
Universitat Politècnica de Catalunya

Departament de Llenguatges i Sistemes Informàtics

Programa de Doctorat en Computació

PhD Dissertation

Geometric constraint solving

in a dynamic geometry framework

Marta R. Hidalgo Garcia

Advisor
Robert Joan Arinyo

Barcelona, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tesis Doctorals en Xarxa

https://core.ac.uk/display/33345316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Fina, que haguera disfrutat només mirant aquesta tesi
In Memoriam

Acknowledgements

La reconnaissance est la memoire du coeur.

Jean Baptiste Massieu

En primer lloc vull agräır de tot cor a Robert Joan tota l’ajuda i dedicació que sempre
m’ha prestat. Ha sabut guiar-me fins al final d’aquest llarg camı́. Vull agräır també a la
resta del grup de recerca per les xerrades junts i els consells que sempre han estat disposats
a donar-me.

Gràcies a Dominique Michelucci per acollir-me a Dijon i donar-me l’oportunitat de
treballar al seu laboratori. Gràcies també a tots els companys del laboratori Le2i i als
companys de despatx Jean-Marc, Arnaud, Tomas, Abdoulaye, i en especial a George,
Vishal, Cyril i Laureline per fer la meva estada molt més agradable.

M’agradaria donar les gràcies a Enrique Zuazua i a Francisco Palacios per confiar en
mi i deixar-me formar part del seu projecte. Segurament, aquesta tesi va començar gràcies
a ells. També a tots els companys de l’IMDEA Matemáticas, en especial a Fátima, José
Maŕıa, Markus i Sebastian.

Vull també donar les gràcies a tots els professors que he tingut des de petita i que m’han
ensenyat a estimar les seves assignatures. En especial a Vicent Teruel per descobrir-me les
matemàtiques i a Joan L. Monterde per ensenyar-me la bellesa de la geometria. Vull agräır
especialment a Manolo Sanchis tota la seva ajuda i suport a l’hora de fer la meva tesis de
Màster.

i

Gràcies a tota la secció del Departament de Llenguatges i Sistemes Informàtics per
acollir-me i fer-me sentir una més del grup, i als companys de despatx que he tingut durant
aquests anys: Eduard, Eloi, Irving, Jonàs, Marc, Pasku, Sergio i en especial a Sergi, per
ser un amic a més d’un company tot aquest temps.

Gràcies a tots els meus amics. A Mireia i Helena per voler estar sempre en el mateix
metre quadrat que jo. A Eva, per estar cada dilluns a l’altre costat de l’Skype. A Natalia i
Pili i la resta de companys del cineclub. A Àngels, Marina, Rafel, les dues Maries, Alfonso,
Marta i en especial a Carlos, per l’any inoblidable que vam passar junts a Mainz. A Joan
i Gabo i la resta de companys de Matemàtiques. A Anna i Jaume per estar ah́ı des de
petits. I a tota la resta de gent que m’ha recolzat i m’ha deixat formar part de la seva
vida.

Vull donar les gràcies a tota la meva famı́lia, dispersada per tota la geografia espanyola
des de Vigo fins a Motril, passant per El Bonillo, Caudete, La Vila Joiosa i els voltants de
València. En especial a Rosario, que em va obrir les portes de sa casa, i a les meves àvies
Rosa i Fina, dones treballadores en temps dif́ıcils, per l’exemple que m’han donat.

Vull agräır especialment als meus pares haver-me recolzat en totes les decisions que
he pres en la meva vida, per dif́ıcils que els resultaren. Mai els podré estar suficientment
agräıda.

Per últim vull donar les gràcies a Toni per confiar sempre en mi, perquè sé que sense
ell aquesta tesi no haguera existit. I per donar alegria i pau a la meva vida cada dia.

ii

Abstract

Geometric constraint solving is a central topic in many fields such as parametric solid
modeling, computer-aided design or chemical molecular docking. A geometric constraint
problem consists of a set geometric objects on which a set of constraints is defined. Solving
the geometric constraint problem means finding a placement for the geometric elements
with respect to each other such that the set of constraints holds.

Clearly, the primary goal of geometric constraint solving is to define rigid shapes.
However an interesting problem arises when we ask whether allowing parameter constraint
values to change with time makes sense. The answer is in the positive. Assuming a contin-
uous change in the variant parameters, the result of the geometric constraint solving with
variant parameters would result in the generation of families of different shapes built on
top of the same geometric elements but governed by a fixed set of constraints. Considering
the problem where several parameters change simultaneously would be a great accomplish-
ment. However the potential combinatorial complexity make us to consider problems with
just one variant parameter. Elaborating on work from other authors, we develop a new
algorithm based on a new tool we have called h-graphs that properly solves the geometric
constraint solving problem with one variant parameter. We offer a complete proof for the
soundness of the approach which was missing in the original work.

Dynamic geometry is a computer-based technology developed to teach geometry at
secondary schools. This technology provides the users with tools to define geometric con-
structions along with interaction tools such as drag-and-drop. The goal of the system is to
show in the user’s screen how the geometry changes in real time as the user interacts with
the system. It is argued that this kind of interaction fosters students interest in experi-
menting and checking their ideas. The most important drawback of dynamic geometry is

iii

that it is the user who must know how the geometric problem is actually solved. Based on
the fact that current user-computer interaction technology basically allows the user to drag
just one geometric element at a time, we have developed a new dynamic geometry approach
based on two ideas: 1) the underlying problem is just a geometric constraint problem with
one variant parameter, which can be different for each drag-and-drop operation, and, 2)
the burden of solving the geometric problem is left to the geometric constraint solver.

Two classic and interesting problems in many computational models are the reachability
and the tracing problems. Reachability consists in deciding whether a certain state of the
system can be reached from a given initial state following a set of allowed transformations.
This problem is paramount in many fields such as robotics, path finding, path planing,
Petri Nets, etc. When translated to dynamic geometry two specific problems arise: 1)
when intersecting geometric elements were at least one of them has degree two or higher,
the solution is not unique and, 2) for given values assigned to constraint parameters, it may
well be the case that the geometric problem is not realizable. For example computing the
intersection of two parallel lines. Within our geometric constraint-based dynamic geometry
system we have developed an specific approach that solves both the reachability and the
tracing problems by properly applying tools from dynamic systems theory.

Finally we consider Henneberg graphs, Laman graphs and tree-decomposable graphs
which are fundamental tools in geometric constraint solving and its applications. We
study which relationships can be established between them and show the conditions under
which Henneberg constructions preserve graph tree-decomposability. Then we develop an
algorithm to automatically generate tree-decomposable Laman graphs of a given order
using Henneberg construction steps.

iv

Contents

Acknowledgements i

Abstract iii

List of Figures ix

1 Introduction 1

1.1 Goals . 3

1.2 Scientific contributions . 4

1.3 Organization of the work . 4

2 Preliminaries 7

2.1 Graphs . 8

2.1.1 Connection of graphs . 10

2.1.2 The shortest path problem and the A∗ algorithm 10

2.2 Geometric constraint problems . 11

2.2.1 Formal definition and properties . 11

v

2.2.2 Constructive geometric constraint problems solving 15

2.3 Problems with one variant parameter . 18

2.3.1 The construction plan as a function 18

2.4 Dynamic geometry . 23

2.4.1 Basic concepts on dynamic geometry 23

2.4.2 Constraint-based dynamic geometry 25

3 The hinges graph 31

3.1 Dependency between tree-decomposition steps 31

3.2 Definition of the hinges graph . 35

3.3 H-graph from a construction plan . 37

3.4 Subgraphs and complete subgraphs . 39

3.5 Representative nodes of complete subgraphs 41

3.6 Conclusions . 47

4 Parameter ranges 49

4.1 Preliminaries . 50

4.1.1 The domain of a geometric constraint problem with a variant parameter 50

4.1.2 Dependence on the variant parameter 51

4.1.3 Dependence and h-graphs . 52

4.2 The van der Meiden method . 55

4.2.1 Computing the candidate points . 56

4.2.2 Computing the domain . 57

4.2.3 Limitations of the method . 58

4.3 Our implementation . 59

4.4 Algorithm correctness . 62

4.4.1 The transformation . 62

4.4.2 The set of solution instances . 63

vi

4.4.3 Correctness . 66

4.5 Case study . 67

4.6 Conclusions . 72

5 The reachability problem 75

5.1 Continuity and continuous transitions . 76

5.1.1 Continuity . 76

5.1.2 Continuous transitions . 77

5.1.3 Case study: the four-bars linkage . 80

5.2 An algorithm for the reachability problem 87

5.2.1 The transitions graph . 88

5.2.2 Deciding reachability . 94

5.3 Implementation and results . 101

5.4 Conclusions . 105

6 The tracing problem 107

6.1 Definition of the tracing problem . 108

6.2 Solution to the tracing problem . 110

6.2.1 Previous approaches . 110

6.2.2 An approach to the solution of the tracing problem 110

6.2.3 On continuity and determinism . 112

6.3 Implementation . 115

6.4 Conclusions . 117

7 Henneberg graphs and tree-decomposability 121

7.1 Henneberg families and tree-decomposable graphs 122

7.1.1 Henneberg steps and Henneberg families 122

7.1.2 A characterization of tree-decomposable Laman graphs 124

vii

7.1.3 Inclusion relations . 127

7.2 Preserving tree-decomposability in Henneberg steps 129

7.2.1 Henneberg I steps and tree-decomposition 130

7.2.2 Henneberg II steps and tree-decomposition 130

7.3 An algorithm to generate tree-decomposable graphs 137

7.3.1 Henneberg constructions and h-graphs 137

7.3.2 Maximal Laman subgraph in h-graphs 142

7.3.3 The algorithm . 143

7.4 Conclusions . 147

8 Conclusions and future work 151

8.1 Conclusions . 151

8.2 Future work . 154

viii

List of Figures

2.1 Different kinds of graph. a) Graph. b) Simple graph. c) Partially directed
graph. 9

2.2 Subgraphs. a) Graph with vertices {A,B,C,D,E,F,G}. b) Subgraph of the
graph depicted in a). c) Subgraph of the graph depicted in a) induced by
the set of vertices V ′={B,C,D,E,F}. 9

2.3 Geometric constraint problem example. a) Geometric sketch. b) Geometric
constraint problem abstracted as a graph. 14

2.4 Construction plan for the example problem in Figure 2.3. 16

2.5 Sibling clusters pairwise share one geometric element. 16

2.6 Construction plan as a tree decomposition. 17

2.7 Geometric constraint problem with one variant parameter λ. 19

2.8 Objects belonging to the family defined by the problem in Figure 2.7. From
left to right, T(σ, 2.5), T(σ, 4.5) and T(σ, 5.9). 20

2.9 Critical values for a triangle defined by two sides and the angle supported
by one of them. Construction plan and actual construction. 21

2.10 Example of GSP. Left) A GSP. Right) A GSP instance. 24

2.11 Geometric problem in Figure 2.10 expressed as a geometric constraint solving
problem. 27

ix

2.12 An architecture for the constructive solving technique. 28

3.1 Dependence. a) Scheme of two directly dependent problems. b) Scheme
of two indirectly dependent problems. In this case, problem with hinges
(u1, v1, w1) depends indirectly on the problem with hinges (u2, v2, w2). c)
Scheme of two independent problems. 32

3.2 Strong dependence. a) Strong dependence in the case that T2 contains a
hinge of T1. b) Strong dependence in the case that a tree-decomposition
step T3 in which T2 depends indirectly contains a hinge of T1. 34

3.3 Example of h-graph. a) Tree-decomposable Laman graph G. b) h-graph
H(G) associated to G. 36

3.4 Complete subgraph. a) H-graph H(G′) which is a subgraph of the h-graph
depicted in Figure 3.3b. b) Tree-decomposable Laman subgraph G′ associ-
ated to H(G′), which is a subgraph of the graph depicted in Figure 3.3a. . . 42

3.5 Illustration of Theorem 3.5.5. a) The minimum subgraph Gu,v including u, v
is included in the cluster G1 which contains u and v. b) Tree-Decomposition
Step (u, v, w) depends indirectly on every tree-decomposition step in Gu,v. . 44

4.1 Dependency of a construction step. a) Directly dependent. b) Indirectly
dependent. c) Independent. 51

4.2 Dependence on the variant parameter. a) Graph G representing the geo-
metric constraint problem Πλ. b) H-graph H(G) associated to G. 54

4.3 Candidate points computation process for indirectly dependent tree-decom-
position steps. a) Tree-decomposition step that depends indirectly on λ. b)
Transformed problem that depends directly on µ. c) Construction where
values for the variant parameter λ are measured. 57

4.4 Relation between the values of the variant parameter λ and the values of µ. 58

4.5 In well-constrained problems which indirectly depend on the variant param-
eter λ, the only two possible locations for λ are shown in this Figure. a)
The variant parameter is defined upon two elements different to the hinges
u′, v′. b) The variant parameter is defined upon one of the hinges, say u′,
and another arbitrary element different to the other hinge v′. 63

4.6 Two problems defined over the same set of geometric objects. a) Problem
Π1. b) Problem Π2. 65

4.7 Solution instances. a) Instance for problem Π1. b) Instance for problem Π2. 65

x

4.8 Case study. a) Piston and connecting rod crankshaft. b) Geometric abstrac-
tion. c) Construction plan. 68

4.9 Piston and connecting rod crankshaft. a) Problem graph G. b) Tree-
decomposition of the problem. c) Associated h-graph H(G). 69

4.10 Piston and connecting rod crankshaft. Transformed problem. a) Problem
graph. b) Decomposition tree of the problem. c) Associated h-graph H(G′). 70

4.11 Piston and connecting rod crankshaft. Transformed problem. a) Construc-
tion plan. b) Geometric realization. 70

4.12 Construction of the transformed problem. a) Construction at µ = 3. b)
Construction at µ = 13. 71

4.13 Feasibility for the piston and connecting rod cranckshaft problem. • rep-
resent critical points. | represent intermediate λ values. X means that the
construction plan is feasible. × means that the construction plan is unfeasible. 71

4.14 Piston and connecting rod crankshaft. Feasible domain for the variant pa-
rameter λ = d2. 72

5.1 Domain intervals of the domain of a geometric constraint problem. 78

5.2 Four-bars linkage problem scheme. 80

5.3 Instances of the four-bars linkage. a) The four-bars linkage for a value of
α = 0. b) The four-bars linkage for a value of α = π/2. c) The four-bars
linkage for a value of α = π. 81

5.4 Case 1. a) Solution instance at value α = α0. b) Domain of the problem. . 83

5.5 Case 2. a) Solution instance at value α = α0. b) Domain of the problem. . 83

5.6 Case 3. a) Solution instance at value α = α0. b) Domain of the problem. . 83

5.7 Case 4. a) Solution instance at value α = α0. b) Domain of the problem. . 84

5.8 Case 5. a) Solution instance at value α = α0. b) Domain of the problem. . 84

5.9 Case 6. a) Solution instance at value α = α0. b) Domain of the problem. . 85

5.10 Case 7. a) Solution instance at value α = α0. b) Domain of the problem. . 85

5.11 Particular case of the four-bars problem. a) Configuration for α = π/2. b)
Domain. c) Simplified domain. 86

5.12 Particular case. a) Instance of the problem in Figure 5.11a at variant pa-
rameter value α = 0. b) Split domain. 87

xi

5.13 Domain for the fourbars problem with d0 = d2 = 5 and d1 = d3 = 4. 88

5.14 Domain represented as a bucket sort table of intervals. 90

5.15 Transitions graph for the example in Figure 5.1. 92

5.16 Domain and continuous transitions of a geometric problem. Continuous
transitions are represented as arrows between endpoints of the domain in-
tervals. 93

5.17 Transitions graph for the domain in Figure 5.16. 93

5.18 Extended transitions graph derived from the transitions graph in Figure 5.17
after adding the starting and ending vertices. 95

5.19 Schematic representation of a path solving the reachability problem from
vertex Vs to vertex Ve. No optimal path between vertices Vs and Ve includes
the dashed line. 95

5.20 Angle variant parameters. Three possible configurations giving rise to three
different values for the minimum distance covered by a path from the current
vertex with parameter value λ to the final vertex with parameter value λe. . 99

5.21 Two minimum paths output by Algorithm 10 that solve the reachability
problem in Figure 5.16. Is = T (5, σ1) and Ie = T (5, σ4). Grey vertices
represent the path, and white vertices are the not visited vertices. 101

5.22 Geometric constraint problem with six points and nine point-point distances.
a) Graph G. b) h-graph H(G) associated to G. 102

5.23 Construction plan given by the constructive geometric constraint solver for
problem in Figure 5.22. 103

5.24 Domain of the variant parameter of the problem in Figure 5.22. The set of
continuous transitions betweene intervals are displayed as arrows. 103

5.25 Transitions graph of the problem in Figure 5.22. 104

5.26 Extended transitions graph for the reachability problem with initial instance
Is = T (0.5, σ4) and ending instance Ie = T (0.5, σ2). 104

5.27 Minimum path computed by the system for the reachability problem with
initial instance Is = T (0.5, σ4) and ending instance Ie = T (0.5, σ2). 105

6.1 Scheme of the given (check marks) and on demand (question marks) infor-
mation in the tracing and the reachability problems. From Denner-Broser,
[16]. 108

xii

6.2 Definition of the tracing problem by means of a scheme 111

6.3 Solution to the tracing problem corresponding to the solution to the reach-
ability problem in Chapter 5, Section 5.3 . 112

6.4 Another solution to the tracing problem traversing only two intervals. . . . 113

6.5 Other solution to the tracing problem which associates to every point in the
variant parameter path the same index assignment. 113

6.6 Bisector and double bisector. a) Possible bisectors of the angle α. b) Values
of the angle, bisector and double bisector for the four different assignments
of the problem with two bisectors. 114

6.7 Four possible configurations for the double bisector, allowing determinism
and continuity. From left to right and from top to bottom, solution instances
corresponding to index assignments σ1, σ2, σ3 and σ4 are shown. 116

6.8 The domain of the hypothetic problem with two bisectors. 116

6.9 The reachability simulator window at the initial instance of the simulation. 118

6.10 From left to right and from top to bottom, different instances in the tracing
path for the tracing problem considered. The upper left image corresponds
to the initial instance and the lower right image to the final one. 119

7.1 Henneberg I step. a) Graph G. b) Graph G∗ derived from graph G by the
application of a HS1. 123

7.2 Henneberg II step. a) Graph G. b) Graph G∗ derived from graph G by the
application of a HS2. 123

7.3 Merging of graphs A,B,C giving rise to graph D, with hinges a, b, c. 125

7.4 Counterexamples. a) Tree-decomposable Laman graph which cannot be
constructed using only HS1. b) Non tree-decomposable Laman HII graph. . 128

7.5 Henneberg sequence leading to the Laman graph in Figure 7.4b which is not
tree-decomposable, represented from left to right and from top to bottom. . 129

7.6 Necessary tree-decomposition step for the preservation of the tree-decom-
posability in Henneberg II steps, Theorem 7.2.9. 132

7.7 Illustration of Theorem 7.2.9. a) Graph G∗
2 resulting after the merging of

graph G2 with two edge graphs. b) Graph G∗∗
2 resulting after the merging

of graph G∗
2 with an edge graph and G3. 133

xiii

7.8 Illustration of Theorem 7.2.9. a) Case in which v1, v2 are in the same cluster.
b) Case in which v1, v2 are in different clusters. 134

7.9 Illustration of Theorem 7.2.9. a) A graph G which does not fulfill Laman
condition. b) Tree-decomposable Laman graph G. 134

7.10 Illustration of Theorem 7.2.10. a) Graph resulting after the merging of
G2 with two edge graphs. b) Tree-decomposition step of a graph after the
application of a HS2 involving elements v1, v2, v3. c) Construction of G by
applying a HS1 adding vertex v2. 136

7.11 Application of a HS1. a) Resulting graph G∗ after adding vertex k and edges
(b, k), (k, j) to the graph in Figure 3.3a. b) h-graph H(G∗) associated to G∗. 138

7.12 Application of a HS2. a) h-graphs associated to the remaining maximal tree-
decomposable Laman subgraphs M1,M2. b) Graph M ′

2 after the application
of the two indicated HS1. c) h-graph associated to M ′

2, H(M ′
2). 142

7.13 Application of a HS2. a) Resulting graph G∗ after removing edge (a, h) and
adding vertex k and edges (a, k), (g, k), (h, k) to the graph in Figure 3.3a.
b) h-graph H(G∗) associated to G∗. 143

7.14 Construction of G′ by means of the original Hennberg II step (left), and by
means of the alternative Henneberg I sequence (right). 146

xiv

CHAPTER 1

Introduction

The reachability problem is a fundamental issue in the context of many models and ab-
stractions which describe different computational processes. Analysis of the computational
traces and predictability questions for such models can be formalized as a set of different
reachability problems. Reachability can be formulated in general as

Given a computational system with a set of allowed transformations, also called
functions, decide whether a certain state of a system is reachable from a given
initial state by a set of allowed transformations.

A huge amount of literature on reachability have been published mainly in the field
of abstract computational models see for example [10]. Examples of classical fields where
the reachability problem is considered are graphs theory, [14, 93, 95, 111], Petri nets,
[80, 81, 85, 110], motion planning,[54, 76, 77], geographical navigation,[2, 3, 32, 92] and
robotics, [69, 77, 109, 112]. A feature common to most of the referred works deal with
systems the behavior of which can be basically captured by identifying a set of well-defined
discrete states.

An emerging field where the reachability problem plays an important role is dynamic
geometry, [70, 108]. Dynamic geometry is a discipline that appeared during the 80’s as a
new tool in geometry. A number of software systems were designed for teaching geometry
in secondary schools where the ruler and compass were replaced by computers featuring

2 Introduction

high resolution color screens for user-computer interaction. The key concept in dynamic
geometry is interaction, that is, select a geometric object in the screen, move it and see
immediately how the geometric construction changes.

Compared to ruler-and-compass drawings on the paper, dynamic geometry systems offer
two clear advantages. First they provide tools to create accurate drawings (intersection
points, tangencies, etc). Second the computer can record the way the user constructed
the geometric elements that allows it to quickly rebuild the construction every time the
user changes the values assigned to some parameters. As a consequence, exploration and
experimentation are encouraged by showing to the user which parts of the construction
change and which remain unchanged.

In this context, a reachability problem naturally arises and can informally be stated as
follows.

Let Is and Ie be two instances of a well defined geometric construction where Is
is called the starting instance and Ie the ending instance. Are there continuous
transformations that, preserving the incidence relationships established in the
geometric construction, brings Is to Ie?

Now the scenario is different from the one described above. Notice that in dynamic
geometry no set of well defined states can be identified. Moreover, the reachability problem
in dynamic geometry belongs to a continuous domain.

A problem in dynamic geometry tightly related to the reachability problem is the tracing
problem which can be informally defined as

Let Is and Ie be two specific instances of a well defined geometric construc-
tion where Is is called the starting instance and Ie the ending instance. Let
I0, I1, . . . , Ii, . . . , In be a sequence of well defined geometric constructions such
that Ii+1 is a continuous incremental variation of Ii which preserves incidence
relationships. If we set I0 = Is, does the sequence of incremental constructions
end at In = Ie?

When using current dynamic geometry systems, the user can find that strange things
happen from time to time. An object might suddenly jump into a different position or
disappear completely or a group of objects may converge to the same position. It turns
out that these effects are caused by a number of non-trivial mathematical issues. Since
they have a dramatic effect on both reachability and tracing in dynamic geometry, they
must be properly addressed.

The main sources of these problems are ambiguities and unfeasibility of geometric
constructions when some parameters are changed continuously. One source of ambiguity is

1.1 Goals 3

the fact that, in general, geometric operations have more than one solution, for example,
intersecting a line and a circle. Another ambiguity appears when a problem with a well-
defined solution whenever geometric elements are in general position, say computing the
point where two straight lines intersect, reaches a degenerate configuration, for example,
the straight lines became parallel.

Examples of unfeasibility of the geometric construction appears whenever solving the
equations underlying the geometric problem requires dividing by zero or computing square
roots of negative values. The set of parameter values where constructions are unfeasible
are called critical points.

In order to work out a satisfactory solution for both the reachability and tracing prob-
lems in dynamic geometry a well-defined method for handling both ambiguities and geo-
metric unfeasibility must be found.

There is a paucity of works concerning reachability and tracing problems in dynamic
geometry. Richter-Gebert and Kortenkamp in [90] formalized the reachability problem in
computational geometry and proved that its complexity is NP-hard in R. To deal with
the tracing problem, authors describe a method based on applying a detour to the tracing
whenever it gets close to conditions that, according to numerical heuristics, are close to
critical points.

In [15, 16], Denner-Broser describes a decision algorithm to solve the reachability prob-
lem in dynamic geometry using Voronoi diagrams. In a first step the algorithm computes
the Voronoi diagram defined by the sites corresponding to critical points. The reachability
problem is solved by checking whether there is a path of Voronoi edges connecting the
starting and ending points in the Voronoi partition associated to the starting and end-
ing geometric instances such that avoids the Voronoi sites. However, no evidences of any
implementation are given.

1.1 Goals

The main goal of this thesis is to establish a theoretical framework to solve the reachability
and tracing problems in dynamic geometry.

As a proof of concept we aim at actually developing a software system based on our the-
oretical conceptualization. The system shall be built on top of a graph-based, constructive
geometric constraint solving system already developed by our research group.

4 Introduction

1.2 Scientific contributions

The scientific contributions of this work belong to one of two categories: Basic tools and
main goals. Among the basic tools we find

h-graphs : We introduce a new representation for tree-decomposable Laman graphs,
which we call h-graphs, which includes the information about its tree-decomposition
and presents some nice properties. H-graphs are used with different purposes in this
work.

van der Meiden soundness : We describe in detail the method to compute the domain
of a geometric constraint problem with one degree of freedom reported by van der
Meiden in [105]. We formalize the underlying concepts and prove for the first time
that the method is correct.

Henneberg graphs : We establish some relationships between Henneberg graphs, tree-
decomposable graphs and Laman graphs. We then develop a correct algorithm which
computes tree-decomposable Laman graphs of a given size using Henneberg construc-
tions. Here h-graphs play a central role.

Contributions to the main goals are

Reachability : We define a theoretical framework to solve the reachability problem in
dynamic geometry. We show that the approach is correct and that it finds a solution
whenever one exists. We develop a specific implementation in the framework of a
dynamic geometry system based on constructive geometric constraint solving.

Tracing : We develop a solution to the tracing problem as a derivation of the solution
to the reachability problem. The approach is implemented as a unit in our dynamic
geometry system.

1.3 Organization of the work

This thesis includes eight chapters organized in four main parts. First, in Chapter 2 we
introduce the basic concepts used in subsequent chapters. We recall elementary definitions
on graphs, geometric constraint problems and dynamic geometry.

The second part includes Chapter 3 and is devoted to introduce h-graphs, a new way to
represent tree-decomposable Laman graphs. h-graphs capture both a geometric constraint

1.3 Organization of the work 5

problem and the associated tree-decomposition. Later on in this work, h-graphs will play
a central role.

The third part includes Chapters 4, 5 and 6. It is devoted to solve the reachability and
tracing problems in geometric constraint-based dynamic geometry. In Chapter 4 we prove
for the first time that the van der Meiden approach to compute critical points is correct.
Then we describe our own implementation based on h-graphs. In Chapter 5 we develop our
approach to solve the reachability problem in dynamic geometry. A proof of the optimality
of the searching algorithm is presented. We describe the prototype implemented on top of
our geometric constraint-based dynamic geometry system. Chapter 6 describes our solution
to the tracing problem. Some remarks about continuity in our system are highlighted. The
implementation on top of our geometric constraint-based dynamic geometry system is also
described.

The last part of this work includes Chapter 7. Here we develop a correct method
to automatically build tree-decomposable Laman graphs of a given size using Henneberg
constructions. The approach heavily relays on h-graphs.

Finally, in Chapter 8 we offer some conclusions and describe open problems we aim at
exploring in the near future.

6 Introduction

CHAPTER 2

Preliminaries

Now, in order to answer the question,
”Where do we go from here”
which is our theme, we must first
honestly recognize where we are now.

Martin Luther King

In this chapter we review some basic facts about graphs, geometric constraint solving
and dynamic geometry which we will use in this work. Readers already familiarized with
these fields may skip it, although we shall refer to the concepts presented here all along
the manuscript.

This chapter is by no means intended to be comprehensive. Most of the concepts
introduced here are explained in more detail and in a wider context in any basic text
book on the subject. For further information concerning the recalled topics see the related
references.

8 Preliminaries

2.1 Graphs

Although we assume that most of the readers are already acquainted with the issues ad-
dressed in this section, we introduce now the main topics on graphs due to the key role
they play all along this work. Both the outlined problems, and the proposed solutions are
abstracted as graphs.

The information in this section is commonly known and can be found in many books
on this topic, for example books in references from [6] and [33]. You can also see [13]. We
will focus on the main features of the particular class of graphs concerned in this work.

A graph can be seen as a diagram consisting of a set of vertices, also called nodes,
together with lines joining certain pairs of these vertices. For example, the vertices could
represent airports, and the lines the flights connecting them. Graphs are mathematical
abstractions of this kind of situations. More precisely,

Definition 2.1.1

A graph G is an ordered pair (V,E) consisting on a nonempty set of vertices V and a set
of edges E. Elements in E are pairs of elements of V , not necessarily distinct, called the
endpoints of the edge.

Graphs are so named because they can be represented graphically, and it is this graph-
ical representation which helps us to understand many of their properties. Each vertex is
indicated by a point, and each edge by a line joining the points which represent its end-
points. Figure 2.1 shows a collection of graphs. Their vertices are A, B, C, D, E, F, G,
and H.

There is not a unique way of drawing a graph, as the relative positions of points
representing vertices and lines representing edges have no significance. We shall, however,
often draw a diagram of a graph and refer to it as the graph itself.

If vertex v ∈ V is an endpoint of edge e ∈ E, then v is said to be incident on e, and e
is incident on v. An edge is said to join its endpoints, and a vertex is adjacent to another
vertex if they are joined by an edge. The notation V (G) and E(G), or VG and EG, will
be used for the vertex and edge sets respectively in case that G is not the only graph in
consideration.

When the endpoints of an edge are the same vertex, the edge is said to be a loop. When
they are different, the edge is said to be a proper edge. A multi-edge is a collection of two
or more edges having identical endpoints. A simple graph is a graph that has no loops or
multi-edges. Notice that graph in Figure 2.1b is a simple graph, for it has no loops nor
multi-edges. In this work, we shall only consider simple graphs.

A directed edge is an edge e, one of whose endpoints is designated as the source vertex,

2.1 Graphs 9

A B

C
D

E

F

G H z

s

y

w

x

vu

t

p

o

q

r

A B

C
D

F

G

w

x

u

t

or

p Hy

E

A B

C
D

E

F

G H z

s

y

w

x

vu

t

p

o

q

r

a b c

Figure 2.1: Different kinds of graph. a) Graph. b) Simple graph. c) Partially directed
graph.

and whose other endpoint is designated as the sink vertex. They are denoted source(e) and
sink(e), respectively. Directed edges are usually denoted by an arrow. Edges for which this
distinction does not exist are called undirected. A directed graph is a graph whose edges
are directed. Analogously, an undirected graph is a graph whose edges are undirected. A
partially directed graph, is a graph that has undirected and directed edges. Graphs in
Figures 2.1a and 2.1b are undirected and Figure 2.1c shows a partially directed graph, for
some of its vertices are directed and some others not.

The degree of a vertex v ∈ V in a graph G, denoted deg(v), is the number of proper
edges incident on v plus twice the number of loops. For simple graphs, which are our
subject of study, the degree is simply the number of adjacent vertices.

A graph H is a subgraph of G, written H ⊆ G, if V (H) ⊆ V (G) and E(H) ⊆ E(G).
In this case, G is a supra-graph of H. Assuming that V ′ is a nonempty subset of V , the
subgraph of G whose vertex set is V ′ and whose edge set is the set of those edges of G that
have both ends in V ′ is called the subgraph of G induced by V ′ and is denoted by G[V ′].

A

B

C

D

E

F G
zy

x

w

v

u

t

s

r
p

q
A

B

C

D

E

F Gyv

u

t

p

q

B

C

D

E

Fx

w

v

u

t

s

r

a b c

Figure 2.2: Subgraphs. a) Graph with vertices {A,B,C,D,E,F,G}. b) Subgraph of the
graph depicted in a). c) Subgraph of the graph depicted in a) induced by the set of
vertices V ′={B,C,D,E,F}.

10 Preliminaries

Figures 2.2b and 2.2c show two graphs which are subgraphs of the graph depicted in
Figure 2.2a. Figure 2.2a is then a supra-graph of the graphs in Figures 2.2b and 2.2c.
Figure 2.2c is also the subgraph induced by the set of vertices {B, C, D, E, F}.

2.1.1 Connection of graphs

A walk in G is a finite non-null sequence W = v0e1v1e2v2 . . . ekvk, whose terms are alter-
nately vertices and edges, such that, for 1 ≤ i ≤ k, the ends of ei are vi−1 and vi. We say
that W is a walk from v0 to vk. The integer k is the length of W . In a simple graph, a walk
is determined by the sequence of its vertices. If the edges of a walk W are distinct and
also the vertices are distinct, then W is called a path. We shall also use the word ’path’ to
denote a graph or subgraph whose vertices and edges are the terms of a path.

Two vertices u and v of G are said to be connected if there is a path in G from u to v.
Connection is an equivalence relation on the vertex set V . Thus there is a partition of V
into nonempty subsets V1, V2, . . . , Vω such that two vertices u and v are connected if and
only if both u and v belong to the same set Vi. The subgraphs G[V1], G[V2] . . . , G[Vω] are
called the connected components of G. If G has exactly one connected component, G is
connected. Otherwise, G is disconnected. Notice that a path is connected if between every
pair of vertices there is a path. The distance between two vertices in a graph is the length
of the shortest path between them.

Graphs in Figure 2.1 are all three disconnected, with two connected components each.
Graphs in Figures 2.2a and 2.2c are connected, and the one depicted in Figure 2.2b is
disconnected.

2.1.2 The shortest path problem and the A∗ algorithm

With each edge e of G let there be associated a real number w(e), called its weight. Then
G, together with these weights on its edges, is called a weighted graph. In the airport graph
example cited above, weights could represent the number of flights between each pair of
airports. If H is a subgraph of a weighted graph, the weight w(H) of H is the sum of
weights on its edges. The shortest path problem consists on finding, in a weighted graph,
a path of minimum weight connecting two specified vertices. The weight of a path is also
called its length, and similarly the minimum weight of a path from u to v will be also called
the distance between u and v in G.

A classic algorithm to solve the shortest path problem is the known as Dijkstra algo-
rithm, [19], discovered by Dijkstra in 1959 and, independently, by Whitling and Hillier in
1960. For a complete review of the existing methods to solve the shortest path problem,
see [93]. In this work we focus on the A∗ algorithm, [14], a more efficient method which

2.2 Geometric constraint problems 11

is complete and optimal under certain conditions. We describe the basics of this method
following [91], where more information on this algorithm can be found.

The A∗ algorithm is based on the minimization of an evaluation function f which is
actually the sum of two other functions:

f(n) = g(n) + h(n)

where g(n) is the path-cost function and h(n) an heuristic function. The g(n) function gives
the path cost from the starting node to the node n, and the h(n) function is the estimated
cost of the cheapest path from node n to the goal. Then, f(n) is the estimate cost of the
cheapest solution through n.

In order the A∗ algorithm to be complete and optimal, function h(n) must never over-
estimate the real cost to reach the goal. Such an h(n) is called an admissible heuristic.
If h(n) is admissible, then f(n) never overestimates the actual cost of the best solution
through n. A final observation is that among optimal algorithms of this type, A∗ is op-
timally efficient, that is, no other optimal algorithm is guaranteed to expand fewer nodes
than A∗. A proof of this result appears in [14].

2.2 Geometric constraint problems

In this work we model the problems we deal with as geometric constraint problems. A
geometric constraint problem is made of a set of different geometric objects, related by
a set of constraints among them. Many different approaches have been reported to solve
the geometric constraint problem. In this section we formalize the notion of geometric
constraint problem, analyze different solutions already known and describe thoroughly the
one known as constructive.

2.2.1 Formal definition and properties

Geometric constraint solving is arguable a core technology of computer aided design and,
by extension, geometric constraint solving is also applicable in virtual reality and is closely
related in a technical sense to geometric theorem proving. For solution techniques, geo-
metric constraint solving also borrows heavily from symbolic algebraic computation and
matroid theory.

Many formulations of a geometric constraint problem have been given all along the
literature, [9, 45, 48, 99, 106]. Following Hoffmann et al. geometric constraint problems
can be categorized as either the general problem and the basic problem. The general
problem can be characterized by means of a tuple Π =< ΠE ,ΠO,ΠX ,ΠC > where

12 Preliminaries

• ΠE is the geometric space constituting a reference framework into which the problem
is embedded. ΠE is usually Euclidean.

• ΠO is the set of specific geometric objects which define the problem. They are chosen
from a fixed repertoire including points, lines, circles and the like.

• ΠX is a, possibly empty, set of variables whose values must be determined. In
general, variables represent quantities with geometric meaning: distances, angles
and so on. When the quantities are without a geometric meaning, for example, when
they quantify technological aspects and functional capabilities, those variables are
called external.

• ΠC is the set of constraints. Constraints can be geometric or equational. Geometric
constraints are relationships between geometric elements chosen from a predefined
set, e.g., distance, angle, tangency, etc. The relationship (the distance, the angle, ...)
is represented by a tag. If the tag represents a fixed value, known in advance, then
the constraint is called valuated. If the tag represents a value to be computed as part
of solving the constraint problem, then the constraint is called symbolic, [43].

Equational constraints are equations some of whose variables are tags of symbolic
constraints. The set of equational constraints can be empty.

The general geometric constraint solving problem can be now stated as follows:

Given a geometric constraint problem Π =< ΠE ,ΠO,ΠX ,ΠC >,

1. Are the geometric elements in ΠO placed with respect to each other in
such a way that the constraints in ΠC and equations in ΠX are satisfied?
If the answer is positive, then

2. Given an assignment of values to the valuated constraints and external
variables, is there an actual construction that satisfies the constraints and
equations?

When dealing with geometric constraint solving, the first issue that needs to be settled
is the dimension of the embedding space ΠE . In 2D Euclidean space, ΠE = R

2, a number
of techniques have been developed that successfully solve the geometric constraint solving
problem. For an in-depth review see Jermann, [60]. However, there remain open questions
such as characterizing the competence (also called domain) of the known techniques.

Spatial constraint solving, where ΠE = R
3, include problems in fields like molecular

modeling, robotics, and terrain modeling. Here, both a good conceptualization and an ef-
fective solving methodology for the geometric constraint problem has proved to be difficult.

2.2 Geometric constraint problems 13

Pioneering work has been reported by Hoffmann and Vermeer, [49, 50] and by Durand,
[20].

Presented in this way, the geometric constraint solving problem includes in general
issues concerning how to deal with external variables. Here we refer the interested reader
to the work by Hoffmann and Joan-Arinyo, [43], and Joan-Arinyo and Soto, [65].

The basic constraint problem only considers geometric elements and constraints whose
tags are assigned a value. It excludes external variables, constraints whose tags must be
computed, and equational constraints. So the basic problem is stated in the following way.

Given a set ΠO with n geometric elements and a set ΠC with m geometric
constraints defined on them

1. Is there a placement of the n geometric elements such that the m con-
straints are fulfilled? If the answer is positive,

2. Given an assignment of values to the m constraints tags, is there an actual
construction of the n geometric elements satisfying the constraints?

In what follows we will focus on the basic geometric constraint solving problem.

Geometric constraint problems can be represented by a graph. The vertices shall rep-
resent the geometric elements of the problem and the edges shall represent the constraints
among them. Given a geometric constraint problem Π =< ΠG,ΠC ,ΠP >, the graph
G = (V,E) such that V = ΠG, E = ΠC and the edges are labeled with the parameters ΠP

represents the problem Π. The graph G is a simple graph, because constraints are defined
upon two different geometric objects (thus, no loops are allowed) and between any two
objects there is no more than one constraint (thus, no multi-edges are allowed). G is also
undirected, since relations among geometric objects are non oriented.

Figure 2.3a shows an example of geometric constraint problem consisting of six points
{a, b, c, d, e, f} and nine point-point distance constraints {di, 1 ≤ i ≤ 9} defined among
them. Figure 2.3b shows the geometric constraint problem abstracted as a graph where
each node represents one geometric element and each labeled edge represents a geometric
constraint defined on the two geometric elements the edge connects. In what follows we
shall represent geometric constraint problems as graphs.

Constraint solving community is mainly interested in objects which are invariant under
rigid transformations of translation and rotation. This property is known as rigidity.
Different kinds of rigidity have been defined, such as minimal or global rigidity, see [55,
58] and some works have been published describing operations which preserve it [68].
The intuitive concept of rigidity, the one that will be used in this work, is defined from

14 Preliminaries

d3

d

d9

d4

d1

a b

e
d8

d2

d6

d7

d5

f

a b e

d

fd9

d1 d2

d4

d8
d6

d7d5

d3

a b

Figure 2.3: Geometric constraint problem example. a) Geometric sketch. b) Geometric
constraint problem abstracted as a graph.

the number of solutions of the considered problem. In this context, geometric constraint
problems are categorized in three different families:

1. Well-constrained problems are geometric constraint problems with a non-empty and
finite set of solutions. In this work, we shall define rigid problems as well-constrained
problems.

2. Over-constrained problems are those problems with no actual solution. Generally,
the elimination of one or more constraints results in a well-constrained problem.

3. Under-constrained problems are geometric constraint problems for which an infinite
set of solutions exists. Generally, the addition of one or more constraints results in a
well-constrained problem.

Rigidity, as defined above, only refers to the problem’s structure, and no other questions
are considered. However, inconsistent situations in which specific assigned values given to
the parameters result in a change of category may arise. Some works concerning this topic
are for example from Laman, [75], and the more recent ones from Fudos and Hoffmann,[28],
Hoffmann et al., [43], Whiteley, [107], Henneberg [35] or Graver et al. [55].

As stated above, we identify well-constrained graphs with rigid graphs, that is, graphs
which actually represent ruler-and-compass constructions. They are also known as Laman
graphs after Gerard Laman, who first described them in 1970, [75]. Specifically, a graph
G = (V,E) is called Laman if |V | ≥ 3 and G fulfills

1. |E| = 2|V | − 3,

2.2 Geometric constraint problems 15

2. For every subgraph G′ = (V ′, E′) holds |E′| ≤ 2|V ′| − 3.

It is straightforward to see that Laman graphs have no disconnecting points and no
vertices with degree zero nor one. An in depth discussion on Laman graphs will be presented
in Chapter 7.

From now on, we will consider only well-constrained geometric constraint problems
represented by undirected simple graphs, that is, graphs with no loops, no multi-edges and
no direction established in their edges.

2.2.2 Constructive geometric constraint problems solving

Many techniques have been reported in the literature that provide powerful and efficient
methods for solving geometric problems defined by constraints, which can be classified
in three big groups: equational, based on the degree of freedom and constructive. For a
complete review see [5, 45].

Equational methods are for example the numeric methods based on the Newton-Raphson
algorithm [67], such as the systems described in [36, 78, 79, 82], or the algebraic symbolic
methods which calculate the Gröbner basis of the equations system, like [12]. Methods
based on the analysis of the degree of freedom are, among others, the works of Kramer, [71,
72, 73], or Hsu, [52, 53]. Among the constructive methods we find [8, 26, 27, 28], by Fudos
et al. or [102], by Todd.

Among all the geometric constraint solving techniques, our interest here focuses on
the one known as constructive. For an in depth discussion on this topic see, for example,
[1, 9, 11, 28, 47, 48, 59, 64, 66, 84, 101] and the references there in. Computer programs
that solve geometric problems defined by constraints are called solvers.

Constructive solvers yield the solution to the geometric problem defined by constraints
as a sequence of construction steps that places each geometric element with respect to
each other in such a way that the constraints are fulfilled. This sequence is called the
construction plan. Construction plans represent a possibly exponential number of different
solutions. In general, the construction plan that solves a constraint problem is not unique.

Figure 2.4 shows a construction plan for the constraint problem given in Figure 2.3.
The meaning of each construction step is the usual. For example, origin() stands for the
origin of an arbitrary framework, b = distD(a, d3) places point b at distance d3 from point
a, c2 = circleCR(a, d1) defines the circle c2 with center a and radius d1 and intCC(c1, c2)
defines a point as the intersection of circles c1 and c2. Notice that symbols ci do not
represent entities in the problem. They are intermediate results introduced to increase
readability.

16 Preliminaries

1. a = origin() 8. d = intCC(c4, c5, s2)
2. b = distD(a, d3) 9. c6 = circleCR(c, d6)
3. c2 = circleCR(a, d1) 10. c7 = circleCR(d, d7)
4. c3 = circleCR(b, d2) 11. e = intCC(c6, c7, s3)
5. c = intCC(c2, c3, s1) 12. c8 = circleCR(c, d9)
6. c4 = circleCR(a, d4) 13. c9 = circleCR(e, d8)
7. c5 = circleCR(d, d5) 14. f = intCC(c8, c9, s4)

Figure 2.4: Construction plan for the example problem in Figure 2.3.

Constructive solvers are also known as decomposition-recombination planners (DR-
planners), [48], since they follow the following strategy: first, perform the decomposition
of the problem at hand in a concrete way, then analyze the obtained decomposition and
finally construct the solution by recombining the different parts.

We shall refer as decomposition step to the split of a graph G into three different
subgraphs G1, G2, G3, called clusters, in such a way that G1 ∪G2 ∪G3 = G and G1 ∩G2 =
{h1}, G1∩G3 = {h2}, G2∩G3 = {h3}. Figure 2.5 illustrates the situation. Shared geometric
elements h1, h2, h3 are called hinges. The set of three hinges of a tree-decomposition step
shall be called triple of hinges or hinge triple. If the three clusters G1, G2, G3 include two
vertices and one edge each, we say that the decomposition step is a basic step. For a more
formal rational on this topic see [28] and [64].

If a graph G can be decomposed by applying successively decomposition steps to each
cluster until every subgraph contains only two vertices and one edge between them, we
shall say that the graph G is tree-decomposable and that the successive decomposition
steps are a tree-decomposition for G. We shall also say that the problem represented by
the graph G is tree-decomposable by extension. Unfortunately, not all rigid graphs can be
decomposed in such a way, and in those cases the method will fail. An in depth discussion

G1

G2

G3

h1

h3

h2

Figure 2.5: Sibling clusters pairwise share one geometric element.

2.2 Geometric constraint problems 17

{e, d}

{f, e}

{b, c} {c, a}

{a, b, c}, s1 {d, b}

{a, b, c, d}, s2

{a, b, c, d, e}, s3 {c, f}

{a, b, c, d, e, f}, s4

{a, b}

{a, d}

{c, e}

Figure 2.6: Construction plan as a tree decomposition.

on tree-decomposable graphs can be found in Chapter 7.

The tree-decomposition is a different and more convenient way to represent the con-
struction plan, [66]. Figure 2.6 shows a decomposition tree for the construction plan in
Figure 2.4. Notice that sibling clusters pairwise share one geometric element, for example
clusters {a, b, c, d, e}, {f, e} and {c, f} pairwise share c, e and f respectively.

Once a graph has been decomposed, the tree-decomposition is used to construct a
solution instance of the problem. Leaf nodes represent elemental placement problems
corresponding to two geometric elements and the constraint defined on them. For example:
two points at a given distance, a point and a straight segment at a given distance, two
straight segments at a given angle and so on. The method starts by determining the position
relative to each other of the two elements in a leaf node. Edges in the decomposition tree
represent the combination of three solved clusters into a larger rigid cluster by application
of a specific solving rule. Each node in the tree stands for a rigid object, built on the
geometric objects included in the curly brackets list and whose position relative to each
other has already been determined. The root node includes all the geometric elements in
the problem and represents a solution instance.

In general, the tree-decomposition of a constraint problem is not unique. However, it
has been proved that the tree-decomposition as defined above is canonical, [27, 64]. That
means that the order in which the tree-decomposition is done is irrelevant, since they will
always be the same decomposition steps. A consequence of that fact is that the hinge
triples defined by the decomposition steps of a graph will always be the same, regardless
of the concrete tree-decomposition at hand. That feature will give rise below to some
interesting properties.

Solving a geometric constraint problem can be seen as solving a set of, in general, non
linear equations. Therefore, each equation can have as many roots as the equation degree.

18 Preliminaries

Obviously, each specific root will result in a different placement for the geometric elements
in the problem. Selecting the desired root is known as the root identification problem,
firstly addressed in [9]. A number of techniques have been developed to deal with the root
identification problem. See, for example, [9, 61, 62, 104].

With each root we associate a sign which will characterize unequivocally the corre-
sponding solution. We will call index to the set of all signs of a problem. The index in the
construction plan in Figure 2.4 is I = {s1, s2, s3, s4}. For an in depth study of the index
and the role it plays in geometric constraint solving see [24]. A similar definition can be
found in [94]. The number of possible combinations of signs is bounded, as shown in [7].

The specific solution to the constraint problem Π identified by an assignment of values to
the index I is called the intended solution. In what follows we consider that the intended
solution has been fixed and that the degree of the equations underlying the geometric
constraint problem is at most two, that is, signs si in the index take values in, say, {+,−}.

2.3 Problems with one variant parameter

When interacting with a computer featuring a mouse as an input device, mouse cursor
position as it moves around the screen is captured in discrete steps. Therefore, intermediate
positions are unknown. In dynamic geometry software, it is common practice to assume
that the paths of free variables between two subsequent mouse events are linear, [70]. Thus,
only one degree of freedom is left for the geometric element motion. In a more general
framework, [15], the path is assumed to be polynomial in time t and the computation of
the path itself is encoded leaving just one free variable t and in this way boiling down the
problem to the situation with just one degree of freedom.

In this section we present basic concepts concerning geometric constraint problems for
which the value of a given constraint parameter is not fixed, that is, geometric constraint
problems with one variant parameter.

2.3.1 The construction plan as a function

In general, the concept of free geometric element in dynamic geometry can be captured
in constructive geometric constraint-based dynamic geometry by considering the value
assigned to a given constraint as a variable value. As we will see in Section 2.4.2, this does
not have an effect on the constraint solving process and all what is needed is to reevaluate
the construction plan as many times as needed.

To introduce the concept of movement in geometric constraint problems, we define geo-
metric constraint problems with one variant parameter. Figure 2.7 illustrates the following

2.3 Problems with one variant parameter 19

a b e

d

fd9

d1 d2

d4

d8
d6

d7d5

λ = d3

Figure 2.7: Geometric constraint problem with one variant parameter λ.

definition.

Definition 2.3.1

A geometric constraint problem with one variant parameter Π =< ΠG,ΠC ,ΠP > is a well-
constrained geometric constraint problem such that all parameters in ΠP have been assigned
a given value except for one, say λ, which can take arbitrary values in R.

The variant parameter may represent either a distance or an angle. We shall consider
always positive distances, and angles defined inside the interval [−π/2, π/2]. Angles not
included in this interval shall be wrapped to it modulo π.

Let T be a construction plan which solves the constraint problem Π =< ΠG,ΠC ,ΠP >.
Construction plans depend on the set of constraint parameters and on the index and they
are valid for any problem derived from Π by considering one of its parameters as variant.
Therefore, we can define the function construction plan as follows.

Definition 2.3.2

Let Π =< ΠG,ΠC ,ΠP > be a geometric constraint problem and T a construction plan
for Π. Then, T(σ, λ) represents the evaluation of the construction plan T for the index
assignment σ and a value λ of the variant parameter.

Figure 2.8 shows from left to right objects in the family defined by the problem in
Figure 2.7 for index value σ = {s1 = +, s2 = +, s3 = +, s4 = +}, distance constraint
values d1 = 3, d2 = 3, d4 = 3.5, d5 = 3.5, d6 = 4, d7 = 4.5, d8 = 4, d9 = 3.5 and values of the
variant parameter λ in {2.5, 4.5, 5.9}. That is, T(σ, 2.5), T(σ, 4.5) and T(σ, 5.9).

For some values of the variant parameter λ, however, it may not be possible to satisfy
the set of constraints in ΠC , that is the construction plan T is unfeasible for such variant
parameter values. The failure to instantiate the model poses naturally the question of how
to compute ranges for parameters such that model instantiation is feasible. This problem

20 Preliminaries

d

λ = 2.5
a b

c

e

f

a eb

f

d

c

λ = 4.5

a
eb

f

c

d

λ = 5.9

a b c

Figure 2.8: Objects belonging to the family defined by the problem in Figure 2.7. From
left to right, T(σ, 2.5), T(σ, 4.5) and T(σ, 5.9).

or restricted versions of it have been addressed in the literature.

Shapiro and Vossler, [96], and Raghothama and Shapiro, [86, 87, 88], developed a theory
on validity of parametric family of solids by investigating the relationship between Brep and
CSG schemas in systems with dual representations for solid modeling. The formulation is
built on formalisms of algebraic topology. Unfortunately, it seems a rather difficult problem
transforming these formalisms into effective algorithms.

Joan-Arinyo and Mata [63] reported on a method to compute feasible ranges for pa-
rameters in geometric constraint solving under the assumption that values assigned to
parameters are non-trivial-width intervals. The method applies to complex systems of ge-
ometric constraints in both 2D and 3D and has been successfully applied in the dynamic
geometry field, [25]. It is a general method, the main drawback, however, is that it is based
on numerical sampling.

Hoffmann and Kim [46] developed a constructive approach to calculate parameter
ranges for systems of geometric constraints that include sets of isothetic line segments and
distance constraints between them. Model instantiation for distance parameters within the
ranges output by the method preserve the topology of the set of isothetic lines.

In an illuminating work, van der Meiden and Bronsvoort, [105], reported on a construc-
tive method to calculate parameter ranges for systems of geometric constraints. Constraint
systems are restricted to systems of distance and angle constraints on points in 2D or 3D
spaces that are well-constrained and decomposable into triangular and tetrahedral subprob-
lems. The method automatically determines the allowable range for a single parameter of
the system, called variant parameter, such that an actual solution exists for any value in
the range. The van der Meiden method is one of the subjects of our study. In Chapter 4

2.3 Problems with one variant parameter 21

1. a = origin()
2. b = distD(a, d1)
3. c1 = circleCR(b, d2)
4. l = linePA(a, λ)
5. c = intCL(c, l, s) a bd1

c′′ c′

d2
c λ

l

Figure 2.9: Critical values for a triangle defined by two sides and the angle supported by
one of them. Construction plan and actual construction.

we shall prove that it is correct and complete, for it will be at the core of our approach to
solve the reachability problem for geometric constraint based dynamic geometry.

Gao and Sitharam, in [29], described a general result concerning the computation of
critical values for 2D problems with one degree of freedom which include just distance con-
straints and such that can be abstracted as one degree of freedom Henneberg graphs. Here
we consider problems including distance and angle constraints such that can be abstracted
as tree decomposable graphs, a superset of Henneberg graphs.

To formalize concepts related to construction plan feasibility, we call critical variant
parameter value, or simply critical value, to the values λc of the variant parameter for which
the feasibility of T changes. For the same critical value λc, a set of different constructions
can be made depending on the chosen index.

To illustrate critical values, consider the construction shown in Figure 2.9 where a
triangle is defined by giving the constraints b = distD(a, d1), c = distD(b, d2), and λ =
angle(ab, ac). If we assume that d1 ≥ d2 and consider λ as the variant parameter, the
construction plan shown on the left of Figure 2.9 is feasible for values of λ in the range
[0, sin−1(d2/d1)]. The bounds of this range are the critical values of λ for this construction.

The situation described can be found for each basic construction in a constructive solver
and the corresponding feasibility ranges can be collected in a dictionary. Table 2.1 shows
examples for some basic constructions.

In this situation, we define the domain of λ as the set of values for which T is feasible. In
general the domain of a variant parameter is a set of disjoint intervals bounded by critical
variant parameter values. For a more formal definition of these concepts, see Chapter 4.

In the context that a construction plan is considered a function of the variant param-
eter, and considering that construction plan feasibility changes only at critical values, the
solution instance generated by T(λ) traces a path in the space of solutions to problem Π

22 Preliminaries

Basic Construction Feasibility

a bd1

d2

c

λ

abs(|d1| − |d2|) ≤ |λ| ≤ |d1|+ |d2|

a b

c

λ

d1
d2

−d2/d1 ≤ tan(λ) ≤ d2/d1

a b

c

λ

d1

d2

0 ≤ λ ≤ 2π

a b

c

d1

λ
d2

− sin(λ) ≤ d2/d1 ≤ sin(λ)

0 ≤ λ ≤ 2π

d1 ≥ d2

d1 < d2

a b

c

d1

α
λ

d1 sin(α) ≤ λ ≤ ∞

Table 2.1: Feasibility conditions for some basic construction steps. λ is the variant param-
eter.

2.4 Dynamic geometry 23

as the value of λ changes continuously in its domain.

2.4 Dynamic geometry

Dynamic geometry appeared in the 80’s, together with a number of software programs, as
Juno, [82], which simulated in a computer the geometric ruler and compass constructions on
paper. Two of the most relevant programs were Cabri Geometry [4, 74] and the Geometer’s
Sketchpad [56, 57], which are counted among the first dynamic geometry Systems.

The main feature of dynamic geometry is the dynamic character of the constructions.
The system is able to record the way in which the user makes the construction, and can
therefore redo it each time the user changes the value of a parameter or the position of a
geometric element. Although the original purpose was merely constructive, the possibility
of interacting with the construction and see how it changes in real time gave these kind of
programs the notoriety they have nowadays.

Dynamic geometry systems are widely used in secondary schools for the teaching of ge-
ometry and mathematics, as they provide an intuitive and very accurate way of visualizing
geometric objects and the relations between them. They are also multidisciplinary sys-
tems, since they can be used not only to represent geometric objects but also to represent
graphs, functions, visualize transformations and introduce students into theorem proving
and mathematical reasoning.

In this section we recall some of the basics in dynamic geometry, and present an archi-
tecture for a dynamic geometry system based on geometric constraint solving. A prototype
with this architecture has been developed by Freixas et al., [25], which will be the frame-
work on top of which we build our work.

2.4.1 Basic concepts on dynamic geometry

A number of dynamic geometry systems have been reported in the literature. Besides those
cited above, Cinderella [70, 89], developed by U. Kortenkamp and J. Richter-Gebert, or
GeoGebra [31], have achieved an outstanding success due to its portability and the wiki
associated to GeoGebra, [30], which provides teachers with lots of material for the teaching
of geometry and mathematics.

Although every system is different to the others, and some of them have particular
features that the others have not, as pointed out by Hözl, [51], all dynamic geometry
systems share the following properties:

• they simulate ruler and compass constructions following Euclid’s Elements.

24 Preliminaries

1. p1 = FREE
2. l0 = JOIN((0,0), p1)
3. c1 = CIRCLE((0,0), 10)
4. c2 = CIRCLE(p1, 11)
5. p2 = MEET(cl, c2)
6. l1 = JOIN((0,0), p2)
7. c3 = CIRCLE(p1, 15)
8. p3 = MEET(l1, c3)

(0,0) p1

c1
p2

p3

l1

l0

c3

c2

Figure 2.10: Example of GSP. Left) A GSP. Right) A GSP instance.

• they support macros simplifying the repetition of construction series, which can be
defined by the user.

• they allow the user to move some parts of the construction without changing the
underlying geometric constraints.

Different representations of geometric constructions in dynamic geometry have been
proposed in the literature, [70, 83]. According to Kortenkamp and Denner-Broser, [16, 70],
a convenient way to represent geometric constructions in dynamic geometry is Geometric
Straight-Line Programs (GSP). A GSP consists of free points and dependent elements like
a line through two points, the point where two lines intersect or the bisector of a segment.
A GSP can be seen as a sequence of construction steps such that once values have been
assigned to the free points, generates an actual construction that places free and dependent
elements with respect to each others. Figure 2.10, shows a GSP and an actual construction,
[15, 16].

The most important problem dynamic geometry must face is derived from ambiguities.
Many constructions have not a unique solution (think for example in the intersection of a
line and a circle), and to decide which one is the correct one, or at least the one the user
is expecting to see, is not a simple question. Some characteristics, which we now explain,
have been stated to define the behavior of the systems with respect to ambiguity, see for
example [70].

Determinism is the property by which, in a dynamic geometry system, when performing
the same movements from the same starting instance the system yields always the same

2.4 Dynamic geometry 25

motion of the dependent elements. Determinism assures that, when passing through a
point of multiple solutions, the system will always show the same one.

Conservatism in a dynamic geometry system guarantees that the final position of the
dependent objects are the same for the same final position of the free objects, regardless
of the path followed by them. That means that the final solution instance is independent
from the path followed to reach it.

Finally, continuity is the property by which the movements of the dependent objects
are continuous for continuous movements of the free elements. Continuity assures that no
undesired “jumps” occur in the position of the geometric objects in the construction, and
is a very desirable property, since users are expecting to see always a continuous behavior.
Many works state that continuity and determinism are mutually exclusive, [16, 70, 83]. We
will elaborate on this point in Chapter 6.

The main difference arising between geometric constraint solving and dynamic geometry
is that, in dynamic geometry, the user is in charge of actually defining step by step the
construction process that eventually will lead to the solution of the problem under study.

Setting up a problem in geometric constraint solving entails the geometric sketching
of the problem by means of a user interface in which the set of geometric objects and
relations among them are established. The solver analyzes then the problem, yielding
the construction plan to solve it, if possible. Finally, a solution instance is shown on the
screen, and the user is able to test the behavior of the construction by changing the specific
parameter assignment given to the variant parameter.

Setting up a problem in dynamic geometry also entails the geometric modeling of the
problem by means of a user interface, but the construction plan is actually given by the user
when sketching the problem. Therefore a dynamic geometry system usefulness is basically
limited by the user’s abilities. The solution instance is shown on the screen, and the user is
able to generate the motion of the whole construction by dragging a free geometric object
in the model.

Table 2.2 summarizes the different actions necessary to set up a problem in geometric
constraint solving and in dynamic geometry systems, specifying the actor of each action.

2.4.2 Constraint-based dynamic geometry

Constructive geometric constraint solving provides tools specifically well suited to support
dynamic geometry systems. In particular, the construction plan of the problem at hand is
stored, allowing to re-construct it for each possible value given to the variant parameter.
Also, the index identifies uniquely each solution instance among the set of possible solution
instances for a variant parameter value.

26 Preliminaries

Actor
Action Dynamic geometry Geometric constraint

Geometric modeling user user
Construction plan user system
Testing user system/user

Table 2.2: Actions necessary to set up a problem, and their actors.

Although traditionally static, geometric constraint problems represent suitably dynamic
geometry behaviors when we let a degree of freedom to move the system. In this way, dy-
namic geometry can be parameterized by the degree of freedom of the geometric constraint
problem.

As pointed out above, the main drawback of dynamic geometry with respect to geo-
metric constraint solving is the necessity of the intervention of the user in the construction
of any geometric instance. Geometric constraint solving skips this problem thanks to the
solver, which computes the placement of each geometric object observing the constraints
among them.

We call constraint-based dynamic geometry to the inclusion of a constructive geometric
constraint solver into a dynamic geometry system. Thanks to the constructive solver,
constraint-based dynamic geometry is able to construct a solution instance without the
need of the user, settling the problem above. Moreover, for any value given to the variant
parameter, the system is able to compute the solution instance following the construction
plan yield by the solver, and show the result in real time.

Setting up a problem in constraint-based dynamic geometry entails the geometric
sketching of the problem by means of the dynamic geometry system user interface, speci-
fying geometric objects and relations among them. The solver analyzes then the problem,
yielding the construction plan to solve it, if possible. Finally, a solution instance is shown
on the screen, and the user is able to test the behavior of the construction by changing the
specific parameter assignment given to the variant parameter.

In [25], Freixas et al. reported on a Constraint-Based dynamic geometry System based
on constructive geometric constraint solving. In this technology, the user defines a geomet-
ric problem by sketching some geometric elements taken from a given repertoire (points,
lines, circles, etc) and annotates the sketch with a set of geometric relationships (point-point
distance, point-line distance, angle between two lines and so on) that must be fulfilled.

Constructions in dynamic geometry can be easily transformed into Geometric Con-
straint Problems simply by expressing the relations existing among the geometric objects
as constraints. Assume that the problem in Figure 2.10 has been defined at a Dynamic

2.4 Dynamic geometry 27

p0 p1

l0

d0

p2

d1

on

on

on
p3on

l1

on
d3

d2

Figure 2.11: Geometric problem in Figure 2.10 expressed as a geometric constraint solving
problem.

Geometry System interface, and that the set of geometric elements includes four points
and two straight lines, G = {p0, p1, p2, p3, l0, l1}. Then, Figure 2.11 shows an equivalent
way of defining the same problem G in a constraint based geometric system where d0, d1
and d2 denote point-point distances and on denotes incidence.

The architecture for constructive solvers in which [25] is based is illustrated in Fig-
ure 2.12. Square boxes are functional units and rounded boxes are data entities. The
functional units include the analyzer, the index selector and the constructor. The data
entities are the geometric constraint problem, the construction plan, the parameters as-
signment and the index assignment.

Given a geometric constraint problem, Π =< ΠG,ΠC ,ΠP >, the analyzer is responsible
for figuring out whether the solver is able to solve the problem up to degenerated config-
urations, that is, whether it can find a description placement for the geometric objects.
If the answer is positive, the analyzer outputs the construction plan, that will place the
geometric elements in the position such that the constraints hold.

Selecting the desired root, which implies to solve the root identification problem, defined
in Section 2.2.2, is the goal of the index selector that associates with each equation with
several roots an index that unambiguously identifies the desired root. The index selection
can be changed by the user at the user interface.

Finally, once a set of actual values have been assigned to the constraint parameters
and the intended solution has been selected by assigning values to the index signs, the
constructor builds an instance of a placement for the geometric objects, a solution instance,
provided that no numerical incompatibility arises due to geometric degeneracy.

28 Preliminaries

Abstract
problem

SELECTOR

Abstract
plan

Index
Assignment

Parameter
assigment

CONSTRUCTOR

Geometry
assignment

ANALYZER

Figure 2.12: An architecture for the constructive solving technique.

2.4 Dynamic geometry 29

We will consider the system in [25] as a basis on top of which we will build our ap-
proaches to solve the reachability and tracing problems in Geometric Constraint Based
dynamic geometry. This architecture, known generically as DR-planner, [48], shows some
nice properties.

First, the nature of the computations in each step is quite different. The analyzer re-
quires symbolic computation while the constructor only performs numerical computations.

Second, determining whether the problem is solvable by the solver at hand or not is
performed in the analysis step and it does not depend neither on the actual parameter
values nor on the geometric computations.

Next, with the proposed decoupling, when computing instances for different parameter
values, only the construction step needs to be carried out. This allows to skip the analysis
step, which is computationally the most expensive, as well as the index selection.

Finally, given a symbolically solvable geometric constraint problem and a parameters
assignment, the object can be instantiated if there are not numerical impossibilities, for
example trying to intersect two disjoint circles that entails computing the square root
of a negative value. These impossibilities are detected while carrying out the geometric
computations, and we say that the construction plan is unfeasible.

30 Preliminaries

CHAPTER 3

The hinges graph

We are all dependent on one another,
every soul of us on earth.

George Bernard Shaw

Construction plans of tree-decomposable graphs expressed by means of tree-decompo-
sitions are used to construct the solution instances of the geometric constraint problems
associated to the graphs. However, tree-decompositions give no information about the
internal structure of the graph at hand.

In this chapter we present a new representation for tree-decomposable Laman graphs
which captures the intrinsic relations established between the different tree-decomposition
steps of the associated geometric problem. The representation is based on hyper-graphs
and captures additional useful properties of tree-decomposable graphs.

3.1 Dependency between tree-decomposition steps

In Chapter 2, tree-decomposable Laman graphs are characterized by having a tree-decom-
position, represented as a tree. Tree-decompositions are made of tree-decomposition steps,

32 The hinges graph

u

v

G1
2

G1
3G2

3

G2
2

w2 w1
w1

u2

v2

w2

u1

v1

G1

G2

G3

u2

v2

w2 w1

u1

v1

L

G2

G3

G1

a b c

Figure 3.1: Dependence. a) Scheme of two directly dependent problems. b) Scheme of
two indirectly dependent problems. In this case, problem with hinges (u1, v1, w1) depends
indirectly on the problem with hinges (u2, v2, w2). c) Scheme of two independent problems.

in which the graph is split in three subgraphs called clusters by means of the hinge triple.
The canonicity of the so defined tree-decomposition as stated by [27, 64] implies that a
fixed tree-decomposition step in two different tree-decompositions of the same graph may
split different subgraphs. The generation step is then not represented by the subgraph it
splits or the clusters it creates, but by its hinge triple.

Consider a tree-decomposable Laman graph G = (V,E), and a tree-decomposition. As
said in Section 2.2.2, each tree-decomposition step identifies a set of three elements, called
hinges, to which we refer as hinge triple. The hinge triple unequivocally defines the tree-
decomposition step. From now on, we shall identify a tree-decomposition step by its hinge
triple, and we shall represent this identification by bracketing the hinges.

In the process of decomposing a tree-decomposable Laman graph, some hierarchical
relations among tree-decomposition steps may appear. As hierarchical level we must un-
derstand that necessary relations of priority are defined between the tree-decomposition
steps, forcing the higher levels to be generated after the generation of the steps in lower
levels. That happens, for example, when the construction of a specific tree-decomposition
step must be performed necessarily before the construction of a different tree-decomposition
step. We call this hierarchical relations dependences. We will distinguish two different kinds
of dependence: direct and indirect. The direct dependence is defined as follows.

Definition 3.1.1

Let G = (V,E) be a tree-decomposable Laman graph and T be a tree-decomposition of G.
Let Ti, Tj be two different tree-decomposition steps in T with hinge triples (u, v, w1) and
(u, v, w2) respectively. We say that Ti and Tj depend directly on each other if the edge
e = (u, v) ∈ E.

3.1 Dependency between tree-decomposition steps 33

We will consider from now on that E is the set of graphs G = (V,E) such that |V | = 2
and |E| = 1, that is, the graph made of a unique edge, also called edge graph. We will
denote as G(a,b) the graph ({a, b}, {(a, b)}) ∈ E .

Figure 3.1a shows two directly dependent tree-decomposition steps. Tree-decomposition
step T1 merges clusters G1

2, G
1
3 and G(u,v) ∈ E by means of hinges u, v and w1. Tree-

decomposition step T2 merges clusters G2
2, G

2
3 and G(u,v) ∈ E by means of hinges u, v and

w2. Both tree-decomposition steps share two of their hinges, and the edge joining them
belongs to the graph. Then, the two generation steps depend directly on each other.

In plain words, direct dependence occurs when two tree-decomposition steps share a
cluster with just one edge. That fact assures that the construction of one of the tree-
decomposition steps is straightforward once the other has been already done. Notice that
the direct dependence is symmetric, that is, if a tree-decomposition step Ti depends directly
on the tree-decomposition step Tj , then also Tj depends directly on Ti. Thus, direct
dependence fixes which tree-decomposition steps lie in the same hierarchical level.

The indirect dependence of two tree-decomposition steps is defined as follows.

Definition 3.1.2

Let G = (V,E) be a tree-decomposable Laman graph and T be a tree-decomposition of G.
Let Ti, Tj be two different tree-decomposition steps in T with hinge triples (u1, v1, w1) and
(u2, v2, w2) respectively. Let G1 be the cluster merged by Ti including u1, v1. We say that
Ti depends indirectly on Tj if u2, v2, w2 ∈ V (G1) and there is no tree-decomposable Laman
subgraph L in G1 such that V (L) contains u1, v1 but not u2, v2, w2.

Indirect dependence states the hierarchical relations between the tree-decomposition
steps of a tree-decomposition of a graph. It represents the fact that for the proper building
of a tree-decomposition step, the previous construction of other steps must have been
already made. Figure 3.1b shows an scheme of two indirectly dependent problems. Cluster
G1 of the tree-decomposition step Ti defined by hinges u1, v1, w1 includes the three hinges
u2, v2, w2 of the tree-decomposition step Tj . Figure 3.1c shows the case in which a tree-
decomposable Laman subgraph L like the one described in Definition 3.1.2 exists.

Notice that the indirect dependence is asymmetric, that is, if a tree-decomposition
step Ti depends indirectly on the tree-decomposition step Tj , then it is impossible that Tj

depends indirectly on Ti. In particular, if G1 is the cluster merged by Ti including u1, v1
and including also the hinges of Tj , u2, v2, w2 ∈ V (G1), it is impossible that the merging
vertex w1 of Ti is included in any of the three clusters merged by Tj .

Indirect dependence is also transitive: if Ti depends indirectly on Tj , and Tj depends
indirectly on Tk, then also Ti depends indirectly on Tk. The hinges of Tk, by definition,
must be included in one of the clusters merged by Tj . The hinges of Tj are included in one
of the clusters merged by Ti, say G1, and then, all the clusters merged by Tj are included

34 The hinges graph

v2

w2

w1

v1

G1

G2

G3

u1

w1

v1

G1

G2

G3

u1

v2
u2

w2

a b

Figure 3.2: Strong dependence. a) Strong dependence in the case that T2 contains a hinge
of T1. b) Strong dependence in the case that a tree-decomposition step T3 in which T2

depends indirectly contains a hinge of T1.

in G1. Then, G1 includes the merging vertices of Tk.

Let Ti = (u, v, w) be a tree-decomposition step of a tree-decomposable graphG = (V,E)
and (u, v), (u,w), (v, w) ∈ E. Then Ti has no indirect dependences, and it is called a basic
tree-decomposition step. If at least one of the edges (u, v), (u,w), (v, w) is not in E, Ti has
necessarily some indirect dependences and is called a merge tree-decomposition step.

We consider a particular case of indirect dependency, which we call strong dependency,
defined as follows. Refer to Figure 3.2.

Definition 3.1.3

Let G = (V,E) be a tree-decomposable Laman graph and T be a tree-decomposition of G.
Let Ti, Tj be two different tree-decomposition steps in T with hinge triples (u1, v1, w1) and
(u2, v2, w2) respectively such that Ti depends indirectly on Tj. We say that Ti depends
strongly on Tj if

1. either u1 = u2, or there exists a tree-decomposition step Tk with hinges (u3, v3, w3)
such that Tj depends indirectly on Tk and u1 = u3, and

2. there is no tree-decomposition step Tl such that Ti depends indirectly on Tl and Tl

depends indirectly on Tj.

For each cluster, there exist at least one and up to two different tree-decomposition
steps in which T strongly depends. We will explain this point in detail in Section 3.5.

It may also happen that no dependence is defined between some pairs of problems. We
say that two tree-decomposition steps are independent if they are not related by a direct nor

3.2 Definition of the hinges graph 35

an indirect dependence. The formal definition of independence between tree-decomposition
steps, illustrated in Figure 3.1c, is the following one.

Definition 3.1.4

Let G = (V,E) be a tree-decomposable Laman graph and T be a tree-decomposition of G.
Let Ti, Tj be two different tree-decomposition steps in T with hinge triples (u1, v1, w1) and
(u2, v2, w2) respectively. Let G1 be the cluster merged by Ti including u1, v1. We say that Ti

and Tj are independents if Ti and Tj are not related by any direct nor indirect dependence.

3.2 Definition of the hinges graph

We define now a graph, which we will call the hinges graph, or h-graph in short, associated to
a tree-decomposable Laman graphG. It represents the tree-decomposable graphG together
with its tree-decomposition. The h-graph is a hyper-graph which captures dependences
among the tree-decomposition steps of the tree-decomposition. Vertices represent tree-
decomposition steps of a tree-decomposition of G, symbolized by the hinge triples into
brackets. Edges represent relations of dependence among them. For the sake of readability,
we will refer to vertices of the h-graph as nodes.

As seen in Section 3.1, indirect dependence is transitive, thus a h-graph specifying all re-
lations of indirect dependence between the tree-decomposition steps of a tree-decomposable
Laman graph would be unnecessarily complicated. We consider therefore only direct and
strong dependences. We will show later on that strong dependence suffices to represent
relations of indirect dependence between tree-decomposition steps.

Definition 3.2.1

Let G = (V,E) be a tree-decomposable Laman graph. The hinges graph, or h-Graph,
associated to G is the graph H(G) = (V , ED, ES), where V is the set of hinge triples of
G, ED is the set of pairs (V1, V2) such that the tree-decomposition steps represented by
nodes V1, V2 depend directly on each other, and ES is the set of pairs (V1, V2) such that the
tree-decomposition step represented by node V2 strongly depends on the tree-decomposition
step represented by node V1.

Direct dependence is represented by non-directed edges which will be called d-edges.
Strong dependency is represented by directed edges which will be called s-edges. Figure 3.3a
shows a tree-decomposable Laman graph example G. Figure 3.3b shows the associated h-
graph.

In an intuitive way, d-edges represent the fact that the two joined nodes are at the same
hierarchical level, whereas s-edges represent that one of the nodes is at a higher hierarchical
level than the other, that is, that one of the nodes must be constructed necessarily before

36 The hinges graph

h
g

i

j

a

f

e
c

d
b

(a, b, c) (a, c, d) (c, d, e)

(b, e, f)

(a, f, h)

(f, g, i) (g, i, h)

(f, h, j)

a b

Figure 3.3: Example of h-graph. a) Tree-decomposable Laman graph G. b) h-graph H(G)
associated to G.

the construction of the other.

Notice that in Figure 3.3a, tree-decomposition step (b, e, f) indirectly depends on tree-
decomposition step (a, c, d). However, since the dependence is not strong, no s-edge from
(a, c, d) to (b, e, f) exists in Figure 3.3b. We will explain in detail this point in Section 3.5.

According to what has been explained in Section 3.1, nodes to which no s-edge arrives
correspond to basic steps and nodes to which a s-edge arrives, represent merge steps.

By the canonicity of the tree-decomposition stated in [27, 64], all possible tree-decom-
positions of G share the same tree-decomposition steps. Based on that fact, we will see
that the h-graph associated to a tree-decomposable Laman graph is unique.

Theorem 3.2.1

Let G be a tree-decomposable Laman graph and H(G) the associated h-graph. Then H(G)
is unique.

Proof

In [27, 64] it has been shown that every tree-decomposition of a tree-decomposable Laman
graph G have the same set of tree-decomposition steps. That means that the set of hinge
triples is fixed. Then, the set of nodes of H(G) does not depend on the specific tree-
decomposition considered.

Also, edges are defined according to the relations of dependence arising between the
different tree-decomposition steps in the graph. This reasoning shows that the hinges graph
is unique. 2

Notice that the unicity of the h-graph associated to a tree-decomposable graph assures
that the h-graph is independent from any concrete tree-decomposition. We can establish
an injective relation from the set of tree-decomposable graphs to the set of h-graphs, as

3.3 H-graph from a construction plan 37

every tree-decomposable Laman graph has a different associated h-graph.

The hinges graph shows some other nice properties. For example, the h-graph can be
interpreted as the graph G enhanced with the information about its tree-decomposition, it
gives information about the structure of the graph and that it can be easily constructed
from the construction plan of the graph. We justify these properties in the following
sections. More features of h-graphs will be described in Section 7.

3.3 H-graph from a construction plan

In this section we analyze the intrinsic relation between construction plans and h-graphs,
showing how to construct h-graphs from construction plans and explaining how to derive
any possible construction plan from the h-graph associated to the problem at hand.

We present first a simple algorithm which computes the h-graph of a tree-decompo-
sable Laman graph once it has already been tree-decomposed by a solver. Consider that
we decompose the graph G into clusters G1, G2, G3 by means of hinges u, v, w, such that
u, v ∈ V (G1), u,w ∈ V (G2) and v, w ∈ V (G3). Assume that we know the h-graphs H(G1),
H(G2) and H(G3). Then, for each cluster Gi, and depending on whether the edge joining
the two hinges in Gi is included in G, we compute the nodes of direct or strong dependence
and join them to the new node (u, v, w).

Algorithm 1 shows the recursive algorithm which computes the h-graph of a tree-
decomposable Laman graph from its construction plan. T represents the tree-decomposition,
where each node stores the information of the elements included in each cluster and the
sons it has as well as the three hinges h1, h2, h3 which decompose the step. HG represents
a h-graph and stores the sets HV, ED and ES standing for the nodes set, the set of direct
dependences and the set of strong dependences respectively. If HG1 and HG2 represent
the h-graphs with sets HV1, ED1 and ES1, and HV2, ED2 and ES2 respectively, we indi-
cate by HG1 ∪ HG2 the unions HV1 ∪ HV2, ED1 ∪ ED2 and ES1 ∪ ES2. The function
Compute Strong Dependences is shown in Algorithm 2, Section 3.5.

We show now how to derive a tree-decomposition or construction plan for G from H(G).
That will show that H(G) is a unique representation of all possible tree-decompositions of
G.

In general, it is not possible to begin the tree-decomposition of a graph by an arbitrary
hinge triple. We must find a triple which splits the graph into three clusters pairwise
sharing one element. If a tree-decomposition step Ti depends indirectly on another step
Tj , it is impossible that the hinges of Tj represent a tree-decomposition step of the graph,
see Figure 3.1b. Then, the triples defining a tree-decomposable step of the graph are those
on which no other node depends indirectly. These triples are easily determined in a h-

38 The hinges graph

Algorithm 1 Computing the hinges graph from the tree decomposition

Input: T, the tree-decomposition of a graph G
Output: HG = (HV, ED, ES), the h-graph associated to G

function Compute Node()
HG = ∅
V0 = (T.h1, T.h2, T.h3)
if Number of sons of T > 0 then

for each Ti son of T do

HGi = Compute Node(Ti)
HG = HG ∪ HGi

if i == 0 then

HG.HV = HG.HV ∪ { V0 }
end if

h1 := First hinge in HGi and T.hinges
h2 := Second hinge in HGi and T.hinges
if (h1, h2) in E then

D = Compute Direct Dependences(V0, HGi)
for each Di in D do

HG.ED = HG.ED ∪ { (Di, V0) }
end for

else

S = Compute Strong Dependences(V0, HGi)
for each Si in S do

HG.ES = HG.ES ∪ { (Si, V0) }
end for

end if

end for

return HG
else

HV = HV ∪ { V0 }
return HG

end if

endfunction

3.4 Subgraphs and complete subgraphs 39

graph. If no triple depends on node V , no s-edge will have V as source. Going back to the
graph depicted in Figure 3.3a, notice that the only tree-decomposition steps for which a
tree-decomposition step of the graph is possible are (a, f, h) and (f, h, j). In Figure 3.3b
we can find the nodes representing these tree-decomposition steps simply by following the
direction of the s-edges.

Once the first tree-decomposition step is chosen, we decompose the graph G by its
hinges. The h-graph H(G) is decomposed in the same way just by removing the chosen
triple and the s-edges having it as sink node. If the resulting H(G) has more than one
connected component the same will occur in G. The decomposition is repeated then in
each one of the resulting connected components recursively.

In Figure 3.3a, consider that the first chosen tree-decomposition step has {a, f, h} as
hinges. Graph G is split into three subgraphs one of which is in E . The node (a, f, h) in
the h-graph H(G) in Figure 3.3b is removed, as well as all the s-edges arriving to it. Then,
the h-graph is split into two subgraphs, associated to each of the two clusters not in E .
The cluster in E has no associated h-graph.

As seen, in order to generate a construction plan from a h-graph, nodes in the h-graph
must be decomposed following the dependences established among them, represented by
the s-edges. However, in the case that the triples are related only by direct dependences,
there is no priority in the order of tree-decomposition of the nodes. Each one of the
choices in the order in which these tree-decomposition steps are decomposed will give rise
to a different final tree-decomposition. In the subgraph made of vertices a, b, c, d, e in
Figure 3.3a, the order of decomposition of the nodes (a, b, c), (a, c, d), (c, d, e) can give rise
to up to 6 different construction plans.

3.4 Subgraphs and complete subgraphs

In this section we describe the subgraphs H′(G) of a h-graph H(G), and analyze the condi-
tions under which they are the associated h-graphs of tree-decomposable Laman subgraphs
G′ of the original graph G. In the first place we give a definition of h-graphs subgraphs,
which will be analogous to the regular subgraph concept.

Definition 3.4.1

Let G = (V,E) be a tree-decomposable Laman graph, and H(G) be the h-graph associated
to G. The h-graph H′(G) = (V ′, E′

D, E
′
S) is a subgraph of H(G) if V ′ ⊆ V, E′

D ⊆ ED and
E′

S ⊆ ES.

Among the possible subgraphs of a h-graph, we are interested in those which are as-
sociated to a Laman graph. This type of subgraph is called a complete subgraph, and is
defined as follows. We denote by depH(V) the set of nodes that depend on node V in the

40 The hinges graph

h-graph H(G).

Definition 3.4.2

Let G = (V,E) be a tree-decomposable Laman graph, and H(G) be the h-graph associated
to G. Let H′(G) = (V ′, E′

D, E
′
S) be a subgraph of H(G). Then H′(G) is called complete if

for all V ∈ V ′, depH(V)⊆ V ′.

Subgraphs H′(G) fulfilling this condition are called complete because they include all
the dependences of every node in them. In other words, every tree-decomposition step in
a complete subgraph can be constructed because the subgraph contains all the necessary
nodes to perform the construction. Then, the whole subgraph can be constructed, generat-
ing a tree-decomposable Laman graph. In particular, the tree-decomposable Laman graph
associated to a subgraph of a h-graph fulfills the following property.

Lemma 3.4.2

Let G = (V,E) be a tree-decomposable Laman graph, and H(G) be the h-graph associated
to G. Let H′(G) be a complete subgraph of H(G). Then there exists a tree-decomposable
Laman subgraph G′ ⊆ G such that H′(G) = H(G′).

Proof

Since H′(G) = (V ′, E′
D, E

′
S) is complete, it is the h-graph associated to a Laman graph,

say G′ = (V ′, E′). We will prove that G′ is a subgraph of G.

The set of vertices in V ′ are the elements in the nodes of V ′, which in turn are a subset
of the nodes in V . Those nodes are made with triples of vertices of V . Therefore, V ′ ⊆ V .

A h-graph defines unequivocally the edges which are included in the associated Laman
graph, because each cluster different from an edge graph is represented by a subgraph.
Consider an edge e = (v1, v2) ∈ E′. In [106], Vila showed that to each edge e = (v1, v2)
in G corresponds a leaf {v1, v2} in the tree-decomposition of G, which means that every
edge is a cluster in at least one tree-decomposition step. Then, there is at least one node
V in V ′ including vertices v1, v2 as hinges. The existence of e implies that, in the tree-
decomposition step V , no cluster has been defined upon vertices v1, v2. Since V ′ includes
all the dependences of V in H(G), no cluster is defined upon vertices v1, v2 in H(G), and
then e ∈ E. Therefore, E′ ⊆ E. 2

Lemma 3.4.2 tells that every complete subgraph of H(G) induces a tree-decomposable
Laman subgraph in the graph G. Now we prove that inclusion is preserved when computing
h-graphs.

Lemma 3.4.3

Let G1 and G2 be two tree-decomposable Laman graphs, and H(G1),H(G2) the associated
h-graphs, respectively. Then, H(G1) ⊆ H(G2) if and only if G1 ⊆ G2.

3.5 Representative nodes of complete subgraphs 41

Proof

For the only if part, apply the same proof from Lemma 3.4.2 for G1 = G′ and G2 = G.

For the if part, consider that G1 ⊆ G2. Then, for every tree-decomposition step of G2

with hinges (u, v, w) and clusters C1, C2, C3, either G1 is included in one of the clusters, or
(u, v, w) is a hinge triple of G1. To show that, consider that G1 is not included in any of
the clusters C1, C2, C3. Then there are elements of G1 in at least two of the clusters, say
C1 and C2, which share only one node. Since G1 is Laman, there must be elements of G1

also in C3, otherwise G1 would have a disconnecting point. Then, (u, v, w) is also a hinge
triple of G1.

Applying the same rational to every cluster yielded by the decomposition step (u, v, w),
we conclude that every decomposition step of G1 is included in the set of decomposition
steps of G2. By the canonicity of the tree-decomposition, there exists a tree-decomposition
of G2 such that G1 is one of the clusters of a tree-decomposition step. By Algorithm 1,
H(G1) ⊆ H(G2). 2

From now on, all the subgraphs of h-graphs considered in this work will be complete
subgraphs.

3.5 Representative nodes of complete subgraphs

In this section we analyze the relation between strong dependency and complete subgraphs.
In order to better explain how indirect dependence is represented in a h-graph, we introduce
the concept of minimum complete subgraph of H(G) spanned by a set of nodes Q.

Definition 3.5.1

Let G = (V,E) be a tree-decomposable Laman graph, and H(G) = (V , ED, ES) be the h-
graph associated to G. Let Q ⊂ V a subset of nodes. Then the minimum complete subgraph
spanned by Q, HQ(G), is defined as the minimum complete subgraph of H(G) including all
the nodes in Q.

Notice that the minimum complete subgraph of H(G) spanned by a set of nodes is
complete by definition, which means that it is the h-graph associated to a Laman subgraph
of G.

An example is shown in Figure 3.4. Figure 3.4a shows the minimum subgraph spanned
by nodes (a, b, c), (b, e, f) from graph H(G) in Figure 3.3b. Figure 3.4b shows the tree-
decomposable Laman graph associated to this h-graph, which clearly is a subgraph of the
one represented in Figure 3.3a, and it is also complete. Figure 3.4a is also the minimum
tree-decomposable Laman subgraph spanned just by node (b, e, f).

Every complete subgraph of H(G) = (V , ED, ES) can be spanned by a set of its vertices,

42 The hinges graph

(a, b, c) (a, c, d) (c, d, e)

(b, e, f)

a

f

e
c

d
b

a b

Figure 3.4: Complete subgraph. a) H-graph H(G′) which is a subgraph of the h-graph
depicted in Figure 3.3b. b) Tree-decomposable Laman subgraph G′ associated to H(G′),
which is a subgraph of the graph depicted in Figure 3.3a.

since H(G) = HV(G). In particular, since H(G) is also a complete subgraph of itself, every
h-graph can be spanned by a set of its vertices. We call the minimum set of vertices which
span H(G) the representative nodes of H(G). The formal definition is stated as follows.
We define the distance between two nodes v1, v2 of a h-graph as the length of the shortest
path connecting nodes v1 and v2.

Definition 3.5.2

Let G = (V,E) be a tree-decomposable Laman graph, and H(G) = (V , ED, ES) be the h-
graph associated to G. The representative nodes of H(G) are the nodes in the set Q ⊂ V
such that HQ(G) = H(G) and the sum of distances in H(G) between every pair of nodes
in Q is minimum.

Going back to the example graph in Figure 3.4b, the representative vertex of the h-
graph is (b, e, f). The distance between the nodes of a set with just one node is considered
zero.

Once a set of nodes which spans a h-graph has been determined, the distance between
a pair v1, v2 of them can be minimized by checking if the different nodes vi in the path from
v1 to v2 also span the h-graph. We will show now how to compute the nodes on which
a tree-decomposition step strongly depends. First, we introduce the minimum h-graph
subgraph including a set of elements of G.

Definition 3.5.3

Let G = (V,E) be a tree-decomposable Laman graph, and H(G) = (V , ED, ES) be the
h-graph associated to G. The minimum complete subgraph spanned by the set P ⊂ V ,
HP (G) = (VP , E

P
D, E

P
S), is the minimum complete subgraph of H(G) such that for each

vi ∈ P there is a node Vi ∈ VP with vi ∈ Vi.

Since the minimum complete subgraph spanned by a set of vertices P is complete, it has

3.5 Representative nodes of complete subgraphs 43

an associated tree-decomposable Laman graph. Assuming the notation as in the previous
definition, we denote by GP this graph. Using Lemma 3.4.2 we can easily check that GP is
the minimum tree-decomposable Laman subgraph of G containing all the elements in P .

Lemma 3.5.4

Let G = (V,E) be a tree-decomposable Laman graph, and H(G) = (V , ED, ES) be the h-
graph associated to G. Let HP (G) be the minimum complete subgraph spanned by the set
P ⊂ V . Then, GP is the minimum tree-decomposable Laman subgraph of G containing all
the elements in P .

Proof

By Lemma 3.4.2, GP is a tree-decomposable Laman subgraph of graph G. GP contains
all the elements in the nodes of HP (G) = (VP , E

P
D, E

P
S), and by definition, for each vi ∈ P

there exist a node Vi ∈ VP with vi ∈ Vi. Then, GP contains all the elements in P .

Consider that GP is not minimum. Then, there exists a tree-decomposable Laman
subgraph G0 of G containing all the elements in P and such that G0 is also a subgraph of
GP . Then, by Lemma 3.4.3, H(G0) ⊆ H(GP), which is a contradiction with the fact that
H(GP) is the minimum complete subgraph spanned by the set P ⊂ V . 2

In the scope of this work, only subgraphs spanned by sets of two elements in V will be
considered. Thus, if P = {u, v}, we shall denote HP (G) as Hu,v(G) and GP as Gu,v.

Consider a tree-decomposition step Ti of a graph G with hinges (u, v, w). We prove now
that Ti depends indirectly on the tree-decomposition steps necessary to construct Hu,v(G),
Hu,w(G) and Hv,w(G).

Theorem 3.5.5

Let G = (V,E) be a tree-decomposable Laman graph and H(G) the associated h-graph. Let
T be a tree-decomposition of G, and Ti a tree-decomposition step in T with hinges u, v, w.
Let Hu,v(G) be the graph spanned by the two hinges u, v. If (u, v) /∈ E, then Ti depends
indirectly on the nodes in Hu,v(G) and is independent on the other ones.

Proof

Let G1 be the tree-decomposable Laman cluster merged by the tree-decomposition step Ti

such that u, v ∈ V (G1). Then, the associated h-graph H(G1) = (V1, E
1
D, E

1
S) is complete,

and as u, v ∈ V (G1), there exist at least two nodes U, V ∈ V1 such that u ∈ U and v ∈ V .
Since Hu,v(G) is the minimum h-graph fulfilling this last property, Hu,v(G) ⊆ H(G1).
Consider the tree-decomposable Laman graph Gu,v associated to the complete h-graph
Hu,v(G). By Lemma 3.4.3, Gu,v ⊆ G1, see Figure 3.5a.

Then, the hinges of every tree-decomposition step (u′, v′, w′) in the tree-decomposition
T leading to Gu,v are included in G1. Moreover, since Gu,v is the minimum tree-decompo-
sable Laman graph including u, v, there is no tree-decomposable Laman subgraph in Gu,v

44 The hinges graph

G2

G3

G1

u

w

v

Gu,v

G2

G3

Gu,v

w

v′

v

w′ u′

u

G1

a b

Figure 3.5: Illustration of Theorem 3.5.5. a) The minimum subgraph Gu,v including u, v
is included in the cluster G1 which contains u and v. b) Tree-Decomposition Step (u, v, w)
depends indirectly on every tree-decomposition step in Gu,v.

including u, v but not including the hinges u′, v′, w′, see Figure 3.5b. This proves that Ti

depends indirectly on the nodes in Hu,v(G).

Besides, the hinges of a tree-decomposition step Tj in G1 but not in Gu,v are included
in G1 but not in Gu,v. Then, there exists a tree-decomposable Laman subgraph, Gu,v,
including u, v but not the hinges of Tj . The tree-decomposition step is then independent
from Ti. 2

Subgraphs Hu,v(G) spanned by a pair of vertices u, v ∈ G are subgraphs of H(G) =
(V , ED, ES), and therefore can be spanned by the set of its representative nodes R ⊂ V .
It is easy to see that either |R| = 1 or |R| = 2. By definition, Hu,v(G) is the minimum
complete subgraph of H(G) such that there exist nodes V1, V2 ∈ V with u ∈ V1, v ∈ V2.
Then, the minimum subgraph spanned by V1, V2 is Hu,v(G).

We prove now that the representative nodes of the three h-graphs spanned by two of
the three hinges of a tree-decomposition step Ti are the nodes in which Ti depends strongly.

Theorem 3.5.6

Let G = (V,E) be a tree-decomposable Laman graph and H(G) the associated h-graph. Let
T be a tree-decomposition of G, and Ti a tree-decomposition step in T with hinges u, v, w.
Let Hu,v(G) be the graph spanned by the two vertices u, v. Then Ti strongly depends on the
representative vertices of Hu,v(G).

Proof

Graph Hu,v(G) = (V , ED, ES) is the minimum graph such that there exist nodes V1, V2 ∈ V

3.5 Representative nodes of complete subgraphs 45

with u ∈ V1, v ∈ V2. Consider R the set of representative nodes of Hu,v(G), then |R| = 1
or |R| = 2. Consider an element R0 ∈ R, we prove that T strongly depends on R0.

We show first that either R0 contains u or v, or it exists a step T0 wich contains u or v
and R0 depends indirectly on it. We show, by contradiction and for the two possible cases
|R| = 1 and |R| = 2, that in the case that R0 does not contain u nor v, a step T0 like the
one described exists.

If |R| = 1, R0 does not contain u nor v, and no step T0 in which R0 depends indirectly
contains u nor v, then it is impossible that R0 spans the subgraph Hu,v(G), because it does
not contain u nor v. This is a contradiction, and then this case is proven.

Consider |R| = 2, with R = {R0, R1}, R0 does not contain u nor v, and no step T0 in
which R0 depends indirectly contains u nor v. Consider the minimum path P = {Pi}

n
i=0 in

Hu,v(G) between R0 and R1, such that P0 = R0 and Pn = R1. Then, the graph spanned
by nodes P1, Pn will include all the elements in Hu,v(G) but the ones included in the graph
spanned by P0, HP0

(G). In particular it will include elements u, v, because they are not
included in HP0

(G).

The graph spanned by nodes P1, Pn is a subgraph including u, v and either is the same
or is smaller than Hu,v(G). In the case that it is the same, P0 can not be a representative
node of the graph, which is a contradiction, because the distance from P1 to Pn is less than
the distance from P0. In the case that it is smaller, since Hu,v(G) is the minimum graph
by defintion, we find a new contradiction, and then this case is also proven.

We show now by contradiction that there is no tree-decomposition step Tj such that
Ti depends indirectly on Tj and Tj depends indirectly on R0, for the two possible cases
|R| = 1 and |R| = 2. Consider then that there exists a tree-decomposition step Tj such
that Ti depends indirectly on Tj and Tj depends indirectly on R0.

If |R| = 1, R0 ∈ R spans Hu,v(G). Since Tj depends indirectly on R0, Tj can not be
included in the graph spanned by R0, Hu,v(G). Then, by Theorem 3.5.5, Tj is independent
on Ti, which is a contradiction. This case is not possible then.

If |R| = 2, and Tj depends indirectly on R0, Tj must be in the minimum path between
R0 and R1. Otherwise, the nodes in this minimum path together with the nodes in which
they depend indirectly will span a graph, including R0 and R1, in which Tj is not included,
which is a contradiction. Then the representative node of Hu,v(G) must be Tj instead of
R0, as every graph containing Tj will also contain R0. This case is also a contradiction,
which proves that no such a tree-decomposition step Tj may exist. 2

We have shown that a tree-decomposition step merging three clusters by means of hinges
u, v, w strongly depends on the representative nodes of the minimum graphs spanned by
the three possible pairs of its hinges. We present in Algorithm 2 a method to compute

46 The hinges graph

the strong dependences of a tree-decomposition step with respect to one cluster using
Theorem 3.5.6. Given two hinges, the algorithm first finds the minimum path between
two nodes in the h-graph each one including one of the two hinges. The found path must
be included in the minimum subgraph M spanned by the two hinges, and must include
the representative nodes of M . In order to find them, the algorithm checks if the graph
spanned by the different elements in the path is M , and takes the two closer ones for which
this holds.

Algorithm 2 Compute strong dependences

Input: HG, the h-graph of the cluster whose dependences we search for
u, v, the hinges included in HG

Output: R1, R2 the strong dependences of the step

function Compute Strong Dependences()
U := Set of nodes in HG including u
V := Set of nodes in HG including v
P := Minimum path between any two nodes, one in U, one in V
while P.length ≥ 1 and (GraphSpannedBy(P[1], P[P.length]) == GraphSpannedBy(
P[0], P[P.length])) do

P.delete[0]
end while

while P.length ≥ 1 and (GraphSpannedBy(P[0], P[P.length - 1]) ==
GraphSpannedBy(P[0], P[P.length])) do

P.delete[P.length]
end while

return P[0], P[P.length]
endfunction

Consider the graph spanned only by one node, say v. This graph only includes the
nodes which are essential for the construction of node v, which in practice corresponds to
the constructions steps necessary to construct v. That is, the graph spanned by one node v
only includes the nodes in which v depends indirectly, either strongly or not. This is a very
interesting property which will be useful to find the nodes in which a given node depend.
To compute this graph, we have developed a recursive algorithm which determines the set
of clusters in which v depends indirectly. Then, for every node in a cluster, we apply the
same algorithm until the node under study has no indirect dependences.

3.6 Conclusions 47

3.6 Conclusions

In this chapter we have introduced h-graphs, a new representation for tree-decomposable
Laman graphs which summarizes in the same graph the information about the graph
and its tree-decomposition. This later feature, and the way they explicit the relations of
dependence between the decomposition steps of the graph, make h-graphs very efficient in
order to search for certain sub-structures in tree-decomposable Laman graphs.

We have shown different ways to construct the h-graph associated to a tree-decomposable
Laman graph. Basically, it can be constructed at the same time than the graph, when the
graph is constructed from the triangle graph K3 by means of a constructive sequence, or
from the construction plan or tree-decomposition of the graph, once the graph has been
already tree-decomposed. The main drawback of h-graphs is that, for a given graph G of
any order, to build the h-graph is equivalent to decomposing G. Also, an analysis could
be done to determine if some primitives of h-graphs could be speeded-up.

48 The hinges graph

CHAPTER 4

Parameter ranges

Every word or concept, clear as it may seem to be,
has only a limited range of applicability.

Werner Heisenberg

The computation of parameter ranges in which the geometric constraint problems with
one degree of freedom or variant parameter have an actual realization is a challenging and
longtime addressed problem. In dynamic geometry, the computation of the domain, which
is the set of parameter ranges for each one of the possible index assignments where the
constraint problem solution is actually realizable, is an essential step in the process leading
to the solution of the reachability problem.

Until the publication in 2008 of the van der Meiden works, [103, 105], the search for
parameter ranges in which the geometric constraint problem have an actual realization
was made by regular sampling. But in his PhD dissertation [103], van der Meiden presents
a simple method which computes efficiently the parameter ranges of a given geometric
constraint problem. Despite the rigorous description of the approach, no correctness proof
is presented in [103] and no implementation evidence is given.

In this chapter we will study the van der Meiden method, presenting an accurate cor-
rectness proof, the key points of our implementation and a case study which will illustrate

50 Parameter ranges

the whole process. The result of this work can also be found in Hidalgo et al. [37, 42].

4.1 Preliminaries

The van der Meiden method is an algorithm which efficiently computes the parameter
ranges of a given geometric constraint problem. It is based on the decomposition of the
problem in different tree-decomposition steps and in identifying the dependence of these
tree-decomposition steps with respect to the variant parameter.

In this section we present some concepts necessary for the complet understanding of
the van der Meiden method, as well as a formal definition of the domain of a geometric
constraint problem with one degree of freedom.

4.1.1 The domain of a geometric constraint problem with a variant pa-

rameter

In geometric constraint problems with one variant parameter, the construction feasibility
of the problem depends on the value of the variant parameter. As defined in Section 2.3.1,
Chapter 2, critical values of the variant parameter are those values in which the feasibility
of the problem changes.

The domain of the geometric constraint problem with one variant parameter is defined
as the set of values for which a construction plan for the problem is feasible. In general,
the domain of a geometric problem is made of a set of disjoint intervals, each bounded by
critical variant parameter values. We formalize now these concepts following to Freixas et
al [25].

Definition 4.1.1

Let Π =< ΠG,ΠC ,ΠP > be a geometric constraint problem with one variant parameter λ
and let T (σ, λ) be a construction plan that solves Π. Given an index assignment σj, we
define a domain interval of the variant parameter λ as the i-th connected set Di

j ⊆ R, such

that for all λ ∈ Di
j the construction plan T (σj , λ) is feasible.

Notice that a domain interval Di
j bounded by the critical values λl and λu is closed in λl

or in λu if T (σj , λl) or T (σj , λu) are instances of the construction plan T (σ, λ), respectively.
Otherwise, it is open at that points.

Definition 4.1.2

Let Π =< ΠG,ΠC ,ΠP > be a geometric constraint problem with one variant parameter

4.1 Preliminaries 51

wλ
G1

G2

G3

u

v

λ

u′

v′

u

v

G1

G2

G3

w′

λ

u

v v′

G2

G3

G1
L

u′

w′

a b c

Figure 4.1: Dependency of a construction step. a) Directly dependent. b) Indirectly
dependent. c) Independent.

λ and let T (σ, λ) be a construction plan that solves Π. We define the domain of λ as
the union of domain intervals for all possible index assignments in the construction plan,
D(λ) = ∪i,jD

i
j(λ).

This definition of domain fits perfectly within the abstract notion given in Section 2.3.1,
Chapter 2.

4.1.2 Dependence on the variant parameter

From now on, we consider that the geometric constraint problem Π =< ΠG,ΠC ,ΠP > is
represented by the graph G = (V,E), where V = ΠG are the geometric elements in Π and
E = ΠC are the constraints defined among them. We assume that the variant parameter
is an edge λ = (u, v) ∈ E and a generation sequence for G has been computed.

Dependency of a tree-decomposition step on the variant parameter is a central concept
in this work. Each tree-decomposition step in a tree-decomposition will depend on the
variant parameter in one of the following three different ways illustrated in Figure 4.1.

We define these concepts in the following definitions. The first definition states the
concept of direct dependence of a tree-decomposition step with respect to the variant
parameter.

Definition 4.1.3

Let G = (V,E) be a tree-decomposable Laman graph representing a geometric constraint
problem with variant parameter λ = (u, v) ∈ E. Consider a tree-decomposition step Ti of a
tree-decomposition T with hinge triple {u, v, w}. Then, we say that Ti depends directly on
the variant parameter λ.

52 Parameter ranges

Direct dependency is the simplest one of the two types of dependency. It is illustrated
in Figure 4.1a. Notice that every tree-decomposition step including hinges u, v depends
directly on the variant parameter λ = (u, v).

Computing critical values of the variant parameter in directly dependent tree-decom-
position steps is straightforward since a feasibility rule can be defined for each tree-
decomposition step, depending on the constraints defined between the different elements.
One can construct a dictionary, see Table 2.1, with the different critical values of the vari-
ant parameter for each tree-decomposition step, as seen in Section 2.3.1. The dictionary
will be used subsequently in Section 4.2 in the van der Meiden method.

Definition 4.1.4

Let G = (V,E) be a tree-decomposable Laman graph representing a geometric constraint
problem with variant parameter λ = (u, v) ∈ E. Consider the tree-decomposition step Ti

of a tree-decomposition T with hinge triple {u′, v′, w′}. Let G1 be a cluster of the tree-
decomposition step Ti. We say that the tree-decomposition step Ti depends indirectly on
the variant parameter λ if u, v ∈ G1 and there exists no subgraph L ∈ T ∪ E in G1 such
that V (L) contains u′, v′ but not u, v.

Figure 4.1b illustrates this case. Indirectly dependent tree-decomposition steps rep-
resent the most important obstacle for a straightforward computation of the parameter
ranges of a problem. In Section 4.2 we will explain how to solve this problem.

Finallywe define the problems which are independent on the variant parameter.

Definition 4.1.5

Let G = (V,E) be a tree-decomposable Laman graph representing a geometric constraint
problem with variant parameter λ = (u, v) ∈ E. Consider a tree-decomposition step Ti.
We say that Ti is independent from the variant parameter λ if Ti does not depend neither
directly nor indirectly on the variant paramter.

This situation is shown in Figure 4.1c. Notice that in independent tree-decomposition
steps the construction can be actually carried out without taking into account the value of
the variant parameter. Effectively, the placement of elements u′, v′ is fixed whenever the
subgraph L is fixed. Then, the other two clusters not including L, clusters G2 and G3 in
Figure 4.1a, can be merged with L regardless of the variant parameter’s value.

4.1.3 Dependence and h-graphs

Dependence of the different tree-decomposition steps of a graph representing a geometric
constraint problem with respect to the variant parameter of the problem can be determined
efficiently using h-graphs, introduced in Chapter 3.

4.1 Preliminaries 53

Consider the tree-decomposable Laman graph G = (V,E) representing the geometric
constraint problem Π =< ΠG,ΠC ,ΠP > with variant parameter λ = (u, v) ∈ E. Consider
now the h-graph H(G) = (V , ED, ES) associated to G, as defined in Section 3.2. V is the
set of hinge triples of G, representing the set of generation steps in any tree-decomposition
T for G. ED, ES represent the different hierarchical dependences stablished among the
generations steps.

Although dependences between two tree-decomposition steps, as defined in Section 3.1,
Chapter 3, and dependences of a tree-decomposition step on the variant parameter repre-
sent different concepts and are used for different purposes, there is a clear analogy between
them. In fact, we can determine the dependence of a tree-decomposition step on the vari-
ant parameter from the dependence between two tree-decomposition steps. We show that
for each kind of dependence.

For direct dependences, assume that the variant parameter of the problem is the edge
λ ∈ E. Consider two tree-decomposition steps of G which depend directly on each other.
By Definition 3.1.1, both tree-decomposition steps share two hinges a, b, and the edge
(a, b) ∈ E. If the edge (a, b) is the variant parameter λ, then both tree-decomposition steps
depend directly on the variant parameter λ.

For indirect dependences, let V1 ∈ V be a tree-decomposition step, represented by the
hinge triple (u, v, w), which depends directly on the variant parameter λ = (u, v). Let
V2 ∈ V be a tree-decomposition step which depends indirectly on V1. By Definition 3.1.2,
one of the clusters of V2, say G1, includes the three hinges of V1, in particular u and
v, and the edge defined by them. Besides, no Laman subgraph L exists like the one in
Definition 4.1.5. Then, the variant parameter λ = (u, v) is included in G1, and thus, V2

depends indirectly on the variant parameter λ.

For independent problems, let V1 ∈ V be now a tree-decomposition step, represented
by the hinge triple {u, v, w}, which depends directly on the variant parameter λ = (u, v).
Let V2 ∈ V be a tree-decomposition step represented by the hinge triple {u′, v′, w′} which
does not depend on V1. By Definition 3.1.4, one of the clusters of V2, say G1, includes the
three hinges of V1, the edges defined among them, and a Laman subgraph L including two
hinges, say u′, v′, but not u, v. Then, G1 includes the variant parameter λ = (u, v) and a
Laman subgraph L like the one in Definition 4.1.5, and thus, V2 depends indirectly on the
variant parameter λ.

Since h-graphs are precisely graphs which represent the different kinds of dependences
arising between the tree-decomposition steps of a tree-decomposable Laman graph, they
can be used to determine the kind of dependence of the tree-decomposition steps with
respect to the variant parameter. The dependence of any tree-decomposition step with
respect to the variant parameter is computed following a three steps algorithm.

54 Parameter ranges

d

b e

fc

a
λ

d9

d1 d2

d4

d8
d6

d7d5 (a, b, c) (a, b, d)

(c, d, e) (c, e, f)

a b

Figure 4.2: Dependence on the variant parameter. a) Graph G representing the geometric
constraint problem Πλ. b) H-graph H(G) associated to G.

First, if the variant parameter is defined upon vertices u, v, we can use the h-graph to
find the set of nodes including u, v as hinges. These nodes are those depending directly on
the variant parameter. We call the set of such nodes D.

Then, for every node V in D, we use the h-graph to find all the nodes VR depending
indirectly on V . Every node VR joined with V by means of a concatenation of s-edges
depends indirectly on V . Nodes VR will depend indirectly on the variant parameter.

Finally, all nodes not included in D nor depending indirectly on any node in D are
independent on the variant parameter.

Algorithm 3 shows the algorithm used to compute the dependences of the tree-decom-
position steps of a tree-decomposition of a graph G by means of the h-graph H(G). HG
represents a h-graph and stores the sets HV, ED and ES standing for the nodes set, the
set of direct dependences and the set of strong dependences respectively. The algorithm
returns two sets, D and S, including the nodes depending directly and indirectly on the
variant parameter, respectively. The nodes in HV not included in D or I are independents
on the variant parameter.

To illustrate how the algorithm works, consider the graph G depicted in Figure 4.2a
representing a geometric constraint problem with variant parameter λ = (a, b), and the
associated h-graph H(G) in Figure 4.2b. Nodes in H(G) including hinges a, b depend
directly on λ. These nodes are (a, b, c), (a, b, d). Nodes depending indirectly on nodes
(a, b, c), (a, b, d) depend indirectly on λ. There is just one such node, (c, d, e). Finally,
nodes independent from nodes (a, b, c), (a, b, d) are also independent on λ. Node (c, e, f) is
then independent on the variant parameter λ.

4.2 The van der Meiden method 55

Algorithm 3 Compute the type of dependency

Input: HG = (HV, ES, ED), the h-graph associated to G
u, v, the vertices upon which stands the variant parameter

Output: (DD, ID) sets including the directly and indirectly dependent nodes

function Compute Dependence
DD = Elements in HV incuding u, v
ID = ∅
S = DD
while Size of S > 0 do

E = Edges in ES beginning at S[0]
for each E[j] in E do

S = S ∪ { Opposite to S[0] in E[j] }
ID = ID ∪ { Opposite to S[0] in E[j] }

end for

Remove S[0] in S
end while

return (DD, ID)

4.2 The van der Meiden method

The van der Meiden method to compute the domain of the variant parameter is based on
the identification of a set of points which could be the endpoints of the parameter domain
intervals. These points will be referred to as candidate points.

The maximum possible domain of a problem, understood as the domain of a problem
if no constraint restricts it, depends on the type of the variant parameter. Specifically,
for distance type variant parameters the maximum possible domain is the set R

+, as we
only consider positive distances. For angle type variant parameters the maximum possible
domain is the set [−π/2, π/2], as we consider angles defined inside this interval. The
computed candidate points will however split this maximum domain in different regions or
intervals, where feasibility remains constant. This observation will be proven in Section 4.4.
In a subsequent phase, the actual endpoints of the domain intervals are selected from the
set of candidate points, determining the final domain of the problem.

The method has therefore two steps, [105]. In the first one the candidate points are
computed. In this step index assignments are irrelevant. In the second step, we need
to fix a specific index assignment and select from the set of candidate points which ones
will determine the endpoints of the domain intervals associated to this concrete index
assignment. The process must be repeated for every possible index assignment.

56 Parameter ranges

In this section we explain in detail the van der Meiden method. Firstly we introduce
the method to determine the candidate points and then we explain the selection of the
actual endpoints of the domain intervals. Finally we discuss the main drawbacks of the
method.

4.2.1 Computing the candidate points

Since only one variant parameter is considered, degenerate situations appear only in those
tree-decomposition steps that depend on it, whether directly or indirectly. Depending on
the kind of dependency, two different procedures to determine the candidate points are
considered.

For tree-decomposition steps (u, v, w) depending directly on the variant parameter
λ = (u, v), their critical values define the candidate points. In the case that the tree-
decomposition step is a basic step, all edges between hinges exist and the critical values
can be computed applying the dictionary that collects for each degenerate case a specific
solution method. This dictionary is shown in Table 2.1, Section 2.3.1. These critical values
are the candidate points generated by the step (u, v, w).

In the case that the tree-decomposition step is not a basic step, then at least one of
the two edges (u,w), (v, w) is missing. For each missing edge there is a tree-decomposable
Laman subgraph including either u,w or v, w. Specifically, the distance or angle between
the included pair of hinges will be measurable. Then, a basic equivalent tree-decomposition
step can be constructed by replacing the cluster by the rigid bar (u,w) or (v, w) and
assigning to this new constraint the measured value. The critical values of this new problem
can be computed applying the dictionary shown in Table 2.1, Section 2.3.1, as above. These
critical values are the candidate points generated by the step (u, v, w).

For indirectly dependent tree-decomposition steps, the computation of the critical val-
ues must be done indirectly. Consider a tree-decomposition step (u′, v′, w′) which depends
indirectly on the variant parameter λ = (u, v). Assume that G1 is the cluster merged
by (u′, v′, w′) including the variant parameter λ = (u, v) and that the hinges included in
G1 are u′, v′. The method to compute the critical values transforms in the first place the
indirect dependence into a direct one. Constraint λ = (u, v) is removed and a new variant
parameter µ = (u′, v′) is added. In that way, direct dependence of (u′, v′, w′) on the variant
parameter is assured.

Then, critical values for this new modified problem are calculated as in the basic tree-
decomposition step case by using the dictionary of direct dependency as described above.
Finally, the modified problem is solved and constructed for each of those critical values,
and the candidate points are computed by measuring the value of the relation between
geometric elements u, v at each construction. Figure 4.3 shows the different steps of the

4.2 The van der Meiden method 57

λ

u′

v′

u

v

G1

G2

G3

w′
w

C2

C3

µ

v

u

λ

µ

G2

G1

G3

u

v

u′

w′

v′

a b c

Figure 4.3: Candidate points computation process for indirectly dependent tree-decom-
position steps. a) Tree-decomposition step that depends indirectly on λ. b) Transformed
problem that depends directly on µ. c) Construction where values for the variant parameter
λ are measured.

process.

Figure 4.4 shows the graphic of the relation between the values of the variant parameter
λ and the values of µ. Notice that both variant parameters have different maxima and
minima. Notice also that, as µ increases its value, λ increases rapidly up to a local maximum
and then decreases slowly again. Finally, notice that the value of λ for the minimum and
maximum values of µ is the same, zero.

Intuitively, the candidate points of an indirectly dependent tree-decomposition step are
the values of λ measured when the new variant parameter µ takes critical values, that is,
the values of λ for which the feasibility of the construction may change.

4.2.2 Computing the domain

Once all candidates have been computed, it is necessary to elucidate which of them are
actually bounds of interval domains. At this point of the method a specific index assignment
must be fixed, as computations to determine the domain include the actual construction
of the problem.

The second step of the method consists on checking for the constructibility of the
problem at each region resulting from the splitting of the maximum possible domain of the
problem by the candidate points. We consider each interval defined by two subsequent crit-
ical values, pick in it a value for the variant parameter and check whether the construction
plan is feasible or not.

58 Parameter ranges

1 2 3 4 5123
456

7

λ∗

µ
0 6

Figure 4.4: Relation between the values of the variant parameter λ and the values of µ.

The approach relies on the fact that, under the assumption that the variant param-
eter continuously changes within the interval bounded by two subsequent critical values,
see Section 4.4, construction plan feasibility does not change inside such intervals. There-
fore, checking for feasibility in one point within each such interval is enough to establish
feasibility over it.

Besides, feasibility on the candidate points must also be checked to elucidate the topol-
ogy of the feasible intervals or the existence of isolated points of feasibility. A feasible
interval is closed at a bound whenever the construction at this bound is feasible. On the
contrary, an interval is open at a bound if the construction at this bound is not feasible.
Many configurations can appear, such as isolated points of feasibility or isolated points of
unfeasibility. In principle, intuition suggests to consider as a single interval two feasible
intervals sharing a feasible bound. A discussion on this topic is developed at the end of
Section 5.1.3.

All this feasibility computations must have been done after the selection of a specific
index assignment σ. The resulting domain intervals are the domain intervals associated
to σ. For the computation of the domain, it is necessary to settle one by one all the
possible index assignments of the problem and carry out the computation of their feasible
intervals. The union of all feasible intervals for all possible index assignments will lead to
the complete domain of the problem.

4.2.3 Limitations of the method

Analyzing the method proposed in this section, we easily see that, in order to compute the
domain of the problem Π, the solver must solve not only Π but a number of new problems

4.3 Our implementation 59

derived from the indirectly dependent tree-decomposition steps defined in it. Indeed, for
the method to succeed, all considered problems must be tree-decomposable.

Unfortunately, in the van der Meiden method there is no election in the change of driving
parameter, and the definition of the different problems is given by the situation of the
variant parameter with respect to the indirectly dependent tree-decomposition steps. The
tree-decomposability can not be then assured. Moreover, chances are that as the problem
size increases, so does the possibility of including transformed problems which are not
tree-decomposable. In the case that one of the derived problems is not tree-decomposable,
either a different solving approach is applied to solve the transformed problem or the
method fails.

4.3 Our implementation

Let T be the decomposition tree that solves the constraint problem at hand. In our
implementation, each node in T stores:

1. T.built: A boolean flag that takes value true whenever the coordinates of the geo-
metric object have been actually computed with respect to a local framework,

2. T.coordinates: An array of coordinates that places every geometric object with re-
spect to a local framework,

3. T.rule: An identifier for the solving rule. If the node is a leaf, the rule is a basic
placement. Otherwise the rule identifies the merging of three clusters,

4. T.hinges.u, T.hinges.v, T.hinges.w: Pointers to the hinges in the set of geometric
objects on which the merging was carried out, and

5. T.left and T.right point to the left and right tree child respectively.

Without loss of generality and for the sake of simplicity and convenience, we assume that
the variant parameter is always defined upon hinges u and v in the leftmost cluster in each
set of sibling nodes of a tree-decomposition step of T. Since we consider problems with just
one variant parameter and the order in which siblings are depicted in the decomposition tree
is meaningless, this assumption just implies that the tree has been conveniently rewritten.

We assume that the set of geometric elements, G, the set of constraints, C, the vector of
parameters in C, P, the index in P of the variant parameter, i, and, the decomposition tree
of the problem being solved, T are stored as static variables. Moreover, T.built value is
true for the leaf nodes and false otherwise. Our implementation is based on the algorithms
listed in Algorithm 4 through Algorithm 6.

60 Parameter ranges

Algorithm 4 Computing de Domain

Input: HG = (HV, ES, ED), the h-graph associated to G
T, the tree-decomposition of G
(u, v), the variant parameter of G

Output: The domain of the problem represented by G

function Compute Domain()
D := ∅
(DD, ID) = Compute Dependence(HG, u, v)
K := Compute Critical Values(T, DD, ID)
for each possible index assignment σ do

for each subsequent interval [c1, c2] in K do

p = (c1 + c2)/ 2
if T(p, σ) is feasible then

Check for feasibility at interval bounds c1 and c2
I = Interval from c1 to c2, with the measured topology
D = D + I

end if

end for

end for

return D
endfunction

4.3 Our implementation 61

Algorithm 5 Computing Critical Values

Input: The subtree T whose root is the current tree-decomposition step
DD, the set of nodes directly depending on the variant parameter
ID, the set of nodes indirectly depending on the variant parameter
λ = (u, v), the variant parameter of G

Output: The set of critical values K

function Compute Critical Values()
if not T.left.built then
Compute Critical Values(T.left)

end if

if T.left in DD then

K := K + Critical Values From Dictionary(T.rule, (u, v))
else if T.left in ID then

µ = Dummy Parameter(T.hinges.u, T.hinges.v)
Pµ = { P’ - λ } ∪ { µ }
Tµ = Solve Problem(G, C, Pµ)
σ := Significative index associated with the dummy parameter µ
Q := Critical Values From Dictionary(Tµ.rule, µ)
for each q in Q do

for each possible index assignment σi in σ do

R = Build Realization(Tµ, q, σi)
K = K + Measure In Realization(R, λ)

end for

end for

end if

T.built := true

return K

Algorithm 6 Compute Dummy Parameters

Input: u, v,, hinges in cluster C1

Output: Type of needed dummy constraint

function Dummy Parameter
if IsApoint(u) and isApoint(v) then
return point-point-distance

else if (IsApoint(u) and isAline(v)) or (IsApoint(v) and isAline(u)) then
return point-line-distance

else if IsAline(u) and isAline(v) then
return line-line-angle

end if

62 Parameter ranges

4.4 Algorithm correctness

In this section we show the correctness of our algorithm. In [29], a general result concerning
the computation of critical values of constraint problems over points and distances con-
straints with one degree of freedom is presented. Here we consider problems which include
distance and angle constraints and the underlying graphs must be Laman and tree decom-
posable, that is, a super set of Henneberg-I graphs. The results presented in Sections 4.4.1
and 4.4.2 are collected in [41].

4.4.1 The transformation

We shall start the van der Meiden method correctness proof by showing that the transfor-
mation defined in Section 4.2 is always possible. That is, the constraint corresponding to
the variant parameter in the problem can always be replaced with another constraint. We
will see that, in an indirectly dependent tree-decomposition step, no constraint is defined
between the two hinges upon which the new variant parameter will be defined. Then, when
the van der Meiden method is applied, the new variant parameter can be defined because
it did not exist before.

Theorem 4.4.1

Let G = (V,E) be a tree-decomposable Laman graph associated to the geometric constraint
problem Π with one variant parameter λ ∈ E. Let (u, v, w) be a generation step of G which
depends indirectly on the variant parameter and G1 the cluster in which λ is included. If
u, v are the hinges included in G1 then no constraint is defined between hinges u and v.

Proof

For a contradiction assume that there is a constraint defined between hinges u and v, say
e = (u, v) ∈ E. Then e 6= λ, otherwise the construction step would depend directly on e.
Define the cluster L ⊂ G1 including only edge e and vertices u, v. Then, L is an element
in E and therefore (u, v, w) does not depend on λ. We have found the contradiction. 2

Consider a generation step (u′, v′, w′) of the graph G which depends indirectly on the
variant parameter λ. Then, Figure 4.5 shows the only two possible locations for λ inside
the problem. Since no constraint is defined between the two hinges in the cluster in which
λ is included, u′ and v′, λ in particular can not be defined upon these two hinges.

This result assures the feasibility of the variant parameter change in the case of an
indirect dependency. Since there exists no constraint defined upon the desired hinges,
the removal of the original variant parameter and the addition of the new one is always
possible.

4.4 Algorithm correctness 63

λ

u′

v′

u

v

G1

G2

G3

w′ λ
G1

G2

G3

u = u′

v

v′

w

a b

Figure 4.5: In well-constrained problems which indirectly depend on the variant parameter
λ, the only two possible locations for λ are shown in this Figure. a) The variant parameter
is defined upon two elements different to the hinges u′, v′. b) The variant parameter is
defined upon one of the hinges, say u′, and another arbitrary element different to the other
hinge v′.

4.4.2 The set of solution instances

As seen in Section 4.2, in case that a problem depends indirectly on the variant parameter,
the van der Meiden method computes ranges for feasible values of variant parameters
transforming the problem by removing the variant parameter in the given problem and
adding a convenient, new variant parameter. Thus, we need to prove that the sets of
solution instances for the given problem and for the transformed one are the same set.

Let Π =< ΠG,ΠC ,ΠP > be a well-constrained geometric constraint problem and T a
construction plan that solves Π. We shall denote by T(P, I) the instance of T resulting
from evaluating T for the specific values in ΠP of the parameters in the constraints ΠC

and index signs fixed in I. We will denote by T the set of all possible instances T(P, I) for
problem Π. We start the proof by stating a trivial lemma.

Lemma 4.4.2

Let Π =< ΠG,ΠC ,ΠP > be a well-constrained geometric constraint problem. Let T be a
construction plan that solves Π and let T(P, I) be a realization of the solution instance.
Then for any pair of geometric objects gi, gj ∈ G any relationship between them can be
measured in T(P, I).

Proof

Since the problem is well-constrained, any realization T(P, I) places all the geometric
elements in G with respect to a common reference. 2

Next we state and prove a lemma that relates solution instances for different geometric

64 Parameter ranges

constraint problems defined on the same set of geometric elements for which tree decom-
positions are known.

Lemma 4.4.3

Let Π1 =< ΠG,Π
1
C ,Π

1
P > and Π2 =< ΠG,Π

2
C ,Π

2
P > be two well-constrained geometric

constraint problems defined on the same set of geometric elements G. Let T1 and T2

be construction plans that respectively solve problems Π1 and Π2 and let T1(P1, I1) be a
solution instance for the problem Π1. If parameters in Π2

P and indices in I2 are assigned
values measured in the actual solution T1(P1, I1), then T2(P2, I2) is a solution instance for
Π2.

Proof

By Lemma 4.4.2, we can measure a value for any constraint parameter in C2 and derive any
sign in I2 in the actual solution instance T1(P1, I1). The construction plan T2(P2, I2) rep-
resents all possible solution instances to problem Π2 and in particular the solution instance
corresponding to values of P2 and I2 measured from the actual construction T1(P1, I1). 2

To illustrate this lemma, consider a set of geometric objects including four points
p1, p2, p3 and p4 and two lines l1, l2. Now consider two different geometric constraint
problems defined on them, say Π1 and Π2. Problem Π1 the constraint graph of which
is depicted in Figure 4.6a includes six point-point distance constraints, d11, d

1
2, d

1
3, d

1
4 an

angle constraint a11 plus four point-on-line incidence. If constraints are given values d11 =
5, d12 = 5, d13 = 8, d14 = 4 and a11 = 53.13, Figure 4.7a shows an instance solution to problem
Π1.

Problem Π2 whose graph depicted in Figure 4.6b is defined by means of five point-
point distances d21, d

2
2, d

2
3, d

2
4, d

2
5 plus four point-on-line incidences. By Lemma 4.4.2 we can

measure any relationship between the geometric elements placed with respect each other in
the solution instance of Π1 shown in Figure 4.7a. If constraints in problem Π2 are assigned
values measured in this way, we get d21 = 4, d22 = 4, d23 = 8, d24 = 8.94, d25 = 6.4. In these
conditions problem Π2 is feasible. If additionally we measure in the Π1 solution instance
signs corresponding to the step constructions in Π2 with more than one possible solution,
we get the specific solution instance to Π2 show in Figure 4.7b.

Finally, we prove that the set of solution instances of both the original problem and
the modified one are the same.

Theorem 4.4.4

Let Πλ =< ΠG,Π
λ
C ,Π

λ
P > and Πµ =< ΠG,Π

µ
C ,Π

µ
P > be two well-constrained geometric

constraint problems, defined on the same set of geometric elements ΠG with variant param-
eters λ and µ respectively, and such that Πλ

C − {λ} = Πµ
C − {µ}. Moreover, let Tλ and Tµ

be construction plans that respectively solve Πλ and Πµ. Then the sets of solution instances
Tλ and Tµ for problems Πλ and Πµ generated by arbitrarily varying λ and µ respectively

4.4 Algorithm correctness 65

p1 p3

l1p4

d11

on

on

on

d12

on

a11d14

p2
d13

l2

on

p2

l1p4

p1

l2p3

on

on
on

d25

d22

d24

d21
d23

a b

Figure 4.6: Two problems defined over the same set of geometric objects. a) Problem Π1.
b) Problem Π2.

p1 p2

l1

l2

p3 p4

p1 p2

l1

l2

p4p3

a b

Figure 4.7: Solution instances. a) Instance for problem Π1. b) Instance for problem Π2.

66 Parameter ranges

are the same set.

Proof

We will prove Tλ = Tµ by a double inclusion. First we take an arbitrary element on
Tλ and show that it is also contained in Tµ. Consider the instance Tλ(Pλ, Iλ) ∈ Tλ. It
fulfills all common constraints in Πλ and Πµ, which are the fixed constraints in problem
Πµ. By Lemma 4.4.2, we can measure the value of the constraint corresponding to µ.
Since Tλ(Pλ, Iλ) actually exists, this value will be a real number and, by Lemma 4.4.3, the
instance will be also instance of problem Πµ. Then Tλ(Pλ, Iλ) ∈ Tµ and the inclusion is
proved. The reverse inclusion is made analogously, proving that Tµ ⊆ Tλ. That completes
the proof. 2

This result states that two problems defined on the same set of geometric elements
whose constraints only differ in the variant parameter have always the same set of possible
instances. In other words, this assures that when a problem has one degree of freedom, the
constraint considered as variant parameter does not matter. The set of solution instances
generated by the variation of the value of the degree of freedom in the resulting construction
is always the same.

4.4.3 Correctness

In this last section we finally prove that the algorithm proposed by van der Meiden in
[103] is correct and it finds the parameter ranges of a geometric constraint problem. First
we will see that values of the original variant parameter measured at critical values of the
transformed problem are critical values of the given problem.

Lemma 4.4.5

Let Πλ =< ΠG,Π
λ
C ,Π

λ
P > be a geometric constraint problem and Pi a tree-decomposition

step that indirectly depends on λ. Let Πµ =< ΠG,Π
µ
C ,Π

µ
P > be the problem resulting after

replacing λ by µ, in such a way that Pi directly depends on µ. Let Tµ be a solution tree to
Πµ for some index Iµ, and let µ∗ be a critical value of Tµ. If Tµ(µ

∗) exists and λ∗ is the
value of parameter λ measured in it, then constructibility of Tλ changes at λ∗. That is, λ∗

is a critical value for the problem Πλ.

Proof

Let µ∗ be a critical value for Πµ and λ∗ be the measure in Tµ for parameter λ. Assume
that C1, C2 and C3 are the three clusters involved in the indirectly dependent problem
with C1 being the cluster that undergoes the problem transformation.

Since the problem is well-constrained, and according to Theorem 4.4.4, continuously
changing λ in cluster C1 of Tλ, will result in λ reaching the value λ∗. Then, µ will take the
value µ∗ and constructibility of Tλ will change accordingly to the constructibility of the

4.5 Case study 67

problem defined over C1, C2 and C3. Therefore λ∗ is a critical value for Πλ. 2

This result assures that every critical value in the modified problem is also a critical
value in the original one, as long as the construction is feasible at that point. With all
these preliminary results, we will show now that the proposed algorithm figures out all the
critical values and only critical values of a geometric constraint problem.

Theorem 4.4.6

Let Πλ =< ΠG,Π
λ
C ,Π

λ
P > be a geometric constraint problem and Tλ be a construction plan

that solves Πλ. Then, Algorithm 4 computes exactly the set of critical values of Πλ.

Proof

Correctness: We show that every point returned by the system is a bound in the domain
of the problem. This is assured by the second part of the algorithm, which tests feasibility
at the critical values bounding an interval domain and in a point within the interval. Each
critical value λc separates two intervals: the one ending in it, say D1, and the one beginning
in it, say D2. If a λc is not a bound of an interval of the domain of the problem, feasibility
at D1 and at D2 will be the same, and the system will not pick it up as bound. Then the
algorithm only picks up correct points.

Completeness: We show now that every bound of any interval domain of the problem is
selected. Effectively, a bound of an interval domain the domain of the problem must be
critical value of at least one of its tree-decomposition steps. Since the algorithm returns all
critical values of each considered tree-decomposition step, and it visits once and only once
each tree-decomposition step in Tλ that is directly or indirectly dependent on λ, it returns
necessarily all bounds of the problem’s domain. 2

This theorem proves that the van der Meiden method given in [103] effectively is correct
and computes the feasible ranges of problems with one variant parameter.

4.5 Case study

To further illustrate how our algorithm works, we develop the piston and connecting rod
crankshaft problem as a case study. This is a good example to highlight the full method-
ology of our algorithm as it involves all kinds of dependence in its tree-decomposition
steps.

The case study we develop is depicted in Figure 4.8. From left to right, the fig-
ure shows a piston and connecting rod crankshaft, an abstraction of the piston repre-
sented as a geometric constraint problem, and an actual construction plan that solves
the problem. The set of geometric elements includes four points and a straight line
ΠG = {p0, p1, p2, p3, l}. The set of constraints includes four point-point distances and three

68 Parameter ranges

���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

l

p1

p2

d1

p3

d0

p0

d3

on

d2

on
on 1. p0 = origin()

2. p3 = distD(p0, d3)
3. l = line2P (p0, p3)
4. c0 = circleCR(p0, d2)
5. p2 = iLC(l, c0, s1)
6. c1 = circleCR(p0, d0)
7. c2 = circleCR(p2, d1)
8. p1 = iCC(c1, c2, s2)

a b c

Figure 4.8: Case study. a) Piston and connecting rod crankshaft. b) Geometric abstraction.
c) Construction plan.

point-on-line incidences, ΠC = {d(p1, p0) = d0, d(p1, p2) = d1, d(p2, p3) = d2, d(p0, p3) =
d3, onPL(p0, l), onPL(p2, l), onPL(p3, l)}. The set of parameters includes the parame-
ters related to the distances, ΠP = {d0, d1, d2, d3}. We consider as variant parameter
λ = d2 = d(p2, p3).

Figure 4.9a shows the graphG of the geometric constraint problem Πλ =< ΠG,ΠC ,ΠP >.
Figure 4.9b is the tree decomposition Tλ of the construction plan that solves the problem
yielded by the solver. Figure 4.9c shows the associated h-graph H(G).

FromH(G) we extract that Πλ has three tree-decomposition steps: (l, p2, p3), (p0, p1, p2)
and (p0, p3, l). Tree-decomposition step (l, p2, p3) depends directly on λ for p2, p3 ∈ (l, p2, p3),
tree-decomposition step (p0, p1, p2) depends indirectly on λ for it depends indirectly on
(l, p2, p3), and finally tree-decomposition step (p0, p3, l) is independent on λ. Notice that
in the tree-decomposition, the cluster with hinges (p0, p3, l) is decomposed after λ is fixed
in a separated branch. This tree-decomposition step is not considered by the algorithm,
and can always be constructed.

For the tree-decomposition step (l, p2, p3) the dictionary provides the critical values.
The construction places point p2 on the line through points p0 and p3 at a distance λ from
p0. Since we do not consider signed distances, the construction is clearly feasible for all λ
with 0 ≤ λ < ∞.

Finally, we consider tree-decomposition step (p0, p1, p2), which depends indirectly on
the variant parameter λ. The hinges included in the cluster containing λ are p0, p2. Thus

4.5 Case study 69

l

d0

d1

onon
on

p0

p1p3

p2

λ

d3
{p1, p2}

{p0, p1, p2, p3, l}, s2

{p0, p2, p3, l}, s1

{p2, p3}(λ) {l, p2} {p0, p3, l}

{p0, p1}

{p0, p3} {p3, l} {l, p0} (p0, p1, p2)

(p0, p3, l) (p2, p3, l)

a b c

Figure 4.9: Piston and connecting rod crankshaft. a) Problem graph G. b) Tree-
decomposition of the problem. c) Associated h-graph H(G).

the problem is transformed by replacing the constraint λ = d(p2, p3) with µ = d(p2, p0).

The graph G′ of the transformed problem Πµ, a construction plan that solves it and the
associated h-graph H(G′) are shown from left to right in Figure 4.10b and Figure 4.10c.

In the transformed problem, tree-decomposition step (p0, p2, l) depends directly on µ.
According to the dictionary of critical points, Πµ is feasible if

|d1 − d0| ≤ µ ≤ |d1|+ |d0|.

Considering, for example, specific parameter values

d0 = 5 d1 = 8 d3 = 14,

the transformed problem is feasible if 3 ≤ µ ≤ 13.

Figure 4.11 shows a construction plan and a construction of a solution to the modified
problem. The index associated with µ is Iµ = {s1}, and, in general, there will be two
different possible placements for point p2, say p2 and p′2, corresponding to the two possible
intersections of circle c0 with line l, see Figure 4.11b. Thus there are two different measures
for the variant parameter λ for each critical value of µ.

Figure 4.12a shows the construction of the solution to the transformed problem at
parameter value µ = 3. Figure 4.12b shows the construction of the solution to the modified
problem for the value µ = 13. All possible signs assignments are depicted in both figures:
p+2 represents the positive index assignment and p−2 the negative one. Values measured for
λ in Tµ(13) are 1 and 27. Measures for λ taken in Tµ(3) are 11 and 17. Therefore, the set
of sorted critical values for the variant parameter λ is {1, 11, 17, 27}.

70 Parameter ranges

l

d0

d1

on
on

p0

p1p3

p2

on
µ

d3

{p0, p2}(µ) {p2, l} {l, p0}

{p0, p1, p2, p3, l}, s2

{p0, p2, p3, l}, s1 {p0, p1} {p1, p2}

{p0, p2, l} {p0, p3} {p3, l}

(p0, p1, p2)

(p0, p3, l) (p2, p0, l)

a b c

Figure 4.10: Piston and connecting rod crankshaft. Transformed problem. a) Problem
graph. b) Decomposition tree of the problem. c) Associated h-graph H(G′).

1. p0 = origin()
2. p3 = distD(p0, d3)
3. l = line2P (p0, p3)
4. c0 = circleCR(p0, µ)
5. p2 = iLC(l, c0, s1)
6. c1 = circleCR(p0, d0)
7. c2 = circleCR(p2, d1)
8. p1 = iCC(c1, c2, s2)

l c1

p1
d0

d1 d3

µ
c0

p′2

p0

p2

p3
c2

a b

Figure 4.11: Piston and connecting rod crankshaft. Transformed problem. a) Construction
plan. b) Geometric realization.

4.5 Case study 71

p3

p1

p2

p0

p′2

p′1

l

µ = 3

λ = 11λ = 17

c′2

c1

c2

p3

p0

p2

λ = 1

l

p′1

p1

p′2

µ = 13

λ = 27

a b

Figure 4.12: Construction of the transformed problem. a) Construction at µ = 3. b)
Construction at µ = 13.

The index of the construction plan shown in Figure 4.8 that solves the piston and
connecting rod crankshaft problem includes two signs I = {s1, s2}, hence up to four
different intended solution instances can be selected. Concretely, for the index assign-
ment σ = {s1 = +1, s2 = +1}, we check feasibility of Tλ at, say, λ taking values in
{0.5, 5, 14, 22, 28}. We find out that the construction plan is feasible at critical values 1,
11, 17 and 27 and at the intermediate points 5 and 22, see Figure 4.13. Therefore the
domain for the problem Πλ and the index assignment σ is [1, 11] ∪ [17, 27].

Applying the same procedure to each of the four possible index assignments yields the
feasibility domain depicted in Figure 4.14, where feasible intervals are filled in black. Notice
that for signs assignments s1 = +1, s2 = −1 and s1 = −1, s2 = −1 the construction plan
is unfeasible for any value of the variant parameter d2.

0 0.5 1 5 11 14 17 22 27 28 λ

Figure 4.13: Feasibility for the piston and connecting rod cranckshaft problem. • represent
critical points. | represent intermediate λ values. X means that the construction plan is
feasible. × means that the construction plan is unfeasible.

72 Parameter ranges

0 1 11 17 27

I
d2

s1 = +1; s2 = +1

s1 = +1; s2 = −1

s1 = −1; s2 = +1

s1 = −1; s2 = −1

Figure 4.14: Piston and connecting rod crankshaft. Feasible domain for the variant pa-
rameter λ = d2.

4.6 Conclusions

In this chapter, we have presented a complete proof of the method introduced by van der
Meiden et al. in [103]. This method is based on the fact that different problems which only
differ in the placement of the variant parameter have the same set of solution instances,
which has been also proved. H-graphs have been used to determine efficiently the kind
of dependence of each tree-decomposition step of the graph with respect to the variant
parameter.

The main drawback of this method comes from the necessity of analyzing and construct-
ing a new geometric constraint problem for each involved indirectly dependent generation
step. This is a disadvantage for two different reasons. Firstly, to analyze and construct a
problem is a very expensive process which increases the execution time of the method dra-
matically. Secondly, the more problems to analyze the method has, the more probability
there is to find a non-decomposable problem.

A simple procedure which may decrease the order of the modified problem and improve
the efficiency of the method when analyzing and constructing the transformed problems
could be considered. In the worst case, the modified graph would remain the same.

The aim of changing the variant parameter is to measure the original variant parameter
range values in the modified graph constructed at the parameter values where its feasibility
changes. Then, the only necessary elements to be constructed in the second step of the
method are the ones upon which the new variant parameter is defined, and the ones upon
which the original variant parameter was defined. The rest of geometric elements are
irrelevant for the measurement of the original variant parameter.

Consider now the original problem Π, represented by the graph G = (V,E), and let the
associated h-graph be H(G) = (V , ED, ES). Assume that the original variant parameter
is λ = (u, v), which must be replaced with µ = (u′, v′). Using the h-graph H(G) and a

4.6 Conclusions 73

variation of the procedure in Section 3.5, Chapter 3, we can find the minimum complete
subgraph of H(G) spanned by the geometric elements u, v, u′, v′. Call this subgraph M .
Then, we can apply the van der Meiden method to M , change the variant parameter λ for
µ in M , solve M and then measure in it the value of λ. Since clearly |V (M)| ≤ |V |, to
solve M is less expensive in time than to solve G.

Analysis of the performance of this new approach would be necessary in order to de-
termine the actual improvement with respect to the original method.

74 Parameter ranges

CHAPTER 5

The reachability problem

“Begin at the beginning,” the King said,
very gravely, “and go on till you come
to the end: then stop.”

Lewis Carroll, Alice in Wonderland

Reachability is a fundamental problem in the context of many models and abstractions
which describe various computational processes. Analysis of the computational traces and
predictability questions for such models can be formalized as a set of different reachability
problems. In general reachability can be formulated as follows: given a computational sys-
tem with a set of allowed transformations, also called functions, decide whether a certain
state of a system is reachable from a given initial state by the allowed transformations.
We present in this chapter an approach which solves the reachability problem for geomet-
ric constraint problems with one degree of freedom. The results of this work have been
published in Hidalgo and Joan-Arinyo, [39, 40].

76 The reachability problem

5.1 Continuity and continuous transitions

In this section we properly define some basic concepts which will be used all along this
chapter. The first one is the concept of continuity in geometric constructions, which is a
key point in the definition of the reachability problem itself. We address also the concept
of transition in the domain of a geometric problem, which is the essential concept of our
approach. Transitions will allow continuity at the critical values, in contrast to other
techniques that avoid them, and will be used as connections between different parts of the
reachability problem domain.

5.1.1 Continuity

The key concepts in dynamic geometry are interaction and change. If the value assigned
to the variant parameter, defined in Section 2.3, is interactively changed, the user expects
the whole construction to follow. Moreover, whenever the variant parameter moves along
continuous paths, the user expects that the geometric elements in the construction move
along continuous paths as well. Since this is not always the case, we need to properly
formalize this concept.

Continuity and behavior are two different concepts that appear to be tightly related in
dynamic geometry. Since a naive application of the mathematical continuity notion leads
to unexpected or unwanted dynamic behavior, we propose to clearly decouple them and
give a specific definition for behaviour, Hidalgo and Joan-Arinyo [38].

Following Denner-Broser, [15], and Richter-Gerbert et al., [90], we first introduce the
concept of variant parameter path.

Definition 5.1.1

Let Π =< ΠG,ΠC ,ΠP > be a geometric constraint problem with one variant parameter
λ and let T (σ, λ) be a construction plan that solves Π. With the variant parameter λ we
associate a continuous path λ(t) : [0, 1] → R

+, called variant parameter path.

A variant parameter path is just a path followed by the variant parameter in R
+.

Now we define the concept of dynamic evaluation under a movement given by a variant
parameter path.

Definition 5.1.2

Let Π =< ΠG,ΠC ,ΠP > be a geometric constraint problem with one variant parameter λ
and let T (σ, λ) be a construction plan that solves Π. Let n = |σ| be the number of sings in
the index σ and λ(t) a variant parameter path. A dynamic evaluation of the construction

5.1 Continuity and continuous transitions 77

plan T under the path λ(t) is an assignment of functions

σi(t) : [0, 1] → {s}n, with s ∈ {−1,+1}

such that for all t ∈ [0, 1], T (σi, λ)(t) = T (σi(t), λ(t)) is a solution instance to the problem.

We build our approach on top of a ruler-and-compass solver, that is to say, we solve
equations with degree at most two. Therefore, construction plans include additions, dif-
ferences, products, divisions and square root operations. In this scenario, critical values or
discontinuities can appear when trying to divide by zero or computing the square root of a
value equal or lower than zero. However, since operations in a construction plan T (σ, λ) are
continuous, a dynamic evaluation of T makes geometric elements to move along continuous
paths, as long as the variant parameter path λ(t) does not go through a critical value.

Dynamic evaluations are called continuous or continuous evaluations if they are con-
tinuous for all t ∈ [0, 1] in the usual way. That means that the position function of each
geometric element is continuous for all t ∈ [0, 1].

5.1.2 Continuous transitions

As said in Section 2.3, critical values are values of the variant parameter for which the
feasibility of the corresponding construction change. Critical values thus are endpoints of
the domain intervals of the problem. Critical points are defined as the solution instances
constructed at the critical values of the problem, that is, constructions of the problem at
the endpoints of the domain intervals.

As mentioned in the previous section, we only work with ruler-and-compass problems,
which can be defined by degree two equations. Quadratic equations represent conics on
the plane. A conic is a function with two different solutions at every point of its domain
except at the endpoints, where both solutions converge in a single one. Although the
functions with which we work are combination of quadratic equations and in general more
complicated as simple conics, many times they have two different solutions which converge
at the endpoints of the domain intervals. That means that the critical points at critical
values with different index assignments may converge into the same construction instances.
We refer to such points as degenerate configurations.

Our approach to the geometric constraint solving relies on the fact that degenerate
configurations represent the opportunity to perform an index assignment change in such a
way that the dynamic evaluation of the construction plan is continuous. Far from avoiding
this kind of configurations, our method uses them in its own benefit.

To formally define concepts about degenerate configurations and deal with critical val-

78 The reachability problem

σ

σ1

σ2

σ3

λi−1 λi λi+1 λi+2 λi+3 λ

D1
1 = A

D1
2 = C

D1
3 = B D2

3 = D

Figure 5.1: Domain intervals of the domain of a geometric constraint problem.

ues in the continuous evaluation of a construction plan we introduce the concept of tran-
sition.

Definition 5.1.3

Let Π =< ΠG,ΠC ,ΠP > be a geometric constraint problem with one variant parameter λ
and let T (σ, λ) be a construction plan that solves Π. Let λi be a critical variant parameter
value of Π. Let σj and σk be two index assignments such that Iij = T (σj , λi) and Iik =
T (σk, λi) are two solution instances of the construction plan T . Then we say that the pair
of instances (I ij , I

i
k) define a transition in the domain of Π.

Filled cells in Figure 5.1 are examples of domain intervals.

Since critical variant parameter values represent the bounds of the domain intervals of
the problem, transitions are always defined between the endpoints of the domain intervals
of the problem. Assuming that the domain intervals in Figure 5.1 are closed in the critical
variant parameter λi, we can identify three transitions: (Ii1, I

i
2), (I

i
1, I

i
3) and (I i3, I

i
2).

We will consider two different types of continuous transition. Notice that, for angle
type variant parameters, we have considered that angles are defined inside the interval
[−π/2, π/2], and we have identified angles −π/2 and π/2 modulo π by assigning a sign
to the angle. Under such identification, we can consider a transition defined between
instances T (σi,−π/2) and T (σj , π/2). Such transitions shall be called improper transitions,
in opposition to transitions between instances with the same critical value, which shall be
called proper transitions.

Among the combinatorial number of possible transitions, our interest focuses on those
which assure the continuity of the dynamic evaluations under paths traversing them.

Definition 5.1.4

Let Π =< ΠG,ΠC ,ΠP > be a geometric constraint problem with one variant parameter λ

5.1 Continuity and continuous transitions 79

and let T (σ, λ) be a construction plan that solves Π. Let λi and λj be two critical variant

parameter values. The transition (Iik, I
j
l) is called continuous if the solution instances Iik, I

j
l

are congruent modulo rigid translations and rotations.

We will also consider two different types of continuous transitions. A proper continuous
transition will indicate that a proper transition is continuous. An improper continuous
transition will indicate that an improper transition is continuous.

Whether proper or improper, continuous transitions are at the core of our approach
to solve the reachability problem, for they allow to change the index assignment in a way
such that the dynamic evaluation of the construction plan under variant parameter paths
is continuous. Continuous transitions are given their name because of the following two
properties.

Lemma 5.1.1

Let Π =< ΠG,ΠC ,ΠP > be a geometric constraint problem with one variant parameter
λ and let T (σ, λ) be a construction plan that solves Π. Let λ(t), with t ∈ [0, 1], be a
variant parameter path with just one critical value λc in [0,1]. Let (Ick, I

c
l) be a continuous

transition at λc. Then, T (σ, λ)(t) is continuous.

Proof

Once σ and λ are fixed, the instance generated by the construction plan T (σ, λ) is unique
up to rigid translations and rotations. 2

This result is easily extended to a path with a finite number of critical values. The
following theorem is then straightforward.

Theorem 5.1.2

Let Π =< ΠG,ΠC ,ΠP > be a geometric constraint problem with one variant parameter λ
and let T (σ, λ) be a construction plan that solves Π. Let λi, 1 ≤ i ≤ n be the finite set of
critical values in the path λ(t). Then a dynamic evaluation of T (σ, λ)(t) for the path λ(t) is
continuous if there is at least one continuous transition at every critical variant parameter
value λi.

Proof

Just apply Lemma 5.1.1 to each critical value in the path. Since the number of critical
values is finite, this can be always done. 2

From now on we will just consider continuous transitions, and we shall refer to them
as transitions. We shall refer to proper continuous transitions simply as proper transitions,
and to improper continuous transitions simply as improper transitions.

80 The reachability problem

l3

l0

l1

l2

α

p2

p3

p0 p1

Figure 5.2: Four-bars linkage problem scheme.

5.1.3 Case study: the four-bars linkage

To illustrate the continuous transition concept we develop a complete case study. We
consider the well known four-bar linkage shown in Figure 5.2. We compute the domain
and corresponding transitions depending on different values assigned to the bars lengths.

The four-bars linkage problem is composed by four points or joins and four bars with
a given length. Consider the points are given names p0, p1, p2 and p3, the bars are given
names l0, l1, l2 and l3 and its lengths are d0, d1, d2 and d3, respectively. Bars l0 and l1 are
related by an angular constraint α.

The domain of the problem depends on the relations existing among the values of the
bars’ lengths. We analyze the problem domain for each possible relation between bars,
assuming that the lengths are fixed but arbitrary, and the variant parameter is the angle
α.

Because of the nature of the problem, for every solution instance I with parameter
value α0 there exists an index assignment σ such that the solution instance T (σ,−α0) is
the symmetric configuration of I with respect to the bar with length l0. Thus, if α0 belongs
to the domain of the problem, also −α0 belongs to it. Then, all the domain intervals are
symmetric with respect to the value 0 and the inclusion or exclusion of this point will
change the shape of the domain.

Since our system considers angles defined within the interval [−π/2, π/2], 0 and π
represent the same angle and the inclusion or exclusion of the latter one will also change
the shape of the domain. Besides, the inclusion of points π/2 and −π/2 in the domain
allows the presence of improper transitions between the domain intervals.

Therefore, there are three values for angle α which determine the shape of the domain
of the problem: 0, π/2 and π. The condition to assure the inclusion of those values in the
domain is that the distance between points p1, p2, once the angle has been fixed, allows the
construction of point p3, see Figure 5.3. Then, points p1, p2, p3 must fulfill the triangular

5.1 Continuity and continuous transitions 81

l3

α = 0

l2

l1

p3

p2

p1p0
l0 l0

l1

l2

l3
α = π/2

p2

p0

p3

p1

a b

l3

l1

l2

l0

α = π

p3

p2 p0 p1

c

Figure 5.3: Instances of the four-bars linkage. a) The four-bars linkage for a value of α = 0.
b) The four-bars linkage for a value of α = π/2. c) The four-bars linkage for a value of
α = π.

inequality.

• α = 0: In this case, point p2 must be on bar l0, see Figure 5.3a. The distance between
points p1 and p2 is |d0 − d1|. Thus, the condition for α = 0 to belong to the domain
is

|d3 − d2| ≤ |d0 − d1| ≤ d2 + d3

• α = π/2: In this case, the distance between points p1 and p2 is
√

d20 + d21, see
Figure 5.3b. Then, the condition for α = π/2 to belong to the domain is

|d3 − d2| ≤
√

d20 + d21 ≤ d2 + d3

• α = π: In this case, points p0, p1, p2 are collinear, see Figure 5.3c. The distance
between points p1 and p2 is d0 + d1. Therefore the condition for α = π to belong to
the domain is

|d3 − d2| ≤ d0 + d1 ≤ d2 + d3

The different combinations of exclusion and inclusion of these three angle values in the
domain of the four-bars linkage problem give rise to 23 = 8 combinations, leading to 8

82 The reachability problem

different domain shapes. However, we will see that one of them can not take ever place.
Consider that the domain includes 0 and π. Then, the relations

|d3 − d2| ≤ |d0 − d1| ≤ d2 + d3

|d3 − d2| ≤ d0 + d1 ≤ d2 + d3

should hold. But it is also a straightforward computation to see that

|d0 − d1| ≤
√

d20 + d21 ≤ d0 + d1

which easily yields

|d3 − d2| ≤ |d0 − d1| ≤
√

d20 + d21 ≤ d0 + d1 ≤ d2 + d3.

Then, the condition for angle α = π/2 to belong to the domain is fulfilled. That is,
whenever angles 0 and π are included in the domain, also angle π/2 is included. The case
in which angles 0 and π are included in the domain but angle π/2 is not is destined to a
contradiction. The number of possible domain shapes is then 7.

We analyze now the domain shape of each one of the seven different cases resulting
from the inclusion or exclusion of the angle values 0, π and π/2. Solution instances for
endpoints of the domain intervals as well as their respective domain shapes are shown in
Figures 5.4 through 5.10. Continuous transitions among the domain intervals are repre-
sented by arrows.

Case 1: 0 ∈ D(α), π/2 /∈ D(α), π /∈ D(α). Figure 5.4 shows the problems domain and the
solution instance for which the variant parameter α is the upper bound of the domain,
α0. A proper transition at this value allows the change of index assignment to place
point p3. The symmetrical construction with respect to l0 represents the solution
instance for which the variant parameter is −α0.

Case 2: 0 ∈ D(α), π/2 ∈ D(α), π /∈ D(α). Figure 5.5 shows the problem domain and the
solution instance for which the variant parameter α is the upper bound of the domain,
α0 where π > α0 > π/2. However, our system deals with angle ranges from −π/2 to
π/2. We consider then every angle modulo π. The value of the variant parameter for
this instance is then α0 − π ∈ [−π/2, π/2]. There are proper transitions at this point
and at the symmetric one, and improper transitions between some of the domain
intervals.

Case 3: 0 ∈ D(α), π/2 ∈ D(α), π ∈ D(α). Figure 5.6 shows the solution instance for α = π
and the problem domain. Improper transitions exist between some of the domain
intervals. Notice that there are two different connected components in the domain.
This is due to the fact that there is no way to change the index assigned to the place-
ment of point p3 in such a way that the resulting dynamic evaluation is continuous.

5.1 Continuity and continuous transitions 83

l0

l1

α0

l3

l2

p2

p3

p1p0

−α0 α0

a b

Figure 5.4: Case 1. a) Solution instance at value α = α0. b) Domain of the problem.

l2

l3

l0

α0

l1

π/2

p2

p0
p1

p3

−π/2 π/2π − α0α0 − π

a b

Figure 5.5: Case 2. a) Solution instance at value α = α0. b) Domain of the problem.

l0

π/2

l1

l3
α0 = π

l2

p0

p3

p2 p1

−π/2 π/2

a b

Figure 5.6: Case 3. a) Solution instance at value α = α0. b) Domain of the problem.

84 The reachability problem

l0

l1

l2

α0

α1
l3

p2

p′3

p0

p1

p3

p′2 π/2−α0−π/2 α0α1 − π π − α1

a b

Figure 5.7: Case 4. a) Solution instance at value α = α0. b) Domain of the problem.

Case 4: 0 /∈ D(α), π/2 ∈ D(α), π /∈ D(α). Figure 5.7 shows the solution instance for which the
variant parameter α is the upper bound of the domain, α1, and the problem domain.
In dashed lines is depicted the instance for which the variant parameter is the lower
bound, α0. The domain is defined between both angles, with the particularity that
value α1 is considered modulo π. There are proper transitions at these points and at
the symmetric ones, and improper transitions between some of the intervals.

Case 5: 0 /∈ D(α), π/2 /∈ D(α), π /∈ D(α). Figure 5.8 shows the solution instance for which
the variant parameter α is the upper bound of the domain, α1, and the domain of the
problem. In dashed lines is depicted the instance for which the variant parameter is
the lower bound, α0. There are proper transitions at these points and at the symmet-
ric ones. In this case the domain is made of two separated connected components.
In case α0, α1 > π/2 the domain’s shape will remain the same, as we will consider
both angles modulo π.

Case 6: 0 /∈ D(α), π/2 ∈ D(α), π ∈ D(α). Figure 5.9 shows the solution instance for which the
variant parameter α is the upper bound of the domain, α1 and the problem domain.

l0

l2

l1
α1

α0
l3

p2

p′2

p0

p′3

p1

p3 −α1 −α0 α1α0

a b

Figure 5.8: Case 5. a) Solution instance at value α = α0. b) Domain of the problem.

5.1 Continuity and continuous transitions 85

l0l1

l3

π

l2
α0

p2

p3

p′3

p0

p1

p′2 π/2−π/2 −α0 α0

a b

Figure 5.9: Case 6. a) Solution instance at value α = α0. b) Domain of the problem.

In dashed lines is depicted the instance for which the variant parameter is the lower
bound, α0. Since α0 < π/2, its value modulo π is itself. There are proper transitions
at this point and at the symmetric one, and improper transitions between some of
the intervals.

Case 7: 0 /∈ D(α), π/2 /∈ D(α), π ∈ D(α). Figure 5.10 shows the solution instance for which
the variant parameter α = π, and the domain of the problem. In dashed lines is
depicted the instance for which the variant parameter is the lower bound of the
domain, α0. Proper transitions exist at this point. Notice that this gives rise to the
same domain shape as in Case 1. The reason is that Case 1 domain contains angle 0
whereas Case 7 contains angle π, and none contains angle π/2. Angle π is represented
by angle 0. However, the index assignments for feasible constructions will be exactly
the opposite in both cases.

The seven cases analyzed lead to all the possible shapes of the domain for the four-
bars linkage. Now we present some particular cases of parameter value assignments in this
problem which highlight some features of our theory.

l0l1

l2
l3

α0π

p′2

p2 p0

p3

p1

p′3

−α0 α0

a b

Figure 5.10: Case 7. a) Solution instance at value α = α0. b) Domain of the problem.

86 The reachability problem

α = π/2

d0 = 4

d1 = 3

d2 = 2

d3 = 3

p2

p0

p3

p1

π/2−π/2

−π/2 π/2

a b c

Figure 5.11: Particular case of the four-bars problem. a) Configuration for α = π/2. b)
Domain. c) Simplified domain.

Consider the case where
√

d20 + d21 = d2 + d3. Figure 5.11a shows a particular instance
for the variant parameter value α = π/2 and bar lengths d0 = 4, d1 = 3, d2 = 2, d3 = 3
which fulfill the condition. As seen in the picture, angle value α = π/2 is an endpoint of
the domain of this problem. This is then a particular case in the common boundary of
cases 1 and 2. In fact, it can be seen as a particular case of Case 1 for which the maximum
angle α0 is increased until reaching value π/2, as well as a particular case of Case 2 for
which the maximum angle α0 is decreased until reaching value π/2.

When computing the domain of this problem with the method described in Chapter 4,
the result includes four intervals with zero measure, which we shall call improper, defined as
[−π/2,−π/2] and [π/2, π/2]. The whole computed domain together with the arising con-
tinuous transitions is shown in Figure 5.11b. These four domain intervals do not provide
any information on the domain and are absolutely useless for they have only one instance
and no interior path to follow. Transitions involving them can be simplified just by remov-
ing them. Despite the fact that they are theoretically valid, the decision to eliminate them
has been taken in favor of a major clarity and simplicity. The resulting domain is shown
in Figure 5.11c.

There are other domain configurations in the boundary of two of the different cases
described above, which arise when at least one of the endpoint angles takes value 0, π or
π/2. In most of them similar cases of improper intervals appear. They are all treated in
the same way.

Independently of the fact that the bar lengths fulfill Pythagoras’ Theorem, the prob-
lem in Figure 5.11a presents another singular characteristic. Effectively, for this singular
problem, α = 0◦ is a critical value which happens not to be a bound of any domain interval
since feasibility is achieved at both sides of it. However, at this point there are two equal
solution instances for the two different index assignments. The solution instance of the
problem for this angle value is shown in Figure 5.12a. We consider that intervals should

5.2 An algorithm for the reachability problem 87

d1 = 3

d2 = 2

d3 = 3

d0 = 4

P3 P1P0 P2

0−π/2 π/2

a b

Figure 5.12: Particular case. a) Instance of the problem in Figure 5.11a at variant param-
eter value α = 0. b) Split domain.

be split at the connecting point, in this way continuous transitions are only defined at
endpoints of the domain intervals, and not at internal points. Figure 5.12b shows the final
domain of this problem, once each interval is split by the continuous transition point.

It is usual that specific behaviours appear whenever bar lengths define implicit theo-
rems. The most common case arises when values assigned to the bar lengths are coincident.
Problems with parameters defining implicit theorems are not always well-constrained, be-
cause some of the constraints may become redundant. Identifying and dealing with these
scenarios are still open problems in Geometric Constraint Solving. However, in this con-
crete problem well-constraintness is not affected by the fact that some bars have coincident
lengths.

As a final example we consider the case in which d0 = d2 = 5 and d1 = d3 = 4.
Figure 5.13 shows the corresponding domain where up to 16 continuous transitions can be
identified.

5.2 An algorithm for the reachability problem

In plain words, the reachability problem consists on deciding whether there exists a con-
tinuous way of transforming an initial given instance in a predefined final one. The key
concept of the reachability problem is the continuity. We formally state the reachability
problem we solve as follows (see also Denner-Broser [16]).

Let Π =< ΠG,ΠC ,ΠP > be a geometric constraint problem with one variant
parameter λ and let T (σ, λ) be a construction plan that solves Π. Let Is =
T (λs, σs) and Ie = T (λe, σe) be respectively a starting and ending instance of

88 The reachability problem0−π/2 π/2

Figure 5.13: Domain for the fourbars problem with d0 = d2 = 5 and d1 = d3 = 4.

T . Decide whether there is a continuous path λ(t) : [0, 1] → R
+ of the variant

parameter and assignments of index

σ(t) : [0, 1] → {−1,+1}n

for which there is a corresponding continuous evaluation T (σ, λ)(t) from Is to
Ie, that is, such that T (σ, λ)(0) = Is and T (σ, λ)(1) = Ie.

We present in this section our approach to solve the reachability problem. Consider
a geometric constraint problem with one variant parameter and a reachability problem
defined on it. The proposed technique has three steps. First the set of points where
the geometric construction is not feasible and the domain of the variant parameter with
respect to the geometric constraint problem at hand are computed. Then transitions at
these points are captured as a graph. Finally the reachability is decided by searching in
this graph a path from the starting geometric construction to the ending one. The search
is performed by applying the A∗ algorithm.

As a proof of concept, we have implemented the approach in the context of our dynamic
geometry system based on constructive geometric constraint solving, Hidalgo et al., [39, 40].
Preliminary results prove that the approach is both effective and efficient from a practical
point of view. We shall explain in detail the process all along this section.

5.2.1 The transitions graph

We present in this section the graph capturing the different transitions among the domain
intervals of the domain of a geometric constraint problem.

5.2 An algorithm for the reachability problem 89

Consider a geometric constraint problem Π =< ΠG,ΠC ,ΠP > with one variant param-
eter λ and let T (σ, λ) be a construction plan that solves Π. We define now the transitions
graph as follows.

Definition 5.2.1

A transitions graph is a graph TG = (V,EI , ET), where vertices in V represent specific in-
stances of the problem associated to the endpoints of the domain intervals by means of a pair
(λi, σj), where λi is a critical value and σj an index assignment. Edges ((λi, σj), (λk, σl))
in EI represent intervals which begin at (λi, σj) and end at (λk, σl). Edges in ET represent
proper and improper transitions occurring between the instances in V .

Each edge in EI represents an interval and are labeled with the name of this interval.
An edge in EI from the instance (σ1, λ1) to the instance (σ2, λ2) is by d = |λ1 − λ2|, since
this is the distance the path must follow to reach the following vertex.

Consider that v1 = (λ1, σ) and v2 = (λ2, σ) are two vertices of the transitions graph
representing two different instances I1, I2 with the same index assignment σ. Consider that
there exists a domain interval A bounded by λ1 and λ2, with λ1 < λ2, whose first and last
instances are I1, I2, respectively. Then edge e = (v1, v2) ∈ EI is labeled with the letter A
and w(e) = |λ1 − λ2|.

Each edge in ET represents a transition among two domain intervals and is labeled
with the ∅ symbol. All edges in ET have an associated weight of 0. These edges represent
the idea that no path must be followed in order to reach the following vertex.

Consider that v1 = (λ1, σ) and v2 = (λ2, σ) are two vertices of the transitions graph
representing two different instances I1, I2 and λ1 = λ2 mod π. Consider that there exists
a continuous transition between I1 and I2. Then edge e = (v1, v2) ∈ ET is labeled with the
symbol ∅ and w(e) = 0.

To compute the transitions graph we assume that the domain is given as a bucket sort
with as many buckets as different critical variant parameter values are bounds of a domain
interval. Each bucket includes the solution instances at the corresponding critical value
which bounds of a domain interval. We call them bounding instances. Each bounding
instance related to a bound λ within a bucket stores: the related index assignment σ, the
solution instance, I = T (σ, λ), and the name of the domain interval of which is bound, plus
a flag in the set {l, u} that identifies whether the critical value corresponds to the lower
bound or to the upper bound of the domain interval. Whenever a domain interval is open at
a critical value, the construction plan instance points to nil. We call this representation of
the domain the bucket sorted domain, BSD in short. For the domain example in Figure 5.1,
the bucket sorted domain would be the one shown in Figure 5.14.

We also consider a simple structure which stores, related to each domain interval,
the node of the transitions graph corresponding to its lower bounding instance. This table

90 The reachability problem

λi−1 → (σ1, I
i−1
1 , A, l), (σ3, I

i−1
3 , B, l)

λi → (σ1, I
i
1, A, u), (σ2, I

i
2, C, l), (σ3, I

i
3, B, u)

λi+1 → (σ3, I
i+1
3 , D, l)

λi+2 → (σ2, I
i+2
2 , C, u)

λi+3 → (σ3, I
i+3
3 , D, u)

Figure 5.14: Domain represented as a bucket sort table of intervals.

represents the intervals which are active at a critical value, and we call it the active interval
list, AIL in short.

The transitions graph is built applying a scan-line algorithm, [21]. The events that move
the scan-line are the critical variant parameter values, λi. We create a vertex for each one of
the bounding instances within a bucket. In case it represents the upper bounding instance
of a domain interval, we use the table AIL to add an interval edge joining it to the vertex
representing the lower bounding instance of the interval.

When all the bounding instances of a bucket have been added as vertices to the transi-
tions graph, coincidence among them is tested in order to add the corresponding transitions
edges. In case that the parameter is an angle and the considered bound is π/2, also im-
proper transitions are checked.

Algorithms 7 through 9 show how we actually compute the transitions graph. A bound-
ing instance B contains four self-explanatory fields: index, instance, interval and flag,
standing for the four entries stored in it. We consider also the boolean function congruent,
which returns TRUE in case that two instances are congruent modulo rigid transforma-
tions, and FALSE otherwise.

Figure 5.15 shows the transitions graph yielded by this algorithm when applied to the
problem with domain depicted in Figure 5.1 and transitions between all the instances at
values λi−1 and λi. Notice that bounding instances of a given interval are joined by an
interval edge, and transitions at bounds λi−1 and λi are joined by a transition edge.

Figure 5.17 shows the transitions graph yielded by Algorithm 7 when applied to the
problem with domain and transitions depicted in Figure 5.16. Notice that the graph has
two disconnected components, therefore no continuous transitions between them can occur.

5.2 An algorithm for the reachability problem 91

Algorithm 7 Computing the Transitions Graph

Input: BSD, the bucket sorted domain
Output: TG(V, ET , EI), the transitions graph

V = ∅
ET = ∅
EI = ∅
for all λi in BSD do

LB = Bounding Instances List(λi)
for all B in LB do

Vn = (λi, B.index)
V = V ∪ { Vn }
Add Intervals Edges(B, Vn, EI)

end for

Add Transitions Edges(λi, λi, ET)
if parameterType == ANGLE and λi == π/2 then

Add Transitions Edges(−π/2, π/2, ET)
end if

end for

return (V, ET , EI)

Algorithm 8 Add Intervals Edges

Input: B, a bounding instance,
Vn, the vertex related to B,
EI , the set of intervals edges

Output: EI , the updated set of intervals edges

if B.flag == ‘l’ then
AIL.add(B.interval, Vn)

else

Vj = AIL.getVertex(B.interval)
EI = EI ∪ {(Vn, Vj)}

end if

return EI

92 The reachability problem

Algorithm 9 Add Transitions Edges

Input: λ1, a critical value,
λ2, a critical value,
ET the set of transitions edges

Output: ET the updated set of transitions edges

LB1 = Bounding Instances List(λ1)
LB2 = Bounding Instances List(λ2)
for all Bi in LB1 do

for all Bj in LB2, Bi 6= Bj do

if congruent(Bi.instance, Bj .instance) then
ET = ET ∪ {(Bi, Bj)}

end if

end for

end for

return ET

λi−1

σ1

λi+1

σ3

λi+2

σ2

λi+3

σ3
λi−1

σ1
λi

σ2

λi

σ3σ3

λi

∅

∅ D
C

A

B
∅∅

Figure 5.15: Transitions graph for the example in Figure 5.1.

5.2 An algorithm for the reachability problem 93

33 20.19 2311.42 λ

σ1

σ2

σ3

σ4

A BC DE FG H
Figure 5.16: Domain and continuous transitions of a geometric problem. Continuous tran-
sitions are represented as arrows between endpoints of the domain intervals.

σ1
3

σ1
11.42

11.42
σ3

3
σ33

σ4
11.42
σ4

11.42
σ2

3
σ2

∅

A
∅

E
∅G∅

C
σ1 σ1∅

∅

σ4 σ4

∅

∅

20.19 23
20.19
23

23 20.19
20.19
23

B
D

H
F σ3

σ3

σ2

σ2

Figure 5.17: Transitions graph for the domain in Figure 5.16.

94 The reachability problem

5.2.2 Deciding reachability

Consider a geometric constraint problem Π =< ΠG,ΠC ,ΠP > with one variant parameter
λ and let T (σ, λ) be a construction plan that solves Π. Assume that Is = T (σs, λs) and
Ie = T (σe, λe) stand respectively for the starting and ending instances of a reachability
problem stated over Π.

It is clear that the reachability problem can be positively solved if and only if solution
instances Is and Ie belong to domain intervals in the same connected component of the
transitions graph. Assumed that Is and Ie belong to the same connected component of the
transitions graph, to find a continuous evaluation starting at Is and ending at Ie, all what
we need to do is first to identify the intervals to which Is and Ie belong to. Then we need
to search for the existence of a path connecting the corresponding domain intervals.

The method to solve reachability consists in searching in the transitions graph for a
path between the starting and ending instances. In order to solve reachability problems
involving starting and ending instances with variant parameters different to the endpoints
of the intervals, vertices with these concrete values must be added to the transitions graph.
We define therefore the extended transitions graph.

Definition 5.2.2

Let TG = (V,E) be the transitions graph of a geometric problem Π, D an interval domain
of Π and I = T (λ, σ) a solution instance such that λ is not a critical value and λ ∈ D. Let
eD ∈ E be the edge corresponding to interval D in TG connecting vertices vi, vj ∈ V . Then
we say that the graph resulting from removing edge eD and adding a new vertex v = (λ, σ)
plus edges (v, vi) and (v, vj) both labeled as eD, is an extension of the transitions graph.

We define the extended transitions graph as the transitions graph with the extensions
corresponding to the starting and ending solution instances of a reachability problem, if
needed.

Figure 5.18 is the extended graph derived from the transitions graph in Figure 5.17
for a reachability problem with starting instance Is = T (5, σ1), in interval A, and ending
instance Ie = T (5, σ4), in interval G. Edge Es is the one labeled with the interval’s name A,
and joins vertex (11.42, σ1) with vertex (3, σ1). Then, edge Es is removed and vertex (5,
σ1) is created, as well as edges joining it to vertices (11.42, σ1) and (3, σ1). Analogously,
edge Ee is removed and vertex (5, σ4) is created. Edges joining it to (11.42, σ4) and (3,
σ4) are also added.

In general, an edge path in a transitions graph that solves the reachability problem does
not have to be unique. Among all the possible paths solving the reachability problem, we
focus on those which are optimal in the sense of minimizing the arc length of the variant

5.2 An algorithm for the reachability problem 95

σ1
20.19

σ1
11.42

11.42
σ3

3
σ33

σ4
11.42
σ4

11.42
σ2

3
σ2

∅ ∅

E
∅∅

σ1∅

∅

σ4 σ4

∅

∅

23
20.19
23

23 20.19
20.19
23

B
D

H
F σ3

σ3

σ2

σ2

C
σ1
3

G G
A A

σ1
5
5
σ4

Figure 5.18: Extended transitions graph derived from the transitions graph in Figure 5.17
after adding the starting and ending vertices.

parameter.

Edges Es and Ee are removed from the extended transitions graph because no optimal
path between vertices Vs and Ve includes them. Consider that edge Ee joins vertices V1, V2,
which are also joined to Ve, refer to Figure 5.19. Any optimal path arriving to V1 or V2

will visit directly Ve instead of the other vertex V2 or V1.

Among the techniques that have been developed to select an specific path in a weighted
graph, if one exists, we have applied the A∗ algorithm, [91]. In our implementation, outlined
in Algorithms 10 and 11, we consider that instances I are given as a pair (λ, σ), and the
structure Edge stores two fields, source and sink, standing for the source and sink of the
edge, respectively.

V1

Vs Ve

V2
Ee

E1
e E2

e

Figure 5.19: Schematic representation of a path solving the reachability problem from
vertex Vs to vertex Ve. No optimal path between vertices Vs and Ve includes the dashed
line.

96 The reachability problem

Algorithm 10 Pathfinding

Input: TG, the transitions graph
Is, starting instance
Ie, ending instance

Output: P, the path that leads from Is to Ie, if one exists

Identify the domain interval Ds of Is
Identify the domain interval De of Ie
if Ds == De then

P = ((λs, σs), (λe, σe))
else

Compute the extended transitions graph ETG (TG, Is, Ds, Ie, De)
P = A∗(ETG, Is, Ie)

end if

Algorithm 11 Compute ETG

Input: TG, the transitions graph
Is, the starting instance
Ds, the domain interval of Is
Ie, the ending instance
De, the domain interval of Ie

Output: ETG, the extended transitions graph

Es = Edge labeled with Ds

Ee = Edge labeled with De

V = V ∪ {(λs, σs), (λe, σe)}
E = E \ { Es, Ee }
E = E ∪ { (Es.source, (λs, σs)), (Es.sink, (λs, σs)), (Ee.source, (λe, σe)), (Ee.sink, (λe,
σe))}

5.2 An algorithm for the reachability problem 97

To compute the optimal path which solves the reachability problem from the starting
vertex Vs = (λs, σs) to the ending vertex Ve = (λe, σe), we feed the A∗ algorithm with the
extended transitions graph. The path-cost function used in A∗ is defined as

g(V) =
∑

e∈P

w(e)

where e is an edge in P , a path from Vs to the current vertex V = (λ, σ). Indeed, the
path-cost function is equivalent to the sum of the weights of all the visited intervals edges,
for the transitions edges have weight zero.

In the case that no improper transition is visited, two consecutive vertices in a path
share either the parameter value or the index assignment. Consecutive vertices with the
same index assignment are joined by an intervals edge, while consecutive vertices with the
same parameter value are joined by a transitions edge. Thus, in graphs with no improper
transitions, such as graphs related to distance type variant parameter problems, either
edges have non-zero weight or the two parameter values are the same. Then, for distance
type variant parameter problems, the following relation holds:

g(V) = |λ1 − λs|+
n−1
∑

i=1

|λi+1 − λi|+ |λ− λn|

where λi is the critical value in Vi = (λi, σi), the i-th visited vertex of the path. Clearly,
this relation is not true for graphs with improper transitions because the parameter values
of the vertices related by those edges are different.

We define the heuristic to estimate the distance from a current vertex V = (λ, σ) to the
goal Ve = (λe, σe) for distance-type parameters as the shortest arc of the variant parameter
λ that must be traced to reach Ve, that is,

h(V) = |λ− λe|

Let us prove that h(V) = |λ−λe| is admissible as required by the A∗ algorithm for distance
variant parameters.

Theorem 5.2.3

For distance variant parameters, the heuristic h(λ) = |λ−λe| to estimate the distance from
the current vertex V = (λ, σ) to the ending vertex Ve = (λe, σe) does not overestimate the
distance to the goal.

Proof

We consider an arbitrary vertex V = (λ, σ) and compute the path P from V to the ending
vertex Ve = (λe, σe). Define the parameter value λi as the parameter value of the vertex

98 The reachability problem

Vi, where Vi is the i-th visited vertex of the path P , and consider that P has n vertices
plus V and Ve. Then, the distance to the goal is

w(P) = g(Ve) =
∑

e∈P

w(e) = |λ1 − λ|+
n−1
∑

i=1

|λi+1 − λi|+ |λe − λn|

We prove that w(P) ≥ h(V). We apply successively the triangular inequality.

w(P) = |λ1 − λ|+
n−1
∑

i=1

|λi+1 − λi|+ |λe − λn| =

= |λ1 − λ|+ |λ2 − λ1|+
n−1
∑

i=2

|λi+1 − λi|+ |λe − λn| ≥

≥ |λ2 − λ|+
n−1
∑

i=2

|λi+1 − λi|+ |λe − λn| ≥

≥ |λ3 − λ|+
n−1
∑

i=3

|λi+1 − λi|+ |λe − λn| ≥

...

≥ |λn − λ|+ |λe − λn| ≥

≥ |λe − λ| = h(V)

2

Now we consider angle variant parameters. Figure 5.20a shows a configuration for
which g(V) as defined above does overestimate the distance to the goal, if the parameter
is an angle and there exists an improper transition between intervals A and B. In order to
consider such configurations, we define a new heuristic as

hα(λ) = min(|λe − λ|, |λ− π/2|+ |λe + π/2|, |λ+ π/2|+ |λe − π/2|)

This heuristic considers the distances to the goal in the three cases depicted in Fig-
ure 5.20, and chooses the minimum one. In the following theorem, we prove that this
heuristic is also admissible.

Theorem 5.2.4

For angle variant parameters, the heuristic hα(λ) = min(|λ−λe|, |π/2−λ|+|λe+π/2|, |π/2+
λ|+ |λe − π/2|) to estimate the distance from the current vertex V = (λ, σ) to the ending
vertex Ve = (λe, σe) does not overestimate the distance to the goal.

5.2 An algorithm for the reachability problem 99

π/2λe−π/2 λs

a

−π/2 λe π/2λs −π/2 λe π/2λs

b c

Figure 5.20: Angle variant parameters. Three possible configurations giving rise to three
different values for the minimum distance covered by a path from the current vertex with
parameter value λ to the final vertex with parameter value λe.

Proof

We consider an arbitrary vertex V = (λ, σ) and compute the path P from V to the ending
vertex Ve = (λe, σe). Define the parameter value λi as the parameter value of the vertex
Vi, where Vi is the i-eth visited vertex of the path P , and consider that P has n vertices
apart from V and Ve. Then, the distance to the goal depends on the number of improper
transitions the path visits. We prove that w(P) ≥ hα(V).

If the path visits no improper transitions edge, the distance to the goal can be computed
applying Theorem 5.2.3, w(P) ≥ h(V) ≥ hα(V). This is the case shown in Figure 5.20b.

If the path visits one improper transition, consider that the path visits exactly s vertices
before, apart from V . The improper transition can be either from −π/2 to π/2, to which
we refer as clockwise, or from π/2 to −π/2, to which we refer as counter-clockwise.

Consider first the case in which the improper transition is clockwise. Consider the sim-
plest case in which the two intervals including the initial and final solution instances, with
parameter values λ and λe respectively, are joined by the improper transition, Figure 5.20c.
Then,

w(P) = |π/2− λ|+ |λe + π/2| ≥ hα(V)

In the case that other intervals edges exist before or after the improper transition, triangular
inequalities yield

w(P) = |λ1 − λ|+ |π/2− λ1|+ |λe + π/2| ≥ |π/2− λ|+ |λe + π/2| ≥ hα(V)

100 The reachability problem

Consider now the case in which the improper transition is counter-clockwise. Consider
again the simplest case in which the two intervals including the initial and final solution in-
stances, with parameter values λ and λe respectively, are joined by the improper transition,
Figure 5.20a. Then,

w(P) = | − π/2− λ|+ |λe − π/2| ≥ hα(V)

As above, ther intervals edges exist before or after the improper transition, triangular
inequalities yield

w(P) = |λ1 − λ|+ | − π/2− λ1|+ |λe − π/2| ≥ | − π/2− λ|+ |λe − π/2| ≥ hα(V)

If the path visits more than one improper transition, we can split the path P in different
subpaths Pi, each of them including only one improper transition. Then, the weight of each
path Pi is defined by the relations above. Clearly, w(P) =

∑

w(Pi).

Consider a path P split in two subpaths P1, P2, where P1 begins at V and ends at
Vs = (λs, σs), and P2 begins at Vs and ends at Ve. We prove that, if w(P1) ≥ hα(V) and
w(P2) ≥ hα(Vs), then w(P) ≥ hα(V). We analyze three cases, depending on the kind of
improper transition the subpaths include.

1. P1 includes a clockwise improper transition, P2 includes a clockwise improper tran-
sition. Then,

w(P) = w(P1) + w(P2) = | − π/2− λ|+ |λs − π/2|+ | − π/2− λs|+ |λe − π/2| ≥

≥ |λe − λs|+ |λ− λs| ≥ |λe − λ| ≥ hα(V)

2. P1 includes a clockwise improper transition, P2 includes a counter-clockwise improper
transition. Then,

w(P) = w(P1) + w(P2) = | − π/2− λ|+ |λs − π/2|+ |π/2− λs|+ |λe + π/2| ≥

≥ |λe − λ|+ 2|λs − π/2| ≥ |λe − λ| ≥ hα(V)

3. P1 includes a counter-clockwise improper transition, P2 includes a counter-clockwise
improper transition. Then,

w(P) = w(P1) + w(P2) = |π/2− λ|+ |λs + π/2|+ |π/2− λs|+ |λe + π/2| ≥

≥ |λe − λ|+ 2|λs + π/2| ≥ |λe − λ| ≥ hα(V)

5.3 Implementation and results 101

C
σ1
3

G
A

σ1
5
σ4

σ4

σ2

3
σ2

11.42 5 G3
σ4

σ3
3E
σ3

11.42
11.42
σ1A

11.42

∅

∅

∅

∅

σ1
5
5
σ4 3

σ4

G σ3
3E
σ3

11.42σ1
11.42
AA

3
σ13

σ2C11.42
σ2 11.42

σ4

G

∅

∅

∅

∅

a b

Figure 5.21: Two minimum paths output by Algorithm 10 that solve the reachability
problem in Figure 5.16. Is = T (5, σ1) and Ie = T (5, σ4). Grey vertices represent the path,
and white vertices are the not visited vertices.

The fact that this methodology can be successively applied to paths with a finite number
of improper transitions concludes the proof.

2

Figure 5.21 shows two paths with minimum variant parameter arc length computed by
Algorithm 10 that solves the reachability problem whose domain is given in Figure 5.16.
The starting instance Is ∈ A is defined by λs = 5 and σ = {+1,+1}, and the ending
instance Ie ∈ G is defined by λe = 5 and σ = {−1,−1}. The total variant parameter arc
length for these paths is 16.84 and both paths are optimal.

5.3 Implementation and results

Our approach to solve the reachability problem has been implemented in the framework
of the dynamic geometry system based on constructive geometric constraint solving de-
scribed by Freixas et al. in [25]. The system has two components. One includes a user
graphic interface and a constructive geometric constraint solver in charge of both defining
the parametric geometric object and generating a construction plan that solves it. The
other component, that we call the dynamic selector, defines the dynamic behavior of the
geometric object and solves the reachability problem.

To illustrate how the implementation works, we will show a complete case study in which

102 The reachability problem

p0

p2

p3

p1 p4

d2 d3
d6

p5

d8
d7

d1

d5
d0

d4
(p0, p1, p2) (p0, p1, p3)

(p2, p3, p4)

(p1, p4, p5)

a b

Figure 5.22: Geometric constraint problem with six points and nine point-point distances.
a) Graph G. b) h-graph H(G) associated to G.

the system solves a reachability problem associated to the geometric constraint problem
depicted in Figure 5.22a. This problem includes six points and nine point-point distances,
where d4 is the variant parameter and the distance constraint are assigned values

d0 = 2 d1 = 2 d2 = 1 d3 = 1
d5 = 0.7 d6 = 0.7 d7 = 0.8 d8 = 0.89

The h-graph associated to the problem is shown in Figure 5.22b. Clearly, the problem is
composed by 4 tree-decomposition steps, (p0, p1, p2), (p0, p1, p3), (p2, p3, p4) and (p1, p4, p5).
Problems (p0, p1, p2), (p0, p1, p3) depend directly on the variant parameter and problems
(p2, p3, p4), (p1, p4, p5) depend indirectly on it.

Once the dynamic problem has been introduced in the system through the user graphic
interface, the constructive geometric constraint solver computes the construction plan that
solves the underlaying geometric constraint problem shown in Figure 5.23. For more details
on this construction, see [25].

Now, the dynamic selector will define and solve the reachability problem. We have
divided the dynamic selector into two different parts. The part in charge of defining the
reachability problem is called endpoints selector, and the part in charge of solving it is
called reachability simulator.

The main task of the endpoints selector consists in computing the domain of the variant
parameter and the transitions graph of the problem, using the algorithms explained in
Section 4.5, Chapter 4. Once the domain and the tree-decomposition are computed, the
selector suggests to the user arbitrary initial and final instances belonging to a connected
component of the transitions graph.

5.3 Implementation and results 103

1. p0 = origin()
2. p1 = distD(p0, d4)
3. c0 = circleCR(p0, d0)
4. c1 = circleCR(p1, d1)
5. p2 = intCC(c0, c1, s0)
6. c2 = circleCR(p0, d2)
7. c3 = circleCR(p1, d3)

8. p3 = intCC(c2, c3, s1)
9. c4 = circleCR(p2, d5)
10. c5 = circleCR(p3, d6)
11. p4 = intCC(c4, c5, s2)
12. c6 = circleCR(p0, d7)
13. c7 = circleCR(p4, d8)
14. p5 = intCC(c6, c7, s3)

Figure 5.23: Construction plan given by the constructive geometric constraint solver for
problem in Figure 5.22.

In our implementation, the system labels the intervals with consecutive integers. For a
better understanding we have labeled them in this work with capital letters, but from now
on we will label intervals with integers.

The reachability problem we solve is defined by the starting instance Is = T (0.5, σ4) and
the ending instance Ie = T (0.5, σ2). Figure 5.24 shows the domain of the variant parameter
in this problem together with the set of continuous transitions among the intervals. The
transitions graph of this problem, although never displayed by the system, is shown in
Figure 5.25.

Finally, the reachability simulator figures out the extended transitions graph for the
starting and ending instances selected by the user, shown in Figure 5.26. The search for

λ0 1.860.94 1.44
σ4

σ3

σ2

σ1 1 234 56
Figure 5.24: Domain of the variant parameter of the problem in Figure 5.22. The set of
continuous transitions betweene intervals are displayed as arrows.

104 The reachability problem

3 6
2 5

0
σ1

0
σ3

0.94
σ1

0.94
σ3

∅ ∅

∅ ∅

1 4

0
σ2

1.86
σ2

1.86 1.86 1.86
0

1.44 1.44
σ1

σ1 σ3

σ3 σ4

σ4

Figure 5.25: Transitions graph of the problem in Figure 5.22.

the minimum path is performed according to Section 5.2.2, giving rise to the path shown
in Figure 5.27.

2 5
∅

∅ ∅

0
σ2

1.86
σ2

1.86 1.86 1.86
0

1.44 1.44
σ1

σ1 σ3

σ3 σ4

σ4
3
3

0.5
σ2

0.5
σ46

6

Figure 5.26: Extended transitions graph for the reachability problem with initial instance
Is = T (0.5, σ4) and ending instance Ie = T (0.5, σ2).

5.4 Conclusions 105

3
0 0

6

2 5
∅

∅ ∅1.86
σ2

1.86 1.86 1.86
1.44 1.44
σ1

σ1 σ3

σ3 σ4
3σ2

0.5
σ46

0.5 σ2 σ4

Figure 5.27: Minimum path computed by the system for the reachability problem with
initial instance Is = T (0.5, σ4) and ending instance Ie = T (0.5, σ2).

5.4 Conclusions

In this chapter we have presented a solution to the reachability problem in geometric
constraint dynamic geometry. The technique assumes the existence of a construction plan
for the geometric constraint problem under study and is based on the analysis of the
problem’s domain and the continuous transitions among its domain intervals. Continuous
transitions allow to perform changes in the index assignments of a dynamic evaluation in
such a way that the resulting evaluation is continuous.

A graph capturing all the continuous transitions arising in the domain of the problem,
called transitions graph, is defined. Using the A∗ algorithm in the transitions graph the
method finds a path, if possible, which solves the reachability problem.

The technique has been implemented on top of the dynamic geometry system based
on constructive geometric constraint solving presented by Freixas et al. in [23], and it has
proven to be both effective and efficient from a practical point of view. The execution time
is around 40 milliseconds for the computation of the domain in the case entailing six points
and nine distances proposed in Section 5.3, and 1 millisecond for the minimum path.

106 The reachability problem

CHAPTER 6

The tracing problem

You have brains in your head. You have feet in your shoes.
You can steer yourself any direction you choose.
You’re on your own. And you know what you know.
And YOU are the one who’ll decide where to go...

Dr. Seuss, Oh, the Places You’ll Go!

When changing variable values or freely moving different elements of a geometric con-
struction on a dynamic geometry environment, the user expects to see the changes of his
interaction immediately reflected in the construction. However, often the requested ge-
ometric construction is not unique under the established conditions. The system must
decide, therefore, for each time instant, which one of the different possible instances of
the construction the user is expecting to see. To display the correct solution instance at
every time instance is known as the tracing problem. In this chapter we give a more formal
definition of this problem as well as our approach to the solution.

108 The tracing problem

Starting Ending Starting Ending

Solution
instances

Index
assignments

Variant
parameter

Tracing problem Reachability problem

??

? ?

?

?

?

Figure 6.1: Scheme of the given (check marks) and on demand (question marks) information
in the tracing and the reachability problems. From Denner-Broser, [16].

6.1 Definition of the tracing problem

The tracing problem is one of the most challenging problems in dynamic geometry. In
simple words, given an initial instance of the problem and the path followed by the variant
parameter, the tracing problem consists of showing, at every moment, a solution instance
from the set of possible instances of the system. This includes solving the root identification
problem as well as the handling of the points where no possible solution exists. The aim
of the tracing problem is to show the solution instance the user is expecting to see, which
is called the intended solution.

Despite the resemblances between the tracing and the reachability problems, there are
two main features that distinguish them. Following Denner-Broser, [16], we outline both
problems with the scheme shown in Figure 6.1. Given inputs of information are displayed
by a check mark. Information in demand for each problem is displayed by a question mark.

Assuming that the solution instance at every instant is defined once the variant pa-
rameter and the index assignment are known, the first row in Figure 6.1 gives no further
information than the already given by the second and the third ones. It is shown that the
tracing and the reachability problem share three input information: the variant parameter
of the starting and ending instances and the index assignment of the starting one.

The reachability problem also has as input information the index assignment related
to the ending instance, which means that the ending instance is known. The problem
consists on finding a variant parameter path and the associated index assignment allowing
a dynamic evaluation from the starting instance to the ending one, as seen in Chapter 5.

6.1 Definition of the tracing problem 109

On the contrary, the tracing problem has as extra input information the path followed
by the variant parameter from the initial instance to the ending one, λ(t). No information
about the index assignment at any point different to the starting one is given. The problem
consists on choosing the right instance among those possible instances at each path point.

Many formal definitions of the tracing problem have been stated in the literature, see
for example [15, 17, 18, 70, 83]. We formally state the tracing problem as follows.

Let Π =< ΠG,ΠC ,ΠP > be a geometric constraint problem with one variant
parameter λ and let T (σ, λ) be a construction plan that solves Π. Let Is =
T (λs, σs) be a starting instance of T , and λ(t) : [0, 1] → R

+ a continuous path
of the variant parameter. Decide the assignments of index

σ(t) : [0, 1] → {−1,+1}n

for which there is a dynamic evaluation T (σ, λ)(t) feasible for every t ∈ [0, 1]
such that T (σ, λ)(0) = Is.

Notice that no continuity requirements have been specified in the definition of the
problem. If we want the dynamic evaluation to be continuous, we must define a new
problem, which we call the continuous tracing problem. This variant of the tracing problem
is formally stated as follows.

Let Π =< ΠG,ΠC ,ΠP > be a geometric constraint problem with one variant
parameter λ and let T (σ, λ) be a construction plan that solves Π. Let Is =
T (λs, σs) be a starting instance of T , and λ(t) : [0, 1] → R

+ a continuous path
of the variant parameter. Decide the assignments of index

σ(t) : [0, 1] → {−1,+1}n

for which there is a continuous evaluation T (σ, λ)(t) feasible for every t ∈ [0, 1]
such that T (σ, λ)(0) = Is.

In this new statement of the problem, the index assignment σ(t) must ensure the
continuity of the dynamic evaluation T (σ, λ)(t).

Users are used to a world where objects do not suffer from jumps in their behaviors.
Thus, the natural solution to the tracing problem should show a continuous movement of
all the involved elements. The natural tracing problem is then the continuous one.

110 The tracing problem

6.2 Solution to the tracing problem

In this section we recall some of the approaches in the literature to solve the tracing
problem, and present our own approach. We discuss the differences between the methods
and analyze their characteristics. Some properties of our method are highlighted at the
end of the section.

6.2.1 Previous approaches

The tracing problem has been addressed for a long time in the literature. In Richter-
Gebert [90], it has been shown to be a NP-hard problem by giving a reduction to the
3-SAT problem, one of the standard NP-complete decision problems. Also the complexity
of other related tracing problems has been established in [83, 90].

Different approaches to the solution of this problem have been reported, but they are
all based on the same idea: to prevent the construction of the solution at critical values,
inherent to the problem at hand. Following this idea we find the work of Kortenkamp, [70],
which suggests a proximity criterion which chooses as next instance the nearest solution
to the actual one. The method, as expected, gives accurate results as long as the path
does not contain critical values. There, the system has no method to distinguish between
different solutions. As strategy to avoid the undesired critical values, Kortenkamp proposes
a detour in the path of the variant parameter through the complex plane.

Denner-Broser in [16, 17, 18], develops a full theory about detours and alternative
paths through the complex plane with an algorithm which proceeds stepwise and detects
potential critical values in advance using interval arithmetic. After detecting a critical
value, the singularity is avoided by a detour in C. Denner-Broser also suggests in [15] an
approach based on avoiding the critical values by computing a Voronoi diagram where the
sites are the critical values. The solution to the tracing problem is given by the edges of
the diagram.

Our approach, however, differs substantially from these approaches. We present a
method in which critical values are not to be avoided, but used as the place where continu-
ous transitions are defined to connect different intervals of the domain to allow continuous
dynamic evaluations.

6.2.2 An approach to the solution of the tracing problem

We present in this section an approach to solve the tracing problem, both the simple and the
continuous one, in the framework of the dynamic geometry system based on constructive

6.2 Solution to the tracing problem 111

1.861.440.5 λ

Figure 6.2: Definition of the tracing problem by means of a scheme

geometric constraint solving described by Freixas et al. in [24]. In this framework, after
the analysis and computation of the domain, critical values and continuous transitions are
identified, leading to a map of the domain which allows the user to plan which one of the
possible paths the tracing is going to take. When the variant parameter path reaches a
critical value with multiple solution instances, the system is able to distinguish the different
solutions which converge at that point, and identifies the transitions leading to a continuous
behavior of the construction.

Nevertheless, the solution to the continuous tracing problem is not necessarily unique.
As long as the variant parameter path goes over a point of continuous transition, a possible
change of the index assignment can be done in such a way that the corresponding dynamic
evaluation is continuous, leading possibly to many different dynamic evaluations which
solve the tracing problem at hand.

Assuming that two different continuous evaluations can be established fulfilling the
conditions to solve a given tracing problem, since the intended solution is the one the user
is “expecting to see”, only he is able to decide which one is the correct one. We give then
this responsibility to the user. In our system, the user has all the information about the
possible paths and transitions, and he can choose the intended solution he is expecting to
see.

As an example of tracing problem with more than one continuous solution we propose
to solve the tracing problem defined by the path solution to the reachability problem stated
in Chapter 5, Section 5.3. The path followed by the variant parameter is schematically
represented in Figure 6.2. From top to bottom and from left to right, this figure represents
how the variant parameter increases from 0.5 to 1.86, then decreases until 1.44, increases
again up to 1.86 and finally decreases to reach the final value 0.5.

Figure 6.3 shows the continuous evaluation output by the dynamic selector, which also
solves the tracing problem at hand. An index assignment has been chosen for every point
in the path λ(t), changing the sign exactly at the transition points and assuring the final
continuity of the dynamic evaluation, which traverses intervals 6, 5, 2 and 3. The ending

112 The tracing problem

+++ �� +
λ

σ

� �
0 1.860.94 1.440.5

1 234 56
Figure 6.3: Solution to the tracing problem corresponding to the solution to the reachability
problem in Chapter 5, Section 5.3

instance is T (σ2, 0.5).

Nevertheless, other continuous evaluations present also solutions to the considered trac-
ing problem. Figure 6.4 represents a dynamic evaluation assigning to each point in the
path λ(t) an index assignment which also assures the continuity. The continuous evaluation
traverses intervals 6 and 5, where no change of index occurs. The ending instance is the
same as the starting one, T (σ4, 0.5).

Figure 6.5 represents another dynamic evaluation which also solves the tracing problem
at hand. In this case, no change of index assignment is considered, and each variant
parameter in the path λ(t) we associate the same index assignment, σ4. The final instance is
again the same as the starting one, T (σ4, 0.5). Notice that no criterion has been established
however to allow the system to select one of them as the intended solution. Only the user
can answer this question.

6.2.3 On continuity and determinism

As seen in Section 2.4, continuity and determinism are two of the most important and
desirable characteristics of dynamic geometry systems. As seen there, continuity assures
the non-existence of undesirable or unexpected jumps while geometric objects move on
the screen, avoiding the existence of erratic behaviour in the user interface. The impor-
tance of continuity derives from the fact that real systems are continuous, and so must be
their representations. Determinism contributes to system stability by guaranting the same
behaviour once the initial conditions have been fixed.

6.2 Solution to the tracing problem 113

+++ �� +
λ

σ

� �
0 1.860.94 1.440.5

1 234 56
Figure 6.4: Another solution to the tracing problem traversing only two intervals.

+++ �� +
λ

σ

� �
0 1.860.94 1.440.5

1 234 56
Figure 6.5: Other solution to the tracing problem which associates to every point in the
variant parameter path the same index assignment.

114 The tracing problem

α

α
2
−

α
2
+

a

α α/2 α/4

σ1 120◦ 60◦ 30◦

σ2 300◦ 150◦ 75◦

σ3 480◦ 240◦ 120◦

σ4 660◦ 330◦ 165◦

b

Figure 6.6: Bisector and double bisector. a) Possible bisectors of the angle α. b) Values
of the angle, bisector and double bisector for the four different assignments of the problem
with two bisectors.

It has been claimed that continuity and determinism are mutually exclusive when bi-
sectors of angles are included in the set of basic operations the system handles, [16, 70, 83].
We shall see that this is not the case in our system.

Notice that, by definition, when increasing an angle variant parameter with respect
to a fixed point, the bisector of that angle covers half the angular distance of the angle
itself. Therefore, the bisector angular speed is half the angular speed of the angle. By the
same principle, the bisector of the bisector af an angle covers a fourth part of the angular
distance covered by the original angle.

If we allow the angle variant parameter to increase from 0 up to 2π, the starting and
ending values of that angle are coincident modulo 2π. However, the bisector angle will
be at π and the double bisector angle will be at π/2. In this situation, according to the
definitions of Kortenkamp, [70], continuity and determinism are considered as mutually
exclusive.

Nevertheless, our approach will have determinism and continuity simultaneously even
in this case. A sign will be defined considering the two possible cases for the angle, leading
to the two possible bisectors depicted in Figure 6.6a. Thus, the bisector in our system will
be defined as:

Let angle α ∈ [−π/2, π/2]. With the bisector of α we associate a sign, say
σ0. The bisector is defined as α/2 ∈ [−π/2, π/2] for σ0 = +1 and α/2 + π/2
mod π ∈ [−π/2, π/2] for σ0 = −1.

The application of this definition to the problem with two bisectors will produce an

6.3 Implementation 115

index with two signs, one for each bisector included in the construction, leading to four
different possible index assignments. The values of the angle α, the bisector and the double
bisector for the four different assignments are depicted in Table 6.6b. Figure 6.7 shows from
left to right and from top to bottom the four different instances of the problem related to
the index assignments σ1, σ2, σ3 and σ4, respectively. The angle α is limited by a thick
line, the bisector by a dashed line and the double bisector by a dotted line. Arrows point
to the value of the angles inside [−π/2, π/2], that is, modulo π.

Consider now the top left figure in Figure 6.7 representing the configuration correspond-
ing to the index assignment σ1. If we increase α in 180◦ through the X axis, the bisector
α/2 traverses the Y axis and the resulting configuration is the one depicted in the top right
figure, associated to the index assignment σ2. Increasing in other 180◦ the value of α, the
dashed line traverses the X axis while the dotted line traverses the Y axis. The resulting
situation is depicted in the bottom left figure, related to the index assignment σ3. Another
increment of 180◦ in α makes the dashed line traverse the Y axis again, adopting the con-
figuration represented in the bottom right figure and associated to the index assignment
σ4. Notice that a last increment of 180◦ will make both the dashed and the dotted line
traverse the X axis, arriving to the initial configuration in the top left figure corresponding
to the index assignment σ1.

The domain of the problem defined by an angle α, the bisector α/2 and the bisector
of the bisector α/4 is shown in Figure 6.8. Notice that the continuous transitions between
intervals reflect the behavior explained above. Each index assignment σi is connected by an
improper transition to the index assignment σi+1 except σ4, connected to σ1. This domain
and the included improper transitions capture the original behavior of the problem, which
allowed two complete turns of the angle variant parameter before the current instance
and the initial one became coincident. That feature gives to our approach soundness and
robustness.

6.3 Implementation

The implementation of our approach to solve the tracing problem is build on top of the
dynamic geometry system based on constructive geometric constraint solving described by
Freixas et al. in [24], on top of which our approach to the reachability problem was also
implemented, Chapter 5, Section 5.3.

The specific functional unit in charge of actually solving the tracing problem is the
simulator. Once the user has defined the specific dynamic evaluation he is expecting to
see, the simulator is in charge of showing it in the screen.

The simulator simply receives the selected path in the transitions graph, which has

116 The tracing problem

Figure 6.7: Four possible configurations for the double bisector, allowing determinism and
continuity. From left to right and from top to bottom, solution instances corresponding to
index assignments σ1, σ2, σ3 and σ4 are shown.

π/2−π/2

σ1

σ2

σ3

σ4

Figure 6.8: The domain of the hypothetic problem with two bisectors.

6.4 Conclusions 117

been extended if needed with the starting and ending instances the user is expecting to
see, and shows the resulting dynamic evaluation of the problem in the simulator window.
The visualization of all the solution instances of a dynamic evaluation in the screen is called
a simulation.

Figure 6.9 shows a simulator window which has six panels divided into three main areas.
The top area is composed of two panels, which, from left to right, are called the display
panel and the domain panel. The display panel is the panel where the current instance
is show. Initially it displays the starting instance of the path the user has selected. The
simulation, if possible, will be displayed in this window.

In the domain panel, the domain of the variant parameter for the geometric problem
at hand is shown. It also gives information about the current instance by displaying a red
vertical line indicating the current value of the variant parameter, and by displaying in a
different color the current interval.

The middle area is made of three different panels, reporting information related to
the problem at hand. They are called the information panels. The left information panel
displays information about the geometric constraint problem. The right upper information
panel shows the index of the current instance. The right lower information panel shows
the different files used in the process.

The bottom area includes only the interaction panel, where some buttons lie. Button
Go starts the simulation, button Stop stops it and the lower scroll adjusts its velocity. In
this panel the user can also define the initial and final instances of a reachability problem
in the corresponding cells. In this case, button Set sets as current instance the initial
instance of the new reachability problem, and proceeds to solve the reachability problem
as described in Chapter 5, Section 5.3. The solution path is then stored as the new path
of the tracing problem to show, and button Go starts again the simulation.

Figure 6.10 shows different instances of the simulation for the path in Figure 5.27, which
solves the reachability problem with initial instance Is = T (0.5, σ4) and ending instance
Ie = T (0.5, σ2) described in Chapter 5, Section 5.3.

6.4 Conclusions

In this chapter we have presented an approach to solve the tracing problem in geometric
constraint dynamic geometry. As in the case of the reachability problem, the method is
based on the analysis of the problem’s domain and the continuous transitions among its
domain intervals. In this method, the user is asked to define the concrete behavior he is
expecting to see, that is, the intended solution.

118 The tracing problem

Figure 6.9: The reachability simulator window at the initial instance of the simulation.

6.4 Conclusions 119

Figure 6.10: From left to right and from top to bottom, different instances in the tracing
path for the tracing problem considered. The upper left image corresponds to the initial
instance and the lower right image to the final one.

120 The tracing problem

The technique has been also implemented on top of the dynamic geometry system based
on constructive geometric constraint solving presented by Freixas et al. in [23] and allows
continuity and determinism at the same time.

CHAPTER 7

Henneberg graphs and tree-decomposability

I personally believe we were put here
to build and not to destroy.

Red Skelton

Well-constrained graphs, also known as minimally rigid or Laman graphs, can be con-
structed by means of a sequence of two different construction steps called Henneberg steps.
It is also known that not all the Laman graphs are tree-decomposable. In this chapter we
study Henneberg steps and analyze thoroughly the relationship between the Laman graphs
generated by such steps and tree-decomposability. We create an algorithm which generates
tree-decomposable Laman graphs with a given order using Henneberg steps. The results
reported in this chapter establish for the first time, as far as we know, some relationships
between graph tree-decomposability and Henneberg graph constructions.

The chapter is divided into three main parts. In the first one, Henneberg steps and
families are defined, and a characterization for the set of tree-decomposable graphs is given.
The main aim of the first part is to determine the inclusion relations arising between
Henneberg families and the set of tree-decomposable graphs. The second part of the
chapter is devoted to establish the theoretical requirements necessary to assure the tree-
decomposability of a tree-decomposable graph after the application of a Henneberg step.
In the third part we present an authomatic process to generate tree-decomposable Laman

122 Henneberg graphs and tree-decomposability

graphs with a given order by means of Henneberg steps and using h-graphs, introduced in
Chapter 3.

7.1 Henneberg families and tree-decomposable graphs

Ernst Lebrecht Hennberg presented in 1911 a method to construct Laman graphs based on
the composition of two construction steps which we usually know as Henneberg steps, [35].
The two different steps give rise to two families of graphs, constructed only with each one
of the Henneberg steps. We devote this section to establish the inclusion relations arising
between each of the so defined families and the set of tree-decomposable Laman graphs.

7.1.1 Henneberg steps and Henneberg families

Laman graphs have some elegant and useful features. One of the most important is that
they can be constructed inductively from the triangle graph K3 by means of the so called
Henneberg steps [35], as seen for example in [94, 100]. We devote this section to introduce
Henneberg steps.

In particular, there are two kinds of Henneberg steps.

1. Henneberg I step or simply HS1: Let G = (V,E) be a graph and v1, v2 ∈ V with
v1 6= v2. Consider a new vertex v /∈ V . Then the graph G∗ = (V ∗, E∗) with
V ∗ = V ∪ {v} and E∗ = E ∪ {(v1, v), (v2, v)} is the graph derived from G by a
Henneberg I step. See Figure 7.1. We will say that such step involves vertices v1, v2.

2. Henneberg II step, or simply HS2: Let G = (V,E) be a graph with e = (v1, v2) ∈ E
and v3 ∈ V . Consider a new vertex v /∈ V . Then the graph G∗ = (V ∗, E∗) with
V ∗ = V ∪ {v} and E∗ = E ∪ {(v1, v), (v2, v), (v3, v)}\{e} is the graph derived from G
by a Henneberg II step. See Figure 7.2. We will say that such step involves edge e
and vertex v3.

Notice that the application of a HS1 can be seen as the addition to a graph of a new
degree 2 vertex v joined to the vertices v1 and v2. Besides, the application of a HS2 can
be seen as the substitution in a graph of an edge e = (v1, v2) by a new vertex v joined to
the vertices of v1, v2 and to a different vertex v3.

Definition 7.1.1

The sequence of Henneberg steps transforming the triangle graph K3 into the graph G is
called the Henneberg sequence of G.

7.1 Henneberg families and tree-decomposable graphs 123

v1

v2

G

v2

e2

e1

v1

v

G∗

a b

Figure 7.1: Henneberg I step. a) Graph G. b) Graph G∗ derived from graph G by the
application of a HS1.

v2
v3

v1

e

G

v2

e3 v3

v

v1
e1

e2

G∗

a b

Figure 7.2: Henneberg II step. a) Graph G. b) Graph G∗ derived from graph G by the
application of a HS2.

124 Henneberg graphs and tree-decomposability

Henneberg steps give rise to two different families of graphs, as defined in [7, 22]. A
graph G belongs to the Henneberg I family, denoted HI , if it can be constructed using only
Henneberg steps of type I. The graph G belongs to the Henneberg II family, denoted HII ,
if both Henneberg steps of type I and II are needed to build G. As shown in [35], HII and
the the set of Laman graphs are coincident.

The application of Henneberg steps can also be abstracted as a rewriting system where
objects are graphs and the Henneberg steps are the rewriting rules. In this context, we
will denote the application of a HS1 to the graph G as G ⇒1 G∗ and the application
of a HS2 to G as G ⇒2 G∗. The application of an arbitrary Henneberg sequence to K3

leading to G shall be denoted by K3 ⇒∗ G. In order to identify two different Henneberg
sequences, we shall use a supra index. The application of a Henneberg sequence including
only Henneberg steps of type I to K3 leading to G shall be denoted by K3 ⇒1∗ G.

7.1.2 A characterization of tree-decomposable Laman graphs

In this section we propose a diferent point of view on tree-decomposable Laman graphs.
We present a characterization of the set of tree-decomposable Laman graphs based on an
operation called merging. We will see that the set of graphs constructed by means of this
operation is exactly the set of tree-decomposable Laman graphs. A graph constructed by
means of a sequence of merging operations is tree-decomposable, and the merging sequence
can be understood as the composition of the decomopsition steps of the tree-decomposition
in bottom-up direction.

There are different methods to generate tree-decomposable Laman graphs. Vila, in
[106], characterizes the set of tree-decomposable Laman graphs as the set L generated
from the triangle graph K3 by the operation called amalgamation. We propose a similar
characterization based on an operation called merging, which we define as follows. Refer
to Figure 7.3.

Definition 7.1.2

Let A = (VA, EA), B = (VB, EB), C = (VC , EC) be three graphs with a1, b1 ∈ VA, c1, a2 ∈ VB

and b2, c2 ∈ VC . The graph D = (VD, ED) is called the merging of graphs A,B and C if
VD = VA∪VB∪VC and ED = EA∪EB∪EC after the identification of vertices a1 = a2 = a,
b1 = b2 = b and c1 = c2 = c.

Graphs A,B,C are called the clusters of the merging, and the identified vertices a, b, c,
the merging vertices. The set of the three merging vertices of a merging is called the
merging triple.

We define the set T as the set defined constructively by the following rules:

Definition 7.1.3

7.1 Henneberg families and tree-decomposable graphs 125

b

D
a

c

A B

C

a1 a2

b1
c1

b2 c2

Figure 7.3: Merging of graphs A,B,C giving rise to graph D, with hinges a, b, c.

Consider the set of graphs T such that

1. The triangle graph K3 belongs to T .

2. Let A,B,C ∈ T ∪E. Then, the graph D resulting from the merging of graphs A,B,C
is also in T .

We will refer to a merging operation in T as a generation step or merging step. A se-
quence of generation steps leading to a graph in T shall be called generation sequence. Each
generation step in a generation sequence has a different merging triple, which unequivocally
identifies the step.

A generation sequence can be abstracted as a rewriting system, [64, 65], where objects
are graphs and the generation steps are the rewriting rules. In this context, we will de-
note the application of a generation step merging clusters G,G1, G2 to the graph G as
G →(G,G1,G2) G∗. If the hinges of the generation step are (u, v, w) we will also denote
the application of the generation step as G →(u,v,w) G

∗. The application of a generation
sequence to K3 leading to G shall be denoted by K3 →∗ G. In order to distinguish between
different generation sequences, we will use a supra index.

We prove now that T characterizes the set of tree-decomposable Laman graphs.

Theorem 7.1.1

Let T be the set of graphs defined in Definition 7.1.3, and TL the set of tree-decomposable
Laman graphs. Then, T = TL.

126 Henneberg graphs and tree-decomposability

Proof

We prove first that any graph in T is Laman and tree-decomposable. We prove it by
induction on the order of the graph.

Induction basis: Consider the first element in T , K3, with order 3. K3 is trivially
Laman and tree-decomposable.

Induction hypothesis: every graph in T with order less than n is Laman and tree-
decomposable.

Consider G ∈ T , with order n. We prove that G is Laman and tree-decomposable.
Assume that G is the graph resulting from the merging of graphs A = (VA, EA), B =
(VB, EB) and C = (VC , EC), all of them in T . The order of graphs A,B,C is less than n,
and, by induction hypothesis, A,B,C are Laman. Thus, the following relations hold:

|EA| = 2|VA| − 3, |EB| = 2|VB| − 3, |EC | = 2|VC | − 3

That is
|EA|+ |EB|+ |EC | = 2(|VA|+ |VB|+ |VC |)− 9

But |EG| = |EA|+|EB|+|EC | and |VG| = |VA|+|VB|+|VC |−3, which yields |EG| = 2|VG|−3,
and therefore G is Laman.

The same rational applies to prove the subgraph condition.

We prove now that G is tree-decomposable. By induction hypothesis, A,B,C are tree-
decomposable. Since G ∈ T is the merging of graphs A,B,C, there exist a, b, c ∈ VG

such that VA ∩ VB = {a}, VA ∩ VC = {b}, VB ∩ VC = {c}. Then A,B,C define a tree-
decomposition of graph G. The fact that A,B,C are tree-decomposable completes the
proof.

We prove now that any tree-decomposable Laman graph G is a graph in T . Let TG be
a tree-decomposition of G. The bottom-up merging of nodes in TG is a generation sequence
for G. Therefore G ∈ T . 2

We call the corresponding generation step of a tree-decomposition step TG to the merg-
ing step having as merging triple the hinges of TG. Analogously, we call the corresponding
tree-decomposition step of a generation step SG to the tree-decomposition step having as
hinges the merging triple of SG. Notice that, in this way, a generation sequence leading to a
tree-decomposable Laman graph G is the inverse process of a tree-decomposition beginning
at G.

Generating a graph G by means of a generation sequence assures the tree-decomposition
of G by the tree-decomposition with the corresponding steps of the merging steps. In fact,
we can establish a one-to-one correspondence between the set of generation sequences

7.1 Henneberg families and tree-decomposable graphs 127

leading to G and the tree-decompositions of G. We call the corresponding generation
sequence of a tree-decomposition TG to the generation sequence related by this bijection
to TG. Analogously, we call the corresponding tree-decomposition of a generation sequence
SG to the tree-decomposition related by this bijection to SG. The existence of the above
mentioned bijection proves the fact that the generation of graphs by means of a generating
sequences is equivalent to tree-decomposability, but in bottom-up direction.

Theorem 7.1.2

The generation sequence leading to a tree-decomposable Laman graph is canonical.

Proof

In [64], Joan-Arinyo and Soto proved that tree-decompositions are canonical, that is, the
same tree-decomposition steps appear in each one of the different tree-decompositions of
a graph. Consider a graph G and a generation sequence SG leading to it. Consider the
corresponding tree-decomposition of SG, TG. TG is canonical, and thus equivalent to other
tree-decompositions of G, as T ′

G. The corresponding generation sequence of T ′
G, S

′
G, is also

a generation sequence leading to G, and the merging steps are the same as in SG. Then,
the generation sequence is also canonical. 2

A consequence of Theorem 7.1.2 is that the set of merging triples of different generation
sequences of a given graph is unique. Another consequence of this theorem is that the set
of hinge triples and the set of merging triples of a graph is exactly the same. Moreover,
hinges and merging vertices are two different names for the same concept. Then, we will
identify from now on hinges and merging vertices.

7.1.3 Inclusion relations

The aim of this section is to establish the relation between HI and HII families of graphs
and the set of tree-decomposable Laman graphs, characterized by T . In particular, we will
prove that HI ⊂ T ⊂ HII . Each inclusion will be proved separately. The first one, HI ⊂ T
is a straightforward verification derived from the definition of the set T .

Theorem 7.1.3

Let HI be the set of graphs defined by a Henneberg sequence including only Henneberg I
steps. Let T be the set defined in Definition 7.1.3. Then, HI ⊂ T .

Proof

The application of a HS1 to a graph G is equivalent to the merging of graph G with two
edge graphs in E , see Figure 7.1. The fact that HI and T are different is proven by giving a
counterexample. Graph in Figure 7.4a is tree-decomposable and thus belongs to T . But it
cannot be constructed with a sequence of HS1 steps because it does not include vertices of
degree smaller than three. Otherwise, according to the definition of HS1, the graph would

128 Henneberg graphs and tree-decomposability

a b

Figure 7.4: Counterexamples. a) Tree-decomposable Laman graph which cannot be con-
structed using only HS1. b) Non tree-decomposable Laman HII graph.

have degree 2 vertices. 2

For the inclusion T ⊂ HII we need first a previous result on Henneberg graphs. The
proof can be seen for example in [34].

Lemma 7.1.4

Let G = (V,E) be a Laman graph. For any pair of vertices {u, v} ⊂ V , there is always a
Henneberg sequence such that builds G from the graph G(u,v) ∈ E.

We can now prove the second inclusion.

Theorem 7.1.5

Let HII be the set of graphs defined by a Henneberg sequence including Henneberg steps of
type I and II. Let T be the set defined in Definition 7.1.3. Then, T ⊂ HII .

Proof

We prove first that every graph in T belongs to HII . The inclusion is proven by induction
on the order of the graph.

Induction base: Consider the first element in T , K3, with order 3. K3 is in HII by
definition.

Induction hypothesis: Assume that every graph in T with order d, with 3 ≤ d ≤ n,
belongs to HII .

We prove now that the merging of three arbitrary graphs in T ∪ E also belongs to
HII . Let A = (VA, EA), B = (VB, EB), C = (VC , EC) be three graphs with a1, b1 ∈ VA,
c1, a2 ∈ VB and b2, c2 ∈ VC . Consider the merging of A,B,C by identifying a1 = a2 = a,
b1 = b2 = b and c1 = c2 = c. Each graph A,B,C in T ∪ E either is an edge graph or,
by Lemma 7.1.4, has a Henneberg sequence starting from an edge graph of any pair of its
elements.

In particular, for each graph A,B,C we can find a Henneberg sequence starting from

7.2 Preserving tree-decomposability in Henneberg steps 129

Figure 7.5: Henneberg sequence leading to the Laman graph in Figure 7.4b which is not
tree-decomposable, represented from left to right and from top to bottom.

the two hinges included in it, and denote them respectively G(a1,b1) ⇒A
∗ A,G(a2,c1) ⇒B

∗

B,G(b2,c2) ⇒
C
∗ C. If A,B or C are in E , the corresponding sequence will be just the edge

graph. Now change the name of elements a1, a2 to a, b1, b2 to b and c1, c2 to c in A,B,C
and the Henneberg sequences leading to them.

Consider now the triangle graph K3 with vertices a, b, c. The Henneberg sequence
resulting after applying Henneberg sequences ⇒A

∗ ,⇒
B
∗ ,⇒

C
∗ to each one of the edges of

K3 leads to the merging of graphs A,B,C by identifying a1 = a2 = a, b1 = b2 = b and
c1 = c2 = c.

Next we show that T 6= HII . The fact that both sets are different is again proven by
giving a counterexample: graph in Figure 7.4b is Laman, as can be seen in Figure 7.5, but
it is not tree-decomposable, because there is no triple of vertices decomposing the graph
in three subgraphs sharing pairwise just one vertex. 2

7.2 Preserving tree-decomposability in Henneberg steps

It is well known, and it has been also proved in Section 7.1, that not all Laman graphs
are tree-decomposable. For that reason, when building a Laman graph as a Henneberg
sequence, the resulting graph may or may not be tree-decomposable. The traditional way
to figure out whether a Laman graph is tree-decomposable is to proceed to a decomposition
and then check if it has succeeded. We devote this section to establish the conditions under
which a Henneberg sequence results in a tree-decomposable Laman graph. We will analyze
tree-decomposability preservation for each kind of Henneberg step.

130 Henneberg graphs and tree-decomposability

7.2.1 Henneberg I steps and tree-decomposition

Proving tree-decomposability preservation of Henneberg I steps is straightforward, and can
be seen as a Corollary of Theorem 7.1.3.

Corollary 7.2.6

Let G and G∗ be two Laman graphs such that G ⇒1 G∗. Then G∗ is tree-decomposable if
and only if G is tree-decomposable.

Proof

For the if part, consider that G is tree-decomposable. Then, there exists a generation
sequence S from K3 to G. As seen in Theorem 7.1.3, the application of a HS1 to a graph
G is equivalent to the merging of graph G with two edges in E . Then, we can define a
generation sequence from K3 to G∗ by adding to S a last generation step related to the
application of the HS1.

For the only if part, assume that G = (V,E) and G∗ = (V ∗, E∗) is tree-decomposable.
Since G ⇒1 G∗, there exist two vertices v1, v2 ∈ V and a vertex v ∈ V ∗ such that
V ∗ = V ∪ {v} and E∗ = E ∪ {(v1, v), (v2, v)}. Consider the tree-decomposition step
with hinges v, v1, v2 which decomposes G∗ in threee subgraphs: G, G(v1,v) and G(v2,v).
Since G∗ is tree-decomposable, the subgraphs are tree-decomposable and in particular G
is tree-decomposable. 2

7.2.2 Henneberg II steps and tree-decomposition

Proving tree-decomposability preservation of Henneberg II steps is not trivial. Before
addressing it, we present some basic features of the tree-decomposition process of tree-
decomposable graphs. The first result states that every vertex in a tree-decomposable
graph is a hinge at least in one tree-decomposition step.

Lemma 7.2.7

Let G = (V,E) be a tree-decomposable Laman graph. Then every vertex v ∈ V is hinge in
at least one tree-decomposition step. Moreover, for each edge e = (v1, v2) in E, there exists
at least one tree-decomposition step including vertices v1, v2 as hinges.

Proof

In [106], Vila showed that to each edge e = (v1, v2) in G corresponds a leaf {v1, v2} on
the tree-decomposition of G, which means that every edge is a cluster in at least one tree-
decomposition step. In the tree-decomposition step where e is one of the clusters, vertices
v1, v2 are hinges. Besides, as there are no degree 0 vertices in a tree-decomposable Laman
graph, every vertex v has at least one incident edge. 2

7.2 Preserving tree-decomposability in Henneberg steps 131

Now we state and prove a Lemma concerning the nature of a cluster in which a hinge
has degree 1.

Lemma 7.2.8

Let G = (V,E) be a tree-decomposable Laman graph made of the merging of clusters
G1, G2, G3 by means of hinges u, v, w, with G1 = (V1, E1) and v ∈ V1. If v has degree
1 in G1, then G1 ∈ E.

Proof

Consider cluster G1, vertex v ∈ V1 and the degree of v in G1 is 1. Then, G1 can not be
Laman. By definition, cluster G1 ∈ T ∪ E . Since G1 /∈ T , then it must be G1 ∈ E . 2

Finally we need to define the concept of maximal rigid subgraph of an under constrained
graph, since it will be used later on.

Definition 7.2.1

Let G be a tree-decomposable under-constrained graph. Consider a tree-decomposable Laman
subgraph R of G. R is a maximal tree-decomposable Laman subgraph of G if there exists
no other tree-decomposable Laman subgraph M such that R ⊂ M ⊂ G. The maximal
tree-decomposable Laman subgraph of a Laman graph G is G itself.

Notice that a maximal rigid subgraph in an under constrained graph does not need to
be unique.

Now we will prove two different theorems stating the conditions for the tree-decomposa-
bility preservation of Henneberg II steps. The first result explains why some constructions
give rise to non tree-decomposable graphs, while the second one gives a framework for
the development of an efficient and correct algorithm to build tree-decomposable Laman
graphs. The first theorem is illustrated in Figure 7.6.

Theorem 7.2.9

Let G = (V,E) be a tree-decomposable Laman graph and G∗ the graph such that G ⇒2 G
∗,

where the applied Henneberg II step involves edge e = (v1, v2) ∈ E and vertex v3 ∈ V .
Then, G∗ is tree-decomposable if, and only if, there exists a generation step of a generation
sequence of G merging clusters G1, G2, G3 such that G1 ∈ E, e ∈ E(G1), v1, v2 are hinges
of S and v3 is in G2, in G3 or in both of them.

Proof

Let v denote the new vertex involved in the Henneberg II step. We first prove the case in
which v3 is in just one of the clusters G2 or G3. Without loss of generality, we assume that
v3 ∈ G2, that is, the situation is the one depicted in Figure 7.6a. At the end of the proof
we will consider the case where v3 is in both clusters, depicted in Figure 7.6c.

For the if part, assume that there exists a generation sequence fulfilling the requirements

132 Henneberg graphs and tree-decomposability

v2

u

v3e

v1

G1 G2

G3

v2

u

e

v1

v3

G1 G2

G3

v2

e

v1

v3

G1 G2

G3

a b c

Figure 7.6: Necessary tree-decomposition step for the preservation of the tree-decomposa-
bility in Henneberg II steps, Theorem 7.2.9.

of the statement of the theorem, that is, K3 →i
∗ Gi →1

∗ G, where Gi is the merging of
clusters G1, G2, G3 such that G1 ∈ E , e ∈ E(G1) and v1, v2 are hinges. Then, if Gi−1

is such that K3 →i−1
∗ Gi−1 →(G1,G2,G3) Gi →1

∗ G, Gi−1 must be one of the clusters
G1, G2 or G3. If Gi−1 6= G2, consider a generation sequence of G2, K3 →0

∗ G2. Then,
K3 →

0
∗ G2 →(G1,G2,G3) Gi →

1
∗ G is a generation sequence of G.

Now, by hypothesis, v3 ∈ G2, and either v1 or v2 is also in G2. Assume v1 ∈ G2,
and define A = G(v1,v) ∈ E and B = G(v3,v) ∈ E . The merging of graphs G2, A and B,
denoted G2 →(G2,A,B) G∗

2, gives rise to graph G∗
2 depicted in Figure 7.7a. Now define

C = G(v2,v) ∈ E . The merging of graphs G∗
2, G3 and C, denoted G∗

2 →(G∗

2
,G3,C) G

∗∗
2 , gives

rise to graph G∗∗
2 depicted in Figure 7.7b. Then,

K3 →
0
∗ G2 →(G2,A,B) G

∗
2 →(G∗

2
,G3,C) G

∗∗
2 →1

∗ G
∗

is a generation sequence of G

For the only if part, assume that G∗ is a tree-decomposable Laman graph, K3 →∗ G
∗.

Since v ∈ V (G), there exists a graph Gi in the generation sequence in which v appears for
the first time. If deg(v)>2 in Gi, consider the tree-decomposition of the cluster in which
v has greater degree. Applying the same rule, and considering that deg(v) in G∗ is 3, we
finally identify a generation sequence

K3 →
0
∗ G

∗
j →

1
∗ G

∗
k →2

∗ G
∗

where G∗
j is the first graph including v, deg(v) in G∗

j is 2, G∗
k is the first graph in which

deg(v)=3, and the hinges in →2
∗ do not include v.

The graph G∗
k is the merging of three clusters, say Gk

1, G
k
2, G

k
3, and is the first in which

deg(v)=3. Then, v is hinge of that merging step, and therefore the only vertex in the

7.2 Preserving tree-decomposability in Henneberg steps 133

e3
v

e1
v1

v3

G∗
2

G2

u

u

e3
v

e1
v1

v3

v2

e2
G(v,v2)

G3

G∗
2

a b

Figure 7.7: Illustration of Theorem 7.2.9. a) Graph G∗
2 resulting after the merging of graph

G2 with two edge graphs. b) Graph G∗∗
2 resulting after the merging of graph G∗

2 with an
edge graph and G3.

intersection of two clusters. Consider Gk
1 ∩ Gk

2 = {v}. Since deg(v)=3 in G∗
k, in one of

the two clusters deg(v)=1, say Gk
1. By Lemma 7.2.8, Gk

1 ∈ E . Since v is joined to vertices
v1, v2, v3, one of them must be in Gk

1, being also hinge of S, and the other two are in Gk
2,

as v. The schematic representation of this step is shown in Figure 7.8. We consider two
cases, the one in which v3 ∈ Gk

1, and the one in which v3 ∈ Gk
2.

First consider the case in which v3 ∈ Gk
1. Then, v1, v2 ∈ Gk

2, as shown in Figure 7.8a.
Take G and perform the tree-decomposition steps corresponding to the generation sequence
→2

∗, which can be done because they do not contain v as hinge and all the other vertices
are included in G. The resulting graph is depicted in Figure 7.9a, and can not be Laman.
This is a contradiction and the case can not actually occur.

Now consider the case in which v3 ∈ Gk
2. Then, v1, v2 are in different clusters. Take G

and perform the tree-decomposition steps corresponding to the generation sequence →2
∗.

The resulting graph, Gk, is depicted in Figure 7.9b and fulfills the requirements in the
statement of the theorem. Cluster G2 is such that the application of a HS1 results in Gk

2,
and by Corollary 7.2.6 it is tree-decomposable. Then, there exists a generation sequence
K3 →1

∗ G2. The generation sequence K3 →1
∗ G2 →(v1,v2,u3) Gk →2

∗ G fulfills then the
theorem.

For the case where v3 is in clusters G2 and G3, as illustrated in Figure 7.6c, the proof
can be done exactly in the same way. As proven above, in the only if part of the proof v3
can not be in cluster Gk

1. This observation completes the proof. 2

Theorem 7.2.9 establishes the conditions under which a Henneberg II step preserves
tree-decomposability. However, to verify whether these conditions hold cannot be made

134 Henneberg graphs and tree-decomposability

v2

e2

u3

v

v3

v1
e3

e1

Gk
1

Gk
2

Gk
3

v2
v3

v1

e2

e3

e1

u3

v

Gk
2

Gk
1

Gk
3

a b

Figure 7.8: Illustration of Theorem 7.2.9. a) Case in which v1, v2 are in the same cluster.
b) Case in which v1, v2 are in different clusters.

u3

G2

v3

v2
v1

Gk
3

v1
u3

v2

e v3
G2

Gk
3

a b

Figure 7.9: Illustration of Theorem 7.2.9. a) A graph G which does not fulfill Laman
condition. b) Tree-decomposable Laman graph G.

7.2 Preserving tree-decomposability in Henneberg steps 135

efficiently because in the worst case it entails to check all possible generation steps.

We present now a new theorem which provides the tools for an efficient algorithm for
checking the tree-decomposability. The proof is based on the previous result.

Theorem 7.2.10

Let G = (V,E) be a tree-decomposable Laman graph. Let G∗ be the graph such that G ⇒2

G∗, and edge e = (v1, v2) ∈ E and vertex v3 ∈ V be the edge and vertices involved in the
HS2. Then, G∗ is tree-decomposable if and only if, either

• (v1, v2, v3) is a merging triple of G or,

• when removing edge e from E, there exists one maximal tree-decomposable Laman
subgraph R = (VR, ER) of G such that either {v3, v1, u} ⊆ VR or {v3, v2, u} ⊆ VR,
and u is such that (u, v1, v2) is a hinge triple of G.

Proof

For the only if part, consider that G∗ is tree-decomposable. By Theorem 7.2.9, there
exists a generation sequence of G such that, for some generation step S merging clusters
G1, G2, G3, edge e is the only edge in cluster G1, v1 and v2 are merging vertices of S and
v3 belongs either to G2, to G3 or to both.

In the case that v3 belongs to both clusters G2 and G3, the situation is the one depicted
in Figure 7.6c and there exists obviously a triple of hinges v1, v2, v3.

We consider now the cases in which v3 belongs only to one cluster. We call u the third
hinge of the tree-decomposition step including v1, v2 as merging vertices. Assume without
loss of generality that v3 ∈ V (G2), see Figure 7.6a. When removing edge e from E to apply
the HS2 and transform G in G∗, cluster G2 does not change, since e /∈ E(G2). Then, G2

will be contained in a maximal Laman subgraph R. Thus, v1, v3, u ∈ V (G2) ⊆ VR, proving
the first part of the theorem.

For the if part, consider first the case in which (v1, v2, v3) is a merging triple of G.
Then, there exists a generation sequence K3 →0

∗ Gk →(v1,v2,v3) Gk+1 →1
∗ G, where G1

is the name of the cluster in generation step →(v1,v2,v3) such that v1, v2 ∈ G1. Since
edge (v1, v2) ∈ E, every step in G1 is either independent or directly dependent on the
generation step →(v1,v2,v3). Then, every step in G1 can be performed before the generation
step →(v1,v2,v3). There exists then a generation sequence K3 →

2
∗ Gj →(v1,v2,v3) Gj+1 →

3
∗ G,

where the cluster including vertices v1, v2 is G(v1,v2).

Call G2 to the cluster in the generation step →(v1,v2,v3) including vertices v1, v3, and
G3 to the cluster including vertices v2, v3, which are Laman and tree-decomposable. Call
A = G(v,v1) ∈ E and B = G(v,v3) ∈ E . Consider the graph G∗

2 resulting after the merging
of clusters G2, A and B, shown in Figure 7.10a. Call now C = G(v,v2) ∈ E , and G∗∗

2 the

136 Henneberg graphs and tree-decomposability

v1

v

v3

G2

v2

v1

v

v3

G2

G3

u

v2

v1

v3

R

e

Gk
2

a b c

Figure 7.10: Illustration of Theorem 7.2.10. a) Graph resulting after the merging of G2

with two edge graphs. b) Tree-decomposition step of a graph after the application of a
HS2 involving elements v1, v2, v3. c) Construction of G by applying a HS1 adding vertex
v2.

graph resulting after the merging of clusters G∗
2, G3 and C, shown in Figure 7.10b. Then,

K3 →∗ G2 →(G2,A,B) G
∗
2 →(G∗

2
,G3,C) G

∗∗
2 →1

∗ G
∗ is a generation sequence of G∗.

Consider now the case in which (v1, v2, v3) is not a merging triple of G and that, when
removing edge e from E, there exists a maximal tree-decomposable Laman subgraph R
like the one described in the statement of this theorem. Consider without loss of generality
that v1 ∈ R. Since (u, v1, v2) is a merging triple of G, there exists a generation sequence
of G with K3 →0

∗ Gk →(v1,v2,u) Gk+1 →1
∗ G, where Gk+1 is the merging of three clusters.

Call Gk
2 the cluster including vertices u, v2.

Since R is a tree-decomposable Laman graph, there exists a generation sequence K3 →
r
∗

R. Define the graph A = G(v1,v2) ∈ E , and consider the merging of graphs R,Gk
2 and

A. The resulting graph Gj is shown in Figure 7.10c. Since Gj is a tree-decomposable

Laman subgraph of G, there exists a generation sequence such that Gj →j
∗ G. Then

K3 →r
∗ R →(Gk

2
,A,R) Gj →j

∗ G is a generation sequence of G fulfilling the requirements in
Theorem 7.2.9, and thus G∗ is tree-decomposable. 2

Theorem 7.2.10 provides a condition which leads to a more efficient way to generate
tree-decomposable Laman graphs, as it removes the necessity of checking all possible tree-
decompositions in the worst case.

With this result, we can easily prove that for every edge e removed in a HS2, it exists
at least one vertex for which the application of this HS2 results in a tree-decomposable
graph. That means that there are tree-decomposable graphs of any order. We will explain
this point in depth in Section 7.3.

7.3 An algorithm to generate tree-decomposable graphs 137

Corollary 7.2.11

Let G = (V,E) be a tree-decomposable Laman graph, and e = (v1, v2) ∈ E. Then, there
exists always a vertex v3 ∈ V such that the application of a Henneberg II step to G involving
e and v3 leads to a tree-decomposable Laman graph.

Proof

Given edge e defined upon vertices v1 and v2, by Lemma 7.2.7, there exists at least one
generation step with hinges v1 and v2. This generation step must include also a third hinge,
u. To consider v3 = u proves the corollary. 2

Clearly, a Henneberg sequence beginning at K3 such that all its Henneberg steps pre-
serve tree-decomposability leads to a tree-decomposable Laman graph.

7.3 An algorithm to generate tree-decomposable graphs

We present in this section an algorithm based on h-graphs to generate tree-decomposable
graphs of a given order by means of Henneberg sequences. We assure tree-decomposability
by applying the results proven in Section 7.2. We also show that the presented algorithm
is correct.

The general idea of the algorithm is to consider as a base the triangle graph G = K3

and the associated h-graph H(G), defined in Chapter 3, and then to apply an arbitrary
Henneberg sequence, assuring tree-decomposability and conveniently updating the associ-
ated h-graph. The h-graph will help in the efficient computation of a vertex assuring the
tree-decomposability of the resulting graph.

Before presenting the proposed algorithm we address some issues about h-graphs. In
particular, we shall show how to construct h-graphs from the Henneberg sequence of a
graph, and how to compute the set of maximal tree-decomposable Laman subgraphs in-
cluded in an under constrained tree-decomposable graph.

7.3.1 Henneberg constructions and h-graphs

Given a tree-decomposable Laman graph G and the associated h-graph H(G), the appli-
cation of different Henneberg steps to G will lead to changes in the structure of G. In
this section we analyze how the h-graph H(G) changes when applying a Henneberg step
construction to G. We distinguish two cases depending on whether the applied Henneberg
step is HS1 or HS2.

138 Henneberg graphs and tree-decomposability

h
g

i

j

a

f

e
c

d
b

k

(a, b, c) (a, c, d) (c, d, e)

(b, e, f)

(a, f, h)

(f, g, i) (g, i, h)

(f, h, j)

(b, j, k)

a b

Figure 7.11: Application of a HS1. a) Resulting graph G∗ after adding vertex k and edges
(b, k), (k, j) to the graph in Figure 3.3a. b) h-graph H(G∗) associated to G∗.

Adding a Henneberg I step

Consider the tree-decomposable Laman graphG and its associated h-graphH(G). Consider
the tree-decomposable graph G∗ such that G →H1 G

∗, where the added vertex is v and is
joined by means of edges (v1, v) and (v2, v) to vertices v1, v2, see Figure 7.1.

In order to define the h-graph H(G∗) associated to G∗ it suffices to add to H(G) the
node V = (v1, v2, v) and its corresponding dependences. We will explain now how to
compute the vertices to which vertex V will be joined.

By the application of the HS1, G∗ = (V ∗, E∗) contains edges (v1, v) and (v2, v), see
Figure 7.1. If E∗ contains also the edge (v1, v2), by Lemma 7.2.7, there exists in H(G) at
least one node including v1 and v2 as hinges. Then, the node V must be joined with a
d-edge with every node in H(G) including v1 and v2 as hinges.

If E∗ does not include the edge (v1, v2), V is joined with s-edges to the representative
vertices of the minimum subgraph spanned by the elements v1 and v2. The minimum
subgraph and its representative vertices are computed as explained in Section 3.5.

Algorithm 12 shows the method to update the h-graph H(G) associated to a tree-
decomposable Laman graph G when a HS1 is applied to G. To illustrate the idea, Fig-
ure 7.11 shows the result of the application of a HS1 step adding vertex k and edges (b, k)
and (j, k) to the graph G depicted in Figure 3.3a.

7.3 An algorithm to generate tree-decomposable graphs 139

Algorithm 12 Add HS1

Input: G = (V, E), the tree-decomposable Laman graph,
HG = (HV, ED, ES), the h-graph associated to the graph G,
v, the new vertex in G
v1, v2, the vertices to which v is joined

Output: The modified graph HG

function Add HS1()
V0 := (v1, v2, v)
HV = HV ∪ { V0 }
if E contains (v1, v2) then

L := Set of nodes in HV including v1, v2
for each vertex Li in L do

ED = ED ∪ { (Li, V0) }
end for

else

R:= Compute Strong Dependences(G, v1, v2)
for each node Ri in R do

ES = ES ∪ { (Ri, V0) }
end for

end if

return (HV, ED, ES)

140 Henneberg graphs and tree-decomposability

Adding a Henneberg II step

Consider a tree-decomposable Laman graph G = (V,E) and the associated h-graph H(G).
Let G∗ be the graph such that G →II G∗. As seen in Section 7.2, there is no guarantee
that the resulting graph G∗ is a tree-decomposable Laman graph. However, if G∗ is a tree-
decomposable Laman graph, we can define an algorithm based on Theorem 7.2.10 which
returns the h-graph associated to it. If G∗ is not tree-decomposable, the algorithm fails.
This algorithm is shown in Algorithms 13 and 14.

Algorithm 13 Add nodes

Input: G = (V, E), the tree-decomposable Laman subgraph,
HG = (HV, ED, ES), the h-graph associated to G
v, the new vertex in G
v1, v2, v3, the vertices involved in the HS2

Output: The modified graph HG

function Add Nodes()
L := Vertices in { v1, v2, v3 } included also in a node of HV
if L contains v1 and L contains v3 then

HG = add HS1 (G, HG, v, v1, v3)
HG = add HS1 (G, HG, v, v2, v3)

else if L contains v2 and L contains v3 then

HG = add HS1 (G, HG, v, v2, v3)
HG = add HS1 (G, HG, v, v1, v3)

else if L contains v1 and L contains v2 then

V1 := (v1, v3, v)
V2 := (v2, v3, v)
HV = HV ∪ { V1, V2 }
ED = ED ∪ { (V1, V2) }
L := Set of Nodes in HV including v1, v2
for each vertex Li in L do

ES = ES ∪ { (V1, Li) }
ES = ES ∪ { (V2, Li) }

end for

end if

return HG
endfunction

For an example, we consider the application of a HS2 step to the graph G depicted in
Figure 3.3a. Edge (a, h) is removed and the vertex k and the edges (a, k), (k, h) and (k, g)
are added. The elements involved, following the notation in this section are v1 = a, v2 =

7.3 An algorithm to generate tree-decomposable graphs 141

Algorithm 14 Add HS2

Input: G = (V, E), the tree-decomposable Laman subgraph,
HG = (HV, ED, ES), the h-graph associated to G
v, the new vertex in G
v1, v2, v3, the vertices involved in the HS2

Output: The modified graph HG

function Add HS2()
V0 := Node in HV including hinges v1, v2, v3
Remove Not Existing Nodes from HG (v1, v2, v3)
L:= Set of Maximal Complete Subgraphs included in HG
if V0 != NULL then

HS := Subgraph in L including two of the vertices v1, v2, v3
S := Tree-decomposable Laman graph associated to HS
HS = add Nodes (S, HS, v, v1, v2, v3)
HG = Add to HS the rest of subgraphs in L

else

HS := Subgraph in L including v1 or v2, v3 and u, where (v1, v2, u) in HV
S := Tree-decomposable Laman graph associated to HS
if HS != NULL then

Rename the vertex included in HS as v1
Rename the vertex not included in HS as v2
HS = add HS1(S, HS, v, v1, v3)
HS = add HS1(S, HS, v2, u, v)
HG = Add to HS the rest of subgraphs in L

end if

end if

return HG
endfunction

142 Henneberg graphs and tree-decomposability

(f, g, i) (g, i, h)

(f, h, j)
M2

(a, b, c) (a, c, d) (c, d, e)

(b, e, f)
M1 h

i

j

a

f

g

k

(g, i, h) (f, g, i)(g, h, k)

(f, h, j)
(a, f, k)

a b c

Figure 7.12: Application of a HS2. a) h-graphs associated to the remaining maximal tree-
decomposable Laman subgraphs M1,M2. b) Graph M ′

2 after the application of the two
indicated HS1. c) h-graph associated to M ′

2, H(M ′
2).

h, v3 = g and v = k. The resulting graph G∗ is shown in Figure 7.13a.

Algorithm 14 checks whether there exists the node (a, h, g), but the answer is neg-
ative. Node (a, h, f) including elements a and h is removed, and no other node is re-
moved. The two remaining maximal rigid subgraphs M1 and M2 are the ones including
vertices {a, b, c, d, e, f} and {f, g, h, i, j} respectively. Their respective associated h-graphs
are shown in Figure 7.12a.

The maximal Laman subgraph fulfilling the conditions of Theorem 7.2.10 is M2, as
it contains vertices v3 = g, vi = h and u = f . We rename the vertices according to
the notation in this section, leading to v1 = h, v2 = a, v3 = g and u = f . Then the
algorithm applies to M2 two HS1 steps, adding k and a. The resulting graph is depicted in
Figure 7.12b and the associated h-graph in Figure 7.12c. The merging of this graph with
graph M1 and G(a,k) gives rise to the desired graph G∗, depicted in Figure 7.13 together
with the associated h-graph.

7.3.2 Maximal Laman subgraph in h-graphs

The maximal tree-decomposable Laman subgraph included in a tree-decomposable Laman
graph once a set of its edges has been removed played a central role in Theorem 7.2.10, and
will be basic in the method we will propose to generate tree-decomposable Laman graphs
of a given order.

Consider a tree-decomposable Laman graphG and the graphG′ resulting after removing
from G some of its edges. We present in Algorithm 15 a method which, starting in a fixed
node of the h-graph H(G′) associated to the subgraph G′, constructs the graph R by adding
an adjacent node v to H(R) only if depG(v) ⊆ H(R), that is, only if the resulting graph

7.3 An algorithm to generate tree-decomposable graphs 143

h

i

j

a

f

e
c

d
b

g

k

(a, b, c) (a, c, d) (c, d, e)

(b, e, f)
(g, i, h) (f, g, i)(g, h, k)

(f, h, j)
(a, f, k)

a b

Figure 7.13: Application of a HS2. a) Resulting graph G∗ after removing edge (a, h) and
adding vertex k and edges (a, k), (g, k), (h, k) to the graph in Figure 3.3a. b) h-graphH(G∗)
associated to G∗.

is complete. HG = (HV, ED, ES) stand for the h-graph of G, HG’ = (HV’, ED’, ES’)
stand for the h-graph of G′ and SHG = (SV, SED, SES) stand for the h-graph of R.

With this algorithm we construct a function which finds all the maximal tree-decompo-
sable Laman subgraphs included in an under constrained tree-decomposable graph. When
no vertex can be added to the current subgraph R in Algorithm 15, R is stored and another
maximal tree-decomposable subgraph is computed.

7.3.3 The algorithm

Consider a tree-decomposable Laman graph G = (V,E) and the associated h-graph H(G).
We present in this section a method which allows to construct using Henneberg stepd tree-
decomposable Laman graphs of any order. According to the results derived in Section 7.2,
the application of a HS1 step preserves tree-decomposability, but this is not the case when
the Henneberg step applied is a HS2.

Consider the application to G and H(G) of an arbitrary HS2 step involving edge e =
(v1, v2) ∈ E and v3 ∈ V . In order to assure tree-decomposability of the resulting graph,
a first approach could use the particular case in Corollary 7.2.11 to define always as the
third vertex v3 of the HS2 step involving edge (v1, v2) an element which is hinge in a triple
together with vertices v1 and v2. Although the method guarantees tree-decomposability of
the resulting graph and can be easily implemented, it can not be used to generate graphs
in HII since the resulting graph will be in HI . The following result shows it.

Proposition 7.3.12

Let G = (V,E) be a HI graph and G∗ be the graph such that G ⇒2 G
∗, where the HS2 step

144 Henneberg graphs and tree-decomposability

Algorithm 15 Find Maximal Complete Subgraph

Input: HG = (HV, ED, ES), the h-graph of G
HG’ = (HV’, ED’, ES’), the h-graph of G′

V0, a node in HV included in the subgraph
Output: SHG = (SV, SED, SES), a maximal complete subgraph

function Find Maximal Complet Subgraph()
SV := { V0 }
SED := ∅
SES := ∅
flag = TRUE
while flag do

flag = FALSE
for all Vi in SV do

E := Edges in ED’ including Vi

for all Ej in E do

Vj := Node in Ej opposite to Vi

SV = SV ∪ { Vj }
SED = SED ∪ { (Vi, Vj) }
flag = TRUE

end for

E := Edges in ES’ including Vi

for all Ej in E do

Vj := Node in Ej opposite to Vi

D := Indirect dependences of Vj in HG
if SV contains D then

SV = SV ∪ { Vj }
SES = SES ∪ { (Vi, Vj) }
flag = TRUE

end if

end for

end for

end while

return SHG = (SV, SED, SES)
endfunction

7.3 An algorithm to generate tree-decomposable graphs 145

involves edge e = (v1, v2) and vertex v3 ∈ V . If there exists a tree-decomposition step with
hinges v1, v2, v3, then G∗ ∈ HI .

Proof

SinceG ∈ HI , there exists a Henneberg sequence leading toG in which all the steps are HS1.
Then, K3 ⇒∗1 G ⇒2 G∗. By hypothesis, one of the HS1 steps has as hinges (v1, v2, v3),
which means, without loss of generality, that vertex v1 is added joined to vertices v2 and v3.

Therefore there exists a Henneberg sequence K3 ⇒1
∗1 Gi ⇒

(v1,v2,v3)
1 Gi+1 ⇒2

∗1 G ⇒2 G∗,
where Gi is depicted in Figure 7.14 top.

Since all the Henneberg steps in ⇒2
∗1 are HS1 and add a vertex and two edges to the

previous graph, we can consider a Henneberg sequence of G∗ in which the HS2 step is right
after the HS1 step adding vertex v1,

K3 ⇒
1
∗1 Gi ⇒

(v1,v2,v3)
1 Gi+1 ⇒2 Gi+2 ⇒

3
∗1 G

∗

Now we will find a Henneberg sequence for G∗ such that all the steps are of type HS1.

Consider the HS1 step ⇒
(v,v2,v3)
1 adding vertex v and edges (v, v2), (v, v3). Consider also

the HS1 step ⇒
(v1,v,v3)
1 adding vertex v and edges (v1, v), (v1, v3). Then, the Henneberg

sequence

K3 ⇒
1
∗1 Gi ⇒

(v,v2,v3)
1 G′

i+1 ⇒
(v1,v,v3)
1 Gi+2 ⇒

3
∗1 G

∗

is a Henneberg sequence for G∗ with HS1 steps. 2

Figure 7.14 shows the construction of G∗ by means of the original sequence (left), and
by means of the alternative sequence with only HS1 steps (right). Notice that the two
resulting graphs are the same. This result shows that the application of a HS2 to HI

graphs under the conditions of Proposition 7.3.12 gives rise to a HI graph. Then, since
K3 ∈ HI is the first considered graph, generated graphs will be in HI .

In order to assure tree-decomposability of the resulting graph we will define v3 so that
it guarantees that the HS2 step preserves tree-decomposability. We will do it by discarding
all the vertices known to produce a non tree-decomposable resulting graph.

Following Theorem 7.2.10, the graph resulting after a HS2 step is tree-decomposable if
there exists a maximal tree-decomposable Laman subgraph R = (VR, ER) of G such that
either {v3, v1, u} ⊆ VR or {v3, v2, u} ⊆ VR, and u is such that (u, v1, v2) is a hinge triple of
G. In fact, any vertex in R will act as a vertex v3 assuring tree-decomposability.

In order to search for that subgraph R, the first step is to find in H(G) the set L of all
the nodes including v1 and v2. Then, we remove from H(G) all the nodes having any of the
nodes in L as dependence. Then, the graph is split into a set of complete subgraphs. The
nodes in L have not been removed, and must be included in one of the complete maximal

146 Henneberg graphs and tree-decomposability

v2 v3

v1

v2 v3

v

v2 v3

v1
v

v2 v3

v2 v3

v1
v

e

Remove e, add v

Step HS1: Add v1 Step HS1: Add v

Step HS2:

Gi

Gi+2

G′
i+1Gi+1

Gi+2

Step HS1: Add v1

Figure 7.14: Construction of G′ by means of the original Hennberg II step (left), and by
means of the alternative Henneberg I sequence (right).

7.4 Conclusions 147

subgraphs, say M . Any vertex in a node in M different to v1 and v2 can be selected as
vertex v3 and will assure tree-decomposability.

Algorithms 16, 17, 18 and 19 are the implementation of the method which computes a
tree-decomposable Laman graph with a predefined order. The main algorithm is shown in
Algorithm 16. Algorithm 17 applies a HS1 step to the graph G and to the associated h-
graph H(G). Algorithm 18 adds a HS2 step such that v3 is defined following Algorithm 19.
Algorithm 19 shows an algorithm to compute an arbitrary v3 element which preserves the
tree-decomposability of the resulting graph, following Theorem 7.2.10.

Algorithm 16 Constructing a tree-decomposable Laman graph of a given order

Input: max-order, the desired order of the graph
random, a function taking values 0 or 1 arbitrarily

Output: G, the tree-decomposable Laman graph with order max-order

function TreeDecomposableLaman()
G := Triangle Graph
HG := Hinges graph associated to G
while G.order < max-order do

if random == 0 then

add H1 Vertex(G, HG)
else

add H2 Vertex-TreeDec(G, HG)
end if

end while

return G
endfunction

7.4 Conclusions

Hennberg steps and their relationship with tree-decomposability have been the object
of study of this chapter. In Section 7.1 we have presented the definition of Henneberg
steps, Henneberg sequences and Henneberg families, as well as a characterization of tree-
decomposable Laman graphs based on an operation called merging. We have also estab-
lished the inclusion relations of the Henneberg families with respect to the set of tree-
decomposable Laman graphs.

In Section 7.2 we have studied the features of Henneberg steps, and established the
conditions under which each kind of Henneberg step preserves the tree-decomposability
of the graph in which it is applied. Two different results have been given for the case of

148 Henneberg graphs and tree-decomposability

Algorithm 17 Add a HS1 to a tree-decomposable Laman graph

Input: G = (V, E), the tree-decomposable Laman subgraph,
HG = (HV, ED, ES), the h-graph associated to G

Output: The modified graph G

function Add H1 Vertex()
v1 := Arbitrary vertex in V
v2 := Arbitrary vertex in V different to v1
v := New vertex
V = V ∪ { v }
E = E ∪ { (v, v1), (v, v2) }
G = add HS1(G, HG, v, v1, v2)
return G
endfunction

Algorithm 18 Add a HS2 to a tree-decomposable Laman graph in a tree-decomposable
way

Input: G = (V, E), the tree-decomposable Laman subgraph,
HG = (HV, ED, ES), the h-graph associated to G

Output: The modified graph G

function Add H2 Vertex-TreeDec()
e := Arbitrary edge in E
v1 := Source of e
v2 := Destination of e
v3 := Compute Tree-Dec V3(G, v1, v2)
v := New vertex
V = V ∪ { v }
E = E ∪ { (v, v1), (v, v2), (v, v3) } \ { (v1, v2) }
G = add HS2(G, HG, v, v1, v2, v3)
return G
endfunction

7.4 Conclusions 149

Algorithm 19 Compute a third element for the HS2

Input: G = (V, E), the tree-decomposable Laman subgraph,
HG = (HV, ED, ES), the h-graph associated to G
e = (v1, v2), the edge involved in the HS2

Output: v3, a vertex assuring tree-decomposability of the HS2

function Compute Tree-Dec V3()
L := Set of nodes in HV including v1, v2
D := Set of nodes in HV which depend indirectly on a node in L
HV’ = HV \ D
M := Maximal complete subgraph of HV’ including the nodes in L
v3 := Arbitrary vertex of a node in M different to v1, v2
return v3
endfunction

HS2. The second one provides the tools for the development of an efficient algorithm for
checking the tree-decomposability of the resulting graph.

Section 7.3 outlines a correct algorithm which generates tree-decomposable Laman
graphs of a given order using Henneberg steps. The algorithm represents tree-decomposable
Laman graphs as h-graphs, described in Chapter 3, and is based in the results proved in
Section 7.2.

150 Henneberg graphs and tree-decomposability

CHAPTER 8

Conclusions and future work

The future depends on what you do today.

Mahatma Gandhi

We present in this chapter the conclusions of our work, and we outline some open
problems and work to be carried out in the future.

8.1 Conclusions

The reachability problem naturally arises in a number of computational processes where
models are captured via geometry. Among them, our interest focuses on dynamic geometry
and its applications to the development of current generation CAD/CAM systems.

Clearly dynamic geometry-based CAD/CAM systems improve over traditional para-
metric CAD/CAM systems by providing the user with the ability of dynamically exploring
on the screen alternative solutions to the design problem. Dynamic geometry is no longer
just geometry, it belongs to the dynamic systems field. Consequently tools developed in
dynamic systems theory can help in solving open problems in dynamic geometry. In our
approach we have successfully applied concepts like state variables and state transitions in

152 Conclusions and future work

solving issues concerning continuity and conservatism.

Moving a variant parameter along a continuous path in a dynamic geometry system does
not guarantee that geometric elements also follow a continuous path. The main sources
of these problems are ambiguities. One source of ambiguity is the fact that, in general,
geometric operations have more than one solution, for example, intersecting a line and a
circle. Another ambiguity appears when a problem with a well-defined solution whenever
geometric elements are in general position, say computing the point where two straight
lines intersect, reaches a degenerate configuration, for example, the straight lines became
parallel. To solve these problems, our approach fixes as a general requirement continuity
in both the variant parameter and the geometric construction.

The solution to the dynamic geometry problem which fulfills continuity requirements
does not need to be unique. Therefore an strategy to select the intended solution at each
value of the variant parameter where more than one solution exist must be established. This
selection is what actually defines the dynamic behavior of the geometric model. Clearly
the especific strategy must be selected according to the problem goals. As an example of
selection strategy, we have applied to select the behavior which minimizes the arc length
of the variant parameter function. Other selection strategies may be however considered.
Examples of strategies we could think of are to select the behavior such that: i) minimizes
the path traced by a geometric articulation or ii) a given articulation is forced to follow a
straight path or iii) two straight edges describe a minimal angle or iv) geometric elements
are always placed within a predefined area in the operational space.

In this work we have proposed a technique to solve the reachability problem in dynamic
geometry environments. In particular, geometric constructions based on constraints with
one variant parameter are considered. This technique finds, if one exists, a continuous path
from a given starting geometric configuration to a given ending one. The technique has
been implemented on top of a dynamic geometry system based on constructive geometric
constraint solving. Experimental results show that the approach is both effective and
efficient from a practical point of view.

A procedure to solve the tracing problem has been also presented. The technique
allows the user to define the especific movement the construction will follow, based on
the bahavior he is expecting to see. The technique has been implemented on top of the
dynamic geometry system based on constructive geometric constraint solving and deals
efficiently with continuity and determinism at the same time.

The technique presented here to solve the reachability and tracing problems assumes
the existence of a construction plan and is based on the analysis of the problem domain and
the continuous transitions among domain intervals. The technique is divided into three
steps. The first step of the methodology computes the domain of the variant parameter,
which captures the set of feasible, unfeasible, and critical values. The computation of the

8.1 Conclusions 153

domain is performed using the method introduced by van der Meiden et al. in [103]. We
have described a specific implementation of the van der Meiden et al. approach, developed
on top of a ruler-and-compass geometric constraint solver, and we have presented for the
first time a complete proof for the correctness of this method. It is limited to 2D problems
but considers problems including points, straight lines and circles as geometric elements
and point-point distance, perpendicular-straight line distance, line-line angle, point-on-
circle and line-circle tangency. This set up enlarges the class of problems considered by
van der Meiden, [105] and by Gao and Sitharam, [29].

In the second step the approach computes the transitions graph of the geometric con-
straint problem under study. The points computed by the van der Meiden method are
also used to search for continuous transitions among the endpoints of the domain intervals.
Continuous transitions allow the existence of dynamic evaluations which result in a con-
tinuous behavior. The transitions graph captures the set of continuous transitions among
the domain intervals.

In the third step of the approach, the transitions graph is used to solve the problem at
hand. In the case of the reachability problem, the A* algorithm is applied to search for
a minimum path through the transitions graph. A continuous dynamic evaluation which
solves the reachability problem is finally output. In the case of the tracing problem, the
user is asked to define the specific behavior he is expecting to see, that is, the intended
solution.

We have applied our prototype to a large benchmark of constraint problems. Running
time allowed always real time interaction. However, a naive analysis of the worst case run-
ning time yields that time complexity of the approach is exponential on the number of signs
in the index. Just notice that, in order to find the domain of the problem, the algorithm
needs to check all the possible combinations of signs in the corresponding construction
subplan.

We have also introduced h-graphs, a novel representation for tree-decomposable Laman
graphs which captures in the same graph information of the graph and its tree-decomposition.
We have also presented the basic features of h-graphs, which have been used for the imple-
mentation of our approach to solve the reachability and tracing problems. In particular,
h-graphs allow to compute efficiently the kind of dependence of each tree-decomposition
step with respect to the variant parameter.

Finally, we have developed a full study on Henneberg constructions and tree-decompo-
sability, establishing the conditions under which tree-decomposition is guaranteed after the
application of a Henneberg step. The results have been used to develop an algorithm which
generates tree-decomposable Laman graphs of a given order by means of Henneberg steps.

154 Conclusions and future work

8.2 Future work

We have developed our approach assuming that the variant parameter is arbitrarily chosen
by the user. Concerning this point, the question of whether there is a strategy to find the
best parameter naturally arises. This is an open and challenging problem which, as far as
we know, nobody has studied yet.

If circles are excluded, extending our implementation to 3D problems would require
replacing the underlying geometric constraint solver with another similar to the one used
by van der Meiden et al. in [105]. A more general extension would require considering,
for example, planes as basic geometric objects and the associated geometric constraints. A
more difficult question arises from the fact that constructive geometric constraint solving
in 3D entails hard open problems related to basic construction steps. These limitations
and the technology available prevent the development of general constructive 3D solvers.
See Hoffmann et al., [44].

The main drawback of the technique presented in this work to solve the reachability and
tracing problems comes from the fact that the van der Meiden method requires to tranform
the problem at hand into a new geometric constraint problem for each indirectly dependent
tree-decomposition step. This is a disadvantage for two different reasons. Firstly, to analyze
and construct a problem is a very expensive process which increases the running time of
the method dramatically. Secondly, the more problems to analyze the method has, the
more probability there is to find a non-decomposable problem.

To deal with the need of transforming the problem, a simple procedure which may
decrease the order of the modified problem and improve the efficiency of the method when
analyzing and constructing the transformed problems could be considered. The van der
Meiden method to compute the problem’s domain analyzes all tree-decomposition steps
which depend on the variant parameter and applies two different procedures depending on
the kind of dependence arising.

For indirectly dependent tree-decomposition steps, the process includes the replacement
of the original variant parameter by a new variant parameter which assures the direct
dependence of the tree-decomosition step at hand, the construction of the new problem
for each of its critical values, and the measure of the original variant parameter at each
possible construction. In this process, the placements of the elements upon which neither
the original variant parameter nor the new one are defined is irrelevant. Consider the
original problem Π, represented by the graph G = (V,E), and let the associated h-graph
be H(G) = (V , ED, ES). Assume that the original variant parameter is λ = (u, v), which
must be replaced by µ = (u′, v′). Using the h-graph and a variation of the procedure
given in Section 3.5, Chapter 3, we can find the minimum complete subgraph of H(G)
spanned by the geometric elements u, v, u′, v′, called M . Clearly, |V (M)| ≤ |V |. Then, we

8.2 Future work 155

can apply the van der Meiden method to M . An analysis of the performance of this new
approach would be necessary in order to determine the actual improvement with respect
to the original method.

Concerning the non solvability of the transformed problem, Sitharam et al., [97, 98],
have presented an analysis based on Cayley configuration spaces of 1-dof tree-decomposable
graphs. Following the notation in these works, the van der Meiden approach to the com-
putation of the parameter ranges clearly entails to solve all the extreme graphs associated
to the tree-decomposition steps which depend indirectly on the variant parameter. Graphs
which assures the tree-decomposability of all these new graphs are actually those with low
Cayley complexity. Sitharam et al. present a characterization of graphs with low Cay-
ley complexity leading to an efficient algorithmic characterization. However, the highly
demanding requirements of the characterization restrict the practical applicability of the
theoretical results. A study of the relations arising between the van der Meiden method
and low Cayley complexity would improve the applicability of the method reported here.

156 Conclusions and future work

Bibliography

[1] B. Aldefeld. Variation of geometric based on a geometric-reasoning method.
Computer-Aided Design, 20(3):117–126, April 1988.

[2] Hannah Bast. Efficient algorithms. In Susanne Albers, Helmut Alt, and Stefan
Näher, editors, Efficient Algorithms, chapter Car or Public Transport–Two Worlds,
pages 355–367. Springer-Verlag, Berlin, Heidelberg, 2009.

[3] Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Harrelson,
Veselin Raychev, and Fabien Viger. Fast routing in very large public transporta-
tion networks using transfer patterns. In Proceedings of the 18th annual European
conference on Algorithms: Part I, ESA’10, pages 290–301, Berlin, Heidelberg, 2010.
Springer-Verlag.

[4] Y. Baulac, F. Bellemain, and J.-M. Laborde. Cabri - the Interactive Geometry Note-
book. Brooks/Cole Publishing Company, 1992.

[5] Bernhard Bettig and Christoph M. Hoffmann. Geometric constraint solving in para-
metric CAD. Journal of Computing and Information Science in Engineering, 11(2),
2011.

[6] John Adrian Bondy and U.S.R. Murty. Graph Theory with Applications. The Macmil-
lan Press Ltd., 1982.

[7] Ciprian Borcea and Ileana Streinu. The number of embeddings of minimally rigid
graphs. Discrete & Computational Geometry, 31:287–303, 2004.

158 BIBLIOGRAPHY

[8] W. Bouma, I. Fudos, C. Hoffmann, J. Cai, and R. Paige. A geometric constraint
solver. Technical Report CSD-TR-93-054, Department of Computer Scineces, Purdue
University, 1993.

[9] W. Bouma, I. Fudos, C. Hoffmann, J. Cai, and R. Paige. Geometric constraint solver.
Computer Aided Design, 27(6):487–501, June 1995.

[10] Olivier Bournez and Igor Potapov, editors. Reachability Problems. 3rd International
Workshop, RP 2009, Palaiseau, France, September 23-25, 2009. Proceedings, volume
5797 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2009.

[11] B.D. Brüderlin. Symbolic computer geometry for computer aided geometric design.
In Advances in Design and Manufacturing Systems, Tempe, AZ, Jan. 8-12 1990.
Proceedings NSF Conference.

[12] B. Buchberger. Multidimensional Systems Theory, chapter Gröbner Bases: An Al-
gorithmic Method in Polynomial Ideal Theory, pages 184–232. D. Reidel Publishing
Theory, 1985.

[13] Nicos Christofides. Graph Thoery: An Algorithmic Approach. Academic Press Inc.
LTD., 21/28 Oval Road. London NW1, 1975.

[14] Rina Dechter and Judea Pearl. Generalized best-first search strategies and the opti-
mality of A*. Journal of the Association for Computing Machinery, 32(3):505–536,
July 1985.

[15] B. Denner-Broser. Automated Deduction in Geometry, chapter On the Decidability
of Tracing Problems in Dynamic Geometry, pages 111–129. Springer, 2006.

[16] B. Denner-Broser. Tracing-Problems in Dynamic Geometry. PhD thesis, Institut für
Informatik, Freie Universität Berlin, Takustrasse 9, 14195 Berlin, 2008.

[17] Britta Denner-Broser. An algorithm for the tracing problem using interval analysis.
In Proceedings of the 2008 ACM symposium on Applied computing, SAC ’08, pages
1832–1837, New York, NY, USA, 2008. ACM.

[18] Britta Denner-Broser. About tracing problems in dynamic geometry. Discrete &
Computational Geometry, 49:221–246, 2013.

[19] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[20] C. Durand. Symbolic and Numerical Techniques for Constraint Solving. PhD thesis,
Computer Science, Purdue University, December 1998.

BIBLIOGRAPHY 159

[21] J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer Graphics Principles and
Practice. Addison-Wesley Pu. Co., 2nd edition, 1996.

[22] András Frank and László Szegö. An extension of a theorem of Henneberg and Laman.
Technical Report TR-2001-05, Egérvary Research Group on Combinatorial Optimiza-
tion, www.cs.elte.hu/egres, February 2001.

[23] M. Freixas, R. Joan-Arinyo, A. Soto-Riera, and S. Vila-Marta. Sol-
BCN a constraint-based two dimensional geometric editor, february 2008.
http://floss.lsi.upc.edu/wiki/solBCN.

[24] Marc Freixas, Robert Joan Arinyo, and Antoni Soto-Riera. A constraint-based dy-
namic geometry system. In Proceedings of the 2008 ACM symposium on Solid and
physical modeling, SPM ’08, pages 37–46, New York, NY, USA, 2008. ACM.

[25] Marc Freixas, Robert Joan-Arinyo, and Antoni Soto-Riera. A constraint-based dy-
namic geometry system. Computer Aided Design, 42(2):151–161, February 2010.

[26] I. Fudos. Constraint Solving for Computer Aided Design. PhD thesis, Purdue Uni-
versity, Department of Computer Sciences, 1995.

[27] I. Fudos and C.M. Hoffmann. Correctness proof of a geometric constraint solver.
International Journal of Computational Geometry and Applications, 6(4):405–420,
1996.

[28] I. Fudos and C.M. Hoffmann. A graph-constructive approach to solving systems of
geometric constraints. ACM Transactions on Graphics, 16(2):179–216, April 1997.

[29] Heping Gao and Meera Sitharam. Characterizing 1-dof henneberg-I graphs with
efficient configuration spaces. In Proceedings of the 2009 ACM symposium on Applied
Computing, pages 1122–1126, 2009.

[30] GeoGebra. http://www.geogebra.org/en/wiki/index.php, 2010.

[31] GeoGebra. http://www.geogebra.org/cms, July 2007.

[32] Reginald G. Golledge, Roberta L. Klatzky, Jack M. Loomis, Jon Speigle, and Jerome
Tietz. A geographical information system for a GPS based personal guidance system.
International Journal of Geographical Information Science, 12(7):727–749, 1998.

[33] Jonathan L. Gross and Jay Yellen. Handbook of Graph Theory. CRC Press LLC,
2000 N.W. Corporate Blvd. Boca Raton, Florida 33431, 2004.

[34] R. Haas, D. Orden, G. Rote, F. Santos, B. Servatius, H. Servatius, D. souvaine sou-
vaine souvaine souvaine, I. Streinu, and W. Whiteley. Planar minimally rigid graphs
and pseudo-triangulations. Computational Geometry, 31(1-2):31–61, 2005.

160 BIBLIOGRAPHY

[35] L. Henneberg. Die graphische Statik der starren Systeme. B. G. Teubner, 1911.

[36] A. Heydon and G. Nelson. The Juno-2 constraint-based drawing editor. Research
Report 131a, Digital Systems Research Center, December 1994.

[37] Marta Hidalgo and Robert Joan-Arinyo. Computing parameter ranges in constructive
geometric constraint solving: Implementation and correctness proof. Computer Aided
Design, 44(7):709–720, July 2012.

[38] Marta R. Hidalgo and Robert Joan-Arinyo. On continuity in geometric constraint-
based dynamic geometry. In Lidia Ortega and Alejandro León, editors, Aplicación
de Herramientas CAD a Realidad Virtual: Representaciones Jerárquicas y Luces
Virtuales, chapter On Continuity in Geometric Constraint-Based Dynamic Geometry,
pages 13–16. CopiCentro Editorial, 2010.

[39] Marta R. Hidalgo and Robert Joan-Arinyo. The reachability problem in constructive
geometric constraint solving based dynamic geometry. Technical report, Department
LSI, Universitat Politècnica de Catalunya, 2011.

[40] Marta R. Hidalgo and Robert Joan-Arinyo. The reachability problem in construc-
tive geometric constraint solving based dynamic geometry. Journal of Automated
Reasoning, pages 1–24, 2013.

[41] Marta R. Hidalgo, Robert Joan-Arinyo, and Antoni Soto-Riera. Geometric constraint
problems and solution instances. Technical report, Department LSI, Universitat
Politècnica de Catalunya, 2010.

[42] Marta R. Hidalgo, Robert Joan-Arinyo, and Antoni Soto-Riera. Computing parame-
ter ranges in constructive geometric constraint solving. A correctness proof. Technical
report, Department LSI, Universitat Politècnica de Catalunya, 2011.

[43] C.M. Hoffmann and R. Joan-Arinyo. Symbolic constraints in constructive geometric
constraint solving. Journal of Symbolic Computation, 23:287–300, 1997.

[44] C.M. Hoffmann and R. Joan-Arinyo. Distributed maintenance of multiple product
views. Computer-Aided Design, 32(7):421–431, June 2000.

[45] C.M. Hoffmann and R. Joan-Arinyo. A brief on constraint solving. Computer-Aided
Design and Applications, 2(5):655–663, 2005.

[46] C.M. Hoffmann and K.J. Kim. Towards valid parametric CAD models. Computer-
Aided Design, 33(1):376–408, 2001.

[47] C.M. Hoffmann, A. Lomonosov, and M. Sitharam. Decompostion Plans for Geometric
Constraint Problems, Part II: New Algorithms. Journal of Symbolic Computation,
31:409–427, 2001.

BIBLIOGRAPHY 161

[48] C.M. Hoffmann, A. Lomonosov, and M. Sitharam. Decompostion Plans for Geo-
metric Constraint Systems, Part I: Performance Measurements for CAD. Journal of
Symbolic Computation, 31:367–408, 2001.

[49] C.M. Hoffmann and P.J. Vermeer. Geometric constraint solving in R2 and R3. In
D.-Z. Du and F. Hwang, editors, Computing in Euclidean Geometry, pages 266–298.
World Scientific Publishing, 1995.

[50] C.M. Hoffmann and P.J. Vermeer. A spatial constraint problem. In J.P. Merlet and
B. Ravani, editors, Computational Kinematics’95, pages 83–92. Kluwer Academic
Publ., 1995.

[51] R. Hölzl. How does ‘dragging’ affect the learning of geometry. International Journal
of Computers for Mathematical Learning, Volume 1(1):169–187, Januar 2001.

[52] C.-Y. Hsu. Graph-Based Approach for Solving Geometric Constraint Problems. PhD
thesis, Department of Computer Science. The University of Utah, June 1996.

[53] C.-Y. Hsu and B.D. Brüderlin. A hybrid constraint solver using exact and itera-
tive geometric constructions. In D. Roller and P. Brunet, editors, CAD Systems
Development: Tools and Methods, pages 265–279, Berlin, 1997. Springer-Verlag.

[54] Yong K. Hwang and Narendra Ahuja. Gross motion planning: A survey. ACM
Computer Surveys (CSUR), 24(3):219–291, September 1992.

[55] B. Servatius H. Servatius J. Graver. Combinatorial Rigidity. J. E. Humphreys, R.
C. Kirby, L. W. Small, 1993.

[56] N. Jackiw. The Geometer’s Sketchpad. Key Curriculum Press, Berkeley, 1991–1995.

[57] N. Jackiw. Visualizing complex functions with the geometer’s sketchpad. In
T. Triandafillidis and Eds. Hatzikiriakou, editors, Proceedings of the 6th Interna-
tional Conference on Technology in Mathematics Teaching, pages 291–299, 2003.

[58] Bill Jackson and Tibor Jordán. Globally rigid circuits of the direction–length rigidity
matroid. Journal of Combinatorial Theory, Series B, 100(1):1–22, January 2010.

[59] C. Jerman, G. Trombettoni, B. Neveu, and P. Mathis. Decomposition of geometric
constraint systems: A survey. International Journal of Computational Geometry and
Applications, 16:379–414, 2006.

[60] C. Jermann. Résolution de constraintes géométriques par rigidification récursive et
propagation d’intervalles. PhD thesis, Université de Nice-Sophia Antipolis, 2002.
(Written in French).

162 BIBLIOGRAPHY

[61] R. Joan-Arinyo, M. V. Luzón, and E. Yeguas. Search space pruning to solve the root
identification problem in geometric constraint solving. Computer-Aided Design and
Applications, 6(1):15–25, 2009.

[62] R. Joan-Arinyo, M.V. Luzón, and A. Soto. Genetic algorithms for root multiselection
in constructive geometric constraint solving. Computers & Graphics, 27(1):51–60,
2003.

[63] R. Joan-Arinyo and N. Mata. Applying constructive geometric constraint solvers
to geometric problems with interval parameters. Nonlinear Analysis, 47(1):213–224,
2001.

[64] R. Joan-Arinyo and A. Soto. A correct rule-based geometric constraint solver. Com-
puter & Graphics, 21(5):599–609, 1997.

[65] R. Joan-Arinyo and A. Soto-Riera. Combining constructive and equational geometric
constraint solving techniques. ACM Transactions on Graphics, 18(1):35–55, January
1999.

[66] R. Joan-Arinyo, A. Soto-Riera, S. Vila-Marta, and J. Vilaplana. On the domain of
constructive geometric constraint solving techniques. In R. Duricovic and S. Czanner,
editors, Spring Conference on Computer Graphics, pages 49–54, Budmerice, Slovakia,
April 25-28 2001. IEEE Computer Society, Los Alamitos, CA.

[67] L. W. Johnson and R. D. Riess. Numerical analysis. Addison-Wesley, 1982. Second
edition.

[68] Tibor Jordan and Zoltan Szabadka. Operations preserving the global rigidity of
graphs and frameworks in the plane. Computational Geometry, 42(6 - 7):511–521,
2009.

[69] M.-W. Kang, M.K. Pha, and D. Hwang. Part I. A GIS-based simulation model
for positioning and routing unmanned ground vehicles. Technical report, Center for
Advanced Transportation and Infrastructure Engineering, Morgan State University,
2010.

[70] U. Kortenkamp. Foundations of Dynamic Geometry. PhD thesis, Swiss Federal
Institute of Technology Zurich, 1999.

[71] G. Kramer. Solving Geometric Constraints Systems. MIT Press, 1992.

[72] G.A. Kramer. Using degrees of freedom analysis to solve geometric constraint sys-
tems. In J. Rossignac and J. Turner, editors, Symposium on Solid Modeling Founda-
tions and CAD/CAM Applications, pages 371–378, Austin, TX, June 5-7 1991. ACM
Press.

BIBLIOGRAPHY 163

[73] G.A. Kramer. A geometric constraint engine. Artificial Intelligence, 58(1-3):327–360,
1992.

[74] J.-M. Laborde and F. Bellemain. Cabri-Geometry II. Texas Instruments and Uni-
versité Joseph Fourier, 1993–1998.

[75] G. Laman. On graphs and rigidity of plane skeletal structures. Journal of Engineering
Mathematics, 4(4):331–340, October 1970.

[76] Jean-Paul Laumond. Motion planning for PLM: state of the art and perspectives.
International Journal of Product Lifecycle Management, 1(2):129–142, 2006.

[77] Steven M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[78] R. Light and D. Gossard. Modification of geometric models through variational
geometry. Computer Aided Design, 14:209–214, July 1982.

[79] V.C. Lin, D.C. Gossard, and R.A. Light. Variational geometry in computer-aided
design. ACM Compuer Graphics, 15(3):171–177, August 1981.

[80] Ernst W. Mayr. An algorithm for the general petri net reachability problem. In
Proceedings of the thirteenth annual ACM symposium on Theory of computing, STOC
’81, pages 238–246, New York, NY, USA, 1981. ACM.

[81] T Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541–580, 1989.

[82] G. Nelson. Juno, a constraint-based graphics system. SIGGRAPH, pages 235–243,
San Francisco, July 22–26 1985.

[83] Thorsten Orendt. Resolution of Geometric Singularities by Complex Detours - Mod-
eling, Complexity and Application. PhD thesis, Zentrum Mathematik, Technische
Universität München, 2010.

[84] J.C. Owen. Algebraic solution for geometry from dimensional constraints. In
R. Rossignac and J. Turner, editors, Symposium on Solid Modeling Foundations and
CAD/CAM Applications, pages 397–407, Austin, TX, June 5-7 1991. ACM Press.

[85] James L. Peterson. Petri Net Theory and the Modelling of Systems. Prentice Hall
Inc., Englewood Cliffs, N.J. 07632, 1981.

[86] Srinivas Raghothama and Vadim Shapiro. Necessary conditions for boundary repre-
sentation variance. In Proceedings of the 13th annual symposium on Computational
geometry, SCG ’97, pages 77–86, New York, NY, USA, 1997. ACM.

164 BIBLIOGRAPHY

[87] Srinivas Raghothama and Vadim Shapiro. Boundary representation deformation in
parametric solid modeling. ACM Transactions on Graphics, 17(4):259–286, October
1998.

[88] Srinivas Raghothama and Vadim Shapiro. Consistent updates in dual representa-
tion systems. In Proceedings of the fifth ACM symposium on Solid modeling and
applications, SMA ’99, pages 65–75, New York, NY, USA, 1999. ACM.

[89] J. Richter-Geber and U. Kortenkamp. The interactive geometry software Cinderella.
Springer-Verlag, 1999.

[90] Jürgen Richter-Gebert and Ulrich H. Kortenkamp. Complexity issues in dynamic
geometry. In Proceedings of the Smale Fest 2000, Hong Kong, pages 193–198, 2000.

[91] Stuart Russell and Peter Norvig. Artificial Intelligence: a modern approach. Alan
Apt, 1995.

[92] Peter Sanders and Dominik Schultes. Highway hierarchies hasten exact shortest
path queries. In Proceedings of the 13th annual European conference on Algorithms,
ESA’05, pages 568–579, Berlin, Heidelberg, 2005. Springer-Verlag.

[93] Peter Sanders and Dominik Schultes. Engineering fast route planning algorithms. In
Proceedings of the 6th international conference on Experimental algorithms, WEA’07,
pages 23–36, Berlin, Heidelberg, 2007. Springer-Verlag.

[94] Brigitte Servatius and Herman Servatius. Rigidity, global rigidity, and graph decom-
position. European Journal of Combinatorics, 31(4):1121–1135, 2010. Rigidity and
Related Topics in Geometry.

[95] Stephan Seufert, Avishek Anand, Srikanta J. Bedathur, and Gerhard Weikum. FER-
RARI: Flexible and Efficient Reachability Range Assignment for Graph Indexing. In
ICDE’13: Proceedings of the 29th IEEE International Conference on Data Engineer-
ing. IEEE, 2013.

[96] Vadim Shapiro and Donald L. Vossler. What is a parametric family of solids? In
Proceedings of the third ACM symposium on Solid modeling and applications, SMA
’95, pages 43–54, New York, NY, USA, 1995. ACM.

[97] Meera Sitharam, Menghan Wang, and Heping Gao. Cayley configuration spaces
of 1-dof tree-decomposable linkages, part I: Structure and extreme points. CoRR,
abs/1112.6008, 2011.

[98] Meera Sitharam, Menghan Wang, and Heping Gao. Cayley configuration spaces of
1-dof tree-decomposable linkages, part II: Combinatorial characterization of com-
plexity. CoRR, abs/1112.6009, 2011.

BIBLIOGRAPHY 165

[99] A. Soto. Satisfacció de restriccions geomètriques en 2D. PhD thesis, Universitat
Politècnica de Catalunya, Dept. Llenguatges i Sistemes Informàtics, 1998. (Written
in Catalan).

[100] Tiong-Seng Tay and Walter Whiteley. Generating isostatic frameworks. Structural
Topology, (11), 1985.

[101] S.E.B. Thierry. Décomposition et paramétrisation de systèmes de contraites
géométriques sous-constraints. PhD thesis, Université de Strasbourg, 2010.

[102] P. Todd. A k-tree generalization that characterizes consistency of dimensioned engi-
neering drawings. SIAM Journal on Discrete Mathematics, 2(2):255–261, 1989.

[103] H.A. van der Meiden. Semantics of Families of Objects. PhD thesis, Delft University
of Technology, The Nederlands, 2008.

[104] H.A. van der Meiden and W.F. Bronsvoort. An efficient method to determine the
intended solution for a system of geometric constraints. International Journal of
Computational Geometry, 15(3):79–98, 2005.

[105] H.A. van der Meiden and W.F. Bronsvoort. A constructive approach to calculate pa-
rameter ranges for systems of geometric constraints. Computer-Aided Design, 38:275–
283, 2006.

[106] S. Vila. Contribution to Geometric Constraint Solving in Cooperative Engineering.
PhD thesis, Departament Llenguatges i Sistemes Informàtics, Universitat Politècnica
de Catalunya, 2003.

[107] W. Whiteley. Handbook of discrete and computational geometry, chapter Rigidity
and scene analysis, pages 893–916. CRC Press, Inc., Boca Raton, FL, USA, 1997.

[108] Harald Winroth. Dynamic projective geometry. Master’s thesis, Stockholms Univer-
sitet, KTH, Numerical Analysis and Computer Science, 1999.

[109] Jing Yang, Patrick Dymond, and Michael Jenkin. Exploiting hierarchical proba-
bilistic motion planning for robot reachable workspace estimation. In JuanAndrade
Cetto, Joaquim Filipe, and Jean-Louis Ferrier, editors, Informatics in Control Au-
tomation and Robotics, volume 85 of Lecture Notes in Electrical Engineering, pages
229–241. Springer Berlin Heidelberg, 2011.

[110] Xinming Ye, Jiantao Zhou, and Xiaoyu Song. On reachability graphs of Petri nets.
Computers & Electrical Engineering, 29(2):263–272, 2003.

[111] Hilmi Yildirim, Vineet Chaoji, and Mohammed J. Zaki. GRAIL: A scalable index
for reachability queries in very large graphs. VLDB Journal, pages 509–534, 2012.

166 BIBLIOGRAPHY

[112] Zhiyuan Ying and S.Sitharama Iyengar. Robot reachability problem: A nonlinear
optimization approach. Journal of Intelligent and Robotic Systems, 12:87–100, 1995.

