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Abstract

In geometric constraint solving, well constrained geometric prob-
lems can be abstracted as Laman graphs. If the graph is tree decom-
posable, the constraint-based geometric problem can be solved by a
Decomposition-Recombination planner based solver. In general decom-
position and recombination steps can be completed only when other
steps have already been completed. This fact naturally defines a hier-
archy in the decomposition-recombination steps that traditional tree
decomposition representations do not capture explicitly.

In this work we introduce h-graphs, a new representation for de-
compositions of tree decomposable Laman graphs, which captures de-
pendence relations between different tree decomposition steps. We
show how h-graphs help in efficiently computing parameter ranges for
which solution instances to well constrained, tree decomposable geo-
metric constraint problems with one degree of freedom can actually be
constructed.

1 Introduction

Many applications in computer-aided design, computer-aided manufactur-
ing, kinematics, robotics or dynamic geometry are conveniently modeled
by geometric problems defined by geometric constraints with parameters,
some of them representing dimensions. These generic models allow the user
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to easily generate specific instances for various parameter and constraint
values.

When parametric models are used in real applications, it is often found that
instantiation may fail for some parameter values. Assuming that failures
are not due to bugs in the system, they should be attributed to a more
basic problem, that is, a certain combination of constraints in the model
and values of parameters do not define a valid shape.

The failure to instantiate the model poses naturally the question of how
to compute ranges for parameters such that model instantiation is feasible.
This problem or restricted versions of it have been addressed in the litera-
ture. Shapiro and Vossler, [21], and Raghothama and Shapiro, [18, 19, 20],
developed a theory on validity of parametric family of solids by investigat-
ing the relationship between Brep and CSG schemas in systems with dual
representations for solid modeling. The formulation is built on formalisms
of algebraic topology. Unfortunately, it seems a rather difficult problem
transforming these formalisms into effective algorithms.

Joan-Arinyo and Mata [13] reported on a method to compute feasible ranges
for parameters in geometric constraint solving under the assumption that
values assigned to parameters are non-trivial-width intervals. The method
applies to complex systems of geometric constraints in both 2D and 3D
and has been successfully applied in the dynamic geometry field, [2]. It
is a general method, the main drawback, however, is that it is based on
numerical sampling.

Hoffmann and Kim [9] developed a constructive approach to calculate pa-
rameter ranges for systems of geometric constraints that include sets of
isothetic line segments and distance constraints between them. Model in-
stantiation for distance parameters within the ranges output by the method
preserve the topology of the set of isothetic lines.

For the first time, van Der Meiden and Bronsvoort [23] described a method to
directly figure out the allowable range for a single parameter in the problem,
called variant parameter, such that an actual solution exists for any value in
the range. The method was formalized by Hidalgo and Joan-Arinyo in [5, 6]
where a correctness proof along with specific implementation details were
given. This approach heavily relies on identifying the set of construction
steps in the solution to the constraint problem the actual construction of
which depend on the current value assigned to the variant parameter. So
far dependences were computed on demand hence devising a method able to
efficiently identify these dependences would be a valuable accomplishment.

In this work we introduce h-graphs, a new representation for graph based
constructive solutions to the geometric constraint problem. The h-graph
captures the relations between construction steps that dependences natu-
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rally define in the description of the solution to the geometric constraint
problem. Computing parameter ranges where the solution is feasible using
h-graphs improves over the method described by Hidalgo and Joan-Arinyo
in [5, 6].

In what follows we first give a short intuitive introduction to the geometric
constraint solving problem to motivate the need for computing parameter
ranges. Then we recall the graph tree decomposition, we give technical
definitions related to dependence, define h-graphs, show some properties
of h-graphs and, we describe an algorithm to compute h-graphs from a tree
decomposition which is a solution to a geometric constraint problem. Finally
we illustrate how actual dependences are computed applying the h-graph to
a geometric constraint problem with one degree of freedom.

2 Geometric Constraint-Based Problems

Assume that we want to build a triangle the vertices of which are the points
a, b, c like those shown in Figure 1a. We want point a to be placed at a
distance d1 from point b and point c to be placed at a distance d2 from
point b. Moreover we want that the edge bounded by points a, b makes an
angle λ with respect to the edge bounded by points a, c. It is well known
that this description properly defines a triangle in the Euclidean space. A
ruler-and-compass procedure to build the triangle is illustrated in Figure 1b
and can be described as follows,

1. Draw an arbitrary straight line, say X.

2. On line X mark an arbitrary point a.

3. On line X mark a point b at a distance d1 from a.

4. Draw a line L through point a and at an angle λ with line X.

5. Draw a circle C with center b and radius λ.

6. Intersections of circle C and line L yield points c and c′ that along with
points a and b define triangles which fulfill the requirements described.

If the procedure is applied after assigning specific values to d1, d2 and λ,
the geometric construction can be carried out depending on the specific
assignment of values.

Many techniques have been reported in the literature that provide powerful
and efficient methods for solving geometric problems defined by constraints.
For a review, see Hoffmann et al., [8]. Computer programs that solve ge-
ometric problems defined by constraints are called solvers. Among all the
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Figure 1: a) Triangle defined by three points, two point-point distances and
an angle between two straight lines. b) A ruler-and-compass constructive
solution.

geometric constraint solving techniques, our interest here focuses on the one
known as constructive. See [10, 11, 12, 14, 15] and the references there in
for an in depth discussion on this topic.

Constructive solvers belong to the Decomposition-Recombination solvers, in
short DR-solvers, class [11] and have two main components: the analyzer
and the constructor. Given the geometric elements and the constraints de-
fined on them, the analyzer figures out a description of how geometric ele-
ments are placed with respect to each other in such a way that the constraints
are fulfilled. This description is called construction plan.

If the analyzer succeeds, actual values are assigned to the parameters and
the constructor builds an instance of a placement for the geometric objects,
provided that no numerical incompatibility arises due to geometric degen-
eracy.

In the example described above and illustrated in Figure 1, the set of ge-
ometric elements includes the points {a, b, c} while the constraints are the
distances d1, d2 and the angle λ.

In this scenario asking for the set of values of λ for which the construction is
actually feasible seems natural. To answer this question, efficiently comput-
ing dependences between construction steps in the construction plan plays
a central role.

In what follows we only consider well constrained geometric constraint prob-
lems, that is, problems with a finite number of solution instances. In this
work, these problems are abstracted as Laman graphs, [17], G = (V,E) with
|V | ≥ 3 and such that

1. |E| = 2|V | − 3
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2. For every subgraph G′ = (V ′, E′) with V ′ ⊂ V and E′ ⊂ E, |E′| =
2|V ′| − 3

3 Tree Decomposition of a Graph

Tree decompositions, also known as triangular decompositions, are a tool
widely used in geometric constraint solving mainly when the underlying
solving technique belongs to the DR solvers class. The resulting decompo-
sition describes the solution to the geometric constraint problem by fixing
how geometric elements are placed with respect to each other to fulfill the
constraints. In this section we recall the concept of tree decomposition of
a graph, we formalize the tree decomposition as a rewrite system and show
some properties which will be used later on.

3.1 The Tree Decomposition

We are given a graph G = (V,E) where V is a finite set of nodes or vertices
and E is a collection of edges. An edge is an unordered pair (u, v) of distinct
vertices u, v ∈ V (G). In general V (G) and E(G) will denote respectively
the set of vertices and edges of the graph G.

We start by introducing the concept of set decomposition illustrated in Fig-
ure 2. Let S be a set with, at least, three different members, say a, b, c. We
say that three subsets of S, say S1, S2 and S3 is a set decomposition of S if

1. S1 ∪ S2 ∪ S3 = S,

2. S1 ∩ S2 = {a},

3. S2 ∩ S3 = {b} and

4. S3 ∩ S1 = {c}.

Pairwise shared vertices a, b and c are called hinges for the graph set de-
composition. We call the set {a, b, c} the hinges triplet or just triplet.

Next we introduce the concept of tree decomposition step of a graph. See
Figure 3. Let G = (V,E) be a graph, the subsets V1(G), V2(G) and V3(G)
define a tree decomposition step of G if they are a set decomposition of V (G)
and for every edge e = (v1, v2) with e ∈ E(G), v1, v2 ∈ V (Gi) for some i,
1 ≤ i ≤ 3. Subgraphs Gi = (Vi, Ei) induced in G by a tree decomposition
step are called clusters.

Roughly speaking, a tree decomposition step of a graph G, is a graph de-
composition induced by a set decomposition of vertices V (G) such that the
two vertices bounding each edge in E(G) belong to a given cluster.
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Figure 2: a) Set S with three or more members. b) Set decomposition of S.
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Figure 3: a) Graph. b) Graph tree decomposition step.
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{j, h}{f, j} {f, g, h, i}

{f, g} {g, h, i}{i, f}

{e, f}{b, f}

{a, b, c, d, e, f, g, h, i, j, k}

{a, b}

{f, g, h, i, j}
→{f,j,h}

→{a,h,f}

→{b,f,e}

→{f,g,i}

→{g,h,i}

{a, h}

{a, b, c, d, e, k}

{a, b, c, d, e, f, k}

→{a,b,c}

→{a,b,k}

→{c,d,e}

{c, d} {d, e} {e, c}

{b, c}{a, b, k} {a, c, d, e}
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→{a,c,d}

(a)
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{a, b, c, d, e, f, k}

{a, b, k}

{a, b} {b, k} {k, a}

{f, j}

{f, g, h, i}{a, h}

{f, i}{f, g}

{g, h} {i, g}

{a, b, c, d, e, f, g, h, i, k}

→{f,h,j}

→{f,g,i}

→{g,h,i}

{h, i}

{g, h, i}
{b, f} {a, b, c, d, e, k}

→{a,b,k}

{b, c} {a, c}

{f, e}

{c, d, e}{a, b, c, k}{a, d}

→{a,c,d}

→{b,e,f}

→{a,f,h}

{h, j}

→{a,b,c}

{c, d} {d, e} {e, c}

→{c,d,e}

(b)

Figure 4: Two different tree decompositions for the graph shown in Fig-
ure 3a.

Finally we define the tree decomposition of a graph. Let G = (V,E) be a
graph. We say that a ternary tree T is a tree decomposition of G if

1. G is the root of T ,

2. Each node G′ ⊂ G of T is the father of exactly three nodes, say G′
1
, G′

2

and G′
3
, which are the clusters output by a tree decomposition step

applied to a subgraph of G, and

3. Each leaf node contains a cluster with exactly two vertices a, b of V
such that edge (a, b) is in E(G).

A graph for which there is a tree decomposition is called tree-decomposable.
In general, a tree decomposition of a graph is not unique. Figure 4 shows
two different tree decompositions for the graph given in Figure 3a. For the
sake of clarity, tree decompositions only show the set of vertices included by
clusters. Labels on the tree edges will be defined later on.

3.2 The Solution Constructor as a Rewrite System

As shown in [3, 14], the process of actually building a solution to a geometric
constraint problem described as a tree decomposition of a graph, that is, the
solver constructor, can be abstracted as a rewrite system, [16], where terms
are sets of clusters. Given a graph G = (V,E) the starting set of clusters is
defined as

CG = {{u, v} : (u, v) ∈ E(G)}

Clusters are rewritten using the tree decomposition step as a reduction rule,
which is denoted by an arrow → and formally defined as follows.
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Definition 3.1. Let C be a set of clusters where there are three clus-
ters Ci, 1 ≤ i ≤ 3 such that pairwise share one vertex V (C1) ∩ V (C2) =
{a}, V (C2) ∩ V (C3) = {b}, V (C3) ∩ V (C1) = {c} with a, b and c distinct.
Then C → C∗ where

C∗ = (C− {C1, C2, C3}) ∪ {C1 ∪ C2 ∪ C3}

Definition 3.2. A derivation is a sequence of applications of the rewriting
rule in (C,→). We will denote a derivation by

C →∗ C∗

Definition 3.3. A term C∗ is derived from C if and only if there is a
derivation such that C →∗ C∗. A term C to which the tree decomposition
rule does not apply is called irreducible or normal form.

To us, the most important result in reduction systems is that the reduction
system (CG,→) has a unique normal form that is obtained after finitely
many reductions, [3, 14]. In these conditions, if the geometric constraint
problem is well constrained, that is, the problem has a finite number of
solution instances, the derivation reduces the initial set CG to a single clus-
ter. The sequence of construction steps identified by the derivation places a
fixed set of triplets of geometric elements in relative positions such that the
constraints hold.

If {a, b, c} are the nodes pairwise shared by clusters C1, C2, C3, denote by
→{a,b,c} the reduction that merges the clusters. In these conditions, the set

RC(∗) = {{a, b, c} : →{a,b,c} ∈ →∗}

is the set of triplets or reductions in the derivation →∗.

According to [3] and [7], each triplet of hinges is used once and only once in a
reduction process. This means that given two different reduction sequences
over the same starting and ending terms, C →∗ C∗ and C →∗′ C∗ we have

RC(∗) = RC(∗
′)

Edges in the tree decompositions shown in Figure 4 are labeled with the
reduction that merges three clusters into a new one. The set of triplets is
the same in both tree decompositions,

RC(∗) = {{a, b, c}, {a, d, c}, {a, h, f}, {b, f, e}, {c, d, e}, {f, i, g}, {f, i, j}, {g, h, i}}

From now on, given a tree-decomposable graph G = (V,E), the derivation
CG →∗ C∗ applied by the solver constructor to the tree decomposition of
G to actually build a solution, will be called the derivation associated with
the graph G. We close this section showing a useful property of clusters
generated by a derivation.
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Theorem 3.1. Consider the derivation C →∗ C∗. For each pair of clusters
C∗
i , C

∗
j ∈ C∗ with i 6= j, |V (C∗

i ) ∩ V (C∗
j )| ≤ 1.

Proof. By definition, a cluster places a set of vertices with respect to a local
framework of reference in such a way that constraints defined on them hold.
For a contradiction assume that C∗

i and C∗
j are two different clusters in C∗

with ui, vi ∈ V (C∗
i ) and uj , vj ∈ V (C∗

j ) such that the pairs ui, uj and vi, vj
respectively designate the same pair of vertices say u, v ∈ V (C∗). Then the
pairs ui, vi and uj , vj define a rigid transformation that places vertices in
one cluster with respect to the other one. That is V (C∗

i ) and V (C∗
j ) belong

to the same cluster.

In what follows the clusters merged by the reduction →{u,v,w} will be some-
times distinguished from each other by explicitly giving the pair of vertices
in the reduction triplet included in the cluster, that is denoting them as
Cuv,Cvw and Cwu.

4 Dependences in Tree Decompositions

We have seen in Section 3 that given a tree decomposable graph G = (V,E),
in general, the tree decomposition is not unique. But the set of hinges is
unique and the final cluster derived by the reduction CG →∗ C is canonical.
This means that when in a tree decomposition several reduction steps can
be applied, the specific reduction selected does not matter. For example
in the tree decomposition shown in Figure 4a, if the current cluster term
includes the clusters {a, b}, {b, c}, {c, a}, {f, g}, {g, i}, {i, f}, then reductions
{a, b}, {b, c}, {c, a} →{a,b,c} {a, b, c} and {f, g}, {g, i}, {i, f} →{f,g,i} {f, g, i}
can be applied in any sequence without affecting the resulting set of clusters.

However, in general, some reductions in a tree decomposition derivation can
only be carried out after completing some other reductions. For example,
reduction →{f,h,j} in Figure 4a can be completed only after completing re-
ductions →{f,g,i} and →{g,h,i}. We say that reduction →{f,h,j} depends on
reductions →{f,g,i} and →{g,h,i}. Dependence naturally introduces a hierar-
chy in the reduction steps of a derivation over a tree decomposition.

We start by defining the concept of minimal well constrained cluster induced
by two vertices within a cluster.

Definition 4.1. Consider a cluster Ci in the current term C. Let u, v be
two vertices in V (Ci). Then mwcCi

(u, v) is the minimal well constrained
cluster in Ci such that u, v are in V (mwcCi

(u, v)).

Clusters in (CG,→) are well constrained, tree-decomposable graphs. More-
over the set of reductions RC(∗) is unique. Therefore given a cluster Ci
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Figure 5: Direct dependence of reduction →{u1,v1,w1}. a) General case. b)
Particular example. c) The mwcCu1v1

cluster in the particular example
merged by the reduction →{a,b,w} on which reduction →{u1,v1,w1} directly
depends.

and two vertices u, v ∈ V (Ci), the mwcCi
(u, v) is well defined and there is

a derivation CG →∗ mwcCi
(u, v) with reductions in RC(∗).

In what follows clustersCi shall be denoted asCab where a and b are vertices
in a triplet {u, v, w} on which a reduction is applied. Thus we will denote
the minimal well constrained cluster mwcCab

(a, b) just as mwcCab
.

We consider two different dependence categories: direct dependence and in-
direct dependence. Technically we define them as follows. Refer to Figure 5.

Definition 4.2. Consider the term C. Let →{u1,v1,w1} be a reduction in
RC(∗) involving three clusters Cab with a, b ∈ {u1, v1, w1} and a 6= b. Let
mwcCab

be such that (a, b) is an edge in E(mwcCab
). Let →{a,b,w} be the

reduction in RC(∗) which merged the clusters ({a, b}, {(a, b)}),Cbw and Cwa.
Then we say that reductions →{u1,v1,w1} and →{a,b,w} directly depend on each
other.

Direct dependence is symmetric and relates a set of reductions at the same
hierarchical level. Figure 5a shows the general case of direct dependence,
Figure 5b is a particular example and Figure 5c details the minimal well
constrained cluster mwcCab

resulting from applying the reduction →{a,b,w}.

Indirect dependence relates reductions at different hierarchical levels by cap-
turing the idea that there are reductions which can be carried out only after
completing other reductions. Generically we define indirect dependence as
follows.

Definition 4.3. Consider the term C. Let →{u1,v1,w1} be a reduction in
RC(∗) involving three clusters Cab with a, b ∈ {u1, v1, w1} and a 6= b. Let

10



C1

v2

w1C3

C ′
1

C ′
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3
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w2

v1

u1

(a)

C ′
1

C ′
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w2

w1
C ′
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v2

v1
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u2

a
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w2v2

v1
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Figure 6: Indirect dependence of reduction →{u1,v1,w1}. a) General case. b)
Particular example. c) The mwcCu1v1

cluster in the particular example.

mwcCab
be such that |E(mwcCab

)| > 3. We say that reduction →{u1,v1,w1}

indirectly depends on the set of reductions in the derivation CG →∗ mwcCab
.

It is easy to see that indirect dependence is transitive.

Figure 6a illustrates the definition of indirect dependence in the general
case. Figure 6b is a particular example and Figure 6c details the minimal
well constrained cluster mwcCu1v1

. Notice that on the one hand vertex a

and the edges incident on it have been removed without affecting the rigidity
of the resulting graph. On the other hand, it is clear that before attempt-
ing to apply reduction →{u1,v1,w1}, reductions →{u1,u2,w2},→{u2,v2w2} and
→{v1,v2,w2} must be completed to build the cluster mwcCu1v1

.

In these conditions, consider the reduction

Cuv,Cvw,Cwu →{u,v,w} Cuvw

Let Rab(∗) denote the set of reductions in the derivation CG →∗ mwcCab
.

Clearly reduction →{u,v,w} indirectly depends on the reductions in the set
Ruv(∗) ∪Rvw(∗) ∪Rwu(∗).

5 The h-graph

Dependences between reductions over a tree decomposition of a graph are
not explicitly captured by the tree representation. Here we introduce a new
way to represent a tree decomposition of a graph which explicitly captures
the hierarchy introduced by dependences in the reduction steps over the tree
decomposition.
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{b, e, f}

{a, f, h}

{a, c, d} {f, g, i} {g, i, h}

{f, h, j}

{c, d, e}{a, b, k} {a, b, c}

Figure 7: h-graph HG associated to the tree decomposition in Figure 4a for
the graph G shown in Figure 3a.

5.1 h-graph Definition

The new representation for graph tree decompositions is called hinges graph,
in short h-graph, and we formally define it as follows.

Definition 5.1. Let G = (V,E) be a tree-decomposable graph. The h-
graph, associated to G is the graph HG = (V, ED ∪ ES), where V is the
set of reductions in the associated derivation CG →∗ C∗, ED is the set of
unordered pairs (ν1, ν2) such that reductions ν1, ν2 are directly dependent on
each other and, ES is the set of ordered pairs (ν1, ν2) such that reduction ν2
indirectly depends on reduction ν1.

Direct dependences are represented by non-directed edges. Indirect depen-
dencies are represented by directed edges. Figure 7 shows the h-graph HG

associated to the tree decompositions in Figure 4 for the graph G in turn
shown in Figure 3a.

We shall now show that the h-graph for a given graph is unique.

Theorem 5.1. Let G = (V,E) be a tree-decomposable graph. The h-graph
HG associated with G is unique.

Proof. Let T be a tree decomposition of G. The set of hinges triplets in T

or equivalently the set of reductions in the derivation CG →∗ C∗ is unique.
Thus the set of nodes V(HG) is unique. Since the derivation is canonical,
dependences between reductions in it are intrinsic to the graph G.

5.2 Complete h-subgraphs

Given a tree-decomposable graph G = (V,E) and the associated deriva-
tion CG →∗ C∗ for it, there is an associated HG. Moreover, given a tree-
decomposable subgraph G′ ⊂ G and a derivation for it CG′ →∗ C′∗, there
is a h-graph HG′ .
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{a, b, c} {c, d, e}

{b, e, f}

{a, c, d}

(a)

{f, g, i} {g, i, h}

{f, h, j}

(b)

{b, e, f}

{a, f, h}

(c)

Figure 8: a), b) Complete h-subgraphs. c) An incomplete h-subgraph.

Consider now the hgraph HG and let H′ be a subgraph of HG defined in the
usual way. Due to the dependences, it is unclear whether there is a tree-
decomposable subgraph G′ of G such that H′ = H′

G′ . In what follows we
describe the conditions under which G′ exists. First we define h-subgraphs.

Definition 5.2. Let G = (V,E) be a tree-decomposable graph and HG =
(V, ED ∪ ES) the associated h-graph. H′

G = (V ′, E′
D ∪ E′

S) is a h-subgraph
of HG if and only if V ⊂ V ′, E′

D ⊂ ED and E′
I ⊂ ES.

If ν and ν ′ are reductions in V(HG) such that ν ′ directly or indirectly depends
on ν the set

depνHG
= {ν ′ : ν ′ ∈ V which depends on ν}

is the set of reductions in HG that depend on reduction ν.

Definition 5.3. Let G = (V,E) be a tree decomposable graph and HG =
(V, ED∪ES) the associated hgraph. Consider the h-subgraph H′

G = (V ′, E′
D∪

E′
S) ⊆ HG. We say that the h-subgraph H′

G is complete if for all ν ∈ V ′,
depνHG

⊆ V ′.

Figures 8a and 8b show complete h-subgraphs of the h-graph in Figure 7.
Notice that complete h-subgraphs include all the reductions needed to com-
plete a derivation for the h-subgraph. Figure 8c shows a h-subgraph where
reduction→{b,e,f} cannot be carried out because reductions→{a,b,c},→{a,c,d}

and →{c,d,e} are missing. Hence this h-subgraph is not complete.

Figure 9 shows tree decompositions built from the complete h-subgraphs in
Figures 8a and 8b.

Theorem 5.2. Let G = (V,E) be a tree-decomposable graph, HG the asso-
ciated h-graph and H′

G a complete h-subgraph of HG. Then there is a tree
decomposable subgraph G′ ⊆ G such that H′

G′ = H′
G.

Proof. If H′
G = HG the theorem trivially holds.

Assume now that H′
G(V, ED ∪ES) is a complete proper h-subgraph of HG.

Clearly a graph, say G′ = (V ′, E′), can always be built fromH′
G with V ′ ⊆ V
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{a, b} {b, c}

{a, b, c, d, e}

{a, c, d, e}

{e, f}{b, f}

{a, b, c, d, e, f}

{a, c} {c, d, e}

{c, d} {d, e} {e, c}

→{c,d,e}

→{a,d,c}

→{b,f,e}

→{a,b,c}

{a, d}

(a)

{j, h}{f, j} {f, g, h, i}

{f, g} {g, h, i} {i, f}

{i, g}{g, h} {h, i}

{f, g, h, i, j}

→{f,j,h}

→{f,g,i}

→{g,h,i}

(b)

Figure 9: Tree decompositions built from complete h-subgraphs in Figures 8a
and 8b.

and E′ ⊆ ED ∪ ES . Given that H′
G is complete, the set of decomposition

steps in G′ built from H′
G can be carried out thus G′ is tree decomposable.

Figure 10 shows graphs associated to the complete h-subgraphs in Figures 8a
and 8b which illustrate Theorem 5.2.

Finally we prove that inclusion is preserved for h-subgraphs.

Theorem 5.3. Let G1 = (V1, E1) and G2 = (V2, E2) be two tree-decomposable
graphs, and HG1

,HG2
the respective associated h-graphs. Then, HG1

⊂ HG2

if and only if G1 ⊂ G2.

e

c

d
b

f

a

(a)

g

i

j

f

h

(b)

Figure 10: Tree decomposable subgraphs corresponding to the tree decom-
positions in Figures 9a and 9b.
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Proof. For the if part apply Theorem 5.2 with G′ = G1 and G = G2.

For the only if part assume that HG2
(V2, EI2 ∪ED2

) ⊆ HG1
(V1, EI1 ∪ED1

).
This would imply that V2 ⊆ V1 or E2 ⊆ E1 or both hold. ThereforeG2 ⊆ G1.
This contradiction completes the proof.

5.3 Computing the minimal well constrained cluster

Before describing how the minimal well constrained cluster is computed we
need to prove some simple results. Let deg(v) denote the degree of a vertex
v in a given graph G = (V,E).

Theorem 5.4. Let G = (V,E) be a well constrained graph with |V (G)| > 3.
Then there is at least one vertex v ∈ V (G) such that deg(v) ≥ 3.

Proof. Because G is well constrained we have that |E| = 2|V | − 3. For a
contradiction assume that for each vertex v ∈ V (G), deg(v) = 2. Then
|E| = |V |.

Theorem 5.5. Let G = (V,E) be a well constrained graph with |V (G)| ≥ 3.
The graph G′ = (V ′, E′) resulting from removing a vertex of degree two from
V (G) and the edges in E(G) incident on v is well constrained.

Proof. By hypothesis |E| = 2|V | − 3. But |V ′| = |V | − 1 and |E′| = |E| − 2.
Then |E′|+ 2 = 2(|V ′|+ 1)− 3. That is |E′| = 2|V ′| − 3.

Theorem 5.6. Let G = (V,E) be a well constrained graph with |V (G)| ≥ 3.
The graph G′ = (V ′, E′) resulting from removing a vertex of degree three or
higher from V (G) and the edges in E(G) incident on v is no longer well
constrained.

Proof. Let v be the vertex with deg(v) ≥ 3 removed from V (G). By hy-
pothesis |E| = 2|V | − 3. But |V ′| = |V | − 1 and |E′| = |E| − deg(v). Then
|E′|+ deg(v) = 2(|V ′|+1)− 3. That is |E′| = 2|V ′|− 3+ (2− deg(v)). Now,
deg(v) ≥ 3 makes that 2− deg(v) ≤ −1. Hence |E′| < 2|V ′| − 3.

Taking into account the results shown above, to compute the minimal well
constrained cluster we need to distinguish two situations. First consider that
the cluster is a leaf node of the graph tree decomposition which contains the
edge (u, v). Then trivially the edge itself is the minimal well constrained
cluster.

For clusters with three or more vertices we compute the minimal well con-
strained cluster which includes vertices u, v in two steps. First we compute
the lowest common ancestor of vertices u and v, denoted LCAG(u, v), in the
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tree decomposition T associated to the constraint graph at hand G. Clearly
this is the smallest cluster in T which includes vertices u and v. We also
identify the subset of hinges triplets of T that tree decomposes LCAG(u, v),
namely T . Second we iteratively remove from LCAG(u, v) all the two de-
gree vertices except possibly vertices u and v as well as the corresponding
triplets in T . If the cluster is made up of three edges, the three vertices in
the problem have degree two and the minimal well constrained cluster is the
edge (u, v) resulting from removing the third vertex.

In the general case, the minimal well constrained cluster includes the two
vertices considered u, v plus, at least, one vertex with degree three or higher.
In this case, we recursively remove from the LCAG(u, v) two out of the three
subclusters induced by triples {u∗, v∗, w∗} in T while keeping the subcluster,
say Gab, such that u, v ∈ V (Gab). Let G = (V,E) be the constraint graph
resulting from removing the degree two vertices from LCAG(u, v), let T
denote the set of remaining hinges triplets that tree decompose G and let S
denote the pair {u, v}. We handle this situation with the procedure shown
in Algorithm 1 where S is stored in a static variable.

Algorithm 1 Computing the mwc in the general case

procedure mwc general(G, T )
Identify a triplet {u∗, v∗, w∗} in T and a cluster Gab in G such that

i) S ⊂ {u∗, v∗, w∗},
ii) G = Gu∗v∗ ∪Gv∗w∗ ∪Gw∗u∗ , and
iii) S ⊂ V (Gab) for some a, b ∈ {u∗, v∗, w∗}

if such a triplet {u∗, v∗, w∗} exists then
T = {{u, v, w} ∈ T : {u, v, w} is a triplet to Gab}
mwc general(Gab, T )

else

return G

As described in Section 3.2 the set of hinges triplets in a tree decompo-
sition T is unique. Hence the set of reductions that builds the minimal
tree-decomposable cluster is well defined and is easily identified by visiting
nodes in the tree-decomposition T associated to the constraint graph un-
der consideration. We only need to visit nodes starting at the T leaf nodes
including vertex u or v up to the lowest common ancestor of vertices u and v.

5.4 Computing h-graphs from Tree Decompositions

Next we describe how to compute the h-graph associated to a given graph
G = (V,E) for which a tree decomposition T is known. The approach takes
advantage of two facts. First, as described in Section 3.2, the reduction
system (CG,→) is canonical. Therefore when more than one reduction
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applies, the specific sequence in which they are applied does not matter
and we choose to apply first those reductions which rewrite edges in the
starting term CG into triangles. Second, dependences between reductions
over the starting term, if any, are direct dependences. Having these facts in
mind the algorithm includes three main steps. First we compute an starting
graph by identifying in the tree decomposition T the set of starting direct
dependencies. Then a raw h-graph is computed by expanding the starting
graph with the remaining direct dependences and the full set of indirect
dependencies. In the last stage, the h-graph is simplified.

The algorithm makes use of the following data structures. A reduction r

represents a tuple (Cuv, Cvw, Cwu, u, v, w) where Cuv, Cvw, Cwu are the three
clusters to be rewritten and u, v, w is the hinges triplet for the reduction.

The set of clusters in the current term of the rewriting system is stored in a
list C.

The set of reductions which can be applied on the current set of clusters C
is stored in the list R. This list is provided with the iterator R.first() and
R.next().

The list V collects the set of the h-graph vertices. Each vertex v in V =
V(HG) will store a reduction r.

The procedure to compute the starting h-graph is described in Algorithm 2.
The algorithm is fed with a pointer to the tree decomposition T . The start-
ing h-graph is the empty graph and C is initialized to the set of clusters
corresponding to the leaf nodes in T . R initially stores the set of reduc-
tions which can be applied on the set of the tree decomposition leaf nodes.
Clearly, for any pair of reductions in R they are either independent or di-
rectly dependent on each other. Accordingly, the set of directly dependent
edges ED is conveniently updated. Finally, reductions in R are included in
V and the set of clusters C is updated by serially applying the reductions
in R to the current rewriting system term.

Once the h-graph has been initialized, the computation proceeds as de-
scribed in Algorithm 3. In the graph-based constructive geometric con-
straint solving approach, the solver constructor has figured out a solution
to the constraint problem when all the vertices in the graph are placed with
respect to a common framework of reference. This means that all the con-
struction steps have been carried out. Equivalently, the underlying rewrite
system has just rewritten the normal form and |C| = 1 should hold for the
number of clusters in the current term.

The loop in the algorithm first identifies one reduction which applies to the
current term. Then the minimal well constrained clusters induced by the
vertices in the reduction triplet within each cluster involved in the reduction
cosidered are computed. Next h-graph edges are identified and included in
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Algorithm 2 Initializing the h-graph

procedure initial h graph(T)
V = ∅
ED = ∅
EI = ∅
C = set of terminal nodes in T
R = set of reductions which can be applied on C
r1 = R.first()
while r1 6= nil do

r2 = R.next(r1)
while r2 6= nil do

if direct dependence(r1, r2) then
ED = ED + (r1, r2)

r2 = R.next(r2)

r1 = R.next(r1)

for r in R do

V = V + r
C = (C - {r.Cuv, r.Cvw, r.Cwu}) ∪ {r.Cuv ∪ r.Cvw ∪ r.Cwu}

return V, ED, EI, C

Algorithm 3 Computing the h-graph from a tree decomposition

procedure h graph(T)
V, ED, EI, C = initial h graph(T)
while |C| > 1 do

r = reduction which can be applied on Cuv, Cvw, Cwu
mwcuv = mwc(T, r.Cuv, r.u, r.v)
mwcvw = mwc(T, r.Cvw, r.v, r.w)
mwcwu = mwc(T, r.Cwu, r.w, r.u)
L = ∅
for Cab in {mwcuv, mwcvw, mwcwu} do

if Cab = ({a,b}, {(a,b)}) then
ED = ED + (r, mwc reduction(Cab, T))

else

L = L + mwc reductions(Cab, T)

for l in L do

EI = EI + (r, l)

V = V + r
C = (C - {r.Cuv, r.Cvw, r.Cwu}) ∪ {r.Cuv ∪ r.Cvw ∪ r.Cwu}

EI = transitive reduction(V, EI)
return V, ED, EI
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{b, e, f}

{a, c, d} {f, g, i} {g, i, h}

{f, h, j}

{c, d, e}{a, b, k} {a, b, c}

{a, f, h}

Figure 11: Raw h-graph for the tree decomposition in Figure 4a.

the corresponding set of h-graph edges according to whether the dependences
are either direct, ED, or indirect, EI. Finally the reduction under consid-
eration is both added to the set of h-graph vertices, V(HG), and actually
applied to the current term C to update it.

When the main loop in Algorithm 3 is over, we end up with a raw h-graph.
For example, for the tree decompositions shown in Figure 4, the h-graph
generated would be the one depicted in Figure 11.

In general, the raw h-graph includes some extra edges. Taking into account
that indirect dependence is transitive, directed edges ({a, b, c}, {a, h, f}),
({a, c, d}, {a, h, f}) and ({c, d, e}, {a, h, f}) ∈ V(HG) in the raw graph de-
picted in Figure 11 are redundant. If we do not consider undirected edges,
the raw h-graph is a directed acyclic graph. Thus the final h-graph is com-
puted as the unique transitive reduction of the raw h-graph, [1, 4]. The
h-graph output by the simplification process is shown in Figure 7.

6 Computing Dependences in 1 DOF Problems

Consider the geometric constraint problem described in Section 2. When
values for, say, distances d1 and d2 are fixed while the value assigned to the
angle λ changes, the problem has one degree of freedom and λ is the variant
parameter. This geometric constraint problem is abstracted by the graph
G = (V,E) in Figure 12 where edge (c, d) defines the variant parameter λ for
the degree of freedom in the underlying geometric problem. The associated
h-graph HG = (V, ED ∪ ES) is shown in Figure 7.

Constraint-based geometric problems with one degree of freedom are in the
core of, among others, parametric solid modeling and dynamic geometry.
[5, 6, 23]. In these fields, knowing beforehand which is the set of values for
λ such that the geometric construction can actually be built plays a central
role. This challenging and longtime standing problem used to be solved by
regular sampling in the parameters space. See [2].

A direct method to compute the set of values of λ for which the construction
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Figure 12: Graph in Figure 3a where edge (c, d) defines the variant param-
eter λ for the degree of freedom in the underlying geometric problem.

plan solution to a constraint problem is feasible was described for the first
time in [22, 23]. The method was formalized in [5, 6] where a correctness
proof along with specific implementation details were given.

The approach heavily relies on computing the set of reduction steps on which
the variant parameter depends. So far, dependences are computed on de-
mand for each specific situation found when considering each construction
step while progressing in the identification of parameter ranges. Hence, de-
vising an efficient method to identify reductions dependencies is paramount.

In this section we describe an algorithm to compute parameter dependences
in geometric constraint problems with one degree of freedom. The algorithm
efficiently computes the set of reduction steps over a tree decomposition
of a graph G = (V,E) which depend on the variant parameter λ. The
hierarchy captured by the h-graph HG = (V, ED ∪ ES) associated to the
tree decomposition of graph G leverages the computation of dependencies
and the method improves over the approach reported in [5]. Recall that
given a tree-decomposable graph G, the associated HG is unique.

Dependences are computed in two steps as described in Algorithm 4. As-
sume that the variant parameter is λ = (u, v) ∈ E(G). A reduction in
V (HG) such that vertices u, v belong to the hinges triplet directly depend
on the variant parameter λ. Therefore, the set of reductions which directly
depend on λ is computed visiting once each vertex in V (HG).

To figure out the set of reductions which indirectly depend on λ all what we
have to do is, with the help of a stack to store reductions, recursively visit
the reductions in V (HG) on which the set of direct dependences already
computed indirectly depend. The sets DD and ID stand for the reductions
on which λ respectively depends directly and indirectly.
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Algorithm 4 Computing dependencies of the variant parameter

procedure dependences((u,v), HG)
DD = {r ∈ V(HG) : u,v ∈ r}
ID = ∅
S = ∅
for r ∈ DD do

if there is an edge e in ES(HG) such that e = (r, r’) then
S.push(r)

while not S.empty() do
r = S.pop()
E = {e ∈ ES(HG) : e = (r, r’)}
for e ∈ E do

ID = ID + r’
S.push(r’)

return DD, ID

To illustrate how the algorithm works consider again the graph G = (V,E)
in Figure 12 where edge (c, d) defines the variant parameter λ and the associ-
ated h-graph HG = (V, ED∪ES) is shown in Figure 7. Reductions in V(HG)
which include vertices c and d as hinges are →{a,c,d} and →{c,d,e}. These
reductions directly depend on λ. Reductions which indirectly depend on
→{a,c,d} and →{c,d,e} are →{b,e,f} and →{a,f,h}. These reductions indirectly
depend on λ.

For a detailed description on how to compute feasible ranges for the vari-
ant parameter in geometric constraint problems with one degree of freedom
see [5, 7]. As an example, assume that edges (a, c), (a, d), (c, e) and (e, d) are
point-point distance constraints with values d1, d2, d3 and d4 respectively.
Assume that λ = (c, d) is a point-point distance constraint for which we
want to know the range of values such that both reductions, →{a,c,d} and
→{c,d,e}, can be carried out. This range can now be figured out as follows.
On the one hand, the triangle inequality for reduction →{a,c,d} fixes that
|d1 − d2| ≤ λ ≤ d1 + d2. On the other hand for reduction →{c,d,e}, we have
that |d3 − d4| ≤ λ ≤ d3 + d4. Denote λmin = max(|d1 − d2|, |d3 − d4|) and
λmax = min(d1+d2, d3+d4). Then the set of values for λ is λmin ≤ λ ≤ λmax.

7 Summary

In this work we have formalized the concept of dependence between con-
struction steps in a constructive solution to a geometric constraint problem
based on tree decompositions. A new representation, called h-graph, which
captures both the tree decomposition and construction steps dependences
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has been introduced.

Given a well constrained, tree-decomposable geometric constraint problem
abstracted as a graph, the associated h-graph is unique thus there is no
need to recompute it when considering different variant parameters within
the constraint problem. Once the variant parameter is fixed, the h-graph
allows to identify the set of construction steps which depend on it.

Identifying dependences between construction steps plays a central role in
computing parameter ranges where solutions are feasible. This computation
clearly benefits from h-graphs and the resulting approach outperforms those
previously reported in the literature.
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