
Copyright

by

Shahrzad Mirkhani

2014

The Dissertation Committee for Shahrzad Mirkhani
certifies that this is the approved version of the following dissertation:

Statistical Methods for Rapid System Evaluation under

Transient and Permanent Faults

Committee:

Jacob A. Abraham, Supervisor

Andreas Gerstlauer

Lizy K. John

Subhasish Mitra

Michael Orshansky

Statistical Methods for Rapid System Evaluation under

Transient and Permanent Faults

by

Shahrzad Mirkhani, B.S.; M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2014

Dedicated to my family...

Acknowledgments

Here, I would like to take this opportunity to thank the ones who have

helped me during this step and every important step in my life. First and

foremost I want to thank my advisor, Professor Jacob Abraham, for accept-

ing me in his research group, encouraging me to do the research that I like,

and giving me brilliant ideas for my research. I have learnt a lot from him,

not only in VLSI area, but also in other aspects of life. I am also thankful

to Professor Subhasish Mitra for having me involved in his exciting research

projects. Working with him defined the true meaning of hard working to me.

I appreciate my committee members, Professor Lizy John, Professor

Michael Orshanski, Professor Andreas Gerstlauer, and Professor Subhasish

Mitra for their time and valuable comments on my dissertation. I would also

like to thank Professor Nur Touba, who gave me the opportunity to start my

Ph.D. program at the University of Texas at Austin.

I would also like to thank the ones that I have had a chance to col-

laborate during my Ph.D. pursuit, Bill Eklow from Cisco Systems, Hyungmin

Cho from Stanford University, Dr. Chen-Yong Cher from IBM T. J. Watson

research center, and Eric Cheng from Stanford University.

My research demanded working with several tools and creating an en-

vironment for millions of simulation passes. This was not possible without

generous help and support from Andrew Kieschnick and Mary Matejka. I also

thank Ms. Melanie Gulick, Ms. Debi Prather, and Ms. Melissa Campos. I

acknowledge the Texas Advanced Computing Center (TACC) at The Univer-

v

sity of Texas at Austin for providing HPC resources that have contributed to

the research results reported within this dissertation.

My gratitude extends to former and current members of Computer

Engineering Research Center, Whitney Wadlow, Sriram Sambamurthy, Tung-

yeh Wu, Hyunjin Kim, Jaeyong Chung, Ameya Chaudhari, Hsung-Cheng Lee,

Ricardo Ramirez, Mahesh Prabhu, Eun Jung Jang, Kihyuk Han, Hyunsun Um,

Jason Hu, and Balavinayagam Samynathan. I am specially very grateful to

Balavinayagam Samynathan for all his efforts and ideas on our latest research.

I was very fortunate to have wonderful friends in Austin. They cheered

me up when I was disappointed from my research and took care of my son

during evening classes and meetings. First, I want to thank Sahar Ayazian-

mavi and Behnam Robatmili who are more like family to me. I am also very

thankful to my friends Newsha Mirzaei, Maryam Salimpour, Fatemeh Panahi,

Ghazal Dashti, Leila Moravej, Georgina Vega Krum, Kavita Balakavi, Arda-

van Pedram, Parisa Razaghi, Maryam Mortazavi, and Pantea Mirzaei.

Finally, and most importantly, I am deeply thankful to my family. I

appreciate all that my mother, Mahin Safaei, has done, and still doing for me

to follow my dreams. For this, she has given up her own dreams since I was

very young. Without all the guidance, helps, and encouragements from my

brother, Shahram Mirkhani, I would not have even chosen computer engineer-

ing as my career. And this dissertation is dedicated in memory of my father,

Javad Mirkhani, who passed away four days after I came to Austin to start my

Ph.D. program. I want to specially thank my son Shahriyar, who has shown

a level of patience beyond his age in busy and tough days during this journey.

And last, but not least, I am thankful to my lifelong friend and my husband,

Maysam Lavasani for encouraging me to follow my dreams, helping me move

vi

on from the most difficult days in my life, and never giving up on me. Not to

mention that his technical ideas always expedited my research. Had we not

met 19 years ago, I would have not been able to reach this milestone.

Shahrzad Mirkhani

December 2014, Austin, TX

vii

Statistical Methods for Rapid System Evaluation under

Transient and Permanent Faults

Shahrzad Mirkhani, Ph.D.

The University of Texas at Austin, 2014

Supervisor: Jacob A. Abraham

Traditional solutions for test and reliability do not scale well for mod-

ern designs with their size and complexity increasing with every technology

generation. Therefore, in order to meet time-to-market requirements as well

as acceptable product quality, it is imperative that new methodologies be de-

veloped for quickly evaluating a system in the presence of faults.

In this research, statistical methods have been employed and imple-

mented to 1) estimate the stuck-at fault coverage of a test sequence and eval-

uate the given test vector set without the need for complete fault simulation,

and 2) analyze design vulnerabilities in the presence of radiation-based (soft)

errors. Experimental results show that these statistical techniques can evaluate

a system under test orders of magnitude faster than state-of-the-art methods

with a small margin of error.

In this dissertation, I have introduced novel methodologies that uti-

lize the information from fault-free simulation and partial fault simulation to

predict the fault coverage of a long sequence of test vectors for a design un-

der test. These methodologies are practical for functional testing of complex

designs under a long sequence of test vectors. Industry is currently seeking

efficient solutions for this challenging problem.

viii

The last part of this dissertation discusses a statistical methodology for

a detailed vulnerability analysis of systems under soft errors. This method-

ology works orders of magnitude faster than traditional fault injection. In

addition, it is shown that the vulnerability factors calculated by this method

are closer to complete fault injection (which is the ideal way of soft error vul-

nerability analysis), compared to statistical fault injection. Performing such a

fast soft error vulnerability analysis is very cruicial for companies that design

and build safety-critical systems.

ix

Table of Contents

Acknowledgments v

Abstract viii

List of Tables xiii

List of Figures xiv

Chapter 1. Introduction 1

1.1 Motivation . 1

1.2 Background on Fault Grading 8

1.3 Background on Soft Error Vulnerability Analysis 10

Chapter 2. Fault Coverage Estimation using Local Simulations 14

2.1 Overview . 14

2.2 Coverage Estimation Methodology 15

2.2.1 Algorithm Steps . 16

2.2.2 Detection Probability Tables 19

2.2.3 Propagation Tables . 21

2.2.4 Detection Probability Function 22

2.2.5 Fault Detection Metric 24

2.2.6 Statistical System and Simulation 25

2.3 Experimental Results . 26

2.3.1 OR1200 Case Study . 30

2.3.2 IVM Case Study . 33

2.4 Run-time Analysis . 36

2.4.1 Memory Complexity . 39

2.5 Conclusions and Future Directions 43

x

Chapter 3. GIC: A Metric for Fast Test Vector Set Evaluation 44

3.1 Overview . 44

3.2 Methodology . 45

3.2.1 Gate Input Combination Metric 45

3.2.2 GIC vs. Toggle Count 46

3.2.3 Data Correlation . 47

3.2.4 Coverage Estimation and Test Vector Evaluation by GIC 49

3.2.5 Coverage Saturation Point 52

3.2.6 GIC Measurement in Sequential Circuits 53

3.2.7 A Special Case . 55

3.3 Experimental Results . 56

3.4 Conclusions and Future Directions 61

Chapter 4. A Regression Model for Fault Coverage Estimation
using GIC Metric 63

4.1 Overview . 63

4.2 Simple Linear Regression . 64

4.3 EAGLE Steps . 70

4.4 Experimental Results . 73

4.5 Conclusions . 84

Chapter 5. Soft Error Vulnerability Analysis by Local Simula-
tions 86

5.1 Introduction . 86

5.2 RAVEN Methodology . 88

5.2.1 RAVEN Steps . 88

5.2.2 Propagation Tables . 89

5.2.3 Detection Tables . 91

5.2.4 System Level Detection Probability Calculation 92

5.2.5 Outcome Probability Calculation 93

5.3 Experimental Results . 95

5.4 Vulnerability Factor Analysis 103

5.4.1 Complete Error Injection vs. RAVEN 103

xi

5.4.2 SFI and Flip-flop Vulnerability Factors 104

5.4.3 Vulnerability Factors in RAVEN vs. Error Injection . . 106

5.5 Conclusions and Future Directions 108

Chapter 6. Conclusions and Future Perspectives 110

Bibliography 112

Vita 125

xii

List of Tables

2.1 Interpretation of index values in propagation table 22

2.2 Testcase characteristics . 30

2.3 Fault coverage results for OR1200 32

2.4 Run-time results for OR1200 32

2.5 Fault coverage results for IVM 34

2.6 Run-time results for IVM . 34

3.1 Sample size for various correlation coefficients 48

3.2 Run times and correlation coefficients 58

3.3 Estimated and measured fault coverage numbers 60

3.4 Run time comparison . 61

4.1 Benchmark statistics used for EAGLE evaluation 74

4.2 Given values for EAGLE constraints 75

4.3 EAGLE estimation based on each circuit 77

4.4 EAGLE estimation based on each configuration 81

4.5 EAGLE fault simulation run time for OR1200 83

5.1 Run time comparison for RAVEN vs. complete error injection. 104

xiii

List of Figures

1.1 Microprocessor cost of test . 2

1.2 ATE cost . 3

1.3 Test data volume . 4

1.4 Minimum required test data volume 5

1.5 At-speed test data volume . 6

2.1 System block-diagram . 17

2.2 Module with local test vectors 17

2.3 Local fault dictionary . 18

2.4 Propagation and detection probability tables 19

2.5 Statistical system block diagram 20

2.6 A sample for detection probability function 23

2.7 Coverage estimation measurement flow 28

2.8 Fault simulated average detection in ALU for OR1200 29

2.9 FALCON detection probability in ALU for OR1200 29

2.10 OR1200 run time results and mis-detected faults 33

2.11 IVM run time results and mis-detected faults 35

2.12 Peak memory of FALCON and fault simulation 42

3.1 GIC and fault coverage curves 50

3.2 Saturation point . 52

4.1 GIC and fault coverage curves in s386 circuit 67

4.2 A sample histogram of regression residuals 69

4.3 EAGLE flowchart . 72

4.4 The percentage of wide and correct estimations 78

4.5 Wide range estimation rate based on each configuration 78

4.6 Correct estimation rate based on each configuration 79

xiv

4.7 Averaged EAGLE estimation results 80

4.8 Total correct estimation rate based on each configuration . . . 82

4.9 EAGLE estimation for OR1200 83

5.1 A sample module . 90

5.2 Maximum sample sizes for different absolute MOE values. . . 96

5.3 Error injection steps in IVM 98

5.4 DUE rates and probability values 100

5.5 SDC rates and probability values 101

5.6 Run times for RAVEN and SFI 102

5.7 RAVEN speed-up . 102

5.8 RAVEN vs. complete error injection 107

5.9 Examples of vulnerability factor values 109

xv

Chapter 1

Introduction

1.1 Motivation

As VLSI technology is heading to smaller feature size and more com-

plex designs, the need for having more complex test plans and new techniques

to reduce the cost of test becomes inevitable. These test plans include de-

tection of both hard errors (e.g., manufacturing faults) and soft errors (e.g.,

transient faults). Time-to-market requirements are not satisfied by current

methodologies for analyzing, with reasonable quality, a design in the presence

of faults. Statistical methods can estimate the dependability of a design under

hard and soft errors in a reasonable time with acceptable quality of results.

Developing efficient statistical methods for this purpose is the main focus of

this dissertation.

In 2001, the ITRS (International Technology Roadmap for Semiconduc-

tors) predicted that the cost of test will be more than the cost of manufacturing

after 2012 [33], as shown in Fig. 1.1. During the past decade, there has been

a great deal of effort to decrease the cost of test, and this is still an ongoing

process. Techniques such as multi-site testing, adaptive testing, test compres-

sion, BIST (Built-in Self Test) and yield learning are the most important ways

to decrease the cost of test, according to a survey done by the ITRS team in

2013 [35]. This report states, “Significant progress continues in the reduction

of manufacturing test cost, however much work remains ahead... Even though

1

Figure 1.1: Microprocessor cost of test (from 2001 ITRS report [33], originally from ITRS 1997 report)

a lot of effort has gone into reducing the cost of test, 40% of the respondents to

an extensive ITRS conducted survey from 2011 consider the cost of test as one

of their biggest concern (compared to 30% in the 2009 ITRS roadmap survey)

and 85% expect cost of test to become their biggest concern going forward...”.

Automatic Test Equipment (ATE) and ATE interfaces, as well as test

time and test coverage, are listed as the top cost drivers in current technologies

[35]. As shown in Fig. 1.2, ATE cost is not scaled down in new technologies.

In addition to ATE cost, data volume, necessary to test a chip with acceptable

fault coverage is predicted to become one of the top cost drivers in the future

[35]. Figure 1.3 shows the data volume is increasing exponentially each year

[34]. Chips with typical complexity for the current technology use around

1 tera bits of (non-compressed) data for testing. Although test compression

can decrease the amount of test data 2 to 4 orders of magnitude, the test

time for either compressed or non-compressed test data is relatively high. The

minimum required test data volume is shown in Fig. 1.4 [35].

2

Figure 1.2: ATE cost (from 2013 ITRS report [35])

In order to overcome the above issues in testing, new methodologies

should be developed to reduce the need for expensive ATE features. BIST

techniques [20, 50] make chip testing possible without the need for expensive

testers. In BIST, additional circuitry is added to generate pseudo-random [45]

test vectors. These vectors are applied to the DUT (Design-Under-Test) and

the responses are collected and compared to fault-free responses. For micropro-

cessor testing, SBST (Software Based Self-Test) [18, 82, 83] has been proposed

and originally called “Native mode self test”. SBST tests a microprocessor by

running software on the whole system. Using built-in self test methodologies

in-field and at-speed testing will become possible [65]. At-speed testing has

become more important in the past decade since it can capture more errors

and malfunctions than the state-of-the-art scan testing [86].

Apart from the advantages listed above for methodologies such as BIST

and SBST, there are some issues which make these methods hard to use. Gen-

erating efficient functional test vectors, which result in a high fault coverage

for these methods is difficult and is usually done manually. On the other hand,

3

Figure 1.3: Test data volume (from 2012 ITRS report [34], quoted in [72])

if we use random functional test vectors, the initial coverage might not be ade-

quate and there might be a need for additional iterations to improve these test

vectors. To reach an acceptable fault coverage using functional test vectors, we

might end up applying a large amount of test vectors to the design. According

to Mentor Graphics [1], shown in Fig. 1.5, test data volume in at-speed testing

is increasing with each new technology. If we are using simulation to evaluate

functional test vectors, it will take an unacceptably long run time to evaluate

these test vectors, since we need system-level simulation. If a prototype of the

DUT can be programmed onto a FPGA (Field Programmable Gate Array)

board, test vector analysis can be done orders of magnitude faster compared

to simulation environment. However, programming a complex and large DUT

onto a FPGA board might not always be possible.

One way to reduce the run time of evaluating functional test vectors

(also known as functional fault grading) is to predict or estimate the fault

coverage instead of performing detailed fault simulation. This method will

4

Figure 1.4: Minimum required test data volume (from 2013 ITRS report [35])

introduce inaccuracies due to the fault grading process. However, if the amount

of error is not significant, coverage estimation can be very useful to rapidly

estimate the fault coverage related to each sequence of functional test vectors

and it can be used for further iterations of test vector improvement.

Apart from manufacturing faults, VLSI chips are also prone to soft er-

rors [43, 57] mostly caused by cosmic rays. Soft errors do not have a permanent

effect on the circuit and they are also called transient faults. However, they

can affect and change the outputs of a program running on a system when they

happen. According to ITRS 2013, which states “Radiation-induced soft error

rates are increasing to where, in addition to SRAMs, latches and flip-flops

are likely to need protecting, at least for chips targeting enterprise applica-

tions. Other problems now increasingly observed include multiple-adjacent-cell

SRAM upsets due to single radiation events and erratic shifts in minimum-

operating-voltage, problematic for low power applications.”, the probability of

soft errors occurring is increasing with shrinking transistor sizes. Analyzing

5

Figure 1.5: Required test data volume for at-speed testing (from Mentor Graphics [1])

the design for soft errors reveals the parts of a chip which are more vulnerable

to cosmic rays, i.e., if a cosmic ray hits those parts of the chip it is more likely

that the output of the system becomes different than the desired (also called

golden) output. For life- and mission-critical systems, which should be highly

dependable, preventing these errors from affecting the output of the system is

very important. Some examples of these critical systems are avionics, medical

devices, banking systems, and stock trading systems.

A similar problem to functional fault grading exists for analyzing soft

errors in a large and complex design. The number of stimuli applied to a

design to analyze the soft error vulnerability is very large, since typically these

errors are analyzed while an application is running on that design. Another

issue which makes soft error analysis even more involved than functional fault

grading is the enormous number of soft error candidates that can potentially

happen in a system. Since soft errors are transient faults, they can happen at

any time during the application run. This demands that we consider millions

or billions of these candidates in our analysis. Due to the fact that we need

6

to observe the output of a program under each error to be able to analyze the

vulnerability of the system under soft errors, every error candidate must be

analyzed in a separate application run, causing the need to run the application

millions of times.

All the above-mentioned problems make a full vulnerability analysis for

soft errors an impossible task to complete in hours or even days. Many of the

current solutions for vulnerability analysis are based on statistical error injec-

tion [37, 73, 89, 92], which chooses a sample of error candidates for injecting

into the system [40]. Based on the size of sample, we can define a margin of

error (MOE) for the average soft error vulnerability of a design.

Similar to functional fault grading, the problem of soft error vulnera-

bility analysis can also be accelerated by estimating the vulnerability, instead

of extensive simulation used in state-of-the-art error injection methods.

With increasing the size and complexity of VLSI designs, current method-

ologies for analyzing a design in presence of faults do not satisfy time-to-market

requirements. Statistical methods can estimate the dependability of a design

under permanent and transient faults in a considerably short time. This dis-

sertation focuses on three efficient methods to estimate fault coverage under

a sequence of functional test vectors. Additionally, the problem of soft error

vulnerability analysis is studied and a solution that uses statistical analysis is

employed for a more accurate vulnerability analysis compared to traditional

methodologies.

7

1.2 Background on Fault Grading

Fault grading has been studied for half a century [80]. Despite this

strong background, the complexity of fault grading still makes it time-consuming

for today’s large designs. There are several reasons, including test quality,

test cost, test vector re-usability, and test application time, that functional

methods are becoming popular [48, 49, 59, 91], and these methods make fault

grading problem even more complex. When design-for-test features, such as

Logic BIST, are incorporated into the design, fault grading the resulting large

number of test vectors becomes a difficult problem. Additionally, major com-

panies are resorting to cache-resident software-based self test (SBST) schemes

in order to apply effective tests for circuits with shrinking technology feature

sizes and Vdd/frequency scaling [28, 65]. Furthermore, on-line test schemes for

highly reliable systems require application-level test inputs while the system

is operating in its functional mode.

Proposed methods attacking the fault grading problem, in general, can

be categorized into three major groups: fault simulation, fault emulation,

and coverage estimation (statistical methods). Approaches to fault simulation

include basic gate-level algorithms [4] and several hybrid methods. These

methods either combine basic methods (like PROOFS [63]), or use different

levels of abstraction to speed up the simulation process [38, 51, 77]. Although

these methods are faster than the traditional gate-level methods, they are still

not scalable. To overcome this problem, high-level (e.g., Register Transfer

Level or RTL) fault models [88] have been proposed. These methods scale

well with the size of the design, but they lack a precise correlation with the

fault models used to evaluate the coverage of manufacturing faults under test

sequences. In general, in a large design with a large set of test vectors, system

8

level fault simulation seems to be nearly impossible [26].

Fault emulation was proposed in the 90s [94]. The main drawback of

fault emulation is that the design under test should be fully synthesizable,

which makes emulation not applicable in early design stages. Also, fitting

large designs into the emulation hardware might not be feasible.

Another solution for fault grading, proposed first in the 80s, is to es-

timate the coverage using some data from good simulation and/or the circuit

structure [5, 15, 39]. These methods are based on fault sampling [6], test vec-

tor sampling [29], and gate-level statistical analysis using data from design

simulation (called STAFAN) [36, 44]. The initial work was mainly on the Sin-

gle Stuck-At (SSA) fault model. Later, fault models were expanded to path

delay faults and also sequential circuits [10, 30, 69]. Some high-level testability

measurements were also introduced [75] and an extension of STAFAN to RTL

components was proposed [76]. Since these statistical methods use good sim-

ulation data, their run time is comparable to the run time of good simulation,

which makes them scalable. Apart from their scalability, such methods intro-

duce some parameters (for re-convergent fanouts for example) which should

be determined empirically. In addition, the results have been shown only for

small circuits. There is also a commercial tool [9] based on statistical fault

analysis which uses testability measurements and sets the faults with 0 prob-

ability as undetectable. Then it fault simulates the design with the rest of

the faults. The error in this tool is claimed to be not more than 10%, but it

still depends on the fault simulation on the whole system. Other methods for

fault coverage estimation and test vector evaluation which use probabilistic

distributions and fault modeling include the research in [21, 24, 36, 61, 81, 85]

for fault simulation, and also for test vector evaluation [27, 46, 68, 93, 95]. Most

9

of these methods work for combinational/full-scan designs, or they need some

parameters that might not be easy to calculate for every circuit (i.e., may not

be useful for sequential circuits).

Therefore, in order to be able to test the designs using functional test

vectors, there is a need for measuring the coverage for application level tests.

For example, in microprocessors, these tests are instruction level tests (or

some programs) which are applied to the the entire processor chip while it is

operating in its normal mode inside the system. Industry designs have used

such techniques as their test techniques [12, 65]. Chapters 2 and 3 of this

dissertation address two different solutions to the problem of long run times

when fault grading a design under functional patterns. However, although the

methodologies in these chapters were aimed at working with functional pat-

terns, these methods can be applied to both functional patterns and patterns

for scan-based designs.

1.3 Background on Soft Error Vulnerability Analysis

Analyzing a design for radiation-based soft errors is an involved process,

but necessary for life- and mission-critical systems. Results from [11] and [78]

show that single bit-flips in the flip-flops of a system are suitable candidates

for soft error modeling, since the system outcomes, when these errors are

injected, are statistically close to the outcomes of a chip under actual radiation.

Despite the fact that this model is accurate, analyzing a system for all soft error

candidates (or even a sufficient sample of single bit-flips) takes a long time and

a large amount of computational resources (e.g., processor cores). For a design

with many thousands of flip-flops, analyzing each flip-flop’s vulnerability, in

order to add resiliency to the design, demands even more injections to reach

10

an acceptable margin of error.

During the past two decades, there have been methodologies developed

to improve the run times for error injection of bit-flips in flip-flops. These

methods are categorized below. A more detailed categorization and additional

discussion can be found in [70].

• Hierarchical simulation methods that switch between different levels of

abstraction, such as the transistor-level, gate-level, RT-level, and archi-

tectural level [13, 23, 74, 92].

• Analytical methods that use static analysis of circuits and probabilistic

models of components (e.g., gates) to estimate soft error resilience of

systems [8, 25, 32].

• Architecture-based methods that take advantage of architectural features

and high-level (instruction-level) simulation passes to estimate the vul-

nerability [41, 58] or the worst-case soft error rate [60, 96] of the systems.

• System emulation that uses FPGA systems to build a prototype of the

hardware that runs much faster than simulation [67].

Chapter 5 discusses a new methodology for vulnerability analysis of

complex designs. The impact of soft errors has been increasing in new tech-

nologies, becoming a concern not only in mission- and life-critical systems, but

also in general systems such as servers and routers. Therefore, analyzing a sys-

tem in the presence of soft errors has (or should) become one of the stages in

the chip manufacturing process. If, based on the costumer requirements, the

designers find out that their design is vulnerable to soft errors, they need to

11

incorporate resilience techniques in their design to make it more dependable.

In general, adding full redundancy is very expensive, and therefore designers

usually apply partial redundancy to obtain an acceptable resilient system with

a relatively low cost. In order to apply partial redundancy at the circuit level

(e.g., using BISER [98]), designers need to know which parts of the system

are more vulnerable to soft errors. Such an insight into soft error vulnerability

requires a good model of soft errors. Several error models have been proposed

for soft errors (e.g., [16, 17, 66, 71, 97, 99]). However, in this dissertation, this

single bit-flip on flip-flop error model is used as the golden model1.

Therefore, to apply partial redundancy to a design we need to have a

means of determining which flip-flops in the system are the most vulnerable

parts to soft errors. This calculation should ideally be done by injecting all

possible error candidates and observing their outcomes under each error. Due

to the enormous number of error candidates, which is the number of flip-flops

in the design multiplied by the number of clock cycles a program takes to

run on that design, this option is not feasible in a reasonable time. Another

option for this calculation is Statistical Fault (Error) Injection or SFI [73].

In SFI, a sample of the error candidates is randomly chosen and the average

outcome results for this sample can represent the average outcomes for all

error candidates, with a margin of error (MOE) and a confidence level. Error

injection with a sample of errors has been utilized to calculate the vulnerability

of the flip-flops in a design in several papers [22, 67, 84]. In Chapter 5, the issues

of detailed vulnerability analysis (per each memory element) will be discussed

and it will be shown that the proposed methodology can result in more precise

1Soft errors are not considered in combinational logic in this dissertation, since soft errors
in gates are decreasing in new technologies, such as multi-gate transistors [79].

12

detailed vulnerability than SFI.

The following chapters of this dissertation discuss my contributions

to efficient functional fault grading and soft-error vulnerability analysis. As

stated above, Chapter 2 describes a methodology for fault coverage estimation

using local fault simulation. Chapter 3 introduces a new metric that can be

used for estimating the fault coverage of a design, as well as an estimation

method which uses this metric and regression method which is discussed in

Chapter 4. Chapter 5 discusses another application of local fault simulation

which can be used in estimating both the average and detailed vulnerability

of a design under soft errors.

13

Chapter 2

Fault Coverage Estimation using Local

Simulations

2.1 Overview

In this chapter, a method for manufacturing fault coverage estimation

is discussed. This method is named FALCON (Fast fAuLt COverage estima-

tioN) [54]. FALCON has been applied on two processors, OR1200 [64] and

IVM [90]. OR1200 has around 40,000 gates and 2,000 sequential elements,

while IVM has around 5,000,000 gates and more than 100,000 sequential ele-

ments. Around 75,000 faults in OR1200 and 320,000 faults in IVM have been

injected for this experiment. The experiments show that FALCON works much

faster than fault simulation and it estimates the coverage more accurately than

the fault sampling method [6] with a confidence of 0.998 [7]. The contributions

in this work include the following.

• The idea of divide-and-conquer for coverage estimation of modular de-

signs for coverage estimation has not been proposed before. Existing

methods (e.g., STAFAN) use gate-level granularity rather than module

granularity.

• A fully automated environment has been implemented for this coverage

estimation method using a commercial fault simulator, a commercial

logic simulator, and Perl scripts to feed proper inputs to these tools.

14

The structure for the remainder of this chapter is as follows. In Sec-

tion 2.2, the approach is discussed. Section 2.2 describe the methodology.

Then, in the following sub-sections (2.2.2, 2.2.3, and 2.2.4) we describe the

details for each step of our estimation method. In Section 2.3, we show our

experimental results. Finally, in Section 2.4, a brief run time analysis is dis-

cussed.

2.2 Coverage Estimation Methodology

This coverage estimation method has been designed to work for large

modular designs, where a module can be combinational or sequential. A mod-

ule boundary can be the HDL (Hardware Description Language) modules,

such as Verilog, in a hierarchical design. However, if the design is flattened

by the synthesis tool, an algorithm for partitioning the gate-level design is not

difficult. Any boundary which includes a reasonable number of gates in a mod-

ule can be used in this method. In Section 2.4, we provide an analysis which

shows the relationship between FALCON run-time and module size. Since

system-level feedback paths are one source of error in FALCON, it is better,

in the partitioning process, to avoid having many system-level feedback paths.

In this chapter, the SSA (Single Stuck-At) fault model has been used.

The main idea of this approach is to accurately estimate the coverage from the

fault grading results on a standalone module, when that module is embedded

in a larger system. This is accomplished by estimating how each module can

propagate an error from one of its inputs to one of its outputs. Also, the

probability of the presence of fault effects on the outputs of each module-under-

test (MUT) is calculated. The latter factor gives an idea of how many fault

effects will be activated on the boundaries of a MUT, while the former factor

15

helps finding how many of these activated faults can be propagated through

other modules in the whole system. Combining these two, it is possible to

estimate how many fault effects can reach the system’s primary outputs.

The following are a few terms used frequently in this chapter.

• MUT (module-under-test): A module in the system which is the target

for fault grading. FALCON performs fault grading module by module.

• Detection probability table: A table indicating the probability of each

fault in a MUT to be present at one of the outputs of that MUT. There

is one detection probability table for each MUT.

• Propagation table: A table indicating the probability of error propaga-

tion from one input of a module to one of its outputs. There is one

propagation table for each module in the design.

• Local test vector set: The set of stimuli at the inputs of a module, when

applying the test vector set to the primary inputs of the system.

• Stand-alone fault simulation: The process of fault simulating a module,

separated from the system, with its corresponding local test vector set.

• Local fault dictionary: The resulting fault dictionary when performing

stand-alone fault simulation on a module.

2.2.1 Algorithm Steps

This section describes FALCON methodology, step by step, using an

example. The details of each step will be discussed in the following sections.

16

• Step 1: Given a test vector set, FALCON simulates the entire system to

generate local test vectors for each module. This step is done using a

commercial logic simulator.

Figure 2.1: System block-diagram

A system with four modules and a set of test vectors is shown in Fig. 2.1,

while Fig. 2.2 shows the system after applying this step.

Figure 2.2: Module with local test vectors

• Step 2: Now that local test vectors are available, FALCON performs

17

stand-alone fault simulation for each MUT (M1 in the example). Note

that faults are not dropped during this process, because the probability

of each fault detection is calculated. Therefore, the more times a fault is

detected on a MUT output, the higher the probability it can be detected

on a system primary output. In this step, the results are stored in local

fault dictionaries. This step is done by a commercial fault simulator

(shown in Fig. 2.3).

Figure 2.3: Local fault dictionary

• Step 3: Using the local fault dictionaries from step 2, detection prob-

ability tables are generated for each MUT and propagation tables are

generated for all modules in the system (Fig. 2.4). Note that for mod-

ules which are not in the MUT set, propagation tables are still needed.

18

These will be discussed in more detail in Section 2.2.3. This step is done

with a Perl script.

Figure 2.4: Propagation and detection probability tables

• Step 4: FALCON generates a statistical model using module intercon-

nections in the design, propagation tables for each module in the design,

and detection probability tables for each MUT (Fig. 2.5). By simulat-

ing this statistical model with a commercial simulator, it is possible to

estimate the fault coverage of each MUT in the entire system. We will

describe the probability calculation formula in Section 2.2.4.

2.2.2 Detection Probability Tables

As discussed above, this table indicates the detection probability for

each fault on each output of a MUT. It is implemented as a 3-dimensional

array; the first dimension represents the fault number, the second dimension

19

Figure 2.5: Statistical system block diagram

represents the MUT output number, and the third dimension is either 0 or 1.

Zero represents a 0/1 value and one represents a 1/0 value (a line with v/v̄

value shows that a fault effect has reached that line and inverted the value of

that line from v to v̄).

The value of each element in this table, e.g., det prob table[f][o][v], is

calculated as described below.

det prob table[f][o][v] =
of times f is detected on o with value v/v̄

of test vectors
(2.1)

As an example, fault #10 is detected on the 5th output of a MUT in

the stand-alone fault simulation process, 4 times with value 0/1 and 11 times

with value 1/0. Suppose the applied test vector set contains 100 test vectors,

20

then the detection probability table includes

det prob table[10][5][0] = 0.04 and det prob table[10][5][1] = 0.11

2.2.3 Propagation Tables

This table calculates the ability of a module to propagate a fault effect

from each of its inputs to each of its outputs. As discussed before, this table

is generated using the local fault dictionaries of each module. However, if

the description of this module at the gate level is not available, this table

can be generated by simulating this module stand-alone (with its local test

vectors) and inject the module’s input stuck-at-0 (stuck-at-1) faults by putting

a constant 0 (1) instead of the value of that input. The number of simulations

will be 2× i where i is the number of module inputs. Since this is done on a

high-level module, the simulation cost is not too high. In another case, if the

detailed gate-level description of a module is available, but there is no need to

perform fault grading for this module, FALCON can inject only the faults on

this module’s primary inputs and perform stand-alone fault simulation.

Similar to detection probability tables, propagation tables are also im-

plemented as a 3-dimensional array. The first dimension is the input number,

the second dimension is the output number, and the third is a number between

0 and 3. Value 0 for this dimension shows the propagation probability of a

0/1 value from an input to a 0/1 value to an output. Table 2.1 shows the

interpretation of other values for this dimension.

The value of each element of this array is calculated to be the propaga-

tion factor from an input to an output. If value v/v̄ can be propagated through

output o, it means that fault i − sa − v̄ is detected on output o. Therefore,

propagation factors are calculated from fault simulation as shown below.

21

Table 2.1: Interpretation of index values in propagation table

Index Value representation
0 0/1→ 0/1
1 0/1→ 1/0
2 1/0→ 0/1
3 1/0→ 1/0

prop table[i][o][k]=# of times i−sa−v̄ detected on o with w/w̄ effect
of times i−sa−v̄ activated

Note that the numerator is not divided by the number of test vectors.

This is because whenever this factor is used in probability calculation, the fault

effect has been already propagated through the input of this module. There-

fore, we only needed to use a definition similar to conditional probability (i.e.,

the probability of a fault effect propagation given that the fault is activated).

Also, it should be noted that the number of faults detected can be more

than the number of fault activations and this factor becomes greater than

1. This can happen in modules with sequential feedback paths. Therefore,

“propagation factor” is a better term than propagation probability in this

case.

2.2.4 Detection Probability Function

Suppose FALCON has generated a propagation table for each module

in the system and it has generated the detection probability table for the MUT.

Now, using these tables, we need to calculate the detection probability of each

fault on the primary outputs of the system. For this purpose, a function needs

to be defined that accepts the detection probability values at the inputs of a

module and calculates the detection probability values at the output of that

module, using its propagation factors.

22

Figure 2.6: A sample for detection probability function

Suppose a fault effect is propagated through more than one input of a

module. This case happens when there are system-level fanouts in the design.

In our example in Fig. 2.6, suppose a fault effect has reached input i1 and i2

with 0/1 probability values equal to α1 and α2, and 1/0 probability values equal

to β1 and β2, respectively. In this case, it is easier to calculate the probability

of absorption of a fault effect from ALL inputs through an output and then

negate this absorption probability to reach the propagation probability from

either of inputs to that output. This idea is a realization of the following

probability formula (suppose A and B are independent events),

P (A ∪B) = 1− (1− P (A))× (1− P (B)) (2.2)

Note that FALCON is adding some error by assuming that the two

events are independent, because in reality, two inputs of a module can af-

fect each other during fault effect propagation (i.e., the fault effect can be

masked). Since this error happens only in case of system re-convergent fanouts

and intra-module re-convergent fanouts are taken care of by stand-alone fault

23

simulations, only a small amount of error due to this assumption is expected

in this estimation method. This is validated by the experimental results dis-

cussed in Section 2.3. Another source of error in FALCON is when the design

has inter-module (i.e., system-level) feedback paths. The experimental results

show a small amount of error in this case as well as masking errors.

Using Eq. 2.2, the detection probability of the fault effect on i1 and i2

reaching o1 with value 0/1 can be calculated as,

det prob[o1][0] = α′1

= 1 − [(1− α1 × P 0/1→0/1
i1,o1

)× (1− β1 × P 1/0→0/1
i1,o1

)

×(1− α2 × P 0/1→0/1
i2,o1

)× (1− β1 × P 1/0→0/1
i2,o1

)]

The other values for detection probability of the outputs can be calcu-

lated in a similar way. A general formula for o1 with value 0/1, when a fault

effect reaches N inputs is,

det prob[o1][0] = 1−
N∏
n=1

(1− αn × P 0/1→0/1
in,o1

)× (1− βn × P 1/0→0/1
in,o1

)

2.2.5 Fault Detection Metric

Now that the detection probabilities of a fault on each line in the sys-

tem can be calculated, there should be a way to determine which value (or

24

ranges of values) should be determined as detected and which ones should

be considered as not detected. In other words, a metric for fault coverage is

needed in FALCON.

Using FALCON statistical system and the statistical simulation envi-

ronment (Section 2.2.6), it calculates the detection probability for MUT faults

from the outputs of each MUT through the primary outputs of the system.

Since detection probability is defined as in Eq. 2.1, detection threshold can be

defined as,

detection threshold = 1
of test vectors

This threshold means that the fault is detected one time when applying

our test vector set to our design. Therefore, if a detection probability value

at a system primary output is greater than or equal to this value, it will be

counted as a detected fault.

Using the detection probability function and the detection threshold

defined above, FALCON can estimate the fault coverage of the system for

each MUT. Due to the detection probability definition in Equation 2.1, the

output of the statistical system shows fault detection in the system as if they

are not dropped.

2.2.6 Statistical System and Simulation

After building the propagation tables and detection probability tables,

it is time to calculate the detection probability for each line in the design using

the detection probability function discussed in Section 2.2.4. Note that if the

top module of the system (the module that the statistical system is built from)

has some glue logic, it is wrapped inside a dummy module and propagation

25

tables for this dummy module are generated as well. This process has been

done in one of the discussed test cases in this chapter. FALCON statistical

system (in Verilog) follows the steps below.

• Replaces every module in the system with its propagation table.

• Adds a detection probability table to the MUT.

• Connects these high-level models as they were connected in the original

design.

• Changes the signal type to a type which accepts the detection probability

for both 0/1 and 1/0 values (e.g., a two element array of type real).

Given the above statistical system (along with a library containing

detection probability functions), and a commercial simulator, the detection

probabilities of interconnections and system primary outputs can be calcu-

lated. For coverage calculation, detection probabilities on primary outputs

are compared with the above-mentioned defined detection threshold.

2.3 Experimental Results

There are scripts developed for generating local test vectors and test-

benches for stand-alone fault simulation to be able to apply FALCON on

designs. Figure 2.7 shows the flow of our estimation methodology. As can be

seen in this figure, the local test vector sets (TV1, ...) are obtained using a

commercial simulator. Then using a commercial fault simulator, local fault

dictionaries are obtained based on the local test vectors (Local Dict. 1, ...).

26

These local fault dictionaries are converted to detection probability and propa-

gation probability tables. These tables, along with the interconnections of the

system are used in a simulation environment to estimate the fault detection

probabilities in the whole system.

FALCON has been applied on two CPU designs, OR1200 which is an

open RISC processor [64] and IVM which is an implementation of the DEC

Alpha processor developed in University of Illinois at Urbana Champaign [90].

These CPUs are Verilog designs which were synthesized with the TSMC 180nm

technology library. Table 2.2 shows some characteristics for each test case.

These experiments have been run on an Intel R© Xeon R© X5670, 2.93GHz pro-

cessor, with 72GB of memory, and 12 cores (with hyper threading). In both

cases, fault grading is started after the design has been reset (using the reset

signal of the design).

As discussed in previous sections, FALCON estimates the presence of

each fault on each output of a design. This can be considered as a statisti-

cal fault dictionary. To show the accuracy of FALCON estimation method,

sequential fault simulation on a sub-set of faults for OR1200 without fault

dropping has been performed and the appearance of each fault on each pri-

mary output has been calculated. On the other hand, FALCON has been

performed on the same sub-set of faults and the detection probability of each

fault on each primary output has been calculated. An example is shown in

Fig. 2.8 (fault simulation) and Fig. 2.9 (FALCON) for the faults in the ALU

module in OR1200. As can be seen, these two measurements are very close

to each other, which means that FALCON is able to prepare statistical data

about fault detection rather than outputting only a coverage number. This

data can be used for purposes like fault diagnosis. Other estimation methods,

27

Figure 2.7: Coverage estimation measurement flow

28

like fault sampling, do not output any data other than the fault coverage.

However, in this chapter, I have compared FALCON results with the results

of fault simulation and fault sampling with fault dropping.

Figure 2.8: Fault simulated average detection Figure 2.9: FALCON detection probability

Traditional fault simulation and fault sampling (using the Cadence

Verifault-XL R© fault simulator that was also used in FALCON for standalone

fault simulations) has been done on the entire system, and the run times and

coverages has been measured, and I have compared the run time and fault cov-

erage of FALCON with these results. As discussed above, the fault simulation

and fault sampling processes are done with fault dropping.

In th fault sampling method, a sample of faults from the fault list is

selected and fault simulated. Based on the fault coverage from these sampled

faults, the fault coverage for the whole system is calculated using a formula

(C3σ = c± 4.5
N

√
1 + 0.44Nc(1− c), where N is the total number of faults and

c is the fault coverage calculated for a sample of faults). This method gives

the user a range of fault coverage with a level of confidence. Based on a few

experiments on both designs, the sample size which gave the most accurate

estimations was as 10% of the whole faults and the confidence equal to 0.998

29

Table 2.2: Testcase characteristics

design approx. size MUT # of memory analyzed
name (gates) modules inputs elements faults

OR1200 40,000 13 387 2,000 75,129
IVM 5,000,000 18 836 100,000 320,912

(known as 3σ). For example, for OR1200 design, with 1024 test vectors and

a sample of 7512 faults (10%), fault sampling method gives a range equal to

[28.4, 30.9] with a confidence of 0.998. This means that with a probability

of 0.998, the real fault coverage (for the whole system) is between 28.4% and

30.9%.

The experimental results show that the fault sampling coverage range

does not match the real coverage in several cases. In cases that the calculated

coverage matches the real fault coverage, 0% error is considered in the tables

and figures. For the cases that the real coverage is not in the calculated range,

the error is calculated as the difference between the real fault coverage and

the coverage in the middle of the range.

In the following sections, two case studies are discussed.

2.3.1 OR1200 Case Study

For the OR1200 case study, random test vector sets with different sizes

have been applied to the CPU. Fault coverages are shown in Tab. 2.3. The first

column shows the number of test vectors (which are random), while columns

2, 3, and 4 show the coverage results for fault simulation, fault sampling, and

FALCON, respectively. As discussed above, in column 3, a range of fault

coverage is shown. Column 5 indicates the error between FALCON estimation

and fault simulation method. The error is calculated as the number of

30

mis-calculated faults over the total number of faults. That is why

the difference between fault coverages shows a smaller number than the error

shown in the fifth row of Tab. 2.3. The sixth row of this table shows the

error between the fault sampling method and the traditional fault simulation

method (columns 2 and 3). As discussed above, the error is defined as 0%

if the real coverage is in the range of the calculated coverage. The next two

columns in this table show the number of mis-detected faults (rather than

the percentage) in FALCON and fault sampling methods, respectively. The

last column shows the difference between the number of mis-detected faults

between fault sampling method and FALCON. As can be seen, this number is

relatively high in the first three cases.

Table 2.4 shows the run time results for fault simulation, fault sampling,

and FALCON for the runs whose coverages shown in Tab. 2.3. The first column

of this table shows the number of random test vectors. The second, third, and

forth columns show the run times of fault grading for fault simulation, fault

sampling, and FALCON, respectively. In column 5, the speed-up in the run

time between FALCON and fault simulation is shown. This speed-up factor is

calculated by dividing the time spent in fault simulation by the time spent in

all the steps of FALCON (i.e., column 2 divided by column 4). All run times

are shown in seconds. We measured the run time speedup between FALCON

and fault simulation. As can be seen in this table, fault sampling works faster

than FALCON, but the error in the sampling method is more than that of

FALCON in most cases, as shown in Tab. 2.3. Also, when the design size

grows, the fault sampling method calculates less accurate results compared

to FALCON. However, the sampling method run time is still comparable to

FALCON. This can be seen in the IVM test case in the next section (Tables 2.5

31

Table 2.3: Fault coverage results for OR1200

of test
vectors

Fault
sim.
cov.(%)

Fault
sampl.
cov.(%)

FALCON
cov.(%)

FALCON
err.(%)

Sampl.
err.(%)

FALCON
mis-det.

Sampl.
mis-det.

Mis-det.
diff.

1,024 39.57 [28.4, 30.9] 38.99 0.96 9.92 722 7453 6731
2,048 42.99 [35.4, 38.1] 42.51 0.97 6.24 729 4689 3960
4,096 45.82 [38.1, 40.8] 46.65 1.46 6.37 1097 4786 3689
8,192 53.69 [52.4, 55.1] 54.39 2.34 0 1759 0 -1759
12,288 57.63 [59.0, 61.7] 58.42 2.24 2.72 1683 2044 361
16,384 60.1 [59.0, 61.7] 61.41 2.11 0 1586 0 -1586

Table 2.4: Run-time results for OR1200

of test Fault sim. Fault sampl. FALCON Speedup
vectors run time (s) run time (s) run time (s) (Fault sim. time/FALCON time)
1,024 846 100 386 2.19
2,048 1,608 130 679 2.37
4,096 4,341 387 1,488 2.92
8,192 3,788 751 1,470 2.58
12,288 15,608 1275 4,672 3.34
16,384 18,578 1792 6,125 3.03

and 2.6).

The OR1200 results have been summarized in Fig. 2.10. This figure

shows the run time for fault simulation, fault sampling and FALCON on a

logarithmic scale (shown with bars). Also, sampling error and coverage esti-

mation error are shown in this figure with lines. These errors are shown as

the number of miscalculated faults. As can be seen in this figure, the fault

sampling method has the fastest run time when the number of test vectors is

increased. It can be seen that the run time for FALCON grows more slowly

than for traditional fault simulation. For the IVM test case, FALCON works

faster than the fault sampling method. This is while only a small subset

of faults have been used for fault grading. I believe that FALCON will run

more efficiently than fault sampling with smaller error rates if more faults are

injected in a large design.

32

Figure 2.10: OR1200 run time results and mis-detected faults

2.3.2 IVM Case Study

In the IVM test case, random test vectors which are valid instructions

are applied to the processor. Fault simulation, fault sampling, and FALCON

results on IVM for test sequences with 50, 200, 500, 1000, 2000, and 5000

clock cycles can be seen in Tab. 2.5. Since IVM is a superscalar processor, the

number of random instructions in the memory model is more than the number

of clock cycles for which the design is fault simulated.

In this case, a subset of faults, and not all fault candidates, for this

processor is chosen for injection. This is because the fault simulation process

could not be finished in a reasonable time even for a small number of cycles

when all the faults are injected in the circuit. Similar to the OR1200 case

(Section 2.3.1), the results for coverage and run time for fault simulation,

fault sampling, and FALCON are shown in this section. Fault coverage results

33

Table 2.5: Fault coverage results for IVM

of test
vectors

Fault
sim.
cov.(%)

Fault sampl.
cov.(%)

FALCON
cov.(%)

FALCON
err.(%)

Sampl.
err.(%)

FALCON
mis-det.

Sampl.
mis-det.

Mis-det.
diff.

50 15.9 [19.6, 20.9] 15.3 0.82 4.35 2,632 13,960 11,328
200 21.8 [26.6, 29.1] 19.93 2.01 6.05 6,451 19,416 12,965
500 41.4 [47.4, 49.0] 39.46 2.1 6.8 6,740 21,823 15,083
1,000 45.0 [50.6, 52.2] 43.44 1.89 6.4 6,066 20,539 14,473
2,000 49.5 [55.51, 57.08] 48.4 1.21 6.8 3,884 21,823 17,939
5,000 53.4 [57.91, 59.48] 51.88 1.81 5.3 5,809 17,009 11,200

Table 2.6: Run-time results for IVM

of test Fault sim. Fault sampl. FALCON Speedup
vectors run time (s) run time (s) run time (s) (Fault sim. time/FALCON time)

50 13,841 3,273 610 22.6
200 30,057 6,370 1,232 24.3
500 77,833 11,665 4,762 16.34

1,000 111,984 13,762 8,910 12.5
2,000 243,780 52,851 18,795 12.97
5,000 477,859 61,188 40,090 11.91

are shown in Tab. 2.5 and run time results can be found in Tab. 2.6.

As can be seen in Tab. 2.6, in this test case, fault sampling takes longer

than FALCON and as shown in Tab. 2.5, the error between fault sampling and

fault simulation is higher than the error between FALCON and fault simulation

(Tab. 2.5).

Similar to the OR1200 case, run times, fault coverage, and coverage

errors for fault simulation, fault sampling, and FALCON are shown for the

IVM processor. Figure 2.11 shows the run times for the three methods and

errors in coverage for fault sampling and coverage estimation. The run times

are shown in logarithmic scale and the error is indicated by the number of

faults.

As can be seen in Fig. 2.11 for both the OR1200 and IVM cases, the

run time in FALCON, due to its scalability, grows at a slower rate than fault

simulation. Also, it can be seen that FALCON runs faster than fault sampling

34

Figure 2.11: IVM run time results and mis-detected faults

with the growth of the design size, with smaller error rates.

One advantage of FALCON over sampling is that it can determine

which faults are detected on which outputs. This is useful when the user

needs more data than a simple coverage number (e.g., in the case of fault

diagnosis).

As shown in the above two test cases, the run time of FALCON grows

faster than fault sampling; however it is still faster than fault sampling for

large designs. The main reason for this growth rate in coverage estimation is

that the faults are not dropped during the local fault simulation process. This

can give the user extra information about each fault detection, such as the

probability of detection for each fault on each output. This can be considered

as a statistical fault dictionary. In cases that the user does not need this extra

information FALCON can divide the test vector set into sub-sets, and apply

35

the same process to each sub-set. In each step, it can drop the detected faults.

This way, the time of the stand-alone fault simulations will be reduced. Also,

smaller partitions can be used in FALCON so that the local fault simulations,

without fault dropping, will be more efficient and take less time.

The above experimental results show that fault sampling is a great

method for estimating fault coverage for small to medium designs. It is still a

good way to roughly estimate fault coverage for larger designs. However, this

method does not provide data other than fault coverage. On the other hand,

FALCON works a lot faster than fault simulation. Although it works slower

than fault sampling for small to medium designs, it becomes faster than fault

sampling for larger designs. In addition, FALCON provides more information

about fault detection which can be useful during the test process.

2.4 Run-time Analysis

In this section, a simple run time complexity analysis is shown for

FALCON and it is compared with fault simulation run time.

The following parameters are used in this analysis.

• M : number of modules in the system

• T : number of test vectors

• fm: number of faults in an MUT m

• G: number of gates in the system

• gm: number of gates in MUT m

• imax × omax: maximum module input/output product

36

Using the above definitions, the complexity of each step of FALCON

can be expressed as follows, assuming that there are m modules in the system

under test.

• Good simulation: O(G× T)

• Stand-alone fault simulation: O(gm × fm × T)

• Generating the Propagation table: O(I × T),where I is total number of

module inputs

• Generating the Detection probability table: O(fm × T)

• Forming the testbenches: O(M) (this usually takes only a few seconds)

• Statistical simulation: O(fm′×M×imax×omax), where fm′ is the number

of detected faults in stand-alone fault simulation. In worst case fm = fm′

All of the above should be done for coverage estimation of module m.

Therefore, the run time of FALCON can be written as,

O(G×T +gm×fm×T +I×T +fm×T +M +fm×M× (imax×omax)) (2.3)

If all of the faults are injected in a MUT, the number of faults is lin-

early related to the number of gates. Therefore, f can be replaced by g in

formula 2.3. Also, I × T + M part can be removed since it is negligible com-

pared to the other parts (more like a constant). The statistical simulation

part (gm ×M × (im × om)) is not negligible if all faults propagate through all

37

inputs of every module. Since each fault usually affects a limited part of the

design, it will propagate through a few of the module paths. Therefore, using

imax× omax in this formula is unrealistic since this term can be easily replaced

by a small constant. On the other hand, M is also a relatively small number

and the whole product of M × imax × omax can be replaced by a constant. As

a result, the estimation of run time can be written as,

Estimation run time = O(G× T + g2
m × T + gm) (2.4)

which can be written as,

Estimation run time = O(G× T + g2
m × T) (2.5)

Equation 2.5 shows that the run time of FALCON mostly depends on

the time for good simulation and the time for local fault simulation for module

m.

On the other hand, the complexity of fault simulation for a module

with gm gates can be written as:

FS run time = O(fm ×G× T) = O(gm ×G× T) (2.6)

If each part of Eq. 2.5 is compared with Eq. 2.6, it can be seen that

fault simulation run time is proportional to gm×G, while coverage estimation

run time is partly proportional to G, and partly to g2
m.

An Example: Suppose a system under test has 5 million gates (G)

and 10,000 test vectors (T) are provided for fault grading this system. If

FALCON runs on a module with 50,000 gates (gm), then the following run

38

time estimations for FALCON and fault simulation (based on Eq. 2.5) can be

calculated. Since in complexity analysis we deal with the biggest exponent,

coverage estimation run time = cfal ×max{5× 1010, 25× 1012}

or,

coverage estimation run time = cfal × 25× 1012

On the other hand, based on Eq. 2.6,

fault simulation run time = cfs × 5× 106 × 5× 104 × 104

which can be written as,

fault simulation run time = cfs × 25× 1014

where cfal and cfs can be considered as constants.

As can be seen, FALCON can work around 100 times faster than fault

simulation. For example, if FALCON takes a few minutes (hours), it can be

expected that fault simulation takes for hours (days).

Due to the above analysis, if gm is close to G (which means gm is a large

module in the design), FALCON will be as time-consuming as fault simulation.

If there are such modules in the design, they need to be broken into smaller

modules. Fortunately, with today’s hierarchical designs, every module has its

own sub-modules. Therefore, these sub-modules of large modules under test

can be used and FALCON can be applied hierarchically to the design.

2.4.1 Memory Complexity

A commercial test tool typically uses a more efficient method than tra-

ditional serial or parallel fault simulation. In this case, it can be assumed that

there is a fault queue for every gate during fault grading process. For a simple

39

memory consumption analysis, an average fault queue for each gate during the

whole fault simulation process can be assumed as the main source of mem-

ory consumption. Therefore, the average memory used in a fault simulation

process can be expressed as,

FS mem = (favg ∗G)

where, favg is the average length of fault queue and G is the total

number of gates in a design.

On the other hand, the memory consumed for FALCON is mostly due

to stand-alone fault simulation and statistical simulation steps. Since each

step is done separately, the peak memory consumption can be calculated as

the maximum memory consumption for each step.

FALCON mem = max(standlone mem, statistical mem)

stand-alone mem = O(f ′avg ∗ gmax)

where, f ′avg is the average length of fault queues in local simulation.

In general, the average length of fault queues during a fault simulation pass

depends on several factors, like the logic level (and the sequential level in case

of full sequential fault simulation) of the module or circuit under test, the

quality of the applied test vector, and fault dropping option. In this case,

the logic and sequential depth of the module under test in FALCON is less

than the logic and sequential depth in whole design for fault simulation. On

the other hand, FALCON performs fault simulation without fault dropping,

while in fault simulation faults are usually dropped when they are detected

during the previous cycles. Therefore, depending on the size of the module,

the quality of the applied test vectors (how many faults they can activate and

how many of the fault effects they can propagate), and the reduction in logic

40

level, f ′avg might be smaller or greater than favg.

and,

statistical mem = O(Σ(im ∗ om) + f ′ ∗ (i ∗ o)max)

where, the first term is for propagation tables and the second term is

the MUT detection probability calculation in worst case. f ′ is the number of

detected faults in stand-alone fault simulation.

In the worst case,

statistical mem = O((M + f ′) ∗ (io)max)

Since f ′ is usually by far more than M, the above equation can be

re-written as,

statistical mem = O(f ′ ∗ (io)max)

An Example: Like the previous example, suppose the design under

test has 5 million gates (G), with an MUT of size 50,000 gates (g), which is

1% of G, and maximum i ∗ o equal to 500*500.

If favg is 20000 and the detected number of faults in stand-alone fault

simulation is 30000, and f ′avg is 25000, then,

FS mem = O(2 ∗ 104 ∗ 5 ∗ 106) = O(1011)

stand-alone mem = O(3 ∗ 104 ∗ 5 ∗ 104) = (15 ∗ 108)

statistical mem = O(3 ∗ 104 ∗ 25 ∗ 104) = O(75 ∗ 108)

FALCON mem = max(15 ∗ 108, 75 ∗ 108) = O(75 ∗ 108)

In this example, FALCON can potentially use 10 times less memory

than fault simulation. In reality, memory consumption efficiency is better

since memory consumption for FALCON was calculated in a pessimistic way

41

Figure 2.12: Peak memory of FALCON and fault simulation for IVM in case of inefficient sequence of test
vectors

above. In addition, the memory consumption efficiency is higher during initial

phases of test vector development, in which the coverage is not high. Figure

2.12 shows a case where inefficient test vectors were applied to the IVM design

and it caused fault coverage less than 1%. Only in one case was the fault

simulation completed and the rest of the IVM fault simulation cases did not

run to completion and were terminated after two weeks. As can be seen in this

figure, the memory consumption in FALCON is around 4 times less than the

memory consumption in the (incomplete) fault simulation, while the biggest

module used in FALCON, which is the memory unit, has around 250K gates

(5% of G), more than 850 inputs, and more than 870 outputs. Therefore, it

can be seen that the above analysis is pessimistic for FALCON.

In general, if logic and sequential depths in FALCON and fault simula-

tion are known, a more accurate memory consumption analysis can be done.

42

2.5 Conclusions and Future Directions

In this chapter, a hierarchical and modular technique for estimating

fault coverage (FALCON) was discussed. This method is evaluated for single-

stuck-at faults. The experimental results show that for large designs, the

approach proposed here can achieve orders of magnitude improvements in

time with a very small amount of error. This method works the best when

each module in the design is a few times smaller than the whole design. Large

modules can be simply broken into smaller modules and FALCON can be

applied on them hierarchically. FALCON works on both combinational and

sequential modules. This method can be used even at early stages of the design,

when there are only a few modules available at the gate level of abstraction.

FALCON is a general method that is not restricted to stuck-at fault

mode. As a future work this methodology can be extended to other fault

models, such as the delay fault model.

43

Chapter 3

GIC: A Metric for Fast Test Vector Set

Evaluation

3.1 Overview

In this chapter, a new metric based on local signal value combinations

is introduced [53]. It is shown that there is a high correlation between (single

stuck-at) fault coverage and this metric for combinational and scan-based, as

well as sequential circuits. Rapid test vector set evaluation using this metric

needs one pass of fault-free simulation, and fault coverage estimation requires

a partial fault simulation in addition to one pass of fault-free simulation, re-

quiring much less time than full fault simulation. The introduced metric is

very easy to measure and its generality makes it useful for any design. Al-

though this metric works well with small circuits, it is especially useful for

large circuits and/or very large sets of test vectors where the simulation time

could be very large. The circuits under test can be gate-level or even standard

cell based. However, in this chapter, our circuits are all gate-level.

The rest of this chapter is organized as follows. Section 3.2 introduces

this metric, a method for estimating fault coverage and test vector evaluation,

and some points that should be considered while using this metric. Section 3.3

explains the experimental results gained by measuring this metric on several

benchmarks. These benchmarks include fully combinational, scan-based, and

fully-sequential circuits. Conclusions and future directions are discussed in

44

Section 3.4.

3.2 Methodology

This section describes the methodology for test vector evaluation and

coverage estimation. This methodology is based on a hypothesis which is used

to estimate coverage and evaluate the applied test vector set in a fast manner.

3.2.1 Gate Input Combination Metric

In this section, after discussing a hypothesis, a new metric for coverage

estimation and test vector evaluation with a simple example will be discussed.

Hypothesis: For a circuit-under-test, the number of unique input value

combinations at each gate input is related to the number of faults detected.

This hypothesis can be described first by giving an example in detail.

Suppose we have a circuit containing gate g, which is a 2-input “AND” gate

with inputs a and b, and output z. We apply a test vector set containing four

test vectors (tv1, tv2, tv3, and tv4) to this circuit. If test vector tv1 causes

{a, b} = 01, tv2 causes {a, b} = 10, tv3 causes {a, b} = 01 again, and tv4 does

not cause any change in gate g’s inputs, then we can say that gate g meets two

input combinations out of four possible combinations. In general, we can say

that each input combination in each gate can activate new faults on g’s inputs

and/or propagate the effects of previously activated faults to its output.

In this example, a and b are never set to 1 or 0 simultaneously. For the

former case ({a, b} = 11), a-stuck-at-0 and b-stuck-at-0 cannot be activated,

and for the latter case ({a, b} = 00), gate g cannot propagate the fault effects

45

from both a and b at the same time with faulty value equal to 1. There are

four pairs of data in this example: {(accumulative combinations, accumulative

detected faults)} = {(1, 2), (2, 3), (2, 3), (2, 3)}. It can be seen in this example

that the growth and saturation of these two numbers follow a similar pattern.

In the above example, the concept of Gate Input Combination

(GIC) was explained and it showed how GIC can be related to fault coverage.

In the real world, the circuits will have many gates, and the number of logic

levels of practical circuits is obviously greater than one. There are also many

points of reconvergent fanout. For the circuits chosen for this experiment,

these two metrics are always highly correlated regardless of the structure of

the circuit.

3.2.2 GIC vs. Toggle Count

There is another metric similar to GIC which uses the toggle count in

the circuit to evaluate a test vector and estimates the fault coverage [31, 62].

But it should be noted that toggle count is only related to fault activation and

thus it can produce a fairly large degree of inaccuracy. This metric is usually

used as an upper bound for fault coverage. On the other hand, counting

GICs is not only related to fault activation. GICs also represent fault effect

propagation in the circuit to some extent. This is because each new gate input

combination demands one or more events on its inputs. Recursively, each of

these events needs one or more events on its driving gate’s inputs. This chain of

new events introduces one or more paths with new value combinations which

can both activate and propagate the effects of a certain sub-set of faults.

However, this does not guarantee that the signals closer to primary outputs

are set to values that can propagate the newly generated events to primary

46

outputs (i.e., non-controlling events). Under certain conditions, like blocking

a new event to propagate to primary outputs, can introduce inaccuracy in

coverage estimation. I anticipate that considering the gate types and their

logic level in the circuit might make the estimation more precise.

3.2.3 Data Correlation

Pearson’s correlation coefficient [42] has been used to determine the

relationship between GIC and fault detection in a circuit under a set of test

vectors. This correlation coefficient indicates the linear correlation between

two series of numbers. One number series is the accumulative GIC coverage

at each cycle, and the other number series is the accumulative fault coverage

at each cycle. Equation 3.1 shows this correlation coefficient. Suppose the two

number series (with n members) are named X and Y.

ρX,Y =
cov(X, Y)

σxσy
=

n∑
i=1

(Xi −X)× (Yi − Y)√
n∑
i=1

(Xi −X)2 ×
√

n∑
i=1

(Yi − Y)2

(3.1)

The correlation coefficient is a number between -1 and 1. A value of

0 means “no linear correlation”, while value 1 (or -1) means “strong linear

correlation”. In the case of strong linear correlation, if each corresponding

member of the two series represents a point in the Cartesian coordinate system,

these points can form a line like in Eq. 3.2.

y = α× x+ β (3.2)

In Eq. 3.2, x ∈ Series1, y ∈ Series2, and α and β are constants. In

experiments of this chapter, the correlation coefficients are between 0.84 and

0.998. These coefficients are, for practical purposes, considered “high”. Due

47

Table 3.1: Sample size for various correlation coefficients with power of correlation = 95% and confidence
level = 99%

Correlation Coefficient Sample Size
0.99 6
0.95 8
0.90 11
0.88 12
0.85 14
0.79 18

to [87], when the correlation coefficient is less than 0.35 it is considered “weak

correlation”, between 0.35 and 0.67 is considered “moderate correlation”, and

more than 0.68 is considered a “high correlation” coefficient. Coefficients which

are more than 0.9 are considered “very high correlation” coefficients [47]. In

addition to coefficient values, the size of the series is important, too. For

example, if the correlation coefficient between 4 pairs of numbers is 0.99, it

cannot be concluded that these numbers are highly correlated even with this

high correlation coefficient. To measure how many points are necessary to

conclude that the calculated correlation coefficient shows a real correlation

(i.e., it does not happen randomly), calculating the power of correlation [42]

is required. In this research, a statistical calculator [2] to calculate this factor

has been used. Based on this calculator, shown in Tab. 3.1, if there are at

least 18 pairs of data, the power of correlation will be 95% for a correlation

coefficient equal to 0.79 and confidence level of 99% (i.e., α, which is the chance

of making a Type-I error [42], is 0.01). The sample sizes listed in Tab. 3.1 have

been used in the experiments (see Tab. 3.2) for this research. These sample

sizes cause the power of correlation to be 100% with a confidence level of 99%.

48

3.2.4 Coverage Estimation and Test Vector Evaluation by GIC

This section discusses how the hypothesis stated in Section 3.2.1 can

be utilized for a faster fault grading process. This hypothesis claims that the

number of GICs is highly correlated with the number of detected faults in

a circuit. Figure 3.1 demonstrates different examples of GIC coverage and

fault coverage curves based on the applied test vectors. This figure includes

examples of both combinational and sequential circuits. It also shows the

results for OR1200 processor (fully-sequential) with two different test vector

sets. GIC coverage is defined by Eq. 3.3 and Eq. 3.4.

GIC Coverage =
of observed GICs

Total possible GICs
(3.3)

where,

Total possible GICs =
∑
g∈G

2inputs(g) (3.4)

In Eq. 3.4, G is the set of all gates used in the circuit and inputs(g) is

the number of inputs for gate g.

As shown in Fig. 3.1, GIC coverage and fault coverage curves grow at

the same pace in every case (They both show an exponential nature and then

at some point, they start to saturate [95].) The reason for this resemblance is

that the two series have a high linear correlation. The more they are correlated,

the more their graphs are similar.

Based on this fact, if a circuit is simulated under a set of test vectors

and the number of GICs is measured at each cycle, there can be a point where

the GIC coverage starts to saturate. Due to the high correlation between GIC

and fault coverage, it is very likely that the saturation point is very close to the

49

(a) c880 - ≈ 5K test vectors (b) s1488 - ≈ 3K test vectors

(c) s349 - ≈ 300 test vectors (d) s9234 - ≈ 3.5K test vectors

(e) s953 - ≈ 4K test vectors (f) s38417 - ≈ 4.5K test vectors

(g) OR1200 - ≈ 15K test vectors (h) OR1200 - ≈ 75K test vectors

Figure 3.1: GIC and fault coverage curves (vs. simulation cycles) for different circuits and different test
vector sets

50

saturation point in the fault coverage curve. Thus, the following speculations

can be made.

1. Evaluating the test vector set: If the point of saturation is very early in

the simulation, it means that a long time is spent to gain a small coverage.

For example, if the applied test vector set contains 1000 vectors, and its

fault (GIC) coverage reaches 99% after 100 cycles, this shows that the

rest of 900 cycles of simulation is performed to gain only 1% more fault

(GIC) coverage. On the other hand, if the coverage grows constantly

until the end of the simulation, it means it has not been saturated and if

more test vectors are applied, it is very likely that the coverage still grows.

In both cases, test engineers need to revise their test vector set. This

process needs only one pass of simulation and GIC measurement. Note

that the process of test vector evaluation can be repeated several times

to reach an effective set of test vectors. Thus, a fast way of evaluating

test vectors can save a significant amount of time.

2. Estimating the fault coverage based on GIC saturation point: If GIC

saturation point on GIC coverage curve is defined as a simulation time

like ts, due to high linear correlation between GIC and fault coverage, it

is possible to perform fault simulation until time ts and, based on this

coverage, estimate the fault coverage for the whole test vector set. If ts is

early enough, a considerable amount of time in fault grading process can

be saved. Note that estimating coverage is usually tied with test vector

set evaluation. So, there might be several test vector sets that should be

evaluated and the exact number of fault coverage is not matter in this

case.

51

Figure 3.2: Saturation point, (ts, covs), in a typical fault coverage curve

3.2.5 Coverage Saturation Point

Assume a coverage curve like the one in Fig. 3.2. In this figure, tf and

covf are the final simulation time and final measured coverage, respectively. I

define saturation time (ts) as the earliest time when the coverage (covs) reaches

a certain amount of the final coverage (e.g., covs >= 0.99×covf). Equation 3.5

finds saturation points as,

tφs = min{t|cov(t) ≥ φ× covf} (3.5)

φ can be named as “saturation factor” in Eq. 3.5. I have used tφs for

φ = 0.75, 0.85, and 0.95 in experiments of this chapter (shown in Tab. 3.3).

Based on Eq. 3.5, fault coverage can be calculated based on the sat-

uration point of GIC coverage. Since fault and GIC coverage are linearly

52

correlated, the pairs (GIC covs, fault covs) and (GIC covf , fault covf) be-

long to the same line (with small inaccuracy). GIC and fault coverage can be

assumed to form a line like the one in Eq. 3.6.

fault cov = α×GIC cov + β (3.6)

where, α and β are constants and α > 0. The saturation point for GIC

coverage is the smallest point where GIC is equal or more than φ×GIC covf .

Therefore,

GIC covs ≥ φ×GIC covf (3.7)

Multiplying both sides by α and adding β to them gives,

α×GIC covs + β ≥ α× φ×GIC covf + β (3.8)

Combining 3.6 and 3.8 results in,

fault covs ≥ φ× fault covf + (1− φ)× β (3.9)

Since at time 0 both GIC and fault coverage numbers are 0, it is expected that

β is close to 0. Therefore,

fault covs ≥ φ× fault covf (3.10)

Equation 3.10 shows that the estimated final fault coverage can be determined

using the saturation factor and the calculated saturation point on the GIC

coverage curve.

3.2.6 GIC Measurement in Sequential Circuits

This section focuses on GIC measurement in sequential circuits, since

it is slightly different from GIC measurement in combinational circuits. In

53

a sequential circuit, sequential elements like flip-flops contain the state of the

circuit and the state value is fed back into the combinational part of the circuit

at each clock cycle. Therefore, in fault grading of sequential circuits, there is

a chance that a fault is activated in clock cycle t and its effect is propagated

through this feedback loop into to the circuit in clock cycles after t. For this

reason, sequential elements should be treated in a different way than logic gates

in GIC calculation. Since all of these sequential elements hold the state of the

circuit, they can be grouped and assumed as a single component. For instance,

if there are 10 flip-flops in a circuit which hold the state of the circuit, GIC

calculation can assume these flip-flops as one component with 10 inputs and

10 outputs, and as a result with 210 different input combinations. Grouping

flip-flops into one virtual component is a heuristic that is effective enough (due

to experimental results) for fault coverage estimation. When grouping the flip-

flops into one virtual component, the new circuit states, which are the inputs of

the flip-flops, generate new GICs and they will give a better estimation for the

faults in feedback paths. As another heuristic for calculating GIC coverage in

feedback paths, sequential depth of the circuit can be calculated and based on

this sequential depth and the number of gates in feedback loops, GIC numbers

are counted. This, along with other possible heuristics, can be implemented

and tested for sequential circuits in a future experiment.

If each flip-flop is considered individually, it can be considered that

there are no fault effects passing through the feedback paths of the sequential

circuit. In this case, each flip-flop is basically considered as an output so that

there is no fault effect propagation through feedback paths. Therefore, this

case is related to full scan-based circuits, since in these circuits, each flip-flop

is known as a primary output.

54

Different sizes of flip-flop groups give different correlation factors. For-

tunately, due to experiments, choosing an unsuitable size for flip-flop groups

shows itself early in the simulation (the correlation factors degrade from the

very beginning of simulation and fault simulation). Therefore, the best group

size for flip-flops can be defined intuitively by looking at the first correlation

results (e.g., 10 to 100 first cycles). Changing the flip-flop group size does

not require re-simulating the circuit. Only a part of GIC calculation regarding

flip-flops can be performed again, which has an insignificant effect on run time.

3.2.7 A Special Case

The experimental results in this chapter show that GIC coverage corre-

lates well with fault coverage. However, there are certain situations in which

this correlation is not high. In general, the active parts of the circuit aim to

generate output values. In some cases, however, some parts of the circuit are

active, while their generated events are not propagated through any primary

output by the next levels of gates. For example, if some modules in a de-

sign are in power-saving mode, their input activities will not be propagated

through their outputs. This behavior causes new GICs, but no new faults are

detected. Therefore, the correlation between GIC coverage and fault coverage

will be degraded. In such designs, control signals such as power management

signals or reset signals should be treated carefully. Fortunately, this problem

only needs a static analysis of the circuit, and it can only be done once during

the design of the test.

In the experiments of Section 3.3, where a global reset signal exists,

GICs are not counted when the reset signal is active. The same technique

can be applied to power saving signals. Signals dependent on power saving

55

signals can be identified using circuit analysis; when the power saving signals

are active, GICs should not be counted for their dependent signals. This way,

the high correlation between GIC and fault coverage is maintained. As an

example, the circuit s400 has a special signal called CLR. If this signal is

treated as a regular signal, GIC/fault coverage correlation can be degraded

to less than 0.5 and/or the estimation inaccuracy can be increased to 16%.

When this signal is considered as a reset signal and the GICs are not counted

when this signal is active, the correlation between GIC and fault coverage

becomes more than 0.9 with low inaccuracy (7.9% and less in the results of

this chapter).

3.3 Experimental Results

I have measured the GIC coverage and the fault coverage for ISCAS’85

benchmarks, ISCAS’89 benchmarks, and OR1200 processor [64] for both full-

scan and full-sequential (non-scan) modes. In this chapter, to show the effi-

ciency of test vector evaluation by GIC metric, random test vector sets are

applied to the circuits. But, in general, GIC is expected to have enough ac-

curacy and run-time performance with ATPG-based test vector sets as well

as random test vector sets. Studying the correlation between GIC and fault

coverage under set of ATPG-generated test vectors can be considered as a

future study. In the full-scan OR1200, flip-flop groups are set as 1 for GIC

calculation. All experiments have been performed on a machine with AMD

Phenom
TM

II X6 1055T processor with 0.5 GB of memory. In this experiment,

Synopsys VCS R© as the logic simulator for calculating GIC coverage numbers

and Cadence Verifault-XL R© as the fault simulator are used.

As can be seen in the results in this section (Tables 3.2 and 3.3), this

56

method shows its efficiency when the size of the circuit is moderate to large,

and/or the test vector set is large. In such cases, full fault simulation is time

consuming and estimating fault coverage using GIC coverage will speed-up the

process of test vector evaluation significantly. For large circuits or large test

vector sets, the simulation and GIC calculation time is in the order of seconds

(minutes in OR1200 case), while the fault simulation run times grow to the

order of minutes (hours in OR1200 case).

Table 3.2 shows the run times for both GIC calculation and fault simu-

lation for all benchmarks. Column two of this table shows the number of test

vectors applied to the circuit. Columns three and four show the run times for

GIC calculation and fault simulation, respectively. The last column shows the

correlation coefficient between GIC coverage and fault coverage. This coeffi-

cient is measured for the series of GIC and fault coverage numbers per test

vector. In these experiments, the correlation coefficients are between 0.84 and

0.998. For data size in these experiments, this range of correlation has a power

of correlation equal to 100% and the correlation coefficients are high enough

to conclude that the two series of data are (highly) correlated. The last row

of Tab. 3.2 is the arithmetic mean of correlation factors and the geometric

mean of GIC vs. fault simulation time for the cases with run time greater

than 1 minute. As can be seen, the ratio between GIC calculation and fault

simulation run times is greater than 11 on average, with an average correlation

coefficient of 0.94.

Table 3.3 lists the actual fault coverage achieved by full fault simulation

and the inaccuracy in the estimated fault coverage for the benchmarks used

in this chapter. Columns two and three in this table show the total number

of test vectors applied to each circuit and the actual fault coverage. Since

57

Table 3.2: Run times for GIC calculation and fault simulation and their correlation coefficients

Design TV size GIC Calc. Fault Sim. Correl.
(seconds) (seconds)

c17 30 0.47 0.02 0.98
c1355 500 0.53 0.24 0.93
c1908 500 0.51 0.55 0.94
c2670 600 0.48 0.66 0.93
c3540 100 0.54 0.24 0.93
c432 360 0.51 0.09 0.97
c499 340 0.46 0.11 0.99
c5315 1600 0.76 1.37 0.89
c6288 500 5 2.44 0.998
c7552 3000 2.31 5.91 0.93
c880 600 0.46 0.23 0.998
s1196 10000 1 4 0.94
s1238 5000 0.84 1.83 0.98
s13207 15000 19 281 0.92
s1488 3000 0.66 1.35 0.997
s15850 14000 23 212 0.96

s27 100 0.46 0.04 0.96
s298 3000 0.48 0.4 0.95
s344 1900 0.56 0.32 0.91
s349 1900 0.48 0.31 0.84

s35932 120 1 8 0.96
s38417 2000 9.08 238.73 0.96
s38584 40000 225.4 2553.1 0.89
s386 1700 0.44 0.26 0.99
s400 5000 0.5 1.4 0.96
s420 950 0.4 0.2 0.98
s444 80 0.4 0.06 0.94
s510 3600 0.52 0.66 0.99
s526 3000 0.5 0.9 0.91
s5378 1750 1.18 3.27 0.99
s641 4500 0.6 1.24 0.99
s713 500 0.5 0.2 0.99
s820 2100 0.62 0.64 0.94
s832 3000 0.5 0.9 0.95
s838 15000 1 6 0.94
s9234 5000 4 45 0.96
s953 4000 0.6 0.6 0.99

OR1200 5000 74 1278 0.99
OR1200 10000 148 2019 0.98
OR1200 30000 477 5017 0.99
OR1200 60000 890 8306 0.99
OR1200 200000 3087 15168 0.94

OR1200(full-scan) 20000 303 1234 0.997
Mean(1 min+) 11.18x 0.96

58

the test vector sets are random, some of them are inefficient due to their low

fault coverage. In such cases, GIC metric can easily examine these inefficient

test vector sets by one pass of fault free simulation. Column five shows the

estimated fault coverage inaccuracy based on Eq. 3.5 and Eq. 3.10 (defined

in Section 3.2.5) with φ equal to 0.75. Column four shows the number of

test vectors (and its ratio to the total number of test vectors) that should

be applied to reach the saturation point. The inaccuracy in estimated fault

coverage is measured based on the following equation.

inaccuracy =
|Estimated Fault Coverage− Simulated Fault Coverage|

Simulated Fault Coverage
(3.11)

The next columns measure the same parameters as columns four and

five, but with different values for φ. As shown in Tab. 3.3, a larger φ usually

causes less inaccuracy in estimated coverage but more test vectors to fault

simulate are needed. The last row in this table shows the range for the test

vector rates and inaccuracies for each φ. In this table, to have more precise

results, bootstrapping method (with size of 1000) has been used to find these

ranges. The confidence level used in this experience is 95%.

One important fact in Tab. 3.3 is that the inaccuracy (error) varies over

a wide range in the experimental results. This error depends on the distance

of the chosen saturation point to the regression line between GIC and fault

coverage drawn up to that point. In the next chapter, a solution for defining

an error bound using regression method.

In order to show how much run time can be saved with this simple es-

timation method in large circuits, fault simulation run time for the estimated

test vector sizes in Tab. 3.3 for φ = 0.75 is shown (Tab. 3.4). In this table, on

59

Table 3.3: Estimated and measured fault coverage with different saturation factors

Design TV
size

Fault
Cov.(%)

TV size/Ratio Error
(%)

TV size/Ratio Error
(%)

TV size/Ratio Error
(%)

(φ=0.75) (φ=0.75) (φ=0.85) (φ=0.85) (φ=0.95) (φ=0.95)
c17 30 100 12 / 40% 0 13 / 43.33% 0 14 / 46.66% 0
c1355 500 96.2 24 / 4.8% 9.3 39 / 7.8% 9.4 179 / 35.8% 0.2
c1908 500 91.6 14 / 2.8% 10.3 35 / 7% 9.8 100 / 20% 7.9
c2670 600 82 14 / 2.33% 7.8 21 / 3.5% 7.5 48 / 8% 6.7
c3540 100 80.4 22 / 22% 12.4 30 / 30% 10.9 46 / 46% 9.4
c432 360 96.6 24 / 6.66% 9.8 28 / 7.77% 8.3 88 / 24.44% 0.02
c499 340 97.6 21 / 6.17% 2.3 36 / 10.58% 1.6 130 / 38.23% 0.49
c5315 1600 99.2 18 / 1.12% 9.7 25 / 1.56% 9.7 42 / 2.62% 9.5
c6288 500 99.4 9 / 1.8% 0.53 11 / 2.2% 0.53 16 / 3.2% 0.5
c7552 3000 93.7 14 / 0.46% 10.7 20 / 0.66% 8.8 38 / 1.26% 8.7
c880 600 97.3 15 / 2.5% 5 22 / 3.66% 4.6 58 / 9.66% 3
s1196 10000 95.1 373 / 3.73% 4.2 1290 / 12.9% 5.1 4887 / 48.87% 1.8
s1238 5000 86.1 208 / 4.16% 10.8 588 / 11.76% 0.7 2170 / 43.4% 0.2
s13207 15000 38.3 548 / 3.65% 5.4 2369 / 15.79% 4.4 8494 / 56.62% 0.2
s1488 3000 70.2 678 / 22.6% 0.59 682 / 22.73% 0.61 1275 / 42.5% 0.69
s15850 14000 46.6 315 / 2.25% 3.8 950 / 6.78% 3.3 5066 / 36.18% 1.2
s27 100 98 12 / 12% 2 17 / 17% 6 34 / 34% 2
s298 3000 83 512 / 17.06% 8.5 1251 / 41.7% 2.1 1515 / 50.5% 1.9
s344 1900 97.5 249 / 13.10% 2.4 771 / 40.57% 2.4 1493 / 78.57% 2.4
s349 1900 96.2 11 / 0.57% 5.2 29 / 1.52% 2 292 / 15.36% 3.4
s35932 120 86.8 21 / 17.5% 9.5 58 / 48.33% 9.7 86 / 71.66% 5
s38417 2000 15.3 19 / 0.95% 10.8 54 / 2.7% 10.3 175 / 8.75% 5.8
s38584 40000 68.1 170 / 0.42% 10.9 501 / 1.25% 9.8 1986 / 4.96% 8.9
s386 1700 65.3 125 / 7.35% 5.1 382 / 22.47% 4.3 527 / 31% 0.8
s400 5000 88.2 88 / 1.76% 7.9 123 / 2.46% 6.7 195 / 3.9% 1.8
s420 950 61.9 292 / 30.73% 1.2 425 / 44.73% 1.7 543 / 57.15% 2.7
s444 80 16.6 20 / 25% 7.6 23 / 28.75% 7 47 / 58.75% 2.8
s510 3600 100 49 / 1.36% 8.7 60 / 1.66% 6.3 86 / 2.38% 4.8
s526 3000 11.9 704 / 23.46% 8.3 706 / 23.53% 7.3 1199 / 39.96% 3.9
s5378 1750 65.2 16 / 0.91% 3.8 54 / 3.08% 4.1 489 / 27.94% 0.4
s641 4500 87.9 14 / 0.31% 3.3 46 / 1.02% 0.6 476 / 10.57% 7.7
s713 500 82.6 39 / 7.8% 7.2 56 / 11.2% 4.9 198 / 39.6% 0.2
s820 2100 43.4 61 / 2.90% 6 221 / 10.52% 7.8 417 / 19.85% 0.41
s832 3000 49.1 158 / 5.26% 9.6 243 / 8.1% 7.7 717 / 23.9% 1.6
s838 15000 45.7 244 / 1.62% 10.5 2010 / 13.4% 10.9 6180 / 41.2% 0.5
s9234 5000 20.8 144 / 2.88% 3.3 146 / 2.92% 0.1 1256 / 25.12% 1.8
s953 4000 99.2 99 / 2.47% 0.7 276 / 6.9% 0.7 1181 / 29.52% 0.7
OR1200 5000 50.5 1929 / 38.58% 0.3 2941 / 58.82% 7.6 4379 / 87.58% 1.5
OR1200 10000 67.7 2566 / 25.66% 4.6 4248 / 42.48% 3.1 7659 / 76.59% 1.7
OR1200 30000 83.2 6383 / 21.27% 4 11924 / 39.74% 1.7 21910 / 73.03% 1.6
OR1200 60000 88.1 9821 / 16.36% 1.4 20200 / 33.66% 1.5 39722 / 66.20% 0.4
OR1200 200000 92.6 18362 / 9.18% 1 39402 / 19.70% 2.4 111031 / 55.51% 1.9
OR1200
(full-scan)

20000 89.6 3295 / 16.47% 2.6 5086 / 25.43% 0.3 10811 / 54.05% 0.2

G.Mean 3.64 ±
0.05

2.84 ±
0.04

1.22 ±
0.02

(bootstrap)

average, fault grading is 8.25 times faster by sacrificing 2.85% coverage accu-

racy. If we consider the number of test iterations before tape out (which can

be around 4 iterations), the difference between full and partial fault simulation

run times becomes even more. In general, run time speedup depends on factors

like φ and it also depends on how effective is the test vector set in detecting

faults. In larger circuits with a large set of test vectors that might detect a

small percentage of faults, the run time speed up between the estimation in

60

Table 3.4: Run times for fault simulation based on saturation estimation

Design Original/Reduced Original Fault Partial Fault Fault Sim.
TV size Sim.(sec) Sim.(sec) Speedup

OR1200 5000 / 1929 1278 516 2.47
OR1200 10000 / 2566 2019 795 2.53
OR1200 30000 / 6383 5017 1642 3.05
OR1200 60000 / 9821 8306 2714 3.06
OR1200 200000 / 18362 15168 3584 4.23
OR1200 20000 / 3295 1234 228 5.41

(full-scan)
s13207 15000 / 548 195 8 21.96
s38417 2000 / 19 238 3 69.19
s38584 40000 / 170 2553 29 87.22

this chapter and fault simulation will get even more significant.

3.4 Conclusions and Future Directions

A statistical metric based on gate input combinations was introduced

in this chapter. Experiments on ISCAS’85, ISCAS’89, and the OR1200 CPU

model show that the introduced metric has a high linear correlation with fault

coverage in combinational and sequential circuits. This correlation can be

used for test vector set evaluation and fault coverage estimation. An average

inaccuracy of 3.67% in estimated fault coverage by this metric was observed,

by only fault simulating 4.3% of the test vectors (on average). In the next

chapter, this metric is used to estimated fault coverage with lower and upper

bounds. This method can be useful for all types of circuits, but it shows its

effectiveness in large sequential circuits which need a large sequence of test

vectors to reach an acceptable fault coverage.

It is expected that the introduced metric can be even more accurate if

61

the type of gate and its logic level in the circuit are taken into consideration.

This can be tested in future implementations. Also, for a more precise GIC

calculation in feedback paths, GIC counting based on the sequential depth of

the circuit can be implemented and analyzed for different sequential circuits.

Another future direction can be to relate GICs to faults due to their position

in the design. If there is such a relationship, GIC will have the ability to locate

the parts of the circuit which could not be tested efficiently with the applied

test vector set. This analysis can also lead to a hybrid structural test and GIC

estimation.

62

Chapter 4

A Regression Model for Fault Coverage

Estimation using GIC Metric

4.1 Overview

Regression-based methods [14] are widely used in economics and med-

ical experiments to predict the future outcomes of a system. In this chapter,

simple linear regression is employed to estimate the fault coverage of tests

for a system. This methodology is named EAGLE (linEAr reGression-based

fauLt coverage Estimation) [52]. This method takes advantage of a strong

linear relationship between GIC coverage and fault coverage (see Chapter 3).

Based on this relationship, EAGLE uses partial fault simulation (for the first

n test vectors) to fit a line using simple linear regression model. According to

this line and the values of the GIC metric, which are calculated by only one

pass of simulation, fault coverage is estimated within a range for the whole

test vector set. Experimental results in this chapter show that, on average,

by fault simulation of 7.6% of test vectors, the final fault coverage is correctly

estimated for 94% of the cases. This regression based estimation model has

been tested for 60 different configurations on 33 different circuits, each with 50

different test vector sets. This means that the results in this chapter are based

on 99,000 different cases. The main contribution of this chapter is building

a system with different parameters for estimating the fault coverage within a

range.

63

The rest of this chapter is organized as follows. Section 4.2 explains

simple linear regression and its limitations. In Section 4.3, EAGLE algorithm

and its acceptable constraints are discussed. In Section 4.4, it is shown that

how the correctness of the estimations changes by modifying the EAGLE con-

straints. Section 4.5 contains the conclusions.

4.2 Simple Linear Regression

In statistics [14], when we have a set of data (xi, yi), to estimate y by

having the x value, we can fit a line between a group of available data points

and estimate y, named ŷ, using that fitted line. The act of calculating the “best

fit” line for a set of data points is called linear regression. We can always find

the best fit line for any set of data. However, a meaningful estimation of y

demands xi and yi values to have a fairly high linear correlation.

In simple linear regression, yi values are related to only one set of

values (e.g., xi), while in multiple linear regression, yi can have more than

one predictor (e.g., x1i to xpi). In simple linear regression, the best fit line is

calculated in a way that the sum of squared residuals is minimized.

Suppose it is needed to pass a line through n data points, (x1, y1) to

(xn, yn). For these n data points, simple linear regression algorithm finds β0

and β1 such that:

ŷi = β1.xi + β0 (i ∈ {1..n}) (4.1)

Residual of the ith point is defined as the difference between the real

value of yi and the estimated value ŷi using the regression line:

64

ri = yi − ŷi (4.2)

Therefore, the best fit happens when Σri
2 is minimized. This method

is also called the simple ordinary least squares (OLS). As shown in Equations

4.3 and 4.4, β1 and β0 can be calculated as,

β1 = rxy.
σy
σx

(4.3)

β0 = y − β1.x (4.4)

where rxy is the correlation coefficient between x and y values, σx and

σy are the standard deviation of xi and yi values, respectively, and x and y are

the mean of xi and yi values, respectively.

A regression line is used to estimate y values for some given x values.

A metric that determines how many of the points used in the regression model

are close enough to the regression line, is the squared of correlation coefficient

between xi and yi values (rxy
2). Therefore, this estimation model is useful only

when we know that the set of x and y values have a high linear correlation

coefficient. Otherwise, there is no guarantee that the estimated value is close to

the actual value. In experiences shown in this chapter, with correlation factor

values between 0.87 and 0.998, r2 factor will be between 0.756 and 0.996.

The detailed discusstion in Chapter 3 showed that the cumulative GIC

coverage and the cumulative stuck-at fault coverage numbers have a strong

linear correlation. This means that if there are n points, each consisting of

a GIC coverage value for a set of test vectors and its corresponding fault

65

coverage value, say, (gic1, fc1) to (gicn, fcn) and the best fit line for these n

points is calculated, fck by having gick and the regression line (k > n) can be

estimated. Figure 4.1 shows this relationship by plotting the GIC coverage vs.

the number of applied test vectors, fault coverage vs. the number of applied

test vectors, and fault coverage vs. GIC coverage in the upper, middle, and

lower curves in each part, respectively. As can be seen in this figure, the curves

for different test vectors look different, but GIC and fault coverage curves are

always very similar and the lower curve is always very close to a line.

Since the regression line between each subset of data points can be

different (unless all points are exactly on the same line), there should be a

way to find a range of regression lines instead of only one line for a set of data

points. Due to [14], the estimation interval for fc0 based on the value of gic0

can be calculated as,

ˆfc0 − tn−2
α/2 ˆs.e.(ˆfc0) ≤ fc0 ≤ ˆfc0 + tn−2

α/2 ˆs.e.(ˆfc0) (4.5)

where,

• n is the number of data points used in regression.

• ˆfc0 is the calculated fault coverage based on gic0 value (ˆfc0 = β1.gic0 +

β0). In this chapter, to predict the final fault coverage, final GIC number

(GIC number at the end of simulation) is used as gic0.

• tn−2
α/2 is the t-value (from t-distribution) with confidence level of (1−α)%

and n− 2 degrees of freedom.

• ˆs.e.(ˆfc0) is the estimated standard error of the estimated fault cover-

age based on gic0 value. Equations 4.6, 4.7, and 4.8 express this term.

66

(a) rgic,fc = 0.90 (b) rgic,fc = 0.91

(c) rgic,fc = 0.97 (d) rgic,fc = 0.99

(e) rgic,fc = 0.97 (f) rgic,fc = 0.98

Figure 4.1: GIC and fault coverage curves in s386 circuit for 6 different test vector sets. In each sub-
figure, GIC coverage vs. the number of simulated test vectors (upper curve), fault coverage vs. the number
of simulated test vectors (middle curve), and the scatter plot for fault and GIC coverage (lower curve) are
shown.

67

ˆs.e.(ˆfc0) shows the quality of the regression line passed through the data

points and the distance of the final GIC number to the GIC numbers in

the data points.

ˆs.e.(ˆfc0) = σ̂

√√√√√1 +
1

n
+

(gic0 − gic)2

n∑
i=1

(gici − gic)2

(4.6)

σ̂2 =

n∑
i=1

(fci − f̂ ci)2

n− 2
(residual mean square) (4.7)

gic =

n∑
i=1

gici

n
(4.8)

The formulae discussed above show that if there is a set of data points,

and a regression line is calculated based on a subset of these points, the es-

timated value for each subset might be different, but it will be likely within

a range of values. This way, the final fault coverage within a range can be

estimated, if the final GIC coverage for a set of test vectors is available. In

this case, there is a need to have fci and gici values for a number of test

vectors (the first n test vectors) and the final GIC value. One pass of good

(i.e., fault-free) simulation to retrieve all the GIC values and fault simulation

for the first n test vectors to obtain n fc values.

Although the statistical formulae above are used for calculating the

range of estimated fault coverage, there are some pre-conditions that should

hold for the data points so that the above equations can be used. If any of

these conditions does not hold, there is a chance to observe unexpected results.

These conditions are listed below.

68

Figure 4.2: A sample histogram of regression residuals

1. For each set of data points, the mean of the residuals should be zero.

2. For each set of data points, the variance of residuals should be constant.

3. The residuals should be uncorrelated with each other.

4. The residuals should be normally distributed.

Again, “residual” means the difference between each estimated fault

coverage and the real fault coverage.

The data in the experimental results of this chapter were tested for the

conditions above1. Conditions 1 and 2 are met. For condition 3 (a.k.a. auto-

correlation), the scatter plots of the residuals against GIC values were sketched

1Note that the conditions are not proved to be always correct. They should be checked
for each new design before using the mentioned formulae.

69

and they did not show a pattern. Therefore, it can be assumed that condition

3 is also met for these experiments. Condition 4 does not hold perfectly in

these experiments. This means that the histogram for residuals is not a perfect

symmetric bell-shaped histogram. However, the histograms follow the pattern

of having almost 95% of data between 2σ and around 99.7% of data between

3σ from the mean of residuals, where σ is the standard deviation of the residu-

als. This way, the formulae above can be still used, but it is important to note

that using confidence levels less than 95% is not safe and might give misleading

results. Due to the observations done for this chapter’s experiments, when the

number of test vectors and the circuit size grow, the histograms become closer

to bell-shaped histograms, meaning that it is safe to use this regression model

for large sets of test vectors in large circuits. Figure 4.2 shows the residual

histogram in circuit s1488 as an example.

In the next section, it is shown how to use the linear regression model,

discussed in this section, to estimate the value of fault coverage under appli-

cation of a test vector sequence.

4.3 EAGLE Steps

As discussed in Section 4.2, a linear regression model can be built based

on a partial fault simulation and the GIC coverage.

If a desired range for the estimated coverage and a confidence level

(95% or more) are given by the user, EAGLE can iteratively perform fault

simulation, build a regression model, and calculate the range of estimated

fault coverage until it reaches a point that the calculated range is equal (or less

than) the desired range. Since the regression model might never converge to

the given range, to save time, EAGLE should stop its iterations when reaching

70

a certain number of test vectors and inform the user that the algorithm has not

converged yet with that number of test vectors and output the latest calculated

range. The user can decide to increase the number of test vectors for partial

fault simulation and resume the estimation algorithm, or the given range is

acceptable anyways (i.e., it does not have a big difference with the desired

range). The flowchart of this algorithm is shown in Fig. 4.3.

The constraints that can be changed for each estimation are listed be-

low.

• ε: The number of test vectors that are fault simulated in each iteration

of algorithm. For example, I have set ε equal to 5 in this chapter’s

experiments, meaning that 5 test vectors are applied to the circuit by

fault simulator before each regression line calculation.

• Confidence level: The confidence level that is used to determine the

range of estimated coverage. For example, if confidence level is 95%, it

means that the probability of the real coverage being in the estimated

range is 95%. However, since the residuals do not follow a perfect normal

distribution, this probability might be less or more than the probability

that the confidence level determines.

• range: The user can define a desired coverage range. This can be the

goal of the regression model. For example, the range of 5% means that

the user prefers that the lower and upper bounds of the estimated cov-

erage do not differ more than 5% (e.g., fc ∈ [40% 45%]).

• Test vector limit: The cutoff point for the algorithm in case that the

given range cannot be reached. Remember that the goal is to rapidly

71

Figure 4.3: EAGLE flowchart

72

estimate the coverage. Therefore, it is not desirable to fault simulate,

for example, 80% of the test vectors to reach a small range of estimated

coverage. However, the user can set large limits at first or at each stop

point and resume fault simulation and estimation process from that stop

point.

EAGLE has been implemented and used for estimating fault coverage

for various circuits and test vector sets. The results of these estimations will

be discussed in the next section.

4.4 Experimental Results

EAGLE has been applied to 32 circuits belonging to ISCAS’85 and

ISCAS’89 benchmarks, and OR1200 processor [64]. Table 4.1 shows some

statistics for these circuits. The tools that have been used in EAGLE are Syn-

opsys VCS R© as the simulator, Cadence Verifault-XL R© as the fault simulator,

and Matlab R© as the numerical computing tool to calculate regression lines and

coverage bounds.

To obtain more accurate statistical results, for each circuit, 50 exper-

iments have been performed with different sets of random test vectors (with

different number of test vectors in each set). Then for each experiment, a

regression model for different constraint settings has been built. In this chap-

ter, the maximum number of test vectors that EAGLE uses to fault simulate,

the confidence level, and the desired range of estimated coverage are the con-

straints that can be changed by the user before estimating the coverage by

EAGLE. Different values are given to these parameters for each configura-

tion. These values are shown in Tab. 4.2. These values result in 60 different

73

Table 4.1: Benchmark statistics used for EAGLE evaluation. Numbers in percentage format show the
ratio of the number of gates in a group (e.g., number of AND gates) to the total components (×100).

Circuit
name

Total AND
(%)

BUF
(%)

DFF
(%)

NAND
(%)

NOR
(%)

NOT
(%)

OR
(%)

XNOR
/XOR
(%)

1-
inp

2-
inp

3-
inp

4+-
inp

c1355 554 11.6 0.0 0.0 75.1 0.0 13.0 0.4 0.0 13.0 82.3 2.9 1.8
c1908 956 8.9 16.9 0.0 42.3 0.1 29.0 2.8 0.0 45.9 45.2 7.2 1.7
c2670 1278 26.6 21.3 0.0 19.9 0.9 25.1 6.2 0.0 46.4 40.7 10.3 2.6
c3540 1703 30.3 13.1 0.0 17.5 4.9 28.8 5.4 0.0 41.9 44.6 10.6 2.9
c432 168 7.1 0.0 0.0 47.0 11.3 23.8 0.0 10.7 23.8 60.7 2.4 13.1
c499 202 27.7 0.0 0.0 0.0 0.0 19.8 1.0 51.5 19.8 71.3 0.0 8.9
c5315 2330 31.5 13.4 0.0 19.5 1.2 24.9 9.5 0.0 38.4 38.1 19.5 4.0
c6288 2416 10.6 0.0 0.0 0.0 88.1 1.3 0.0 0.0 1.3 98.7 0.0 0.0
c7552 3569 22.6 15.0 0.0 28.8 1.5 24.5 7.5 0.0 39.5 49.9 7.8 2.7
c880a 383 30.5 6.8 0.0 22.7 15.9 16.4 7.6 0.0 23.2 66.6 6.8 3.4
s1196a 547 21.6 0.0 3.3 21.8 9.1 25.8 18.5 0.0 25.8 55.6 13.9 1.5
s1238 526 25.5 0.0 3.4 23.8 10.8 15.2 21.3 0.0 15.2 63.1 16.5 1.7
s13207 8589 13.0 0.0 7.4 9.9 1.1 62.6 6.0 0.0 62.6 25.4 1.7 2.9
s1488 659 53.1 0.0 0.9 0.0 0.0 15.6 30.3 0.0 15.6 60.7 17.6 5.2
s344 175 25.1 0.0 8.6 10.3 17.1 33.7 5.1 0.0 33.7 53.1 4.6 0.0
s349 176 25.0 0.0 8.5 10.8 17.6 32.4 5.7 0.0 32.4 54.5 4.5 0.0
s382 179 6.1 0.0 11.7 16.8 19.0 33.0 13.4 0.0 33.0 34.1 16.2 5.0
s38417 23815 17.4 0.0 6.9 8.6 9.6 56.6 0.9 0.0 56.6 32.4 3.6 0.6
s38584 20679 26.7 0.0 6.9 10.3 5.7 37.7 12.7 0.0 37.7 48.7 3.3 3.3
s386 165 50.3 0.0 3.6 0.0 0.0 24.8 21.2 0.0 24.8 37.6 25.5 8.5
s400 184 6.0 0.0 11.4 19.6 18.5 31.0 13.6 0.0 31.0 35.3 17.4 4.9
s420 234 20.9 0.0 6.8 12.4 14.5 33.3 12.0 0.0 33.3 50.4 8.1 1.3
s444 207 6.3 0.0 10.1 28.0 16.4 31.4 6.8 0.0 31.4 38.6 14.5 5.3
s510 222 15.3 0.0 2.7 27.5 24.8 15.8 13.1 0.0 15.8 68.0 11.7 1.8
s526 214 26.2 0.0 9.8 10.3 16.4 24.3 13.1 0.0 24.3 31.8 16.4 17.8
s5378 2958 0.0 0.0 6.1 0.0 25.9 60.0 8.1 0.0 60.0 21.5 10.3 2.1
s641 398 22.6 0.0 4.8 1.0 0.0 68.3 3.3 0.0 68.3 16.8 6.8 3.3
s713 412 22.8 0.0 4.6 6.8 0.0 61.7 4.1 0.0 61.7 22.6 8.0 3.2
s832 292 26.7 0.0 1.7 18.5 22.6 8.6 21.9 0.0 8.6 41.8 20.5 27.4
s838 478 22.0 0.0 6.7 11.9 14.6 33.1 11.7 0.0 33.1 50.6 8.2 1.5
s9234 5808 16.4 0.0 3.6 9.1 1.9 61.5 7.4 0.0 61.5 31.1 1.6 2.2
s953 424 11.6 0.0 6.8 26.9 26.4 19.8 8.5 0.0 19.8 65.1 7.8 0.5
OR1200 35580 4.7 9.1 5.2 48.2 9.0 14.9 1.7 7.1 24.0 64.7 6.1 0.0

configurations that can be tested on each circuit for each set of test vectors.

From Tab. 4.2, there are 60 configurations which end up running EA-

GLE for 99,000 cases (33 × 50 × 60), and specify if the estimated coverage

matches the real coverage. For each case, the outcomes listed below are calcu-

lated and reported. The acronyms used in tables and figures are also shown

below in parentheses.

• The percentage of all EAGLE estimations whose ranges were too wide

(wide%).

1As discussed in Section 4.2, using confidence levels less than 95% is not recommended
in this regression model.

74

Table 4.2: Given values for EAGLE constraints

Constraint Tested Values
ε 5

range 5%, 7%, 10%, 15%
test vector limit 10%, 20%, 30%, 40%, 50%
confidence level1 95%, 98%, 99.8%

• Among the cases whose ranges were converged to a narrow enough range,

the percentage of the cases that the real fault coverage lies in the esti-

mated coverage range (correctconverged%).

• Among all cases, the percentage of the cases that the real fault coverage

lies in the estimated coverage range (correctall%).

• Among all the estimations, the percentage of estimations that are within

range or have at most 3% coverage difference with the estimated range

(diff3%).

• Among all the estimations, the percentage of estimations that are within

range or have at most 5% coverage difference with the estimated range

(diff5%).

• The percentage of test vectors that are used for partial fault simulation

(tv%).

• The percentage of all cases that reach the maximum test vector limit

defined in their configurations before converging to the desired range

(tv-lim%).

As discussed in Section 4.3, the algorithm might not converge to the

desired range before the test vector limit is reached. In such cases, the range

75

calculated by the last iteration is given to the user. In some cases, this range

is so wide that it is not useful for the user at all. For example, if the user needs

to know the fault coverage within no more than 2% (i.e., the desired range is

4%), and the defined maximum test vectors are not sufficient for reaching the

4% range, the algorithm exits and outputs its latest calculated range. If this

range is 20%, it is very unlikely that the user, who wants a 4% range, can take

any advantage of this wide range. However, if the result range is around 6%,

it might be still helpful to the user. In EAGLE experiments, the result of an

estimation is considered as too wide if the estimated range is 5% more than

the desired range specified in the configuration. For example, if the desired

coverage range is 10%, the estimations that result in a range equal or more

than 15% are assumed too wide. However, the definition of having a wide

range totally depends on the user.

Based on the above assumptions, the outcomes, such as the percentage

of wide range cases, the percentage of correct estimations, the percentage of

test vectors that are used for partial fault simulation, and the percentage

of the cases that reached the user-defined test vector limit without reaching

the user-defined range constraint are calculated and shown in the following

tables. These outcomes (averaged over configurations) are shown for each

circuit in Tab. 4.3. In this table, the amount of wide range, the percentage

of correct estimation among converged ranges and among all cases have been

shown. Note that correctconverged% numbers are the percentage of correct

estimations that are not marked as wide (their estimated range was around

the user’s desirable range). correctall% numbers are the percentage of correct

estimations among all cases. Also, diff3% and diff5% are the percentage of

correct estimations (with up to 3% or 5% error) among all the estimations.

76

Table 4.3: EAGLE estimation outcomes based on each circuit (averaged over configurations)

Circuit wide% correctconverged% correctall diff3% diff5% tv% tv-lim%
c1355 3.40% 100.00% 96.6% 98.78% 100.00% 18.95% 47.11%
c1908 50.26% 72.97% 36.3% 82.48% 91.63% 24.96% 78.48%
c2670 0.48% 98.22% 97.7% 99.35% 100.00% 9.24% 13.03%
c3540 66.37% 96.73% 32.5% 43.53% 96.30% 28.38% 90.77%
c432 0.78% 100.00% 99.2% 99.86% 100.00% 21.76% 61.90%
c499 1.12% 100.00% 98.9% 99.96% 100.00% 25.41% 74.78%
c5315 59.67% 97.68% 39.4% 92.15% 100.00% 28.29% 91.14%
c6288 0.03% 100.00% 100% 100.00% 100.00% 12.45% 20.62%
c7552 18.15% 99.91% 81.8% 85.40% 93.62% 20.19% 53.59%
c880a 0.44% 100.00% 99.6% 99.63% 100.00% 8.41% 8.78%
s1196a 6.56% 92.49% 86.4% 92.43% 94.90% 26.40% 83.40%
s1238 56.49% 85.68% 37.3% 50.72% 60.62% 27.62% 87.14%
s13207 0.00% 97.30% 97.3% 99.90% 100.00% 5.99% 2.13%
s1488 28.37% 85.84% 61.5% 75.67% 85.04% 20.14% 55.60%
s344 6.96% 99.72% 92.8% 95.85% 98.96% 28.35% 90.63%
s349 3.41% 99.31% 95.9% 96.44% 97.07% 28.97% 95.30%
s382 0.00% 100.00% 100% 100.00% 100.00% 5.01% 0.00%

s38417 0.17% 99.83% 99.7% 99.83% 99.90% 6.17% 2.33%
s38584 0.20% 100.00% 99.8% 99.80% 99.87% 5.41% 1.07%
s386 9.65% 87.13% 78.7% 87.33% 91.56% 15.62% 36.04%
s400 0.00% 100.00% 100% 100.00% 100.00% 5.00% 0.00%
s420 36.70% 61.40% 38.9% 56.10% 70.33% 20.52% 59.50%
s444 0.33% 99.96% 99.6% 99.67% 99.74% 6.26% 2.33%
s510 1.56% 100.00% 98.4% 100.00% 100.00% 15.17% 32.36%
s526 0.00% 100.00% 100% 100.00% 100.00% 5.31% 0.25%
s5378 7.29% 97.74% 90.6% 93.95% 97.98% 14.26% 28.76%
s641 4.79% 98.61% 93.9% 96.22% 97.88% 13.29% 25.59%
s713 2.20% 97.21% 95.1% 97.80% 98.90% 11.39% 18.94%
s832 26.55% 71.50% 52.5% 68.95% 80.08% 17.96% 47.98%
s838 0.27% 94.79% 94.5% 98.90% 100.00% 8.24% 10.83%
s9234 0.92% 95.63% 94.8% 98.65% 99.68% 6.90% 5.28%
s953 7.01% 96.78% 90.0% 93.81% 96.67% 16.44% 38.50%

OR1200 15.5% 78.89% 66.7% 81.33% 90.46% 16.94% 44.20%

average 12.59% 94.10% 83.22% 90.44% 95.19% 15.92% 39.65%

As can be seen in Tab. 4.3, some of the circuits which are the small

ones do not have an adequate number of correct estimations. This is mostly

due to this fact that they are small circuits and they do not converge well with

the given test vector limits and in many cases, their estimated range is too

wide due to the small number of data points.

The results of 99,000 estimations have been also categorized based on

each configuration of a circuit. Based on this categorization, shown in Tab.

77

Figure 4.4: The percentage of wide vs. correct (and converged) estimations of EAGLE for each circuit

Figure 4.5: Wide range estimation rate based on each configuration

4.4, the average outcomes of all the circuits for each specified configuration is

listed. This way, the effect of each constraint on the quality of estimation can

be observed. As can be seen in Tab. 4.4 and Fig. 4.5, the number of wide

range estimations decreases when the maximum test vector limit is increased.

Also, the percentage of the correct estimations over converged cases or all cases

increases with increasing the value for the maximum test vector limit (see Fig.

4.6 and Fig. 4.8). As can be seen in Fig. 4.6, when we increase the confidence

level, the number of correct estimations increase (e.g., from 91% to 96% in

case of desired range of 5% and maximum 10% of test vectors).

78

Figure 4.6: Correct (and converged) estimation rate based on each configuration

On average, among all 99,000 estimations, 7.6% of estimations have a

wide range and 95% of the real coverage numbers lie in the estimated ranges

that are not wide. 90% of all the estimations are correct or have 3% difference

with upper or lower bounds, while 95% of all the estimations are correct or have

5% difference with upper or lower bounds of the estimated coverage range. As

can be seen from our results, in almost 68% of cases, the algorithm converges

before the defined test vector limit is reached. To get a better idea of how

these outcomes change for each configuration, summarized figures, in which

the correct and wide-range rates are averaged over two of the constraints are

also demonstrated. This way gives a better idea of how each constraint changes

these two rates (Fig. 4.7).

Figure 4.9 shows the estimated coverage range (using error bars) and

real fault coverage numbers (shown with bars) for OR1200 processor for dif-

ferent random test vector sets for one configuration (confidence level=95%,

maximum test vector limit=10% of all vectors, and desired range=5%). As

can be seen in this figure, in most cases, the real fault coverage is within the

79

(a)

(b)

(c)

Figure 4.7: Averaged estimation results based on (a) confidence level, (b) range, and (c) maximum test
vector constraints

80

Table 4.4: EAGLE estimation outcomes based on each configuration (averaged over circuits)

range conf.
level

max.
tv%

wide% correctconverged%correctall% diff3% diff5% tv% tv-lim%

10% 21.28% 90.91% 71.6% 86.26% 92.78% 8.38% 63.96%
5% 95% 20% 15.85% 91.19% 76.7% 89.14% 95.97% 14.23% 54.89%

30% 13.74% 91.78% 79.2% 90.86% 96.87% 19.46% 50.16%
40% 12.20% 93.30% 81.9% 91.37% 97.19% 24.28% 46.96%
50% 10.80% 94.05% 83.9% 92.01% 97.44% 28.87% 43.96%
10% 27.67% 92.58% 67.0% 84.22% 92.59% 8.67% 71.25%

98% 20% 20.83% 92.82% 73.5% 86.65% 94.82% 15.28% 62.49%
30% 17.96% 92.91% 76.2% 88.18% 95.97% 21.21% 56.81%
40% 16.93% 93.62% 77.8% 88.37% 95.85% 26.70% 53.55%
50% 15.53% 94.93% 80.2% 88.95% 96.10% 31.97% 50.86%
10% 39.04% 95.60% 58.3% 76.55% 88.56% 9.09% 80.13%

99.8% 20% 32.59% 95.83% 64.6% 79.11% 90.54% 16.72% 73.61%
30% 28.37% 95.72% 68.6% 81.28% 91.82% 23.84% 69.27%
40% 25.88% 96.47% 71.5% 82.94% 92.40% 30.57% 65.69%
50% 24.79% 96.86% 72.8% 82.88% 92.46% 37.08% 63.07%

10% 15.08% 91.05% 77.3% 87.41% 92.72% 7.74% 50.03%
7% 95% 20% 11.57% 91.62% 81.0% 90.48% 95.65% 12.15% 39.94%

30% 8.18% 92.14% 84.6% 91.88% 96.17% 15.87% 35.27%
40% 6.77% 92.73% 86.5% 92.59% 96.55% 19.19% 32.01%
50% 5.37% 92.98% 88.0% 92.91% 96.55% 22.36% 30.48%
10% 21.28% 93.10% 73.3% 85.62% 92.52% 8.12% 58.59%

98% 20% 15.40% 92.82% 78.5% 88.75% 95.08% 13.33% 48.43%
30% 12.46% 93.50% 81.8% 90.35% 96.23% 17.89% 43.32%
40% 10.80% 94.27% 84.1% 91.12% 95.97% 22.03% 39.81%
50% 9.27% 94.79% 86.0% 91.95% 96.23% 25.89% 36.74%
10% 32.72% 96.49% 64.9% 79.36% 88.95% 8.64% 70.54%

99.8% 20% 24.54% 95.51% 72.1% 82.94% 91.31% 15.11% 60.96%
30% 21.21% 95.38% 75.1% 84.98% 92.59% 20.88% 55.27%
40% 19.23% 96.04% 77.6% 85.69% 92.91% 26.19% 51.31%
50% 17.44% 96.44% 79.6% 86.26% 93.04% 31.26% 48.88%

10% 9.27% 92.54% 84% 90.80% 94.06% 6.93% 33.16%
10% 95% 20% 5.18% 93.94% 89.1% 93.61% 96.42% 9.67% 24.60%

30% 3.58% 94.23% 90.9% 94.12% 96.36% 11.95% 21.66%
40% 2.24% 94.38% 92.3% 94.57% 96.74% 13.99% 19.11%
50% 1.73% 94.47% 92.8% 94.70% 96.68% 15.79% 16.42%
10% 13.74% 93.63% 80.8% 88.69% 93.23% 7.33% 41.85%

98% 20% 8.75% 94.75% 86.5% 91.63% 95.72% 10.91% 32.14%
30% 6.07% 95.31% 89.5% 92.91% 96.29% 13.85% 27.99%
40% 4.47% 95.45% 91.2% 93.55% 96.23% 16.52% 25.69%
50% 3.58% 95.56% 92.1% 93.93% 96.49% 19.05% 24.22%
10% 24.60% 96.61% 72.8% 83.07% 89.97% 8.05% 56.04%

99.8% 20% 16.87% 96.39% 80.1% 87.48% 92.84% 13.08% 46.71%
30% 12.84% 96.99% 84.5% 89.71% 93.87% 17.42% 41.21%
40% 11.18% 97.77% 86.8% 90.67% 94.38% 21.34% 37.12%
50% 9.65% 98.02% 88.6% 91.25% 94.31% 24.96% 34.70%

10% 2.88% 96.32% 93.5% 96.74% 97.89% 6.16% 18.59%
15% 95% 20% 1.21% 97.35% 96.2% 97.96% 98.79% 7.50% 10.10%

30% 0.58% 97.37% 96.8% 98.15% 98.98% 8.32% 6.45%
40% 0.32% 97.37% 97.1% 98.15% 98.98% 8.86% 4.60%
50% 0.13% 97.38% 97.3% 98.34% 99.04% 9.28% 3.51%
10% 6.52% 96.58% 90.3% 95.08% 97.12% 6.48% 24.35%

98% 20% 2.56% 97.38% 94.9% 97.00% 98.21% 8.48% 17.64%
30% 1.28% 97.54% 96.3% 97.57% 98.66% 10.00% 12.78%
40% 0.83% 97.55% 96.7% 97.96% 98.66% 11.13% 10.10%
50% 0.70% 97.55% 96.9% 98.02% 98.72% 12.05% 8.12%
10% 14.25% 97.17% 83.3% 89.58% 93.99% 7.18% 38.21%

99.8% 20% 6.96% 98.08% 91.3% 94.12% 96.36% 10.34% 27.54%
30% 4.79% 98.59% 93.9% 95.14% 96.81% 12.88% 23.90%
40% 3.64% 98.61% 95% 95.85% 97.19% 15.17% 21.85%
50% 2.68% 98.62% 96% 96.61% 97.32% 17.28% 19.87%

81

Figure 4.8: Total correct estimation rate based on each configuration

estimated range by EAGLE.

As can be seen in the tables and figures in this section, using this

regression model can be very promising due to the fault simulation speedup.

For example, for the case of maximum test vector limit equal to 10% of the

test vectors, the average test vector percentage used in partial fault simulation

is 7.6%. In this case, 94% of estimations exactly lie in the estimated rate. The

run times of partial and full fault simulation (shown as partial-FS and full-FS

columns) have been shown for 20 different test vector sets for OR1200 in Tab.

4.5. This table is based on the configuration of maximum test vector equal

to 10% of the test vectors, confidence level equal to 95%, and required range

equal to 5%. As can be seen in this table, on average, the ratio between full

fault simulation and partial fault simulation run times is more than one order

of magnitude.

It should be noted that the overhead for GIC calculation and one good

simulation pass is not considered above. One pass of good simulation (with

82

Figure 4.9: EAGLE estimation of OR1200 for a configuration in which range=5%, confidence level=95%,
and max. test vector=10%. The bars represent real fault coverage while the error bars show the estimated
coverage range

Table 4.5: EAGLE fault simulation run time vs. full fault simulation run time for OR1200 for a configu-
ration in which range=5%, confidence level=95%, and max. test vector=10%

”Number of” partial-FS full-FS ratio
”test vectors” (seconds) (seconds) (full-FS/partial-FS)

104870 1611 14638 9.08
105930 1355 12907 9.52
126860 1954 18088 9.25
135230 1297 11655 8.98
18660 322 6104 18.95
20900 688 6416 9.32
22150 370 8727 23.58
23300 507 6122 12.07
27650 822 7794 9.48
30000 746 7122 9.54
36840 970 8691 8.95
45840 757 6528 8.62
52010 1490 13192 8.85
64030 1827 13857 7.58
67160 600 5986 9.97
68240 814 7972 9.79
75150 1010 9261 9.16
79380 1094 9610 8.78

Geo.Mean 10.16

83

no injected faults) is relatively very fast so that it can be easily ignored. For

example, for OR1200 processor with 83,000 test vectors, the time consumed for

fault simulation is around 14,000 seconds, while one pass of good simulation

takes 47 seconds to complete. So far, GIC coverage is extracted from the VCD

(Value Change Dump) waveform file. This method is quite slow compared with

accessing internal data structures using VPI (Verilog Procedural Interface).

In the example mentioned above, GIC calculation takes around 700 seconds.

However, with an efficient VPI-based implementation, GIC calculation time

should be comparable to the time for one pass of simulation. It should be also

mentioned that the overhead of regression calculation is very low. For example,

calculating the regression model and coverage estimation for all 99,000 cases

takes around 5 hours for the above experiments. Therefore, on average, each

calculation takes a fraction of a second to complete. In fact, for small circuits,

this calculation takes less than 0.1 seconds, while it takes a few seconds for

larger circuits with a larger number of test vectors (such as the case for OR1200

circuit for 50% of its entire test vector set).

4.5 Conclusions

This chapter, introduced EAGLE, which is a linear regression-based

fault coverage estimation model. For a circuit under test and a set of test

vectors, EAGLE uses fault simulation for a portion of the test vectors and one

pass of fault-free simulation and calculates the best fit line between the partial

fault coverage and a statistical metric called GIC, which counts the number of

new gate input combinations for each test vector. Using statistical formulae,

EAGLE finds a lower and an upper bound for the estimated fault coverage

based on a few constraints that can be set by the user. The experiments in

84

this chapter show that EAGLE is a promising method for estimating fault

coverage. For example, by fault simulating about 7.6% of the test vectors, the

real fault coverage values lie between the estimated bounds in about 94% of

the cases.

85

Chapter 5

Soft Error Vulnerability Analysis by Local

Simulations

5.1 Introduction

In this chapter, a novel soft error vulnerability estimation called RAVEN

(RApid Vulnerability EstimatioN) is introduced [56]. RAVEN takes advantage

of statistics from fast local simulations1 to build a toolflow that can calculate

the detection probabilities of soft error candidates in the whole system. In

RAVEN, the probability of DUE (Detected Unrecoverable Error) and SDC

(Silent Data Corruption) outcomes for all possible soft error candidates in a

period of time is calculated. In this chapter, single bit-flip on a flip-flop is

used as the error model since the result of error injection with this error model

is close to radiation-based injections [11, 78]. On the other hand, the results

of high-level error injection are considerably different from the results of the

injection for this error model [19, 55]. Therefore, I avoid using such high-level

error models in this chapter.

In this chapter, RAVEN run times and outcome probabilities are com-

pared with error injection for a sample of error candidates. Different sample

sizes are used in this analysis, and for large enough sample sizes (required for

1These local simulation passes are used in a same way as FALCON methodology. The
essence of soft errors makes the usage of local simulations even more efficient compared to
manufacturing fault coverage estimation.

86

an acceptable margin of error), RAVEN runs 2 to 3 orders of magnitude faster

than error injection. In the experiments in this chapter done on the IVM pro-

cessor model [92] with SPECINT2000 workloads, all of the benchmarks lie in

the outcome range that is calculated by error injection, except for the work-

load crafty. To investigate further, I have performed complete error injection

targeting a small subset of error candidates and 400 cycles in crafty and com-

pared the results of flip-flop vulnerability factors2 that RAVEN calculates to

those in complete injection and sampling error injection. These results show

the accuracy and speed of RAVEN over sampling error injection when detailed

vulnerability is necessary for deciding on resilience techniques for a design.

RAVEN can be used with existing techniques to further improve the

efficiency of soft error analysis. For example, RAVEN can be used in FPGA-

based systems or hierarchical simulation environments. To show the speed

advantage of RAVEN in a proven, efficient simulation environment, we use

a hierarchical simulation environment as described in [92]. This environment

can accelerate error propagation by switching between an instruction-set sim-

ulator and Verilog RTL simulator. All of our simulations (RAVEN and error

injection) are done in this hierarchical simulation environment.

In Section 5.2, RAVEN methodology is discussed. Section 5.3 describes

the related experimental results. Section 5.4 shows the speed-up of RAVEN

over complete error injection and the effectiveness of RAVEN in analyzing

designs for resilience.

2 # of erroneous outcomes
of total injections for errors injected into a flip-flop

87

5.2 RAVEN Methodology

As mentioned above, RAVEN is a statistical method to estimate the

probability of DUE and SDC outcomes for all possible soft error candidates

in a period of time. RAVEN works faster than traditional error injection

methods. However, using local fault simulations and probabilistic calculations,

this method could introduce inaccuracies. An apples to apples comparison of

RAVEN with existing error injection techniques would require performing error

injection for every possible soft error candidate for long periods of execution.

Since this would require inordinate amounts of time, a complete error injection

has been done for a short period and a small sub-set of flip-flops. Comparing

the results of complete error injection and RAVEN shows that RAVEN can

make more accurate estimates of the flip-flop vulnerability factors (and also

average outcomes) than error injection with sampling.

5.2.1 RAVEN Steps

RAVEN takes advantage of local simulations which are significantly

faster than simulating the entire system. By following the four steps listed

below, the outcomes for given workloads under soft error candidates can be

estimated in a period of time. The design is first partitioned, using the de-

sign hierarchy as a guide, so that each partition contains one or more mod-

ules/entities of the design, depending on their size. For example, in a pipeline-

based processor, each pipeline stage can be one partition. Partitioning a design

for RAVEN is not limited to the pre-defined modules; any partitioning algo-

rithm can be used in RAVEN. However, the more system-level feedback loops

and system-level reconvergent fanouts are avoided, RAVEN estimation will

be more accurate. Also, large partitions is better to be avoided since they

88

will degrade RAVEN run-time efficiency. Below are the steps performed in

RAVEN.

Step 1: Performing one pass of golden simulation (with no error in-

jection) for the whole system and storing the values for each partition’s in-

puts/outputs in a file.

Step 2: Building a table (propagation table) for each partition P

which shows the probability of error propagation from each input of P to each

output of P, based on the values from the previous step.

Step 3: Building a table (detection table) for each partition P which

shows the probability of error propagation from each source of error inside P

to each of P’s outputs, based on the values in Step 1.

Step 4: Calculating the detection probability of each soft error candi-

date in the entire system.

The following sections will describe the above steps in more detail.

5.2.2 Propagation Tables

Propagation tables show the error propagation probability from each

input to each output of a partition. According to this definition, the number

of times an error at one of the inputs is observed at any outputs should be

calculated. For this purpose, single stuck-at faults are injected one at a time at

each input of a partition and the number of times this error is observed at any

output is calculated. Then, the probabilities of error propagation are defined

by dividing the number of error detections at each output, by the number of

cycles. This number is named the propagation probability of an error on a local

input to a local output. For example, in Fig. 5.1, partition P has n inputs and

89

Figure 5.1: A sample module with n inputs, 2 outputs, and 2 flip-flops.

2 outputs and suppose P is being analyzed for 10 clock cycles. To generate P’s

propagation table, 2×n simulation passes are performed and a stuck-at 1 and

a 0 on each input, for each simulation pass, are injected. In each simulation

pass, the number of times that the values of o1 or o2 are not the same as their

stored golden values are counted. Then the propagation probability from i1

to o1, for instance, is calculated by dividing the number of times that o1 is

different than its golden value when i1 is faulty, by 10 (the number of cycles).

Equation 5.1 shows the propagation probability from input i to output o of a

partition. In this equation, i sa 0/1 means line i stuck-at-0 or stuck-at-1. We

add these two cases to obtain a rough estimate of the probability of an error

on the output when there is an error on each input 3.

prop table[i][o] =
of cycles i sa 0/1 detected on o

total # of cycles
(5.1)

3If the direction of the bit-flip (1 → 0 or 0 → 1) is also assume in probability tables,
it will result in a more precise estimation. However, this needs 4x more storage than the
current rough estimation.

90

It should be noted that a fault simulation tool (instead of injecting the

errors into inputs serially) can be used. This way, one pass of fault simulation

is enough to calculate this table.

5.2.3 Detection Tables

A detection table for each partition P indicates the probability that a

soft error in P will be seen at one or more outputs of P. Similar to propagation

table elements, each element of detection table can be calculated by injecting a

stuck-at fault into a flip-flop, simulating the partition in presence of that fault,

and comparing each output with its golden value at each cycle. Dividing the

number of observations of an error on an output by the total number of cycles

will give the probability of detection of that error for that output. However,

this number shows the probability of an error detection when that error is

present on the flip-flop in all cycles. To distinguish soft errors from stuck-at

faults, it is usually assumed that a soft error affects the output of a flip-flop

in just one (or a few) cycle(s). Therefore, the original detection probability

should be multiplied by error duration
of cycles error can be present

to model a soft error. It is

assumed that the error duration is 1 cycle in this chapter. Such an assumption

is not necessary in propagation tables, since RAVEN is calculating the average

propagation of an error from a local input to a local output. One advantage

of RAVEN over error injection is that if there is a need to analyze design

vulnerability for soft errors with different error durations, RAVEN only needs

to re-calculate the detection probabilities without needing to re-run the local

simulations. In Fig. 5.1, to generate the detection table of partition P, 4 passes

of simulation for flip-flop stuck-at-0 and stuck-at-1 faults should be done. Then

the number of erroneous outputs observed for each pass is counted and divided

91

by 10 (number of cycles). To consider these errors as soft errors this number

is multiplied by 1
10

. Equation 5.2 shows the detection probability for error e

to output o. o is an output of a partition and e is a soft error candidate in

that partition. Usually, the number of cycles that e can happen is equal to

the total number of cycles.

det table[e][o] =
of cycles e sa 0/1 detected on o

total # of cycles
× duration of e

of cycles e can happen
(5.2)

NOTE: Using stuck-at faults to model soft errors can result in larger

vulnerability factors in general, since there are feedback paths in each module

and the error propagation for a stuck-at fault can be potentially more than a

soft error. Therefore, the calculated vulnerability factors by RAVEN can be

considered as an upper bound for vulnerability factors.

5.2.4 System Level Detection Probability Calculation

After generating the propagation and detection tables for each parti-

tion, the detection probability for each soft error on a flip-flop in the whole

system should be calculated by using the detection and propagation tables of

each partition. First, to calculate the outcome of an error e at the system

level, RAVEN picks the detection table elements in partition P corresponding

to e. Then it updates the output values of partition P due to these elements.

Next, RAVEN updates the outputs of each partition that have inputs con-

nected to the outputs of P by using their propagation probability tables. This

calculation is continued until RAVEN reaches a signal of interest, which will

be discussed in Section 5.2.5. The probability observed on this signal is the

92

detection probability of e in the whole system. This process is performed for

each flip-flop of interest.

To calculate the detection probability of the outputs of a partition due

to its input detection probabilities, RAVEN uses a simple probability union

calculation based on the input probabilities and the corresponding propagation

table elements. This calculation is shown in Eq. 5.3. RAVEN uses this

equation to calculate the detection probability of an error on output o in

partition P.

det prob[o] = 1−
Ip∏
i=1

(1− prop tabp[i][o]× det prob[i]) (5.3)

In Eq. 5.3, Ip is the number of inputs of partition P, prop tabp[i][o] is

the propagation probability from input i to output o, and det prob[i] is the

observed detection probability on input i.

5.2.5 Outcome Probability Calculation

In soft error injection, we observe the outcome of a specified workload

with an error candidate injected in the design. The outcomes discussed in

this chapter are SDC and DUE outcomes. In the former, the program exits

normally, but the output of the program is not correct, or the state of the

system is not equal to the golden state. In the experiences in this chapter, if

an error stays in the system for a long time it is very likely that it causes an

SDC outcome (as seen in more than 93% in SPEC workloads running on IVM

processor model). Therefore, in order to speed up the evaluation, the state

of the system after a certain amount of cycles is compared with the golden

state, and if they do not match, a dummy output called “sdc” becomes ’1’.

93

In the latter case (DUE), the program exits prematurely. RAVEN checks all

the conditions which cause a program to halt (e.g., instruction exception) and

asserts a dummy output, called “halt”, under any of these conditions. Since

RAVEN performs local simulations, it is not able to find out some system-level

cases that make the program to run infinitely (i.e., cause a “hang” outcome, for

example). Although this outcome happens very rarely, it should be considered

as a source of inaccuracy in RAVEN.

In IVM processor model, which is used in experiments in this chapter,

if an error causes the pipeline to stall persistently or causes an exception

in a clock cycle, this exception will happen at every clock cycle from that

cycle until the end of the simulation. Therefore, the propagation probabilities

in these cases are skewed to the cycles closer to the end of simulation. In

calculating the probability of a “halt” outcome based on the probability of

its corresponding partition’s inputs, RAVEN simply calculates the maximum

propagation probability from each input path to the “halt” output instead of

calculating the “halt” output probability based on Eq. 5.3. As a future work,

the skew can be consider in every calculation and, therefore, Eq. 5.3 needs to

be altered to consider the skew as well as the probability values.

When RAVEN calculates the “halt” and “sdc” detection probabilities

for each flip-flop, it calculates the outcome probability for DUE and SDC

outcomes for a set of error candidates. From the definitions of detection and

propagation probabilities, each outcome detection probability for each flip-

flop gives a rough estimate of how many times a soft error on a specified

flip-flop causes an erroneous outcome during simulation. Therefore, if the

detection probabilities on the “sdc” and “halt” dummy outputs are averaged

over the number of flip-flops, we can have outcome probabilities (an estimation

94

of outcome rate) for all soft error candidates (like Eq. 5.4 for SDC outcome).

sdc outcome =

∑FF num
f=1 det probsdc dummy outf

FF num
(5.4)

An advantage of RAVEN is that the detection probability of each error

in the whole system can represent the vulnerability factor for its respective

flip-flop as well. These vulnerability factors, calculated for the flip-flops of a

design, can be used as a guide to choose an efficient resilience technique for

that design.

5.3 Experimental Results

I have implemented RAVEN and applied it to IVM [92], which is an

out-of-order and super-scalar Alpha-based processor. In order to partition

this processor, each stage of the pipeline is considered as a partition, and the

rest of the “glue” logic is put into a separate partition. The top-level Verilog

model, which loads a program into IVM memory and starts the processor,

has been changed so that it can store the golden input and output values

of each partition in a file, as well as the golden state of the processor on

the cycle that local simulations are started. These files are generated during

one pass of golden simulation (simulation with no error injection). These

files are used in the table generation step. For propagation table generation,

I have developed a Verilog wrapper for each partition. This wrapper reads

the golden inputs/outputs from the files stored in the golden simulation step,

changes one input and simulates the Verilog model of that partition. Then

at each cycle, it compares the output with the golden output, and for the

outputs that are different from the golden output, the corresponding table

95

Figure 5.2: Maximum sample sizes for different absolute MOE values.

element is updated. After one simulation pass, the system is reset to its initial

state and the model is ready for the next input error injection. Detection

table generation is similar to propagation table generation; however, instead

of input error injection, the error is injected on each flip-flop in that partition.

Since the RTL (Register Transfer Level) of IVM was available in this research,

I have done table generation step by performing one RTL simulation pass for

each error injection. If the synthesizable model was available, a fault simulator

could be used to generate the table for each partition.

For system-level probabilistic calculation, I have developed a SystemVer-

ilog model which simply replaces each wire/reg signal type with real type so

that they can pass probability values instead of logic values. Each partition

is replaced by a process, sensitive to all of its inputs. Inside this process is

a function implementing Eq. 5.3. Also, all propagation tables and detection

tables are included in this model.

In this chapter, RAVEN has estimated the outcome probabilities for

96

some parts of SPECINT2000 workloads, with MinneSpec input data, on IVM.

In this section, RAVEN results are compared with statistical fault injection

(SFI [40]) results. SFI uses samples of error candidates in the injection pro-

cess. In this experience, SFI follows the mixed-level methodology used in [92],

which runs the program in RTL for a limited number of cycles and the rest

of the program runs in an instruction set simulator. Error injections are done

only during RTL simulation. Therefore, RAVEN also runs for this limited

simulation period4. Figure 5.3 shows the steps followed for each injection in

SFI. As mentioned, these steps are the same as the steps followed in [92].

RAVEN has been executed on a DellTM PowerEdge R720 system, with

two IntelTM Xeon E5-2690 (2.90 GHz) and 384 GB of random access memory.

On the other hand, all error injections for SFI have been executed on one of

the Texas Advanced Computing Center (TACC) systems (Stampede super-

computer [3]). Therefore, to compare RAVEN and SFI run times, I needed

to extrapolate the run times for SFI as the number of injections multiplied by

the time spent for one good simulation on the DellTM machine that RAVEN

was executed. Note that in this extrapolation, I have not counted cases for

program time-outs and the time for injecting an error. Therefore, this extrap-

olation is fair for SFI. Each benchmark has a different run time, since they

have different number of instructions. All numbers for SFI run times follow

the extrapolation mentioned above.

In this chapter, RAVEN is compared to SFI with different sample sizes.

Due to [40], the sample size (n) can be calculated using Eq. 5.5. In this equa-

4In this chapter, the injections are done during 2400 cycles. However, the efficiency of
RAVEN becomes even more apparent if the number of cycles in the RTL simulation are
increased.

97

Figure 5.3: Error injection steps in IVM. T1 to T5 are the periods spent for each step. These time periods
can be different for different programs running on IVM.

98

tion, e is the absolute margin of error (MOE) of sampling. p is the estimated

outcome rate that we gain. This number is usually replaced by 0.5 to gain the

maximum sample size, since it is not known initially what outcome rates are

going to be gained in SFI. N is the set of all error candidates, and t is a cut-off

point corresponding to a confidence level. In this chapter, my calculations are

based on 95%, 98%, and 99.8% confidence levels (with corresponding t=1.96,

2.5758, and 3.0902).

Using Eq. 5.6, MOE can be calculated for a given sample size, a known

outcome rate, and a given cut-off point.

n =
N

1 + e2 × N−1
t2×p×(1−p)

(5.5)

e = t×

√
p× (1− p)× (N − n)

n× (N − 1)
(5.6)

Using Eq. 5.5, sample sizes for 3 confidence levels and three different

MOEs (0.01, 0.005, and 0.001) are calculated. This is shown in Fig. 5.2. As

can be seen in this figure, the sample size grows significantly when decreasing

the MOE. Due to relatively small outcome rates for DUE and SDC, which

are typically between 2% to 14%, even a small MOE can cause a quite large

percent relative MOE in outcome calculations. For example, if in an injection

experience, SDC rate is equal to 4% and the absolute MOE for that sample

size is 0.01 (=1%) it means that the SDC outcome in this case lies between

4%±1%. This means that the percent relative MOE in SDC rate calculation

is 25%.

Based on the sample sizes in Fig. 5.2, SFI has been performed for three

confidence levels and MOE equal to 0.01. The percent relative MOE of the

99

Figure 5.4: Range of DUE rates in SFI and DUE probability in RAVEN (MOE=0.01).

calculated SDC and DUE rates are between 5% to 22% in this experience.

Therefore, to have small percent relative MOEs, we need to set e to even a

smaller number.

DUE and SDC outcome probabilities are estimated for all the error

candidates in a time interval for 8 SPECINT2000 workloads on IVM using

RAVEN method and these outcome rates are calculated using SFI for 3 differ-

ent sample sizes (for different confidence levels and MOE=0.01). In Figures

5.4 and 5.5 the outcome rates of RAVEN vs. SFI for these workloads and

each sample size are shown. In Fig. 5.6, the run times of RAVEN and SFI

are compared. RAVEN run times are different for each sample size, since the

100

Figure 5.5: Range of SDC rates in SFI and SDC probability in RAVEN (MOE=0.01).

outcome probability for only those flip-flops that were used in SFI samples are

considered. This way results in a more precise comparison between RAVEN

and SFI. Even for the smallest sample, RAVEN works more than 17x faster

than SFI, on average. Also, the SFI run times for larger samples (i.e., smaller

MOE values) are extrapolated and compared to RAVEN run times (shown

in Fig. 5.2). Speed-up (ratio of SFI run time to RAVEN run time) is cal-

culated for each workload and the average speed-up values using, geometric

mean formula, is shown in Fig. 5.7.

As shown in this section, RAVEN can estimate the outcomes of soft

error candidates in a system mostly within the range indicated by SFI. Due to

101

Figure 5.6: Run times for RAVEN and SFI methods, along with the speed-up (MOE=0.01).

Figure 5.7: RAVEN speed-up, compared to SFI, for different confidence levels and MOE values.

102

Fig. 5.5, only SDC rate in crafty application is out of calculated range of SFI

and it is still close to the minimum value of the calculated range of SFI. Results

in Fig. 5.7 show that RAVEN can estimate the outcome rates 1 to 3 orders of

magnitude faster than SFI, depending on the sample size. These calculations

are based on the assumption that we use only one computation resource. To

catch a glimpse of the efficiency of RAVEN, suppose we distribute RAVEN

processes among 15 computing resources (because we have 15 partitions).

Then, we would need on average, 253 computing resources for SFI in order to

take the same time as RAVEN (for confidence level=95% and MOE=0.01).

5.4 Vulnerability Factor Analysis

5.4.1 Complete Error Injection vs. RAVEN

The ideal way for measuring the vulnerability of a system is to calcu-

late the outcome rates for any possible soft error that can happen in a system,

which we call complete error injection. To have a fair comparison, results

for RAVEN should be compared with error injection. Therefore, we need to

perform a complete error injection during the time period that RAVEN was

running and compare its outcome rates and run time with RAVEN outcome

probabilities and run time. Since there are 14,184 flip-flops in IVM that are

used for error injection, more than 33,600,000 injections are needed for this

fair comparison, which is obviously not possible to do in a reasonable time.

Table 5.1 gives an idea of complete injection run times. This table compares

the extrapolated complete error injection and RAVEN run time for each work-

load and it also includes the geometric mean of all workloads in the last row.

Table 5.1 shows over 32,000x speed-up over the complete error injection. Ob-

viously, it is not possible to compare the outcome rates of complete error

103

Table 5.1: Run time comparison for RAVEN vs. complete error injection.

Application RAVEN Complete injection speed-up
run time (hrs) run time(hrs)

bzip2 29.16 1100678 37741
crafty 22.48 566319 25186
gap 13.26 601117 45333
gcc 25.88 762815 29474
gzip 26.97 1645344 61006
mcf 26.30 744092 28297

parser 25.24 576437 22835
vpr 26.90 594782 22107

G. Mean 23.95 767161 32026

injection with RAVEN’s outcome probabilities, unless we perform a complete

error injection. But in the next section (Section 5.4.3), the results for outcome

rates of a small sub-set of flip-flops for complete error injection and RAVEN

are shown and they are compared with the results for SFI.

5.4.2 SFI and Flip-flop Vulnerability Factors

As discussed in Section 5.3, in SFI there is a need to find the appropriate

sample size based on the goal of error injection (which can be average outcome

calculation for all flip-flops or calculating the most vulnerable flip-flops for

adding partial resilience to the design). This section shows the amount of

error (MOE) introduced by SFI in flip-flop vulnerability analysis (vs. average

vulnerability) if the same sample size used for average outcome calculation is

used.

Soft error candidates are distributed in two dimensions: flip-flops (spa-

tial) and clock cycles (temporal). If we want to calculate the average outcome

of error injection while a set of benchmarks are running on the design, we can

104

take a sample of candidates distributed in both spatial and temporal dimen-

sions. If the number of flip-flops in a design is d, the total number of necessary

clock cycles for running all the applications is c, which makes the population

size equal to d × c, and the sample size is n, due to [40], sampling MOE can

be calculated as in Eq. 5.7.

e = t×
√

p× (1− p)

n
× c× d− n

c× d− 1
(5.7)

On the other hand, if we use the sample with size n for finding the

most vulnerable flip-flops in the design, it is likely that each flip-flop is error

injected around n
d

times, on average. Therefore, if we want to calculate the

MOE for the injection, based on each flip-flop individually, the sample size is

n
d
, and the population size is c. Therefore,

e′ = t′ ×

√
p× (1− p)

n
d

×
c− n

d

c− 1
(5.8)

If the confidence level in both e in Eq. 5.6 and e′ are considered the

same, i.e., t = t′, then by combining Equations 5.6 and 5.8, e′ becomes as a

function of e, the number of flip-flops in the design, and the number of clock

cycles needed for running the applications.

e′ = e×
√

c× d− 1

c− 1
(5.9)

As an example,

d = 3000

c = 200,000

e = 1%

105

confidence level = 95%

Then, e′ with 95% confidence will be:

e′ = 0.01×
√

200000× 3000− 1

199999
≈ 0.55 (5.10)

Equation 5.10 shows that an absolute MOE of 1% in calculating average

outcomes results in an absolute error of 55% (on average) if the vulnerability

of each flip-flop is calculated with the same sample used for calculating the

average outcomes. This error will be even higher if there are more flip-flops in

the design. In this example, if each flip-flop vulnerability is required to have

1% of absolute MOE with 95% confidence level, n′ samples for each flip-flop

is needed. n′ can be calculated as in Eq. 5.11 (similar to 5.5).

n′ =
c

1 + ê2 × c−1
t2×p×(1−p)

=
200000

1 + 0.012 × 199999
1.962×0.5×(1−0.5)

≈ 9164 (5.11)

Therefore, a total number of 9164 × 3000 = 27, 492, 000 injections is

needed to be done for such a detailed vulnerability analysis. This amount of

injection cannot be done in a reasonable time although it is still way smaller

than all the possible error candidates (which is 200000×3000 = 600, 000, 000).

Next section shows some experimental results for MOE increase in SFI when

vulnerability factors are calculated for a flip-flop using the same sample for

calculating average outcomes.

5.4.3 Vulnerability Factors in RAVEN vs. Error Injection

This section discusses how RAVEN can be employed to design resilient

systems. As discussed in previous sections, RAVEN calculates the detection

106

Figure 5.8: RAVEN vs. complete error injection for 400 cycles and 34 random flip-flops.

probability of each flip-flop in the system when a workload is running. These

detection probabilities can be interpreted as vulnerability factors calculated

in error injection, due to their definition. To find the accuracy of the vul-

nerability factor for each flip-flop in RAVEN, we need to perform complete

error injection for those flip-flops and compare their vulnerability factors with

the corresponding ones in RAVEN. Since complete error injection for every

possible error candidate and every clock cycle is not feasible, I have performed

complete error injection for 34 randomly selected flip-flops during a relatively

short period (400 cycles) in the crafty workload and calculated RAVEN prob-

abilities for the same time period and the same flip-flops. Then, these two sets

of vulnerability factors are compared to each other. This comparison is shown

in Fig. 5.8.

As can be seen in this figure, RAVEN probabilities have some inac-

curacy due to all the sources of inaccuracy discussed in previous sections.

However, in most of the cases, the results of RAVEN and complete error injec-

tion are very close, if not equal. Since the complete error injection information

is available during this period for the selected flip-flops, vulnerability factors

107

obtained by SFI with different sample sizes can be simply calculated. This

calculation can be done by generating a random list of error candidates for a

desired sample size, and selecting the errors injected in the flip-flop of interest.

This process has been done for all the confidence levels and MOEs used in Fig.

5.2 for 400 cycles and the vulnerability factors for each sample size has been

calculated. Interestingly, these vulnerability factors have a large variance over

different sample sizes and in some cases, since there is no error injected on the

selected flip-flop, there is no information about the vulnerability factor of that

flip-flop. Figure 5.9 shows this variance for some cases. As an example, for a

flip-flop with vulnerability factor equal to 78%, sampling calculates vulnerabil-

ity factors equal to 0%, 85%, 50%, 100%, 80%, 77%, and 75% for sample sizes

equal to 23K, 38K, 66K, 93K, 819K, 1.2M, and 1.6M, respectively. For 9.6K

and 16.5K samples, there is no vulnerability factor information since that flip-

flop was never chosen. The unstable results in SFI is due to a large MOE in

vulnerability factor calculation and insufficient sample size per each flip-flop.

According to Eq. 5.5, if we want to calculate the vulnerability factors in 400

cycles with MOE=0.05 (i.e., range=0.1), we need 196 samples related to each

flip-flop. This results in more than 2.7M injections for the whole IVM.

Due to large MOE of SFI for doable sample sizes, deciding on a re-

silience technique based on SFI vulnerability factors can result in an over- or

under-designed resilient system compared to using vulnerability factors from

RAVEN.

5.5 Conclusions and Future Directions

This chapter discussed RAVEN, a new technique for estimating the

effects of soft errors for a specified workload. RAVEN achieves significant

108

Figure 5.9: Four examples of vulnerability factor values in complete error injection, SFI, and RAVEN.

speedup compared to statistical fault injection, with similar estimated rates

of the outcomes and more precise estimated vulnerability factors for each flip-

flop.

A future direction that can generate even more precise results is to

consider the distribution of errors detected at the local outputs at different

times. Using such distributions might even help define lower and upper bounds

for RAVEN probability values.

109

Chapter 6

Conclusions and Future Perspectives

With the increasing size and complexity of VLSI designs, state-of-the-

art methodologies for analyzing a design in the presence of faults do not satisfy

time-to-market requirements. Statistical methods can estimate the depend-

ability of a design under permanent and transient faults considerably faster

than traditional methods. In this dissertation, different statistical methodolo-

gies for estimating manufacturing fault coverage and soft error vulnerability

of large designs are suggested. They estimate manufacturing fault coverage

and soft error vulnerability factors, orders of magnitude faster than current

methodologies with low estimation error (less than 10%).

In Chapter 3, a novel metric (GIC) was proposed which was highly

correlated with fault coverage, and it was used in Chapter 4 to estimate the

fault coverage of a test sequence. An interesting topic for future work is to

extend the application of this metric to deal with a subset of faults rather

than with the entire set of fault candidates. Such a capability will facilitate

performing a hybrid structural and functional test which is an attractive and

practical method in industry.

In Chapter 5, it was noted that traditional error injection method-

ologies require millions of injections in order to be able to calculate detailed

vulnerability factors for each flip-flop in the design. Such large numbers of

injections are highly time consuming, taking days if not months to complete.

110

RAVEN, discussed in this chapter, is shown to be effective for such detailed

analysis. Another interesting topic for future research is to make this vulnera-

bility analysis even more general. Synthetic benchmarks, rather than generic

benchmarks, can be used to measure the vulnerability factors so that they are

accurate for any application program. These benchmarks are usually designed

to be short and they should be designed in a way to expose the effects of soft

errors in every part of the design. Another research that can be very useful

in detailed vulnerability analysis is to define new statistical soft error models

that can be injected in instruction set simulators or in actual applications [37].

High-level models currently used in soft error analysis are not accurate since

their average outcomes are not close to the average outcomes of more realis-

tic (single bit-flip on flip-flops) fault models; furthermore they cannot provide

any detailed vulnerability factors for each part of the design. Development of

an accurate statistical soft error model has been initiated in [55] and a more

precise fault model will enable rapid and accurate analysis of complex systems

running realistic workloads.

111

Bibliography

[1] http://electronicdesign.com/files/29/9345.

[2] “SISA: Simple interactive statistical analysis,” http://www.quantitativeskills.

com/sisa/statistics/corrhlp.htm.

[3] “Stampede supercomputer,” https://www.tacc.utexas.edu/stampede/.

[4] M. Abramovici, M. Breuer, and A. Friedman, Digital systems testing and

testable design. IEEE press New York, 1990.

[5] V. Agrawal, S. Bose, and V. Gangaram, “Upper bounding fault coverage

by structural analysis and signal monitoring,” Proceedings of IEEE VLSI

Test Symposium, pp. 6–pp. IEEE, 2006.

[6] V. D. Agrawal, “Sampling techniques for determining fault coverage in

LSI circuits,” Journal of Digital Systems, vol. 5, no. 3, pp. 189–202, 1981.

[7] V. D. Agrawal, “Fault sampling revisited,” IEEE Design & Test of Com-

puters, vol. 7, no. 4, pp. 32–35. IEEE, 1990.

[8] G. Asadi and M. B. Tahoori, “An accurate ser estimation method based

on propagation probability,” Proceedings of Design, Automation and Test

in Europe, pp. 306–307. IEEE, 2005.

[9] H. Bhatnagar, “Verifault-XL user’s guide,” Cadence Design Systems, Inc.

112

[10] S. Bose and V. Agrawal, “Estimating stuck fault coverage in sequential

logic using state traversal and entropy analysis,” Proceedings of IEEE

International Test Conference, pp. 1–10. IEEE, 2007.

[11] C. Bottoni, M. Glorieux, J. Daveau, G. Gasiot, F. Abouzeid, S. Clerc,

L. Naviner, and P. Roche, “Heavy ions test result on a 65nm Sparc-

V8 radiation-hard microprocessor,” Proceedings of IEEE International

Reliability Physics Symposium, 2014. IEEE, 2014.

[12] A. Carbine and D. Feltham, “Pentium R© Pro processor design for test

and debug,” Proceedings of International Test Conference, pp. 294–303.

IEEE, 1997.

[13] H. Cha, E. M. Rudnick, G. S. Choi, J. H. Patel, and R. K. Iyer, “A fast

and accurate gate-level transient fault simulation environment,” Digest of

Papers: The Twenty-Third International Symposium on Fault-Tolerant

Computing, pp. 310–319. IEEE, 1993.

[14] S. Chatterjee and J. S. Simonoff, Handbook of Regression Analysis. John

Wiley & Sons, 2013, vol. 5.

[15] C. Chen and N. Soong, “A statistical model for fault coverage analysis,”

Digest of Papers of VLSI Test Symposium, ’Chip-to-System Test Con-

cerns for the 90’s’, pp. 227–232. IEEE, 1991.

[16] D. Chen, G. Jacques-Silva, Z. Kalbarczyk, R. K. Iyer, and B. Mealey, “Er-

ror behavior comparison of multiple computing systems: A case study us-

ing linux on pentium, solaris on SPARC, and AIX on POWER,” Proceed-

ings of Pacific Rim International Symposium on Dependable Computing,

pp. 339–346. IEEE, 2008.

113

[17] G. Chen, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin, “Object du-

plication for improving reliability,” Proceedings of Asia and South Pacific

Design Automation Conference, pp. 140–145. IEEE Press, 2006.

[18] L. Chen and S. Dey, “Software-based self-testing methodology for proces-

sor cores,” vol. 20, no. 3, pp. 369–380, 2001.

[19] H. Cho, S. Mirkhani, C.-Y. Cher, J. A. Abraham, and S. Mitra, “Quan-

titative evaluation of soft error injection techniques for robust system

design,” Proceedings of ACM/EDAC/IEEE Design Automation Confer-

ence, pp. 1–10. IEEE, 2013.

[20] J. Clary and R. Sacane, “Self-testing computers,” IEEE Computer Mag-

azine, vol. 12, no. 10, pp. 49–59. IEEE Computer Society, 1979.

[21] H. Cui, S. Seth, and S. Mehta, “Modeling fault coverage of random

test patterns,” Journal of Electronic Testing: Theory and Applications,

vol. 19, no. 3, pp. 271–284. Springer, 2003.

[22] J.-M. Daveau, A. Blampey, G. Gasiot, J. Bulone, and P. Roche, “An

industrial fault injection platform for soft-error dependability analysis

and hardening of complex system-on-a-chip,” Proceedings of International

Reliability Physics Symposium, pp. 212–220. IEEE, 2009.

[23] A. Dharchoudhury, S.-M. Kang, H. Cha, and J. H. Patel, “Fast timing

simulation of transient faults in digital circuits,” Proceedings of IEEE/ACM

International Conference on Computer-Aided Design, pp. 719–722. IEEE

Computer Society Press, 1994.

[24] H. Farhat and S. From, “A beta model for estimating the testability

and coverage distributions of a VLSI circuit,” IEEE Transactions on

114

Computer-Aided Design of Integrated Circuits and Systems, vol. 12, no. 4,

pp. 550–554. IEEE, 1993.

[25] M. Fazeli, S. G. Miremadi, H. Asadi, and M. B. Tahoori, “A fast analytical

approach to multi-cycle soft error rate estimation of sequential circuits,”

Proceedings of Euromicro Conference on Digital System Design: Archi-

tectures, Methods and Tools, pp. 797–800. IEEE, 2010.

[26] G. Ganapathy and J. Abraham, “Hardware acceleration alone will not

make fault grading ULSI a reality,” Proceedings of International Test

Conference, p. 848. IEEE, 1991.

[27] P. Goel, “Test generation cost analysis and projections,” Papers on Twenty-

five years of electronic design automation, pp. 380–387. ACM, 1988.

[28] S. Gurumurthy, D. Bertanzetti, P. Jakobsen, and J. Rearick, “Cache-

resident self-testing for I/O circuitry,” Proceedings of International Test

Conference, pp. 1–8. IEEE, 2009.

[29] K. Heragu, V. Agrawal, and M. Bushnell, “FACTS: fault coverage esti-

mation by test vector sampling,” Proceedings of VLSI Test Symposium,

pp. 266–271. IEEE, 1994.

[30] K. Heragu, V. Agrawal, and M. Bushnell, “Statistical methods for de-

lay fault coverage analysis,” Proceedings of VLSI Design Conference, pp.

166–170, 1995.

[31] E. R. Hnatek, Integrated circuit quality and reliability. CRC Press, 1994.

[32] D. Holcomb, W. Li, and S. A. Seshia, “Design as you see FIT: System-level

soft error analysis of sequential circuits,” Proceedings of the Conference

115

on Design, Automation and Test in Europe, pp. 785–790. European

Design and Automation Association, 2009.

[33] International Technology Roadmap for Semiconductors, “Test and test

equipments,” http://www.itrs.net/links/2001itrs/Test.pdf, 2001.

[34] International Technology Roadmap for Semiconductors, “Test and test

equipments updates,” http://www.itrs.net/links/2012itrs/home2012.htm,

2012.

[35] International Technology Roadmap for Semiconductors, “Test and test

equipments,” http://www.itrs.net/links/2013ITRS/2013Chapters/2013Test.

pdf, 2013.

[36] S. K. Jain and V. D. Agrawal, “STAFAN: An alternative to fault simula-

tion,” Proceedings of the 21st Design Automation Conference, pp. 18–23.

IEEE Press, 1984.

[37] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, “FERRARI: A

flexible software-based fault and error injection system,” vol. 44, no. 2,

pp. 248–260. IEEE, 1995.

[38] S. Karthik, M. Aitken, L. Martin, S. Pappula, B. Stettler, P. Vishakan-

taiah, M. d’Abreu, and J. Abraham, “Distributed mixed level logic and

fault simulation on the Pentium R© Pro microprocessor,” Proceedings of

International Test Conference, pp. 160–166. IEEE, 1996.

[39] V. Kim, T. Chen, and M. Tegethoff, “Fault coverage estimation for early

stage of VLSI design,” Proceedings of Ninth Great Lakes Symposium on

VLSI, pp. 105–108. IEEE, 1999.

116

[40] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical Fault

Injection: quantified error and confidence,” Proceedings of Design, Au-

tomation & Test in Europe Conference & Exhibition, pp. 502–506. IEEE,

2009.

[41] X. Li, S. V. Adve, P. Bose, and J. A. Rivers, “SoftArch: an architecture-

level tool for modeling and analyzing soft errors,” Proceedings of Inter-

national Conference on Dependable Systems and Networks, pp. 496–505.

IEEE, 2005.

[42] R. G. Lomax and D. L. Hahs-Vaughn, An introduction to statistical con-

cepts, 3rd Ed. Taylor & Francis Group, 2013.

[43] D. Lyons, “Sun screen,” Forbes, November, 2000.

[44] H. Ma and A. Sangiovanni-Vincentelli, “Mixed-level fault coverage esti-

mation,” Proceedings of the 23rd ACM/IEEE Design Automation Con-

ference, pp. 553–559. IEEE Press, 1986.

[45] F. J. MacWilliams and N. J. Sloane, “Pseudo-random sequences and ar-

rays,” Proceedings of the IEEE, vol. 64, no. 12, pp. 1715–1729. IEEE,

1976.

[46] A. Majumdar and S. B. K. Vrudhula, “Fault coverage and test length es-

timation for random pattern testing,” IEEE Transactions on Computers,

vol. 44, no. 2, pp. 234–247. IEEE, 1995.

[47] R. D. Mason, D. A. Lind, and W. G. Marchal, Statistics: an introduction.

New York: Harcourt Brace Jovanovich, Inc, 1983.

117

[48] P. Maxwell, I. Hartanto, and L. Bentz, “Comparing functional and struc-

tural tests,” Proceedings of International Test Conference, pp. 400–407.

IEEE, 2000.

[49] P. Maxwell, R. Aitken, V. Johansen, and I. Chiang, “The effect of different

test sets on quality level prediction: When is 80% better than 90%,”

Proceedings of International Test Conference, pp. 358–364, 1991.

[50] E. J. McCluskey, “Built-in self-test techniques,” IEEE Design & Test of

Computers, vol. 2, no. 2, pp. 21–28. IEEE, 1985.

[51] W. Meyer and R. Camposano, “Fast hierarchical multi-level fault simula-

tion of sequential circuits with switch-level accuracy,” Proceedings of the

30th international Design Automation Conference, pp. 515–519. ACM,

1993.

[52] S. Mirkhani and J. A. Abraham, “EAGLE: A regression model for fault

coverage estimation using a simulation-based metric,” Proceedings of In-

ternational Test Conference. IEEE, 2014.

[53] S. Mirkhani and J. A. Abraham, “Fast evaluation of test vector sets using

a simulation-based statistical metric,” Proceedings of VLSI Test Sympo-

sium, pp. 1–6. IEEE, 2014.

[54] S. Mirkhani, J. A. Abraham, T. Vo, H. Jun, and B. Eklow, “FALCON:

Rapid statistical fault coverage estimation for complex designs,” Proceed-

ings of International Test Conference, pp. 1–10. IEEE, 2012.

[55] S. Mirkhani, H. Cho, S. Mitra, and J. A. Abraham, “Rethinking error

injection for effective resilience,” Proceedings of Asia and South Pacific

Design Automation Conference, pp. 390–393, 2014.

118

[56] S. Mirkhani, S. Mitra, C.-Y. Cher, and J. A. Abraham, “Efficient soft

error vulnerability estimation of complex designs,” Proceedings of Design,

Automation & Test in Europe Conference & Exhibition. IEEE, 2015.

[57] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. S. Kim, “Robust sys-

tem design with built-in soft-error resilience,” IEEE Computer Magazine,

2005.

[58] S. S. Mukherjee, J. Emer, and S. K. Reinhardt, “The soft error problem:

An architectural perspective,” Proceedings of International Symposium

on High-Performance Computer Architecture, pp. 243–247. IEEE, 2005.

[59] B. Murray and J. Hayes, “Testing ICs: Getting to the core of the prob-

lem,” IEEE Computer Magazine, vol. 29, no. 11, pp. 32–38, 1996.

[60] A. A. Nair, L. K. John, and L. Eeckhout, “AVF stressmark: Towards an

automated methodology for bounding the worst-case vulnerability to soft

errors,” Proceedings of 43rd Annual IEEE/ACM International Symposium

on Microarchitecture, pp. 125–136. IEEE, 2010.

[61] M. Nakazawa, S. Nitta, and K. Hirabayashi, “Probabilistic fault grad-

ing based on activation checking and observability analysis,” Journal of

Electronic Testing, vol. 1, no. 3, pp. 235–238. Springer, 1990.

[62] W. M. Needham, Designer’s guide to testable ASIC devices. Springer,

1991.

[63] T. Niermann, W. Cheng, and J. Patel, “PROOFS: A fast, memory-

efficient sequential circuit fault simulator,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 11, no. 2, pp. 198–

207. IEEE, 1992.

119

[64] OpenCores, “OpenCores webpage,” http://opencores.org/openrisc,OR1200.

[65] P. Parvathala, K. Maneparambil, and W. Lindsay, “FRITS-a micropro-

cessor functional bist method,” Proceedings of International Test Confer-

ence, pp. 590–598. IEEE, 2002.

[66] K. Pattabiraman, G. P. Saggese, D. Chen, Z. Kalbarczyk, and R. Iyer,

“Automated derivation of application-specific error detectors using dy-

namic analysis,” IEEE Transactions on Dependable and Secure Comput-

ing, vol. 8, no. 5, pp. 640–655. IEEE, 2011.

[67] A. Pellegrini, K. Constantinides, D. Zhang, S. Sudhakar, V. Bertacco, and

T. Austin, “CrashTest: A fast high-fidelity FPGA-based resiliency anal-

ysis framework,” Proceedings of International Conference on Computer

Design, pp. 363–370. IEEE, 2008.

[68] I. Pomeranz, P. K. Parvathala, and S. Patil, “Estimating the fault cover-

age of functional test sequences without fault simulation,” Proceedings of

Asian Test Symposium, pp. 25–32. IEEE, 2007.

[69] W. Qiu, X. Lu, J. Wang, Z. Li, D. Walker, and W. Shi, “A statistical

fault coverage metric for realistic path delay faults,” Proceedings of 22nd

IEEE VLSI Test Symposium, pp. 37–42. IEEE, 2004.

[70] H. M. Quinn, D. A. Black, W. H. Robinson, and S. P. Buchner, “Fault

simulation and emulation tools to augment radiation-hardness assurance

testing,” IEEE Transactions on Nuclear Science, vol. 60, no. 3, 2013.

[71] P. Racunas, K. Constantinides, S. Manne, and S. S. Mukherjee, “Perturbation-

based fault screening,” Proceedings of International Symposium on High

Performance Computer Architecture, pp. 169–180. IEEE, 2007.

120

[72] L. K. Rajendra, “Design of on-chip self-testing signature register,” Ph.D.

dissertation, National Institute of Technology, Rourkela, 2014.

[73] P. Ramachandran, P. Kudva, J. Kellington, J. Schumann, and P. Sanda,

“Statistical fault injection,” Proceedings of International Conference on

Dependable Systems and Networks With FTCS and DCC, pp. 122–127.

IEEE, 2008.

[74] K. Ramakrishnan, R. Rajaramant, N. Vijaykrishnan, Y. Xie, M. J. Irwin,

and K. Unlu, “Hierarchical soft error estimation tool (HSEET),” Pro-

ceedings of International Symposium on Quality Electronic Design, pp.

680–683. IEEE, 2008.

[75] C. Ravikumar and H. Joshi, “HISCOAP: a hierarchical testability analysis

tool,” Proceedings of VLSI Design Conference, p. 272. Published by the

IEEE Computer Society, 1995.

[76] C. Ravikumar, G. Saund, and N. Agrawal, “A STAFAN-like functional

testability measure for register-level circuits,” Proceedings of the Fourth

Asian Test Symposium, pp. 192–198. IEEE, 1995.

[77] D. Saab, R. Mueller-Thuns, D. Blaauw, J. Rahmeh, and J. Abraham,

“Hierarchical multi-level fault simulation of large systems,” Journal of

Electronic Testing, vol. 1, no. 2, pp. 139–149. Springer, 1990.

[78] P. N. Sanda, J. W. Kellington, P. Kudva, R. Kalla, R. B. McBeth,

J. Ackaret, R. Lockwood, J. Schumann, and C. R. Jones, “Soft-error

resilience of the IBM POWER6 processor,” IBM Journal of Research and

Development, vol. 52, no. 3, pp. 275–284. IBM, 2008.

121

[79] N. Seifert, B. Gill, S. Jahinuzzaman, J. Basile, V. Ambrose, Q. Shi, R. All-

mon, and A. Bramnik, “Soft error susceptibilities of 22nm tri-gate de-

vices,” IEEE Transactions on Nuclear Science. IEEE, 2012.

[80] S. Seshu and D. N. Freeman, “The diagnosis of asynchronous sequential

switching systems,” IRE Transactions on Electronic computers, vol. EC-

11, pp. 459–465, 1962.

[81] S. C. Seth, V. D. Agrawal, and H. Farhat, “A statistical theory of digital

circuit testability,” IEEE Transactions on Computers, vol. 39, no. 4, pp.

582–586. IEEE, 1990.

[82] J. Shen and J. A. Abraham, “Native mode functional test generation for

processors with applications to self test and design validation,” Proceed-

ings of International Test Conference, pp. 990–999. IEEE, 1998.

[83] J. Shen and J. A. Abraham, “Synthesis of native mode self-test programs,”

Journal of Electronic Testing, vol. 13, no. 2, pp. 137–148, 1998.

[84] A. L. Silburt, A. Evans, I. Perryman, S.-J. Wen, and D. Alexandrescu,

“Design for soft error resiliency in internet core routers,” IEEE Transac-

tions on Nuclear Science, vol. 56, no. 6, pp. 3551–3555. IEEE, 2009.

[85] D. T. Smith, B. W. Johnson, N. Andrianos, and J. Profeta III, “A

variance-reduction technique via fault-expansion for fault-coverage esti-

mation,” IEEE Transactions on Reliability, vol. 46, no. 3, pp. 366–374.

IEEE, 1997.

[86] B. Swanson and M. Lange, “At-speed testing made easy,” http://www.

eetimes.com/document.asp?doc id=1217753, 2004.

122

[87] R. Taylor, “Interpretation of the correlation coefficient: a basic review,”

Journal of diagnostic medical sonography, vol. 6, no. 1, pp. 35–39. Sage

Publications, 1990.

[88] P. Thaker, V. Agrawal, and M. Zaghloul, “Register-transfer level fault

modeling and test evaluation techniques for vlsi circuits,” Proceedings of

IEEE International Test Conference, 2000.

[89] T. K. Tsai and R. K. Iyer, Measuring fault tolerance with the FTAPE

fault injection tool. Springer, 1995.

[90] Univ. of Illinois at Urbana-Champaign, http://www.crhc.illinois.edu/

ACS/tools/ivm/about.html.

[91] A. Vij, “Good scan= good quality level? well, it depends,” Proceedings

of International Test Conference, p. 1195. IEEE, 2002.

[92] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel, “Characterizing

the effects of transient faults on a high-performance processor pipeline,”

Proceedings of International Conference on Dependable Systems and Net-

works, pp. 61–70. IEEE, 2004.

[93] Z. Wang and K. Chakrabarty, “Test-quality/cost optimization using output-

deviation-based reordering of test patterns,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 27, no. 2, pp. 352–

365. IEEE, 2008.

[94] R. Wieler, Z. Zhang, and R. McLeod, “Emulating static faults using a

Xilinx based emulator,” Proceedings of IEEE Symposium on FPGAs for

Custom Computing Machines. Published by the IEEE Computer Society,

1995.

123

[95] T. W. Williams, “Test length in a self-testing environment,” IEEE Design

& Test of Computers, vol. 2, no. 2, pp. 59–63. IEEE, 1985.

[96] X. Xu and M.-L. Li, “Understanding soft error propagation using effi-

cient vulnerability-driven fault injection,” Proceedings of 42nd Annual

IEEE/IFIP International Conference on Dependable Systems and Net-

works, pp. 1–12. IEEE, 2012.

[97] K. S. Yim, Z. Kalbarczyk, and R. K. Iyer, “Measurement-based analysis

of fault and error sensitivities of dynamic memory,” Proceedings of Inter-

national Conference on Dependable Systems and Networks, pp. 431–436.

IEEE, 2010.

[98] M. Zhang, S. Mitra, T. Mak, N. Seifert, N. J. Wang, Q. Shi, K. S. Kim,

N. R. Shanbhag, and S. J. Patel, “Sequential element design with built-in

soft error resilience,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 14, no. 12, pp. 1368–1378. IEEE, 2006.

[99] Y. Zhang, J. W. Lee, N. P. Johnson, and D. I. August, “DAFT: decoupled

acyclic fault tolerance,” International Journal of Parallel Programming,

vol. 40, no. 1, pp. 118–140. Springer, 2012.

124

Vita

Shahrzad Mirkhani was born in Tehran, Iran in 1976, daughter of Javad

Mirkhani and Mahin Safaei Tehrani. She earned B.Sc. degree in Computer

Engineering from Sharif University of Technology, Tehran, Iran, in 1998. She

received her M.Sc. degree in Electrical and Computer Engineering from Uni-

versity of Tehran, Tehran, Iran, in 2002. Shahrzad has worked as a researcher

in CADLAB in University of Tehran between 2002 and 2007. She has been a

graduate student at the University of Texas at Austin since 2008.

Permanent address: shahrzad@utexas.edu

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

125

