1,339 research outputs found

    An Ant-based Approach for Dynamic RWA in Optical WDM Networks

    Get PDF

    A Novel Solution to the Dynamic Routing and Wavelength Assignment Problem in Transparent Optical Networks

    Full text link
    We present an evolutionary programming algorithm for solving the dynamic routing and wavelength assignment (DRWA) problem in optical wavelength-division multiplexing (WDM) networks under wavelength continuity constraint. We assume an ideal physical channel and therefore neglect the blocking of connection requests due to the physical impairments. The problem formulation includes suitable constraints that enable the algorithm to balance the load among the individuals and thus results in a lower blocking probability and lower mean execution time than the existing bio-inspired algorithms available in the literature for the DRWA problems. Three types of wavelength assignment techniques, such as First fit, Random, and Round Robin wavelength assignment techniques have been investigated here. The ability to guarantee both low blocking probability without any wavelength converters and small delay makes the improved algorithm very attractive for current optical switching networks.Comment: 12 Pages, IJCNC Journal 201

    Ant-based Survivable Routing in Dynamic WDM Networks with Shared Backup Paths

    Get PDF

    A multipopulation parallel genetic simulated annealing based QoS routing and wavelength assignment integration algorithm for multicast in optical networks

    Get PDF
    Copyright @ 2008 Elsevier B.V. All rights reserved.In this paper, we propose an integrated Quality of Service (QoS) routing algorithm for optical networks. Given a QoS multicast request and the delay interval specified by users, the proposed algorithm can find a flexible-QoS-based cost suboptimal routing tree. The algorithm first constructs the multicast tree based on the multipopulation parallel genetic simulated annealing algorithm, and then assigns wavelengths to the tree based on the wavelength graph. In the algorithm, routing and wavelength assignment are integrated into a single process. For routing, the objective is to find a cost suboptimal multicast tree. For wavelength assignment, the objective is to minimize the delay of the multicast tree, which is achieved by minimizing the number of wavelength conversion. Thus both the cost of multicast tree and the user QoS satisfaction degree can approach the optimal. Our algorithm also considers load balance. Simulation results show that the proposed algorithm is feasible and effective. We also discuss the practical realization mechanisms of the algorithm.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1, the National Natural Science Foundation of China under Grant nos. 60673159 and 70671020, the National High-Tech Research and Development Plan of China under Grant no. 2006AA01Z214, Program for New Century Excellent Talents in University, and the Key Project of Chinese Ministry of Education under Grant no. 108040

    Ant colony optimisation-based algorithms for optical burst switching networks

    Get PDF
    This research developed two novel distributed algorithms inspired by Ant Colony Optimisation (ACO) for a solution to the problem of dynamic Routing and Wavelength Assignment (RWA) with wavelength continuity constraint in Optical Burst Switching (OBS) networks utilising both the traditional International Telecommunication Union (ITU) Fixed Grid Wavelength Division Multiplexing (WDM) and Flexible Spectrum scenarios. The growing demand for more bandwidth in optical networks require more efficient utilisation of available optical resources. OBS is a promising optical switching technique for the improved utilisation of optical network resources over the current optical circuit switching technique. The development of newer technologies has introduced higher rate transmissions and various modulation formats, however, introducing these technologies into the traditional ITU Fixed Grid does not efficiently utilise the available bandwidth. Flexible Spectrum is a promising approach offering a solution to the problem of improving bandwidth utilisation, which comes with a potential cost. Transmissions have the potential for impairment with respect to the increased traffic and lack of large channel spacing. Proposed routing algorithms should be aware of the linear and non-linear Physical Layer Impairments (PLIs) in order to operate closer to optimum performance. The OBS resource reservation protocol does not cater for the loss of transmissions, Burst Control Packets (BCPs) included, due to physical layer impairments. The protocol was adapted for use in Flexible Spectrum. Investigation of the use of a route and wavelength combination, from source to destination node pair, for the RWA process was proposed for ACO-based approaches to enforce the establishment and use of complete paths for greedy exploitation in Flexible Spectrum was conducted. The routing tuple for the RWA process is the tight coupling of a route and wavelength in combination intended to promote the greedy exploitation of successful paths for transmission requests. The application of the routing tuples differs from traditional ACO-based approaches and prompted the investigation of new pheromone calculation equations. The two novel proposed approaches were tested and experiments conducted comparing with and against existing algorithms (a simple greedy and an ACO-based algorithm) in a traditional ITU Fixed Grid and Flexible Spectrum scenario on three different network topologies. The proposed Flexible Spectrum Ant Colony (FSAC) approach had a markably improved performance over the existing algorithms in the ITU Fixed Grid WDM and Flexible Spectrum scenarios, while Upper Confidence Bound Routing and Wavelength Assignment (UCBRWA) algorithm was able to perform well in the traditional ITU Fixed Grid WDM scenario, but underperformed in the Flexible Spectrum scenario. The results show that the distributed ACO-based FSAC algorithm significantly improved the burst transmission success probability, providing a good solution in the Flexible Spectrum network environment undergoing transmission impairments

    Resilient network dimensioning for optical grid/clouds using relocation

    Get PDF
    In this paper we address the problem of dimensioning infrastructure, comprising both network and server resources, for large-scale decentralized distributed systems such as grids or clouds. We will provide an overview of our work in this area, and in particular focus on how to design the resulting grid/cloud to be resilient against network link and/or server site failures. To this end, we will exploit relocation: under failure conditions, a request may be sent to an alternate destination than the one under failure-free conditions. We will provide a comprehensive overview of related work in this area, and focus in some detail on our own most recent work. The latter comprises a case study where traffic has a known origin, but we assume a degree of freedom as to where its end up being processed, which is typically the case for e. g., grid applications of the bag-of-tasks (BoT) type or for providing cloud services. In particular, we will provide in this paper a new integer linear programming (ILP) formulation to solve the resilient grid/cloud dimensioning problem using failure-dependent backup routes. Our algorithm will simultaneously decide on server and network capacity. We find that in the anycast routing problem we address, the benefit of using failure-dependent (FD) rerouting is limited compared to failure-independent (FID) backup routing. We confirm our earlier findings in terms of network capacity savings achieved by relocation compared to not exploiting relocation (order of 6-10% in the current case studies)

    QoS multicast tree construction in IP/DWDM optical internet by bio-inspired algorithms

    Get PDF
    Copyright @ Elsevier Ltd. All rights reserved.In this paper, two bio-inspired Quality of Service (QoS) multicast algorithms are proposed in IP over dense wavelength division multiplexing (DWDM) optical Internet. Given a QoS multicast request and the delay interval required by the application, both algorithms are able to find a flexible QoS-based cost suboptimal routing tree. They first construct the multicast trees based on ant colony optimization and artificial immune algorithm, respectively. Then a dedicated wavelength assignment algorithm is proposed to assign wavelengths to the trees aiming to minimize the delay of the wavelength conversion. In both algorithms, multicast routing and wavelength assignment are integrated into a single process. Therefore, they can find the multicast trees on which the least wavelength conversion delay is achieved. Load balance is also considered in both algorithms. Simulation results show that these two bio-inspired algorithms can construct high performance QoS routing trees for multicast applications in IP/DWDM optical Internet.This work was supported in part ny the Program for New Century Excellent Talents in University, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1, the National Natural Science Foundation of China under Grant no. 60673159 and 70671020, the National High-Tech Reasearch and Development Plan of China under Grant no. 2007AA041201, and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant no. 20070145017

    Joint dimensioning of server and network infrastructure for resilient optical grids/clouds

    Get PDF
    We address the dimensioning of infrastructure, comprising both network and server resources, for large-scale decentralized distributed systems such as grids or clouds. We design the resulting grid/cloud to be resilient against network link or server failures. To this end, we exploit relocation: Under failure conditions, a grid job or cloud virtual machine may be served at an alternate destination (i.e., different from the one under failure-free conditions). We thus consider grid/cloud requests to have a known origin, but assume a degree of freedom as to where they end up being served, which is the case for grid applications of the bag-of-tasks (BoT) type or hosted virtual machines in the cloud case. We present a generic methodology based on integer linear programming (ILP) that: 1) chooses a given number of sites in a given network topology where to install server infrastructure; and 2) determines the amount of both network and server capacity to cater for both the failure-free scenario and failures of links or nodes. For the latter, we consider either failure-independent (FID) or failure-dependent (FD) recovery. Case studies on European-scale networks show that relocation allows considerable reduction of the total amount of network and server resources, especially in sparse topologies and for higher numbers of server sites. Adopting a failure-dependent backup routing strategy does lead to lower resource dimensions, but only when we adopt relocation (especially for a high number of server sites): Without exploiting relocation, potential savings of FD versus FID are not meaningful
    corecore