441 research outputs found

    Integrated Circuits for Programming Flash Memories in Portable Applications

    Get PDF
    Smart devices such as smart grids, smart home devices, etc. are infrastructure systems that connect the world around us more than before. These devices can communicate with each other and help us manage our environment. This concept is called the Internet of Things (IoT). Not many smart nodes exist that are both low-power and programmable. Floating-gate (FG) transistors could be used to create adaptive sensor nodes by providing programmable bias currents. FG transistors are mostly used in digital applications like Flash memories. However, FG transistors can be used in analog applications, too. Unfortunately, due to the expensive infrastructure required for programming these transistors, they have not been economical to be used in portable applications. In this work, we present low-power approaches to programming FG transistors which make them a good candidate to be employed in future wireless sensor nodes and portable systems. First, we focus on the design of low-power circuits which can be used in programming the FG transistors such as high-voltage charge pumps, low-drop-out regulators, and voltage reference cells. Then, to achieve the goal of reducing the power consumption in programmable sensor nodes and reducing the programming infrastructure, we present a method to program FG transistors using negative voltages. We also present charge-pump structures to generate the necessary negative voltages for programming in this new configuration

    A sub-1 V, 26 μw, low-output-impedance CMOS bandgap reference with a low dropout or source follower mode

    Get PDF
    We present a low-power bandgap reference (BGR), functional from sub-1 V to 5 V supply voltage with either a low dropout (LDO) regulator or source follower (SF) output stage, denoted as the LDO or SF mode, in a 0.5-μm standard digital CMOS process with V tn≈ 0.6 V and |V tp| ≈ 0.7 V at 27 °C. Both modes operate at sub-1 V under zero load with a power consumption of around 26 μW. At 1 V (1.1 V) supply, the LDO (SF) mode provides an output current up to 1.1 mA (0.35 mA), a load regulation of ±8.5 mV/mA (±33 mV/mA) with approximately 10 μ s transient, a line regulation of ±4.2 mV/V (±50μV/V), and a temperature compensated reference voltage of 0.228 V (0.235 V) with a temperature coefficient around 34 ppm/° C from -20°C to 120 °C. At 1.5 V supply, the LDO (SF) mode can further drive up to 9.6 mA (3.2 mA) before the reference voltage falls to 90% of its nominal value. Such low-supply-voltage and high-current-driving BGR in standard digital CMOS processes is highly useful in portable and switching applications. © 2010 IEEE.published_or_final_versio

    Bandgap Reference Design at the 14-Nanometer FinFET Node

    Get PDF
    As supply voltages continue to decrease, it becomes harder to ensure that the voltage drop across a diode-connected BJT is sufficient to conduct current without sacrificing die area. One such solution to this potential problem is the diode-connected MOSFET operating in weak inversion. In addition to conducting appreciable current at voltages significantly lower than the power supply, the diode-connected MOSFET reduces the total area for the bandgap implementation. Reference voltage variations across Monte Carlo perturbations are more pronounced as the variation of process parameters are exponentially affected in subthreshold conduction. In order for this proposed solution to be feasible, a design methodology was introduced to mitigate the effects of process variation. A 14 nm bandgap reference was created and simulated across Monte Carlo perturbations for 100 runs at nominal supply voltage and 10% variation of the power supply in either direction. The best case reference voltage was found and used to verify the proposed resistive network solution. The average temperature coefficient was measured to be 66.46 ppm/◦C and the voltage adjustment range was found to be 204.1 mV. The two FinFET subthreshold diodes consume approximately 2.8% of the area of the BJT diode equivalent. Utilizing an appropriate process control technique, subthreshold bandgap references have the potential to overtake traditional BJT-based bandgap architectures in low-power, limited-area applications

    Ultra-low power mixed-signal frontend for wearable EEGs

    Get PDF
    Electronics circuits are ubiquitous in daily life, aided by advancements in the chip design industry, leading to miniaturised solutions for typical day to day problems. One of the critical healthcare areas helped by this advancement in technology is electroencephalography (EEG). EEG is a non-invasive method of tracking a person's brain waves, and a crucial tool in several healthcare contexts, including epilepsy and sleep disorders. Current ambulatory EEG systems still suffer from limitations that affect their usability. Furthermore, many patients admitted to emergency departments (ED) for a neurological disorder like altered mental status or seizures, would remain undiagnosed hours to days after admission, which leads to an elevated rate of death compared to other conditions. Conducting a thorough EEG monitoring in early-stage could prevent further damage to the brain and avoid high mortality. But lack of portability and ease of access results in a long wait time for the prescribed patients. All real signals are analogue in nature, including brainwaves sensed by EEG systems. For converting the EEG signal into digital for further processing, a truly wearable EEG has to have an analogue mixed-signal front-end (AFE). This research aims to define the specifications for building a custom AFE for the EEG recording and use that to review the suitability of the architectures available in the literature. Another critical task is to provide new architectures that can meet the developed specifications for EEG monitoring and can be used in epilepsy diagnosis, sleep monitoring, drowsiness detection and depression study. The thesis starts with a preview on EEG technology and available methods of brainwaves recording. It further expands to design requirements for the AFE, with a discussion about critical issues that need resolving. Three new continuous-time capacitive feedback chopped amplifier designs are proposed. A novel calibration loop for setting the accurate value for a pseudo-resistor, which is a crucial block in the proposed topology, is also discussed. This pseudoresistor calibration loop achieved the resistor variation of under 8.25%. The thesis also presents a new design of a curvature corrected bandgap, as well as a novel DDA based fourth-order Sallen-Key filter. A modified sensor frontend architecture is then proposed, along with a detailed analysis of its implementation. Measurement results of the AFE are finally presented. The AFE consumed a total power of 3.2A (including ADC, amplifier, filter, and current generation circuitry) with the overall integrated input-referred noise of 0.87V-rms in the frequency band of 0.5-50Hz. Measurement results confirmed that only the proposed AFE achieved all defined specifications for the wearable EEG system with the smallest power consumption than state-of-art architectures that meet few but not all specifications. The AFE also achieved a CMRR of 131.62dB, which is higher than any studied architectures.Open Acces

    Fully Integrated Voltage Reference Circuits

    Get PDF
    (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2014(PhD) -- İstanbul Technical University, Institute of Science and Technology, 2014Gerilim referans devreleri, elektriksel sistemlerde diğer alt blokların çalışmaları için kararlı bir çalışma noktası üretmeleri sebebiyle veri dönüştürücüler (ADC - DAC), frekans sentezleyiciler, DC-DC ve AC-DC dönüştürücüler ve lineer regülatörler gibi pek çok elektriksel sistemin en temel yapı bloklarındandır. İdeal olarak, üretilen bu referans noktası, sıcaklık, üretim süreçleri, besleme gerilim degişimleri ve yükleme etkileri gibi çalışma koşullarından etkilenmemelidir. Bir referans devresinin doğruluğu bahsedilen çalışma koşullarının etkisiyle mutlak değerinden ne kadar saptığı olarak tanımlanır. Modern haberleşme sistemleri ve tüketici ürünlerindeki gelişmeler ile birlikte yüksek entegrasyon ve doğruluklu sistemlere olan talep artmıştır. Tümdevre sistemlerinde, alt blokların çalışma noktalarını belirlemesi nedeniyle özellikle referans devrelerinin performansları bütün sistemin performansının belirlenmesinde önemli rol oynamaktadır. Dolayısıyla yüksek performanslı sistemlere olan talep, bu performansların elde edilmesi için kullanılan düşük geometrili üretim teknolojilerine uygun, yani giderek azalan besleme gerilimleri ile çalışabilecek yüksek doğruluklu referans devrelerine olan talebi de arttırmıştır. Bu nedenle bu çalışmada gerilim referans devre topolojilerine odaklanılmıştır. Bu doğrultuda, öncelikle yüksek doğruluklu, düşük gürültülü gerilim refereans devre topolojileri üzerinde çalışılarak 0.35 um CMOS teknoljisinde farklı tasarımlar yapılmıştır. Bu aşamada temel hedef, yüksek dogrulukluk olarak belirenmiş ve yapılan tasarımlarda, üretim sonrası ayarlamalardan sonra sıcaklık katsayısı 3 ppm/C olabilecek devreler tasarlanmıştır. Ancak, 0.35 um CMOS üretim teknolojisi kullanılması ve kullanılan topolojiler dolayısıyla, devrelerin çalışabileceği minimum besleme gerilim seviyesi 1.8 V ile sınırlı kalmıştır. Devrelerin çektikleri akımlar ise 20-30 uA seviyesindedir. Bu tasarımlar sırasında (triple-well üretim teknlojileri için), önerilen blok gövde izolasyon stratejisi, tasarımı yapılan devrenin gövdesinin tümdevrenin geri kalan kısmından ters kutuplanmış bir jonksiyon diyodu sayesinde izole edilmesine dayanmaktadır ve devrenin gövde gürültüsünden etkilenmesini önemli ölçüde azaltmaktadır. Son olarak, çoğunlukla osilatör devrelerinde uygulanan anahtarlamalı kutuplama tekniği uygulanarak devrelerin düşük frekans gürültü performansının iyileştirilmesi amaçlanmıştır. Çalışmanın geri kalan kısmında, düşük besleme gerilimleriyle çalışabilecek mikron-altı üretim teknolojilerine uygun gerilim referans devre topolojileri üzerine odaklanılmıştır. Bu doğrultuda, iki yeni düşük besleme gerilimli ve düşük güç tüketimli gerilim referans devre topolojisi önerilmiştir. Önerilen topolojiler, 0.18 um CMOS üretim teknolojisinde gerçeklenmiştir. Ölçüm sonuçları, tasarlanan gerilim refarans devrelerinin 0.65 V besleme gerilimi ile çalışabildiğini göstermiştir. Önerilen devre topolojileri ile 0-120 C sıcaklık aralığında, sıcaklık katsayısı 50 ppm/C olan 193 mV seviyesinde referans gerilimleri elde edilmiştir. Devrelerin güç tüketimleri sırasıyla 0.3 uW ve 0.4 uW iken kapladıkları alan 0.2 mm^2 ve 0.08 mm^2 dir. Sonuç olarak, önerilen devre topolojileri ile literatürde yer alan diğer 1V-altı referans devreleri ile karşılatrılabilir seviyede sıcaklık katsayısı olan referans gerilimleri çok daha düşük güç harcamasıyla elde edilmiştir.Voltage references are one of the basic building blocks of many SoCs and mixed-signal ICs such as data converters, voltage regulators and operational amplifiers as they constitute a stable reference voltage for other sub-circuits to generate predictable and repeatable results. Ideally, this reference point should not change with external influences or operating conditions such as temperature, fabrication process variations, power supply variations and transient loading effects. Along with the rapid development of modern communication systems and consumer products, which constitutes the main market for semiconductor industry, the market demand for these System on Chip (SoC) or Mixed Signal ICs to have lower power consumption, higher accuracy and lower cost, and thus, higher integration. Since the performance of the whole system depends strongly to the performance of the reference circuit, this work is focused on fully integrated voltage reference architectures. With this motivation, firstly, different kinds of high precision low noise voltage reference circuits are designed in standard 0.35 um CMOS technology that we have more experience and knowledge of. The essential goal of these studies was high precision and temperature coefficient of the designed voltage reference circuits are on the order of 3 ppm/C with trimming after production. However, since 0.35 um CMOS technology is used in these designs and also due to the chosen topologies their minimum supply voltage can be down to 1.8 V and while current consumption is on the order of 20-30 uA. In the design of the this voltage reference block bulk isolation technique is proposed (for triple-well CMOS processes), in which system blocks are bulk isolated by a reverse biased junction diode from the rest of the die to drastically reduce substrate noise coupling. This is especially important if a very low power voltage reference is designed in a very noisy SoC. Moreover, the switched biasing technique, which is mostly applied to the oscillators, is also implemented to the designed BGR in order to improve the low noise performance of the circuit. The rest of the thesis is focused on new voltage reference topologies that are appropriate for sub-micron technologies operating with low supply voltages. With this motivation two new low voltage and low power voltage reference topologies are proposed. The proposed voltage reference topologies are implemented and fabricated in 0.18 um CMOS technology. Measurement results show that the proposed voltage reference circuits are working properly down to 0.65 V and achieve an output voltage of 193 mV with a temperature coefficient on the order of 50 ppm/C in the temperature range of 0-120C. The total power consumption of the two designed voltage references are 0.3 uW and 0.4 uW at 27 C, while occupying the area of 0.2 mm^2 and 0.08 mm^2, respectively. As a result, the proposed voltage reference topologies generate a reference voltage with comparable level of temperature coefficient and quite low power consumption with respect to the other sub-1V voltage reference circuits reported in the literature.DoktoraPh

    LOW POWER AND HIGH SIGNAL TO NOISE RATIO BIO-MEDICAL AFE DESIGN TECHNIQUES

    Get PDF
    The research work described in this thesis was focused on finding novel techniques to implement a low-power and noise Bio-Medical Analog Front End (BMEF) circuit technique to enable high-quality Electrocardiography (ECG) sensing. Usually, an ECG signal and several bio-medical signals are sensed from the human body through a pair of electrodes. The electrical characteristics of the very small amplitude (1u-10mV) signals are corrupted by random noise and have a significant dc offset. 50/60Hz power supply coupling noise is one of the biggest cross-talk signals compared to the thermally generated random noise. These signals are even AFE composed of an Instrumentation Amplifier (IA), which will have a better Common Mode rejection ratio (CMRR). The main function of the AFE is to convert the weak electrical Signal into large signals whose amplitude is large enough for an Analog Digital Converter (ADC) to detect without having any errors. A Variable Gain Amplifier (VGA) is sometimes required to adjust signal amplitude to maintain the dynamic range of the ADC. Also, the Bio-medical transceiver needs an accurate and temperature-independent reference voltage and current for the ADC, commonly known as Bandgap Reference Circuit (BGR). These circuits need to consume as low power as possible to enable these circuits to be powered from the battery. The work started with analysing the existing circuit techniques for the circuits mentioned above and finding the key important improvements required to reach the target specifications. Previously proposed IA is generated based on voltage mode signal processing. To improve the CMRR (119dB), we proposed a current mode-based IA with an embedded DC cancellation technique. State-of-the-art VGA circuits were built based on the degeneration principle of the differential pair, which will enable the variable gain purpose, but none of these techniques discussed linearity improvement, which is very important in modern CMOS technologies. This work enhances the total Harmonic distortion (THD) by 21dB in the worst case by exploiting the feedback techniques around the differential pair. Also, this work proposes a low power curvature compensated bandgap with 2ppm/0C temperature sensitivity while consuming 12.5uW power from a 1.2V dc power supply. All circuits were built in 45nm TSMC-CMOS technology and simulated with all the performance metrics with Cadence (spectre) simulator. The circuit layout was carried out to study post-layout parasitic effect sensitivity

    An Ultra-Low-Power RFID/NFC Frontend IC Using 0.18 μm CMOS Technology for Passive Tag Applications

    Get PDF
    Battery-less passive sensor tags based on RFID or NFC technology have achieved much popularity in recent times. Passive tags are widely used for various applications like inventory control or in biotelemetry. In this paper, we present a new RFID/NFC frontend IC (integrated circuit) for 13.56 MHz passive tag applications. The design of the frontend IC is compatible with the standard ISO 15693/NFC 5. The paper discusses the analog design part in details with a brief overview of the digital interface and some of the critical measured parameters. A novel approach is adopted for the demodulator design, to demodulate the 10% ASK (amplitude shift keying) signal. The demodulator circuit consists of a comparator designed with a preset offset voltage. The comparator circuit design is discussed in detail. The power consumption of the bandgap reference circuit is used as the load for the envelope detection of the ASK modulated signal. The sub-threshold operation and low-supply-voltage are used extensively in the analog design—to keep the power consumption low. The IC was fabricated using 0.18 μ m CMOS technology in a die area of 1.5 mm × 1.5 mm and an effective area of 0.7 m m 2 . The minimum supply voltage desired is 1.2 V, for which the total power consumption is 107 μ W. The analog part of the design consumes only 36 μ W, which is low in comparison to other contemporary passive tags ICs. Eventually, a passive tag is developed using the frontend IC, a microcontroller, a temperature and a pressure sensor. A smart NFC device is used to readout the sensor data from the tag employing an Android-based application software. The measurement results demonstrate the full passive operational capability. The IC is suitable for low-power and low-cost industrial or biomedical battery-less sensor applications. A figure-of-merit (FOM) is proposed in this paper which is taken as a reference for comparison with other related state-of-the-art researches

    Analog integrated circuit design in ultra-thin oxide CMOS technologies with significant direct tunneling-induced gate current

    Get PDF
    The ability to do mixed-signal IC design in a CMOS technology has been a driving force for manufacturing personal mobile electronic products such as cellular phones, digital audio players, and personal digital assistants. As CMOS has moved to ultra-thin oxide technologies, where oxide thicknesses are less than 3 nm, this type of design has been threatened by the direct tunneling of carriers though the gate oxide. This type of tunneling, which increases exponentially with decreasing oxide thickness, is a source of MOSFET gate current. Its existence invalidates the simplifying design assumption of infinite gate resistance. Its problems are typically avoided by switching to a high-&kappa/metal gate technology or by including a second thick(er) oxide transistor. Both of these solutions come with undesirable increases in cost due to extra mask and processing steps. Furthermore, digital circuit solutions to the problems created by direct tunneling are available, while analog circuit solutions are not. Therefore, it is desirable that analog circuit solutions exist that allow the design of mixed-signal circuits with ultra-thin oxide MOSFETs. This work presents a methodology that develops these solutions as a less costly alternative to high-&kappa/metal gate technologies or thick(er) oxide transistors. The solutions focus on transistor sizing, DC biasing, and the design of current mirrors and differential amplifiers. They attempt to minimize, balance, and cancel the negative effects of direct tunneling on analog design in traditional (non-high-&kappa/metal gate) ultra-thin oxide CMOS technologies. They require only ultra-thin oxide devices and are investigated in a 65 nm CMOS technology with a nominal VDD of 1 V and a physical oxide thickness of 1.25 nm. A sub-1 V bandgap voltage reference that requires only ultra-thin oxide MOSFETs is presented (TC = 251.0 ppm/°C). It utilizes the developed methodology and illustrates that it is capable of suppressing the negative effects of direct tunneling. Its performance is compared to a thick-oxide voltage reference as a means of demonstrating that ultra-thin oxide MOSFETs can be used to build the analog component of a mixed-signal system

    An accurate, trimless, high PSRR, low-voltage, CMOS bandgap reference IC

    Get PDF
    Bandgap reference circuits are used in a host of analog, digital, and mixed-signal systems to establish an accurate voltage standard for the entire IC. The accuracy of the bandgap reference voltage under steady-state (dc) and transient (ac) conditions is critical to obtain high system performance. In this work, the impact of process, power-supply, load, and temperature variations and package stresses on the dc and ac accuracy of bandgap reference circuits has been analyzed. Based on this analysis, the a bandgap reference that 1. has high dc accuracy despite process and temperature variations and package stresses, without resorting to expensive trimming or noisy switching schemes, 2. has high dc and ac accuracy despite power-supply variations, without using large off-chip capacitors that increase bill-of-material costs, 3. has high dc and ac accuracy despite load variations, without resorting to error-inducing buffers, 4. is capable of producing a sub-bandgap reference voltage with a low power-supply, to enable it to operate in modern, battery-operated portable applications, 5. utilizes a standard CMOS process, to lower manufacturing costs, and 6. is integrated, to consume less board space has been proposed. The functionality of critical components of the system has been verified through prototypes after which the performance of the complete system has been evaluated by integrating all the individual components on an IC. The proposed CMOS bandgap reference can withstand 5mA of load variations while generating a reference voltage of 890mV that is accurate with respect to temperature to the first order. It exhibits a trimless, dc 3-sigma accuracy performance of 0.84% over a temperature range of -40°C to 125°C and has a worst case ac power-supply ripple rejection (PSRR) performance of 30dB up to 50MHz using 60pF of on-chip capacitance. All the proposed techniques lead to the development of a CMOS bandgap reference that meets the low-cost, high-accuracy demands of state-of-the-art System-on-Chip environments.Ph.D.Committee Chair: Rincon-Mora, Gabriel; Committee Member: Ayazi, Farrokh; Committee Member: Bhatti, Pamela; Committee Member: Leach, W. Marshall; Committee Member: Morley, Thoma

    Variability-aware design of CMOS nanopower reference circuits

    Get PDF
    Questo lavoro è inserito nell'ambito della progettazione di circuiti microelettronici analogici con l'uso di tecnologie scalate, per le quali ha sempre maggiore importanza il problema della sensibilità delle grandezze alle variazioni di processo. Viene affrontata la progettazione di generatori di quantità di riferimento molto precisi, basati sull’uso di dispositivi che sono disponibili anche in tecnologie CMOS standard e che sono “intrinsecamente” più robusti rispetto alle variazioni di processo. Questo ha permesso di ottenere una bassa sensibilità al processo insieme ad un consumo di potenza estremamente ridotto, con il principale svantaggio di una elevata occupazione di area. Tutti i risultati sono stati ottenuti in una tecnologia 0.18μm CMOS. In particolare, abbiamo progettato un riferimento di tensione, ottenendo una deviazione standard relativa della tensione di riferimento dello 0.18% e un consumo di potenza inferiore a 70 nW, sulla base di misure su un set di 20 campioni di un singolo batch. Sono anche disponibili risultati relativi alla variabilità inter batch, che mostrano una deviazione standard relativa cumulativa della tensione di riferimento dello 0.35%. Abbiamo quindi progettato un riferimento di corrente, ottenendo anche in questo caso una sensibilità al processo della corrente di riferimento dell’1.4% con un consumo di potenza inferiore a 300 nW (questi sono risultati sperimentali ottenuti dalle misure su 20 campioni di un singolo batch). I riferimenti di tensione e di corrente proposti sono stati quindi utilizzati per la progettazione di un oscillatore a rilassamento a bassa frequenza, che unisce una ridotta sensibilità al processo, inferiore al 2%, con un basso consumo di potenza, circa 300 nW, ottenuto sulla base di simulazioni circuitali. Infine, nella progettazione dei blocchi sopra menzionati, abbiamo applicato un metodo per la determinazione della stabilità dei punti di riposo, basato sull’uso dei CAD standard utilizzati per la progettazione microelettronica. Questo approccio ci ha permesso di determinare la stabilità dei punti di riposo desiderati, e ci ha anche permesso di stabilire che i circuiti di start up spesso non sono necessari
    corecore