4,692 research outputs found

    RT-level fast fault simulator

    Get PDF
    In this paper a new fast fault simulation technique is presented for calculation of fault propagation through HLPs (High Level Primitives). ROTDDs (Reduced Ordered Ternary Decision Diagrams) are used to describe HLP modules. The technique is implemented in the HTDD RT-level fault simulator. The simulator is evaluated with some ITC99 benchmarks. A hypothesis is proved that a test set coverage of physical failures can be anticipated with high accuracy when RTL fault model takes into account optimization strategies that are used in CAE system applied

    What is the Path to Fast Fault Simulation?

    Get PDF
    Motivated by the recent advances in fast fault simulation techniques for large combinational circuits, a panel discussion has been organized for the 1988 International Test Conference. This paper is a collective account of the position statements offered by the panelists

    An efficient logic fault diagnosis framework based on effect-cause approach

    Get PDF
    Fault diagnosis plays an important role in improving the circuit design process and the manufacturing yield. With the increasing number of gates in modern circuits, determining the source of failure in a defective circuit is becoming more and more challenging. In this research, we present an efficient effect-cause diagnosis framework for combinational VLSI circuits. The framework consists of three stages to obtain an accurate and reasonably precise diagnosis. First, an improved critical path tracing algorithm is proposed to identify an initial suspect list by backtracing from faulty primary outputs toward primary inputs. Compared to the traditional critical path tracing approach, our algorithm is faster and exact. Second, a novel probabilistic ranking model is applied to rank the suspects so that the most suspicious one will be ranked at or near the top. Several fast filtering methods are used to prune unrelated suspects. Finally, to refine the diagnosis, fault simulation is performed on the top suspect nets using several common fault models. The difference between the observed faulty behavior and the simulated behavior is used to rank each suspect. Experimental results on ISCAS85 benchmark circuits show that this diagnosis approach is efficient both in terms of memory space and CPU time and the diagnosis results are accurate and reasonably precise

    A deductive technique for diagnosis of bridging faults

    Full text link

    A simulation and diagnosis system incorporating various time delay models and functional elements

    Get PDF
    The application of digital simulation to all phases of digital network design is considered here as oppossed [sic] to development of simulation for one or two restricted parts of the digital process. For this reason a simulator is presented which can be consistent by varying the level of expression from the simulation of architectural structures to such detailed simulation requirements as race analysis of asynchronous sequential circuits. In order to make system simulation more than just an idea, it must be capable of handling large circuits in reasonable times. It is demonstrated that functional simulation has the potential to increase simulation speed while reducing the required storage. This potential is realized with the following features of this simulator structure: 1) a modular structure for specification and execution, 2) the capability of being easily interfaced with gate level simulation, 3) the capability of utilizing the highest level of expression for simulation, 4) a variable level of expression, 5) a relatively unrestricted type of logic that can be simulated, 6) the capabilities of using standard functional modules, 7) a fairly universal means of expressing functional modules and, 8) the use of data and control signals to further force selective trace capabilities on a module level. Greater gate level simulation capabilities are obtained by extending the basic simulator to perform the simulation of undefined signal values and the simulation of ambiguities in signal propagation speeds. The simulator presented here is part of a Test Generation and Simulation System. This system includes preprocessing, combinational test generation, automatic fault insertion as well as simulation --Abstract, page ii

    C-MOS array design techniques: SUMC multiprocessor system study

    Get PDF
    The current capabilities of LSI techniques for speed and reliability, plus the possibilities of assembling large configurations of LSI logic and storage elements, have demanded the study of multiprocessors and multiprocessing techniques, problems, and potentialities. Evaluated are three previous systems studies for a space ultrareliable modular computer multiprocessing system, and a new multiprocessing system is proposed that is flexibly configured with up to four central processors, four 1/0 processors, and 16 main memory units, plus auxiliary memory and peripheral devices. This multiprocessor system features a multilevel interrupt, qualified S/360 compatibility for ground-based generation of programs, virtual memory management of a storage hierarchy through 1/0 processors, and multiport access to multiple and shared memory units
    corecore