9 research outputs found

    The Reachability problem in constructive geometric constraint solving based dynamic geometry

    Get PDF
    An important issue in dynamic geometry is the reachability problem that asks whether there is a continuos path that, from a given starting geometric configuration, continuously leads to an ending configuration. In this work we report on a technique to compute a continuous evaluation path, if one exists, that solves the reachability problem for geometric constructions with one variant parameter. The technique is developed in the framework of a constructive geometric constraint-based dynamic geometry system, uses the A* algorithm and minimizes the variant parameter arc length.Postprint (published version

    Interaktyviojo geometrijos vizualizavimo modelis naudojant dinaminės geometrijos paradigmą

    Get PDF
    Straipsnyje analizuojama interaktyviojo geometrijos vizualizavimo samprata, atskleidžiamos dinaminės geometrijos konstravimo problemos. Pateikiami interaktyviojo vizualizavimo dinaminėje geometrijoje didaktiniai principai: bendrieji, skirti visai veiklos sričiai, ir specialieji, skirti interaktyviam vaizdui. Apibūdinami interaktyviojo vizualizavimo dinaminėje geometrijoje konstravimo principai: geometriniam brėžiniui ir interaktyviam vaizdui. Straipsnyje pateikiamas interaktyviojo vizualizavimo modelis naudojant dinaminės geometrijos paradigmą. Aprašomas modelio taikymo pavyzdys vizualizuojant pagrindinės mokyklos geometrijos temą. Pateikiamas modelio pagrindimas. Nusakomi tolimesnio tyrimo tikslai.A Model of Interactive Geometric Visualization with Dynamic GeometryEglė Jasutė, Valentina Dagienė SummaryThe paper deals with the exploration of the concept of the interactive visualization of geometry. Some problems of construction sketches of dynamic geometry are discussed. There are described some didactic principles of interactive visualization with dynamic geometry: general for all the activity domain and special for the interactive picture. Construction principles of interactive visualization with dynamic geometry (for geometry image and for the whole interactive picture) are also introduced. A model of interactive visualization with dynamic geometry is described and an example of its use in the visualization of an elementary school geometry theme is shown. Some suggestions on and directions for the further investigations are given.tyle="line-height: 18px;">&nbsp

    h-graphs : a new representation for tree decompositions of graphs

    Get PDF
    In geometric constraint solving, 2D well constrained geometric problems can be abstracted as Laman graphs. If the graph is tree decomposable, the constraint-based geometric problem can be solved by a Decomposition-Recombination planner based solver. In general decomposition and recombination steps can be completed only when steps on which they are dependent have already been completed. This fact naturally defines a hierarchy in the decomposition-recombination steps that traditional tree decomposition representations do not capture explicitly.; In this work we introduce h-graphs, a new representation for decompositions of tree decomposable Laman graphs, which captures dependence relations between different tree decomposition steps. We show how h-graphs help in efficiently computing parameter ranges for which solution instances to well constrained, tree decomposable geometric constraint problems with one degree of freedom can actually be constructed. (C) 2015 Elsevier Ltd. All rights reserved.Postprint (published version

    Direct tree decomposition of geometric constraint graphs

    Get PDF
    The evolution of constraint based geometric models is tightly tied to parametric and feature-based Computer-Aided Design (CAD) systems. Since the introduction of parametric design by Pro/Engineer in the 1980's, most major CAD systems adopted constraint based geometric models as a core technology. Constraint based geometric models allowed CAD systems to provide a more powerful data model while offering an intuitive user interface. Later on, the same models also found application to fields like linkage design, chemical modeling, computer vision and dynamic geometry. Constraint based geometric models are unevaluated models. A key problem related to constraint based geometric models is the geometric constraint based solving problem which, roughly speaking, can be stated as the problem of evaluating a constraint based model. Among the different approaches to geometric constraint solving, we are interested in graph-based Decomposition-Recombination solvers. In the graph-based constructive approach, the geometric problem is first translated into a graph whose vertices represent the set of geometric elements and whose edges are the constraints. Then the constraint problem is solved by decomposing the graph into a set of sub-problems, each sub-problem is recursively divided until reaching basic problems which are solved by a dedicated equational solver. The solution to the initial problem is computed by merging the solutions to the sub-problems. The approach used by DR-solvers has been particularly successful when the decomposition into subproblems and subsequent recombination of solutions to these subproblems can be described by a plan generated a priori, that is, a plan generated as a preprocessing step without actually solving the subsystems. The plan output by the DR-planner remains unchanged as numerical values of parameters change. Such a plan is known as a DR-plan and the unit in the solver that generates it is the DR-planner. In this setting, the DR-plan is then used to drive the actual solving process, that is, computing specific coordinates that properly place geometric objects with respect to each other. In this thesis we develop a new DR-planner algorithm for graph-constructive two dimensional DR-solvers. This DR-planner is based on the tree-decomposition of a graph. The triangle- or tree-decomposition of a graph decomposes a graph into three subgraphs such that subgraphs pairwise share one vertex. Shared vertices are called hinges. The tree-decomposition of a geometric constraint graph is in some sense the construction plan that solves the corresponding problem. The DR-planner algorithm first transforms the input graph into a simpler, planar graph. After that, an specific planar embedding is computed for the transformed graph where hinges, if any, can be straightly found. In the work we proof the soundness of the new algorithm. We also show that the worst case time performance of the resthe number of vertices of the input graph. The resulting algorithm is easy to implement and is as efficient as other known solving algorithms.L'evolució de models geomètrics basats en restriccions està fortament lligada al sistemes de Disseny Assistit per Computador (CAD) paramètrics i als basats en el paradigma de disseny per mitjà de característiques. Des de la introducció del disseny paramètric per part de Pro/Engineer en els anys 80, la major part de sistemes CAD utilitzaren com a tecnologia de base els models geomètrics basats en restriccions. Els models geomètrics basats en restriccions permeteren als sistemes CAD proporcionar un model d'informació més ampli i alhora oferir una interfície d'usuari intuitiva. Posteriorment, els mateixos models s'aplicaren en camps com el disseny de mecanismes, el modelatge químic, la visió per computador i la geometria dinàmica. Els models geomètrics basats en restriccions són models no avaluats. Un problema clau relacionat amb el models de restriccions geomètriques és el problema de la resolució de restriccions geomètriques, que es resumeix com el problema d'avaluar un model basat en restriccions. Entre els diferents enfocs de resolució de restriccions geomètriques, tractem els solvers de Descomposició-Recombinació (DR-solvers) basats en graphs. En l'enfoc constructiu basat en grafs, el problema geomètric es trasllada en un pas inicial a un graf, on els vèrtexs del graf representen el conjunt d'elements geomètrics i on les arestes corresponen a les restriccions geomètriques entre els elements. A continuació el problema de restriccions es resol descomposant el graf en un conjunt de subproblemes, cadascun dels quals es divideix recursivament fins a obtenir problemes bàsics, que sovint són operacions geomètriques realitzables, per exemple, amb regle i compàs, i que es resolen per mitjà d'un solver numèric específic. Finalment, la solució del problema inicial s'obté recombinant les solucions dels subproblemes. L'enfoc utilitzat pels DR-solvers ha esdevingut especialment interessant quan la descomposició en subproblemes i la posterior recombinació de solucions d'aquests subproblemes es pot descriure com un pla de construcció generat a priori, és a dir, un pla generat com a pas de pre-procés sense necessitat de resoldre realment els subsistemes. El pla generat pel DR-planner esdevé inalterable encara que els valors numèrics dels paràmetres canviin. Aquest pla es coneix com a DR-plan i la unitat en el solver que el genera és l'anomenat DR-planner. En aquest context, el DR-plan s'utilitza com a eina del procés de resolució en curs, és a dir, permet calcular les coordenades específiques que correctament posicionen els elements geomètrics uns respecte els altres. En aquesta tesi desenvolupem un nou algoritme que és la base del DR-planner per a DR-solvers constructius basats en grafs en l'espai bidimensional. Aquest DR-planner es basa en la descomposició en arbre d'un graf. La descomposició en triangles o arbre de descomposició d'un graf es basa en descomposar un graf en tres subgrafs tals que comparteixen un vèrtex 2 a 2. El conjunt de vèrtexs compartits s'anomenen \emph{hinges}. La descomposició en arbre d'un graf de restriccions geomètriques equival, en cert sentit, a resoldre el problema de restriccions geomètriques. L'algoritme del DR-planner en primer lloc transforma el graf proporcionat en un graf més simple i planar. A continuació, es calcula el dibuix en el pla del graf transformat, on les hinges, si n'hi ha, es calculen de manera directa. En aquest treball demostrem la correctesa del nou algoritme. Finalment, proporcionem l'estudi de la complexitat temporal de l'algoritme en cas pitjor i demostrem que és quadràtica en el nombre de vèrtexs del graf proporcionat. L'algoritme resultant és senzill d'implementar i tan eficient com altres algoritmes de resolució concret

    Geometric constraint solving in a dynamic geometry framework.

    Get PDF
    Geometric constraint solving is a central topic in many fields such as parametric solid modeling, computer-aided design or chemical molecular docking. A geometric constraint problem consists of a set geometric objects on which a set of constraints is defined. Solving the geometric constraint problem means finding a placement for the geometric elements with respect to each other such that the set of constraints holds. Clearly, the primary goal of geometric constraint solving is to define rigid shapes. However an interesting problem arises when we ask whether allowing parameter constraint values to change with time makes sense. The answer is in the positive. Assuming a continuous change in the variant parameters, the result of the geometric constraint solving with variant parameters would result in the generation of families of different shapes built on top of the same geometric elements but governed by a fixed set of constraints. Considering the problem where several parameters change simultaneously would be a great accomplishment. However the potential combinatorial complexity make us to consider problems with just one variant parameter. Elaborating on work from other authors, we develop a new algorithm based on a new tool we have called h-graphs that properly solves the geometric constraint solving problem with one variant parameter. We offer a complete proof for the soundness of the approach which was missing in the original work. Dynamic geometry is a computer-based technology developed to teach geometry at secondary school, which provides the users with tools to define geometric constructions along with interaction tools such as drag-and-drop. The goal of the system is to show in the user's screen how the geometry changes in real time as the user interacts with the system. It is argued that this kind of interaction fosters students interest in experimenting and checking their ideas. The most important drawback of dynamic geometry is that it is the user who must know how the geometric problem is actually solved. Based on the fact that current user-computer interaction technology basically allows the user to drag just one geometric element at a time, we have developed a new dynamic geometry approach based on two ideas: 1) the underlying problem is just a geometric constraint problem with one variant parameter, which can be different for each drag-and-drop operation, and, 2) the burden of solving the geometric problem is left to the geometric constraint solver. Two classic and interesting problems in many computational models are the reachability and the tracing problems. Reachability consists in deciding whether a certain state of the system can be reached from a given initial state following a set of allowed transformations. This problem is paramount in many fields such as robotics, path finding, path planing, Petri Nets, etc. When translated to dynamic geometry two specific problems arise: 1) when intersecting geometric elements were at least one of them has degree two or higher, the solution is not unique and, 2) for given values assigned to constraint parameters, it may well be the case that the geometric problem is not realizable. For example computing the intersection of two parallel lines. Within our geometric constraint-based dynamic geometry system we have developed an specific approach that solves both the reachability and the tracing problems by properly applying tools from dynamic systems theory. Finally we consider Henneberg graphs, Laman graphs and tree-decomposable graphs which are fundamental tools in geometric constraint solving and its applications. We study which relationships can be established between them and show the conditions under which Henneberg constructions preserve graph tree-decomposability. Then we develop an algorithm to automatically generate tree-decomposable Laman graphs of a given order using Henneberg construction steps

    Constraint-Based Graphic Statics - A geometrical support for computer-aided structural equilibrium design

    Get PDF
    This thesis introduces “constraint-based graphic statics”, a geometrical support for computer-aided structural design. This support increases the freedom with which the designer interacts with the plane static equilibriums being shaped. Constraint-based graphic statics takes full advantage of geometry, both its visual expressiveness and its capacity to solve complex problems in simple terms. Accordingly, the approach builds on the two diagrams of classical graphic statics: a form diagram describing the geometry of a strut-and-tie network and a force diagram vectorially representing its inner static quilibrium. Two new devices improve the control of these diagrams: (1) nodes — considered as the only variables — are constrained within Boolean combinations of graphical regions; and (2) the user modifies these diagrams by means of successive operations whose geometric properties do not at any time jeopardise the static equilibrium of the strut-and-tie network. These two devices offer useful features, such as the ability to describe, constrain and modify any static equilibrium using purely geometric grammar, the ability to compute and handle multiple solutions to a problem at the same time, the ability to switch the hierarchy of constraint dependencies, the ability to execute dynamic conditional statements graphically, the ability to compute full interdependency and therefore the ability to remove significantly the limitations of compass-and-straightedge constructions and, finally the ability to propagate some solution domains symbolically. As a result, constraint-based graphic statics encourages the emergence of new structural design approaches that are highly interactive, precognitive and chronology-free: highly interactive because forces and geometries are simultaneously and dynamically steered by the designer; precognitive because the graphical region constraining each points marks out the set of available solutions before they are even explored by the user; and chronology-free because the deductive process undertaken by the designer can be switched whenever desired

    Análisis del desarrollo de competencias geométricas y didácticas mediante el software de geometría dinámica geogebra en la formación inicial del profesorado de primaria

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid,Facultad de Formación de Profesorado y Educación, Departamento de Didácticas Específicas. Fecha de lectura : 16 de noviembre de 201

    A Constraint-Based Dynamic Geometry System

    No full text
    Dynamic geometry systems are tools for geometric visualization. They allow the user to define geometric elements, establish relationships between them and explore the dynamic behavior of the remaining geometric elements when one of them is moved. The main problem in dynamic geometry systems is the ambiguity that arises from operations which lead to more than one possible solution. Most dynamic geometry systems deal with this problem in such a way that the solution selection method leads to a fixed dynamic behavior of the system. This is specially annoying when the behavior observed is not the one the user intended. In this work we propose a modular architecture for dynamic geometry systems built upon a set of functional units which will allow to apply some well known results from the Geometric Constraint Solving field. A functional unit called filter will provide the user with tools to unambiguously capture the expected dynamic behavior of a given geometric problem.Postprint (published version

    A constraint-based dynamic geometry system

    No full text
    Dynamic geometry systems are tools for geometric visualization. They allow the user to define geometric elements, establish relationships between them and explore the dynamic behavior of the remaining geometric elements when one of them is moved. The main problem in dynamic geometry systems is the ambiguity that arises from operations that lead to more than one possible solution. Most dynamic geometry systems deal with this problem in such a way that the solution selection method leads to a fixed dynamic behavior of the system. This is specially annoying when the behavior observed is not the one the user intended. In this work we propose a modular architecture for dynamic geometry systems built upon a set of functional units which will allow us to apply some well-known results from the Geometric Constraint Solving field. A functional unit called filter will provide the user with tools to unambiguously capture the expected dynamic behavior of a given geometric problem
    corecore