in
Joncquieres [2019] has been discarded due to unadapted data structures. PETSc has, on
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Figure 6.10: Illustration of a multigrid V cycle with 3 levels taken from Verdugo and Wall
[2016].

Krylov solvers Preconditioners
Richardson Jacobi
Chebychev SOR

Conjugate Gradient Algebraic Multigrid
BiCGStab Boomer AMG
GMRES LU

Table 6.2: Krylov solvers and preconditioners (partial list).

the other hand, an easy-to-use interface with a data structure easily adaptable to that of
AVIP. Various Krylov solvers and preconditioners can be accessed through PETSc shown in
Tab. 6.2. It interfaces in particular with Hypre [Falgout and Yang, 2002] which allows to use
its well-reknown BoomerAMG multigrid method.

6.4 Test cases

Test cases are performed on the Poisson solver implemented in AVIP with the discretization
laid out in Sec. 6.2 with PETSc [Balay et al., 2021].

6.4.1 Convergence

The convergence of the Poisson equation discretization of AVIP is considered in this section.
The test case is a simple [0, 1]2 square with zero Dirichlet boundary conditions labeled case
A shown in Fig. 6.11. The anaytical solution of the problem is given by Eqs. (6.29) and
(6.37). The fundamental modes are sine modes so that we consider a single-mode charge
density of the form
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Figure 6.11: Cartesian geometry for Poisson validation of case A.

R(x, y) = Rnm sin
(
nπx

Lx

)
sin
(
mπy

Ly

)
(6.105)

The potential solution for this problem has the same shape as the charge density. Higher
frequencies are damped by a factor that is proportional to the square of n and m:

φ(x, y) = Rnm(
nπ
Lx

)2
+
(
mπ
Ly

)2 sin
(
nπx

Lx

)
sin
(
mπy

Ly

)
(6.106)

Figure 6.12: Charge density and potential (non-dimensional) with only the (3, 2) mode so
that R3,2 = 1 for the convergence study for case A at 101× 101 resolution.

We choose the (n,m) = (3, 2) mode with Rnm = 1 for the convergence testing of the
Poisson formulation which is shown in Fig. 6.12 where the same direct linear system solver,
LU, has been applied on both cases. The potential and charge density indeed have the same
shape with a lower amplitude for the potential in this case. The convergence of the solution
on both triangular and quadrangular meshes without correction is shown in Fig. 6.13 by
taking the L2 norm of the potential. Both element types have a second order accuracy which
is satisfactory. However due to the odd-even decoupling of the quadrangular elements the
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error is a factor of 5 higher for quadrangular meshes. Since the same method is used for both
element types, this error is thus a result of the bad discretization for this type of elements
in the chosen formulation which is more stable for triangles. The quadrangular stabilized
discretization described earlier solves this issue by introducing virtual cells, resulting in the
same discretization for quadrangular and triangles given by Fig. 6.4a.
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L2 (

)
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Figure 6.13: Poisson error convergence for case A.

6.4.2 Cartesian geometry

Case B considers mixed boundary conditions tested on the [0, 1]2 square by switching to zero
Dirichlet or zero Neumann boundary conditions for the bottom side in Fig. 6.14.

In the case where the Dirichlet boundary conditions are in the x-direction and the Neu-
mann boundary conditions are in the y-direction the modes of the Poisson equation are

R(x, y) = Rnm sin
(
nπx

Lx

)
cos
(
mπy

Ly

)
(6.107)
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Figure 6.14: Cartesian geometry for Poisson validation of case B.
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Figure 6.15: Charge density and potential for the 2-Dirichlet (left-right) 2-Neumann (bottom-
top) mode for case B.

where the results for this case with n = 3 and m = 2 are shown in Fig. 6.15. Switching the
bottom boundary condition to Dirichlet the modes of the Poisson equation become

R(x, y) = Rnm sin
(
nπx

Lx

)
sin
(

(m+ 1/2)πy
Ly

)
(6.108)

and results for the potential and charge density are shown in Fig. 6.16. Both modes with
mixed boundary conditions are correctly captured as their shape is left unchanged validating
the implementation of mixed boundary conditions in cartesian geometries.

Figure 6.16: Charge density and potential for the 3-Dirichlet 1-Neumann (top) mode for case
B.

We finally consider non-zero boundary conditions propagation of the AVIP Poisson solver:
a non-zero potential is applied without any charge density so that it is the Laplace equation
that is actually solved. The simple test case of a constant electric field in the x direction is
shown in Fig. 6.17 where the potential is indeed linear in the x direction.
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Figure 6.17: Potential for a constant electric field.

6.4.3 Cylindrical geometry

6.4.3.1 Bagheri benchmark

Axisymmetric conditions are assumed to simulate NRP discharges so that the cylindrical
formulation of the Poisson equation needs to be checked. The first case is a simple square
domain of 1.25× 1.25 cm2 used in the streamer code benchmark Bagheri et al. [2018] (more
details in Chap. 9) where an initial gaussian seed of positive charge is applied. The solution at
the first iteration is shown in Fig. 6.18 with a map of electric field norm and a 1D comparison
between AVIP and the reference code from CWI in the benchmark paper. Only the first
iteration is compared because different numerical schemes for plasma species are used and
the solution at later times is closed but not supposed to be exactly the same. Tests have been
carried out in three kind of meshes shown in Fig. 10.2: triangular, quadrangular and hybrid
meshes for a number of nodes ranging from 105 to 106. The agreeement found between AVIP
and the benchmark code validates the axisymmetric formulation of the Poisson equation in
rectangular geometries.

6.4.3.2 Hyperbole electrodes

We now turn to hyperbole electrodes that are more representative of the targeted config-
urations of this thesis. The propagation of isopotentials inside the domain in cylindrical
geometry is thus evaluated. A sketch of such a pin-pin configuration as well as the boundary
conditions applied is shown in Fig. 6.19: Dirichlet boundary conditions are applied on both
electrodes and Neumann boundary conditions are imposed on the outlet and axis. To take
such electrodes into account in structured meshes immersed boundaries can be used [Celestin,
2008, Chap. 4]. In the unstructured framework of AVIP, these electrodes are body-fitted
and the mesh around one tip of the electrodes is shown in Fig. 6.19b.

The results of the AVIP Poisson solver are shown in Figs. 6.20 and 6.21 for the potential
and the electric field, respectively. The equipotentials are well propagated inside the domain
and result in a fan-like shape. Near the tip of the electrodes the electric field is amplified
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Figure 6.18: Electric field for the first iteration of the benchmark Bagheri et al. [2018].
Comparison of the 1D cut is taken from Fig. 4 of the paper.
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Figure 6.19: Hyperbole electrodes configuration.
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due to the shortest distance between the equipotentials as shown in Fig. 6.21.

Figure 6.20: Potential for a pin-pin hyperboles configuration.

Figure 6.21: Electric field for hyperbole electrodes.

In Celestin [2008], Tholin [2012], Dirichlet conditions from the analytical solution of the
Laplace equation for hyperbolic electrodes are imposed on the boundaries of a structured
rectangular mesh which uses immersed boundaries to model the electrodes. Real pin elec-
trodes are not perfect hyperboles and have a constant height so that this approach is limited
to a particular geometry: for a real electrode exact solutions of the Laplace equation are not
easily retrieved. On the other hand, in AVIP we leverage the unstructured framework of the
code and impose Neumann boundary conditions in the farfield region allowing to adapt to
any shape of electrodes. That step would be very costly for a structured code as coarsening
the mesh is less effective. By coarsening the mesh thanks to triangles, the farfield region can
be set far away to not have any influence between the electrodes at a low cost. This is illus-
trated in Fig. 6.22 where more realistic delta-shaped electrodes are used in the simulation:
the fan-shape potential is retrieved as well.

6.4.4 PETSc solvers

As described earlier in this chapter, a variety of preconditioners and linear solvers are avail-
able in PETSc and a partial list is shown in Tab. 6.2. The most performant option for each
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Figure 6.22: Potential for a pin-pin delta electrodes configuration.

configuration is now discussed.

When the quadrangular discretization is not stabilized as shown in Fig. 6.7, iterative
solvers are not able to converge for high number of nodes and only a direct LU solver.

For the stabilized quadrangular discretization and triangle discretization (which are the
same) in cartesian coordinates, the inner part of the matrix is symmetric. Boundary con-
ditions break this symmetry and this is not directly corrected in AVIP. However since the
matrix is non-symmetric only due to boundary conditions it can be considered not too non-
symmetric so that in practice iterative methods like CG are able to converge to the solution
really fast. The most performant combination of preconditioner and iterative solver in our
case are the native PETSc GAMG preconditioner with CG iterative solver where the default
Chebychev solver for the multigrid levels is used.

In axisymmetric conditions, the symmetry of the inner matrix is broken and the matrix
is completely non-symmetric. The combination of CG with GAMG is still performant if the
iterative solver for the multigrid levels is switched to a Richardson solver since the Chebychev
solver only works for symmetric matrices. The GAMG preconditioner seems to stabilize the
system a lot since the CG method is able to converge to the solution although the system is
non-symmetric. Other preconditioners applied with CG do not lead to convergence and we
must switch to the BiCG and BiCGStab [Saad, 2003] which are versions of CG that get rid
of the symmetry constraint to get convergence.

6.5 Photoionization

Photoionization, as discussed in Section. 2.4.4, can be modeled by a set of Helmholtz equa-
tions. By doing so the photoionization source term becomes a sum of three source terms:
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Sph(r) =
∑
j

Sjph(r) (6.109)

Sjph(r) =
∫
V ′

I(r′)AjpO2e
−λjpO2R

4πR dV ′ (6.110)

where R = |r− r′| and each Sphj satisfies the following equation:

∇2Sjph(r)− (λjpO2)2Sjph(r) = −Ajp2
O2I(r) (6.111)

The resolution of these equations follow exactly the same methodology as for the Poisson
equation. The number of linear systems solved is equal to two or three depending on the
model used and resolution is performed every 10 iterations to keep the cost low while still
preserving accuracy [Celestin, 2008].
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Scalar transport equations
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This chapter concerns the numerical integration of the scalar transport equations relevant
to the drift-diffusion modeling of plasma species where each species i is governed by the
following equation:

∂ni
∂t

+∇ · Γi = S0i with Γi = niµiE−Di∇ni (7.1)

General properties and canonical solutions of the drift-diffusion equations are first re-
called in Section. 7.1. Robust numerical integration of these equations is then presented
in Section. 7.2 with the introduction of limiters. Finally the validation of the implemented
schemes is carried out in Section. 7.3.

7.1 Canonical solutions
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7.1.1 Convection

Let us consider a multidimensional scalar field u(x, t). For a constant advection velocity a,
the convection problem reads: 

∂u

∂t
+∇ · (au) = 0

u(x, 0) = u0(x)

(7.2)

(7.3)

The method of characteristics [Toro, 2009, Chap .2] allows to retrieve the solution to the
constant linear advection problem:

u(x, t) = u(x− at, 0) = u0(x− at) (7.4)

7.1.2 Diffusion

Let us consider a one-dimensional scalar field u(x, t). For a constant diffusion coefficient ν
the diffusion problem reads 

∂u

∂t
= ν

∂2u

∂x2

u(x, 0) = u0(x)

(7.5)

(7.6)

1D Resolution Applying the Fourier transform on Eq. (7.5):

∂û

∂t
= −νk2û (7.7)

=⇒ û(k, t) = û(k, 0)e−νk2t (7.8)

=⇒ u(x, t) = 1√
2π

∫
R
û(k, 0)e−νk2teikxdk = F−1(û(k, 0)e−νk2t) (7.9)

From this formula if the initial solution is a Gaussian:

u(x, 0) = u0 exp
(
−x

2

σ2

)
(7.10)

then the solution of the diffusion problem is

u(x, t) = u0σ√
σ2 + 4νt

exp
(
− x2

σ2 + 4νt

)
. (7.11)

Multidimensional resolution Adapting the preceding results, we start from the multi-
dimensional diffusion problem:

∂u

∂t
= ν∇2u (7.12)

The multidimensional Fourier transform for f ∈ L2(Rd) (where d is the dimension) is:

F(f) : k 7→ f̂(k) = 1
(2π)d/2

∫
Rd
f(x)e−ik·xdx. (7.13)
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Eq. 7.9 becomes:

u(x, t) = F−1(û(k, 0)e−ν‖k‖
2t) (7.14)

7.1.3 Convection-diffusion-reaction

We include reaction in the form of a sink term with frequency k. The multidimensional
convection-diffusion-reaction equation then reads:

∂u

∂t
+∇ · (au) = ν∇2u− ku

u(x, 0) = u0(x)

(7.15)

(7.16)

where the convection speed a and diffusion coefficient ν are constant. Making the following
change of variables:

τ = t (7.17)
y = x− at (7.18)

the advection part of the equation vanishes so that the equation reduces to

∂u

∂t
= ∂u

∂τ
− a · ∇yu− ku (7.19)

∇xu =∇yu (7.20)

We split the remaining diffusion and reaction terms by setting u = ũ exp(−kt). Hence
the convection-diffusion-reaction equation becomes a diffusion equation:

∂ũ

∂τ
= ν∇2

yũ (7.21)

Formally the solution of such a problem is then:

u(y, t) = e−ktF−1(ˆ̃u(k, 0)e−ν‖k‖
2t) (7.22)

For a Gaussian initial condition the following expression can be retrieved

u(x, t) = u0e
−kt

d∏
i=1

σi√
σ2
i + 4νt

exp
[
−(xi − ait)2

σ2
i + 4νt

]
(7.23)

This solution shows the interplay between the advection term which transports the solu-
tion, the diffusion term which damps the amplitude and increase the width of the solution
the sink source term which exponentially damps the solution.

7.2 Numerical integration of scalar transport equations
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7.2.1 Consistency, stability and convergence for transport equations

The general definitions of consistency, stability and convergece presented in Section. 5.1.1
are adapted in the particular context of transport equations which are partial differential
equations in time and space.

7.2.1.1 Consistency

A numerical scheme N(Uni ) = 0 is said to be consistent if it tends to the differential equation
D(U) = 0 when time and space steps tend to zero:

lim
∆x→0,∆t→0

N(Uni ) = D(Uni ) (7.24)

7.2.1.2 Stability

Stability is the requirement that all errors must remain bounded when the temporal iteration
process advances. Denoting by uni the computed solution and ūni the exact solution of the
numerical scheme, we define the error as ε̄ni = uni − ūni and require:

lim
n→+∞

|ε̄ni | ≤ K (7.25)

at fixed ∆t with K independent of n.

7.2.1.3 Convergence

Convergence is a condition on the numerical solution: when time and space steps tend to
zero, the numerical solution uni must converge to the exact solution ũni of the differential
equation. Defining the error as ε̃ni = uni − ũni we require that

lim
∆x→0,∆t→0

max
n∈J0,T/∆tK,i∈J0,Lx/∆xK

|ε̃ni | = 0 (7.26)

7.2.2 Advection-diffusion schemes

The Scharfetter-Gummel [Scharfetter and Gummel, 1969] advection-diffusion scheme and its
improved version [Kulikovsky, 1995] are presented in this section. These schemes are widely
used in plasma streamer physics Celestin [2008], Tholin [2012], Sharma et al. [2018], Bagheri
et al. [2018], Kantner [2020] for their combined robustness and accuracy.

7.2.2.1 Derivation

We consider the general advection diffusion equation

∂u

∂t
+ ∂F

∂x
= 0 where F = V u−D∂u

∂x
(7.27)

Placing ourselves in a mesh between xi and xi+1 we assume that the velocity V , diffusion
coefficient D and flux F are constant along the line segment (i, i + 1). Hence the drift-
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diffusion flux definition F = V u −D∂u∂x becomes a first order differential equation between
xi and xi+1:

∂u

∂x
−
Vi+1/2
Di+1/2

u = −
Fi+1/2
Di+1/2

(7.28)

The solution along the edge (i, i+ 1) is given by

u(x) =
[
ui −

hiF

D

∫ ξ

0
exp

(
−αξ′

)
dξ′
]

exp(αξ) (7.29)

where

ξ = x− xi
hi

α =
hiVi+1/2
Di+1/2

hi = xi+1 − xi (7.30)

Finally evaluating the solution at xi+1 gives the desired unknown flux at the middle of
the edge:

Fi+1/2 =
Vi+1/2
1− eα [ui+1 − eαui] (7.31)

This flux definition is the one from the original Scharfetter and Gummel [1969] scheme.
This combined convection-diffusion scheme has a non-dimensional parameter α which com-
pares the amount of convection against diffusion at a given edge. Asymptotic regimes of this
edge flux are given in the following for limit values of α:

Dominant convection α� 1. The flux reduces to a first order upwind for the convection
part

Fi+1/2 = Vi+1/2ui (7.32)

Dominant diffusion α� 1. The flux reduces to centered difference for the diffusive flux
and convective flux

Fi+1/2 = −
Di+1/2
hi

(ui+1 − ui) + Vi+1/2
ui+1 + ui

2 − α

12Vi+1/2(ui+1 − ui) (7.33)

7.2.2.2 Improved version of the SG scheme

From this asymptotic analysis the scheme reduces to first order when convection is dominant.
To gain order an improved version [Kulikovsky, 1995] can be obtained by first assuming a
linear velocity profile between xi and xi+1

V (x) = Vi(1 + ∆Vi
Vi

ξ) = Vi(1 + 2βξ) (7.34)

with β = ∆Vi/2Vi. Solving the first order differential equation as above with the linear
profile and assuming |αβ| � 1, i.e. a sufficiently small speed variation, allows to get the
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following flux expression [Kulikovsky, 1995]:

Fi+1/2 =
Di+1/2
hiI1

[
ui −

exp(−αξ)
1 + αβ

ui+1

]
(7.35)

with

ξ = x− xi
hi

(7.36)

f(ξ) = α(1 + βξ)ξ (7.37)

α = Vihi
Di+1/2

(7.38)

I1 =
∫ 1

0
exp

(
−αξ′

)
(1− αβξ′2)dξ′. (7.39)

7.2.2.3 Virtual nodes

x

i i+ 1/2 i+ 1

L Rhv

Figure 7.1: Sketch of the virtual nodes used for the improved SG scheme.

To satisfy |αβ| � 1, i.e. a small enough velocity fluctuation, virtual nodes are defined on
the edge. Velocity is assumed to vary linearly and the interpolation distance is controled by
a paremeter ε: the lower the value the more the values are interpolated close to the middle
of the edge. A sketch of the interpolation procedure is drawn in Fig. 7.1 and the different
interpolated variables read

xL,R = xi+1/2 ∓
hv
2 (7.40)

VL,R = Vi+1/2 ∓
∆Vv

2 (7.41)

∆Vv = hv
hi
∆Vi (7.42)

hv =
√
ε2Di+1/2hi

|∆Vi|
(7.43)

The interpolated scalar values uL,R are not linear functions of the position but are expo-
nentially interpolated to yield:

u(x) = ui exp(a(x− xi)), a = 1
hi

ln
(
ni+1
ni

)
(7.44)
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7.2.3 Total Variation Diminushing High-Resolution Schemes

The SG scheme is an advection-diffusion scheme that uses an interpolation procedure to
capture stiffness. As will be seen in the following sections, its applicability on non-regular
elements, such as distorted triangles, is not possible and we turn to other classes of the
schemes for this reason. The general development of Total Variation Diminushing (TVD)
High-Resolution Schemes is detailed for 1D structured meshes following [Hirsch, 2007, Chap.
8] for the linear advection equation in this section. Conditions for high-resolution schemes
are first detailed for a two-step numerical scheme. Monotonicity is then defined and the
important Godunov theorem [Godunov and Bohachevsky, 1959] is recalled leading to the
introduction of limiters [van Leer, 1974, Sweby, 1984].

7.2.3.1 High-Resolution Schemes

We consider two-step numerical schemes which have the following general form in 1D meshes

un+1
i =

∑
j

bju
n
i+j (7.45)

The range of j is called the support of the schemes and is separated between ju upwind
points and jd downwind points so that the total number of support points isM = ju+jd+1.
We recall the first order upwind scheme and second order Lax and Wendroff [1960] schemes
for the linear convection equation in terms of the CFL number σ = a∆t/∆x which must be
less than or equal to 1 for stability:

FOU un+1
i = uni − σ(uni − uni−1) (7.46)

LW un+1
i = uni −

σ

2 (uni+1 − uni−1) + σ2

2 (uni+1 + uni−1 − 2uni ) (7.47)

General conditions to obtain a scheme of given order of accuracy p can be obtained and
the reader is referred to [Hirsch, 2007, Chap. 8] for the proof:

∑
j

bjj
m = (−σ)m ∀m ∈ J0, pK (7.48)

7.2.3.2 Monotonicity conditions

A scheme is said to be monotone or total variation diminushing (TVD) if the new solution
value at time (n+ 1), un+1

i , does not reach values outside the range covered by uni+j , that is

unmin ≤ uni+j ≤ unmax =⇒ unmin ≤ un+1
i ≤ unmax (7.49)

A sufficient condition for monotocity is that bj ≥ 0 for all j in the support of the
scheme [Hirsch, 2007, Chap. 8]. An equivalent way of looking at monotonicity is to see
it as the requirement that a local minimum cannot decrease and a local maximum cannot
increase when going from one timestep to the other. Rewriting the two-step numerical scheme
Eq. (7.45) with ∑j bj = 1:
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un+1
i = uni +

∑
j

bj(uni+j − uni ) (7.50)

If bj ≥ 0 is satisfied then un+1
i ≥ uni for a local minimum and un+1

i ≤ uni for a local
maximum, i.e. the solution stays within the previous solution bounds.

7.2.3.3 Godunov’s theorem

Theorem 7.1 (Godunov and Bohachevsky [1959]). All linear monotone schemes for the
convection equation are necessarily first order accurate.

Proof. The proof is only made for the two-step explicit schemes. Following Eq. (7.48), a
second order accurate scheme must satisfy

∑
j

bj = 1
∑
j

jbj = −σ
∑
j

j2bj = σ2 (7.51)

We consider a first order monotone scheme. Monotonicity implies that ∀j, bj ≥ 0.
Invoking Schwartz’s inequality yields

σ2 =

∑
j

jbj

2

=

∑
j

j
√
bj
√
bj

2

≤
∑
j

j2bj (7.52)

Finally since the two vectors (j
√
bj) and (

√
bj) are non colinear (except for bj = 0 which

is not possible) then the inequality is strict and σ2 <
∑
j j

2bj . The last equality for second
order accuracy can not be satisfied for a first order monotone scheme.

7.2.3.4 High-resolution schemes and the concept of limiters

The Godunov theorem tells us that TVD/monotonicity conditions are not possible with
linear schemes with order higher than one. For monotone high-order schemes the concept
of limiters needs to be introduced van Leer [1974], Sweby [1984]. Limiters are non-linear
functions that control the ratio between successive gradients. The following steps can be
applied to any high-order scheme to build a limiter:

1. Select a first-order monotone scheme (usually the upwind scheme) as reference. Express
the high order scheme as the monotone scheme plus additional terms

2. Multiply the additional terms by a limiting function Ψ(ri), expressed as a function of
ratios of successive gradients.

3. Express the monotonicity conditions to derive conditions on the limiters

Let us apply this methodology on the second-order Lax and Wendroff [1960] scheme
Eq. (7.47). (1) Rewriting the scheme in terms of monotone terms and non-monotone terms
gives
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un+1
i = uni − σ(uni − uni−1)︸ ︷︷ ︸

monotone terms

− σ2 (1− σ)(uni+1 − uni )− σ

2 (σ − 1)(uni − uni−1)︸ ︷︷ ︸
non-monotone terms

(7.53)

Limiters monitor the ratio of successive gradients ri = (ui − ui−1)/(ui+1 − ui) and so
non-monotone terms are multiplied by limiting functions Ψ(ri). After some rearrangements
the following expression is obtained:

uni+1 = uni − σ
{

1 + 1− σ
2

[
Ψ(ri)
ri
− Ψ(Ri−1)

]}
(uni − uni−1) (7.54)

Requiring the terms in the brackets to be positive the limiting function must satisfy the
following inequalities:

0 ≤ Ψ(r) ≤ min(2r, 2) (7.55)

For a linear solution r = 1, i.e. the ratio of gradients is constant, and the second order
accurate schemes should be satisfied exactly hence Ψ(1) = 1. Moreover, though theoretically
acceptable, solutions outside Ψ = r and Ψ = 1 lead to schemes which are overcompressive
(turning sine waves into square wave forms). Various limiters can then be defined but two
have been chosen for implementation in AVIP:

• the van Leer [1974] limiter:
Ψ(r) = r + |r|

1 + r
(7.56)

• the Sweby [1984] limiter which takes a parameter β between 1 and 2:

Ψ(r) = max(0,min(βr, 1),min(r, β)) (7.57)

The two limiters are plotted in Sweby diagrams Fig. 7.2. The van Leer [1974] limiter
is smooth and in the middle of the allowed space for limiters and can be considered as a
good average option. The Sweby [1984] limiter, with its β parameter, continuously goes from
the lower part of the allowed values for β = 0 to the upper part of the allowed values for
β = 1. This allows flexibility on the amount of limiting that is applied: higher values are
more accurate but also less stable. Note that the β = 1 and β = 2-Sweby limiters are also
called Min-mod and Superbee limiters [Hirsch, 2007, Chap. 8].

7.2.4 Implementation in AVIP

The model equation that needs to be solved in the case of drift-diffusion is simply the
advection-diffusion equation

∂u

∂t
+∇ · F = 0 (7.58)

where F = Vu−D∇u. This equation is averaged over the dual volume Vi.
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(a) Van Leer limiter
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(b) Sweby limiters

Figure 7.2: Limiters in Sweby diagrams. They shaded area corresponds to the allowed space
for limiters.

dui
dt + 1

Vi

∫
Vi

∇ · F dV = 0 (7.59)

We integrate this equation in a vertex-centered formulation looping eventually on the
edges of the dual volume. To preserve data structures close to AVBP [Lamarque, 2007,
Chap. 4] the following discretization is used∫

Vi

∇ · F dV =
∑

τ∈E(i)

∑
f∈τ∩∂Vi

∫
f

F · n dS (7.60)

The first sum is a loop on each neighboring cell of a given node and then we sum on
the faces of the intersection of the neighboring cell τ and the nodal surface ∂Vi. In practice
in AVIP the residual is computed at each edge of the cells as shown in Fig. 7.3 in 2D for
triangular and quadrangular cells where three and four edges are present for each element
type, respectively. The number of edges differs from the number of vertices in 3D: tetrahedra
elements have six edges whereas hexahedral elements have twelve edges.

Cylindrical frames with axisymmetric conditions are also considered in this work. The
flux formulation has to be slightly modified as the differential volume is now dV = rdrdθdx
where (x, r, θ) are the cylindrical coordinates. The integration on the azimuthal angle can
be carried out since ∂/∂θ = 0 and therefore the averaged equation over the dual volume Vi
yields

dui
dt + 1

riAi

∫
Ai

∇ · (rF) dA = 0 (7.61)

where Vi = 2πriAi results from Theorem. 5.3. Splitting this nodal surface flux along its
edges yield the axisymmetric equivalent of Eq. (7.60) where the edges radiuses, shown for
the edge ij in Figs. 7.3a and 7.3b, need to be included in the flux computation:∫

Ai

∇ · (rF) dA =
∑

τ∈E(i)

∑
f∈τ∩∂Ai

∫
f

F · rn dl (7.62)

The flux on the nodal surface associated to edge ij in Fig. 7.3 is finally simplified by
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i j

k

∂Vi ∩ τ ∂Vj ∩ τ

∂Vk ∩ τ

Sτij

Sτjk

Sτki rτij

(a) Triangular cell

i j

l k

∂Vi ∩ τ ∂Vj ∩ τ
∂Vl ∩ τ ∂Vk ∩ τ

Sτij

SτjkSτkl

Sτli
rτij

(b) Quadrangular cell

Figure 7.3: Edges definitions in 2D cells. There are three edges ij, jk and ki in triangles
and four edges ij, jk, kl and li in quadrangles.

invoking Theorem. 5.2: ∫
f

F · rn dl = Fijr
τ
ijSτij (7.63)

where the radius rτij is shown in Fig. 7.3 for both elements and considering that the edge ij
is an axis edge.

Three TVD schemes, whose formulation in 1D have been detailed in Sections. 7.2.2
and 7.2.3, will be presented to integrate the advection-diffusion equation in the finite vol-
ume vertex-centered formulation of AVIP: the Scharfetter Gummel (SG) scheme Scharfetter
and Gummel [1969], its improved version (ISG) Kulikovsky [1995], a simple upwind scheme
[Hirsch, 2007, Chap. 7] and the limited Lax-Wendroff (LLW) scheme Lax and Wendroff
[1960], Sweby [1984]. The upwind and limited LW schemes are supplemented by a central
differencing diffusive flux integration. These schemes has been originally developed for carte-
sian meshes and adaptations of these schemes on unstructured meshes with non-topologically
dual elements has been carried out in AVIP and is presented.

7.2.4.1 Scharfetter Gummel scheme

Starting from (7.60), we can rewrite the flux term as∫
f

F · n dS = Fij · Sij (7.64)

Splitting the nodal surface normal into a tangential and perpendicular part Sij = S‖ij+S⊥ij
with respect to the edge direction îj = ij/ij∫

f
F · n dS = Fij · S‖ij + Fij · S⊥ij (7.65)
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where a definition of these normals for non-topologically dual meshes is shown in Fig. 7.4.

i j

k

∂Vi ∩ τ S‖ij

SτijS⊥ij

Figure 7.4: Definitions of tangential and perpendicular node surface normals in a non topo-
logically dual triangular cell.

The Scharfetter Gummel scheme Kulikovsky [1995] can be applied on the tangential part
of the flux by projecting the flux along the tangential normal:

Fij · S‖ij = uVij · S‖ij −D∇u · S
‖
ij (7.66)

The SG scheme gives tangential flux projection but does not give any information about
the normal flux projection:

Fij · S‖ij = Vij · S‖ij
uj − eαui

1− eα (7.67)

where

α = hijVij · îj
Dij

(7.68)

On meshes where the perpendicular component is non-zero another scheme must be
applied on top of the SG scheme. A centered-scheme has been chosen for this normal part:

Fij · S⊥ij = Vij
ui + uj

2 · S⊥ij −Dij
∇ui +∇uj

2 · S⊥ij (7.69)

The improved Scharfetter Gummel scheme (ISG) virtual node reconstruction is carried on
the edge exactly as explained in the 1D case since locally the tangential flux reconstruction
reduces to a 1D problem in Eq. (7.66).

7.2.4.2 Upwind scheme

A simple upwind scheme has been implemented for comparison purposes and its correspond-
ing flux is given by ∫

f
F · n dS = max(0,Sij ·Vij)ui + min(0,Sij ·Vij)uj (7.70)
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7.2.4.3 Limited Lax-Wendroff scheme

We are only interested in the convective part of the scheme for now so ut +∇ · (Vu) = 0 is
considered. The starting point of the Lax-Wendroff scheme is a Taylor expansion in time of
the variable u [Lamarque, 2007, Hirsch, 2007]

un+1 = un + ∆tut + ∆t2
2 utt +O(∆t3) (7.71)

Keeping only the first three terms and using the advection diffusion equation the Taylor
expansion is rewritten as

un+1 = un −∆t∇ · (Vu) + ∆t2
2 ∇ · (V∇ · (Vu)) (7.72)

Integrating on the nodal volume Vi following (7.60) yields

un+1
i = uni −

∆t
Vi

∑
τ∈E(i)

∑
f∈τ∩∂Vi

[∫
f
uV · n dS − ∆t

2

∫
f
∇ · (Vu)V · n dS

]
(7.73)

Assuming a constant velocity on the edge, the Lax-Wendroff schemes finally writes

un+1
i = uni −

∆t
Vi

∑
τ∈E(i)

∑
f∈τ∩∂Vi

[
uij −

∆t
2 ∇uij ·Vij

]
Vij · Sij (7.74)

where ij denotes the mean of the values at the edge, e.g. uij = (ui + uj)/2.
The limited Lax-Wendroff scheme Eq. (7.54) is rewritten in a 1D finite volume formulation

so that the value at the middle of the edge ij is defined by

ui+1/2 = ui + 1− σ
2 (ui+1 − ui)Ψ(Ri) (7.75)

where the limiting function is either the van Leer [1974] or Sweby [1984] limiter.

l
i j

k

Figure 7.5: Reconstruction of neighboring nodes using upwind cells.

This cartesian limiting scheme needs to be adapted to unstructured meshes. In a cell of
an unstructured mesh, there is no real upwind node so that only a virtual upwind node k
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can be defined at an edge ij shown in Fig. 7.5. Only the upwind gradient uk − ui is needed
and is computed by leveraging the centered gradient of AVIP so that approximately we have

∇ui · (2ij) = uj − ul (7.76)

The ratio of gradients is computed as

Rij = uj − ui −∇ui · (2ij)
uj − ui

(7.77)

In the end the limited Lax-Wendroff scheme in Finite Volume Vertex Centered formula-
tion is given by

un+1
i = uni −

∆t
Vi

∑
τ∈E(i)

∑
f∈τ∩∂Vi

[
ui +

(
uj − ui

2 − ∆t
2 ∇uij ·Vij

)
Ψ(Rij)

]
Vij · Sij (7.78)

7.2.4.4 Central difference diffusive flux integration

When using upwind or limited LW scheme for the advection term, a central difference scheme
is applied on the diffusive flux FD = −D∇u as∫

f
FD · n dS = −Dij

∇ui +∇uj
2 · Sij (7.79)

7.2.5 Boundary conditions in AVIP

The boundary fluxes for quandrangular elements are shown in Fig. 7.6 for a boundary node
i. Two choices for the flux computation are possible

• The two fluxes are taken equal to the node flux

Fτ1
i = Fτ2

i = Fi (7.80)

• The fluxes are interpolated, which in two-dimensions reduce to

Fτ1
i = 0.75Fi + 0.25Fj (7.81)

Fτ2
i = 0.75Fi + 0.25Fk (7.82)

Two types of boundary conditions are implemented:

• Supersonic boundary conditions: F = FC + FD

• Neumann boundary conditions: F = FC where ∇u · n = 0 is thus implied

7.2.6 Time step computation

We use a cell-based approach to compute the timestep. Four time steps can be computed
for each species at each cell τ :
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Figure 7.6: Fluxes at the boundary conditions.

• Convective time step with CFL constant

∆tconv = CFL∆xτ
||Vτ ||

(7.83)

• Diffusive time step with Fourier constant F

∆tdiff = F∆x2
τ

Dτ
(7.84)

• Dielectric time step with contant AD

∆tdiel = AD
ε0∑

i |qiniµi|
(7.85)

• Chemical time step with constant Aτ

∆tchem = Aτ max
k

Skchem (7.86)

The minimum over all cells is taken as the reference timestep. The convective and
diffusive time steps are computed for each species modeled with drift-diffusion equations and
the resulting time step is the minimum of all the considered time steps.

7.3 Validation cases

The two TVD schemes developed in this chapter, LLW and ISG, are now tested on three
cases: one-dimensional linear advection, two-dimensional linear advection and a one-dimensional
shock. The Sweby limiter with its parameter β ∈ [1, 2] is chosen in combination with LLW:
it is flexible as it introduces more accuracy at the price of robustness when increasing β.
From now on, LLW-β refers to the limited Lax-Wendroff scheme with β-Sweby limiter and
ISG-ε refers to the improved Scharfetter-Gummel scheme with ε parameter.
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7.3.1 One dimensional advection

Scalar advection in a 1D domain that goes from -1.0 to 1.0. Quadrangular and triangular
cells shown in Fig. 7.7 are used. Note that AVIP (and AVBP as well) do not have dedicated
routines for one-dimensional simulations so that to simulate one-dimensional cases duplicated
nodes in the y direction are always necessary. Four profiles are selected inspired from [Hirsch,
2007, Chap. 7]: a gaussian, a step and two packet waves. Periodic boundary conditions are
applied at the left and right boundaries of the domain whereas a simple flux closure is applied
on the top and bottom parts. Simulations are run at CFL = 0.3 and CFL = 0.7 where the
same time step is applied for both triangular and quadrangular meshes at a given CFL within
the time step computation of AVIP.

x

(a) Triangular elements

x

(b) Quadrangular elements

Figure 7.7: 1D domain with quadrangular and triangular meshes used for the one-dimensional
advection test case.

Results for the four profiles in coarse triangular and quadrangular meshes of 51×2 nodes
for the Upwind, LW and LLW-β = 1.7 schemes are shown in Fig. 7.8 at CFL = 0.3 after
one full round of advection i.e. when the profiles are back to their initial position. The
diffusive character of the upwind scheme is clearly emphasized at high spatial frequencies
when transporting the two packet waves. The amplitude of the packet-wave are so damped
at this resolution that the initial lobes are barely visible.

The Lax-Wendroff scheme corrects this amplitude damping but introduces undesired
wiggles due to its highly dispersive character so that only the gaussian profile is correctly
convected due to the absence of discontinuities. The step and packet-waves, on the other
hand, produce high amplitude wiggles after one round. Introduction of limiters allows to
dissipate those wiggles by monitoring the gradient variations. The LLW-β = 1.7 scheme
maintains high accuracy for the step profile while still preserving a reasonable amplitude for
the two-wave packet in both triangular and quadrangular elements. Due to the coarse mesh
(only 6 points per period), the four-wave packet is still substantially damped.

The influence of the limiter on the solution accuracy is shown in Fig. 7.9 where the value
of the β parameter has been varied from 1 to 2 in quadrangular and triangular elements.
The gain in accuracy can be clearly observed as the peak amplitude gets closer to the exact
solution when β is increased from 1 to 2 in all cases.
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Figure 7.8: One-dimensional advection of the scalar variable u after one full round for four
different inital conditions (gaussian, step, 2-packetwave, 4-packetwave) at 51 × 2 resolution
and CFL = 0.3 using Upwind, LW and LLW schemes.
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Figure 7.9: One-dimensional advection of the scalar variable u after one full round for four
different inital conditions (gaussian, step, 2-packetwave, 4-packetwave) at 51 × 2 resolution
and CFL = 0.3 using LLW-β with β = 1, 1.3, 1.7 and 2.0.
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Increasing the CFL to 0.7 leads to the results shown in Fig. 7.10 where there is overall less
diffusion than at CFL = 0.3. The Sweby limiter starts to produce oscillations for β = 1.7 and
β = 2.0 for the step and packet-wave profiles advection. It can be noted that using β = 2.0
the maximum amplitude of the packet-waves reaches value above the exact solution. On top
of those wiggles, the shape of the solution is disorted for high-β and the limiter becomes
over-compressive.

From this one-dimensional study, the benefits of limiters are shown to make wiggles
disappear from the original LW scheme. The value of the limiting parameter β is critical
and needs to be adapted for each case: the higher the value of β the less diffusive the scheme
is but less robust it is as well. A value between [1.0-1.6] in all cases seem to be reasonable,
high values of β are discarded for their over-compressive property.

7.3.2 Two dimensional advection

The previous one-dimensional cases are extended to two dimensions by considering square
domains with quadrangular and triangular elements shown in Fig. 7.11. The initial condition
of the gaussian, step and packet-waves in two-dimensions is illustrated in Fig. 7.11. Note
that both the scalar variable u and the lengths can be considered non-dimensional.

Results for upwind, LW and LLW-β = 1.3 schemes are shown in Figs. 7.12, 7.13, 7.14 for
the quadrangular mesh of Fig. 7.11b at 101 × 101 resolution. Similar conclusions apply for
triangular meshes (not shown). The same colorbars for each case are used for comparison and
grey areas correspond to values outside the colorbar. The same behaviors and conclusions
from the one-dimensional study apply in two dimensions: the upwind scheme dissipates too
much which is shown especially for the packet-wave. The Lax-Wendroff schemes produces
oscillations that are particularly strong in the 2D step test case. These oscillations, as the
1D case, are also observed at the tail and head of the packet-waves. These oscillations are
corrected by the limited Lax-Wendroff scheme shown in Fig. 7.14 where the step is correctly
transported and magnitudes of the profiles are all below the initial values, showing the TVD
property of the scheme in multi-dimensions. As for the one-dimensional case, the amplitude
of the high-frequency packet-wave is still substantially damped.

Order of the schemes The order of the schemes for the Gaussian and step profiles in
quadrangular meshes is computed and results are shown in Fig. 7.15. One full round of the
fully periodic domain has been simulated to get the L2 error of the scalar variable. The
limited Lax-Wendroff scheme outperforms the classical Upwind scheme in both cases and
the effect of the limiter value β is more pronounced for the step profile as it allows to retrieve
discontinuities better.

7.3.3 One-dimensional stiff advection

The Scharfetter-Gummel (SG) numerical scheme on all the above cases behaves like the up-
wind scheme as shown by the asymptotic analysis. The benefit of virtual nodes interpolation
can not be seen on those cases as the advection speed is constant. A case representative
of plasma discharges is now studied to validate the SG and ISG-ε schemes implementation.
This test case is taken from Kulikovsky [1995] where a drift-diffusion model in a 1D domain
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Figure 7.10: One-dimensional advection of the scalar variable u after one full round for
four different inital conditions (gaussian, step, 2-packetwave, 4-packetwave) at CFL = 0.7 in
quadrangular elements using various schemes.
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(a) Triangular elements (b) Quadrangular elements

(c) Initial profiles for gaussian, step and packet-waves

Figure 7.11: 2D domain [−1, 1]2 used for 2D constant advection test case of the scalar variable
u with (a) quadrangular and (b) triangular meshes using (c) four different profiles.
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Figure 7.12: Two-dimensional advection test case results in 2D domain [−1, 1]2 for scalar
variable u for four profiles using upwind scheme at CFL = 0.3 in a 101× 101 quadrangular
mesh.



7.3. VALIDATION CASES 125

Figure 7.13: Two-dimensional advection test case results in 2D domain [−1, 1]2 for scalar
variable u for four profiles using LW scheme at CFL = 0.3 in a 101×101 quadrangular mesh.

[0, 1] is considered with a linear electric field E(x) = Ax. Mobility and diffusion coefficients
are equal to 1 so that the studied equation is

∂n

∂t
− ∂Axn

∂x
− ∂2n

∂x2 = 0 (7.87)

The coefficient A is set to 104 so that advection is dominant and the effective equation
can be considered without the diffusion term. The analytical solution is given by the method
of characteristics to yield

n(x, t) = n0(xeAt)eAt (7.88)

where n0 is the initial solution profile. The initial profile is advected to the left and com-
pressed so that its standard deviation decreases. In plasma simulations low and high values
of densities, sometimes several orders of magnitude apart, need to be well transported. Hence
the following profile with amplitude n2 and background n1 is chosen:

n0(x) = n1 + 1
2

[
1 + tanh

(
x− x0
σ

)]
n2 (7.89)

where n1 = 102 and n2 = 1012 so that 10 orders of magnitude separate the maximum and
minimum values of the profile. This is a typical shape representative of a plasma discharge
front. Results for SG, LLW-β = 1.0 and ISG-ε = 0.1 are shown in Fig. 7.16 after 200
iterations at CFL = 0.4 in a 101 × 2 resolution mesh illustrated in Fig. 7.7. Both schemes
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Figure 7.14: Two-dimensional advection test case results in 2D domain [−1, 1]2 for scalar
variable u for four profiles using LLW-β = 1.3 scheme at CFL = 0.3 in a 101× 101 quadran-
gular mesh.

(a) Gaussian (b) Step

Figure 7.15: Convergence in 2D quadrangular mesh in a periodic square domain for the
two-dimensional linear advection test case.
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LLW-β and ISG-ε allow to retrieve better the discontinuity than the SG scheme which
reduces to an upwind scheme for this advection dominated problem.
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Figure 7.16: One-dimensional stiff advection test case using SG, ISG-ε = 0.1 and LLW-
β = 1.0 schemes after 200 iterations at CFL = 0.4 in a 101× 2 resolution mesh.

Both LLW-β and ISG-ε schemes have parameters that allow to gain higher order and
better capture discontinuities: 1 ≤ β ≤ 2 for limited Lax-Wendroff and 0 ≤ ε ≤ 1 for
improved SG. For Lax-Wendroff the higher the value of β the better the scheme can capture
discontinuities whereas for improved SG the lower the value of ε the better. The influence
of those parameters on the hyperbolic tangent profile is shown in Fig. 7.17a and 7.17b,
respectively. Results are shown at CFL = 0.4 after 200 iterations on a finer grid than
previously with 201 nodes in the x direction. Both schemes tend to the exact solution as
their parameters are closer to their limits (β = 2 and ε = 0): we can however observe
that the improved SG scheme tends monotonically from left to right whereas the limited
Lax-Wendroff is a bit left then a bit right of the profile. These values are theoretical and
in practice oscillations appear as the ones showed for the linear advection case when the
parameters β and ε are too close to their limit with an added over-compressive effect for
LLW-β.

7.3.4 Summary of the schemes

A summary of the schemes is given in Tab. 7.1 with the recommanded range of parameters
to try at first for each case based on the results of the various validation cases.

Scheme Parameter range Recommanded range
LLW-β [1, 2] [1, 1.6]
ISG-ε [0, 1] [0.01, 0.1]

Table 7.1: Summary of the TVD schemes with recommanded values of parameters.
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Figure 7.17: Influence of interface capturing parameters ε and β for improved SG and limited
LW schemes for the one-dimensional stiff advection test case.
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In this chapter, the development of robust numerical schemes for the Euler equations
is detailed. The choice of Riemann solvers Toro [2009] to properly describe interfaces and
shocks has been made. The work in this chapter builds upon previous work at CERFACS
[Joncquieres, 2019, Carmona, 2021] and tries to improve and address their limitations, espe-
cially concerning the MUSCL procedure.

In a first part, reminders on the properties of the Euler equations are given adapted
from [Toro, 2009, Chap. 3]. The HLLC solver [Toro, 2009, Chap. 10] and HLLC MUSCL-
Hancock solver [Toro, 2009, Chap. 14] are then presented along with their implementations
in AVIP. The time integration of the HLLC-MUSCL solver is also discussed. We finally test
the implemented schemes on a variety of test cases, measuring its practical order of accuracy
whenever possible. The robustness of the solvers are shown in one and multi-dimensional
shocks as well as their competitive accuracy on non-stiff canonical cases.

Note that the developments presented in this work have also been reported in the current
version of AVBP.
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8.1 General properties of the Euler equations

Mathematical properties of the Euler equations are recalled in this section. Conservative
and primitive formulations are first laid out in one-dimension along with their eigenstructure
and eigenvectors. We then present the exact resolution of the 1D Riemann problem which
is the basis of all Riemann solvers.

8.1.1 One-dimensional Euler equations

8.1.1.1 Conservative formulation

Let us take the 1D Euler equations in conservative formulation

Ut + F(U)x = 0 (8.1)

with

U =

 ρ

ρu

ρE

 F =

 ρu

ρu2 + p

(ρE + p)u

 (8.2)

where ρ is the density, u the velocity, p the pressure with the total energy ρE = ρu2/2 +
p/(γ − 1) for ideal gases. We define the flux jacobian A(U) so that

A(U) = ∂F
∂U =

 0 1 0
γ−3

2 u2 (3− γ)u (γ − 1)
−γEu+ (γ − 1)u3 γE − 3

2(γ − 1)u2 γu

 (8.3)

The flux jacobian is diagonalizable and has three eigenvalues λ1 = u−a, λ2 = u, λ3 = u+a
where a is the sound speed defined as a =

√
γp/ρ. One right eigenvector matrix is

K =

 1 1 1
u− a u u+ a

H − ua 1
2u

2 H + ua

 (8.4)

where H = E + p
ρ is the total enthalpy.

8.1.1.2 Primitive formulation

Similar relations are obtained for the primitive variables W = [ρ u p]T :

Wt + A(W)Wx = 0 (8.5)

where

A =

u ρ 0
0 u 1/ρ
0 ρa2 u

 (8.6)

The three eigenvalues are identical to the conservative formulation and one right eigen-
vector matrix is
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K =

 1 1 1
−a/ρ 0 a/ρ

a2 0 a2

 (8.7)

One left eigenvector matrix (which is not in this case the inverse of the right eigenvector
matrix above) is

L =

0 1 − 1
ρa

1 0 −1/a2

0 1 1
ρa

 (8.8)

so that along the λi-characteristic L(i) · dW = 0. Hence
dp− ρadu = 0 along dx/dt = u− a
dp− a2dρ = 0 along dx/dt = u

dp+ ρadu = 0 along dx/dt = u+ a.

(8.9)

Another set of equation for primitive variables W = [ρ u s]T can be derived where

A =

 u ρ 0
a2/ρ u 1

ρ
∂p
∂s

0 0 u

 (8.10)

and for which one right eigenvector matrix is

K =

 1 −∂p
∂s 1

−a/ρ 0 a/ρ

0 a2 0

 (8.11)

8.1.2 Characteristic fields

Definition 8.1 (Linearly degenerate fields). A field associated to an eigenvalue λi is said
to be linearly degenerate if

∀U ∈ Rm ∇λi(U) ·K(i) = 0 (8.12)

Definition 8.2 (Genuinely non-linear fields). A field associated to an eigenvalue λi is said
to be genuinely non-linear if

∀U ∈ Rm ∇λi(U) ·K(i) 6= 0 (8.13)

8.1.2.1 Rankine-Hugoniot conditions

Given a hyperbolic system of conservation laws

Ut + F(U)x = 0 (8.14)

and a discontinuous wave solution of speed Si associated with the λi characteristic field, the
Rankine-Hugoniot (RH) conditions state that
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∆F = Si∆U (8.15)

8.1.2.2 Generalized Riemann Invariants

We consider a general quasi-linear hyperbolic system

Wt + A(W)Wx = 0 (8.16)

with W = [w1, w2, . . . , wm]T and its i-characteristic with eigenvalue λi and corresponding
right eigenvector K(i).

Generalized Riemann Invariants (GRI) are relations that hold true, for certain waves,
across the wave structure and lead to the following (m− 1) ordinary differential equations

dw1

k
(i)
1

= dw2

k
(i)
2

= . . . = dwm
k

(i)
m

(8.17)

8.1.3 Elementary-wave solutions of the Riemann problem

We consider the 1D Riemann problem for the Euler equations
Ut + F(U)x = 0

U(x, 0) =

UL if x > 0
UR if x < 0

(8.18)

with F and U given by (8.2). This is the simplest non-trivial solution of the Euler equations
across a discontinuity. The Riemann problem for the 1D Euler equations admits three kind
of waves:

• The λ1 and λ3 are genuinely non-linear and are either shocks or rarefaction waves

• The λ2 wave is always a contact discontinuity

8.1.3.1 Contact discontinuities

Across a contact disconstinuity, states are connected through a single jump discontinuity in
a linearly degenerate field and the RH relations and the GRI are valid. Using the GRI across
λ2 = u wave for the conservative formulation

d(ρE)
1
2u

2 = d(ρu)
u

= dρ (8.19)

so that du = 0 and dp = 0. Hence

u = constant and p = constant (8.20)

across a contact discontinuity. Only the density and density-dependent physical values can
change across this wave.
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8.1.3.2 Rarefaction waves

Across a rarefaction wave, the two states are connected through a smooth transition in
a genuinely non-linear field and the GRI relations apply. We use the primitive-entropy
formulation and make use of the GRI across the wave:

dρ
ρ

= ∓ du
a/ρ

= ds
0 (8.21)

=⇒ du± a

ρ
dρ = 0 and s = cst (8.22)

=⇒ u± 2a
γ − 1 = cst and s = cst across λ = u∓ a (8.23)

8.1.3.3 Shocks

In a shock wave the two states are connected through a single jump discontinuity in a gen-
uinely non-linear field and the Rankine-Hugoniot relations apply. In the case of 1D shocks,
two configurations are possible: in the λ1 wave or the λ3 wave. The region downstream or
upstream will be denoted the Star region. The Rankine Hugoniot relations tell us that

∆F = SK∆U. (8.24)

We change the reference frame for one that is moving at velocity SK (where K = L,R

corresponding to respectively the λ1 or λ3 wave) so that ∆F = 0 and thus

ρ∗û∗ = ρK ûK (8.25)
ρ∗û

2
∗ + p∗ = ρK û

2
K + pK (8.26)

(ρ∗Ê∗ + p∗)û∗ = (ρKÊK + pK)ûK (8.27)

Different relations can then be derived between the different physical values and the main
ones are given below:

ρ∗
ρK

=
p∗
pK

+ γ−1
γ+1

γ−1
γ+1

p∗
pK

+ 1
(8.28)

ρ∗
ρK

= (γ + 1)(MK −MS)2

(γ − 1)(MK −MS)2 + 2 (8.29)

p∗
pK

= 2γ(MK −MS)2 − (γ − 1)
(γ + 1) (8.30)

MK −MS = ±
√
γ + 1

2γ
p∗
pK

+ γ − 1
2γ (8.31)

u∗ = SK

(
1− ρK

ρ∗

)
+ uKρK/ρ∗ (8.32)
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where MK = uK/aK and MS = SK/aK are the Mach numbers of the K state and of the
shock.

8.1.4 Exact solution of the 1D Riemann problem

The λ2 wave is a contact wave so that pressure and velocity are continuous across that wave.
Only the density can admit a discontinuity across this wave so that the sought variables are
p∗, u∗, ρ∗L and ρ∗R. We use the primitive variables W to specify the 4 states of this problem
which are depicted in Fig. 8.1.

λ1 = u− a

λ2 = u

λ3 = u+ a

x

t

WL

W∗L
W∗R

WR

0

Figure 8.1: Structure of the Riemann problem for 1D Euler equations.

The central physical quantity of the Riemann problem is the pressure in the star region:
it indicates whether the first and third interfaces are shocks or rarefactions waves. The
solution for pressure p∗ is given by the root of the following algebraic equation [Toro, 2009,
Chap. 4]

f(p,WL,WR) ≡ fL(p,WL) + fR(p,WR) + ∆u = 0 (8.33)

where ∆u = uR − uL and the function fK with K = L,R is

fK(p,WK) =


(p− pK)

[
AK
p+BK

]1/2
for p > pK (shock)

2aK
γ−1

[(
p
pK

) γ−1
2γ − 1

]
for p ≤ pK (rarefaction)

(8.34)

where

AK = 2
(γ + 1)ρK

BK = γ − 1
γ + 1pK (8.35)

The velocity can be deduced from these functions as

u∗ = 1
2(uL + uR) + 1

2(fR(p∗)− fL(p∗)) (8.36)

Finally the densities are given by either the Rankine-Hugoniot relations for a shock pK > p∗
or the isentropic equations for rarefaction waves since s is constant
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ρ∗K =


ρK

p∗
pK

+ γ−1
γ+1

γ−1
γ+1

p∗
pK

+1 for p∗ > pK

ρK
(
p∗
pK

)1/γ
for p∗ > pK

(8.37)

8.1.5 Multi-dimensional Euler equations

The main properties of the multi-dimensional Euler equations are now given with emphasis
on the rotational invariance which is really relevant in the Finite Volume Method. The
integral form of the Euler equations, useful for FVM, is

d
dt

∫
V

U dV +
∫
∂V

F · n dS = 0 (8.38)

The rotational invariance property simplifies the expression of F · n and is presented in
two and three dimensions.

8.1.6 2D

The conservative variables vector U and fluxes F for the two-dimensional Euler equations
are

U =


ρ

ρu

ρv

ρE

 F =


ρu ρv

ρu2 + p ρuv

ρvu ρv2 + p

ρwu ρwv

(ρE + p)u (ρE + p)v

 (8.39)

The flux jacobian of F is also diagonalizable with the same spectra as the one-dimensional
case. However the eigenvalue u is degenerate so that λ1 = u−a, λ2 = λ3 = u and λ4 = u+a.
Across the λ2 and λ3 the pressure and normal velocity are constant so that density and
tangential velocity can be discontinuous.

We define the components of the total flux F = (F1,F2) and the two angles of a 2D
unitary vector n = (cos(θ), sin(θ)) so that the rotational invariance property holds

F · n = cos(θ)F1 + sin(θ)F2 = T−1F1(TU) (8.40)

where T is the rotation matrix

T =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 (8.41)

8.1.7 3D

The conservative variables vector U and fluxes F for the three-dimensional Euler equations
are
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U =


ρ

ρu

ρv

ρw

ρE

 F =


ρu ρv ρw

ρu2 + p ρuv ρuw

ρvu ρv2 + p ρvw

ρwu ρwv ρw2 + p

(ρE + p)u (ρE + p)v (ρE + p)w

 (8.42)

The flux jacobian of F also has the same spectrum as the 1D and 2D flux jacobians where
the dimension of the eigensubspace u is now 3 so that across λ2, λ3 and λ4 the pressure and
normal velocity are constant while the density and tangential velocities are discontinuous.

The rotational invariance property also holds with a somewhat more complex rotation
matrix involving two angles

T =


1 0 0 0 0
0 cos θy cos θz cos θy sin θz sin θy 0
0 − sin θz cos θz 0 0
0 − sin θy cos θz − sin θy sin θz cos θy 0
0 0 0 0 1

 (8.43)

The inverse of the above matrix is given by

T−1 =


1 0 0 0 0
0 cos θy cos θz − sin θz − sin θy cos θz 0
0 cos θy sin θz cos θz − sin θy sin θz 0
0 sin θy 0 cos θy 0
0 0 0 0 1

 (8.44)

8.2 Integrating the Euler equations

Various cell-vertex numerical schemes are already present in AVBP Lamarque [2007]. All
schemes are however high-order, centered methods that do not possess the Total Variation
Diminishing property. Artificial viscosity is applied to capture strong gradients and reduce
wiggles.

To fill this gap, Riemann solvers have been developed based on Toro [2009] to capture
shocks and strong discontinuities that are present in both plasma Euler equations and also
in the mixture equations since streamer discharges can create strong shocks.

8.2.1 The HLLC MUSCL-Hancock solver

8.2.1.1 The HLLC solver

The HLL (Harten Lax and van Leer) and HLLC (where C stands for contact) solvers solve
the 1D Riemann problem in an approximate manner. We place ourselves in a 1D mesh along
the x direction where i is the mesh index. In a finite volume formulation the flux at the
middle of the edge Fi+1/2 is sought and the Riemann problem is
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
Ut + F(U)x = 0

U(x, 0) =

Ui if x > 0
Ui+1 if x < 0

(8.45)

where Fi+1/2 = F(Ui+1/2(0)). The HLL solver solves the Riemann problem using only two
waves. The solution Uhll between the two waves is constructed using integral relations and
the reader is referred to [Toro, 2009, Chap. 10] for more details. The HLLC solver builds on
top of the HLL solver by introducing a contact wave of speed S∗ as shown in Fig. 8.2.

SL

S∗

SR

x

t

UL

U∗L
U∗R

UR

0

Figure 8.2: Structure of the solution for HLLC solver.

Two new states U∗L and U∗R are introduced which are related to the HLL solution by

S∗ − SL
SR − SL

U∗L + SR − S∗
SR − SL

U∗R = Uhll (8.46)

From Fig. 8.2, the solution of the 1D Riemann problem is

U(x, t) =


UL x/t ≤ SL
U∗L SL ≤ x/t ≤ S∗
U∗R S∗ ≤ x/t ≤ SR
UR x/t ≥ SR

(8.47)

The fluxes inside the star regions are not directly evaluated at the states but are computed
through Rankine-Hugoniot relations so that:

Fhllc
i+1/2 =


FL 0 ≤ SL
F∗L SL ≤ 0 ≤ S∗
F∗R S∗ ≤ 0 ≤ SR
FR 0 ≥ SR

(8.48)

where F∗K = FK + SK(U∗K −UK). We finally need to retrieve star region variables. From
the exact solution of the Riemann problem the pressure and normal velocity are continuous
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across the contact wave while the density changes across all waves. From the Rankine-
Hugoniot relations and enforcing equality of pressures the star region speed is found:

S∗ = pR − pL + ρLuL(SL − uL)− ρRuR(SR − uR)
ρL(SL − uL)− ρR(SR − uR) (8.49)

The star region conserved variables then reads

U∗K = ρK

(
SK − uK
SK − S∗

)


1
S∗
vK
wK

EK + (S∗ − uK)
[
S∗ + pK

ρK(SK−uK)

]

 (8.50)

Another formulation of the HLLC solver can be retrieved by first noticing that

F(U) = uU + pD where D = [0 1 0 0 u]T (8.51)

From the Rankine-Hugoniot relation the following equality holds

U∗K = SKUK − FK + p∗KD∗
SK − S∗

(8.52)

To estimate the wave speeds we use the pressure based estimates from [Toro, 2009,
Chap. 10.5.2] which are close to the exact resolution of the 1D Riemann problem recalled in
Section. 8.1.4:

SL = uL − aLqL and SR = uR + aRqR (8.53)

where

qK =

1 if p∗ ≤ pK[
1 + γ+1

2γ

(
p∗
pR
− 1

)]1/2
if p∗ > pK

(8.54)

p∗ = 1
2(pL + pR)− 1

2(uR − uL)ρ̄ā wih ρ̄ = 1
2(ρL + ρR) ā = 1

2(aL + aR) (8.55)

8.2.1.2 The MUSCL-Hancock procedure

HLLC is a robust scheme however it is also highly diffusive and a high-order reconstruction is
needed for practical use. Several reconstruction methods for Riemann solvers can be found in
[Toro, 2009, Chap. 14], most notably the Weight Average Flux (WAF) reconstruction and the
MUSCL-Hancock reconstruction. The former proves to be impractical for implementation
in AVIP and so only the latter will be detailed. The MUSCL-Hancock reconstruction is
decomposed in three steps: data reconstruction, evolution and finally Riemann problem.
This procedure can be applied on other Riemann solvers but in AVIP the base Riemann
solver is HLLC. The first step is to assume a piece-wise linear function in each cell:

Ui(x) = Un
i + (x− xi)

∆x ∆i (8.56)
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where ∆i is a suitable chosen slope vector. At the boundaries of the cell the values are

UL
i = Un

i −
1
2∆i UR

i = Un
i + 1

2∆i (8.57)

We advance the solution by a timestep ∆t/2 in the evolution phase:

UK
i = UK

i + 1
2

∆t
∆x

[
F(UL

i )− F(UR
i )
]

(8.58)

Finally the Riemann problem is solved with UL ≡ UR
i and UR ≡ UL

i+1 to yield the
intercell flux. The slope vector is given by

∆i = 1
2(1 + ω)∆i−1/2 + 1

2(1− ω)∆i+1/2 (8.59)

where

∆i−1/2 ≡ Un
i −Un

i−1 ∆i+1/2 ≡ Un
i+1 −Un

i (8.60)

and ω is an interpolation parameter that governs the weight of left and right gradient in the
total nodal gradient. The two best parameters for this are ω = −1/2 leading to a third order
accurate interpolation at the cell-face value while ω = −1/3 leads to a third order accurate
scheme [Hirsch, 2007, Chap. 8.4.1]. A limited version of the slope can be retrieved by setting

∆i =

max(0,min(β∆i−1/2,∆i+1/2),min(∆i−1/2, β∆i+1/2)) ∆i+1/2 > 0
min(0,max(β∆i−1/2,∆i+1/2),max(∆i−1/2, β∆i+1/2)) ∆i+1/2 < 0

(8.61)

where β = 1 corresponds to the minmod limiter while β = 2 reproduces the superbee
limiter [Toro, 2009, Chap. 14.4.3].

8.2.2 Implementation in AVIP

The implementation of the HLLC and MUSCL-Hancock procedure in AVIP are now detailed
where the generalization of the previous relations to multidimensional and multicomponent
flows in an unstructured mesh is given. As with the scalar transport equations, we solve
these equations in a Finite Volume Vertex-Centered fashion.

8.2.2.1 The HLLC solver

We start from Eq. (8.38) by setting V = Vi, i.e. we integrate on the nodal i volume of the
mesh. Splitting of the fluxes across the relevant faces yields the following discretization

d
dtUi + 1

Vi

∑
τ∈E(i)

∑
f∈∂Vi∩τ

∫
f

F · n dS = 0 (8.62)

This discretization is exactly the same as the one detailed in Eq. (7.60) and Fig. 7.3 of the
previous chapter for scalar transport variables. Two ways of computing the face integral are
possible: either by splitting across each dimension and solving each Riemann problem or
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by rotating the flux into the local basis of the edge [Toro, 2009, Chap. 16]. The latter has
been implemented in AVIP as it is less computationally expensive. Hence the face integral
is computed in three steps:

1. Projection of the solution in the local basis TU

2. Solve the Riemann problem in the local basis F1 = F1(TU)

3. Project back into the original basis T−1F1(TU)

In three dimensions and multi-component flows (where each species k is described by its
mass fractions Yk) the conservative variables, fluxes are now given by:

U =



ρ

ρu

ρv

ρw

ρE

ρY1
...

ρYN


F =



ρu

ρu2 + p

ρvu

ρwu

(ρE + p)u
ρY1u
...

ρYNu


(8.63)

The resulting star region state for multicomponent flows is now as follows:

U∗K = ρK

(
SK − uK
SK − S∗

)



1
S∗
vK
wK

EK + (S∗ − uK)
[
S∗ + pK

ρK(SK−uK)

]
(ρY1)K

...
(ρYN )K


(8.64)

8.2.2.2 The MUSCL procedure implementation in AVIP

The equivalents of ∆i−1/2 and ∆i+1/2 Eq. (8.61) in unstructured meshes are needed for
MUSCL implementation. They correspond respectively to ∆li and ∆ij for i and ∆ij and
∆jk for j which are depicted in Figs. 8.3 and 8.4:

∆li = Ui −Ul ∆ij = Uj −Ui ∆jk = Uk −Uj (8.65)

Inside the domain of computation the gradients computed in AVIP are centered gradients
so that the following reconstruction can be made:

Uj −Ul = (∇U)i · (2ij) (8.66)

In the case of regular meshes such as Figs. 8.3 and 8.4 the reconstructed nodes actually
exist (l and k) but in the case of irregular meshes in Fig. 8.5 virtual upwind nodes are retrieved
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l i j k

Sτij

τ2
u

τ1
u

Figure 8.3: Reconstruction of neighboring nodes inside AVIP in quadrangular cells.

l

i j

k

Sτij

τ2
u

τ1
u

Figure 8.4: Reconstruction of neighboring nodes inside AVIP in triangular cells.
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(l and k in dashed circles) which are consistent with the structured cartesian formulation of
limiters: l and k are at a distance ij of i and j, respectively.

l
i j

k

τ iu τ ju

Figure 8.5: Reconstruction of neighboring nodes using upwind cells.

This reconstruction of upwind nodes is different from the ones adopted in Alauzet and
Loseille [2010] and Joncquieres [2019] where upwind cells relative to the edge and node
considered are sought which are shown in Fig. 8.5. For the i node in edge ij, this cell is
defined as the one whose center is the most aligned with the edge ij. In the case of irregular
meshes whose edges are not aligned this cell is well-defined (τ iu and τ ju in Fig. 8.5) however
in the case of aligned edges such as those shown in Figs. 8.3 and 8.4 two equivalent upwind
cells can be defined τ1

u and τ2
u for the i node. For rather regular elements a mean of the two

upwind cells would be better than just picking one as this could lead otherwise to odd-even
decoupling. This bad behavior in the case of regular elements vanishes for the virtual node
reconstruction considered in Eq. (8.66). Moreover finding the associated upwind cells for
each edge is computationally expensive and communications are needed across partitions
whereas this implementation is local to the cell.

Effect of multicomponent mixture For multicomponent gas mixture equations the
MUSCL-Hancock procedure needs to be slightly modified compared to what is presented in
[Toro, 2009, Chap. 14]. In the original HLLC solver, primitive variables are sought from
conservative variables which for the pressure reads:

p = (γ − 1)ρes (8.67)

where es is the internal or sensible energy. For multicomponent mixtures with temperature
dependent cv this relation does not hold anymore. In AVIP the pressure is computed from
the temperature which is deduced from an iterative procedure on the sensible energy es so
that

T = e−1
s es(T ) =⇒ p = ρrT (8.68)

Hence to circumvent the impossibility to use Eq. (8.67) the pressure is interpolated along
with the conserved variables at the beginning of the MUSCL reconstruction:
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UL
i = Un

i −
1
2∆̄i UR

i = Un
i + 1

2∆̄i (8.69)

pLi = pni −
1
2∆̄pi pRi = pni + 1

2∆̄pi (8.70)

This is an approximation compared to the original scheme: since the pressure is a non-
linear function of the conserved variables a linear variation of the conservative variables does
not result in a linear variation of the pressure.

8.2.2.3 Boundary conditions

Flux closure is performed exactly as for the scalar transport equations detailed in Sec. 7.2.5.
Hence an equivalent of supersonic outlet is applied at the end of the numerical scheme yielding
a result close to the cell-vertex schemes. Characteristic boundary conditions [Poinsot and
Lelef, 1992] implemented in AVBP by Moureau et al. [2005] are then available where a
detailed account can be found in [Lamarque, 2007, Chap. 4.12.2]. Values predicted by the
numerical scheme is corrected by a wave decomposition of the Euler equations which is close
to Riemann solvers.

A more consistent approach would be to include the boundary conditions directly in the
numerical scheme by solving Riemann problems at the boundaries with the HLLC MUSCL-
Hancock solver. Virtual states depending on the type of boundary are constructed in this
case and Riemann problems are solved at each boundary interface. A comparison between
NSCBC and Riemann solver boundary conditions could be an interesting future work.

8.2.2.4 Time integration of the HLLC MUSCL-Hancock solver

The Riemann solvers are not spatio-temporal schemes like the classical LW and TTGC
schemes of AVBP. Hence a time integration on top of if must be chosen. Many strategies
can be adopted depending on the stability criterions we want to achieve [Hirsch, 2007, Chap.
9]. Since we are dealing with unsteady flows the low-storage Runge-Kutta (RK) schemes for
coupling with the HLLC MUSCL solver is chosen:

U(1) = Un

· · ·

U(j) = Un + αjR(j−1)

· · ·

U(K) = Un + αKR(K−1)

Un+1 = Un +∆t
K∑
k=1

βkR(k)

where R is the residual, ∑k βk = 1 for consistency and each U(j) is called a RK stage
and K the number of stages. In AVIP the choice of βK = 1, βj = 0 j = 1 . . . k − 1 is made
where the RK1 to RK4 methods are defined by the coefficients given in Tab. 8.1.
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Time integration method α2 α3 α4 βK
RK1 0 0 0 1
RK2 1/2 0 0 1
RK3 1/3 1/2 0 1
RK4 1/4 1/3 1/2 1

Table 8.1: Runge-Kutta coefficients.

In [Toro, 2009, Chap. 14], a simple RK1 time integration scheme is always chosen in
structured grids and seems to be stable for all the shock cases studied. The more stable but
more costly RK2 and RK3 time integrations are also possible in AVIP and can be switched
on whenever necessary.

8.2.3 Geometric source terms

As recalled in the first part, Navier-Stokes equations in axisymmetric conditions have the
following form:

∂rU
∂t

+∇2D · (rFC
rz + rFD

rz) = SCrz + SDrz (8.71)

where FC
rz and FD

rz are the classical convective and diffusive Navier-Stokes fluxes. Integration
of these fluxes is done as for the scalar transport equations detailed earlier in Section. 7.2.4.
However contrary to the scalar case, convective and diffusive geometric source terms are also
present:

SCrz =


0
p

0
0

 SDrz =


0

−2η urr − λ
(
ur
r + ∂ur

∂r + ∂uz
∂z

)
0
0

 (8.72)

These geometric source terms are added after the transport residuals and radial velocity
is corrected to zero after application of these geometric source terms to ensure ur = 0 at the
axis.

8.3 Validation cases

The HLLC MUSCL scheme is now tested on a variety of flows. The canonical 1D shock
tube and 2D convective vortex are simulated where the order of convergence is assessed
for both cases. Multi-dimensional shocks are then considered with explosions and two-
dimensional Riemann problems taken from Deng et al. [2019]. Next Navier-Stokes equations
are considered with the von Karman street test case to evaluate the capability of the scheme
to not only propagate but also create vortices. Finally a one-dimensional flame is simulated
using the HLLC MUSCL scheme and its accuracy compared to classical AVBP schemes is
highlighted.
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8.3.1 One-dimensional shock tubes

UL UR

Figure 8.6: One dimensional shock configuration.

SHL STL

u∗

SR

x

t

UL

U∗L
U∗R

UR

0

Figure 8.7: Structure of the Riemann problem for Case 1.

Five shock test cases presented in [Toro, 2009, Chap. 10] have been used to validate
the TVD property of the schemes. Two states UL and UR are defined for each test case
in a one-dimensional geometry as shown in Fig. 8.6. The initial conditions and solutions of
the shocks in terms of star region variables are presented in Table 8.2. A more qualitative
description of each case in terms of shocks and rarefaction waves (RW) is as follows:

• Case 1 is a modified version of the famous Sod problem [Toro, 2009, Chap. 10.8] where
there is a left rarefaction wave, a right travelling contact wave and a right shock where
a sketch of the wave-structure of the case is shown in Fig. 8.7.
Left RW: SHL = -0.433 m/s - STL = 0.300 m/s. Right Shock: SR = 2.153 m/s

• Case 2 consists of two rarefaction waves going opposite directions and a stationnary
contact wave. This test case is ideal for weakly ionized plasmas as it allows to evaluate
the capability of the schemes to capture low-density flows.
Left RW: SHL = -2.748 m/s - STL = -0.348 m/s. Right RW: STR = 0.348 m/s - SHR
= 2.748 m/s

• Case 3 is the stiffest one where two shocks going opposite ways with a right travelling
contact wave can be observed.
Left RW: SHL = -37.417 m/s - STL = -13.900 m/s. Right Shock: SR = 23.518 m/s

• Case 4 consist of a slow right travelling contact wave. The purpose of this case is to
assess the performance of the schemes to capture contacts, shear waves and vortices.
Left RW: SHL = -0.900 m/s - STL = -0.900 m/s. Right RW: STR = 1.283 m/s - SHR
= 1.283 m/s
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1 ρ u p a

WL: 1.000 0.750 1.000 1.183
W ∗L: 0.580 1.361 0.466 1.061
W ∗R: 0.340 1.361 0.466 1.386
WR: 0.125 0.000 0.100 1.058

2 ρ u p a

WL: 1.000 -2.000 0.400 0.748
W ∗L: 0.022 0.000 0.002 0.348
W ∗R: 0.022 0.000 0.002 0.348
WR: 1.000 2.000 0.400 0.748

3 ρ u p a

WL: 1.000 0.000 1000.000 37.417
W ∗L: 0.575 19.597 460.894 33.497
W ∗R: 5.999 19.597 460.894 10.371
WR: 1.000 0.000 0.010 0.118

4 ρ u p a

WL: 1.400 0.100 1.000 1.000
W ∗L: 1.400 0.100 1.000 1.000
W ∗R: 1.000 0.100 1.000 1.183
WR: 1.000 0.100 1.000 1.183

Table 8.2: Summary of the four one-dimensional shock tube test cases.

Three schemes are tested on those cases for quadrangular and triangular meshes in 1D:
HLLC, HLLC MUSCL-Hancock RK1 and LW. Note that changing the time integration to
RK2 or RK3 for the 1D shock tube does not change the results. The triangular mesh consists
of quadrangular elements cut in half along the diagonal. The three schemes are used without
artificial viscosity and a summary of the passing or failure of each scheme is presented in
Tab. 8.3.

Results for the four test cases are shown in Figs. 8.8-8.11 for a 101 nodes-resolution in the
x direction. The LW produces strong oscillations in Case 1 and 4 as shown in Figs. 8.8 and
8.11. It is moreover not able to capture the vacuum and the two strong shocks of cases 2 and
3 respectively. HLLC and HLLC schemes yield stable simulations for all cases. The MUSCL
reconstruction proves to be effective as a higher accuracy is clearly observed in Figs. 8.8-8.11
and a value of β = 1.0 is used for all those cases.

The influence of the Sweby [1984] parameter β for the limiting procedure is shown in
Fig. 8.12 for a resolution of 51 nodes in the x direction allowing to discriminate the schemes
better. The overcompressive effect of the superbee limiter β = 2.0 is clearly seen as overshoots
on all variables can be observed. The value of β should be set depending on each case starting
from β = 1.0 and a low value across strong shocks should be set.

Order of the schemes The order of the schemes on the first shock tube (Case 1) is com-
puted in order to get a more quantitative assessment on the previous observations. Results
are shown in Fig. 8.13 at CFL = 0.7 for HLLC, HLLC-MUSCL with two different values
of β and LW for the density ρ and the pressure p. The robustness of the Riemann solvers
is clearly seen compared to the centered LW scheme classicaly used in AVBP. LW (red di-

HLLC MUSCL LW
Case 1 OK OK OK
Case 2 OK OK Crash
Case 3 OK OK Crash
Case 4 OK OK OK

Table 8.3: Results of the HLLC, HLLC MUSCL and LW schemes on the four shock tube
cases.
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Figure 8.8: Shock tube case 1 with the HLLC, HLLC MUSCL RK1 and LW schemes for a
quadrangular mesh.

Figure 8.9: Shock tube case 2 with the HLLC, HLLC MUSCL RK1 and LW schemes for a
quadrangular mesh.
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Figure 8.10: Shock tube case 3 with the HLLC, HLLC MUSCL RK1 and LW schemes for a
quadrangular mesh.

Figure 8.11: Case 4 with the three schemes for quadrangular mesh.
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Figure 8.12: Case 1 with different β-Sweby limiter values for HLLC MUSCL RK1 scheme.

amond) does not converge to the exact solution as the number of nodes per direction Nh

increases and is seen to stagnate from 201 nodes for both density and pressure. HLLC and
HLLC-MUSCL on the other hand manage to converge to the exact solution. The order is
similar for both schemes but the absolute error of HLLC-MUSCL is lower than HLLC. As
expected, the higher the value of β the more accurate the scheme. Note that the density
convergence (slope around 0.6) is slower compared to the pressure convergence (slope around
1.0) and discrepancies between Riemann solvers are more pronounced for the density.

8.3.2 Convection of a 2D vortex

We consider a 2D-isentropic vortex that follows the Euler equations. Since it is an isentropic
flow only the mass conservation and the momentum equations are necessary. The variables
are decomposed into a mean flow and a perturbation flow convected at the mean flow velocity:

v(x, t) = v∞ + v′(x− x0 − v∞t) (8.73)
T = T∞ + T ′(x− x0 − v∞t) (8.74)

Injecting the decompositions into the Euler equations the mass and momentum equations
yield
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(a) Density order (b) Pressure order

Figure 8.13: Order of the schemes on the shock tube Case 1.

∇ · (ρv′) = 0 (8.75)

∇v′ · v′ + γR

γ − 1∇T
′ = 0 (8.76)

Setting r = x− x0 − v∞t a gaussian profile is chosen for the speed and the temperature
is also retrieved so that

v′r = 0 v′θ = f(r) = Γr

R2
c

exp
(
− r2

2R2
c

)
(8.77)

T ′(r) = − Γ2

2Cmp R2
c

exp
(
− r

2

R2
c

)
(8.78)

The maximum speed of the vortex is reached at r = Rc

v′max = Γ

Rc
√
e

(8.79)

Finally the pressure and density can be deduced from the temperature using isentropic
relations:

ρ

ρ∞
=
(
T

T∞

) 1
γ−1 p

p∞
=
(
T

T∞

) γ
γ−1

(8.80)

We choose a square domain centered at (x0, y0) = (0, 0) with xmax = 0.1 m with periodic
boundary conditions. Two different vortices are studied whose parameters are presented in
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p0 U0 T0 Rc Γ v′max
Weak vortex 1.01325 bar 100 m/s 300 K 2 cm 1 m2/s 30.3 m/s
Strong vortex 1.01325 bar 100 m/s 300 K 2 cm 4 m2/s 121.3 m/s

Table 8.4: Parameters of the two vortices.

Tab. 8.4. The weak and strong vortices are differentiated by the maximum speed of the
vortices which is above the background speed U0 for the strong vortex and below for the
weak vortex.

The time integration of HLLC-MUSCL has proven to be an important issue for the strong
vortex. Using an Euler time integration (RK1), the apparition of spurious oscillations coming
from the limiting procedure can be seen in Fig. 8.14a for RK1 at CFL=0.7 for the speeds
u and v. With the same CFL these oscillations dissipate using an RK2 time integration
(Fig. 8.14b). No significant gain of stability has been found by switching to RK3 and the
default time integration used from now on is RK2.

(a) HLLC-MUSCL RK1

(b) HLLC-MUSCL RK2

Figure 8.14: Speeds u and v [m/s] in the x and y axis respectively for strong convective
vortex with HLLC MUSCL and different values of time integrations.

The different profiles of density and pressure after one full round are shown in Fig. 8.15
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for CFL=0.7 in a coarse 51×51 mesh. In this case HLLC proves to be way too dissipative as
the peak of density and pressure is almost invisible after one round. The improved accuracy
of HLLC-MUSCL can be appreciated. However a too high value of β can lead to overshoot
of pressure in coarse resolutions (blue-dotted line).
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Figure 8.15: Comparison of the schemes after one full round of the domain with 51 × 51
resolution for the weak vortex.

Order of the schemes The order of the schemes on the weak convective vortex is com-
puted in order to get a more quantitative assessment on the previous observations. Con-
vergence is achieved by taking grids from 31 × 31 to 401 × 401. The error for pressure is
shown in Fig. 8.16 at CFL = 0.7 for HLLC, HLLC-MUSCL RK2 with two different values
of β and LW. Contrary to the slopes shown in Joncquieres [2019], Carmona [2021], the order
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is taken after two full rounds of the domain and not after a very small displacement of the
vortex. The small displacement is necessary to retrieve the first order of dissipative scheme
as explained in Vanharen [2017]. It is not however really relevant for higher order schemes
as these schemes are used for unsteady phenomena that need to be accurately transported
over long period of times.

The overdissipative property of HLLC is clearly seen, the vortex is too damped so that
the convergence is almost flat after two rounds. The HLLC-MUSCL has almost a second
order accuracy after two rounds where the effect of limiters is less visible as the number of
nodes is increased: there is not much to limit when the resolution is sufficient.

Figure 8.16: Order of the schemes on the weak vortex test case for pressure after two full
rounds.

8.3.3 Multidimensional shocks

Multidimensional shocks are now studied in this part where two generalizations of the one-
dimensional shock tube are studied: cylindrical and spherical explosions [Toro, 2009, Chap.
17] as well as two-dimensional Riemann problems Deng et al. [2019].

8.3.3.1 Explosions

The one-dimensional shock tube is extended as a circle in two dimensions and a sphere in
three dimensions. An interior Uin and exterior Uout states are defined in this case as shown
in Fig. 8.17. A smoothing function is applied so that there is no staircase profile along the
interface. The geometry and initial conditions of [Toro, 2009, Chap. 17.1] are taken so that
we simulate the two states

Uin =


1
0
0
1

 Uout =


0.125

0
0

0.1

 (8.81)
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Uin

Uout

Figure 8.17: Two dimensional explosion problem.

in a [0, 2]× [0, 2] square with 101×101 resolution. The results are shown at different instants
in Fig. 8.18 for a CFL of 0.5. An outgoing shock and inward rarefaction waves are present
and well captured by the HLLC MUSCL RK2 scheme as shown in Fig. 8.18 for the density
field.

(a) t = 0 s (b) t = 0.15 s (c) t = 0.3 s

Figure 8.18: Density [kg/m3] for the two-dimensional explosion at different instants using
HLLC MUSCL RK2.

This test case also allows to validate the pressure source term Eq. (8.72) in the axisym-
metric formulation of the Euler equations as results should be consistent when comparing a
1D line in axisymmetric conditions with the 2D simulation. Comparisons of 2D simulations
with HLLC-MUSCL RK2 at β = 1.0 and β = 1.7 with a 1D axisymmetric simulation with a
much finer mesh of 1001 nodes along the y direction are shown in Fig. 8.19. Radial shocks
have a tendency to create local minimas at the interfaces compared to the planar shocks
presented in Section. 8.3.1. The 1D-axisymmetric simulation and 2D simulations are consis-
tent and yield the same results and differences are due to coarser resolution for the 2D test
case. As done in [Toro, 2009, Chap. 16], the consistency of the solutions allows to consider
the fine-mesh 1D-axisymmetric solution to be the exact one validating the HLLC-MUSCL
scheme for multi-dimensional cylindrical shocks.

8.3.3.2 2D Riemann problems

Another generalization of the 1D shock tube is to define four states in a square as shown
in Fig. 8.20. Four different cases are considered here: the initial values for the first two
cases are taken from Deng et al. [2019] and the third and fourth cases are variants of these.
The geometry is a [−0.5,−0.5] × [0.5, 0.5] square with 602 × 602 resolution. All units are
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Figure 8.19: Comparison of 1D axisymmetric and 2D simulations for pressure and density
profiles using HLLC MUSCL RK2 scheme.

U1 U2

U3U4

Figure 8.20: Two dimensional Riemann problem.
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non dimensionalized here: pressure is always constant at 1.0 in all cases while the absolute
values of the speeds on the x and y axis are 0.75 and 0.5 respectively. The different studied
configurations are shown in Fig. 8.21 where the orientations of the speeds are given with
arrows. The first case is a mixing interface where the four states turn clockwise. The second
case consists of a shock in one diagonal and an expansion in the other diagonal. The third and
fourth cases are respectively an all-in or all-out configuration in terms of speeds’ directions.

ρ1 = 2.0 ρ2 = 1.0

ρ3 = 3.0ρ4 = 1.0

u1 u2

u3u4

(a) Case 1 2D-Riemann problem.

ρ1 = 2.0 ρ2 = 1.0

ρ3 = 3.0ρ4 = 1.0

u1 u2

u3u4

(b) Case 2 2D-Riemann problem.

ρ1 = 2.0 ρ2 = 1.0

ρ3 = 3.0ρ4 = 1.0

u1 u2

u3u4

(c) Case 3 2D-Riemann problem.

ρ1 = 2.0 ρ2 = 1.0

ρ3 = 3.0ρ4 = 1.0

u1 u2

u3u4

(d) Case 4 2D-Riemann problem.

Figure 8.21: The four 2D Riemann problems considered.

Results of the four 2D Riemann cases using HLLC MUSCL RK2 are shown in Fig. 8.22.
Interfaces and shocks are well captured by the scheme for all cases. The RK1 time integration
produces wiggles similar to the ones observed for the convective vortex test case. This is
especially true for the first case where vortices appear shown in Fig. 8.23.

8.3.4 Von Karman Street

The propagation of vortices and shocks in 2D has been validated in the previous section and
we now turn to the vortices creation capability of the scheme. The Von Karman street test
case is thus considered. The diameter of the cylinder is d = 0.03 m and the computational
domain is (Lx, Ly) = (60d, 40d) with the center of the cylinder at (x0, y0) = (20d, 20d). The
mesh has 60 000 nodes and 30 000 elements (only triangles) and a sketch of the computational
domain with boundary conditions is shown in Fig. 8.24.

Results are shown at the onset of vortices for Re = 56 at t = 0.02 s in Fig. 8.25. LW
manages to produces vortices in the wake of the cylinder but HLLC MUSCL-Hancock fails
to do so as shown by Fig. 8.25 with a minmod limiter (β = 1.0). Increasing the Sweby
parameter β allows to retrieve the vortices and results for β = 1.3 and β = 1.7 are shown
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 8.22: The four 2D Riemann solutions using HLLC-M RK2.
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Figure 8.23: First 2D Riemann case using HLLC-M RK1.

Inlet

Outlet

Outlet

Outlet

60d

40d

20d

20d

Figure 8.24: Sketch of the computational domain for the Von Karman street simulation.
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in Figs. 8.25c and 8.25d where vortices at the same instant are created for those two values.
HLLC is more diffusive than HLLC MUSCL and yields results similar to the HLLC MUSCL
β = 1.0 scheme: no vortices appear.

(a) LW (b) HLLC MUSCL β = 1.0

(c) HLLC MUSCL β = 1.3 (d) HLLC MUSCL β = 1.7

Figure 8.25: Axial speed of the Von Karmann street test case for Lax-Wendroff and HLLC
MUSCL schemes at the same instant for Re = 56.

8.3.5 One-dimensional flames

The capability of the Riemann solvers to simulate flames is critical for plasma assisted
combustion simulations. An atmospheric pressure one-dimensional flame at equivalence ratio
φ = 0.8 is simulated in AVIP using a converged solution from CANTERA [Goodwin et al.,
2021]. A simple two-step chemical scheme with six species is used [Franzelli et al., 2012]:

CH4 + 1.5 O2 −−→ CO + 2 H2O (8.82)
CO + 0.5 O2 −−→ CO2 (8.83)

The 1D domain is 2 cm long and contains 500 quadrangular cells or 1000 triangular
cells which have the same shape as Fig. 7.7. Boundary conditions and the geometry are
summarized in Fig. 8.26: inlet and outlet NSCBC boundary conditions are applied at the
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left and right parts of the domain while symmetry conditions are applied at the top and
bottom. The inlet velocity of 0.2815 m s−1 is the laminar flame speed computed using the
GRI-3.0 mechanism [Smith et al.].

2 cm

Inlet
u = 0.2815 m s−1

Outlet
p = 1 atm

Symmetry

Symmetry

Figure 8.26: One dimensional flame configuration and boundary conditions.

Simulations have been run for 10−1 s and results for HLLC and HLLC MUSCL are
compared with classical schemes from AVBP that are embedded in AVIP: Lax-Wendroff and
TTGC Lamarque [2007]. The density, pressure and temperature for the different schemes
are shown in Fig. 8.27 for the quadrangular mesh at three different instants. A drift of the
different schemes due to an error in the flame speed propagation is observed compared to the
theoretical value of 28.15 cm s−1. TTGC converges to a value slightly above at 28.16 cm s−1

(0.03% error) after 0.08 s whereas LW underestimates the laminar flame speed at 27.93 cm s−1

(0.78% error). The diffusive scheme HLLC overestimates the flame speed by roughly 30%
making it unrelevant for flame front propagation simulation. For HLLC MUSCL RK2, the
Sweby parameter has a great influence: at β = 1.0, the flame front of HLLC MUSCL RK2 is
between TTGC and LW which is satisfactory but as the parameter is increased the laminar
flame speed is underestimated quite significantly so that a value of β below 1.3 should be
prescribed for combustion applications.

Concerning the pressure, for this case the TTGC results are taken as reference since this
scheme is the most accurate so that the right pressure jump is about 1 Pa. As expected,
HLLC behaves poorly due to its diffusive nature and an overshoot of pressure of about 20 Pa
is observed in the flame front while having a less steep flame front. The MUSCL procedure
allows to retrieve a steeper flame front and a diminished pressure overshoot which is less than
the one from LW for both quadrangular and triangular meshes. Increasing the value of the
Sweby limiter β causes the pressure overshoot to become an undershoot but the amplitude
remains similar (around 4 Pa).

To conclude the Sweby parameter of the HLLC MUSCL RK2 scheme should be kept
sufficiently low (below 1.3) to have proper flame propagation with reasonable flame speed
and thickness.

8.3.6 Summary of the schemes and performance

From the results of all the validation cases performed, the HLLC MUSCL RK2 scheme with
Sweby parameter β between 1 and 1.3 is the best option for combustion simulation that
include shocks. A summary of the non-dimensionalized cost of Riemann solvers compared
to the most robust and fastest scheme of AVBP, LW, is given in Tab. 8.5. This performance
test has been carried out with the strong Convective Vortex test case. HLLC is in between
LW and TTGC in terms of cost. The MUSCL procedure adds another 45% cost with its
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Figure 8.27: One-dimensional flames using Riemann solvers and classical AVBP schemes at
t = 4, 32 and 64 ms.
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LW 1
TTGC 2.3
HLLC 1.7

HLLC-MUSCL RK1 2.5
HLLC-MUSCL RK2 4.6

Table 8.5: Non-dimensionalized cost of the various Riemann solvers implemented.

gradient evaluation and limiting procedure. This cost is doubled for the HLLC-MUSCL RK2
since two time integration has been shown to be necessary for stability. Hence the scheme is
rather costly compared to LW as it is 4.6 times slower.
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Numerical Simulation of PAC





Chapter 9

Chemistry and Zero-Dimensional
Reactors

9.1 Introduction to paper

The derivation and validation of a plasma assisted combustion chemistry is carried out in
this paper accepted for publication in Combustion and Flame. We use the CANTERA code
[Goodwin et al., 2021], with added features for plasma simulations, to conduct the validation
of this detailed plasma assisted combustion chemistry against experiments. Most notably, the
EEDF resolution is included in these plasma features. Three key properties are targeted: fast
heating, radical production and vibrational slow heating. The reduction of this mechanism
is then carried out to yield a smaller mechanism, suited for multi-dimensional simulations
using AVIP.
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a b s t r a c t 

For several years now plasma assisted combustion has been the subject of intense research due to stabi- 

lization effects a plasma can have on flames. Particularly, experiments have shown the promising impact 

of Nanosecond Repetitively Pulsed discharges on combustion while not exceeding an energy consumption 

of a few percent of the flame power. In this work, an incremental methodology with a step-by-step ap- 

proach has been used to build a single plasma mechanism upon which combustion is added using the GRI 

3.0 and Konnov v0.6. The methodology focuses on three key aspects of plasma assisted combustion: fast 

gas heating, slow gas heating and radical production. Selected experiments focusing on one or more of 

these aspects allow to validate the mechanism in large ranges of temperature (30 0-150 0 K) and pressure 

(0.1-1 bar) in air, methane-air and argon diluted mixtures using glow and spark discharges. These exper- 

iments include a plasma assisted ignition case on which the ignition delay time is well captured by the 

mechanism. Slow gas heating has been modeled using a vibrational relaxation model validated against a 

detailed vibrational description. Discussions on ambiguous rates for critical reactions of excited nitrogen 

quenching are made in the light of their impact on the results on the chosen experiments. Finally, the 

resulting 100-species GRI 3.0-based and 264-species Konnov v0.6-based plasma mechanisms are reduced 

to make them suitable for multi-dimensional simulations. The DRGEP reduction method, based on plasma 

experiments and canonical combustion cases, is applied allowing to reduce the number of species by a 

factor larger than two. For the GRI-3.0 plasma mechanism, the reduced mechanism contains 47 species 

and 429 reactions. Hence significant performance is gained, opening the way to multi-dimensional simu- 

lations of plasma assisted combustion. 

© 2022 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

1. Introduction 

In the context of lean combustion for reduced environmental 

impact, plasma-assisted combustion is currently investigated by 

many groups to address stability and ignition issues. 

Among the various types of discharges, Nanosecond Repetitively 

Pulsed (NRP) discharges have been experimentally shown to have a 

significant impact on flame stabilization [1] and ignition [2,3] . NRP 

discharges produce non-thermal plasmas and active radical species 

which lead to increased efficiency [4,5] . 

Although their beneficial effect is well-known [6] , the mecha- 

nisms at play in plasma-assisted combustion using NRP discharges 

are still not fully understood. In particular, the coupling between 

plasma physics and combustion thermochemistry is not yet clearly 

established. As this is difficult to address with experiments, nu- 

∗ Corresponding author. 

E-mail address: cheng@cerfacs.fr (L. Cheng). 

merical simulations may be used to analyze the flame-discharge 

interaction. Most of the studies including detailed kinetics are lim- 

ited to 0D simulations [7–9] . One dimensional case [10,11] or two- 

dimensional simulations [12,13] of plasma-assisted methane com- 

bustion are usually limited to simplified chemistry. To avoid exces- 

sive computational cost of a detailed chemistry in a 3D configura- 

tion, a phenomenological model which mimic plasma discharge ef- 

fects has been recently used in [14] allowing to model several hun- 

dred of discharges. A trade-off between detailed and phenomeno- 

logical models is to use chemical reduction: by choosing suitable 

targets and cases, accuracy is preserved while keeping the compu- 

tational cost reasonable. This method has already proven its worth 

in a combustion framework [15,16] and is considered as an inter- 

esting basis for the reduction of plasma-combustion kinetic mech- 

anism [17] . 

Contrary to thermal discharges, NRP discharges provide a chem- 

ical effect on top of the thermal effect due to the non-equilibrium 

electrons that allow to efficiently produce excited states of atoms 

and molecules through electron-neutral collisions. In air, elec- 

https://doi.org/10.1016/j.combustflame.2022.111990 
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tronically excited states contribute to fast gas heating by spon- 

taneous dissociation or quenching of electronically excited nitro- 

gen molecules as identified by Popov in [18] . Vibrationally excited 

states also play a role in gas heating allowing to store energy into 

the vibrational modes of nitrogen molecule which is further re- 

leased through vibration-translation (VT) and vibration-vibration 

(VV) relaxations [19] . 

Having consistent and detailed chemistry is thus a critical ba- 

sis for a good description of plasma-assisted combustion. Plasma 

air mechanisms have been derived and validated in [7,20] . Despite 

good results from [20] , a full description of the mechanism is lack- 

ing. Implementation of [7] does not give satisfactory results on one 

critical test case [21] because the mechanism was not validated at 

high temperature ( � 1500 K) and atmospheric pressure. Complete 

plasma air sets that are concatenated from different sources can 

also be found in [22,23] . However, the validity of these sets of 

reactions is not verified for plasma-assisted combustion applica- 

tion. An important review of plasma-assisted combustion chem- 

istry has been done in [24] . While the most important processes 

and their effects are highlighted, it is not straightforward to de- 

rive a complete kinetic mechanism relying solely on [24] . In [8] , a 

detailed plasma-assisted combustion mechanism has been used to 

study ignition with pre-calculated electron impact reaction rates. 

Although computationally efficient, this strategy limits the condi- 

tions on which the detailed mechanism is valid. Indeed, important 

changes in initial conditions such as mixture composition can dras- 

tically change electron impact reaction rates, thus requiring their 

recalculations. The self-consistent computation of these rates dur- 

ing simulations through an Electron Energy Distribution Function 

(EEDF) solver such as [25] is thus more appropriate to derive a ver- 

satile mechanism. 

The present work introduces new detailed plasma-assisted 

combustion mechanisms that are valid for a wide range of temper- 

atures ( [ 300 K − 1500 K] ) and pressures ([0.1 bar - 1.0 bar]). Criti- 

cal reaction rates, such as those of nitrogen excited states quench- 

ing, are not unambiguously established in the literature. These un- 

certainties lead to noticeable differences in two major features 

of plasma discharge effects: fast gas heating and radical produc- 

tion. In [26] , the reaction rate for the quenching of N 2 (B, C) with 

O 2 is said to be gas kinetics, meaning an underlying hard-sphere 

model for the cross-sections. On the other hand, experiments from 

[21] derived another rate for the quenching of N 2 (C) with O 2 from 

measurements which highlights a temperature dependence that is 

not captured by a hard-sphere model. The quenching of N 2 (B, C, 

a) with O introduced in [26] for discharges with high dissociation 

degree is questionable as it was not brought to light in any ex- 

periment. Fast gas heating is a major component of any plasma- 

assisted combustion mechanism: in this work, the straightforward 

approach of considering the enthalpy change of a reaction for gas 

heating is compared with the fast gas heating model developed in 

[18] . 

The iterative process of construction of such a mechanism is 

highlighted in Section 3 : after having built a plasma air mech- 

anism, plasma methane reactions are added. Combustion mecha- 

nisms are finally applied on top of it with a specific merging pro- 

cedure. Systematic validation of mechanisms against several ex- 

periments [21,27–29] , presented in Section 4 , is performed after 

each upgrade in Section 5 , thus validating different aspects of the 

chemistry: fast and slow gas heating as well as radical produc- 

tion. The fast gas heating model of [18] is tested and faced against 

the convential definition of heat release of reactions. Effects of 

uncertainties on the N 

∗
2 

quenching rates by O 2 and O are evalu- 

ated in terms of gas heating and radical production. The valida- 

tion across a large range of temperature, composition and pres- 

sure prevents any overfitting of a mechanism to match a specific 

experiment. 

As the mechanism is rather computationally expensive for di- 

mensional simulations, a reduction step is mandatory. In [17] , an 

extension of the DRGEP [15] reduction method was employed to 

reduce the mechanism of [30] . In this work, the original DRGEP 

method developed in ARCANE [16] is successfully employed to re- 

duce the detailed mechanism in Section 6 without the need of any 

plasma specific procedure by choosing suitable reduction cases. 

2. Modeling plasma assisted combustion 

Zero-dimensional reactors have been chosen as first test cases 

to study plasma assisted combustion. The mass fractions Y k and 

the gas temperature T g are governed by: 

m 

d Y k 
d t 

= V ˙ ω k (1) 

mc v 
d T g 

d t 
= −P 

d V 

d t 
+ V ˙ ω T + 

˙ Q (2) 

where m is the mass of the mixture, t the time, ˙ ω k the mass re- 

action rate of species k , P the pressure, V the volume, c v the mass 

heat capacity at constant volume, ˙ ω T the heat release rate and 

˙ Q 

is a power source term explicited in Section 3.3 . 

In low temperature plasmas, the ionization degree, i.e. the pro- 

portion of charged species in the mixture, is rather low, reach- 

ing at most 10 −4 − 10 −3 . However, thanks to the strong elec- 

tric field in plasma discharges, electrons are much more energetic 

than other heavy species. The resulting electron-neutral collisions 

can efficiently produce reactive species such as radicals or excited 

states, driving the electron distribution far from a Maxwellian one. 

It is thus important to know the electron distribution function 

f e (r , v e , t) , with r the position and v e the electron velocity, which 

obeys the Boltzmann equation: 

∂ f e 

∂t 
+ v e · ∇ f e − e E 

m e 
· ∇ v f e = 

(
δ f e 

δt 

)
c 

(3) 

where E is the electric field and m e the electron mass. ∇ v corre- 

sponds to gradient in velocity space. The collision term (δ f e /δt) c is 

computed from a complete set of cross sections containing mostly 

electron-neutral collisions. 

Assuming a two-term expansion, the electron distribution func- 

tion f e can be written as the product of the EEDF F 0 and the elec- 

tron density n e [25] . The Boltzmann equation Eq. (3) is then recast 

in terms of F 0 and solved. It is then used to compute the reaction 

rate k j associated to the cross-section σ j and the effective electron 

temperature T e by integrating over energy ε [25] : 

k j = γ

∫ ∞ 

0 

εσ j F 0 dε (4) 

T e = 

2 

3 

∫ ∞ 

0 

ε 3 / 2 F 0 dε (5) 

with γ = 

√ 

2 e 
m e 

a constant and ε = ( v /γ ) 2 the electron energy in 

electron-volt. In typical discharges, T e rises up to 5 eV. 

As a consequence, in the mass reaction rate ˙ ω k and heat re- 

lease rate ˙ ω T of Eqs. (1) and (2) , two contributions may be dis- 

tinguished: the set of EEDF reactions B (linked to an EEDF cross- 

section - superscript b) and the set of classical chemical reactions 

C (all the other ones - superscript c): 

˙ ω k = ˙ ω 

b 
k + ˙ ω 

c 
k = 

∑ 

j∈B 
˙ ω k j + 

∑ 

j∈C 
˙ ω k j (6) 

˙ ω T = −
∑ 

j∈B 

˙ Q j (�u j − ε j 
th 

) −
∑ 

j∈C 

˙ Q j �u j (7) 

2 
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where ε j 
th 

is the energy lost during process j taken from cross- 

section datasets, �u j = 

∑ 

k νk j u k is the reaction energy change per 

mole with u k the internal energy of species k . ˙ Q j is the molar 

production rate of reaction j and is proportional to the reaction 

rate k j . For the set of reactions B, the reaction rate k j is given by 

Eq. (4) while for the set of reactions C an extension of Arrhenius 

law including electron temperature T e is employed: 

k j = A j T 
β j 

g exp 

(
− E a 

RT g 

)
T 

β ′ 
j 

e exp 

(
− E ′ a 

RT e 

)
(8) 

In this work, the CANTERA code [31] has been used to solve 

Eqs. (1) and (2) . An EEDF solver has been implemented in CAN- 

TERA, based on an open-source version of BOLSIG+ [25] named BO- 

LOS, written by Alejandro Luque. Some features such as the energy 

grid adaptation of the open-source solver LOKI-B [32] have been 

introduced in our EEDF solver. 

3. Chemical mechanisms 

The plasma-assisted combustion mechanism is built in two 

steps. First, a chemical mechanism that describes the plasma dy- 

namics is built based on the literature. Then, this mechanism is 

adapted to account for specific gas heating features of a plasma 

discharge. Finally, the plasma mechanism is merged with a com- 

bustion mechanism. In this work, two well-established schemes for 

methane-air combustion are tested: the GRI 3.0 [33] and the Kon- 

nov v0.6 [34] . 

3.1. Plasma mechanism 

The cross sections for electron collisions with neutrals are taken 

from various datasets of the LXCat database (see Table 1 ) and as- 

sociated reactions are included in the mechanism. Elastic cross- 

sections have been included for the (B, C, a) electronic states of 

N 2 , assumed to be the same as for the ground state N 2 . The elec- 

tronically excited triplet states N 2 

(
B 

3 �g 

)
- N 2 

(
B 

′ 3 �−
u 

)
- N 2 

(
W 

3 �u 

)
and singlet states N 2 

(
a 1 �g 

)
- N 2 

(
a ′ 1 �−

u 

)
- N 2 

(
w 

1 �u 

)
are lumped 

into the N 2 

(
B 

3 �g 

)
and N 2 

(
a 1 �g 

)
states respectively. To preserve 

the discharge energy transfer to the gas mixture, the difference 

of excitation energies is assumed to be converted into gas heat- 

ing when produced by electron impact reactions. This procedure 

is illustrated in Reaction (9) where the N 2 

(
W 

3 �u 

)
state is lumped 

into N 2 

(
B 

3 �g 

)
. Consequently, the difference of energies between 

these two states must be accounted for into the heat release of 

the reaction. 

e − + N 2 −→ e − + N 2 

(
W 

3 �u 

)
−→ e − + N 2 

(
B 

3 �g 

)
+ 0 . 81 eV (9) 

Electron impact reactions need to be supplemented with 

electron-ion and heavy species reactions to form a complete 

kinetic mechanism for plasma discharge. Two references ( [22 , 

Chap. 7–10], [18] ) have been chosen to construct the plasma mech- 

anism with which the combustion mechanism will be merged. As 

argon is often used as diluent in plasma assisted combustion stud- 

ies [29] , a quite simple plasma chemistry for Ar has been taken 

from [35] to handle mixture dilution with this noble gas. The de- 

tailed plasma mechanism finally contains 71 species and 680 re- 

actions. A complete description of the plasma mechanism can be 

found in the supplementary materials S2. 

3.2. Fast gas heating modeling 

Usually the enthalpy change of a reaction is associated with 

heat release leading to an increase or decrease of the gas tem- 

perature. Table 2 illustrates the different behaviors of EEDF reac- 

tions (set B) with two examples. In the first process of Table 2 , the 

Table 1 

Electron impact cross-sections used in this work. 

Colliding partners σ

N 2 , N 2 
(
A 3 �+ 

u 

)
, N 2 

(
B 3 �g 

)
, N 2 

(
C 3 �u 

)
, N 2 

(
a 1 �g 

)
, O 2 , Ar Phelps [41] 

O 2 
(
a 1 �g 

)
, O 2 

(
b 1 �

+ 
g 

)
Triniti [53] 

CH 4 , NO, N 2 O Hayashi [54] 

O( 3 P, 1 D, 1 S), N( 4 S, 2 D) IST-Lisbon [40] 

O 3 Morgan [55] 

N 2 (v) [40–42] 

Table 2 

Example of electron impact reactions. 

# Process ε th [eV] �u [eV] �u − ε th [eV] 

1 e −(ε) + N 2 −→ e −(ε − ε th ) + N 2 (A) 6.17 6.17 0 

2 e −(ε) + O 2 −→ e −(ε − ε th ) + 2O 6.0 5.16 -0.84 

whole energy lost by the electron is transferred to the electronic 

state N 2 (A). Consequently, there is no heat release in this reaction. 

However, some electron impact processes can release heat. This is 

the case of the second process of Table 2 in which the electron 

looses more energy than necessary to dissociate O 2 . This excess of 

energy is associated to gas heating in the kinetic modeling. 

For the other reactions (set C), part of the products energy is 

stored into rotational and vibrational modes as suggested by Popov 

[18,36] and references therein. To account for this phenomenon, 

the heat release rate of some reactions is forced to the Fast Gas 

Heating (FGH, Model 1) values listed in Table 3 according to the 

work of [18,36] . In this table, FGH corresponds to the forced en- 

ergy release per molecule (either observed experimentally or com- 

puted using the methodology of [18] ) and HRR (Model 2) refers to 

the use of the conventional definition of Heat Release of Reaction 

using the formation enthalpy of the reactants and products. At the 

end, energy conservation is ensured through a vibrational energy 

residual ε vib in the products following Eq. (10) , discussed in more 

details in Section 3.3 . 

ε vib = HRR − FGH (10) 

Among these reactions, it is well known that the dissociative 

quenching of electronically excited states N 

∗
2 with O 2 (Reaction 

(11) ) largely contributes to the fast gas heating and the production 

of atomic oxygen. 

N 

∗
2 + O 2 −→ N 2 + 2 O (11) 

In particular, N 2 

(
B 

3 �g 

)
, N 2 

(
a 1 �g 

)
and N 2 

(
C 

3 �u 

)
dissociate 

O 2 with a high reaction rate while N 2 

(
A 

3 �+ 
u 

)
dissociates O 2 

at a rate two orders of magnitude lower at room tempera- 

ture [37] . In [7] , the rate of reaction (11) was taken con- 

stant for N 

∗
2 = N 2 

(
B 

3 �g 

)
, N 2 

(
a 1 �g 

)
, N 2 

(
C 

3 �u 

)
at a value of 

3 × 10 −10 cm 

3 s −1 . Similar reaction rates are used in [37] for 

N 2 

(
B 

3 �g 

)
and N 2 

(
C 

3 �u 

)
. While global agreement on the disso- 

ciative quenching rates for N 2 

(
A 

3 �+ 
u 

)
, N 2 

(
B 

3 �g 

)
and N 2 

(
C 

3 �u 

)
is reached in the literature, the case of N 2 

(
a 1 �g 

)
is ambiguous. 

In most of the plasma-assisted combustion studies, the rate for 

N 2 

(
a 1 �g 

)
is one order of magnitude smaller than N 2 

(
B 

3 �g 

)
and 

N 2 

(
C 

3 �u 

)
states. For the N 2 

(
a 1 �g 

)
state, the rate coefficient used 

in [37] ( 2 . 8 × 10 −11 cm 

3 s −1 ) was taken from [38] and corresponds 

to the quenching of the N 2 

(
a ′ 1 �−

u 

)
state. In [39] , the rate coef- 

ficient of the quenching of N 2 

(
a 1 �g 

)
with O 2 has been measured 

experimentally and was found high at 4 . 3 × 10 −10 cm 

3 s −1 . The ratio 

of singlet excited states N 2 

(
a 1 �g 

)
production by electron impact 

reactions in air calculated with BOLSIG+ is depicted in Fig. 1 , show- 

ing that N 2 

(
a 1 �g 

)
is dominant among N 2 (a ′ 1 �−

u , a 
1 �g , w 

1 �u ) for 

electric fields higher than 100 Td with more than 50% of the over- 

3 
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Table 3 

Fast Gas Heating (FGH) and conventional Heat Release of Reaction (HRR) for reactions for which they differ. 

Num Reaction Model 1 Model 2 

FGH [ eV] Ref HRR [ eV] 

(A1) e- + N 4 + −→ N 2 (v) + N 2 (C) 0 [56] 3.4 

(A2) N 2 (A) + O 2 −→ N 2 (v) + O 2 (b1) 0 [18] 4.53 

(A3) N 2 (A) + N 2 (A) −→ N 2 (v) + N 2 (C) 0.4 [18] 1.3 

(A4) N 2 (A) + N 2 (A) −→ N 2 (v) + N 2 (B) 3.5 [18] 4.99 

(A5) N 2 (B) + O2 −→ N 2 (v) + 2 O 1.1 [18, Eq. 6] 2.19 

(A6) N 2 (B) + N 2 −→ N 2 (A) + N 2 (v) 0 [56] 1.18 

(A7) N 2 (a) + N 2 −→ N 2 (B) + N 2 (v) 0 [56] 1.05 

(A8) N 2 (C) + O2 −→ N 2 (v) + O + O 5.55 [18, Eq. 6] 5.87 

(A9) N 2 (C) + O2 −→ N 2 (v) + O + O( 1 D) 3.59 [18, Eq. 6] 3.99 

(A10) N 2 (C) + O2 −→ N 2 (v) + O + O( 1 S) 1.37 [18, Eq. 6] 1.68 

(A11) N 2 (C) + N 2 −→ N 2 (B) + N 2 (v) 0 [18,56] 3.68 

(A12) O( 1 D) + O2 −→ O + O2(v) 0 [18] 1.97 

(A13) O( 1 D) + O2 −→ O + O2(a1, v) 0 [18] 0.99 

(A14) O( 1 D) + O2 −→ O + O2(b1, v) 0 [18] 0.34 

(A15) O( 1 D) + N 2 −→ O + N 2 (v) 1.38 [18] 1.97 

Fig. 1. Ratio of production rates of singlet excited states of N 2 using BOLSIG+ [25] . 

all production of singlet states. The state N 2 

(
a ′ 1 �−

u 

)
only repre- 

sents about 20% of the singlet states produced by the discharge. 

The timescale of (11) for N 2 

(
a 1 �g 

)
is of the order of 3 ns in air 

at T = 1500 K and atmospheric pressure assuming X O 2 = 0 . 15 . Ac- 

cording to [22] , the N 2 

(
a 1 �g 

)
→ N 2 

(
a ′ 1 �−

u 

)
optical transition oc- 

curs on the millisecond timescale, which is much higher than the 

timescale of (11) . The N 2 

(
a 1 �g 

)
collisional quenching timescale of 

reaction (12) is also higher by one order of magnitude ( 20 ns ) com- 

pared with the O 2 dissociative quenching timescale. Thus, during 

the very first nanoseconds following the pulse, it can be concluded 

that N 2 (a ′ 1 �−
u , a 

1 �g , w 

1 �u ) is mainly composed of N 2 

(
a 1 �g 

)
. 

N 2 

(
a 1 �g 

)
+M −→ N 2 

(
a ′ 1 �−

u 

)
+M , k = 9 × 10 

−12 cm 

3 s −1 (12) 

Finally, three different models for gas heating are tested, and 

referred as follows. Model 1 considers the forced energy release of 

the reaction in Table 3 , Model 2 refers to the use of the conven- 

tional HRR and Model 3 is based upon Model 1 with the rate from 

[39] for the dissociative quenching of O 2 by N 2 

(
a 1 �g 

)
. 

3.3. Slow gas heating modeling 

The fast gas heating produced by a plasma discharge is followed 

by a slow gas heating corresponding to the relaxation of vibra- 

tional states. For the discharges considered in this work ( E/N ≥
10 Td ), an overwhelming majority of this energy is stored into vi- 

brational modes of N 2 [1] . Thus, a detailed or simplified model- 

ing of N 2 (v) is included in the kinetic mechanism and a simpli- 

fied model for O 2 (v) is always used. In the detailed model VIB. 

1, the electron vibrational excitation cross sections are taken from 

[40] and [41] for N 2 (v = 1-8) and from [42] for N 2 (v = 9-17). The 

main relaxation processes are vibrational-translational (VT) N 2 -O 

and vibrational-vibrational (VV) N 2 -N 2 reactions and as a first ap- 

proximation only those processes have been accounted for in the 

detailed model: 

N 2 ( v ) + O ←→ N 2 ( v − 1) + O (13) 

N 2 ( v ) + N 2 ( w − 1) ←→ N 2 ( v − 1) + N 2 ( w ) (14) 

The vibrational energy of level v, E v , accounts for anharmonicity 

effects, using a Morse potential energy expression: 

E v 

hc 
= ω e 

(
v + 

1 

2 

)
− ω e x e 

(
v + 

1 

2 

)2 

(15) 

where h is the Planck constant, c the speed of light in vaccum, ω e 

the characteristic vibrational pulsation and ω e x e the anharmonic- 

ity. ω e and ω e x e are given in units of wavelength and can be found 

in [22] . The base rate and scaling for both VV and VT relaxations 

are taken from [19] . The resulting mechanism contains 116 species 

(71 species of the plasma mechanism developed above plus 45 vi- 

brational states N 2 (v = 1,45)) and 1916 reactions. 

The modeling of the vibration kinetics of species k can be sim- 

plified by considering the mean non-equilibrium vibrational energy 

e k 
vib 

. The time evolution of e k 
vib 

and its interaction with the gas 

temperature are given by: 

de k 
vib 

dt 
= 

˙ E k vib − ˙ R 

k 
VT (16) 

mc v 
d T g 

d t 
= −P 

d V 

d t 
+ V ˙ ω T + 

∑ 

k 

˙ R 

k 
VT (17) 

In Eq. (16) , ˙ E k 
vib 

corresponds to vibrational excitation of species 

k produced by the discharge. Reactions such as (A6) and (A7) do 

not produce any heating and instead the energy is deposited as 

4 
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Table 4 

Major plasma reactions of CH 4 containing mixture. 

Reaction k f [ cm 

3 .s −1 ] Ref. 

Electron-impact reactions 

e − + CH 4 −→ e − + CH 3 + H σ [57] 

e − + CH 4 −→ 2e − + CH 4 + σ [57] 

Electron-ion recombination 

e − + CH 

+ 
4 

−→ CH 3 + H 1 . 18 × 10 −8 ( 300 /T g ) 
0 . 5 [58] 

e − + CH 

+ 
4 

−→ CH 2 + 2H 2 . 42 × 10 −8 ( 300 /T g ) 
0 . 5 [58] 

e − + CH 

+ 
4 

−→ CH + H 2 + H 1 . 41 × 10 −8 ( 300 /T g ) 
0 . 5 [58] 

Quenching of excited states 

N 2 (A) + CH 4 −→ N 2 + CH 3 + H 3 . 3 × 10 −15 [28] 

N 2 (B) + CH 4 −→ N 2 + CH 3 + H 3 × 10 −10 [28] 

N 2 (C) + CH 4 −→ N 2 + CH 3 + H 5 × 10 −10 [28] 

N 2 (a) + CH 4 −→ N 2 + CH 3 + H 3 × 10 −10 [28] 

O( 1 D) + CH 4 −→ CH 3 + OH 1 . 89 × 10 −10 [59] 

O( 1 D) + CH 4 −→ CH 3 O + H 3 . 1 × 10 −11 [59] 

molecular vibration in 

˙ E N2 
vib 

. The sink term 

˙ R k 
VT 

corresponds to the 

vibrational-translational (VT) relaxation from species k : 

˙ R 

k 
VT = 

e k 
vib 

τ k 
VT 

τ k 
VT = 

( ∑ 

p 

1 /τ pk 
VT 

) 

(18) 

where θ k 
ν represents the characteristic vibrational temperature. 

Each relaxing species k has several colliding partners (denoted by 

p above). Note that the power source term 

˙ Q of Eq. (2) has been 

expanded as ˙ Q = 

∑ 

k 
˙ R k 
VT 

. 

In the simplified model VIB. 2, the mean vibrational energy of 

k = N 2 is considered with the colliding partners p = O , N 2 and the 

relaxation times τ pk 
VT 

are taken from [43] . 

In both models VIB. 1 and VIB. 2, the relaxation of the vibra- 

tional energy of O 2 is modeled using the simplified approach with 

the colliding partners p = O , N 2 , O 2 and relaxation times taken 

from [1] . Note that O 2 (a1, v ) and O 2 (b1, v ) produced respectively 

by reactions (A14) and (A15) in Table 3 are modeled like O 2 (v). 

Using Model 1 (FGH) for reactions listed in Table 3 introduces 

reactions which produce vibrational species at an unknown distri- 

bution. It is thus impossible to include them in a detailed model 

of vibration and the corresponding vibrational energy residual is 

relaxed using Eq. (18) , i.e., following model VIB. 2. 

3.4. Combustion mechanisms and merging with plasma mechanism 

To compute plasma-assisted combustion, methane is incorpo- 

rated to the previous plasma air mechanism. First, plasma reac- 

tions involving methane are added to the mechanism. The most 

important ones are listed in Table 4 along with their references. 

Full description of the plasma methane kinetics can be found in 

the supplementary materials S2. Methane is able to create H rad- 

icals and is another possible partner for electronically excited ni- 

trogen and oxygen. 

Combustion reactions now need to be added to the mecha- 

nism. Two combustion mechanisms are considered here to illus- 

trate the merging mechanisms with chemistries of increasing com- 

plexity: the GRI-3.0 [33] mechanism (53 species, 325 reactions) 

and the Konnov [34] mechanism (201 species, 2300 reactions). 

Two global quantities of these mechanisms, namely the ignition 

delay time and the flame speed S L , are given in Fig. 2 . Auto- 

ignition is computed for stoichiometric mixture by varying initial 

temperature and flame speed is computed with a fresh gas tem- 

perature and pressure of 300 K and 1 atmosphere by varying the 

equivalence ratio. Regarding auto-ignition times in Fig. 2 a, both 

mechanisms are in agreement when dealing with standard condi- 

tions. However, the addition of a small amount of atomic oxygen 

�Y O = 1 × 10 −3 to mimic a plasma chemical effect reveals a no- 

ticeable difference between the two mechanisms. For both mech- 

anisms, the addition of atomic oxygen reduces the ignition de- 

lay time but this effect is much stronger for the GRI-3.0 mech- 

anism. Concerning flame speeds shown in Fig. 2 b, a difference 

of about 10% is observed between the two mechanisms in the 

lean-to-stoichiometric region for standard conditions. The addition 

of atomic oxygen leads to a slightly higher flame speed in the 

stochiometric and stochiometric-rich regions for the GRI-3.0 and 

Konnov mechanisms respectively. Overall these preliminary results 

show that the two mechanisms behave similarly in standard con- 

ditions but their response to plasma conditions can be quite differ- 

ent. The procedure for merging the plasma and combustion mech- 

anisms can now be detailed. 

As the methane-air plasma mechanism was developed indepen- 

dently from the combustion mechanisms, some reactions are re- 

dundant. For the GRI 3.0 approximately 40 reactions already exist 

in the plasma mechanism while for the Konnov mechanism this 

number is close to 100. While some of these reactions use the 

same rate constants, most do not and a choice must be made. 

3.4.1. GRI 3.0 

In the case of GRI 3.0 mechanism, choosing the rate constants 

from one or the other mechanism has negligible effects on the 

plasma cases studies in this paper (see Section 4 ). Thus to be safe 

the rates of GRI 3.0 are kept as they were optimized for combus- 

tion applications. 

3.4.2. Konnov v0.6 

As for the GRI 3.0, the rates of reactions involving atoms and 

molecules in their ground states can be taken from either mecha- 

nism without significant change in the cases of Section 4 . However 

the Konnov mechanism [34] contains some excited species as de- 

tailed in [44] : O( 1 D) , O 2 (�) and OH (�) denoted “OX”, “O2X” and 

”OHX” respectively. The reactions involving these species are much 

more important than those with ground state species as they con- 

tain part of the discharge energy and need to be treated carefully. 

Some reaction rates have been modified from the original Konnov 

mechanism. Due to the merging of the singlet states of O 2 in [34] , 

the quenching of O( 1 D) by O 2 is described in the original Konnov 

mechanism by: 

O( 1 D) + O 2 −→ O + O 2 ( a1 ) k = 2 . 64 × 10 

−11 exp ( 139 /RT g ) 

(19) 

As our chemistry considers two distinct species O 2 (a1) and 

O 2 (b1), the rate coefficients of O( 1 D) quenching by O 2 are de- 

scribed more precisely as in [22] : 

O( 1 D) + O 2 −→ O + O 2 k = 6 . 4 × 10 

−12 exp (133 /RT g ) cm 

3 s −1 

(20) 

5 
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Fig. 2. Comparison of the GRI-3.0 (solid lines) and Konnov (dashed lines) at normal composition (black) and with small atomic oxygen addition �Y O = 1 × 10 −3 (gray) to 

mimic plasma discharge. 

Table 5 

Modified reactions in the Konnov mechanism according to our plasma mechanism. FGH and vibrational excitation are 

given in term of percentage of the energy change of reaction. 

Reaction FGH [%] Vibration [%] k f [ cm 

3 .s −1 ] 

O( 1 D) + O 2 −→ O + O 2 (v) 0 100 6 . 4 × 10 −12 exp ( 67 /T g ) 

O( 1 D) + O 2 −→ O + O 2 (a1, v) 0 100 10 −12 

O( 1 D) + O 2 −→ O + O 2 (b1, v) 0 100 2 . 6 × 10 −11 exp ( 67 /T g ) 

O( 1 D) + N 2 −→ O + N 2 (v) 30 70 7 . 6 × 10 −11 

O( 1 D) + O 2 −→ O + O 2 ( a1 ) k = 1 × 10 

−12 cm 

3 s −1 (21) 

O( 1 D) + O 2 −→ O + O 2 ( b1 ) k = 2 . 6 × 10 −11 exp (133 /RT g ) cm 

3 s −1 

(22) 

The reaction rate used for reaction (19) actually corresponds to 

that of reaction (22) . The underlying assumption is that the O 2 (b1) 

formed in reaction (22) is directly quenched to form O 2 (a1). This 

assumption is relaxed in the merging procedure as reaction (19) is 

replaced by reactions (20), (21) and (22) . 

Modifications have also been made to ensure correct repartition 

of the discharge energy: the heat release rate of some reactions 

was split into a fast gas heating and a slow gas heating follow- 

ing Eq. (10) based on [18] . Hence the three quenching reactions 

above are supposed to produce only vibrational energy. Likewise 

the quenching of reaction (23) is described as in [18] with 30% 

of energy going into FGH and 70% into vibration. A summary of 

the modifications made on energy repartition and reaction rates 

for the merging with the Konnov mechanism is summarized in 

Table 5 . 

O( 1 D) + N 2 −→ O + N 2 (v) (23) 

4. Test cases 

4.1. Cases overview 

Four experiments of NRP discharges taken from the literature 

are used to validate the models and chemistries described in 

Section 3 . Their major characteristics are summarized in Table 6 . 

These discharges correspond to typical electrode configurations 

depicted in Fig. 3 and cover either the glow [45] or spark 

[46] regimes of NRP discharges for a wide range of gas pressure 

and temperature ( 0 . 1 − 1 bar and 300 − 1500 K respectively). For 

the plane to plane electrode configurations [28,35] , experiments 

highlighted quasi-uniform discharges, thus validating the use of 0D 

reactors. For the pin-pin configurations [21,27] , the validity of a 0D 

approach is limited to the first instants. Indeed, according to the 

acoustic timescale τa = r d /a where r d is the radius discharge and a 

the speed of sound, the discharge remains isochoric only until 300 

ns and 2 μs in the conditions of [21] and [27] respectively. As both 

isochoric and isobaric reactor formulations are available in CAN- 

TERA, for each experiment the formulation yielding the best results 

compared with experiments has been kept. These choices are in 

agreement with previous simulations for cases B [28] , C [7,27] and 

D [35] . Concerning case A for which no 0D simulation is available 

in the literature, the isochoric formulation is chosen because of the 

short timescale involved compared to the acoustic timescale τa . 

The mixture compositions are either air or air-CH 4 with argon 

dilution in the plasma assisted ignition case of [35] . With this com- 

bination of cases, a large amount of experimental data is available 

such as time resolved gas temperature and species concentration 

or ignition times. In Section 5 , these data will be used to test and 

validate the fast and slow gas heating, the radical production and 

finally the coupling of the discharge with conventional combustion 

kinetics. Each experiment is described in more details in the fol- 

lowing. 

4.2. Case A 

This experimental setup is presented in [21] . NRP discharges are 

applied in air in a 4mm pin-to-pin configuration. The discharges 

are 10 ns long with an applied voltage of 5.7kV between the elec- 

trodes at a frequency of 10 kHz. The gas temperature was esti- 

mated through measurements of the N 2 (B,C) rotational tempera- 

ture. However, more recent work [47] shows that the rotational 

distribution of the excited states depends on various kinetic pro- 

cesses including electronic excitation, collisional quenching and ro- 

tational excitation. A detailed model was developed to account for 

these processes and enabled to infer the actual gas temperature 

from the measured rotational distributions of the N 2 (B) and N 2 (C) 
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Table 6 

Main characteristics of selected experiments. 

Name Case A Case B Case C Case D 

Reference Rusterholtz et al. [21] Uddi et al. [28] Montello et al. [27] Aleksandrov et al. [35] 

T g [K] 1500–2500 300 300 1330 

P 1 atm 60 Torr 100 Torr 0.45 atm 

Geometry Pin-Pin Plane Pin-Pin Plane 

Reactor Isochoric Isochoric Isobaric Isobaric 

Mixture Air Air-CH 4 Air Ar:N 2 :O 2 :CH 4 

Data T g , O , N 2 (B,C) O T g , N 2 (v) Ignition time 

Fig. 3. Sketch of electrode configurations. The gray area corresponds to the discharge region. The point indicates the location modelled by the 0D reactor. 

states. After multiple pulses the temperature of the gas just before 

a pulse is 1500 K with a temperature rise of about 900 K in 20 ns . 

Optical measurements allow access to electron, nitrogen electronic 

states (N 2 (B), N 2 (C)) and atomic oxygen densities. At the end of 

the discharge around 50% of oxygen is dissociated and the energy 

of the discharge is E d = 670 ±50 μJ with 35% of this energy used 

for dissociation of O 2 and 21% for gas heating. 

For the CANTERA 0D simulations, the reduced electric field is 

taken from experimental measurements [21] while the electron 

density at the center of the discharge is taken from a 1D simula- 

tion [20] . Initially, the mixture composition is N 2 :O 2 :O:77.4:18.6:4 

accounting for O 2 dissociation from previous discharges. 

4.3. Case B 

This experiment is presented in [27] . NRP discharges are stud- 

ied in plane-to-plane and pin-to-pin geometries and the focus is 

made on vibration populations of nitrogen. The discharges are ei- 

ther applied in burst mode (40 to 150 pulses) in the plane-to-plane 

configuration or in mono-pulse mode in the pin-to-pin configura- 

tion. It is found that in these conditions up to 50% of the discharge 

energy is stored into nitrogen vibrational modes. The initial tem- 

perature and pressure are T 0 = 300 K and p 0 = 100 Torr respectively. 

The discharges are approximately 100 ns long. In this work, only 

the pin-to-pin configuration has been simulated. Smooth electron 

density and reduced electric field profiles from [27] are imposed in 

the 0D simulations. 

4.4. Case C 

The experiment described in [28] contains two planar elec- 

trodes in a rectangular geometry that produce NRP discharges in 

pure air and CH 4 -air mixtures at 300 K and 60 Torr. The pulses are 

25 ns long and can be applied in single mode or in burst mode, in 

which case from 2 to 100 pulses are applied at 100 kHz. Measure- 

ments of atomic oxygen after the discharges are given as well as 

simulation results. 

The simulations of [28] have been made with a reduced elec- 

tric field and an electron density of Gaussian shape with a 20 ns 

FWHM (Full Width at Half Maximum). The peak reduced electric 

field is given at 247 Td and the peak electron density is chosen 

to satisfy the peak atomic oxygen mole fraction in air. These pa- 

rameters are kept constant for the discharge in CH 4 -air. The same 

procedure has been applied in the CANTERA simulations. 

4.5. Case D 

A shock tube setup to study ignition using NRP discharges is 

presented in [29] . A shock wave is initiated using a broken di- 

aphragm and passes between two electrodes after reflection where 

the discharge is applied. 

The simulated case, taken from [35] , is characterized by an ini- 

tial temperature T 0 = 1330 K, an initial pressure P 0 = 0 . 45 bar and 

an initial composition Ar:N 2 :O 2 :CH 4 -80:15:4:1. The electric field is 

deduced from the measurements of the electric potential at two 

different locations. As the discharge is modelled in a 0D framework 

it is necessary to impose the electron density profile during the 

pulses which is deduced from the discharge energy density given 

in [35] . 

5. Validation of the mechanisms 

0D simulations performed with the plasma-assisted combustion 

mechanism of Section 3 are now compared with the experimental 

results for the four configurations described in Section 4 . Each ex- 

periment allows to validate one or more aspects of the chemistry: 

gas heating, radical production and ignition time. 
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Fig. 4. Gas temperature time evolution for Case A [21] using the different fast gas 

heating models of Section 3 and TOSU mechanism against experimental measure- 

ments (point) [21] and reference simulations (dashed: Popov 2013 [20] , Popov 2016 

[37] ). The filled areas correspond to the experimental uncertainties of [21] . 

5.1. Fast gas heating 

The NRP discharges of Case A [21] produce fast and intense gas 

heating during the first tens of nanoseconds. The temperature rise 

is used to assess the quality of the three models of fast gas heating 

presented in Section 3.2 . In addition to these models, simulation 

has been performed using the kinetic mechanism of The Ohio State 

University (TOSU) [7,30] . Simulation and experimental results are 

shown in Fig. 4 , along with previous simulation results of Popov 

[20,37] . In this figure, only the GRI 3.0 results are shown for read- 

ability since similar conclusions apply to the Konnov mechanism. 

In Fig. 4 , while Models 2 and 3 are close, a 300 K temperature 

difference is observed with Model 1 after 60 ns which corresponds 

to ≈ 30% of the gas temperature increase. Both Models 2 and 3 are 

in good agreement with the measurements, hence other measured 

quantities must be used to differentiate them. The TOSU mecha- 

nism yields a gas temperature increase similar to models 2 and 3. 

In the work of Popov 2016 [37] , the model developed in [20] has 

been updated to account for quenching reactions of electronically 

excited nitrogen by atomic oxygen. Despite gas temperature pre- 

diction improvements, a loss of accuracy on atomic oxygen pro- 

duction induced by this quenching is shown in the next section. 

Additional information was obtained in the experiment thanks 

to a secondary reflected pulse at t = 270 ns as shown in Fig. 4 . This 

pulse was strong enough to efficiently stimulate the C states of N 2 

allowing an estimation of its rotational temperature. At the very 

beginning of this pulse, recent work [47] inferred a gas tempera- 

ture of 3110 K ± 200 K from the excited state C rotational temper- 

ature, indicating a significant gas temperature increase of about 

600 K ± 200 K from the end of the first pulse. With 0D simula- 

tions, the gas temperature ranges between 2900 and 3300 K de- 

pending on the model used, Model 1 staying approximately 200 

K lower than the others. However, at a high temperature of about 

T = 2500 K, the compression wave formed by the fast gas heating 

during the first pulse can not be neglected to analyze the results 

of the second pulse. Indeed, the acoustic timescale τa is of the or- 

der of 200 ns in a volume of size 225 μm and a speed of sound 

a = 

√ 

γ RT g /M � 10 0 0 ms −1 . This rapid gas expansion is responsible 

for gas temperature decrease, which is a sign that gas temperature 

should be even higher than the one predicted by Models 2 and 

3. However, the 0D model is not able to accurately estimate the 

density change resulting from the compression wave. Hence the 

reduced electric field can not be computed so that the pulse re- 

flection was not included in our 0D simulation. Therefore the sim- 

Fig. 5. Time evolution of atomic oxygen density for Case A [21] using different fast 

gas heating model against experimental measurements (point) [21] and reference 

simulations (dashed line) [20] . The filled areas correspond to the experimental un- 

certainties. 

ulated temperature stays flat contrary to the experimental mea- 

surements. The gas dynamics effects could be analyzed in further 

works using 1D or 2D simulations. 

5.2. Radical production 

Radical production is another important characteristic of the 

discharge studied in the experiment of Case A [21] . The time evo- 

lution of O( 3 P) density has been measured using Two-Photon Ab- 

sorption Laser Induced Fluorescence (TALIF) technique during the 

pulse and the afterglow. The atomic oxygen from CANTERA simu- 

lations is displayed in Fig. 5 for the different models studied. For 

the same reasons as in the fast gas heating study, only the results 

for GRI 3.0 mechanism is shown. Models 1 to 3 yield satisfactory 

results when compared with experimental measurements [21] and 

Popov’s simulation [20] . Model 3 exhibits a slighlty higher O pro- 

duction of ∼ 8 % than Model 1 which seems to be in better agree- 

ment with the experimental results. However, the TOSU mecha- 

nism [7] underestimates the atomic oxygen by approximately 30%. 

This is attributed to the quenching reaction of N 

∗
2 

with O( 3 P) atoms 

( Eq. (24) ) which occurs with a very high rate. The addition of this 

reaction in Model 1 leading to Model 4 of Fig. 5 strongly disturbs 

the atomic oxygen production. This observation questions the ef- 

fectiveness of reaction (24) in our conditions. 

N 

∗
2 + O( 3 P) −→ NO + N( 2 D) k = 3 × 10 

−10 cm 

3 s −1 (24) 

Case B [28] setup monitors atomic oxygen decay after a dis- 

charge in both air and methane-air mixtures [28] . Konnov and GRI 

plasma mechanisms using Model 3 give satisfactory results con- 

cerning the rate of decay of atomic oxygen compared with exper- 

imental results and reference simulations as shown in Fig. 6 . In 

pure air, the difference between the two combustion mechanisms 

is due to the different rates used for O 3 chemistry. Atomic oxygen 

decay in methane-air mixtures are similar using both mechanisms. 

5.3. Slow gas heating 

Slow gas heating is the result of the relaxation of vibrationally 

excited nitrogen molecules. The detailed simulation using VIB. 1 
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Table 7 

Ignition time and maximum values of radical mole fractions. 

τig X O X H X CH3 Reference 

332 μs 2 . 79 × 10 −3 2 . 7 × 10 −4 2 . 47 × 10 −4 [35] 

135 μs 3.43 ×10 −3 3.06 ×10 −3 5.94 ×10 −4 GRI 3.0 (This work) 

334 μs 3.14 ×10 −3 2.67 ×10 −3 7.26 ×10 −4 Konnov v0.6 (This work) 

448 μs 2.92 ×10 −3 2.56 ×10 −3 6.78 ×10 −4 Konnov v0.6 NO FGH (This work) 

Fig. 6. Time evolution of atomic oxygen mole fraction for Case B [28] using Model 3 

along with GRI 3.0 (solid) or Konnov (dashed) mechanisms. Measurements (point) 

[28] and reference simulations (dotted) [28] are also given for comparison. Black 

and blue colors are respectively used for air and air-methane cases. (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

model on the Montello experiment yields good results for the gas 

temperature ( Fig. 7 a) as well as for the vibrational populations 

( Fig. 7 b) over time irrespective of the combustion mechanism. The 

VV N 2 -N 2 and VT N 2 -O are thus the main vibrational relaxation 

channels in air. The simpler VIB. 2 model shows good agreement 

with the detailed model for the gas temperature in Fig. 7 a, vali- 

dating the method and the relaxation times considered. This ap- 

proach is able to drastically reduce the number of species in the 

mechanism and must be considered as a valuable option for multi- 

dimensional works. For these reasons VIB. 2 is kept for all other 

calculations. 

5.4. Ignition 

In case D, the discharge used [29] is characterized by a com- 

bination of radical production and fast gas heating promoting the 

ignition process. The gas heating during the discharge remains rel- 

atively low which leads to a gas temperature increase of about 100 

K. The ignition delay time τig measured experimentally is com- 

pared with the one extracted from the simulation using the same 

procedure based on the OH mole fraction. τig is defined at the in- 

tersection of two OH density tangents: one at the minimum value 

and the other at the inflection point during the sharp increase cor- 

responding to the ignition process. This method is described in 

Fig. 8 a. The ignition delay times obtained for the different combus- 

tion mechanisms are given in Table 7 . A very good agreement with 

the experimental value τ exp 
ig 

= 376 μs [29] is found for the case us- 

ing the Konnov mechanism. The case using the GRI-3.0 mechanism 

exhibits a 50% lower ignition time compared to the Konnov mech- 

Table 8 

Summary of targets and errors used in the reduction process. 

Cases Targets Errors 

Case A [21] O, ˙ ω T T g (10%), n end 
O (10%) 

Case C [28] O n end 
O (10%) 

Case D [35] O, CO, ˙ ω T τig (10%) 

Plasma Dynamics e − n max 
e (5%), n end 

e (25%) 

Auto-ignition CO, ˙ ω T τig (5%) 

1D flame CO, ˙ ω T s L (5%) , T max 
g (1%) 

anism, which is consistent with the preliminary study of ignition 

delay time performed in Section 3.4 . An additional simulation, re- 

ferred to as ”NO FGH”, was performed without gas heating during 

the discharge phase (i.e. t ≤ 1 μs ) as done in [35] . In that case, the 

ignition delay time increases to 448 μs showing the importance of 

accounting for gas heating effect during the discharge. 

6. Chemistry reduction 

The mechanisms derived above for methane-air plasma-assisted 

combustion are computationally heavy with respectively 100 and 

226 species along with 964 and 2586 reactions for the GRI-3.0 

[33] and Konnov [34] plasma mechanisms. Using such mechanisms 

in a multi-dimensional simulation is impossible and a reduction 

step must be performed to decrease the computational cost. The 

methodology used to reduce these mechanisms is first described 

in Section 6.1 . The test cases used to validate the reduction process 

are then presented in Section 6.2 . The resulting reduced mecha- 

nism for GRI-3.0 plasma mechanism is finally presented and eval- 

uated in Section 6.3 in terms of computational cost and accuracy. 

GRI-3.0 plasma mechanism has been chosen due to its lower com- 

putational cost but the methodology also applies to any plasma as- 

sisted combustion mechanism. 

6.1. Methodology 

The methodology is the one of [15] using Directed Relation 

Graph with Error Propagation (DRGEP), implemented in the AR- 

CANE code co-developed at CERFACS and Cornell University [16] . 

The graph relies on coefficients which are computed on a set of 

representative cases (reduction cases) that span the range of con- 

ditions on which the reduced mechanism will be used. 

The DRGEP method was recently applied in [17] , where con- 

trary to Eq. (5) the time evolution of electron temperature T e is 

governed by: 

c v e m e n e 
dT e 

dt 
= − ˙ ω e u e + 

˙ Q p (25) 

where n e is the electron density, c v e the electron specific heat at 

constant volume, ˙ ω e the electron mass production rate, u e the elec- 

tron specific internal energy and 

˙ Q p the net energy source term 

which depends on T e and electron concentration c e . 

In this work, the reaction rate coefficients of electron impact re- 

actions B and electron temperature T e are deduced from the EEDF 

( Eqs. (4) - (5) ). Thus, these quantities remain unaltered as long as 

the EEDF remains the same. Differences could be induced by mod- 

ified gas temperature or mixture composition after successive re- 
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Fig. 7. Comparison of vibrational model on Case C [27] (a) gas temperature (solid, black and gray for simulation) against experimental measurements (point-dotted); (b) 

vibrational populations over time, v = (0 , 1 , 2 , 3 , 4) correspond respectively to black, grey, red, green, blue for VIB. 2 model (solid), experimental measurements [27] (point- 

dotted) and reference simulation [7] (dashed). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Results of Case D [35] (a) ignition time delay for the simulation using Konnov mechanism and (b) gas temperature. 

duction steps since the EEDF depends on these quantities. How- 

ever, no significant effect of that kind was observed in the cases 

considered here. 

A major property to be preserved during the reduction process 

is the energy that is transferred from the discharge to the elec- 

trons and ultimately to the gas mixture. In the present model, the 

electron temperature is computed self-consistently with the re- 

duced electric field, gas composition and temperature. With this 

approach, the discharge energy transfer to the gas mixture is pre- 

served only if all cross-sections considered in the EEDF are associ- 

ated to a reaction in the kinetic mechanism, which strongly limits 

the reduction. A method to relax this constraint is presented in the 

following. 

While the set of cross-sections used to compute the EEDF is im- 

mutable, the associated reactions can be simplified. For instance, 

the production of an electronically excited state AB 

∗ by electron 

impact reaction on a species AB can be replaced by an inert heat 

production process described in Eq. (26) . The underlying assump- 

tion is that the quenching of the excited state of a molecule does 

not change its formula but only transfers its excitation energy into 

a translational mode. For reaction Eq. (27) , the chemical effect 

is kept when possible by quenching the excited species B 

∗ in the 

products, as done previously. In a case for which species B does 

not exist, the reaction reduces to Eq. (26) . Applying theses rules 

allows to remove excited species AB 

∗ and B 

∗ while keeping the to- 

tal energy transfer to the gas unchanged, thus reducing the mech- 

anism. 

e − + AB −→ e − + AB 

∗ −→ e − + AB + heat (26) 

e − + AB −→ e − + A + B 

∗ −→ e − + A + B + heat (27) 

6.2. Reduction cases 

The aim of the reduced mechanism is to be used in a multi- 

dimensional plasma-assisted combustion simulation. The test cases 

on which the reduction process is based must therefore be repre- 

sentative of the various phenomena occuring in this type of simu- 

lation. The chosen set of reduction cases is detailed in the follow- 

ing and a summary can be found in Table 8 . 

6.2.1. Plasma and combustion 

Plasma cases are selected to validate fast gas heating and radi- 

cal production of the reduced mechanism. The discharge described 
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Fig. 9. Time evolution of electron and ion density for Plasma Dynamics case using 

the detailed mechanism. 

in [21] highlights these two effects in air while [28] allows to vali- 

date radical production in a CH 4 containing mixture. In both cases, 

the atomic oxygen concentration is targeted and the error on the 

final atomic oxygen density is checked. Due to the important gas 

heating, the heat release is also targeted in [21] and the error on 

the final gas temperature is also assessed. 

Canonical combustion cases and targets (CO, ˙ ω T ) are chosen fol- 

lowing [16] : a 0D isochoric reactor with an initial temperature of 

10 0 0 K and a 1D flame with a fresh gas temperature of 300 K. 

Both combustion cases are performed for stoichiometric CH 4 -air 

mixtures at atmospheric pressure. The error on auto-ignition delay 

time τig is checked on the 0D case while the laminar flame speed 

S L and maximum temperature T max 
g are assessed on the 1D flame 

case. 

Finally, the plasma-combustion coupling is assessed on the case 

of single pulse plasma-assisted ignition of [35] . For these 0D com- 

bustion and plasma cases, the targets are: O, CO and ˙ ω T . The er- 

ror on the ignition delay time τig is used to validate the reduced 

mechanism. 

6.2.2. Charged species dynamics 

In all the studied cases A to D used so far in this work, the 

time evolution of the electron density is imposed. Consequently, 

electroneutrality must be imposed and then the growth and de- 

cay of charged species are not monitored by reduction cases of 

Section 6.2.1 . They are crucial in multi-dimensional simulations as 

they control the discharge propagation [48–50] . A simple reference 

test-case without an imposed electron density profile, referred to 

as Plasma Dynamics, is therefore included to reproduce the net 

ionization rate and plasma decay phase. 

For this case, a 12 ns pulse with constant reduced electric field 

E/N = 200 Td is used to mimic a discharge leading to a peak elec- 

tron density of ≈ 1 e 14 cm 

−3 as in [49] . The plasma decay is simu- 

lated up to 10 μs , which is representative of a 100 kHz repetition 

frequency of an NRP discharge. These are typical parameters used 

experimentally for NRP discharges [21,46,51] The initial mixture is 

a stoichiometric methane-air mixture at 10 0 0 K and atmospheric 

pressure. 

The time evolution of electron and ion density obtained with 

the GRI-3.0 plasma mechanism developed in this work is shown in 

Fig. 9 . An increase of charged species density is observed during 

Table 9 

Species kept in the reduced mechanism using the cases of Table 8 . 

Species 

Combustion O, O 2 , H, OH, H 2 , HO 2 , H 2 O 2 , CH, CO, CH 2 , HCO, CH 2 (S) 

CH 3 , CH 2 O, CH 4 , CO 2 , CH 3 O, CH 3 OH, C 2 H 4 , C 2 H 5 , C 2 H 6 

H 2 O, N 2 , AR, N, NO, NO 2 , H 2 CN 

Plasma e − , N 

+ 
2 

, O 

+ 
2 

, CH 

+ 
4 

, CH 

+ 
3 

, AR + , NO 

+ , O 

− , O 

−
2 

N 2 (A), N 2 (B), N 2 (a), N 2 (C), N( 2 D), O 2 (a1) 

O( 1 D), O( 1 S), O 3 , AR ∗

the first 12 ns followed by a plasma decay phase. Electron density 

is considered as the target for DRGEP coefficients and the error on 

the maximum value of electron density n max 
e and its final value 

n end 
e is systematically checked after the removal of a species. 

6.3. Results 

The reduction was performed starting from the GRI 3.0 mech- 

anism updated with our plasma mechanism using the simplified 

vibrational model VIB. 2 resulting in a detailed mechanism com- 

posed of 100 species and 950 reactions. The reduction performed 

with ARCANE led to a mechanism of 47 species and 429 reactions. 

Species included in the reduced mechanism are listed in Table 9 : 

28 species come from the GRI 3.0 mechanism while 19 species are 

kept from the plasma mechanism. A more detailed comparison of 

reduced and detailed mechanisms in the different reduction cases 

can be found in the supplementary materials S1. 

Another reduction considering only 0D auto-ignition and 1D 

flame cases (i.e. without plasma cases) was also performed for 

comparison. In that case, five other species of the GRI 3.0 mecha- 

nism (CH, CH 3 OH, N, NO 2 and H 2 CN) are removed. This highlights 

the importance of new chemical paths in plasma-assisted combus- 

tion and validates the reduction strategy including both plasma 

and combustion chemistries. 

The reduction procedure adopted here keeps the effective elec- 

tron temperature almost unchanged as shown in Fig. 10 a contrary 

to what was observed in [17] . This is a consequence of the use of 

an EEDF solver within the plasma reactors in our simulations. As 

pointed out previously, it must be verified that the energy trans- 

ferred from electrons to heavy molecules is preserved during the 

reduction. In Fig. 10 b, the total energy has been split into chemi- 

cal, heating, vibrational and excitation channels to precisely iden- 

tify the potential changes caused by the reduction. While chemi- 

cal and vibrational energies remain unchanged, the heating energy 

slightly increases to compensate for a decrease in the excitation 

energy. This is a consequence of the procedure described by reac- 

tions (26) and (27) . The total energy transferred from the electrons 

to the gas in the Case A [21] is well reproduced by the reduced 

mechanism with a final error lower than 0.2%. 

The reliability of the reduced mechanism has been also eval- 

uated outside of the reduction conditions. An energy density of 

8e6J m 

−3 is deposited in a single pulse at a constant reduced elec- 

tric field between 150 and 300 Td to ignite a mixture initially 

at T g = 300 K, P = 1 atm and equivalence ratio φ = 1 . Simulations 

have been performed in a CH 4 -air mixture and with 80% argon 

dilution. The auto-ignition delay times for detailed and reduced 

mechanisms along with relative errors are depicted in Fig. 11 . In 

the argon diluted case shown in Fig. 11 a, the error on the igni- 

tion delay time remains lower than 10% for a large range of re- 

duced electric field. This error is particularly low from 150 to 200 

Td where most of the reduction cases operate. For a higher re- 

duced electric field, it is observed that the ignition delay time in- 

creases. This can be explained by the change in dominant electron- 

impact reactions from electronic excitation to ionization. While 

electronically excited species are able to efficiently produce radi- 
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Fig. 10. Comparison of the detailed and reduced mechanisms on (a) the effective temperature of the electrons (Case A) and (b) the discharge energy transfer in different 

channels (Case A) ( � Electronic, ● Vibration, � Heat, � Chemical). 

Fig. 11. Comparison of detailed and reduced mechanisms on plasma-assisted ignition delay times at various reduced electric fields for (a) argon dilluted mixture and (b) 

CH 4 -air mixture. 

Fig. 12. Comparison of detailed and reduced mechanisms: (a) auto-ignition time (relative error) and (b) laminar flame speed (value and relative error). 
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cals, ionized species mostly recombine which results in gas heat- 

ing. The formation of active radicals is more efficient to ignite a 

mixture compared to heat deposition leading to smaller ignition 

delay times. The reduced mechanism is less accurate in the CH 4 -air 

mixture as depicted in Fig. 11 b, highlighting the noticeable impor- 

tance of argon dilution on plasma-assisted ignition behavior. In- 

deed, when argon is the dominant mixture component, most of 

the electron energy is transferred to Ar ∗, Ar+ which then trans- 

fer their energy to the other molecules. However, in CH 4 -air mix- 

ture, electron energy transfer is more complex as a wide variety of 

processes exist (i.e. vibrational excitation and different electronic 

states of N 2 ). In Fig. 11 b, the minimum ignition delay time is found 

around 200 Td, which corresponds to the case where electronic ex- 

citation is at its maximum. The slower ignition observed around 

150 Td and 300 Td, respectively due to an increase of vibrational 

and ionization energies, illustrates the efficiency of the electronic 

excitation. 

A comparison of the reduced and detailed mechanisms on the 

combustion features is shown in Fig. 12 . The error on the auto- 

ignition delay time remains lower than 5% on a large range of tem- 

perature [80 0–20 0 0] K and equivalence ratio [0.5-1.5] as shown in 

Fig. 12 a. Despite the use of stoichiometric conditions in the auto- 

ignition test cases during the reduction, a very good agreement is 

found for lean and rich mixtures. Satisfying results are also ob- 

tained for the laminar flame speed in a large range of equivalence 

ratio [0.6-1.4] as demonstrated in Fig. 12 b. 

7. Conclusion 

In this work, a consistent and detailed plasma mechanism has 

been derived from [18,22,23] following an incremental method- 

ology. After construction of the plasma chemistry, combustion is 

added considering methane as a fuel using the GRI-3.0 [33] and 

Konnov v0.6 [34] mechanisms. Common reactions between plasma 

and combustion chemistries are treated carefully to yield plasma 

assisted combustion mechanisms. 

These mechanisms have been tested on zero-dimensional reac- 

tors using Cantera [31] with a two-temperature model incorporat- 

ing the resolution of the EEDF [25,32] . The focus has been made on 

three aspects of the chemistry: fast gas heating, slow gas heating 

and radical production. 

To validate those three aspects, four experiments have been 

chosen [21,27,28,35] . Temperature measurements in [21,27] vali- 

date the fast gas heating reactions of the chemistry. The tempo- 

ral evolution of vibrational population in [27] verifies the detailed 

description of vibration. Comparison with a relaxation vibrational 

model yields good results regarding slow gas heating allowing to 

reduce the size of the kinetic scheme. Finally radical production 

of atomic oxygen is monitored in the experiments of [21,52] and a 

good agreement is found. In accordance with electron impact rates, 

N 2 

(
a 1 �g 

)
is dominant among N 2 (a ′ 1 �−

u , a 1 �g , w 

1 �u ) and the 

rate of O 2 dissociation by N 2 (a ′ 1 �−
u , a 1 �g , w 

1 �u ) has been cho- 

sen accordingly [39] . Compared to [20] which uses rates from [38] , 

better results are found in [21] . Combination of these effects is 

tested on the plasma assisted ignition case of [29,35] . Only on this 

case, noticeable differences arise between the GRI-3.0 and Kon- 

nov v0.6 plasma assisted combustion mechanisms, the latter being 

closer to experimental results. The mechanisms are thus valid be- 

tween 30 0-150 0 K, 0.1-1 bar and 150–30 0 Td in air, methane-air 

and argon diluted mixtures using glow and spark discharges. To 

the authors’ knowledge, validation of plasma-assisted combustion 

mechanisms on such a variety of configurations and conditions is 

a novelty in the community. 

GRI-3.0 and Konnov v0.6 plasma mechanisms contain respec- 

tively 100 and 264 species and 964 and 2860 reactions. In the 

purpose of using those mechanisms in multi-dimensional simu- 

lations, chemical reduction is necessary. Using the ARCANE code 

co-developed at CERFACS and Cornell University with a DRGEP 

reduction algorithm [15] , the number of species has been re- 

duced by a factor of 2, yielding a 47-species, 429-reactions re- 

duced mechanism from the GRI-3.0 plasma mechanism. During 

the reduction process, essential properties of plasma assisted com- 

bustion have been targeted. Reduction cases include real cases 

from experiments [21,29,52] which allow to monitor the errors 

of the reduced mechanism against physical cases with confidence. 

This opens the way to reliable multi-dimensional simulations that 

could be done using the low temperature plasma code AVIP [ 60 ] 

coupled to the combustion code AVBP [ 61 ], both developed at 

CERFACS. 

When testing the reduced mechanisms on plasma assisted ig- 

nition in CH 4 -air mixtures, less than 30% error is observed on ig- 

nition delay times. This is a satisfying result since the conditions 

considered were not targeted within the reduction. Experimen- 

tal cases of such configurations would benefit the construction of 

more reliable chemistries at those conditions. 
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9.2 Supplementary material around the EEDF

The computation of the EEDF plays a central role in non-thermal discharges. In CANTERA,
an open-source implementation of BOLSIG+, called BOLOS written by Alejandro Luque in
Python, is used. Some features, such as the Coulomb collisions and spatial growth model have
been added in our own Python version (https://github.com/lionelchg/bolos). The im-
plementation of the BOLOS algorithm in C++ inside CANTERA has been made by another
PhD student, Bang-Shiuh Chen, (see https://github.com/Cantera/cantera/pull/700)
and we reported those back into the CERFACS version of CANTERA.

9.2.1 Discretization

Some details about the discretization and solving procedure used in BOLOS are given here.
The energy space is discretized on a grid in energy space, consisting of n cells of energy εi
with boundaries εi−1/2 and εi+1/2. Integrating the equation for the EEDF Eq. (4.26) yields:

[
W̃F0 − D̃

∂F0
∂ε

]
i+1/2

−
[
W̃F0 − D̃

∂F0
∂ε

]
i−1/2

=
∫ εi+1/2

εi−1/2

S̃dε+
∫ εi+1/2

εi−1/2

R̃dε (9.1)

where

W̃ = −γε2σε − 3a n
N
A1

D̃ = γ

3

(
E

N

)2 ε

σ̃m
+ γkBT

e
ε2σε + 2a n

N

(
A2 + ε3/2A3

)
σε =

∑
k=elastic

2m
Mk

xkσk

S̃ =
∑

k=inelastic
C̃0,k

9.2.1.1 Convective-diffusive flux

A Scharfetter-Gummel scheme, detailed in Section. (7.2.2) and already used for advection
diffusion, is used in energy space here to compute the convective-diffusive flux:[

W̃F0 − D̃
∂F0
∂ε

]
i+1/2

=
W̃i+1/2F0,i

1− exp
[
−zi+1/2

] +
W̃i+1/2F0,i+1

1− exp
[
zi+1/2

] (9.2)

Defining the coefficients bi and ci for compacity:

bi =
W̃i+1/2

1− exp
[
−zi+1/2

] (9.3)

ci =
W̃i+1/2

1− exp
[
zi+1/2

] (9.4)

https://github.com/lionelchg/bolos
https://github.com/Cantera/cantera/pull/700
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the left hand side of Eq. 9.1 yields[
W̃F0 − D̃

∂F0
∂ε

]i+1/2

i−1/2
= −bi−1F0,i−1 + (bi − ci−1)F0,i + ciF0,i+1 for i ∈ J2, n− 1K (9.5)

We suppose that there is no flux in energy space at zero energy and a zero flux condition
can be applied at the other boundary. The matrix SG(F0) representing this flux is thus
tri-diagonal:



b1 c1
−b1 b2 − c1 c1

. . . . . . . . .
. . . . . . cn−1

−bn−1 −cn−1


(9.6)

9.2.1.2 Inelastic collisions

The inelastic collision terms are non-local in energy but linear in F0. The matrix associated
with these inelastic terms is denoted Q(F0). We discretize the cell εi as follows:∫ εi+1/2

εi−1/2

S̃dε ≡ −PiF0,i +
∑
j

Qi,jF0,j (9.7)

where xk is the molar fraction associated to target k and where the two terms represent
scattering-in and scattering-out terms:

Pi =
∑

inelastic
γxk

∫ εi+1/2

εi−1/2

εσk exp [(εi − ε) gi] dε (9.8)

Qi,j =
∑

inelastic
γxk

∫ ε2

ε1
εσk exp [(εi − ε) gi] dε (9.9)

and where the interval [ε1, ε2] is the overlap of cell j and cell i shifted by the threshold energy
uk associated to the collisional process:

ε1 = min
(
max

(
εi−1/2 + uk, εj−1/2

)
, εj+1/2

)
(9.10)

ε2 = min
(
max

(
εi+1/2 + uk, εj−1/2

)
, εj+1/2

)
(9.11)

Finally we assume the distribution F0 to be piecewise exponential (as is the case with
the Gaussian distribution) so that a local logarithmic slope can be used to evaluate gi:

gi = 1
εi+1 − εi−1

ln
(
F0,i+1
F0,i−1

)
(9.12)
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9.2.1.3 Incorporation of the growth term

The EEDF satisfies the following non-linear system where the matrix A takes different values
depending on the growth model:

A(F0)F0 = Q(F0)F0 (9.13)

In all cases the matrix A(F0) can be written as a sum of the SG matrix and a term
coming from the growth model used:

A(F0) = SG(F0)− diag(Gi) (9.14)

where Gi is a vector in energy space that incorporates growth effects.

• In the case of no growth model Gi = 0 and we simply have A(F0) = SG(F0).

• For the temporal growth model:

R̃ = − ν̄i
N
ε1/2F0 (9.15)

Assuming a constant value of the EEDF within the cell:∫ εi+1/2

εi−1/2

R̃dε = − ν̄i
N

[2
3ε

3/2
]i+1/2

i−1/2
F0,i = GiF0,i (9.16)

• For the spatial growth model we rewrite the growth renormalization term:

R̃ = α

N

γ

3

[
ε

σm

(
2E
N

∂F0
∂ε

+ α

N
F0

)
+ E

N
F0

∂

∂ε

(
ε

σm

)]
=⇒ R̃ = α

N

γ

3

[
2E
N

∂

∂ε

(
ε

σm
F0

)
+ ε

σm

α

N
F0 −

E

N
F0

∂

∂ε

(
ε

σm

)]
(9.17)

=⇒ R̃ = γ

3

[
∂

∂ε

(
2 α
N

E

N

ε

σm
F0

)]
+ α

N

γ

3

[
ε

σm

α

N
F0 −

E

N
F0

∂

∂ε

(
ε

σm

)]
(9.18)

The first term in the right hand side of R̃ is added to the convective part of the
Scharfetter-Gummel flux. The second part which we will name R̃2 is integrated as
follows:

∫ i+1/2

i−1/2
R̃2dε = α

N

γ

3

([
ε

2

]i+1/2

i−1/2

α

σmN
− E

N

[
ε

σm

]i+1/2

i−1/2

)
F0,i = GiF0,i (9.19)

9.2.2 Iteration procedure

Now that the non-linear system of the EEDF is derived we need to find the solution F0 of
this non-linear system. We start from a Maxwell distribution at a certain mean energy:

F 0
0 = 2√

π

1
(kT )3/2 exp

(
− ε

kT

)
. (9.20)
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Convergence to the steady state is achieved adding a fictious time derivative:

∂F0
∂t

+A(F0)F0 = Q(F0)F0. (9.21)

We introduce a fictive time step ∆ and iterations are performed the following way from
iteration n to iteration n+ 1:

Fn+1
0 − Fn0 +A(Fn0 )Fn+1

0 d = Q(Fn0 )Fn+1
0 d

=⇒ Fn+1
0 (I +A(Fn0 )d−Q(Fn0 )d) = Fn0 (9.22)

We have here a quasi linear system to solve where the equation is implicit in Fn+1
0 .

Convergence is achieved when the L1 norm of the error goes below a certain threshold:

L1(|Fn+1
0 − Fn0 |) =

∫
|Fn+1

0 − Fn0 |ε1/2dε (9.23)

As done in LokiB [Tejero-del Caz et al., 2019], the grid is adapted after each pass of the
iteration procedure to have a certain number of decades in the EEDF. The actual parameters
that are used at Dmin = 15 and Dmax = 25. To ensure this number of decades at the end of
an iteration procedure with a certain relative error Erel:

εmax =

εmax/(1 + f) if D ≥ Dmax

(1 + f)εmax otherwise .
(9.24)

9.2.3 Examples of EEDF

Examples of EEDF in air and CH4-air mixtures are now given. The first step is to select
a complete set of cross-sections for the studied mixture. The LXCat database (https:
//nl.lxcat.net/home/) contains complete sets of cross-sections from a variety of sources
for a large range of neutral targets. The reader is referred to Table. 1 of the article for the
chosen databases for each species.

9.2.3.1 EEDF in air

Nitrogen plays a critical role in the energy transfer from the electron to the gas. The
set of cross-sections from the Phelps database [Phelps], used in the article, is shown in
Fig. 9.1. The three types of excitation already mentioned in Section. 4.1.2 are observed:
rotational excitation (one cross-section), vibrational excitation (all the N2(v) cross sections)
and electronic excitation (N2(A, B, C) and so on). Rotational excitation does not showcase
any threshold effect whereas an energy activation, below which the cross-section is zero,
exist for vibrational and electronic excitation. Note that the energy activation of electronic
excitation is higher than vibrational excitation.

O2 cross-sections are similar to that of N2 (not shown) and the resulting EEDF F0 for
air composition is shown in Fig. 9.2 for increasing reduced electric field E/N from 0.1 to
1000 Td. As the reduced electric field is increased, more and more energetic electrons are
produced so that the tail of the EEDF increases while the head decreases. This leads to the
activation of electronic and even ionization reactions as the tail of the EEDF is populated.

https://nl.lxcat.net/home/
https://nl.lxcat.net/home/
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Figure 9.1: N2 cross-sections from the Phelps database.
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Figure 9.2: EEDF for air composition at varying reduced electric field E/N from 0.1 to 1000
Td.
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The different ratios of electron energy going to elastic, rotational, vibrational, electronic
and ionization channels are shown in Fig. 9.3. Below 4 Td, vibration of O2 is dominant
whereas at medium values vibration of N2 is dominant up to around 100 Td. At very high
values, as expected electronic excitation becomes the main energy deposition channel. Hence
depending on the value of the reduced electric field, the interaction of the plasma discharge
with the gas will be different: at intermediate values vibration of N2 is excited causing a
slow relaxation of energy whereas N2 electronically excited states cause a faster gas heating
and dissociation.
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Figure 9.3: Energy channels from the EEDF in air composition at varying reduced electric
field E/N from 0.1 to 1000 Td.

9.2.3.2 EEDF in methane-air

To include methane, a corresponding set of cross-sections must be added on top of the N2-
O2 cross sections and the Hayashi database has been chosen. A set of six collisions can
be found: an elastic collision, an attachment collision, three excitation collisions and one
ionization collision shown in Fig. 9.4.

The energy channels associated to a stochiometric air-methane mixture are shown in
Fig. 9.5. The vibration of CH4 seems to be significant as it becomes the main energy
deposit at very low reduced electric field. However at intermediate and high electric fields
N2 vibration and excitation are respectively still the main channel of energy deposition from
the discharge.
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Figure 9.4: CH4 cross-sections from the Hayashi database.
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Figure 9.5: Energy channels from the EEDF in stochiometric air-methane composition at
varying reduced electric field E/N from 0.1 to 1000 Td.
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9.3 Conclusion

A detailed plasma assisted combustion chemistry has been derived with multiple experimen-
tal validations using zero-dimensional reactors in CANTERA. Fast gas heating, vibrational
slow gas heating and radicals production are all covered by the derived chemistry.

The size of the detailed mechanism, impractical for multi-dimensional simulations, has
been reduced using ARCANE yielding mechanisms of reasonable size for the upcoming multi-
dimensional simulations.
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In this chapter plasma discharges are simulated in axisymmetric conditions using drift-
diffusion modeling of plasma species. Validation of the streamer propagation capabilities of
AVIP is first performed by comparing the code results to a streamer code benchmark done in
Bagheri et al. [2018] using the two schemes presented in Chap. 7: the limited Lax-Wendroff
scheme (LLW) and the improved Scharfetter Gummel scheme (ISG). Streamer propagation
simulations are then carried out in pin-pin configurations with hyperbole electrodes using
a simple three-species chemistry representative of air. Next the methodology to simulate
complete NRP discharges is presented where three phases are distinguished. Finally a more
realistic chemistry derived from the previous 0D study is used to simulate a pin-pin config-
uration with delta electrodes.

10.1 Bagheri benchmark

AVIP is compared to the six streamer codes benchmark Bagheri et al. [2018]. The geometry
is the same across all test cases: 2D axisymmetric square of 1.25 × 1.25 cm2. Electrons e
and one species of positive ions p are considered so that the governing equations are

∇2φ = −e(np − ne)
ε0

−→ E = −∇φ (10.1)

∂ne
∂t

+∇ · (−neµeE−De∇ne) = ᾱµe||E||ne + Sph (10.2)
∂np
∂t

= ᾱµe||E||ne + Sph (10.3)
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Figure 10.1: Transport and chemistry coefficients as functions of the electric field norm for
the Bagheri et al. [2018] validation case.

where µe is the electron mobility, De the electron diffusion coefficient, ᾱ the effective ion-
ization coefficient (ionization α minus attachment η), E the electric field and Sph the pho-
toionization source term. The chemistry is composed of three reactions where we denote the
neutral A, the positive ion A+ and the negative ion A− (not described):

Ionization e− + A −−→ 2 e− + A+ (10.4)
Attachment e− + A −−→ A− (10.5)
Photoionization A + γ −−→ e− + A+ (10.6)

We consider streamer discharges in dry air at p = 1 bar and T = 300 K for which the coef-
ficients are tabulated as a function of of the reduced electric field (local field approximation)
from Bagheri et al. [2018]. The coefficients for the chosen conditions are plotted in Fig. 10.1.
These coefficients are only function of the electric field since the neutral density has been set
for p = 1 bar and T = 300 K. Mobility decreases and diffusion increases as the electric field
increases due to more collisions. Finally the effective ionization as a function of the electric
field allows to retrieve the breakdown field Eb. This is a critical parameter as it controls
the onset of the electron avalanche process described in Chap. 2: above Eb discharges can
multiply exponentially and a discharge can propagate. The value of the breakdown field is
around 2.2× 106 MV m−1 for this chemistry.

The positive streamer is initialized with a Gaussian profile on the positive species density
only so that a strong charge density triggers the positive streamer density. A common
background for both electrons and positive ions is also set and the densities are initialized as

ni(x, r) = n0 exp
(
−r

2 + (x− x0)2

σ2

)
+ nback (10.7)

ne(x, r) = nback (10.8)

where n0 = 5× 1018 m−3 and x0 = 10−2 m are taken for all cases.
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10.1.1 Meshes

Triangular and quadrangular elements are considered for the validation of the schemes since
AVIP can work on both types of elements. Three kind of meshes are considered: triangular
meshes, quadrangular meshes and finally hybrid meshes which are shown in Fig. 10.2. The
refinement zone is a rectangle at the bottom of the computational domain around the axis
r = 0. In triangular meshes, only the limited LW scheme can be used since the improved SG
scheme only works in topologically dual meshes which is not ensured easily for triangular
meshes. In quadrangular meshes, both schemes can be applied and finally in hybrid meshes
the improved SG scheme can be applied in quadrangles whereas the limited Lax-Wendroff
scheme is used in triangles.

∆x = cst

(a) Triangular mesh (b) Quadrangular mesh

Triangles

x

r

(c) Hybrid mesh

Figure 10.2: Meshes for Bagheri et al. [2018] test case.

Different mesh sizes are considered for each type of elements and are summarized in
Tab. 10.1. Note that the typical mesh size used in the benchmark is 3 µm.

10.1.2 Test cases

Three test cases are considered in this benchmark to assess different aspects of streamer
propagation. A constant background electric field is set to 1.5 MV m−1 in the x direction:
this value is below the breakdown electric field of 2.2 MV m−1 so that it is not enough to
propagate a streamer by itself: the initial gaussian seed of charge density Eq. (10.7) imposed
at the beginning allows to locally increase the electric field above the breakdown field so that a
streamer can propagate. The three cases have two varying parameters: background charged
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Name Type ∆xmin Nnodes Ncells
tri5micro Tri 5 µm 4.2× 105 8.4× 105

tri3micro Tri 3 µm 1× 106 2.1× 106

tri2micro Tri 2 µm 2.33× 106 4.66× 106

quad5micro Quad 5 µm 7.5× 105 7.5× 105

quad3micro Quad 3 µm 1.8× 106 1.8× 106

quad2micro Quad 2 µm 3.8× 106 3.8× 106

hybrid5micro Hybrid 5 µm 6.5× 105 7.1× 105

hybrid25micro Hybrid 2.5 µm 2.5× 106 2.6× 106

Table 10.1: Summary of the meshes used for the benchmark

species density nback and photoionization which are summarized in Tab. 10.2. Each test case
is now going to be described along with its results.

Casename nback [m−3] Photoionization
Case 1 1013 No
Case 2 109 No
Case 3 109 Yes

Table 10.2: Summary of the three cases parameters

10.1.2.1 Case 1 results

The first case has a rather strong background density at 1× 1013 m−3 and no photoionization:
it is a canonical streamer propagation where photoionization has been replaced by a strong
background density.

The electron density and electric field for the ISG scheme is shown in Fig. 10.3 for the
full quadrangular mesh at ∆x = 3 µm. The propagation of the positive streamer from right
to left is observed and the norm electric field at the head is around 15 MV m−1 which is
above the breakdown field of the chemistry, causing the electron avalanche and the streamer
propagation. Profiles of electron density and electric field norm along the axis are shown in
Fig. 10.4 where the propagation of the streamer head is observed: the peak of electric field
moves from right to left and causes ionization leaving behind a higher electron density.

On the other hand the LLW scheme at the same resolution of ∆x = 3 µm using a
triangular mesh produces oscillations. A comparison of the electron density at t = 16 ns
in Fig. 10.5 shows that the LLW scheme (Fig. 10.5b) using a triangular mesh produces
oscillations. These oscillations, present in both the electron density and electric field profiles,
indicate that the streamer was on the verge of branching. By increasing the resolution to
∆ = 2 µm (Fig. 10.5c), these oscillations disappear and hence trianglular elements are less
stable than quadrangular elements.

A comparison of those three runs with the six codes of the benchmark is shown in Fig. 10.6
for the streamer length which is defined as the distance between the initial gaussian seed and
the maximum of the norm of the electric field. We can see that all three runs are satisfactory
and lie between all the codes of the benchmark. However when looking at the value of the
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(a) 4 ns

(b) 8 ns

(c) 12 ns

(d) 16 ns

Figure 10.3: Electric field [V/m] of the streamer at different instants for ISG at ∆x = 3 µm.
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Figure 10.4: The norm of electric field [V/m] (left) and the electron density [m−3] (right) at
different instants on the axis r = 0 for the ISG scheme with ε = 0.01.

(a) ISG ∆x = 3 µm - Quad

(b) LLW ∆x = 3 µm - Tri

(c) LLW ∆x = 2 µm - Tri

Figure 10.5: Electron density [m−3] at t = 16 ns for different schemes and resolutions.
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maximum electric field as a function of the streamer length in Fig. 10.7 we can clearly see
the oscillations present in the LW ∆x = 3 µm run.
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Figure 10.6: Streamer length as a function of time for all the streamer codes and AVIP.
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Figure 10.7: Electric field as a function of the streamer length for all the streamer codes and
AVIP.

From this first case we can conclude that triangular meshes are able to propagate streamer
but are less robust than quadrangular meshes. In all these axisymmetric simulations, the
key is to keep the streamer on the axis because in this setting branching is not supposed to
occur.

To combine the advantages of the stability of quadrangular elements with the flexibility
of triangular elements we decide to use a hybrid approach whenever necessary which is shown
in Fig. 10.2c: SG is applied in the regular and topologically dual quadrangular elements while
the limited LW scheme is applied in the triangular elements. This new scheme is labeled
ISG-LLW and it is implied that hybrid meshes are used whenever we use this scheme. This
allows to lower the number of nodes and elements of the mesh while keeping the stability of
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the simulation.
Using this hybrid approach a run with ∆x = 5 µm has been tested using the hybrid5micro

mesh. The electron density and electric field at the last instant are shown in Fig. 10.8 and
are very close to the results using the full quadrangular mesh of Fig. 10.3 which validates
the approach of the hybrid scheme and shows again the robustness of quadrangular elements
compared to triangular elements which are stable only for a resolution of ∆x = 2 µm.

(a) Norm of electric field [V/m]

(b) Electron density [m−3]

Figure 10.8: Electron density and norm of electric field at t = 16 ns using the hybrid ISG-
LLW numerical scheme on hybrid5micro mesh.

Finally few words are given about performance for this test case. The six codes used in
the benchmark along with their mesh characteristics and run time are presented in Tab. 10.3.
The octree code from the CWI group is by far the fastest at around 20 min core time thanks
to a very low number of cells due to very efficient adaptive mesh refinement. The other
codes use at least five times more cells, increasing significanty their core time from 6 h to
90 h. The equivalent results using AVIP and the various schemes and meshes mentioned in
the section are presented in Tab. 10.4. We use for all runs a bi-socket Intel node with 2 x
18 core Xeon Gold 6140 (2.3 Ghz clock speed and 96 Gb memory). The hybrid option, due
to its low number of cells, is the fastest option putting AVIP in second place in terms of
performance compared with the other codes.

10.1.2.2 Case 2

The second test case is the stiffest one: the background density is lowered by four orders
of magnitude compared to the first case to 1× 109 m−3. This case is rather artificial since
photoionization would not be negligible at these densities but it evaluates the robustness of
the schemes implemented.
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Code CWI ES FR CN TUE DE
Adaptive refinement yes yes no yes no no

Min grid size 3 µm 3 µm 3 µm 3 µm 3 µm 3 µm
Max grid size 8 µm 5 µm

Ncells 1.2× 105 2.0× 106 1.1× 106 6.5× 105 4.2× 106 5.1× 105

Time step dyn. 1 ps dyn. dyn. dyn. dyn.
CPU cores 4 1 1 4 1 6
Run time 5 min 20 h 6 h 18 h 25 h 15 h
Core time 20 min 20 h 6 h 72 h 25 h 90 h

Table 10.3: A summary of simulation settings for case 1 of the different codes used in the
benchmark Bagheri et al. [2018], adapted from the benchmark paper.

Mesh tri3micro tri2micro quad3micro hybrid5micro
Adaptive refinement no no no no

Min grid size 3 µm 2 µm 2 µm 5 µm
Max grid size 100 µm 100 µm 100 µm 100 µm

Ncells 2.1× 106 4.66× 106 1.8× 106 7.1× 105

Time step dyn. dyn. dyn. dyn.
CPU cores 36 36 36 36
Run time 370 s 1337 s 1280 s 220 s
Core time 3.7 h 13.4 h 12.8 h 2.2 h

Table 10.4: A summary of simulation settings for case 1 using AVIP.

The resolutions used in the previous case using any scheme are not able to propagate the
streamer without branching and here only below a resolution of ∆x = 2.5 µm the streamer
propagates correctly as shown in Fig. 10.9 for the ISG-LLW scheme using the hybrid25micro
mesh. Since the background density is lower there is less charged species to collide with and
therefore the speed of the streamer is lower in this case by a factor of 2. The peak electric
field of the streamer head is also around 30% higher for this case: gradients of charge density
are higher due to the lower background causing a higher potential drop and thus higher
electric field magnitude.

The comparisons of the streamer length as a function of time and peak electric field as a
function of the streamer length are shown in Fig. 10.10. Only three out of the six streamer
codes are able to correctly propagate the streamer in the benchmark paper [Bagheri et al.,
2018] for this case and only those results are shown. As for the first case, good agreement is
found between AVIP and the other codes validating the hybrid approach for very stiff cases.

10.1.2.3 Case 3

The third test case is the same as the second one but with photoionization activated. Pho-
toionization in AVIP is implemented using the three-term exponential fitting from Bourdon
et al. [2007] as detailed in Sections. 2.4.4 and 6.5 which is one of the three models used in
Bagheri et al. [2018]. This case is the less stiff among the three cases as this photoionization
source term allows to stabilize the streamer: in front of the peak electric field the photoion-



198 CHAPTER 10. STREAMER SIMULATIONS

(a) 5 ns

(b) 10 ns

(c) 15 ns

(d) 20 ns

Figure 10.9: Electric field [V/m] of the streamer at different instants for hybrid ISG-LLW at
∆x = 2.5 µm.
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Figure 10.10: Streamer length as a function of time for the streamer codes and AVIP for
case 2.

ization feeds the streamer head with charged species. The photoionization source term at
different instants is shown in Fig. 10.11. We can see that it provides the streamer a diffusive
stream of charged species which ionize the whole area around the streamer head.

All the streamer codes presented in the benchmark are able to run this case with rather
coarse resolutions compared to the previous cases. The comparison of AVIP with the three
codes already present in Case 2 is shown in Fig. 10.12. Good agreeement is found with
LLW on triangular meshes and ISG-LLW on hybrid meshes validating the photoionization
implementation in AVIP in both triangular and quadrangular meshes.

10.2 Hyperbole electrodes

10.2.1 Chemistry

We now turn to a more complex case with hyperbolic electrodes. The chemistry is taken
from Morrow and Lowke [1997] to be representative of air. It involves three types of species:
electrons e, positive p and negative ions n for which the governing equations read:

∇2φ = −e(np − ne − nn)
ε0

−→ E = −∇φ (10.9)

∂ne
∂t

+∇ · (neWe −De∇ne) = neα|We| − neη|We| − nenpβ (10.10)
∂np
∂t

= neα|We| − nenpβ − nnnpβ (10.11)
∂nn
∂t

= neη|We| − nnnpβ (10.12)

where α = α(E/N) is the ionization coefficient, η = η(E/N) the attachment coefficient,
N the neutral gas density, β the recombination rate, We = −µeE the drift-velocity of the
electrons and µe = µe(E/N) the electron mobility. The chemistry thus involves six reactions
which are summarized below:
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(a) 4 ns

(b) 8 ns

(c) 12 ns

(d) 15 ns

Figure 10.11: Photoionization source term [m−3.s−1] at different instants for hybrid ISG-
LLW at ∆x = 5 µm.



10.2. HYPERBOLE ELECTRODES 201

0 2 4 6 8 10 12 14 16
Time [ns]

0.05

0.10

0.15

0.20

0.25

0.30

L(
t) 

- 
t [

cm
]

CWI
CN
FR

ISG-LLW x = 5 m
LLW x = 3 m

0.2 0.4 0.6 0.8 1.0 1.2
L(t) [cm]

80

90

100

110

120

130

140

150

160

E 
[k

V/
cm

]

CWI
CN
FR

ISG-LLW x = 5 m
LLW x = 3 m

Figure 10.12: Streamer length as a function of time for all the streamer codes and AVIP.

Ionization e− + A −−→ 2 e− + A+ (10.13)
Attachment e− + A −−→ A− (10.14)
Photoionization A + γ −−→ e− + A+ (10.15)
Recombination e-p e− + A+ −−→ A (10.16)
Recombination n-p A− + A+ −−→ 2 A (10.17)

The local field approximation is assumed for this chemistry, i.e. the transport coefficients
depend on the reduced electric field E/N . The transport and chemistry coefficients are
plotted at 300 K and 1000 K. These coefficients essentially follow the same trends as the
chemistry from the Bagheri et al. [2018] benchmark. The breakdown field at 300 K is around
24 MV m−1 (Fig. 10.13) which is very close to the value of the Bagheri chemistry. At 1000 K
this breakdown field decreases to 8 MV m−1 (Fig. 10.14) so that discharges propagate more
easily at higher temperatures for a given voltage.
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Figure 10.13: Transport and chemistry coefficients as a function of the electric field norm at
300 K and 1 bar for the Morrow and Lowke [1997] chemistry at 300 K.
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Figure 10.14: Transport and chemistry coefficients as a function of the electric field norm
for the Morrow and Lowke [1997] chemistry at 1000 K.

10.2.2 The spark regime

After the two streamers bridge the gap between the electrodes, a conducting channel is
formed and the electric field becomes rather uniform at the value of the Laplacian electric
field, i.e. the voltage difference divided by the gap distance. At these conditions if the
Laplacian electric field is above the breakdown field, we have over-voltage conditions which
leads to gas heating [Tholin, 2012]. The electron density increases while the electric field
shape stays the same. Hence the dielectric time step can go as low as 10−14 s which makes
simulations unpractical.

To alleviate the dielectric time step restriction the spark model is adopted during this
stage. The Poisson equation is not solved anymore and the electric field and charge density
are assumed to follow the same time evolution as the voltage:

1
||E||

∂||E||
∂t

= 1
V

∂V

∂t
(10.18)

1
ρq

∂ρq
∂t

= 1
V

∂V

∂t
(10.19)

The charge difference is applied on the negatively charged species with the highest density
(often the electrons).

10.2.3 The discharge energy

An important quantity to monitor is the discharge energy, i.e. the energy gained by the
charged species due to the electric field. The discharge energy density ep and energy Ep are
defined by:
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ep(x, t) =
∫ t

0
J ·E dt (10.20)

Ep(t) =
∫
Vp
ep(x, t) dV (10.21)

where Vp is the discharge volume and J is the total current density. Since the ions are
considered frozen during the propagation of the streamer, the total current density reduces
to that of the electrons Je.

This kinetic energy gained by charged species due to the electric field acceleration then
goes into the mixture through electron-neutral collisions that can excite and ionize the neutral
particles.

10.2.4 Simulations results

We choose a geometry shown in Fig. 10.15 with a 5 mm gap between the two hyperbolic
shape electrodes. To easily mesh the electrodes, triangular meshes with a smallest cell-size
of about 3 µm in the middle of the gap are used and prove to yield stable simulations.

Dirichlet boundary conditions are applied at the electrodes, the left electrode is the
grounded cathode Vc = 0 whereas the right electrode is the anode at potential Va. A rise
time of 2 ns from zero to the maximum value of the potential is set and the time evolution
of the anode potential is shown in fig. 10.16. The electric field is oriented from right to
left and we expect two streamers to propagate across the gap. For the remaining Poisson
boundary conditions (BCs), Neumann conditions are enforced at the axis and in the farfield.
For plasma transport species, Neumann boundary conditions are applied at the electrodes,
a symmetry is applied at the axis whereas an outlet condition is imposed at the farfield.

For all simulations presented in this section, a constant neutral background of electrons
and positive ions at 1× 1015 m−3 is set initially.

Neumann

Dirichlet Vc = 0 V Dirichlet Va

Neumann

Symmetry

Neumann Neumann

Outlet

5 mm

Figure 10.15: Hyperbolic shape electrodes configuration with Poisson boundary conditions
(red) and plasma species transport boundary conditions (blue).
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Figure 10.16: Anode potential time evolution.

10.2.4.1 1000 K discharges

Simulations at 1000 K using two hyperbolic shape electrodes of radius Rc = 200 µm are shown
in Figs. 10.19, 10.20 and 10.21 for the norm of electric field, electron density and discharge
energy density, respectively. The mesh contains 6.3 × 105 nodes and 1.3 × 106 triangular
cells. Three phases are observed: a first phase where the streamer heads are created due to
the voltage rise. Once the electric field at the heads (especially the positive streamer around
the anode) is high enough, the streamers can propagate inside the gap. Both streamers
eventually merge to create a conducting channel. Only after the creation of this conducting
channel does the discharge energy density in Fig. 10.21 significantly increases. We also note
that the highest values of the discharge energy density are located close to the tips of the
electrodes. The time evolution of the discharge energy is shown in Fig. 10.17 where two
regimes can be observed: the first one is the slow increase of the discharge energy up to 12
ns. This time corresponds to the creation of the conducting channel and after 12 ns the
discharge energy rises much faster.

The streamer coming from the anode, the positive streamer, is much more concentrated
than the negative streamer coming from the anode. This can be explained by the sketch
shown in Fig. 10.18. The electric field follows the isopotentials shown in gray in the sketch
which are hyperboles as well. It can be seen that locally the electric field and hence the elec-
tron drift-velocity −µEE have focusing directions around the anode and diffusive directions
around the cathode.

One-dimensional profiles of electron density and electric field norm are shown in Fig. 10.22.
At t = 0.5 ns the voltage is still rising and no propagation can be seen. At t = 2.5 ns the
onset of the negative streamer, with a local maximum electric field, is observed. This neg-
ative streamer has already moved around 0.5 mm while the positive streamer is still stuck
aroudn the anode. We can note that the peak electric field is two times higher for the
positive streamer than for the negative streamer at this time. At t = 7.5 ns the negative
streamer is at the middle of the gap and the peak electric field has considerably decreased
while the positive streamer moved about half the distance and maintained its peak electric
field. However, once the positive streamer is started it bridges the gap faster and overall
streamer propagation speed is on the order of cm/ns approximately in these cases.
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Figure 10.17: Discharge energy time evolution for the Rc = 200 µm at 1000 K and with peak
anode potential of 5 kV.

Cathode Vc = 0 Anode Va > 0
−µeE

φ = cst

Figure 10.18: Sketch of streamer dynamics in pin-pin configurations.
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Figure 10.19: Electric field [V.m−1] at different instants for two hyperbolic shape electrodes
with Rc = 200 µm at 1000 K. Length units are in mm.

Figure 10.20: Electron density [m−3] at different instants for two hyperbolic shape electrodes
with Rc = 200 µm at 1000 K. Length units are in mm.
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Figure 10.21: Discharge energy density [J.m−3] at different instants for two hyperbolic shape
electrodes with Rc = 200 µm at 1000 K. Length units are in mm.
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Figure 10.22: The norm of electric field (left) and the electron density (right) at different
instants on the axis r = 0 for the LLW scheme with β = 1.0.
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Figure 10.23: Electron density at 10 ns for 3 kV applied at the anode at 1000 K.

Lowering the value of the anode potential to 3 kV causes no streamer propagation as
shown in Fig. 10.23 to be compared with Fig. 10.20. No positive streamer propagation can
be seen: the electric field in the positive streamer head is not high enough to cause its
propagation so that only the negative streamer is able to propagate correctly. Hence 5 kV
in this case is not very far above the limit for the onset of the streamer propagation.

10.2.4.2 300 K discharges

We now turn to discharge simulations in standard conditions of temperature and pressure at
300 K and 1 bar, respectively. To obtain a similar streamer as the 5 kV streamer at 1000 K
we need to have a similar reduced electric field E/N . Hence since density has been increased
threefold the applied voltage also needs to be increased by the same amount: hence a value
of 15 kV is chosen and results are show in Figs. 10.24, 10.25 and 10.26 for the electric field,
the electron density and the discharge energy density, respectively. Compared to the 1000 K
case the streamer is much faster bridging the gap in about 7 ns compared to 12 ns at 1000
K. This is explained by the higher value of neutral background density N that is increased
more than threefold compared to 1000 K: electrons have more colliding partners resulting in
higher charged species densities due to more ionization events. This drives the electric field
up and leads to faster streamer propagation.

The shape of the discharge is also different from the 1000 K discharge: the negative
streamer is more concentrated than at 1000 K but the positive streamer has overall a bigger
radial size. Due to the higher densities involved, the discharge energy density is an order of
magnitude higher at 300 K than it is at 1000 K.

10.2.4.3 Hybrid meshing

As discussed in the Bagheri et al. [2018] benchmark results, triangular elements need to have
finer resolution than quadrangular elements in order to propagate correctly streamers and
quadrangular elements with a coarser resolution of about two times propagate equally well
streamers. A hybrid mesh design is considered shown in Fig. 10.27 to be able to still use
the ISG scheme where a rectangle block of rectangles is considered in the gap between the
electrodes and triangles are used elsewhere.

A mesh of resolution ∆x = 5 µm is used in this case, increasing the mesh size by a factor
of 1.7 and results for the 1000 K - 5 kV propagation is shown in Fig. 10.28. The propagation
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Figure 10.24: Electric field [V.m−1] at different instants for two hyperbolic shape electrodes
with Rc = 200 µm at 300 K. Length units are in mm.

Figure 10.25: Electron density [m−3] at different instants for two hyperbolic shape electrodes
with Rc = 200 µm at 300 K. Length units are in mm.
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Figure 10.26: Discharge energy density [J.m−3] at different instants for two hyperbolic shape
electrodes with Rc = 200 µm at 300 K. Length units are in mm.

Quadrangles

Triangles

(a) Sketch
(b) Mesh transition

Figure 10.27: Hyperbolic shape electrodes hybrid meshing.
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is identical to that of the triangular mesh with resolution ∆x = 3 µm in Fig. 10.20. However
the mesh transition from quadrangles to triangles can be clearly observed and leads to a
discontinuity in the profiles so that the radial size of the rectangular box of quadrangular
elements had to be set quite high to not see this transition. This transition discontinuity
needs to be fixed in order for this hybrid scheme to be used in predictive cases and could be
the subject of future works in the code.

(a) Hybrid mesh (b) Triangular mesh

Figure 10.28: Electron density [m−3] at the same time for two hyperbolic shape electrodes
with Rc = 200 µm at 1000 K using a hybrid mesh/ISG-LLW hybrid scheme and using a
triangular mesh/LLW scheme.





Chapter 11

Laminar PAC simulations

Contents
11.1 NRP discharge simulation in pin-pin configurations . . . . . . . . . . 213

11.1.1 Propagation phase - the glow regime . . . . . . . . . . . . . . . . . . . . 213
11.1.2 The spark regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
11.1.3 Interpulse phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

11.2 Multi-dimensional simulation methodology . . . . . . . . . . . . . . . 215
11.3 Multi-dimensional Ignition . . . . . . . . . . . . . . . . . . . . . . . . . 216

11.3.1 Supplementary material . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
11.3.2 High-energy heat deposit ignition . . . . . . . . . . . . . . . . . . . . . . 226

In this chapter, detailed simulations of plasma assisted combustion in laminar conditions
are performed in a pin-pin configuration. The methodology to model plasma discharges is
first presented in Section. 11.1. The complete fully-coupled simulation iteration procedure is
then detailed in Section. 11.2. The fully-coupled simulations are then presented in an article,
submitted at the 39th International Symposium on Combustion.

11.1 NRP discharge simulation in pin-pin configurations

NRP discharges are on the order of 10 ns long and have a frequency around 10-100 kHz.
Depending on the voltage applied three regimes can be observed in pin-pin configurations
[Pai et al., 2010]: the corona regime, the glow regime and the spark regime. In the corona
regime only the extremities of the point electrodes emit light. The glow regime is obtained
for higher voltages and a diffusive emitting channel is observed without gas heating so that
the discharge remains non-thermal. At even higher voltage, the spark regime is obtained
where the discharge begins to heat the gas and emits strongly. To simulate NRP discharges,
three phases are adopted: first the propagation phase where the streamers bridge the gap
between the electrodes corresponding to the corona and glow regimes. Depending on the
voltage applied there can be a spark phase where gas heating occurs. Finally the interpulse
phase where only diffusion effects are noticeable is simulated assuming ambipolar diffusion
allowing the use of larger time steps.

11.1.1 Propagation phase - the glow regime

The propagation phase lasts tens of nanoseconds and since the mass of the electrons is at
least three orders of magnitude lighter than the ions only the electrons are considered moving



214 CHAPTER 11. LAMINAR PAC SIMULATIONS

in this phase. The resulting drift-diffusion equations for electrons e and ions i coupled to
the electric field are

∇2φ = −
(∑

i

qini − ene

)
/ε0 −→ E = −∇φ (11.1)

∂ne
∂t

+∇ · (−neµeE−De∇ne) = Se
∂ni
∂t

= Si (11.2)

11.1.2 The spark regime

As explained in Section. 10.2.2 and recalled here, to alleviate the dielectric time step re-
striction the spark model is adopted during such a phase. The Poisson equation is not
solved anymore and the electric field and charge density are assumed to follow the same time
evolution as the voltage:

1
||E||

∂||E||
∂t

= 1
V

∂V

∂t
(11.3)

1
ρq

∂ρq
∂t

= 1
V

∂V

∂t
(11.4)

The charge difference is applied on the negatively charged species with the highest density
(often the electrons).

11.1.3 Interpulse phase

During the 10-100 µs gap between the NRP discharges, the electric field is very low and the
conducting channel diffuses. At very low electric field, the diffusion velocities of electrons
is around ten thousand times the diffusion velocity of ions. A space charge is thus created
and the resulting electric field slows down the electrons while accelerating ions so that in the
end both electrons and ions diffuse at the same speed preserving the quasi-neutrality of the
plasma. This is the so called ambipolar diffusion Raimbault [2018]. Simulation on a coarser
mesh can be performed where ambipolar diffusion is assumed so that

∑
i

qiFi = 0 (11.5)

where Fi = nisign(qi)|µi|E−Di∇ni. The value of the ambipolar field is then

Eamb =
∑ sgn(qi)Di∇ni∑

|niµi|
(11.6)

Following [Tholin, 2012, Chap. 3.2.2] the diffusion coefficients of all the species are taken
equal to the diffusion of the positive species.
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11.2 Multi-dimensional simulation methodology

So depending on the phase of the discharge, the electric field is not computed the same way
and the resulting drift-diffusion equations are solved:

Epoisson or Espark or Eamb (11.7)
∂ni
∂t

+∇ · Γi = S0i with Γi = niµiE−Di∇ni (11.8)

For the gas flow, the reactive Navier-Stokes equations are solved and we recall Eq. (4.61)
without body forces:

∂ρ

∂t
+∇ · [ρu] = 0

∂ρu
∂t

+∇ · [ρuu + pI− τ] = 0
∂ρE

∂t
+∇ · [(ρE + p)u− τ · u + q] = ω̇T + Q̇

∂ρYk
∂t

+∇ · [ρYk(u + Vk)] = ω̇k

(11.9)

Formally we rewrite the charged species conservative variables as Up and the mixture
conservative variables as U so that in compact form the drift-diffusion and reactive Navier-
Stokes read:

∂Up

∂t
+∇ · Fp = Sp (11.10)

∂U
∂t

+∇ · F = S (11.11)

For each set of equations, there is a transport source term (under the divergence) and
a chemical source term (the right hand side). The chemical source term is where the drift-
diffusion and the reactive Navier-Stokes equations are coupled since it is a common chemistry.
We denote their respective residuals by Rt

p and Rc
p for the charged species and by Rt and

Rc for the gas mixture. Charged species use the LLW scheme which has one temporal stage
whereas the mixture equations are integrated using HLLC MUSCL RK2 so that there is an
intermediate temporal stage. We denote the current iteration by superscript n so that one
iteration of fully coupled simulation proceeds as follows

1. Compute the electric field E

2. Compute the time step ∆t

3. Compute the common chemistry source term Rc(U,Up) for the gas and Rc
p(U,Up)

for the charged species
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4. Time advancement of the gas conservative variables using HLLC MUSCL RK2 time
integration with centered diffusive fluxes

Ũn = Un + ∆t
2 [Rt(Un) + Rc(U,Up)] (11.12)

Un+1 = Un + ∆t[Rt(Ũn) + Rc(U,Up)] (11.13)
(11.14)

5. Time advancement of the plasma conservative variables using RK1 time integration
using LLW with centered diffusive fluxes

Un+1
p = Un

p + ∆t[Rt
p(Un) + Rc

p(U,Up)] (11.15)

We have chosen two compatible time integration schemes: the common chemistry source
term is only computed once so that only the transport residual is updated in the intermediate
stage of the gas RK2 time integration.

Lastly, the EEDF is solved using BOLSIG+ and tabulated against the reduced electric
field E/N , at the beginning of each pulse using an averaged composition in the discharge
region. This allows to keep the memory storage and computational cost of solving the EEDF
low while still preserving accuracy.

Concerning computational cost, the chemistry is the bottleneck as the number of equa-
tions scale with the number of species. For the reduced chemistry at hand, the actual
computation of the source term of each species is around 30% higher than the computation
of convection and diffusion scheme.

11.3 Multi-dimensional Ignition

Applying the methodology above to the three phases for streamer propagation the ignition
of a methane-air mixture at equivalence ratio φ = 0.8 using NRP discharges is now studied.
The chemistry is the reduced coupled chemistry presented in Chap. 9. This study is the
subject of a paper submitted to the 39th Int. Symposium on Combustion, which is reported
in the following.
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Abstract

The ignition of a laminar premixed methane/air mixture by Nanosecond Repetitively Pulsed (NRP) discharges in a
pin-pin configuration is studied using fully coupled plasma-combustion numerical simulations. These simulations
are performed using the AVIP code specifically developed for low temperature plasma modeling and coupled to
the combustion code AVBP. A reduced chemical scheme for plasma-assisted combustion previously derived and
validated is used to investigate the effect of the frequency of NRP discharges and the benefits of their chemical
enhancement. It is observed that the induced shock wave produced by strong discharges is of major importance for
ignition and can lead to quenching of the ignition kernels through strong induced recirculation of gases. Increasing
the frequency of the discharges reduces this effect by depositing less energy at each discharge and accumulating
energy more homogeneously between the electrodes, leading to a faster and more stable ignition. The minimum
energy necessary to ignite decreases with increasing frequency and at the highest studied frequency (100 kHz)
ignition has been achieved with 30% less energy than with a single-pulse discharge.
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1. Introduction

In the context of lean combustion for reduced envi-
ronmental impact, plasma-assisted combustion is cur-
rently investigated by several groups to address sta-
bility and ignition issues [1–3].

Among the various types of discharges, Nanosec-
ond Repetitively Pulsed (NRP) discharges have ex-
perimentally been shown to have a significant im-
pact on flame stabilization [2, 4] and ignition [1].
NRPs produce non-thermal plasmas and active radi-
cal species which lead to increased efficiency [5, 6].

Although their beneficial effect is well known, the
mechanisms at play in plasma-assisted combustion
using NRPs are still not fully understood. In partic-
ular the coupling between plasma physics and com-
bustion thermo-chemistry is not clearly established.
Complementary to experiments, numerical simula-
tion may be used to analyze in detail the flame-
discharge interaction and the underlying physical pro-
cesses.

The simulation of plasma-assisted combustion re-
quires a plasma model, a combustion model and a
coupling method between them. NRP discharges are
low temperature plasmas having a streamer struc-
ture, and their simulation is well documented in [7]
and references therein. Likewise numerical combus-
tion has been an ongoing research subject for the
past 50 years and has reached today a good level of
accuracy [8]. However, modeling the coupling be-
tween both phenomena raises a number of difficult
issues. It is recognized [9] that the interaction be-
tween a NRP discharge and a flame is dominated by
two main mechanisms increasing the mixture reactiv-
ity: a fast gas heating and radical production mainly
due to the quenching of electronically excited nitro-
gen molecules. Simulating these mechanisms with
sufficient accuracy and predictivity in real configura-
tions remains a challenge. In particular the two-way
plasma-combustion coupling is made difficult by the
difference in their respective time scales, of the order
of 10−9 s for a streamer and 10−6 − 10−3 s for com-
bustion.

Efforts have been made recently in order to simu-
late plasma-assisted combustion in hydrogen-air and
methane air mixtures [4, 10–13]. In [4, 13], the sim-
ulation of plasma is replaced by an empirical model
based on experimental results. On the other hand
other works have focused on the streamer simulation
and the influence of the presence of fuel in radical
production [10].

More detailed simulations have been conducted
in hydrogen-air mixtures using a one-way coupling
[12, 14], i.e., with only the plasma influence on com-
bustion. One-way coupling usually consists in taking
the final solution of the discharge phase as an input for
the combustion code. However, this approach is not
able to capture the combustion and flow effects on the
plasma. While this approach is justified for a single
pulse study, it can not capture the two-way coupling
occurring on the microsecond timescale that is of in-

terest for multiple pulses studies. Simulations using
a two-way coupling are usually limited to 0D or 1D
computations [15] or 2D cylindrical simulations of a
single-pulse ignition [16].

In the present work, a two-way coupled plasma-
combustion numerical model is used to describe the
plasma, the combustion and their interaction with a
similar level of accuracy to simulate the ignition of
a methane-air mixture using multiple discharges in a
2D axisymmetric geometry.

The modeling and numerical approach is first de-
tailed in Section 2. In Section 3 the considered
pin-pin electrode configuration for ignition of a lean
methane-air mixture is presented. Then results ob-
tained with single-pulse and repetitive pulses are anal-
ysed in Section 4 and compared with a conventional
heat energy deposition.

2. Numerical methodologies

The plasma and combustion governing equations
are discretized in cylindrical coordinates with a finite
volume formulation using the AVIP code [17]. AVIP
is a massively parallel unstructured plasma code able
to simulate low-temperature plasma discharges, and
validated on the streamer code benchmark [18]. It has
been coupled to the combustion code AVBP [19] in
a self-consistent approach based on the simultaneous
time-integration of both sets of governing equations
using the same domain discretization.

2.1. Combustion model

The set of conservation equations used to describe
the evolution of a compressible flow with chemical
reactions yields:

∂ρui

∂t
+

∂

∂xj
(ρuiuj) = −∂σij

∂xj

∂ρE

∂t
+

∂

∂xj
(ρEuj) = − ∂

∂xj
[uiσij + qj ] + ω̇T

∂ρk
∂t

+
∂

∂xj
(ρkuj) = − ∂

∂xj
[Jj,k] + ω̇k

where ρ is the mass density, ui the velocity, E the
total non-chemical energy, ρk the mass density of
species k, σij the stress tensor, qj the heat flux, Jj,k

the diffusive flux of species k into the mixture, ω̇k the
species k mass production rate and ω̇T the heat pro-
duced by the chemistry.

Notice that a DNS framework is employed in
this work for the gaseous mixture without any flame
model. The HLLC Riemann solver with MUSCL re-
construction and Sweby limiter [20] is employed to
compute the Euler fluxes of the Navier-Stokes equa-
tions. Validation cases may be found in [17].

2.2. Low-temperature plasma model
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A two-temperature fluid model was developed for
the present study. The ion and neutral species are
in thermal equilibrium at the gas temperature Tg

whereas electrons are at a temperature Te different
from Tg . To retrieve the electron temperature Te,
the electron energy distribution function F0, which is
mostly a function of the reduced electric field E/N
(N is the total gas number density) and the species
molar fractions Xk, needs to be solved so that Te =
Te(F0). By doing so, a local field approximation
(LFA) is implied, meaning that F0 is instantly corre-
lated with the reduced electric field. This is done us-
ing BOLSIG+ [21] that has been embedded in AVIP.

All the charged species are transported following
the drift diffusion approximation which reads for each
species k:

∂nk

∂t
+∇ · (nkµkE−Dk∇nk) = ω̇k (1)

where nk is the particle density, E the electric field,
µk the mobility coefficient, Dk the diffusion coeffi-
cient and ω̇k the source term associated to the plasma
chemistry. The electron mobility and diffusion coef-
ficient are computed using BOLSIG+ [21] at the be-
ginning of each pulse considering an averaged mix-
ture composition within the inter-electrode gap. All
the ions mobilities and diffusion coefficients are taken
from [22]. This model has been extensively used for
high pressure streamer simulations [7, 11, 18]. The
limited Lax-Wendroff numerical scheme [17] is used
to integrate the drift-diffusion equations.

The electric field is derived from the Poisson equa-
tion:

∇2ϕ = − 1

ϵ0

∑

k

qknk with E = −∇ϕ (2)

where ϕ is the electric potential and qk is the species
k charge. The Poisson equation is discretized using
a finite volume vertex-centered formulation [17] and
the resulting linear system is solved using the PETSc
library [23].

The spark phase model developed in [11] is em-
ployed to compute the electric field in order to relax
the dielectric time step when it becomes lower than
5× 10−14 s. Moreover, the inter-pulse phase is mod-
eled assuming plasma neutrality and ambipolar diffu-
sion model as presented in [11].

2.3. Vibrational energy

The vibration of nitrogen plays an important role in
plasma-assisted combustion as it can store up to 50%
of the discharge energy [1]. Detailed modeling of vi-
bration is too costly and a global out-of-equilibrium
vibrational energy model is considered here as done
in [13, 24]. The non-equilibrium vibrational energy
evib governing equation reads:

ρ
Devib
Dt

=
∂

∂xi

(
ρDN2

∂evib
∂xi

)
+ Ėp

vib− Ṙp
V T (3)

where DN2 is the diffusion coefficient of N2 into the
mixture, Ėp

vib is the vibrational energy production
term computed from the electron-impact processes
and Ṙp

V T is the vibrational to translational relaxation
modeled using the Landau-Teller harmonic oscillator
approach. Relaxation times τk

V T are computed using
experimental coefficients of Capitelli [25] for H2O,
CO2 and of Millikan and White [26] for N2, O2, O.

Ṙp
V T = ρ

evib
τV T

, τV T =

(∑

k

1

τk
V T

)−1

(4)

3. Configuration and numerical set-up

A pin-pin electrode geometry is chosen as in [7,
11]. Multiple NRP discharges are simulated in a
methane-air mixture at an equivalence ratio of 0.8
and an initial temperature of 600 K. The hyperbolic-
shaped electrodes both have a 200 µm-curvature ra-
dius and are separated by a 4 mm gap. The voltage
profile is shown in Fig. 1 where an initial rise of 1 ns
followed by a constant plateau of 8 kV are imposed.
This corresponds to a mean reduced electric field of
160 Td in the gap between electrodes at the initial
temperature. The discharge energy Ep and energy
density ep are defined by:

Ep(t) =

∫

Vp

ep dV and ep =

∫ t

0

je ·E dt (5)

where je is the electron current density and Vp the
discharge volume. In order to control the discharge
energy deposition, the voltage is switched off at toff
when the discharge energy Ep reaches a targeted
value Ed.

t

Va Ep

0

8 kV

0 1 ns toff

Ed

0

Fig. 1: Temporal evolution of the discharge energy.

A sketch of the geometry is represented in Fig. 2.
An unstructured mesh composed of triangular ele-
ments is used to discretize the 2D numerical do-
main. Two mesh refinements are used for the different
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phases of the computation as much finer cells are re-
quired during the voltage pulse compared to the inter-
pulse period. A minimum of 15 points inside the ther-
mal flame thickness is ensured for both meshes thus
justifying the DNS approach for the reactive mixture.
The domain is extended up to 10 cm to evacuate prop-
erly the pressure wave generated by the discharge.

Property Pulse Interpulse
∆xfine 3 µm 15 µm

∆xmedium 10 µm 30 µm
∆xcoarse 250 µm 250 µm
Nnodes 6.9× 105 8.5× 104

Table 1: Pulse and inter-pulse mesh properties, see Fig. 2 for
location of mesh zones.

1 2 3
z [mm] 0 0 1.75
r [mm] 0 1 0

Table 2: Locations of the three probes displayed in Fig. 2.

Cathode Anode∆xfine

∆xmedium

∆xcoarse

1

2

3
4 mm

1 mm

10 cm

x

r

O

Fig. 2: Sketch of the geometry with mesh sizes and probes.

3.1. Boundary conditions

For the drift-diffusion equations, Neumann bound-
ary conditions are applied on the electrode surfaces
as in [7, 11], while an outlet is used for the far-field
boundary and a symmetry condition is applied on the
cylindrical axis.

A zero Neumann boundary condition is applied for
the Poisson equation on the axis and the far field. A
spatially constant Dirichlet boundary condition at po-
tential Va is used for the anode according the temporal
profile shown in Fig. 1 while the cathode is grounded
(Vc = 0).

Finally, for the Navier-Stokes equations, adiabatic
non-slipping walls are considered on the electrodes,
thus neglecting heat conduction through them. A non-
reflecting NSCBC [27] boundary condition is applied
on the far-field boundary. As for the remaining axis
boundary, a symmetry is applied.

3.2. Chemistry

In previous work [28], a detailed chemical mech-
anism has been developed for plasma-assisted com-
bustion of CH4-Air mixtures based on the GRI 3.0
mechanism [29]. This mechanism has been exten-
sively validated against various experiments includ-
ing discharges in air [30] and a plasma-assisted ig-
nition case [31]. Using the ARCANE library [32],
the mechanism was reduced to a skeletal mechanism
containing 44 species (O, O2, H, OH, H2, HO2, H2O2,
CH, CO, CH2, HCO, CH2(S) CH3, CH2O, CH4, CO2,
CH3O, CH3OH, C2H4, C2H5, C2H6, H2O, N2, N, NO,
NO2, H2CN, O3, e– , N2

+, O2
+, CH4

+, CH3
+, NO+,

O– , O2
– ,N2(A), N2(B), N2(a), N2(C), N(2D), O2(a1),

O(1D), O(1S)) and 410 reactions.
In addition to its validity for plasma discharge

cases, the reduced mechanism is also able to repro-
duce correctly conventional auto-ignition delay times
of methane-air mixtures in a large range of tempera-
tures [800− 2000] K and equivalence ratios [0.5-1.5]
as well as laminar flame speeds in a large range of
equivalence ratios [0.6-1.4].

4. Results

In this work ignition using a single pulse (SP) and
multiple pulses (MP) are studied to better understand
their physical effects and their differences.

4.1. Single-pulse ignition

The capacity of non-equilibrium discharges to ig-
nite a reactive mixture is first studied using a sin-
gle pulse. The discharge energy Ep was varied from
200 µJ to 800 µJ and it was found that the minimum
energy necessary to ignite the mixture is Emin

SP =
500 µJ. The 500 µJ-SP discharge is thus investigated
in this section and shown in Fig. 3 (middle column).

Two-dimensional fields of electron density and dis-
charge energy density at different instants obtained
with this single-pulse can be found in Fig. 4. Dur-
ing the first nanoseconds, both positive and negative
streamers are propagating towards the center and no
significant energy is transmitted to the electrons yet
as shown in Figs. 4a and 4b at 3 ns. Both stream-
ers eventually connect to create a discharge channel
around 4 ns. After connection, the electron density in
the discharge channel increases significantly as does
the discharge energy density which are shown at the
cut-off time toff = 14.7 ns with a peak ionization
degree of 10−3. The discharge density is strongly
peaked close to the electrodes inducing a significant
amount of heat and radicals. These radicals, produced
by the non-equilibrium discharge, are assumed to en-
hance combustion in several studies [2, 13].

To assess the importance of the chemical enhance-
ment, the same ignition configuration with only en-
ergy deposition is also computed and referred to as
the heat deposit (HD) case in which all the energy
is assumed to be converted to heat using the same
chemistry. An energy of EHD = 500 µJ is de-
posited in the form of an energy source term within
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HEAT DEPOSIT SINGLE-PULSE != 50 kHz

" = 5 %s

" = 140 %s

" = 250 %s

" = 500 %s

* [mm]* [mm] * [mm]

+ [mm]

Fig. 3: Temperature fields in Kelvin at different instants for the HD, SP and 50 kHz-MP cases with an energy deposition of 500,
500 and 350 µJ respectively.

! = 3 ns
! = 3 ns

! = 14.7 ns

(a) Electron density

! = 15 ns

! = 3 ns

! = 14.7 ns

(b) Discharge energy density
Fig. 4: Two-dimensional fields for the single-pulse discharge
at different instants.

τHD = 20ns as in the discharge case. The spatial dis-
tribution of the energy deposition is determined from
the normalized discharge energy density F(x, r) =
ep(x, r, toff)/E

p(toff) of the SP case so that the con-
stant power source term, deposited during [0, τHD],
reads

Q̇HD(x, r) =
EHD

τHD
F(x, r) (6)

For EHD = 500 µJ, the mixture does not ig-
nite while for the same energy using a plasma dis-
charge it does. We need to increase the energy to
Emin

HD = 600 µJ to observe ignition using only a heat
deposit. The 600 µJ-HD and 500 µJ-SP ignitions are
compared in Fig. 5 where selected species at probe 3,
close to the anode, are shown. Radicals O, OH and H
are produced directly by the plasma discharge in tens
of nanoseconds in the SP case (blue curve) whereas it

is a result of the temperature increase in the HD case
(red curve) so that their peak value is lower and hap-
pening later. These radicals accelerate the ignition as
the consumption of fuel and oxidizer starts earlier for
the SP case compared to the HD case as shown in the
right part of Fig. 5.

10 9 10 7 10 5 10 3

Time [s]

10 6

10 5

10 4

10 3

10 2

10 1

100

Y

O OH H

10 9 10 7 10 5 10 3

Time [s]

O2 CH4 CO2

Fig. 5: Time evolution of selected species mass fractions in
a single-pulse discharge with ESP = 500 µJ (blue), and in
the heat deposit case with EHD = 600 µJ (red) at probe 3.

Shortly after the end of the pulse, two strong
shocks are formed at electrode tips as shown in Fig. 6
and move outward in a cylindrical shape after merging
at ≈ 3 µs. The expanding pressure wave contains part
of the discharge energy which is then no more avail-
able for ignition. However the associated acoustic en-
ergy ea defined in Eq. (7) is about 15 µJ for the SP
case which represents less than 2% of the discharge
energy. In the 500 µJ-HD case, a stronger shock wave
is formed with a higher acoustic energy loss of about
35 µJ (≈ 7% of the discharge energy).

Fig. 6: Pressure field at t = 1 µs for the 500 µJ-SP case.

ea =
1

2
ρ0u

2
1 +

1

2

P 2
1

ρ0c20
(7)
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A more important consequence of this shock wave
is the induced flow close to the electrodes illustrated
by Fig. 7. The two red spots correspond to the ignition
kernels and the arrows indicate the flow direction: it
is moving alongside the electrodes towards the center
of the gap and leaves it in a radial upward motion.
This gaseous flow has two effects: the initial flame
kernels are convected towards the center of the inter-
electrode gap and the regions around the electrode tips
are cooled down. The gaseous flow effects can be
seen in Fig. 5 around t ≃ 10−4 s for the SP case (red)
where both O2 and CH4 mass fractions are increasing
close to the anode due the entry of fresh gases. A
stronger shock in the 600 µJ-HD case fills the anode
tip area (Probe 3) with fresh gases earlier than the SP
case at t ≃ 10 µs and ignition occurs later compared
to the SP case even with a 20% energy increase.

Cathode Anode

Fig. 7: Sketch of the flow around the ignition kernels (in
red).

According to [33], a critical flame radius rc, above
which ignition is ensured, can be estimated under the
unity Lewis number assumption as

rc =
λ(Tad)

Cp(Tad) ρ(Tf ) S0
L

(8)

where Tad is the adiabatic flame temperature, Tf the
fresh gas temperature, λ the heat conductivity, Cp the
heat capacity at constant pressure and S0

L the laminar
flame speed. In the present conditions for methane-air
combustion at ϕ = 0.8 (Tf = 600K, Tad = 2200K,
S0
L = 1.05m s−1) we have rc = 150 µm.
5 µs after the end of the pulse, for both the 500 µJ-

HD and SP cases two hot spots are formed at the
electrode tips as shown in the first line of Fig. 3. At
140 µs, two isolated spherical kernels are formed in
the SP case with an approximate radius of 400 µm.
Thus, it is very likely that the flame kernels will con-
tinue to grow and expand which is confirmed by the
subsequent snapshots as the flame kernels merge and
start to expand radially as shown in the middle col-
umn of Fig. 3.

On the other hand, as stated in the beginning of the
section, the 500 µJ-HD case does not ignite as shown
by the left column of Fig. 3 due to the stronger shock-
wave and recirculation. Increasing the deposited en-
ergy to 600 µJ allows one flame kernel, at the anode,
to grow and travel towards the center of the inter-
electrode zone. But to obtain a growing kernel com-
parable to that of the plasma discharge case, the de-
posited energy must be increased to 700 µJ, i.e., 40%
more than the plasma discharge.

4.2. Multi-pulse effect
Multiple discharges at various frequencies are now

investigated to ignite the methane-air mixture. The
energy per pulse is decreased tenfold compared to the
single-pulse at Ep = 50 µJ and the frequency is var-
ied from 10 kHz to 100 kHz.

! = 50 kHz

! = 10 kHz

Fig. 8: Electron density at the end of the 5th pulse for f =
50 kHz (top) and f = 10 kHz (bottom).

To evaluate the impact of the pulse frequency on
ignition, the gas temperature signal at probe 2 is used
to define the ignition delay time. Probe 2, located
1mm above the axis, is not directly reached by the
plasma discharges and thus may be used to indicate
the possible passage of a growing flame kernel. For
all the studied frequencies f , 20 pulses were applied
in order to deposit a total energy of 1mJ. After each
burst of Np ∈ [1, 20] pulses, an additional simula-
tion was continued without further discharges up to
1ms. Figure 9a shows the time evolution of the gas
temperature at probe 1 for the first 8 pulses. At the
end of each pulse, the gas temperature evolution with-
out further plasma discharges (grey-lines) shows that
6 pulses are necessary to initiate a flame kernel close
to the axis. This initial kernel is able to self-propagate
to a radius of 1mm as indicated by the temperature
signal at probe 2 in Fig. 9b. As a result, a burst of low-
energy discharges is able to ignite the mixture with a
total energy of only Emin

MP = 300 µJ, i.e., 40% lower
than the minimum energy required for ignition with a
single pulse discharge as seen in Section 4.

Increasing further the number of pulses then leads
to faster ignition, until an asymptotic limit is reached
as shown in Fig. 9b. This behavior was observed for
all frequencies in the range of [20-100] kHz as shown
in Fig. 10 where the ignition delay time is defined at
probe 2 by Eq. (9) where ∆T = 1000K.

τig = min(t | T (t) ≥ T0 +∆T ) (9)

Note that for the 25 kHz case, the minimum energy
required for ignition is equivalent to that of the SP-
ignition, thus limiting the benefit of MP discharges.
For lower frequencies (i.e., f ≤ 25 kHz), a detrimen-
tal effect is even observed as the 20 kHz case requires
a total energy of 750 µJ for a successful ignition.

Moreover, it was observed that for frequencies
lower than 15 kHz, no ignition event occurs before
1ms. At low frequency, the cumulative effects of
the successive discharges are gradually lost mostly
due to the diffusion of temperature and species dur-
ing the inter-pulse period. Conversely at high fre-
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Fig. 9: Gas temperature evolution at f = 50 kHz in (a) the
plasma region and (b) at 1mm height.
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Fig. 10: Ignition delay time depending on the number of
pulses at various frequencies: ▲ 20 kHz ● 25 kHz ■
33 kHz ◆ 50 kHz ▼ 100 kHz. The corresponding total
discharge energy is indicated on the top axis of the figure.
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HD , Emin
SP and Emin

MP correspond respectively to the min-
imum energy ignition of the HD, SP and MP cases.

quency, each discharge takes advantage of the previ-
ous one and concentrates on the axis as illustrated in
Fig. 8. The discharge radius, defined with the Full-
Width at Half Maximum of the N2(B3) peak as in
[30], is used to illustrate the cumulative effect of the
discharges. Figure 11 shows the discharge radius for
the 10 and 50 kHz cases at the end of each pulse, to-
gether with the gas temperature just before the pulse
at the center of the inter-electrode gap. At 10 kHz,
the discharge radius first decreases to 125 µm before
slowly increasing at the same rate as the gas tempera-
ture. Indeed, electron and ion diffusion coefficients
are increasing with temperature leading to a wider
discharge propagation and stronger diffusion of the
plasma channel during the inter-pulse. At 50 kHz,
a sharp decrease of the discharge radius is observed
during the first four pulses allowing to concentrate the
energy on the axis. For the same amount of energy
deposited, smaller volumes lead to higher gas tem-
peratures and radical production allowing to trigger
favourable conditions for flame kernel initiation. In
the same time, the gas temperature increases drasti-
cally and marks the early stage of flame kernel for-
mation. Then, as for the 10 kHz case, the discharge
radius increases with temperature and the discharges
lead to smaller temperature increase, as was observed
for the 7th and later pulses in Fig. 9a.

5. Conclusions
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Fig. 11: Evolution of discharge radius and local gas tem-
perature preceding each pulse (probe 1) at two different fre-
quencies: ★ 10 kHz ◆ 50 kHz

Ignition of a lean methane air-mixture has been
carried out using the coupled AVIP-AVBP codes with
a reduced plasma-assisted combustion chemistry in a
pin-pin configuration. Fully coupled plasma and com-
bustion simulations have allowed to investigate the in-
teraction between the plasma discharge and the react-
ing flow.

Using a single-pulse discharge of 500 µJ, the for-
mation of two ignition kernels were observed at the
end of the discharge close to the electrode tips. Along
these two kernels a strong shock wave was formed
inducing a recirculation of fresh gases into the inter-
electrode gap and pushing the two kernels towards the
center of the gap. The two kernels eventually merge to
form a stable single kernel propagating radially out-
wards. The chemical effect of the discharge has been
highlighted by simulating a similar discharge with en-
ergy deposited only as an energy source term. For
the same amouny of deposited energy of 500 µJ, no
ignition was observed as the kernels were quenched
by the fresh gases recirculation induced by a stronger
shock-wave.

The single pulse discharge ignition was then com-
pared with low-energy (50 µJ), multiple pulses, ap-
plied at various frequencies from 10 to 100 kHz. At
low frequency, the created spots of temperature have
sufficient time to diffuse and below 15 kHz, no igni-
tion is observed. Increasing the frequency above 25
kHz has a beneficial effect on ignition exploiting the
synergetic effect of the discharges: the ignition de-
lay time decreases and the minimum energy needed
for successful ignition decreases. Indeed at high fre-
quency, the plasma channel does not have time to dif-
fuse significantly and narrower discharges can be pro-
duced, thus focusing both heating and radical produc-
tion on the axis. This shows the benefits of apply-
ing smaller energy pulses repetitively as they are able
to ignite faster and in a more stable way combustible
mixtures.

In this study, using coupled plasma-combustion
models has proved very efficient to investigate open
questions about the impact of plasma chemistry and
the interaction of the plasma with the flow. The cou-
pled model may now be applied to more complex con-
figurations to predict the impact of NRP discharges on
flames.
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11.3.1 Supplementary material

Some snapshots of the different fields that are not shown in the article, due to lack of space,
are given here. The pressure wave from the 500 µJ-SP (single pulse) and 500 µJ-HD (heat
deposit) cases are compared in Fig. 11.1 where the stronger pressure wave induced by the
HD case can be appreciated. At t = 1 µs the peak of pressure of the shock wave is about
10% higher for the heat deposit case and this high pressure zone is distributed more broadly
on the shock front. Correspondingly, the value of the pressure in the rarefaction zone is
lower by 10% for the full-heat case compared the single-pulse case. Finally at t = 5 µs the
shock-wave is thicker (green region) while being faster.

(a) Single-pulse (b) Heat-deposit

Figure 11.1: Pressure field at different instants for the single-pulse and full-heat cases.

The benefits of multiple discharges for the creation of a conducting channel is discussed
in the article. This allows to more easily propagate discharges as evidenced by Fig. 11.2.
At t = 1 ns, the 5th 50kHz-pulse streamers have already propagated 1 mm at both sides
whereas the single-pulse streamers have barely moved. At t = 2 ns, the channel is already
well-established for the 5th 50kHz-pulse whereas the two streamers have yet to bridge the gap
for the single pulse discharge. At t = 3 ns, the streamers are still propagating for the single-
pulse while the conducting channel already had time to significantly increase the electron
density in the 5th 50kHz-pulse.
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(a) Single-pulse (b) 50 kHZ 5th pulse

Figure 11.2: Electron density field at different instants for the single-pulse and the 50 khz
5th pulse cases.

This easier propagation of discharges after multiple pulses is related to the residual elec-
tron density channel that remains at the end of the interpulse. When the voltage is switched-
off, electrons diffuse and recombine as shown in Fig. 11.3.

11.3.2 High-energy heat deposit ignition

A limit case highlighting the influence of the hydrodynamic effects is considered in this section
to complement the heat deposit case of the article. The same configuration and mesh as that
of the article is considered. We choose to deposit energy as only a heating source term just
like in the heat deposit but this time the energy deposited is increased by a factor of 5 to
2.5 mJ. The duration of constant energy deposition is still 20 ns as the article heat deposit
case. The shape of the energy density is simplified compared to the article heat deposit and
is shown in Fig. 11.4: the energy density is constant axially and a sigmoid profile is applied
on the radial direction.

During the first instants after the energy deposition, a strong shock-wave is formed with
an over-pressure of around 10 bar as shown in Fig. 11.5. The temperature exceeds 5000 K in
the gap during the first instants but quickly decreases as the shock-wave leaves the domain.
A rarefaction wave, right behind the shock-wave, creates a region of low density (blue region
in the density snapshots).

During a second phase the mixture ignites as evidenced by the heat release shown in
Fig. 11.6. The flow induced by the shock-wave has an impact clearly shown on the density
and temperature fields: fresh gases are entering the ignition kernel from both sides pushing
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Figure 11.3: Electron density [m−3] field at different instants during the interpulse of the
single-pulse case.

Figure 11.4: Energy density deposit shape for the high-energy deposit ignition.
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(a) Pressure [Pa] (b) Density [m−3]

(c) Temperature [K]

Figure 11.5: Snapshots of pressure, density and temperature during the first instants of the
high-energy deposit case.
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the ignition kernel radially outwards. Note that the temperature of the ignition kernel is
significantly decreased due to this entry of fresh gases.

Finally in a third phase shown in Fig. 11.7, the flame lifts from the axis to get a toroïdal
shape: the ignition kernel completely extends radially in a closed tore shape due to the flow
recirculation induced by the initial shock wave. This case illustrates the extreme case of a
flame completely lifted from the axis and should be avoided for efficient ignition. Similar
kind of flames have already been observed in Gracio Bilro Castela [2016] and Dumitrache
et al. [2019].
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(a) Heat-release [W.m−3] (b) Density [m−3]

(c) Temperature [K]

Figure 11.6: Snapshots of heat release, density and temperature during phase 2 of the high-
energy deposit case.
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(a) Heat-release [W.m−3] (b) Density [m−3]

(c) Temperature [K]

Figure 11.7: Snapshots of heat release, density and temperature during phase 3 of the high-
energy deposit case.
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In this chapter an improved model for Plasma Assisted Combustion, based on the model
developed in Gracio Bilro Castela [2016], is discussed. Detailed modeling, as done in the
previous Chap. 11, offers lots of insights about the plasma assisted combustion mechanisms
but is very costly. The reduced cost of this simulation also relies on the axisymmetric config-
uration studied, which allows to simulate a three-dimensional domain on a two-dimensional
grid. This is not possible on real configurations as turbulence is present and breaks this
invariance. Hence a model for plasma assisted combustion is needed. The Castela model
is first recalled in Section. 12.1. Then improvements of this model are discussed that could
tackle the shortcomings of the Castela model. Lack of time did not allow to test the model
on real configurations but could be the subject of future work.

12.1 The Castela model

12.1.1 Governing equations

In place of a detailed description of the plasma discharge which would leads to a high CPU
cost, a phenomenological model has been proposed by Gracio Bilro Castela [2016]. In this
model the impact of the discharge on the energy of the mixture is decomposed into three
effects which are namely the fast gas heating (Ėpheat), the chemical effect (Ėpchem) and a slow
gas heating due to the relaxation of the vibrationally excited N2 (Ėpvib). The discharge power
can be written as the sum of these three contributions:

Ėp = Ėpchem + Ėpheat + Ėpvib (12.1)

The Navier-Stokes equations with additional plasma source terms then yield:
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∂ρ

∂t
+∇ · [ρu] = 0

∂ρu
∂t

+∇ · [ρuu + pI− τ] = 0
∂ρet
∂t

+∇ · [(ρet + p)u− τ · u + q] = Ėpchem + Ėpheat + ṘpV T

∂ρYk
∂t

+∇ · [ρYk(u + Vk)] = ω̇ck + ω̇pk

(12.2)

where ω̇pk corresponds to the mass production rate associated to the chemical effect of the
discharge and ṘpV T corresponds to the vibrational-translational relaxation of N2. Note that
here et is the total energy which is different from the total non chemical energy equation
solved in AVIP. As the typical timescale of vibrational-translational relaxation is much higher
than the discharge duration, it is necessary to store it into a vibrational energy density evib
which can be transported and relaxed according to:

∂ρevib
∂t

+∇ · [ρevib u] = ∇ · [ρDN2∇evib] + Ėpvib − Ṙ
p
V T (12.3)

where DN2 is the diffusion coefficient of N2 into the mixture, Ėpvib is the vibrational
energy production term computed from plasma chemistry and ṘpV T is the vibrational to
translational relaxation modeled using the Landau-Teller harmonic oscillator approach as
expressed in Eq. 12.4. Relaxation times τkV T are computed using experimental coefficients
in Capitelli et al. [2000] for H2O, CO2 and in Millikan and White [1963] for N2, O2, O. The
exchange term between the vibrational energy equation and mixture energy equation then
reads:

ṘpV T = ρ
evib − eeq

vib(T )
τV T

, τV T =
(∑

k

1
τkV T

)−1

(12.4)

where

eeq
vib(T ) = rΘ1

eΘ1/T − 1
(12.5)

is the equilibrium energy of vibrational population of N2 assuminga harmonic oscillator
model with the characteristic vibrational temperature Θ1 = 3386 K and r = R/WN2 .

12.1.2 Model closure

In order to close the model it is necessary to determine the fraction of discharge energy going
into Ėpchem, Ėpheat and Ėpvib. This repartition depends on different parameters such as gas
temperature, pressure and composition (T, P,Xi). Other parameters such as the pulse shape
or the geometry of the electrodes can also play a role. By considering only the parameters
(T, P,Xi) the fraction of the discharge energy going into Ėpchem and Ėpheat can be written as
follows :
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Ėpheat = gheat
(
Xk=1,...,Nsp , T, P

)
Ėp (12.6)

Ėpchem = gchem
(
Xk=1,...,Nsp , T, P

)
Ėp (12.7)

where gheat and gchem are the fractions of the discharge energy transferred into sensible
and chemical energy, respectively. The chemical energy source term should compensate the
change in sensible energy due to the production of neutral species from the plasma discharge:

Ėpchem =
∑
k

ekWkẇ
p
k (12.8)

A fraction of the discharge power can be associated to each species with the following
relation:

ekWkẇ
p
k = gkchemĖ

p (12.9)

and consequently:

gchem =
∑
k

gkchem. (12.10)

The production rate of the kth species during the pulse is given by :

ẇpk = gkchem
Ėp

ekWk
(12.11)

Finally the model states that the rest of the energy that is not transferred into Ėpchem
and Ėpheat goes into vibration:

Ėpvib = [1− (gheat + gchem)]Ėp (12.12)

It is supposed that fast gas heating and chemical effect are mainly due to the dissociation
of O2 in electron impact reaction of quenching of electronically excited N2. Following the
experiments from Rusterholtz et al. [2013] and simulations made by Popov [2013] about
35± 5 % of the discharge energy goes into O2 dissociation and 20± 5 % into ultra fast gas
heating where this value of gheat = 0.2 is obtained from the temperature increase induced
by the discharge. Consequently in the model approximately 45 % of the energy is stored in
vibrational modes of N2.

It is assumed that the chemical source term is only due to the dissociation of O2 and
scaled with YO2/Y

f
O2

where Y f
O2

is the dioxygen mass fraction in the fresh gas. The fraction
of energy η going to O2 dissociation is taken equal to 35%. Ėpchem writes finally:

Ėpchem = η
YO2

Y f
O2

(
1− eO2

eO

)
Ėp (12.13)

In order to retrieve the energy available for ultra fast gas heating another assumption is
made by assuming that the sum of Ėpheat and Ė

p
chem is equal to the energy transferred to the

electronic states of N2:
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Ėpheat + Ėpchem = αĖp (12.14)

with α = 0.55. Finally the energy going into fast gas heating is retrieved as well as the
vibrational energy which is assumed to be the remaining energy:

Ėpheat =
[
α− ηYO2

Y f
O2

(
1− eO2

eO

)]
Ėp (12.15)

Ėpvib = (1− α)Ėp (12.16)

The model closure can be summarized by the Eqs. (12.13), (12.15) and (12.16).

12.2 Generalization of the model

12.2.1 Improved chemical source term

In the model developed above only one chemical plasma process is considered which is the
dissociation of O2:

O2 −−→ 2 O (12.17)
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Figure 12.1: Ratios of energy of a single discharge in a stochiometric methane air-mixture at
different compositions as a function of the progress variable c = (YCO +YCO2)/(Y b

CO +Y b
CO2)

where the superscript b correspond to burnt gases.

Note that this dissociation is due mainly to electron-impact reactions and quenching of
nitrogen excited states and it has been compacted in one global reaction without the electrons
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for this reason. This may be complemented thanks to the 0D computations performed in
Chap. 9 showing that more processes coming from the plasma chemistry can have an impact
on combustion. Moreover the parameters of the Castela model have only been validated
in air and not in combustible mixtures: in burnt gases for example YO2 ' 0 so that the
chemical effect of O2 dissociation would tend to zero in these zones. A burnt gases chemistry
is currently under development but the first results of the energy paths as a function of
the progress varible c = (YCO + YCO2)/(Y b

CO + Y b
CO2) is shown in Fig. 12.1. The chemical

source term in the burnt gases region is decreasing as c increases but is clearly non-zero. The
chemical source term is thus generalized and we consider P plasma processes:

Ėpchem =
P∑
j=1

Q̇j∆emj (12.18)

where Q̇j is the molar production rate of the plasma process j and ∆emj its corresponding
change of internal energy. From the 0D computations the following list of plasma processes
for the generalization of the model seem to synthesize the chemical processes of our chemistry
(as before the dissociation may be due to quenching of excited states or electron-impact so
that only the simplified process is written):

O2 −−→ 2 O (12.19)
N2 −−→ 2 N (12.20)

1
2 N2 + O2 −−→ NO + O (12.21)

CH4 −−→ CH3 + H (12.22)
CO2 −−→ CO + O (12.23)
H2O −−→ OH + H (12.24)

CH4 + 1
2 O2 −−→ CH3 + OH (12.25)

CO2 + 1
2 O2 −−→ CO + O2 (12.26)

We leverage the zero-dimensional reactors to tabulate as a function of the progress vari-
able c across a 1D flame the proportion of energy going into each channel:

Ėpchem =
∑
j

αjĖ
p Ėpheat = αheatĖ

p Ėpvib = αvibĖ
p (12.27)

where αj is the proportion of the energy going to the plasma process j, αheat the propor-
tion going to fast gas heating and finally αvib the proportion going inside vibration and by
conservation:

P∑
j=1

αj + αheat + αvib = 1 (12.28)

The molar production rate is retrieved from the proportion of energy going into process
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j from the following relation

Q̇j = αj
Ėp

∆emj
(12.29)

from which the species plasma source term ω̇pk are computed. The Castela model in this
representation can be retrieved as particular instance of the model. To do so we consider
only one process, O2 −−→ 2 O, and the corresponding molar production rate is modeled by

Q̇O2→2 O = η
YO2

Y f
O2

Ėp

2WOeO
(12.30)

The corresponding production rates of O and O2 are deduced from this single reaction
as

ω̇pO = 2WOQ̇O2→2 O (12.31)
ω̇pO2

= −WO2Q̇O2→2 O (12.32)

The fast gas heating and vibrational production terms are then computed as a result of
this chemical source terms as

Ėpheat = (αĖp − Ėpchem) (12.33)
Ėpvib = (1− α)Ėp (12.34)

12.2.2 Vibrational relaxation

In the Castela model, the vibrational source term is given by the following source term:

ṘpV T = ρ
evib − eeq

vib(T )
τV T

, τV T =
(∑

k

1
τkV T

)−1

(12.35)

where

eeq
vib(T ) = rΘ1

eΘ1/T − 1
(12.36)

We claim here that the vibrational energy is only a non-equilibrium one and that the
equilibrium part of this vibrational energy is already contained in the thermodynamics of
the mixture as shown in Section. 4.1.3. Hence the relaxation source term should be corrected
and not include this equilibrium energy leading to:

ṘpV T = ρ
evib
τV T

, τV T =
(∑

k

1
τkV T

)−1

(12.37)
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12.2.3 Temporal and spatial distribution of the discharge

The different channels of a plasma discharge have been modeled in the previous section; the
temporal and spatial shapes of the discharge source term Ėp are now discussed. The NRP
discharges are imposed with a temporal frequency of fd and corresponding temporal period
Td. We impose as input of the model a discharge energy Ed that is applied only during τpulse
over a discharge spatial profile F(r):

Ėp(r, t) =


εd

τpulse
F(r) t (mod Td) ≤ τpulse

0 t (mod Td) > τpulse
(12.38)

In the Castela model, the shape function F is taken as an analytical profile using erfc
functions. Thanks to the multi-dimensional streamer computations, more realistic energy
density profiles of streamers are now available.





Conclusion and perspectives on
Part I, II and III

In this work, fully coupled plasma assisted combustion simulations are performed. To do so
the plasma discharges features have been in AVIP, a low-temperature plasma and combustion
code. To simulate plasma discharges, the drift-diffusion equations have been chosen for
plasma species. In addition the Poisson equation must be solved for consistency to get
the electric field which the plasma species react to. Third, solving combustion is done by
integrating the reactive Navier-Stokes equations with the code AVBP.

Plasmas span a large range of amplitudes and are very stiff to solve numerically. Hence
Total Variation Diminushing schemes, for both drift-diffusion equations and Navier-Stokes
equations, have been developed and validated against canonical cases. This necessitated
to change the schemes formulation from the original AVBP data structure and to develop
Finite Volume Vertex-Centered Methods. Two schemes have been implemented for drift-
diffusion equations: the improved Scharfetter Gummel scheme for quadrangular elements
and the limited Lax-Wendroff scheme for triangular elements. The convective part of the
Navier-Stokes equations, the Euler fluxes, are integrated using HLLC with a MUSCL recon-
struction and two-stages time integration (RK2). The Poisson equation is also discretized in
a Finite Volume Vertex-Centered formulation and validated against analytical solutions for
convergence.

To perform multi-dimensional studies while still keeping the computational cost low,
axisymmetric configurations have been considered in this work. This required solving the
Poisson equation and transport equations in cylindrical formulation with an azimuthal in-
variance. The Navier-Stokes equations, in particular, included geometric source terms due
to the cylindrical formulation. These have all been added in AVIP.

Finally streamer simulations have been performed, first using simple chemistries in canon-
ical configurations for validating the code capabilities. We then turned to pin-pin configura-
tions which are closer to reality. A study of NRP discharges for plasma assisted ignition of
a methane-air mixture has been carried out and the benefits of NRP discharges have been
demonstrated. We showed that, at the right frequency, the creation of a conducting channel
eases the process of discharge propgation while creating a homogeneous temperature region
that enhances combustion compared to a single pulse discharge.

These fully-coupled simulations pave the way for the development of precise models,
based on those fully coupled simulations, that could be used in industrial configurations.

A major drawback in PAC simulations and discharge simulations is the computational
cost, which is due in a large part to the resolution of the Poisson equation which can represent
up to 80% of the total cost. The last part of this thesis is therefore devoted to the development
of an alternative method to significantly accelerate the simulations.
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This chapter presents a brief introduction to deep learning with some general definitions
and properties of multilayer perceptrons (MLPs). The basic building blocks of MLPs are
recalled as well as the fundamental backpropagation algorithm. In a second part, the special
case of Convolutional Neural Networks (CNNs), used extensively in this work, is presented.

13.1 Definitions and properties of neural networks

13.1.1 General definitions and introduction

Feedforward neural networks, also called fully-connected layer neural networks or
multilayer perceptrons (MLPs) are the canonical deep learning models. Their goal is to
approximate some unknown mapping y = f̃(x) between an input x and an output y. MLPs
are often used in image classification models where x is an image whereas y is a category,
i.e. a dog, a cat or a plane. MLPs approximate the desired function f̃ with an approximate
function f(x;θ) that is dependent on a set of parameters θ. Note that the output of the
network in this section will always be denoted a = f(x;θ).
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x a = f(x;θ)

Figure 13.1: Sketch of a MLP network with one hidden layer

The feedforward property of these networks comes from the information propagation in
MLPs which travels from the input to the output without any feedback loop. The approxi-
mate function is indeed composed of different intermediate functions to form a chain struc-
ture. These different intermediate functions, also called layers, work together as a network
to give the desired output y where for three layers we would have: f(x) = f1(f2(f3(x))).
The number of these intermediate functions is called the depth and in practical architec-
tures there are many hence the deep learning terminology. The last layer of the network is
called the output layer and represents the approximation to the target value y. All other
intermediate layers are called hidden layers because the training data does not show the
desired output for each of these layers: the hidden layers create abstract representation of
the data to better predict it. A simple example of a feedforward network with one hidden
layer is shown in Fig. 13.1.

Finally the term neurons comes from a loose connection with neuroscience. Instead of
thinking of the network in terms of layers, each unit of the network can be seen as working
in parallel to create abstract representations. However it is best to see feedforward neu-
ral networks as function approximators that are aimed to achieve statistical generalization,
occasionally drawing insights from neuroscience [Goodfellow et al., 2016, Chap. 6].

13.1.2 Gradient Based learning

Designing a neural network is not much different from a classical machine learning model:
we must choose an optimization procedure, a loss function and a model family (in this case
feedforward neural networks).

MLPs learn from a set of input examples the best approximation f(·;θ) of the unknown
mapping f̃ where θ is the vector of parameters of the model. A loss function L = L(·;θ) is
defined to measure how close the approximate mapping f is to the exact mapping f̃ . At each
step of the optimization procedure, θ is adjusted to get closer to the exact mapping. A set of
examples, the training set, is processed by the network and allows to adjust the parameters
θ to get closer to the exact mapping. A set of input examples never seen in the optimization
procedure, called the validation set, is used in conjunction at each step to see how the
network behaves on data it is has not seen. The validation set allows to refine the model
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and prevents overfitting: when the training loss decreases but the validation loss stops
decreasing as shown in Fig. 13.2 or even increases the model does not learn any generalizable
features but only features that are specific to the training set. Hence the optimal model is
often taken as the one for which the validation loss is minimal. Finally the test set is a set
of data that is never used to design the model and it estimates how successful the model is
on never-seen data.
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Figure 13.2: Illustration of overfitting.

The basic principles of gradient learning are now discussed. Let us take n input examples,
x being one of the input and y the desired output. During each step of the training procedure
we update the hyperparameters θ as θ′ = θ+∆θ and the loss function changes as [Nielsen,
2016, Chap. 1]:

δL = ∇L · δθ (13.1)

The hyperparameters are updated in the direction of the gradient descent to yield a
decreasing loss function:

δθ = −η∇L =⇒ δL = −η||∇C||2 (13.2)

so that the cost will always decrease. As presented in the next sections, neural networks are
non-linear and that causes most lost functions to become non-convex. Convex optimization
converges for any set of initial parameters but this is not true anymore for non-convex
optimization. Initialization is therefore critical in neural networks and parameters are usually
initialized randomly with small values.

13.1.2.1 Stochastic Gradient Descent

From a training set of n pairs (x,y) of input/target, the loss function is defined on this set
as:
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L = 1
n

∑
x

Lx(a,y) (13.3)

where Lx is the loss function for each input x and a = f(x;θ) is the output of the neural
network. The gradient is thus

∇L = 1
n

∑
x

∇Lx (13.4)

At each step of the gradient descent, the loss function must be computed on the whole
training set. This step is costly as the training set size is usually huge. This is computation-
ally expensive only to make a single step of gradient descent. Deep learning would be very
slow if the loss functions were computed on the whole training set. Stochastic Gradient
Descent (SGD) solves this issue by introducing mini-batches. The batch-size m � n is
defined to approximate the loss function using a portion of the whole training set so that
computation is much faster:

∇L ' 1
m

∑
x

∇Lx (13.5)

For a fixed model size, the cost of SGD does not depend on the size of the training set
n: it provides a scalable way of training non-linear models on huge datasets.

13.1.3 Loss functions and units

We now consider a feedforward neural network of L layers that takes as input a vector x.
The feedforward neural network takes as input a0 = x and across each layer l ∈ J1, LK the
following operations are performed:

zl = Wl al−1 + bl (13.6)
al = σ(zl) (13.7)

where σ is called the activation function, Wl ∈Mnl,nl−1(R) the weight matrix and bl ∈ Rnl
the bias. A sketch of a two hidden layer feedforward network is shown in Fig. 13.3 where
the above notations are used.

13.1.3.1 Loss functions and output units

The choice of output unit is tightly coupled with the choice of the loss function: the output
layer determines the way that we interpret and compute the result of the neural network.
For example for classification problems the output layer should be composed of the number
of classes we want to represent: to categorize numbers on images (the MNIST databse), the
output layer should be of size 10, each output unit representing one number.

Loss functions must provide a distance of the computed solution f(x;θ) to the actual
target y. The most straightforward choice of loss function is the quadratic loss function or
mean-squared error (MSE) which is the just the L2 distance between the predicted output
value and the actual target:
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a0 = x

a1 = σ(W1 a0 + b1)

a2 = σ(W2 a1 + b2)

a = a3 = σ(W3 a2 + b3)

Figure 13.3: Sketch of a MLP network with two hidden layers.

LMSE(θ) = ||a − y||22/2 (13.8)

where a is the output of the network. This is a good measure in any case of the distance
to the predicted value. Other losses are more suited depending on the case but the MSE is
always a good starting point. The mean-absolute error (MAE) loss is also a possibility by
switching to L1 norm:

LMAE(θ) = ||a − y||22/2 (13.9)

For regression, an improvement of the MSE is the Huber loss which is less sensitive to
outliers than the MSE loss while still keeping quadratic slopes near the bottom of the loss:

Lδ,Huber(θ) =

 1
2 ||y− a||22 if ||y− a|| < δ

δ(||y− a||2 − 1
2δ) otherwise

(13.10)

In classification problems the cross-entropy function is often used and allows to fix the
learning slowdown problem encountered with sigmoid layers and the MSE loss [Nielsen, 2016].
For M classes the cross-entropy loss reads

LCE(θ) = −
M∑
c=1

yc log(pc) (13.11)

where yc is a binary indicator of whether or not c is the correct class for the input and pc is
the predicted probability that the input is of class c.

13.1.3.2 Hidden Units

The choice of activation functions in hidden layers is now discussed. Since deep learning uses
a lot of hidden layers, this choice is critical for the design of neural networks. However there
are not definite guiding principles and we more rely on experience for the design of hidden
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units.
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Figure 13.4: Typical activation functions used in neural networks.

Rectified Linear Units Rectified linear units use the following activation function: g(z) =
max(0, z) shown in Fig. 13.4a. It is very smilar to linear units and non-linearity is introduced
in the simplest possible way. The derivative remains large whenever the unit is activate which
makes it easily interpretable as there are no second-order effects. However rectified linear
units cannot learn when the activation is zero as the gradient is not always non-zero since it
has a different value for the left and right derivatives.

Various generalizations of rectified linear units have been derived to solve this issue and
all start from the general form of activation function

σ(z) = max(0, z) + αmin(0, z) (13.12)

where α is now a parameter controling the slope of the function in the negative region.
Absolute value rectification [Jarrett et al., 2009] imposes α = −1 leading to an absolute
value activation function: it is used for object recognition where it makes sense to search
for features that are invariant under reversed polarity [Chap. 6][Goodfellow et al., 2016].
LeakyReLU [Maas et al., 2013] imposes a constant small positive value, for example α = 0.1
shown in Fig. 13.4b whereas Parametrized ReLU [He et al., 2015] makes the network learn
the parameter α.

Sigmoid units Before the introduction of ReLU units, the most used activation functions
were the sigmoid and hyperbolic tangent functions which are shown in Fig. 13.4a. Sigmoid
and hyperbolic tangent units, unlike piecewise linear units, suffer from saturation at low and
high values of the unit which makes learning difficult for these kind of units. Because of
that, their use in hidden units is now discouraged [Goodfellow et al., 2016].



13.1. DEFINITIONS AND PROPERTIES OF NEURAL NETWORKS 251

13.1.4 The universality theorem

A linear model, mapping from input to output through matrix multiplication, can only learn
linear functions. This would be the case of the feedforward neural network without non-
linear activation functions presented earlier. These are easy to train because loss functions
associated to linear models are often convex which ensures convergence. On the other hand
we want the feedforward networks to learn non-linear functions.

Fortunately feedforward neural networks can compute any function. Cybenko [1989] and
Hornik et al. [1989] demonstrated that standard multilayer feedforward networks with as few
as one hidden layer using arbitrary squashing functions are capable of approximating any
Borel measurable function provided sufficiently many hidden units. The concept of Borel
measurability is outside the scope of the thesis and it suffices here to say that any continuous
function on a closed and bounded set of Rn can be approximated by feedforward networks.
In this sense neural networks are universal approximators.

13.1.5 The backpropagation algorithm

The backpropagation algorithm, which enables neural networks to learn fast by a easily
computing gradients, is given in this section. Notations introduced above are kept and the
sketch of a four layer MLP network following those notations is found in Fig. 13.3. The
backpropagation algorithm proceeds in 4 steps:

1. Feedforward: the network processes the input x by starting with a0 = x:

for l ∈ J1, LK do

zl = Wl al−1 + bl (13.13)
al = σ(zl) (13.14)

end

where the different parameters of the network have been described earlier. We also
define the error of neurons in layer l:

δl = ∂L
∂zl (13.15)

2. Output error: the output error is the starting point of the backpropagation and can
be computed as [Goodfellow et al., 2016, Nielsen, 2016]:

δx,L = ∇aL � σ′(zL) (13.16)

3. Backpropagate: from the output error all the other errors of each layer are computed
backwardly so that

4. Gradient descent: finally the derivative of the cost function with respect to each
parameter of the model can be computed from the errors backpropagated:
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for l ∈ JL− 1, 1K do

δl = ((Wl+1)T δl+1)� σ′(zl) (13.17)

end

for l ∈ J1, LK do

∂L
∂wljk

= al−1
k δlj

∂L
∂blj

= δlj (13.18)

Wl →Wl − η

m

∑
x

δl(al−1)T (13.19)

bl → bl − η

m

∑
x

δl (13.20)

end

13.1.6 Training a feedforward neural network

Over the course of the past decade, problems encountered in the training of neural net-
works have given rise to several techniques to circumvent those issues and some of these are
presented in this section.

13.1.6.1 Overfitting and regularization

When accuracy stops improving the validation data, i.e. the validation loss stops decreasing,
the model is learning peculiarities about the training set. When classification accuracy
reaches a plateau what the network learns afterwards no longer generalizes to the test data
and the network is overfitting.

In general the best way of reducing overfitting is to increase the size of the training
dataset. The training data can be artificially expanded when there is not enough ressource
to produce more training data. To do so the data is expanded by applying operations that
reflect real world variations: as an example for image recognition we can apply rotations,
translations, distorsions and skewing.

Modifying the loss function can also circumvent the overfitting issue. A term is added in
the loss function to make the network learn small weights (in absolute value):

1. L1 regularization:
L = L0 + λ

2n
∑
i

w2
i (13.21)

2. L2 regularization:
L = L0 + λ

n

∑
i

|wi| (13.22)

where wi represent all the weights flattened to one dimension.
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Dropout can also be used, we randomly delete (temporarily) a portion of the hidden
neurons in the network for each batch. The dropout is essentially averaging the effects of
a very large number of different networks.: those different networks may overfit in different
ways and averaging may help eliminate that kind of overfitting.

13.1.6.2 Weight initialization

As we are dealing with non-convex optimization when training neural networks, any set of
initial parameters does not necessarily converge to the solution of the problem. Therefore
a proper initialization of the parameters is essential for the network to learn efficiently.
The most basic initialization of weights and biases would be to take them from a centered
Gaussian distribution with 1-standard deviation:

w ∼ N (0, 1) (13.23)
b ∼ N (0, 1) (13.24)

This causes the same saturation problem as for the output layer but this time for the
hidden layers because the resulting output will have a broad dispersion and thus high values.
A better choice is:

w ∼ N (0, 1/√nin) (13.25)
b ∼ N (0, 1/√nin) (13.26)

13.1.6.3 Choosing a neural network’s hyper parameters

The first challenge is to get any non trivial learning, i.e. for the network to achieve results
better than by chance. To do so a good idea is to start reducing the size of training and
validation data and play with the learning rate. When there is a signal for η, find the larger
η for which the training loss function doesn’t oscillate.

A learning rate schedule is also possible in which η decreases gradually. The regularization
parameter is to be determined after the learning rate.

13.1.6.4 The vanishing gradient problem

We expect networks with more hidden layers to be more powerful. Such networks could use
the intermediate layers to build up multiple layers of abstraction.

However there is an issue that makes deep networks hard to train: the different layers
are learning at vastly different speeds. In particular, when latter layers in the network are
learning well, early layers often get stuck during training, learning almost nothing at all.
This is the vanishing gradient problem.
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13.2 Convolutional neural network

A feedforward network architecture presented in the first section of the chapter does not take
into account the spatial structures of the inputs. It treats input pixels which are far apart
and close together on exactly the same footing. CNNs on the other hand take advantage of
the spatial structure of the inputs.

First uses of CNNs date as far back as 1997 when LeCun et al. [1997] used CNNs for
character recognition tasks. However their current widespread use is due to the successful
application of a CNN in Krizhevsky et al. [2012] to beat state-of-the-art classification in the
ImageNet challenge.

13.2.1 Discrete convolution

Convolutional neural networks (CNNs) are simply neural networks that use convolution
in place of general matrix multiplication in at least one of their layers. Convolution is a
commutative mathematical operation between two functions

s(t) = (x?w)(t) ≡
∫
R
x(a)w(t− a) da = (w?x)(t) (13.27)

When the integration variable is discretized, the discrete convolution is defined as an
infinite discrete sum following

s(t) =
+∞∑

a=−∞
w(a)x(t− a) (13.28)

In convolutional networks the data are defined on a grid so that in the end the operation
reads for 2D convolution

S(i, j) = (K?I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (13.29)

where K is called the convolution kernel. The minus sign is only present to preserve the
commutative property. In most deep learning frameworks what is actually implemented is
the discrete cross-correlation [Goodfellow et al., 2016, Chap. 9]:

S(i, j) = (K?I)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (13.30)

In this text, discrete convolution is still used abusively to describe the discrete cross-
correlation.

Convolution is interesting because it keeps the intrinsic structure of the data. Deep
learning tasks involve images, sound clips and many other kind of data for which, at least
on one axis, ordering matters. These spatial or temporal structures are completely lost in
the classical feedforward neural network presented in the first section. The basic definitions
regarding discrete convolutions for neural networks is recalled here and the interested reader
can refer to [Goodfellow et al., 2016, Chap. 9] for a more thorough material. Figures of 2D
convolutions presented next are adapted from the github repository https://github.com/
vdumoulin/conv_arithmetic compagnion of the Dumoulin and Visin [2018] paper.

https://github.com/vdumoulin/conv_arithmetic
https://github.com/vdumoulin/conv_arithmetic
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A simple 2D convolution is shown in Fig. 13.5 where a kernel of size 3× 3 is applied on
a 5 × 5 input. The convolution kernel slides across the input producing an output of size
3× 3. The same kernel is applied all across the input so that a similar treatment is applied
all over the input: this allows to preserve locality. From this simple example we can see that
the size of the output is tightly linked with the size of the input and the kernel size. The
stride, i.e. the distance between two consecutive positions of the kernel, and the padding,
i.e. the number of zeros concatenated at the beginning and end of each axis, also play a role
in the size of the output layer.

An example of a 2D convolution kernel of size 3×3 applied on an input of size 5×5 with
1-padding and 2-strides is shown in Fig. 13.6 resulting in an output of size 3× 3.

The examples here only show one input and one output per layer but multiple images can
be used in each layer. The width of each layer defined will be the size of the third dimension
of the kernel k that is the only one that is fixed.

Only two-dimensional convolutions are shown in the figures for simplicity but convolution
can be applied in N -dimensions. The convolution kernel will be a generalized N -dimensional
cube that will slides across the corresponding N -dimensional input.
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Figure 13.5: Simple 2D convolution with no padding, no strides with input size of 5 and
output size of 3.
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Figure 13.6: 2D convolution with 1-padding, 2-strides with input size of 5 and output size
of 3.
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13.2.2 Convolution arithmetic

A few basics of convolution arithmetic is recalled here adapted from Dumoulin and Visin
[2018]. This section assumes:

• 2-D discrete convolutions (N = 2)

• square inputs (i1 = i2 = i)

• square kernel size (k1 = k2 = k)

• same strides along both axes (s1 = s2 = s)

• same zero padding along both axes (p1 = p2 = p)

The general formula relating the input size i to the output size o is:

o =
⌊
i+ 2p− k

s

⌋
+ 1 (13.31)

13.2.3 Pooling layers

CNNs also contain pooling layers to simplify the information in the output from the convo-
lutional layer. A pooling layer takes each feature map output from the convolutional layer
and prepares a condensed feature map: the size of feature maps are reduced using average,
maximum or minimum operations to summarize regions. An example of a pooling operation
in an input of size 5× 5 is shown in Fig. 13.7 where the average is performed from the input
to the output.

13.2.4 Transposed convolution arithmetic

A transposed convolution (or deconvolution) is a transformation going in the opposite di-
rection of a normal convolution, from something that has the shape of the output of some
convolution to something that has the shape of its input while maintaining a connectivity
pattern that is compatible with said convolution.

Let us take a convolution with i = 4, k = 3, s = 1, p = 0. This gives an output size of
o = 2. If the input and output are unrolled into vectors from left to right, top to bottom,
the convolution can be represented as a sparse matrix C:


w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2 0 0 0 0 0

0 w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2 0 0 0 0
0 0 0 0 w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2 0
0 0 0 0 0 w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2


Using this representation, the deconvolution is obtained by transposing C; in other words,

the error is backpropagated by multiplying the loss with CT .
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Figure 13.7: Average pooling from input size 5 to output size 3.
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13.2.5 CNN backpropagation

The CNN backpropagation algorithm proceeds in exactly the same way as the classical
backpropagation algorith by replacing the weight matrix W by the kernel convolution K

and the matrix multiplication by the convolution operation ?.

13.2.5.1 Example of a MNIST network

A typical example of a 2D convolutional neural network is shown in Fig. 13.8. From the
28 × 28 resolution images of the MNIST database, 2D convolution with a pooling layer are
applied two times. Then MLP layers are applied to flatten the output to yield 10 neurons
each representing the probability of the image to be a certain number.

Figure 13.8: MNIST network taken from PyTorch tutorials.





Chapter 14

Elliptic PDEs and Neural Networks

14.1 Introduction to papers

From the earlier chapters, solving the Poisson equation is a complicated task that involves
solving linear systems. In this thesis, attempt to solve the Poisson equation using CNNs
has been carried out in structured grids. The first paper discusses the central role of the
receptive field to correctly predict the potential and electric field from a charge density. We
try to understand how multiple scale architectures, especially the UNet [Ronneberger et al.,
2015], interpret the Poisson equation. Coupling with streamer test cases similar to the ones
described Chap. 10 has been implemented and shows good propagation results where the
speed and energy of the streamer discharges are preserved.

In a second paper, accepted at NeurIPS Workshop Machine Learning and the Physical
Sciences (https://ml4physicalsciences.github.io/2021/), we apply the methodology
discussed above to a more general set of elliptic differential equations, the set of Helmholtz
equations of the photoionization source term presented in Sections. 2.4.4 and 6.5. The global
network parameters found for the Poisson equation also hold true for this more general type
of equations and interaction with transport equations also yield satisfying results.

As recalled in the papers, the PlasmaNet library (https://gitlab.com/cerfacs/plasmanet)
has been written to perform all those studies.

https://ml4physicalsciences.github.io/2021/
https://gitlab.com/cerfacs/plasmanet
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ABSTRACT

The Poisson equation is critical to get a self-consistent solution in plasma fluid simulations used for
Hall effect thrusters and streamer discharges, since the Poisson solution appears as a source term of
the unsteady nonlinear flow equations. Two types of plasma fluid simulations are considered in this
work: the canonical electron plasma oscillation and a double headed streamer discharge. As a first
step, solving the 2D Poisson equation with zero Dirichlet boundary conditions using a deep neural
network is investigated using multiple-scale architectures, defined in terms of number of branches,
depth and receptive field 1. One key objective is to better understand how neural networks learn the
Poisson solutions and provide guidelines to achieve optimal network configurations, especially when
coupled to the time-varying Euler equations with plasma source terms. Here, the Receptive Field
is found critical to correctly capture large topological structures of the field. The investigation of
multiple architectures, losses, and hyperparameters provides an optimal network to solve accurately
the steady Poisson problem. The performance of the optimal neural network solver, called PlasmaNet,
is then monitored on meshes with increasing number of nodes, and compared with classical parallel
linear solvers. Next, PlasmaNet is coupled with an unsteady Euler plasma fluid equations solver in
the context of the electron plasma oscillation test case. In this time-evolving problem, a physical loss
is necessary to produce a stable simulation. PlasmaNet is finally tested on a more complex case of
discharge propagation involving chemistry and advection. The guidelines established in previous
sections are applied to build the CNN to solve the same Poisson equation in cylindrical coordinates
with different boundary conditions. Results reveal good CNN predictions and pave the way to new
computational strategies using modern GPU-based hardware to predict unsteady problems involving
a Poisson equation, including configurations with coupled multiphysics interactions such as in plasma
flows.
Keywords: Convolutional neural network, Poisson equation, plasma oscillation, streamer discharge,
plasma fluid simulations

1All the code in this work is available at https://gitlab.com/cerfacs/plasmanet
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1 Introduction

The Poisson equation is a well-known equation encountered in many fields of physics, from gravitation to incompressible
flows, as well as in plasmas. In the context of plasma numerical simulations, the resolution of the Poisson equation for
the electric field, which appears as source terms coupled to the nonlinear flow equations, is critical to properly describe
the coupling with the charged particles’ density fields. In this context, the Poisson equation relates the electromagnetic
potential 𝜙 to the charge distribution 𝜌𝑞:

∇2𝜙 = − 𝜌𝑞

𝜀0
(1)

where 𝜀0 is the magnetic permeability in vacuum.

The potential gives access to the electric field as E = −∇𝜙. Plasma fluids are made of transport charged species
𝑖 of density 𝑛𝑖 , velocity v𝑖 and specific energy 𝐸𝑖 governed by the Euler transport equations in which the electric
field appears as a source term. The classical way to solve the Poisson equation is to discretize the Laplace operator
on a mesh so that Eq. (1) reduces to a linear system 𝐴𝜙 = 𝑅, where 𝐴 is the Laplace operator matrix and 𝑅 is the
discretized version of the charge density. Direct or iterative methods can be used to solve such linear systems [1]. The
computational cost of solving Eq. (1) increases with the mesh size. Following the idea of FluidNet [2, 3], this work
introduces data-driven methods to accelerate the resolution of the Poisson equation, and investigate their behavior when
coupled to unsteady Euler equations.

The resolution of Partial Differential Equations (PDE) using Machine Learning techniques was first developed in the
mid-1990s, with the introduction of MultiLayer Perceptrons (MLP) [4] to solve a 2D Poisson equation with Dirichlet
boundary conditions [5]. Although showing promising results, these first attempts were quickly limited by the available
computational resources. With today’s computational power as well as the recent development of user-friendly Machine
Learning frameworks, the interest in the resolution of PDEs with Machine Learning has significantly grown. One of the
main milestones in the field was the introduction of Physics informed neural networks (PINN) [6] which incorporates
physical knowledge into the neural networks. For example, training the network to minimize the residual of physical
equations imposes a physical constraint on the network. Such networks employ automatic differentiation [7] resulting
in mesh-free methods. Yet, PINNs have to be trained specifically for each boundary or initial condition, which limits
their practical use, in particular in Computational Fluid Dynamics (CFD).

The capability of neural networks to approximate the solution of PDEs has thus led to the development of various
surrogate models for fluid mechanics simulation. For example, Convolutional Neural Networks (CNN) trained with
physical loss functions have been used to substitute incompressible fluid solvers [8, 2, 3]), obtaining stable simulations
with considerable speed-up. An a posteriori physical correction of the network predictions have also been reported
successful in time-evolving problems [9], avoiding error accumulation in time. For a complete review of the use of
Machine Learning in fluid dynamics, the reader is referred to the review of Brunton et al. [10].

Instead of completely substituting a CFD solver, this work focuses on one particular step of the resolution process: the
Poisson equation. Initial attempts using MLPs [11] were quickly followed by the introduction of CNNs [12, 13], which
were better suited to map the input and output in 2 or 3 dimensions. Nevertheless, they still treated the network as
a separate instance to the fluid solver, as they were trained outside the box and were not coupled to a CFD solver to
validate the methodology on steady or unsteady simulations.

Recent works have used CNNs [2] to solve the Poisson equation, coupled to the fluid solver, embedding the concept
of a simulation into the neural network. Additionally, the hybridization of such embedded networks with standard
Poisson solvers provided fast and robust CFD solvers, especially on configurations with new physics (for example a
network trained with constant density flow, but tested on variable density simulations [3]). Similarly, differentiable fluid
solvers [14] have also recently been introduced, which enabled to encode flow dynamics during the training process.

These works are extended here by training a deep CNN to solve the Poisson equation in the context of plasma flows,
where it is used to obtain the electric field from a charge distribution. A first objective is to better understand how to
design the neural architecture and its associated hyperparameters to achieve stable and accurate plasma flow simulations.
A second objective is therefore to couple the data-driven Poisson solver to a multiphysics Euler plasma unsteady solver,
and evaluate the resulting accuracy and performance (accuracy referring to the precision of the network prediction and
performance to the network inference time). In such time-evolving multiphysics problems, it is found critical (1) to
train the network using a physical-based loss function, and (2) to design optimal network architectures, for which the
receptive field is found essential. In section 2, a first analytical test problem is presented. The methodology based on
CNN is described in section 3 with different loss functions and architectures. In section 4, the datasets used for training
and validation are presented. The accuracy and performance of the neural network solver is assessed in section 5. In
section 6 the coupling of the neural network solver with an Euler plasma flow solver is shown in a canonical test case.
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Finally, in section 7, a more complex test case of plasma discharge propagation in a cylindrical geometry is tackled
using the experience gained from the previous study in cartesian geometry.

2 Problem configuration and solution

The objective is to test the network-based Poisson solver on an academic plasma-fluid problem where analytical solutions
exist. To do so, a simple unsteady problem on a rectangular domain is investigated, with boundary conditions and
geometry allowing analytical resolution. Note however that the present methodology, as FluidNet [2] for incompressible
flows, is not restricted to rectangular domains and simple geometries.

Plasmas are composed of charged species that can be modeled in a fluid formulation [15]. In its simplest form, each
charged species 𝑖 has its own set of Euler equations with electromagnetic source terms (reduced only to the electric
field here) and no collision source terms (supposed to be negligible here by assuming a low-temperature as done in [15,
Chap. 11.1]):

𝜕U𝑖

𝜕𝑡
+ ∇ · F𝑖 = S𝑖 for all species 𝑖 (2)

∇ · E =
𝜌𝑞

𝜀0
(3)

where

U𝑖 =

[
𝜌𝑖
𝜌𝑖u𝑖

𝜌𝑖𝐸𝑖

]
F𝑖 =

[
𝜌𝑖u𝑖

𝜌𝑖u𝑖 ⊗ u𝑖 + 𝑝𝑖I
(𝜌𝑖𝐸𝑖 + 𝑝𝑖)u𝑖

]
and S𝑖 =

[ 0
𝑞𝑖 𝑛𝑖 E

𝑞𝑖 𝑛𝑖 E · u𝑖

]
(4)

where 𝜌𝑖 is the mass density, 𝑛𝑖 the number density, u𝑖 the speed, 𝐸𝑖 the total energy per mass unit, 𝑝𝑖 the pressure of
species 𝑖. Finally 𝜌𝑞 =

∑
𝑞𝑖 𝑛𝑖 is the charge density and E the electric field. From now on, 𝑅 = 𝜌𝑞/𝜀0 is set to alleviate

notations. It will be abusively referred to as the charge density althrough strictly speaking the charge density is 𝜌𝑞 .

In this set of equations, the charged species interact with one another to yield an electric field through the Maxwell-
Gauss equation (3). Without magnetic field, the electric field can be written as E = −∇𝜙 and so Eq. (3) becomes a
Poisson equation (1). When discretizing Eq. (1), the resulting linear system requires iterative methods such as Jacobi or
Conjugate gradient [1] to be solved. In most plasma-fluid simulations of real applications, this resolution represents up
to 80% of the total CPU cost and limits the computation capability.

Eq. (1) must be completed with proper boundary conditions, taken here as zero-Dirichlet conditions, (i.e., imposing
𝜙 = 0 on all the boundaries). The equation is computed on a square domain with uniform spacing Δ in the 𝑥 and 𝑦
directions. Thus the problem can be recast as

{∇2𝜙 = −𝑅 in Ω̊

𝜙 = 0 on 𝜕Ω

(5)
(6)

where Ω̊ refers to the internal computational domain and 𝜕Ω to its boundary. Applying Dirichlet boundary conditions
on a domain of size (𝐿𝑥 , 𝐿𝑦) allows the derivation of analytical solutions, written in terms of spatial Fourier series (A)
as

𝜙(𝑥, 𝑦) =
+∞∑︁
𝑛=1

+∞∑︁
𝑚=1

𝜙𝑛𝑚 sin
(
𝑛𝜋𝑥

𝐿𝑥

)
sin

(
𝑚𝜋𝑦

𝐿𝑦

)
(7)

𝜙𝑛𝑚 =
𝑅𝑛𝑚[(

𝑛𝜋
𝐿𝑥

)2
+
(
𝑚𝜋
𝐿𝑦

)2
] (8)

𝑅𝑛𝑚 =
4

𝐿𝑥𝐿𝑦

∫
𝑥′,𝑦′

sin
(
𝑛𝜋𝑥 ′

𝐿𝑥

)
sin

(
𝑚𝜋𝑦′

𝐿𝑦

)
𝑅(𝑥 ′, 𝑦′) d𝑥 ′ d𝑦′ (9)

where the profile of charge density 𝑅(𝑥 ′, 𝑦′) may be of any kind.

To compute the analytical solution, spatial Fourier modes 𝑅𝑛𝑚 of the charge density are first computed Eq. (9). Then
the potential Fourier coefficients 𝜙𝑛𝑚 are derived from 𝑅𝑛𝑚 with Eq. (8). Thus the resulting potential has a diffused
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shape compared to the charge density. An example is given in Fig. 1, showing the potential (𝜙, left) and the electric
field (E, middle), obtained with a charge distribution (𝑅 = −∇2𝜙, right) consisting of two Gaussian functions. The two
Gaussian peaks, clearly visible on the charge density field, are totally diffused and merged in the resulting potential,
highlighting the low-pass filter behavior of the inverse Laplacian operator. Note that this solution is of little practical
use: for 𝑁 (resp. 𝑀) modes along the 𝑥 (resp. 𝑦), 𝑁 × 𝑀 integral evaluations Eq. (7) are necessary to compute the
potential. For a low-frequency charge density profile such as the two gaussians, 𝑁 = 𝑀 = 10 modes in each direction
are required to get below 1% of error on the 1-norm of the electric field. For high-frequency profiles such as the one
depicted in Fig. 6 𝑁 = 𝑀 = 50 modes in each direction is necessary so that 2500 domain integrals need to be computed.
Therefore this solution can help us understand the structure of the solution and can serve as a reference solution for
comparison with neural network predictions, but it is too computationally expensive to be used in a simulation.

Figure 1: Potential [V] and electric field [V.m−1] (norm in color and direction with arrows) associated to a two-Gaussians
charge density [V.m−2] in a 1 cm2 domain.

3 Neural networks and methods

Deep neural networks are composed of multiple tunable neurons that can learn complex functions. To do so, a
non-convex optimization procedure is performed to update the neuron weights by minimizing a cost function (the loss
function). This loss function is crucial, and several metrics are presented and tested in this work. Neural networks are
denoted by 𝑓 such that

𝜙out = 𝑓 (𝑅in) (10)

The target solution (potential obtained with a linear solver) is on the other hand denoted by 𝜙target.

3.1 Loss functions

Two kinds of loss functions are used: one for the interior points corresponding to Ω̊ and the other one for the boundary
points 𝜕Ω, as introduced in Eqs. (5)-(6).

In deep neural networks on supervised tasks, pixel-to-pixel distances are often used as loss functions for training and
are defined as InsideLoss Eq. (12) and DirichletLoss Eq. (11). For the DirichletLoss, the target value
of the boundary points is known from the problem definition (0 in the chosen configuration here). However for the
InsideLoss a pre-computed target dataset to which the network prediction is compared is needed. An alternative is
the LaplacianLoss which uses the residual of Eq. (5) and therefore avoids to solve the Poisson equation with linear
solvers. Two combinations of losses will be thus tested: DirichletLoss - InsideLoss and DirichletLoss -
LaplacianLoss.

• DirichletLoss:

L𝐷 (𝜙out) = 1
𝑏𝑠 (2𝑛𝑥 + 2𝑛𝑦 − 4)

∑︁
𝑏, 𝑗,𝑖

(𝜙𝑏, 𝑗,𝑖
out )2 (11)

• InsideLoss:

L𝐼 (𝜙out, 𝜙target) = 1
𝑏𝑠 (𝑛𝑥 − 1) (𝑛𝑦 − 1)

∑︁
𝑏, 𝑗,𝑖

(
𝜙
𝑏, 𝑗,𝑖
out − 𝜙

𝑏, 𝑗,𝑖
target

)2
(12)
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• LaplacianLoss:

L𝐿 (𝜙out) =
𝐿2
𝑥𝐿

2
𝑦

𝑏𝑠 (𝑛𝑥 − 1) (𝑛𝑦 − 1)
∑︁
𝑏, 𝑗,𝑖

(
∇2𝜙

𝑏, 𝑗,𝑖
out + 𝑅

𝑏, 𝑗,𝑖
in

)2
(13)

where 𝑏𝑠, 𝑛𝑥 , 𝑛𝑦 refer to the batch size (number of training examples used in one iteration of learning), number of
nodes in 𝑥 and 𝑦 directions, 𝑏, 𝑗 , 𝑖 refer to the indices of the batch size, the 𝑦 and 𝑥 directions respectively.

3.2 Network architectures

The analytical derivation Eq. (7) highlighted the low-pass behavior of the inverse Laplace operator. Spatial scales
are therefore crucial when solving a Poisson equation, which therefore drives the choice of the neural network: the
Multi-Scale (denoted MSNet) architecture [16] and UNet architecture [17] embed the notion of spatial scales, with
dedicated treatment of the various scales contained in the input.

The MSNet has been designed for video predictions [16] for which classical deep networks failed to capture accurately
the largest scales of the inputs. This architecture has already been used for different flow applications, such as the
super-resolution of turbulent flows [18] and the propagation of acoustic waves [19]. Generally speaking this network
consists of 𝑛𝑠 scale channels (a sketch of a 𝑛𝑠 = 3 network is presented in Fig. 2). In each channel 𝑖, the initial images
are downsampled from 𝑛𝑝 pixels to

⌊
𝑛𝑝/2𝑖

⌋
pixels per direction. From now on the image resolution is either defined

in terms of spatial spacing Δ or number of pixels (𝑛𝑝). A series of convolutional layers is applied and the output of
channel 𝑖 goes to channel 𝑖 − 1 except for the 𝑖 = 0 scale channel.

1× n2

1/4

2× n2

1/2 64× n2

1/2 1× n21× n2

1/2

2× n2

p 128× n2

p 1× n2
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∗
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p
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b = 1
db = 2
RFb = 8

R R
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R R
∗

∗

nb = 3 D = 6 RF = 22

b = 0

RFb = 4
db = 2

RFb = 16

n1/2 = np/2

∗

Upsampling/Deconvolution

Convolution layer

MaxPooling/Downsampling

R ReLU function

Figure 2: Sketch of MSNet with 𝑛𝑠 = 3.

The UNet was first introduced for biomedical segmentation [17], and it has been widely used by the ML-CFD
community [20, 21]. A sketch is presented in Fig. 3. A series of encoding layers are applied, each time decreasing
the number of pixels by a power of 2 in each direction as in the MSNet. What differentiates the UNet from a simple
encoder-decoder network is the skip connection which links every enconding layer to its decoding counterpart.

In both MSNet and UNet, the local branch 𝑏 is defined as the power of 2 by which the initial resolution is divided by, in
a specific scale of the network. The number of branches 𝑛𝑏 of the network is the number of scales involved (𝑛𝑏 = 𝑛𝑠).

The local depth 𝑑𝑏 is defined as the number of successive convolutional layers in branch 𝑏. The global depth 𝐷 of the
network is then the sum of the local depths, assuming that 𝐷 corresponds to the longest path from input to output. The
higher the depth of the network, the more likely vanishing or exploding gradients can appear.

𝐷 =
𝑛𝑏−1∑︁
𝑏=0

𝑑𝑏 (14)

5



1× n2

p

∗

Upsampling/Deconvolution

Convolution layer

MaxPooling/Downsampling

R ReLU function

32× n2

p

∗
R

32× n2

1/2 32× n2

1/2

∗
R

32× n2

1/4 64× n2

1/4

∗
R

96× n2

1/2 64× n2

1/2

∗
R

96× n2

p 32× n2

p

∗
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p
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Figure 3: Sketch of UNet with 𝑛𝑠 = 3.

3.2.1 Receptive field

In a convolutional neural network (CNN), from one layer to the next, information propagates according to the kernel
size 𝑘𝑠 of the convolution layer. Typically, one layer with 𝑘𝑠 = 3 gathers information from a neighboring of 3 × 3 pixels
only, and therefore cannot capture large structures. However, when several layers of convolution are applied, points
that are far away from each other in the input image can interact with each other, which allows larger structures to be
detected. As an illustration, the domain of influence of the center point of an image with two convolutional layers at
different branches 𝑏 is depicted in Fig. 4. To help capturing the largest scales, MSNet and UNet employ downscaled
branches: by downscaling the input image by a factor 2, the second branch in Fig. 4b tackles flow structures twice as
big as the first branch in Fig. 4a.

Layer 0

Layer 1

Layer 2

(a) 𝑏 = 0 𝑑𝑏 = 2 𝑘𝑠 = 3

Layer 0

Layer 1

Layer 2

(b) 𝑏 = 1 𝑑𝑏 = 2 𝑘𝑠 = 3

Figure 4: Domain of influence of the center point across two convolutional layers with a kernel size of 3.

To quantify the information propagation the global receptive field RF is defined as the size of the domain of influence of
the input center point in number of points in the original scale 𝑛𝑝 . The receptive field can be splitted into local receptive
fields per branch RF𝑏 so that

RF =
𝑛𝑏−1∑︁
𝑏=0

RF𝑏 (15)
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with

RF𝑏 =

{
1 + 𝑑𝑏 (𝑘𝑠 − 1)2𝑏 if 𝑏 = 0
𝑑𝑏 (𝑘𝑠 − 1)2𝑏 otherwise

(16)

where the branch 𝑏 = 0 needs to take into account the original input pixel (+1) and 𝑘𝑠 is the kernel size of all the
convolutional layers of the network (supposed to be equal). In Fig. 4a, 𝑏 = 0, 𝑘𝑠 = 3 so that every layer extends the
receptive field by (3 − 1)20 = 2 and the branch receptive field is RF0 = 1 + 4 = 5. In Fig. 4b, 𝑏 = 1, 𝑘𝑠 = 3, the initial
RF from previous branches is equal to 2 (RF0 = 1) and the grid that is actually processed by the convolutional kernel is
2 times coarser (black thick line) compared to the orignial grid (thin gray line). Hence every layer extends the receptive
field by (3 − 1)21 = 4 which is 2 times more than the previous branch yielding a receptive field of RF1 = 8 for that
branch and the total receptive field in the end is RF = RF0 + RF1 = 10 which corresponds to the size of layer 2.

In [22], a theoretical receptive field is defined as the size of the input domain of influence on the output center point.
Tests carried on the studied UNets and MSNets show that this definition matches Eq. (15) so that both formulations
are equivalent. However, the importance of the domain influence is not uniform, as points closer to the studied pixel
will have more paths to influence the output, resulting in a gaussian-like distribution [23]. The distribution helps
to understand the behavior of the CNN, as it will especially focus on a smaller centered region, known as effective
receptive field, while still being influenced by information located on the boundaries of the receptive field.

One convolutional layer in branch 𝑏 contributes two times more to the receptive field than a convolutional layer in
branch 𝑏 − 1. The local and global properties defined in this section are reported for the simple MSNet3 and UNet3 in
Fig. 3.

The receptive field analysis is particularly of interest in view of the elliptic nature of the Poisson equation, which does
not load to characteristic lines and propagates information only spatially, every point of the domain influencing the
whole domain. This suggests that the neural network should see the whole input image to predict correctly the solution.

3.3 Normalization

A neural network learns well from inputs and outputs that span approximately the same range of values [24]. For
example in image prediction, the network needs to output a field of values in the interval [0 ,1] from values that are also
in [0, 1] [25]. In the present case, the potential maximum value is not known a priori, so that only the density charge is
rescaled as

𝜙out = 𝑓 (𝑅in) where 𝑅in = 𝑅in ×
����𝜙out
𝑅in

����
max

(17)

which ensures maximum values of the input and output of the same order.

A reasonable value for the ratio of the potential over the charge density needs to be found. From the solution of the
potential in terms of Fourier series, the following normalization is chosen:

����𝜙out
𝑅in

����
max

=
𝛼(

𝜋2

4

)2 ( 1
𝐿2
𝑥
+ 1

𝐿2
𝑦

) (18)

where 𝛼 = 0.1 is used. More details on the derivation of this relation can be found in B. This value is actually correlated
with the FWHM (Full Width Half Maximum) of the charge density 𝑅. The higher the value of the FWHM, the higher
the maximum value of the potential 𝜙.

Besides bringing the values of the input and output of the networks to the same orders of magnitude, this normalization
also brings similarity in domain-length: the normalized solution in a square box of length 𝐿𝑥 and resolution Δ is similar
to the one in a square box of length 𝛼𝐿𝑥 and resolution 𝛼Δ.

3.4 Resolution scaling

After the training of the network in a square box of length 𝐿𝑥 and resolution Δ1 the problem of the applicability of this
network to a square box of length 𝐿𝑥 and resolution Δ2 is discussed in this section.
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The Laplacian operator with a resolution Δ can be nondimensionalized:

∇2
Δ =

𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2 =
1
Δ2

(
𝜕2

𝜕𝑥2 + 𝜕2

𝜕�̄�2

)
(19)

where the overbar indicates nondimensionalized physical values. The nondimensionalized operator should be the
conserved quantity between two resolutions. Denoting by Δsim the resolution of the simulation and by ΔNN the resolution
at which the neural network was trained, the following relationship holds:

∇2
Δsim

=
Δ2

NN

Δ2
sim

∇2
ΔNN

. (20)

What the network is emulating is in fact the inverse of the Laplacian, hence:

(∇2
Δsim

)−1 =
Δ2

sim

Δ2
NN

(∇2
ΔNN

)−1 (21)

so that the initial neural network guess needs to be multiplied by a ratio of resolutions to be applied to other resolutions.

4 Datasets

In the present work, two types of datasets are proposed, where the spatial scales can be controlled. The objective is to
better understand how the neural network can learn, and then predict accurately the various scales of the solution in
the context of the Poisson equation. To do so, two types of datasets will be generated: (i) a random dataset, and (ii) a
random Fourier dataset.

4.1 Random dataset

First proposed by Ozbay [12], a random distribution of values in the range [−1, 1] is generated in a coarse grid of size
𝑛coarse = b𝑛𝑝/𝑐c, 𝑛𝑝 being the number of points in each direction and 𝑐 a chosen filter size. Then bicubic interpolation
generates a random field with controlled structure size on the target grid. The minimum structure is of size 𝑐 pixels.
This procedure is illustrated for 𝑐 = 16 in Fig. 5. From now on, random_c will be used to denote 𝑐-random datasets.

Figure 5: Random values taken in a 6 × 6 coarse grid (left) and interpolated in a 101 × 101 fine grid (right) where
𝑐 = 16.

An example of (𝜙,E, 𝑅 = −∇2𝜙) is shown in Fig. 6 for a random dataset filetered with 𝑐 = 8.

4.2 Random Fourier dataset

Also proposed by Ozbay [12], a random Fourier dataset is obtained by setting randomly the coefficients 𝑅𝑛𝑚 of Eq. (9),
and introducing maximum frequencies (𝑁 and 𝑀) in the sums:

𝐴(𝑥, 𝑦) =
𝑁∑︁
𝑛=1

𝑀∑︁
𝑛=1

𝐴𝑛𝑚 sin
(
𝑛𝜋𝑥

𝐿𝑥

)
sin

(
𝑚𝜋𝑦

𝐿𝑦

)
for 𝐴 ∈ {𝜙, 𝑅} (22)
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Figure 6: Example of random_8 source term input in a 1 cm2 domain.

where 𝜙𝑛𝑚 is deduced from 𝑅𝑛𝑚 thanks to Eq. (8).

The value of 𝑅𝑛𝑚 are taken randomly following a power 𝑝 decreasing law to mimic the high-frequency damping of
physical solutions:

𝑅𝑛𝑚 (𝑝) ∼ 1
𝑛𝑝 + 𝑚𝑝

𝑒𝑛0
𝜀0

U(−1, 1). (23)

where U(−1, 1) corresponds to a uniform distribution over the range [−1, 1].
One example of a Fourier dataset is shown in Fig. 7. Note that in this case, the low number of modes of the dataset
(𝑁 = 𝑀 = 3) allows a clear correlation between the potential and the charge distribution contrary to Fig. 6. This dataset
allows therefore to understand the frequency response of the network by selecting particular frequencies. From now on,
fourier_N_p will be used to denote (𝑁, 𝑝)-Fourier datasets.

Figure 7: Example of Fourier dataset item with 𝑁 = 𝑀 = 3 modes and 𝑝 = 0 in a 1 cm2 domain.

5 Single frame inference of the potential and electric field

This section focuses on the training and prediction of the single Poisson solution for the potential and electric field,
i.e., without coupling with the unsteady plasma Euler equations. The behavior of the networks when changing the
architecture, loss function and dataset is evaluated. Training was typically performed over 300 epochs with 101 × 101-
resolution datasets containing 10 000 snapshots (8000 for training and 2000 for validation) in a 1 cm2 domain. All
the networks are constructed with around 100 000 parameters, where the number of filters per layer is changed to
approximately match this number when the number of branches is changed. All evaluations are performed at epoch 300.
A summary of the parametric study is given in Tab. 1. All computations were carried out using in-house Nvidia Tesla
V100 SXM2 32 Gb GPUs.

5.1 Metrics

To monitor the accuracy of the networks the 1-norm and infinity norm residuals are used:
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Architecture UNet, MSNet
Number of branches 3, 4, 5

Receptive field 50, 75, 100, 150, 200
Number of parameters 100 000

Training snapshots 10 000
Training resolution 101 × 101
Table 1: Overview of the parametric study
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for 𝑢 ∈ {𝜙,E} and where the index 𝑖 spans all the relevant sizes of batch, dimension and directions x and y. The
networks are evaluated on random and fourier datasets where each evaluation dataset contains 1000 snapshots.
One network trained on random_8 snapshots and evaluated on the batch of datasets is shown in Fig. 8. The accuracy
of the network on Fourier datasets slightly decreases with an increasing number of modes 𝑁 and is also observed when
𝑐 increases for the random datasets. Overall both metrics give similar levels on all the datasets and are on the same order
of magnitude not showing overfitting on the training dataset. From now on datasets are not expanded and a combined
dataset evaluation is implied, i.e., the accuracy of the network is evaluated on the concatenation of the 6 datasets show
in Fig. 8.
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Figure 8: Datasets evaluation for 1-norm error of the potential (left) and electric field (right) with a UNet of 𝑛𝑏 =
3, 𝑘𝑠 = 3,RF = 100.

Trainings have been carried out with both random and fourier datasets separately. random-trained networks
are unambiguously better with both metrics and losses than fourier-trained networks. random datasets seem to
contain more information about the Poisson equation and have therefore been preferred for training in all the following
discussions while fourier datasets have been retained for a posteriori analysis.

5.2 Physical loss

The LaplacianLoss depends only on the input and output of the network and does not need any target value. It is
supplemented by the DirichletLoss to give a reference for the potential.

In a numerical simulation, the quantity of interest is the electric field E which as a derivative of the potential requires
sufficient smoothness of the potential solution. Moreover, the electric field appears as a source term in the species 𝑖
momentum equation, which in turn impacts the species 𝑖 mass density (first term of F𝑖). As a consequence, second-order
smoothness on the potential must be ensured for the simulation to be stable.

Comparing the application of the InsideLoss and LaplacianLoss in training in Fig. 9 shows a better accuracy
on the 1-norm and infinity-norm (not shown here but similar) on the potential with InsideLoss. On the electric field
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Figure 9: Comparison of InsideLoss and LaplacianLoss across random_8-trained UNets with number of
branches from 3 to 5 and RFs from 50 to 200. 1-norm of the potential (left), 1-norm (center) and infinity-norm (right)
of the electric field.

1-norm, both losses are comparable with slightly better accuracy for the LaplacianLoss. However the infinity-norm
of E obtained with the InsideLoss is one order of magnitude greater than with the LaplacianLoss. This
indicates few points where the electric field is unphysical and cannot be tolerated in the numerical simulation of the
Euler plasma equations.

The inference of the same network, either trained with LaplacianLoss or with InsideLoss highlights the
smoothing effect of the LaplacianLoss, while the Laplacian of the infered potential for an InsideLoss-trained
network is completely unphysical. Comparing Fig. 10(top) with Fig. 1 there is a very good agreement between the
LaplacianLoss and linear solver solution. Consequently LaplacianLoss with DirichletLoss are chosen
from now for all subsequent cases.

5.3 UNet vs MSNet

UNet and MSNet architectures are compared in this section. The same number of parameters (around 100 000) and the
same receptive fields and numbers of branches are used for both architectures. Comparison is shown in Fig. 11. From
these results, it appears that UNet architectures are better suited than MSNet architectures for the problem at hand over
all parameters used. Thus only UNet architecture will be considered in the following.

One way to explain this difference may be found in the way each architecture goes from one scale to the other. MSNet
has been designed to make video prediction [16] from one frame to the other and understand local movement, so only
local information propagates from one snapshot to the other. Looking at Fig. 2, MSNets compact the information of one
scale in one feature map before inserting it to the next scale. On the other hand, UNets in Fig. 3 apply a skip connection
as well as an upsampling at the end of every intermediate scale, always keeping all relevant information.

5.4 Receptive field

Figure 12 shows the evaluation of UNet on the same resolution as the trained resolution, containing 3 to 5 branches,
where the receptive fields vary from 50 to 200. Due to the definition of the receptive field, RF = 100 corresponds to the
situation where the middle point of the input images can influence the whole output solution. The boundary pixels,
however, do not influence the whole domain yet but only one quarter. Only when the receptive field reaches 200, any
point of the input image influences the whole output domain, including the boundaries.

A first look at the results shows that networks with the same receptive have a similar behavior whatever the number of
branches and depth, which therefore do not influence by themselves the network performance. This can be understood
by looking at the structure of the Poisson equation: elliptic differential equation solutions need the information of the
whole domain at every point. This elliptic nature is highlighted in the analytical solution of the problem where domain
integrals are present to compute the Fourier coefficients of the charge density 𝑅𝑛𝑚 Eq. (9).
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(a) LaplacianLoss

(b) InsideLoss

Figure 10: Potential [V] and electric field [V.m−1] (norm in color and direction with arrows) associated to a two-
Gaussians charge density [V.m−2] in a 1 cm2 domain for UNet with 𝑛𝑏 = 3, RF = 100. Top: LaplacianLoss.
Bottom: InsideLoss.
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Figure 11: Comparison of MSNet and UNet architectures for different receptive fields [50-200] and numbers of branches
[3-5]. 1-norm of the potential (left), 1-norm (center) and infinity-norm (right) of the electric field.
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Moreover, due to the potential damping Eq. (8) in 𝑛2 and 𝑚2, the low frequencies have the highest amplitudes. So it is
critical for the network to be able to capture the whole domain when going through convolutions hence the importance
of the receptive field. Thus accuracy improves when the receptive field increases because the network is able to capture
the dominant longer wavelength content.

Accuracy is similar for different number of branches when keeping the receptive field constant. There is however a
performance gain in higher number of branches networks. The convolutions are applied on lower resolution images,
decreasing substantially the inference time at fixed number of parameters.
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Figure 12: Error metrics of UNet for different receptive fields and numbers of branches from 3 to 5 branches and
receptive fields from 50 to 200. 1-norm for the potential (left), 1-norm (center) and infinity-norm (right) for the electric
field.

A Fourier decomposition of the network outputs and target potential field is carried out to confirm this interpretation.
The amplitudes of the first two modes are shown in Fig. 13. The amplitude of the fundamental mode 𝜙11 follows the
same trend as the other metrics and is at least an order of magnitude greater than the other first modes 𝜙12, 𝜙21, 𝜙22
indicating that it drives the errors. Having a high receptive field should mostly impact all modes with 𝑛 = 1 or 𝑚 = 1,
i.e., modes that contain a wavelength equal to the length of the domain.
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Figure 13: Error of amplitude of the first two modes of UNet solution for different receptive fields and numbers of
branches.

As explained in the beginning of the subsection, the monotonic decrease of the residuals from RF = 50 to RF = 200 is
due to saturation of the domain of influence of every point. No significant increase of accuracy should be observed for
higher receptive fields as the fundamental mode would not be better captured. This is shown in Fig. 14 for UNet5 from
RF = 200 to RF = 400.
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As discussed previously networks with higher number of branches have faster resolution times due to faster convolutions
when the number of points is lowered in the downscaled branches. There is however a limit to the number of branches
due to the lowest resolution branch. The size of the lowest resolution branch images (𝑛𝑝/2𝑛𝑏−1) should be greater than
the kernel size (𝑘𝑠) of the convolutional layers of that branch otherwise no information propagation is taking place
(i.e. the most downscaled input image is smaller than the kernel size). For the 101 × 101 resolution images this means
that UNet5 is an optimum because b101/24c = 6 > 𝑘𝑠 = 3 whereas for UNet6 b101/25c = 3 = 𝑘𝑠 . Thus adding a new
branch at fixed number of network parameters is detrimental for the accuracy of the network. In the case of the UNet6,
weights and biases used in the last branch (𝑏 = 5) are useless because no relevant information can be extracted from
this scale. This is demonstrated in Fig. 14 where the accuracy of the UNet6 is significantly less than UNet5 at the same
receptive field. A gain of accuracy is observed for UNet6 when the receptive field increases whereas it is constant for
UNet5. Since the weights of branch 𝑏 = 5 are meaningless, the UNet6 acts as a reduced UNet5 with less parameters
and a lower receptive field. The contribution to the receptive field of branch 5 RF5 of the three UNet6-RF200/300/400
are respectively: 64, 128 and 192. The resulting effective receptive fields RFeff = RF − RF5 are thus 136, 172 and 208
and the increased accuracy can be explained following the same reasoning as the beginning of the section.
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Figure 14: Error metrics of UNet for different receptive fields with high number of branches.

To sum up, for maximizing accuracy the receptive field should be chosen to saturate the domain of influence of any
input point. That way the network correctly captures the low spatial frequencies which are dominant in most of the
real-engineering physical fields. For performance optimization, the number of branches should be maximized as long as
there is meaningful information in the downsampled branches (domain size bigger than the kernel size). Hence the
optimal global parameters of the network for a given number of pixels 𝑛𝑝 should be:

RF = 2𝑛𝑝 (26)

𝑛𝑏 = max{𝑏 ∈ N| b𝑛𝑝/2𝑏c > 𝑘𝑠} + 1 (27)

5.5 Resolution invariance and spectral analysis

Thanks to the resolution scaling in Section 3.4, the network is able to work on resolutions different from the training
resolution. Spectral analysis on different resolutions from a network trained on a single resolution is conducted in this
section, where the optimum UNet5 with RF = 200 trained on 101 × 101 resolution images is used.

The sine modes Eq. (22) for which the exact solutions are known are used to conduct the spectral analysis. Each mode
is studied separately so that only one term 𝐴𝑛𝑚 of the double sum in Eq. (22) is taken. The 1-norm residuals of the
neural network potential and electric field of the UNet5-RF200 are shown in Fig. 15 for different values of (𝑛, 𝑚) as
functions of the domain resolution.

The minimum residual is found at the trained resolution of 101 for both metrics. At that resolution, the (𝑛, 𝑚) = (1, 1)
mode error is for the potential and electric field more than one order of magnitude higher than the (𝑛, 𝑚) = (10, 10)
mode error. This tendency remains true at other resolutions so that the longer the wavelength the harder it is for the
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network to capture it correctly. Moreover, the frequency response of the network when increasing the resolution is not
the same: the loss of accuracy for shorter wavelengths (red curves) is lower than higher wavelengths (blue curves).
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Figure 15: 1-norm of the potential (left) and electric field (right) residuals for different modes (𝑛, 𝑚) and different
resolutions with UNet5, RF = 200.

The optimal network can thus work on resolutions that are different from the trained resolution, but errors grow as
the tested resolution differs from the training one. One needs to keep in mind the loss of accuracy which is higher
for longer wavelengths than shorter wavelengths. This loss of accuracy for resolutions that differ from the training
resolution could be compensated either by interpolating the inference domain to the training resolution, by introducing
a hybrid strategy [26] which combines the network prediction with traditional iterative solvers to ensure a user-defined
accuracy level or by training the network on multiple resolutions. However, these methods count with their own
drawbacks that limit their use. On the one hand, interpolating the domain to the training resolution is a computationally
expensive process, which considerably increments the time taken to complete the simulation. Moreover, even if the
network accuracy increases on the interpolated domain, the interpolation introduces high frequency oscilations which
are amplified by the network resulting in more unstable simulations. On the other hand, a hybrid strategy is suited to
mitigate high frequency errors, as the charge field is locally difussed. However, iterative Jacobi solvers are not suited to
cope with errors associated with long wavelengths, especially on high resolution domains. To correct the error related to
low frequency modes, the number of needed Jacobi solver iterations is too high, considerably increasing the simulation
time.

Note that finding strategies to make CNN work on multiple resolutions is still an open topic, which requires effort
[12, 27] and is out of the scope of the present paper. However, the guidelines obtained in this study, highlighting the
key role of the receptive field and number of downscaled branches, are a first attempt to better understand how the
CNN architecture learns the spatial distribution of the outputs. These guidelines could be reused to build efective CNN
methods able to generalize on variable resolutions.

5.6 Neural network performance

Neural networks run best on GPUs whereas linear system solvers have been historically run on CPUs. To assess
the neural network performance against classical linear solvers, CPU and GPU performances need to be compared.
The methodology applied here is as follows: given a computational node containing CPUs and GPUs, the speedup
when activating or not the GPUs compared to the use of all the CPUs available in one node is assessed. This
indicates the potential speedup that the neural network can provide compared to a classical linear system solver
running on the same CPUs. Code to run all the benchmarking presented in the following is available at https:
//gitlab.com/cerfacs/plasmanet.

Two configurations have been used in our local cluster: config_1 is a bi-socket Intel node with 2 x 18 core Xeon
Gold 6140 (2.3 Ghz clock speed and 96 Gb memory) interacting with 4 NVIDIA V100 32 Gb GPUs where only one of
the four GPUs is used in this study. The second configuration config_2 is a bi-socket AMD node with 2 x 64 core
EPYC Rome 7702 (2 Ghz clock speed and 512 Gb of memory) interacting with a single NVIDIA A100 40 Gb GPU.
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Therefore following the methodology, we use all the cores available in one computational node (36 for config_1 and
128 for config_2) to assess the minimal resolution time of linear Poisson solvers using PETSc [28].

The Dirichlet boundary conditions Poisson problem on the 2D square of 1 cm2 with two Gaussian charge density is
used to compare the linear system solver and neural network solver performances. In the case of the linear system
solver, the matrix has been symmetrized so that it is positive symmetric definite. Various linear solvers have been tested
and results are presented in C. The Conjugate Gradient (CG) method [29, Chap. 6.7] as iterative solver and HYPRE
BoomerAMG [30] preconditioner is the highest performing option in this case. To get closer to the accuracy of the
neural network solver, the relative tolerance of the iterative solvers has been raised to 10−3 where a 4 times speed up is
observed compared to a 10−12 relative tolerance as shown in Fig. 16 for config_1. All the execution times shown
with PETSc or the neural network solver are averages taken over 20 resolutions.
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Figure 16: Performance of linear solver when raising the relative tolerance for different AMG solvers on config_1.

The neural network performance compared to PETSc linear system solver using CG-BoomerAMG is shown in Fig. 17a
on config_1 where the total execution times, model inference times and communication times of the network are
shown. At high number of mesh nodes, the linear solver run time on 36 cores is higher than the neural network total run
time by a factor of 2.5 for 30 × 106 mesh nodes. Concerning the GPU performance, the communication time increases
with the number of nodes and becomes a significant part of the execution time, as expected. Note that only one of the
four GPUs available on the computational node has been used as inference on multi-GPUs is not implemented for the
neural network. The maximum resolution of 5501 × 5501 corresponds to the maximum memory of the GPU at hand
(32 Gb) and depends on the hardware available. This is a clear limitation of the neural network solver as it is much
more memory consuming than the classical linear system solver: the UNet5 network architecture used at 5501 × 5501
resolution use up around 30 Gb whereas a single float 64 array of 5501 × 5501 is around 200 Mb.

Results for config_2 are shown in Fig. 17b. The GPU memory is higher (40 Gb against 32 Gb for V100 GPU) and
the number of cores available as well (128 against 36 for config_1). The higher memory allowed the inference
of a finer resolution at 6001 × 6001 (the point at 3.6 × 107 number of nodes in Fig. 17b). For this configuration, the
resolution time of the neural network running on the A100 GPU is about a factor 2 lower than the linear system solver
on 128 cores, making it a viable option in terms of performance.

Comparing the V100 and A100 GPUs, a similar communication time, i.e. the time taken by the CPUs to send the data
to the GPU, is observed. However the model time, i.e. the application of the neural network on the GPU, is about two
times faster for the A100 GPU compared to the V100 GPU.

Thus, deep neural networks are shown to effectively accelerate simulations. This study paves the way for future ones to
further analyze and improve inference times and memory cost of the neural networks.
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Figure 17: Performance of linear solver (CG-BoomerAMG) against neural network solver.

6 Neural networks and canonical plasma fluid simulation

From the previous section, at a resolution of 𝑛𝑝 = 101 pixels in each direction, a 100 000 parameter UNet architecture
trained on a random_8 dataset, with receptive field RF = 5 and number of branches 𝑛𝑏 = 5 using a combined
LaplacianLoss-DirichletLoss is chosen for best network accuracy and performance. The target test case
corresponds to the plasma oscillations in a square domain, in order to have analytical solutions of this space-time
evolving plasma problem to assess both accuracy and performance of the proposed method. The network solves the
Poisson equation in place of the linear system solver coupled to the plasma Euler equations. The performance of both
solvers is fully analyzed.

6.1 2D plasma oscillation test case

One of the fundamental properties of plasmas is to maintain electric charge neutrality at a macroscopic scale under
equilibrium conditions. When this macroscopic charge neutrality is disturbed, large Coulomb forces come into play and
tend to restore the macroscopic charge neutrality [15, Chap. 11.1].

Electrons and positive ions with charge 𝑒 are considered. Ion motion is neglected since its mass is way larger than that
of the electrons. A very small electron density perturbation 𝑛𝑒 is initialized such that:

𝑛electron (r, 𝑡) = 𝑛0 + 𝑛𝑒 (r, 𝑡) (28)
𝑛ion (r, 𝑡) = 𝑛0 (29)

where 𝑛0 is a constant number density and |𝑛𝑒 | � 𝑛0. Linearization of the momentum equation, combined with the
mass equation and the Maxwell-Gauss equation [15, Chap. 11.1] yields:

𝜕2𝑛𝑒
𝜕𝑡2

+ 𝜔2
𝑝𝑛𝑒 = 0 where 𝜔𝑝 =

√︄
𝑛𝑒𝑒2

𝑚𝑒𝜀0
(30)

The electron density varies harmonically in time at the electron plasma frequency 𝑓𝑝 = 𝜔𝑝/2𝜋, or oscillation period
𝑇𝑝 = 1/ 𝑓𝑝 and it can be shown that the electric field does as well.

Note that the initial electron perturbation 𝑛𝑒 (𝑥, 𝑦, 𝑡 = 0) can be chosen arbitrarily, in the end electron density and
electric field profiles vary harmonically at pulsation 𝜔𝑝:
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𝑛𝑒 (𝑥, 𝑦, 𝑡) = 𝑛𝑒 (𝑥, 𝑦, 𝑡 = 0) cos
(
𝜔𝑝𝑡

)
(31)

E(𝑥, 𝑦, 𝑡) = E(𝑥, 𝑦, 𝑡 = 0) cos
(
𝜔𝑝𝑡

)
(32)

This plasma oscillation can be simulated by discretizing the 2D plasma Euler equations in a cell-vertex formulation
with a classical Law-Wendroff scheme (second order in time and space) [31, Chap. 4].

Taking a typical value for the background density [32], 𝑛0 = 1016 m3 is used. This value gives an oscillation period of
𝑇𝑝 = 1.11 ns. A perturbation amplitude around 𝑛𝑒 = 1011 m3 is used. This value is not critical and only needs to satisfy
𝑛𝑒 � 𝑛0. In the cases presented the electron density field is initially perturbed with a two-Gaussians shape function.

6.2 Neural network Poisson equation solver in plasma oscillation simulation

The use of the neural network to solve the Poisson equation coupled with the unsteady Euler equations to simulate
the 2D electron plasma oscillation is carried out using the different architectures and losses presented in the previous
section. As for the test cases of the previous section, optimum results are obtained with UNet5, RF = 200 when coupled
with transport equations. The choice of LaplacianLoss over InsideLoss is critical to get a stable simulation as
already shown in Fig. 10. A high enough receptive field is also necessary to get an accurate solution.

Examples of plasma oscillation simulations where the Poisson equation has been solved by networks with different
receptive fields are shown in Fig. 18. Two UNet5 networks with 𝑛𝑏 = 5 and RF = 100, 200 are used. As shown in
Fig. 12, a gain of accuracy with increased RF is observed with a factor of around 4 for both 1 and infinity norms of
the electric field from RF = 100 to RF = 200. This accuracy gain has a real impact on the solution as seen in Fig. 18a
where the contours of electron density are not smooth anymore. On the other hand, the RF = 200 network produces
very satisfactory results in Fig. 18b. Finally the quantity of interest of the simulation which is the plasma oscillation
period 𝑇𝑝 , is not well captured in Fig. 18a whereas it is perfectly retrieved in Fig. 18b.

7 Double headed streamer

The previous test case of plasma oscillation, although representative of the interaction between electromagnetic field
and plasma species, does not include any chemistry or numerical stiffness as the perturbation electron density at the
origin of the plasma oscillation is five orders of magnitude smaller than the background density. A more complex
and stiffer case is proposed here to validate the whole methodology developed in the previous sections: the double
headed streamer introduced in [32]. Streamer discharges are relevant in plasma assisted combustion [33] and material
processing [34].

Transport and chemistry kinetic coefficients are detailed in [35]. This chemistry was used to model atmospheric plasma
discharges in air in Celestin [32] and Tholin [36] among others. It is composed of three species: electrons (𝑛𝑒), positive
ions (𝑛𝑝) and negative ions (𝑛𝑛). Those three species are modelled in a drift-diffusion approximation so that only
densities need to be monitored, which is a reasonably well approximation in plasma discharges [32]. The electrons are
much faster than the ions due to the mass ratios, so that during the time of the discharge propagation, the ions (𝑛𝑝 and
𝑛𝑛) can be considered not moving: no transport for them is required, and they are therefore only affected by chemistry,
which depends on the magnitude of the electric field 𝐸 = |E|. Thus, the system of equations reads:

𝜕𝑛𝑒
𝜕𝑡

+ ∇ · (𝑛𝑒We − 𝐷𝑒∇𝑛𝑒) = 𝑛𝑒𝛼 |𝑊𝑒 | − 𝑛𝑒𝜂 |𝑊𝑒 | − 𝑛𝑒𝑛𝑝𝛽 (33)

𝜕𝑛𝑝

𝜕𝑡
= 𝑛𝑒𝛼 |𝑊𝑒 | − 𝑛𝑒𝑛𝑝𝛽 − 𝑛𝑛𝑛𝑝𝛽 (34)

𝜕𝑛𝑛
𝜕𝑡

= 𝑛𝑒𝜂 |𝑊𝑒 | − 𝑛𝑛𝑛𝑝𝛽 (35)

where 𝛼 = 𝛼(𝐸/𝑁) is the ionization coefficient, 𝜂 = 𝜂(𝐸/𝑁) the attachment coefficient, 𝑁 the neutral gas density, 𝛽
the recombination rate, W𝑒 = −𝜇𝑒E the drift-velocity of the electrons and 𝜇𝑒 = 𝜇𝑒 (𝐸/𝑁) the electron mobility. The
electric field E is critical as it controls both transport for electrons and chemistry for all species. Analogously to the
plasma Euler equations, the electric field is computed from the potential given by the Poisson equation:
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(a) RF = 100

(b) RF = 200

Figure 18: Plasma oscillation simulation with the Poisson equation solved with UNet5 at different receptive fields.
Temporal evolution of the mean (solid) and high absolute values (dashed - points inside the contours of electron density
in Fig. 1) on the left and snapshots of 𝑛𝑒 and E at 𝑡1 = 𝑇𝑝 and 𝑡2 = 1.5𝑇𝑝 on the right.
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∇2𝜙 = − 𝜌

𝜖
where 𝜌 = 𝑒(𝑛𝑝 − 𝑛𝑒 − 𝑛𝑛) (36)

E = −∇𝜙 (37)

The double headed streamer is initialized with a neutral Gaussian profile at 𝑥 = 2 mm and 𝑟 = 0 mm with a background
density in a rectangular domain of 𝐿𝑥 × 𝐿𝑟 = 4 × 1 mm2, corresponding to an azimuthal cut of the cylindrical geometry,
so that

𝑛𝑒 = 𝑛𝑝 = 𝑛0 exp

[
−
(
𝑥 − 𝑥0
𝜎𝑥

)2
−
(
𝑟

𝜎𝑟

)2
]
+ 𝑛back (38)

with 𝑛0 = 1019 m−3, 𝑛back = 1014 m−3 and a strong constant electric field of 𝐸𝑥 = 4.8 × 106 V m−1 is applied at the
boundary conditions.

A robust upwind scheme has been adopted for the advection part of the electron density with central differencing for the
diffusion flux and Euler time integration is performed with a timestep of Δ𝑡 = 10−12 s.

The transport equations and the Poisson equation are solved in cylindrical coordinates. An axisymmetric formulation is
used so that the 2D domain corresponds to a uniform grid of coordinates (𝑥, 𝑟). Because of the cylindrical coordinates,
solving the Poisson problem is different compared with the previous 2D cartesian problem (Sections 5 and 6):




∇2𝜙 =
1
𝑟

𝜕

𝜕𝑟

(
1
𝑟

𝜕𝜙

𝜕𝑟

)
+ 𝜕2𝜙

𝜕𝑥2 = −𝑅 in Ω̊

𝜙 = −𝐸𝑥𝑥 on 𝜕Ω𝐷

∇𝜙 · n = 0 on 𝜕Ω𝑁

(39)

(40)
(41)

where Dirichlet boundary conditions are applied at 𝑥 = 0, 𝑥 = 𝐿𝑥 , 𝑟 = 𝐿𝑟 and Neumann boundary conditions are
applied at the axis 𝑟 = 0. A loss function NeumannLoss has been introduced to take into account this new boundary
condition:

L𝑁 (𝜙out) = 1
𝑏𝑠 (𝑛𝑥 − 2)

∑︁
𝑏,𝑖

(∇𝜙𝑏,0,𝑖
out · e𝑟 )2 (42)

so that three losses are used in this case: NeumannLoss, DirichletLoss and LaplacianLoss. Note that a
constant background electric field 𝐸𝑥 is applied at the boundary conditions. To stay close to the previous study the
problem has been split in two: the neural network deals with zero Dirichlet boundary conditions and charge density.
The rest of the problem only yields a constant electric field 𝐸𝑥e𝑥 . From the superposition principle the total electric
field is the sum of the neural network solution and the constant electric field:

E = ENN + 𝐸𝑥e𝑥 (43)

Training with random profiles as described previously has been done, where a sample of the dataset is shown in Fig. 19.
Unlike the cartesian geometry case, the potential is not uniformly distributed but it is amplified at the axis 𝑟 = 0
corresponding to the bottom of the 2D domain in Fig. 19.

The network architecture has been chosen accordingly to the prescribed optimal parameters of Eqs.(26) and (27). These
have been adapted to the present case as the geometry is now rectangular and not squared so that a receptive field in
each direction can be defined. To achieve these guidelines on the 401 × 101 mesh, receptive fields of RF𝑥 = 800 and
RF𝑦 = 200 have been chosen with 𝑛𝑏 = 5 branches and around 100 000 parameters.

The strong background electric field imposed in the whole domain allows ionization of air through collisions and the
propagation of two streamers, one going to the left (negative streamer) and the other to the right (positive streamer). The
UNet5-RF𝑥800-RF𝑦200 and linear system Poisson solver results are compared in Figs. 20 and 21. At the beginning
of the propagation, the neural network and the linear system yield similar fields (Fig. 20). After a while the absolute
values of maximum of electric field and electron density are underestimated by the neural network, where the electric
field and electron density profiles are slightly diffused by the network (Fig. 21). Overall, a good agreement is found to
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Figure 19: Example of random_8 source term input in a 4 × 1 mm2 cylindrical domain.

(a) Neural network (b) Linear system

Figure 20: Comparison of electron density and electric field norm at 1.6 ns for neural network and linear system Poisson
solver. The computational domain has been mirrored from the central axis.

(a) Neural network (b) Linear system

Figure 21: Comparison of electron density and electric field norm at 2.8 ns for neural network and linear system Poisson
solver. The computational domain has been mirrored from the central axis.
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be satisfactory as the UNet5 manages to predict correctly the electric field E, which then drives the propagation of the
two streamers.

Two important global properties of these streamers are of interest and need to be well reproduced by the simulations: the
speed of the negative and positive streamers as well as the discharge energy. The position of the negative and positive
streamers at the axis 𝑟 = 0 can be evaluated by the location 𝑥 of the maximum of the norm of the electric field. The
discharge energy 𝐸𝑑 is given by [32]

𝐸𝑑 (𝑡) =
∫ 𝑡

0

∫
𝑉

J · E d𝑉 d𝑡 (44)

where J is the total current and the space integration is performed on the entire simulation domain. Since only electrons
are moving in this case J = 𝑒𝑛𝑒𝜇𝑒E.

These quantities are compared in Fig. 22. Although the network does not reproduce exactly the magnitudes of both the
electric field and electron density, it can be observed that those global properties are well reproduced by the neural
network Poisson solver.
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Figure 22: Comparison of positive (above 2 mm) and negative (below 2 mm) streamers propagation and energy for
linear system and network runs.

8 Conclusion

CNNs have been used to solve the Poisson equation in a 2D-plasma cartesian geometry simulation. Two types of
well-known multiple-scale architectures have been used to predict the potential field from the charge density field: UNet
and MSNet. These architectures have been chosen in accordance with the analytical solution of the problem at hand
which exposes multiple scales.

Across all the hyperparameters varied, the UNet architecture outperforms the MSNet architecture. This has been
attributed to the way MSNets encode information from one scale to the other.

The choice of the loss is critical to get a stable simulation. Although the potential is the solved quantity, the real physical
value of interest with regard to simulations is the electric field. From the transport equations, C2 regularity must be
ensured and so the LaplacianLoss has been chosen with DirichletLoss to have a reference of potential.

Due to the elliptic nature of the Poisson equation, information propagation across the convolutional layers is critical to
get an accurate solution. Increasing the receptive field of the network yields better performance because the fundamental
mode is better captured that way. For a fixed receptive field, networks with high number of branches should be preferred
as they are faster. However, above a certain number of branches, convolutional layers applied on images with not
enough pixels are not understood by the network so that there is an optimum number of branches per resolution.

Generalization of the information from one resolution and one domain length is extended to different ones thanks to
scaling laws. Loss of accuracy when applying the network to higher resolutions than the trained one is observed and is
amplified for low frequencies.
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The performance of neural networks solvers has been assessed and is comparable to that of linear system solvers on
the hardware configurations studied. It opens the path to further studies to improve AI-based simulations in an HPC
context, for instance to reduce the memory load of deep networks.

The coupling of the neural network in place of a linear solver with plasma transport equations has been tested. The best
network found from the inference study is also the most stable one inside the simulation.

Lastly the optimal parameters found in this simple cartesian geometry in terms of receptive field and losses have been
adapted to a rectangular domain representing an azimuthal cut of the cylindrical geometry. The methodology adopted
for the cartesian, full Dirichlet Poisson problem is shown to be valid also for cylindrical, mixed Dirichlet-Neumann
boundary conditions showing a good generalization of the method.

Future works could be dedicated to solve the Poisson equation on unstructured meshes, either for plasma-fluid, or
incompressible simulations, for instance to take into account the presence of obstacles (e.g. the anode and cathode).
Additionnally, this work can be extended to other elliptic equations, such as the screened Poisson equation, which
governs photoionisation in plasma-fluid simulations. For all these cases, the insight gained by the present study on
the architecture, receptive fields, and performances of neural networks in the context of unsteady simulations could be
transferable to these future challenges.
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A Derivation of the analytical solution

The analytical solution of the Poisson equation with boundary conditions depends on the Green function 𝐺 of the
chosen configuration [37, Chap. 1.10]:

𝜙(x) = 1
4𝜋𝜖0

∫
𝜌(x′)𝐺 (x, x′) d𝑉 ′ + 1

4𝜋

∫ (
𝐺

𝜕𝜙

𝜕𝑛′
− 𝜙

𝜕𝐺

𝜕𝑛′

)
d𝑆′ (45)

The Green function of a square domain 𝐿2 with zero potential at the four boundaries is [37, Chap. 3.12]:

𝐺 (𝑥, 𝑦, 𝑥 ′, 𝑦′) = 16
𝜋𝐿𝑥𝐿𝑦

+∞∑︁
𝑛=1

+∞∑︁
𝑚=1

sin
(
𝑛𝜋𝑥
𝐿𝑥

)
sin

(
𝑛𝜋𝑥′
𝐿𝑥

)
sin

(
𝑚𝜋𝑦
𝐿𝑦

)
sin

(
𝑚𝜋𝑦′
𝐿𝑦

)
𝑛2/𝐿2

𝑥 + 𝑚2/𝐿2
𝑦

. (46)

In our case 𝜙 = 0 on the boundaries and 𝐺 = 0 on the boundaries has to be satisfied. Hence:

𝜙(x) = 1
4𝜋𝜖0

∫
𝜌(x′)𝐺 (x, x′) d𝑉 ′ . (47)

Substituting the Green function, the following solution is obtained:

𝜙(𝑥, 𝑦) =
+∞∑︁
𝑛=1

+∞∑︁
𝑚=1

[
4

𝐿𝑥𝐿𝑦

∫
𝑥′,𝑦′

sin
(
𝑛𝜋𝑥 ′

𝐿𝑥

)
sin

(
𝑚𝜋𝑦′

𝐿𝑦

)
𝑅(𝑥 ′, 𝑦′) d𝑥 ′ d𝑦′

]

×
sin

(
𝑛𝜋𝑥
𝐿𝑥

)
sin

(
𝑚𝜋𝑦
𝐿𝑦

)
𝜋2 (𝑛2/𝐿2

𝑥 + 𝑚2/𝐿2
𝑦)
. (48)

B Normalization of inputs

A reasonable value for the value of the ratio of the potential over the charge density needs to be found. From the
solution of the potential in terms of Fourier series Eq. (48), assuming a constant potential and taking only the term in
𝑛 = 1, 𝑚 = 1 in the summation reduces to:
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𝜙(𝑥, 𝑦) = 4
𝐿𝑥𝐿𝑦

∫
𝑥′,𝑦′

sin
(
𝑛𝜋𝑥 ′

𝐿𝑥

)
sin

(
𝑚𝜋𝑦′

𝐿𝑦

)
𝑅(𝑥 ′, 𝑦′) d𝑥 ′ d𝑦′ ×

sin
(
𝜋𝑥
𝐿𝑥

)
sin

(
𝜋𝑦
𝐿𝑦

)
𝜋2/𝐿2

𝑥 + 𝜋2/𝐿2
𝑦

. (49)

Taking the absolute value, the following inequality holds:���� 𝜙𝑅
����
max

≤ 1(
𝜋2

4

)2 ( 1
𝐿2
𝑥
+ 1

𝐿2
𝑦

) . (50)

Therefore: ���� 𝜙𝑅
����
max

=
𝛼(

𝜋2

4

)2 ( 1
𝐿2
𝑥
+ 1

𝐿2
𝑦

) (51)

with 𝛼 ≤ 1.

C Linear system solvers benchmark using PETSc

A varierty of solvers have been benchmarked in PETSc and are shown in Fig. 23. The most popular and used iterative
solvers have been tested: Conjugate Gradient (CG), Conjugate Gradient Squared (CGS), Stabilized Biconjugate
Gradient (BiCGStab), Minimal Residual (MINRES) and Generalized Minimal Residual (GMRES). The preconditioner
is critical to get good performance and since the problem is elliptic, multigrid preconditioners are best suited for
them [38]. The native PETSc GAMG [28] and Hypre BoomerAMG [30] resolution times in combination with the
aforementioned iterative solvers are shown in Figs. 23a and 23b, respectively. Other preconditioners have been tested
but due to huge performance gap compared to the multi-grid preconditioners they are not shown. BoomerAMG is
shown to outperform the native PETSc GAMG for every iterative solver used. When using BoomerAMG, GMRES and
CG yield very similar results with a small edge for CG which has been retained in Fig. 17.
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Figure 23: Performance of different solvers using AMG preconditioning on config_1.
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1 Introduction

Elliptic partial differential equations (PDEs) are common in many areas of physics, from the Poisson
equation in plasmas and incompressible flows to the Helmholtz equation in electromagnetism. Their
numerical solution requires to solve a linear system and many libraries have been developed for this
task [1]. Solving a linear system efficiently requires preconditioning the system which is a difficult
task. It can become a bottleneck for performance when the number of nodes increases.

The rise of computational power and inherent speed of GPUs offers exciting opportunities to solve
PDEs by recasting them in terms of optimization problems. Since the major introduction of Physics
informed neural networks (PINN) [2], other architectures [3] and frameworks [4] have been created.

In plasma fluid simulations, the Poisson equation is solved, coupled to the charged species transport
equations [5]. A pioneer work [6] has shown significant speedup using neural networks to solve the
Poisson equation compared to classical linear system solvers on this problem. Coupling the neural
network Poisson solver to plasma transport equations has shown promising results and the neural
network can be considered as a viable option in terms of accuracy.

This work extends [6] and introduces PlasmaNet (https://gitlab.com/cerfacs/plasmanet),
an open-source library written to study neural networks in plasma simulations. The optimal network
parameters are first recalled and metrics to help design appropriate network architectures for solving
elliptic differential equations are presented. We then attempt to solve a new class of elliptic differential
equations, the screened Poisson equations using neural networks. These equations are used to infer the
photoionization source term from the ionization rate in streamer discharges [7]. Finally a simulation
running with three neural networks, coupled to plasma transport equations, to solve both the Poisson
and the photoionization equations, is performed to assess the accuracy of neural networks predictions.

2 Network architectures for elliptic differential equations

Laplace and Poisson equations form the basis of elliptic PDEs. Studying them can give insights
on how to solve all elliptic PDEs. From a given charge density ρq the Poisson equation yields the
electromagnetic potential φ from which we can compute the electric field E = −∇φ so that in the
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end E = f(ρq). In numerical simulations the physical domain is finite so that the Poisson equation is
supplemented by Dirichlet and Neumann boundary conditions:

∇2φ = −ρq
ε0

in Ω̊ with
{
φ = 0 on ∂ΩD

E · n = EN on ∂ΩN
(1)

The analytical solution of the Poisson equation with boundary conditions depends on the Green
function G of the chosen configuration [8, Chap. 1.10]:

φ(x) =
1

4πε0

∫
ρ(x′)G(x,x′) dV ′ +

1

4π

∫ (
G
∂φ

∂n′
− φ∂G

∂n′

)
dS′ (2)

Expressions of the Green functions [8, Chap. 3] in series for cartesian, cylindrical and spherical
coordinates highlight the importance of multiple scales in the Poisson equation which must be
incorporated in the neural network architecture. The UNet architecture [9] has proved to work best to
infer E = NN(ρq) in [6] compared to the Multi-Scale architecture [10]. In UNets, the local branch b
is defined as the power of 2 by which the initial resolution is divided by and the number of branches
nb is the number of scales involved. Local db and global D depths are defined as the number of
successive convolutional layers in branch b and across the whole network, respectively.

Concerning losses, the use of a physical loss in the form of a LaplacianLoss inspired from PINNs
[2] is critical to yield stable trainings and stable simulations when coupled to transport equations [6].

Elliptic PDEs, having no real characteristic curves, need the information of the whole domain at every
point. This is highlighted by the analytical solution Eq. (2) which incorporates a domain integral.
To quantify the information propagation across the neural network the global receptive field RF is
defined as the size of the domain of influence of the input center point in number of points in the
original scale np. The receptive field can be splitted into local receptive fields per branch RFb so that

RF =

nb−1∑

b=0

RFb with RFb =

{
1 + db(ks − 1)2b if b = 0

db(ks − 1)2b otherwise
(3)

where ks is the kernel size assumed constant in the network.

In [11], a theoretical receptive field is defined as the size of the input domain of influence on the
output center point. Tests carried in PlasmaNet on the studied UNets show that this definition matches
Eq. (3) so that both formulations are equivalent. However, the importance of the domain influence
is not uniform, as points closer to the studied pixel will have more paths to influence the output,
resulting in a gaussian-like distribution [12]. A parametric study in [6, Sec. 5] across multiple UNets
showed that the optimal global parameters of the network for a given number of pixels np should be:

RF = 2np and nb = max{b ∈ N|bnp/2bc > ks}+ 1 (4)

With these parameters the receptive field fills the entire computational domain for all the input points
and convolution is relevant in the downscaled branches [6, Sec. 5].

3 Photoionization in plasma discharges

We model plasma discharges in air using the chemistry from [13]. It consists of electrons (ne),
positive ions (np) and negative ions (nn). Those three species are modeled in a drift-diffusion
approximation where the ions are considered not moving [7]:

∂ne
∂t

+∇ · (neWe −De∇ne) = neα|We| − neη|We| − nenpβ + Sph (5)

∂np
∂t

= neα|We| − nenpβ − nnnpβ + Sph
∂nn
∂t

= neη|We| − nnnpβ (6)
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where Sph is the photoionization source term, α = α(E/N) is the ionization coefficient, η =
η(E/N) the attachment coefficient, E the electric field magnitude, N the neutral gas density, β the
recombination rate, We = −µeE the drift-velocity of the electrons and µe = µe(E/N) the electron
mobility. These transport equations are coupled to the Poisson equation as ρq = e(np − ne − nn).
Such a coupling with the Poisson neural network solver has already been studied in [6]. However
a rather high background density of charged species was used so that the photoionization source
term Sph could be neglected in previous work. Here, similar cases where photoionization cannot be
neglected are considered, highlighting the benefits of the proposed open-source framework PlasmaNet
to incorporate new physics for CNN-based fluid plasma simulations.

The plasma discharge is a double headed streamer [7], initialized with a neutral Gaussian profile at
x = 2 mm and r = 0 mm with a background density in a rectangular domain of Lx × Lr = 4× 1
mm2, corresponding to an azimuthal cut of the cylindrical geometry.

In plasma air discharges, the electron-impact reactions produce excited states of N2. Radiative
relaxations of these states are absorbed by O2 causing ionization [14]. Integral models have been
developed to model this photoionization source term but are very costly in numerical simulations
[14]. Simplifiying assumptions allow to recast this photoionization source term in terms of screened
Poisson equations [7]:

Sph(r) =

jm∑

j=1

Sj
ph(r) ∀j ∈ J1, jmK∇2Sj

ph(r)− (λjpO2)2Sj
ph(r) = −Ajp

2
O2I(r) (7)

where I(r) = f(E/p)neα|We| is an effective ionization term, pO2 the oxygen pressure, λj , Aj

are fitting parameters and jm = 2 or 3 depending on the level of precision wanted. Note that jm
resolutions of linear systems must be performed inside a numerical time iteration when solving
Sph so that the computational cost of photoionization is high. Here only jm = 2 is considered for
simplicity. Each component of the photoionoization source term obeys a screened Poisson equation:

∇2φ− λ2φ = −R (8)

where λ controls the amount of diffusion of the solution, the higher the value of λ, the lower the
diffusion (λ = 0 is the maximum diffusion and reduces to the Poisson equation). We apply a neural
network to solve each component of the photoionization source term using the optimal parameters
in Eq. (4). The same network architecure as the Poisson neural network solver (UNet5-RFx800-
RFy200) is thus applied for each component of the photoionization source term. We introduce a
physical loss associated to the screened Poisson equation called PhotoLoss:

LP (φout;λ) =
L2
xL

2
y

bs(nx − 1)(ny − 1)

∑

b,j,i

[
∇2φb,j,iout − λ2φb,j,iout +Rb,j,i

in

]2
(9)

Training is done using random datasets of 10 000 snapshots introduced in [15] and already used in [6,
Sec. 4]. A snapshot of such a dataset is shown in Fig. 1. It can be seen that S2

ph is less diffusive than
S1
ph which behaves closer to the Poisson equation due to λ1 � λ2.

Figure 1: Example of random_12 source term input in a 4× 1 mm2 cylindrical domain.
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4 Results

First, snapshots of the propagation of the double headed streamer without photoionization using a
linear system solver and a neural network solver for the Poisson equation are shown in Fig 2. Electron
density and electric field profiles tend to be more diffusive when the Poisson equation is solved by the
neural network. However the speed of propagation is well-captured as well as the discharge energy
[6, Sec. 7].

Figure 2: Electron density ne and norm of electric field |E| of a double headed streamer using
UNet5-RFx800-RFy200 (top-half) and a linear system solver (bottom-half) at 1.2, 2.0 and 2.8 ns.

E = NN1(ρq)
Sph = NN2(I) + NN3(I)

Un+1 = Un + ∆t[Rt(E) + Rc(E, Sph)]

Figure 3: Interaction of the neural network with plasma transport equations at each iteration. U =
(ne, np, nn), Rt and Rc are transport and chemistry residuals.

Second, simulations with photoionization have been performed with two networks inferring S1
ph and

S2
ph. Another network is used to infer the electric field E (as in [6] and results from Fig. 2) so that

three networks are coupled to the plasma transport equations to replace linear system solvers. Results
are shown in Fig. 4 with a sketch of coupling in Fig. 3. The interaction of multiple neural networks
solutions seem to yield promising results as the photoionization source term and electric field are
correctly predicted. The right-propagating positive streamer ia slightly more diffuse when looking
at the electron density than the reference solution whereas the left-propagating negative streamer is
better captured by the neural networks. We note however negative values in the prediction of Sph by
the neural network (white regions in the snapshots due to clipping), which strictly speaking should
not be allowed as the ionization source term is positive. These values have a relative amplitude of
10−3 and have been clipped to get good streamer propagation.

To prevent the rise of these negative values, a positive-valued dataset can be used so that the network
learns only to infer positive-values. A similar dataset as the one shown in Fig. 1 but without negative
values for the ionization rate I is used to train the networks and results are shown in Fig. 5. The
negative values are indeed removed but the overall shape of the electron density is more diffused
especially for the right-propagating positive streamer: the network struggles to predict very low
values of Sph.

5 Conclusion

We have introduced PlasmaNet and shown its ability to couple neural network solvers to plasma
transport equations. The range of applicability of the method developed in [6] has been extended to
the more general screened Poisson equations, which highlights the flexibility of the present framework
PlasmaNet to incorporate new complex physics simulated by neural networks. Future work will try
to integrate the screening length λ directly inside the network so that one network and not three will
be necessary to solve both the Poisson equation and the photoionization source term. Dedicated
regularized terms, such as penalty on negative Sph could also be tested. Interaction of the neural
network with other plasma test cases such as Hall effect thrusters are also planned.
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Figure 4: Electron density ne, norm of electric field |E| an photoionization source term Sph of a
double headed streamer using three neural networks (top-half) and a linear system solver (bottom-half)
at 1.6, 2.2 and 2.8 ns.

Figure 5: Electron density ne and photoionization source term Sph of a double headed streamer using
three neural networks (top-half) and a linear system solver (bottom-half) at 1.6, 2.2 and 2.8 ns using
a positive-valued training dataset.
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14.2 Conclusion

The capability of neural networks to solve elliptic differential equations has been studied in
these two papers, where multiple scale architectures have been used to solve the Poisson and
generalized screened Poisson equations. The receptive field of the neural network architec-
tures need to be high enough so that every point can communicate any other point of the
domain, linking the architecture of the network with the elliptic nature of the equations.
Other equations could be targeted to assess how far this analogy can be taken: hyperbolic
equations would need a lower receptive field for example than elliptic equations. One network
to solve a whole class of differential equations, such as the generalized Poisson equations,
could also be the subject of future work.
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Appendix A

Differential relations for
thermodynamic potentials

Property A.1. From a function z = z(x, y) = z(r, θ) the following differential relations
hold true:

1. The inverse rule (
∂z

∂y

)
x

= 1/
(
∂y

∂z

)
x

(A.1)

2. The cycle rule (
∂z

∂x

)
y

= −
(
∂z

∂y

)
x

(
∂y

∂x

)
z

(A.2)

3. The chain rule (
∂z

∂r

)
θ

=
(
∂z

∂x

)
y

(
∂x

∂r

)
θ

+
(
∂z

∂y

)
x

(
∂y

∂r

)
θ

(A.3)

Proof. The inverse and cycle rules are demonstrated together. By considering y = y(x, z)
the definition of the differentials yields

dz =
(
∂z

∂x

)
y
dx+

(
∂z

∂y

)
x

dy (A.4)

dy =
(
∂y

∂x

)
z
dx+

(
∂y

∂z

)
x
dz (A.5)

Inserting Eq. (A.5) into Eq. (A.4) the following expression for the z differential holds

dz =
[(

∂z

∂x

)
y

+
(
∂z

∂y

)
x

(
∂y

∂x

)
z

]
dx+

(
∂z

∂y

)
x

(
∂y

∂z

)
x
dz (A.6)

By equating the two sides of this equation the inverse rule and the cycle rule follow. The
chain rule is simply an application of the change of variables property of the differentials.





Appendix B

Quantum statistical mechanics

B.1 Quantum mechanics

The summary of quantum mechanics presented here is taken from Basdevant and Dalibard
[2005].

B.1.1 Wave function

• The state of a particle in space is described by a wave function ψ(r, t) whose square
modulus yields the probability density at point r and instant t.

• The time evolution of the wave function of a particle in the influence of a potential
V (r) is given by the Schrödinger equation:

i~
∂

∂t
ψ(r, t) = Ĥψ(r, t), (B.1)

where the energy observable Ĥ or hamiltonian of the system, is:

Ĥ = − ~2

2m∇
2 + V (r). (B.2)

• The probability amplitude of the momentum of the particle is given by the Fourier
transform of the wave function

ϕ(p, t) =
∫

e−ip·r/~ψ(r, t) d3r
(2π~)3/2 (B.3)

• As a consequence the following Heisenberg incertitude relations are derived:

∆x∆px ≥ ~/2. (B.4)

• To each physical value A is associated an observable Â, linear hermitian operator
acting on the wave functions. The mean value 〈a〉t at the instant t of the measure of
the physical value A is:

〈a〉t =
∫
ψ∗(r, t)

[
Âψ(r, t)

]
d3r. (B.5)

• The position observable r̂ corresponds to r multiplication while the momentum ob-
servable is:

p̂ = ~
i∇ (B.6)
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These observables do not commute; e.g. [x̂, p̂x] = i~.

• If the wave function is an eigenfunction of the observable Â corresponding to the
eigenvalue aα, the result of the mesure of A is aα with probability one.

• For an isolated system placed in a stationary potential, the stationary states are the
eigenfunctions of the energy, with a wave function of the form:

ψ(r, t) = ψα(r)e−iEαt/~, (B.7)

where ψα is a normalized solution (
∫
|ψα|2 = 1) of the stationary Schrödinger equation:

Ĥψα(r) = Eαψα(r). (B.8)

The time evolution of the wave function ψ(r, t) is then:

ψ(r, t) =
∑
α

Cαe−iEαt/~ψα(r) with Cα =
∫
ψ∗α(r)ψ(r, t = 0)d3r. (B.9)

B.1.2 Hilbert space

A Hilbert space is a complex inner product space. In the following the Hilbert space is
supposed to be complete.

First principle of quantum mechanics To every physical system is associated a Hilbert
space EH . The state of the system is defined at each instant by a normed vector |ψ(t)〉 of
EH .

Second principle of quantum mechanics: physical values measurement

1. To every physical value A corresponds a hermitian operator Â of EH : Â is the observ-
able representing A.

2. Let |ψ〉 be the state of the particle when a measurement of A is made. The only
possible results are eigenvalues of the observable Â.

3. Let P̂α be the projector on the subspace associated to eigenvalue aα. The probability
of finding the value aα when measuring A is:

P(aα) = ‖ψα‖2 where |ψα〉 = P̂α |ψ〉 . (B.10)

4. Immediately after an aα measurement of A, the new state of the sytem is:∣∣ψ′〉 = |ψα〉 /‖ψα‖. (B.11)

Third principle of quantum mechanics: time evolution Let |ψ(t)〉 be the state of
the system at the instant t. While no observation on the system is made, its time evolution
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is given by the Schrödinger equation:

i~ d
dt |ψ(t)〉 = Ĥ |ψ(t)〉 . (B.12)

B.1.3 Observable commutation

B.1.3.1 Uncertainty principles

Let us consider two physical values A and B and their respective operators Â and B̂. The
state of the system is specified by |ψ〉; the measure of A and B yields the mean values 〈a〉 and
〈b〉, as well as their standard deviations ∆a and ∆b. More precisely, we prepare N systems
(N � 1) in the state |ψ〉. For each half we calculate the mean and standard deviation for A
and B. We want now to have a relation between ∆a and ∆b. After some computations:

∆a∆b ≥ 1
2 | 〈ψ| [Â, B̂] |ψ〉 | (B.13)

B.1.3.2 The Ehrenfest theorem

The time evolution of the mean 〈a〉 of a physical value A is given by:

d
dt〈a〉 = 1

i~ 〈ψ| [Â, Ĥ] |ψ〉+ 〈ψ| ∂Â
∂t
|ψ〉 . (B.14)

If the operator Â is stationary:

d
dt〈a〉 = 1

i~ 〈ψ| [Â, Ĥ] |ψ〉 . (B.15)

From this equation, constants of motion from classical mechanics can be retrieved:

• For a time independent problem, if Â = Ĥ, the theorem yields energy conservation:

d〈E〉
dt = 0. (B.16)

• Let’s consider the motion of a particle in free space i.e. Ĥ = p̂2/2m. p̂ commutes with
Ĥ so we find the momentum conservation:

d〈p〉
dt = 0. (B.17)

B.1.3.3 Complete set of commuting observables (CSCO)

The following algebra theorem holds:
If two observables Â and B̂ commute, there exists a basis EH made of eigenvectors com-

mon to Â and B̂.
We say that a set of operators Â, B̂, Ĉ . . . is a complete set of commuting observables if

the eigenvector basis is unique.
This is important because if we want to know for sure in which state the system is in, we

need to measure physical values related to each one of the observables of a CSCO.
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B.1.4 Algebraic approach to the quantum harmonic oscillator

The algebraic proof of the eigenvalues and eigenfunctions of the quantum harmonic oscillator
is given here. Let us define the normalized variables:

X̂ =
√
mω

~
x̂ and P̂ = P√

m~ω
(B.18)

Let us loose the hats for now until the end of this paragraph and define the decrement
and increment operators respectively:

a = 1√
2

(X + iP ) and a+ = 1√
2

(X − iP ) (B.19)

The Hamiltonian can be rewritten as:

H = ~ω(a+a+ 1
2) (B.20)

We define the number operator:
N = a+a (B.21)

N and H share the same eigenvectors are the following properties can be derived:

Sp(N) = N (B.22)

Sp(H) =
(
N + 1

2

)
~ω (B.23)

a+ |n〉 =
√
n+ 1 |n+ 1〉 (B.24)

a |n〉 =
√
n |n− 1〉 (B.25)

B.2 The canonical ensemble in statistical mechanics

The canonical ensemble in statistical mechanics is recalled in this section and adapted from
[Capitelli et al., 2012, Chap. 3]. A more complete description of the different statistical
ensembles can be found in Bouchaud et al. [2016]. Let us consider a system of N particles
subdivided by energies as

(N1, ε1) , (N2, ε2) , (N3, ε3) , . . . , (Ni, εi) , . . . (B.26)

where Ni is the number of particles with energy εi. The total energy and the total number
of particles can be written as

N =
∑
i

Ni (B.27)

U =
∑
i

Niεi (B.28)

Fixing N and U , the number of micro-states W satisfying the appropriate conditions is:
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W = N !
N1!N2! . . .Ni! . . .

= N !∏
iNi!

(B.29)

Starting from the Boltzmann formula for the entropy:

S(W ) = k ln(W ), (B.30)

where kb is the Boltzmann constant.
The equilibrium state is the state of maximum entropy. Taking into account Stirling’s

formula and solving the optimization problem with the constraints of constant energy and
number of particles yields: The summation

Q =
∑
i

e−βεi (B.31)

is the partition function and we have

Ni
N

= e−βεi
Q

(B.32)

where β = 1/kT .
The partition function gives a complete description of the system at equilibrium and all

the thermodynamic functions can be extracted from it. The internal energy is thus:

U = NkT 2
(
∂ lnQ
∂T

)
V

= NkT
(
∂ lnQ
∂ lnT

)
V

(B.33)

These formulas are valid only if the different states are not degenerate (we could also
consider that the sum are over the micro-states of the system). In the case of degeneracy
the formulas have to be slightly modified:

Q =
∑
i

gie−βεi (B.34)

Ni
N

= gi
e−βεi
Q

(B.35)





Appendix C

Operators in cylindrical coordinates

A cylindrical frame is presented in Fig. 3.1. Some results concerning operators in this kind of
frame are derived in this section which are relevant in Part II of this thesis. The two moving
axis unit vectors er and eθ have non-zero derivatives with respect to θ:

∂er
∂θ

= eθ and ∂eθ
∂θ

= −er (C.1)

The gradient, divergence and laplacian operators have the following general definitions
for a tensor u or a scalar variable u:

∇u = ∂u

∂xi
ei (C.2)

∇ · u = ∂u
∂xi
· ei (C.3)

∇2u =∇ ·∇u (C.4)

The scalar gradient in cylindrical coordinates has a straightforward expression:

∇u = ∂u

∂r
+ 1
r

∂u

∂θ
+ ∂u

∂z
(C.5)

The vector divergence, following Eq. (C.3), is:

∇ · u = ∂ur
∂r

+ 1
r

∂uθ
∂θ

+ ∂uz
∂z

+ ur
r

∂er
∂θ
· eθ

= 1
r

∂rur
∂r

+ 1
r

∂uθ
∂θ

+ ∂uz
∂z

(C.6)

where Eq. (C.1) has been used from the first line to the second. The scalar laplacian is
deduced from the previous two equations:

∇2u = 1
r

∂

∂r

(
r
∂u

∂r

)
+ 1
r2
∂2u

∂θ2 + ∂2u

∂z2 (C.7)

The divergence of a two-dimensional tensor requires a bit more work. We introduce the
tensor t = tijei ⊗ ej (it is used to represent the Euler momentum flux i.e. t = ρu ⊗ u + pI
or viscous momentum flux t = τ). From Eq. (C.3):
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∇ · t = ∂tijei ⊗ ej
∂xj

· ek (C.8)

=
[
∂tij
∂xk

ei ⊗ ej + tij
∂ei
∂xk
⊗ ej + tijei ⊗

∂ej
∂xk

]
· ek (C.9)

= ∂tij
∂xj

ei + tij
∂ei
∂xj

+ tir
r

ei (C.10)

= ∂tij
∂xj

ei + tir
r

ei + trθ
r

eθ −
tθθ
r

er (C.11)

Explicitely writing this expression in brackets, the two-dimensional cylindrical divergence
is

∇ · t =



∂trr
∂r

+ 1
r

∂trθ
∂θ

+ ∂trz
∂z
− tθθ

r
+ trr

r
∂tθr
∂r

+ 1
r

∂tθθ
∂θ

+ ∂tθz
∂z

+ trθ
r

+ tθr
r

∂tzr
∂r

+ 1
r

∂trθ
∂θ

+ ∂trz
∂z

+ tzr
r


(C.12)

Regrouping radiuses above, the following more condensed formula can also be retrieved:

∇ · t =



1
r

∂rtrr
∂r

+ 1
r

∂trθ
∂θ

+ ∂trz
∂z
− tθθ

r
1
r

∂rtθr
∂r

+ 1
r

∂tθθ
∂θ

+ ∂tθz
∂z

+ trθ
r

1
r

∂rtzr
∂r

+ 1
r

∂trθ
∂θ

+ ∂trz
∂z


(C.13)



Appendix D

Linear Algebra

This summary of basic linear algebra is taken from [Quarteroni et al., 2007, Chap.1].

D.1 Vector space, matrices and linear maps

Definition D.1. A vector space over the commutative numeric field K is a non-emty set
V , whose elements are called vectors, and in which two operations + and · are defined such
that:

• (V, +) is an Abelian group

• 0 · v = 0 and 1 · v = v where 0 and 1 are respectively the zero and unit of K

• the following distributive properties hold:

∀α ∈ K,∀v,w ∈ V, α(v + w) = αv + αw (D.1)
∀α, β ∈ K,∀v ∈ V, (α+ β)v = αv + βv (D.2)

• the following associative property holds:

∀α, β ∈ K,∀v ∈ V, (αβ)v = α(βv). (D.3)

Definition D.2. We say that a nonempty part W of V is a vector subspace of V iff W is a
vector subspace over K.

In particular, the set W of the linear combinations of a system of p vectors of V ,
v1, . . . ,vp, is a vector subspace of V , called the generated subspace or span of the vector
system, and is denoted by

W = span{v1, . . . ,vp} (D.4)

= {v =
p∑
i=1

αivi with αi ∈ K, i = 1, . . . , p} (D.5)

The system v1, . . . ,vp is called a system of generators for W. If W1, . . . ,Wm are vector
subspaces of V , then the set

S = {w : w =
m∑
i=1

vi with vi ∈Wi, i = 1, . . . ,m} (D.6)

is also a vector subspace of V . We say that S is the direct sum of the subspaces Wi if any
element s ∈ S admits a unique representation. In such a case, we shall write S = ⊕mi=1Wi.
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Definition D.3. A system of vectors v1, . . . ,vp of a vector space V is called linearly inde-
pendent if

p∑
i=1

αivi = 0 =⇒ ∀i ∈ J1, pK αi = 0 (D.7)

Otherwise, the system is called linearly dependent.

We call a basis of V any system of linearly independent generators of V . If {u1, . . . ,un}
is a basis of V , the expression v = v1u1 + . . . + vnun is called the decomposition of v with
respect to the basis and the scalars v1, . . . , vn ∈ K are the components of v with respect to
the given basis. Moreover the following property holds.

Property D.1. Let V be a vector space which admits a basis of n vectors. Then every
system of linearly independant vectors of V has at most n elements and any other basis of
V has n elements. The number n is called the dimension of V and we write dim(V ) = n.

If instead, for any n there always exist n linearly independent vectors of V , the vector
space is called infinite dimensional.

Definition D.4 (Spectral radius). The maximum module of the eigenvalues of a matrix A
is called the spectral radius ρ(A):

ρ(A) = max
λ∈Sp(A)

|λ| (D.8)

D.2 Similarity transformations

Property D.2 (Schur decomposition). Given A ∈Mn(C) there exists U unitary such that

U−1AU = UHAU =


λ1 · · · b1n
0 λ2 b2n
... . . . ...
0 · · · 0 λn

 (D.9)

where λi are the eigenvalues of the matrix.

Property D.3 (Canonical Jordan form). Let A be any square matrix. There exists a non-
singular matrix X that transforms A into a block diagonal matrix J

X−1AX = J = diag(Jk1(λ1), . . . , Jkl(λl)) (D.10)

which is called canonical Jordan form where λj are the eigenvalues of A and Jk(λ) ∈
Mk(C) with Jk(λ) = 1 if k = 1 and

Jk(λ) =



λ 1 0 . . . 0
0 λ 1 . . . 0
0 0 λ 0
...

... . . . 1
0 0 . . . λ

 (D.11)

otherwise.
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Property D.4 (Singular Value Decomposition). Let A ∈Mmn(C). There exists two unitary
matrices U ∈Mm(C) and V ∈Mn(C) such that

UHAV = Σ = diag(σ1, . . . , σp) ∈Mmn(C) (D.12)

where p = min(m,n).
Σ is called the Singular Value decomposition of A and σ1 > σ2 > . . . > σp are called the

singular values of A.

D.3 Matrix Norms

D.3.1 Definitions

Definition D.5 (Consistency). A matrix norm || · || is said to be compatible or consistent
with a vector norm || · || if:

∀x ∈ Rn ||Ax|| ≤ ||A|| ||x|| (D.13)

Definition D.6 (Submultiplicity). A matrix norm is said to be submultiplicative if

||AB|| ≤ ||A|| ||B|| (D.14)

Property D.5 (Compatibility of Frobenius norm). The Frobenius norm

||A||F = tr(AAH) (D.15)

is compatible with the 2-norm.

Definition D.7 (Induced norm). Let || · || be a vector norm. The induced or natural matrix
norm is:

||A|| = sup
x 6=0

||Ax||
||x||

(D.16)

Property D.6 (Canonical induced norms). The induced 1-norm and infinity-norm are easily
computable since

||A||1 = max
j

∑
i

|aij | (D.17)

||A||∞ = max
i

∑
j

|aij | (D.18)

The 2-norm computation is much more expensive. Denoting by σ1(A) the largest singular
value of A:

||A||2 =
√
ρ(AHA) =

√
ρ(AAH) = σ1(A) (D.19)

In particular if A is hermitian:

||A||2 = ρ(A) (D.20)
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D.3.2 Properties

Property D.7 (Induced norm characterization). Let || · || be a consistent matrix norm, then:

∀A ∈ Cn×n ρ(A) ≤ ||A|| (D.21)

More precisely:

ρ(A) = inf
||·||
||A|| (D.22)

Definition D.8 (Matrix convergence). A sequence of matrix Ak is said to converge to a
matrix A if

lim
k→+∞

||Ak −A|| = 0 (D.23)

Property D.8 (Sequences of matrices). Let A be a square matrix; then

lim
k
Ak = 0 ⇐⇒ ρ(A) < 1 ⇐⇒

∑
k

Ak = (I −A)−1 (D.24)

Moreover if ρ(A) < 1 and ||·|| is a matrix norm such that ||A|| < 1 then I−A is invertible
and the following inequalities hold

1
1 + ||A|| ≤ ||(I −A)−1|| ≤ 1

1− ||A|| (D.25)



Appendix E

The Dirac distribution

The brief description of distribution presented here is adapted from [Basdevant and Dalibard,
2005, Appendix B].

E.1 Definition of δ(x)
In physics the notion of point object is often used. The mass (or charge) density ρ(r) of
such a point (at r0) is not a function in the usual sense, since it is zero except at r0, and its
integral is finite: ∫

ρ(r) d3r = m. (E.1)

The delta function introduced by the physicist Paul Dirac allows to describe such a
density. Its mathematical definition has been made by Laurent Schwartz in the frame of the
distribution theory which will be briefly presented in this section. The formalism most often
used in physics, although abusive strictly speaking, is adopted in the rest of this section. Let
us a consider a real variable x. The Dirac delta "function" is defined as:

δ(x) = 0 for x 6= 0 and
∫
R
δ(x) dx = 1. (E.2)

The real definition of the delta distribution is made through its application on functions. For
any function F (x) continuous in x = 0, we have by definition:∫

F (x) δ(x) dx = F (0). (E.3)

By change of variable, the function δ(x− x0) is:∫
F (x) δ(x− x0) dx = F (x0). (E.4)

The generalization to multiple dimensions is straightforward:

δ(r− r0) = δ(x− x0) δ(y − y0) δ(z − z0), (E.5)

and ∫
F (r) δ(r− r0) d3r = F (r0). (E.6)

Other importants properties of the delta function are:

• δ(x) is an even function: δ(x− x0) = δ(x0 − x).

• We have δ(ax) = 1
|a|δ(x) (a real).
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E.2 Examples of functions that tend to δ(x)

It is possible to make close-to-point distributions thanks to functions concentrated at the
neighborhood of a point. To do so we consider functions that depend on a parameter con-
trolling the width of the function:

1. Let yε be the sequence of functions such that:

yε =

1/ε for |x| ≤ ε/2
0 otherwise

(E.7)

We have:∫
F (x) yε(x) dx = 1

ε

∫ ε/2

−ε/2
F (x)dx = F (θε/2) with − 1 ≤ θ ≤ 1 (E.8)

where the mean value theorem has been used for the last equality. Hence:∫
F (x) yε(x) dx −−→

ε→0
F (0). (E.9)

2. The gaussian functions with standard deviation σ are another sequence of functions
that tend to the dirac delta function:

gσ(x) = 1√
2πσ

exp
(
−x2/2σ2

)
. (E.10)

These sequences of functions are shown in Fig. E.1.
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Figure E.1: Step and gaussian sequences of functions



E.3. DISTRIBUTIONS 313

E.3 Distributions

The notions presented previously are rigorously defined in the distribution theory which
reinterprets functions as linear functionals acting on test functions. Let us consider the
subvector space S:

S = {φ ∈ C∞(Rn,C)∀k ∈ N φ(k) tends to 0 at infinity faster than any power of 1/|x|}
(E.11)

For example exp
(
−x2) belongs to S.

A continuous linear functional f on the space S is a linear map from S to C that is
continuous. To each test function φ ∈ S it associates a complex number (f, φ). It is contin-
uous in the following sense: if the sequence of functions φ1, φ2, . . . , φn tend to zero in S, the
sequence of numbers (f, φ1), (f, φ2), . . . , (f, φn) tend to zero.

Such a continuous linear functional is called a tempered distribution. Examples of tem-
pered distributions are:

1. Let f(x) be a locally integrable function that is bounded by a power of |x| when
|x| → ∞. A functional may be associated to f , that we also denote by f , by the
formula:

(f, φ) =
∫
f(x)φ(x) dx φ ∈ S. (E.12)

2. The Dirac distribution is the functional that associates any function φ(x) ∈ S to the
number φ(0), which we denote:

(δ, φ) = φ(0). (E.13)

It is common for physicists (but abusive) to write:∫
δ(x)φ(x) dx = φ(0). (E.14)

In the examples mentioned at the beginning of the section, the assertion that yε or gσ
tend to δ is incorrect. However the assertion

(gσ, φ) −−−→
σ→0

(δ, φ) ∀φ ∈ S (E.15)

is correct. It is said that gσ tends to δ in the sense of distributions.

E.4 Derivation of a distribution

When the distribution is associated to a derivable function f(x), one can write by integration
by parts:

(f ′, φ) =
∫
R

df(x)
dx φ(x) dx = −

∫
R
f(x) dφ

dx dx = −(f, φ′) (E.16)

The derivative of a linear functional is defined by:(df
dx, φ

)
= −

(
f,

dφ
dx

)
. (E.17)
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From this result:

1. The derivative of the Dirac distribution is:

(δ′, φ) = −φ′(0). (E.18)

2. Let Θ be the Heaviside function. Then the following equality holds in the distribution
sense:

dΘ(x)
dx = δ(x). (E.19)

3. In three dimensions: ∆(1
r ) = −4πδ(r). Indeed:∫

∆
(1
r

)
φ(r)d3r = −

∫ [
∇
(1
r

)
· ∇φ

]
4πr2dr (E.20)

=
∫ +∞

0

1
r2
∂φ

∂r
4πr2dr (E.21)

= −4πφ(0). (E.22)



Appendix F

Orthogonal functions and
expansions

Expansions in orthogonal functions are common in partial differential equations and quantum
mechanics. The main definitions and some examples are given but more can be found in
[Jackson, 1999, Chapters 2-3].

F.1 Definitions

Let us consider a real interval [a, b] and L2([a, b],C) the Hilbert space of square integrable
functions with the following inner product:

(f, g) =
∫ b

a
f∗(x)g(x)dx. (F.1)

where the asterix denotes the complex conjugate of a complex number.
A set of functions (Un) ∈ L2([a, b],C) is called orthogonal if:

(Um, Un) = 0 if m 6= n (F.2)

and is orthonormal if:
(Um, Un) = δmn (F.3)

A set of functions is called complete if it satisfies the completeness or closure relation:

+∞∑
n=0

U∗n(x′)Un(x) = δ(x− x′) (F.4)

where δ is the Dirac delta function presented in E.
If (Un) is a complete set of orthonormal functions any square integrable function f can

be expanded in this set:

f(x) =
+∞∑
n=0

anUn(x) (F.5)

with
an =

∫ b

a
U∗n(x)f(x)dx. (F.6)
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F.2 Fourier series

F.2.1 Real Fourier series

The most famous complete set of orthogonal functions are sines and cosines, an expansion
in terms of them being a Fourier series. If the interval is (−a/2, a/2) then the orthonormal
functions are √

2
a

sin
(2πnx

a

)
,

√
2
a

cos
(2πnx

a

)
n ∈ N (F.7)

The series expansion yields:

f(x) = A0
2 +

+∞∑
n=1

[
An cos

(2πnx
a

)
+Bn sin

(2πnx
a

)]
(F.8)

where

An = 2
a

∫ a/2

−a/2
f(x) cos

(2πnx
a

)
dx (F.9)

Bn = 2
a

∫ a/2

−a/2
f(x) sin

(2πnx
a

)
dx (F.10)

F.2.2 Complex Fourier series

If f is a complex function of a real variable x then f can be expanded in terms of the
orthonormal functions

1√
a

exp
(2iπnx

a

)
(F.11)

and one can write

f(x) =
∑
n∈Z

cn
1√
a

exp
(2iπnx

a

)
(F.12)

cn = 1√
a

∫ a/2

−a/2
exp

(
−2iπnx′

a

)
f(x′)dx′. (F.13)

In the specific case of a real valued function the following relationship holds for the cn:

cn = c∗−n ∀n ∈ Z. (F.14)

The Parseval identity is verified:

∑
n∈Z
|cn|2 =

∫ a/2

−a/2
|f(x)|2dx. (F.15)

F.3 Fourier transform

F.3.1 Definition

Many conventions are applied so to get things straight if f ∈ L2(R), its Fourier transform is:
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F(f) : k 7→ f̂(k) = 1√
2π

∫
R
f(x) e−ikxdx. (F.16)

The following relations hold:

f(x) = 1√
2π

∫
R
f̂(k)eikxdk (F.17)

F
(df

dx

)
(k) = ikf̂(k) (F.18)

F(xf)(k) = if̂ ′(k) (F.19)

F.3.2 Gaussian Fourier transform

The Fourier transform of a Gaussian is a Gaussian. Starting from:

f(x) = A exp
(
−x

2

σ2

)
(F.20)

Deriving and applying the Fourier transform:

f̂ ′(k) = −σk2 f̂(k) (F.21)

Solving the equation and finding the appropriate constant through the Gauss integral
yields:

f̂(k) = Aσ√
2

exp
(
−σ

2k2

4

)
(F.22)

F.3.3 Inverse of the Fourier transform

The Fourier transform can be inverted and we have:

f(x) = 1√
2π

∫
R
f̂(x) eikxdx. (F.23)

F.3.4 Isometry of the Fourier transform: the Parseval-Plancherel theorem

One fundamental property of the fourier transform is the Parseval-Plancherel theorem:∫
f̂∗1 (k) f̂2(k) dk =

∫
f∗1 (x) f2(x) dx. (F.24)

Introducing the scalar product in L2(R):

〈f1, f2〉 =
∫
f∗1 (x) f2(x) dx (F.25)

the Parseval-Plancherel theorem states that the Fourier transform is an isometry: 〈f1, f2〉 =
〈f̂1, f̂2〉.
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F.3.5 Relation between the Fourier transform and Fourier series

Going back to the Fourier series, the Fourier transform is obtained in the limit a → +∞.
Starting from:

f(x) =
∑
n∈Z

f̂n
1√
a

exp
(2iπnx

a

)
(F.26)

f̂n = 1√
a

∫ a/2

−a/2
exp

(
−2iπnx′

a

)
f(x′)dx′ (F.27)

and making the following correspondances when a→ +∞:

2πn
a
→ k (F.28)∑

m

→
∫
R
dm = a

2π

∫
R
dk (F.29)

f̂n →
√

2π
a
f̂(k) (F.30)
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