29,430 research outputs found

    A Multiproject Chip Approach to the Teaching of Analog MOS LSI and VLSI

    Get PDF
    Multiproject chip implementation has been used in teaching analog MOS circuit design. After having worked with computer simulation and layout aids in homework problems, students designed novel circuits including several high performance op amps, an A/D converter, a switched capacitor filter, a 1 K dynamic RAM, and a variety of less conventional MOS circuits such as a VII converter, an AC/DC converter, an AM radio receiver, a digitally-controlled analog signal processor, and on-chip circuitry for measuring transistor capacitances. These circuits were laid out as part of an NMOS multiproject chip. Several of the designs exhibit a considerable degree of innovation; fabrication pending, computer simulation shows that some may be pushing the state of the art. Several designs are of interest to digital designers; in fact, the course has provided knowledge and technique needed for detailed digital circuit design at the gate level

    Macromodeling of Electrical Interconnects and Packages via PEEC Approach

    Get PDF

    Physics-based large-signal sensitivity analysis of microwave circuits using technological parametric sensitivity from multidimensional semiconductor device models

    Get PDF
    The authors present an efficient approach to evaluate the large-signal (LS) parametric sensitivity of active semiconductor devices under quasi-periodic operation through accurate, multidimensional physics-based models. The proposed technique exploits efficient intermediate mathematical models to perform the link between physics-based analysis and circuit-oriented simulations, and only requires the evaluation of dc and ac small-signal (dc charge) sensitivities under general quasi-static conditions. To illustrate the technique, the authors discuss examples of sensitivity evaluation, statistical analysis, and doping profile optimization of an implanted MESFET to minimize intermodulation which makes use of LS parametric sensitivities under two-tone excitatio

    Run-time power and performance scaling in 28 nm FPGAs

    Get PDF

    Special arod system studies seventh quarterly report

    Get PDF
    Phase lock loop advanced circuits, and technical summary for Airborne Range and Orbit Determination /AROD/ syste

    Guaranteed passive parameterized model order reduction of the partial element equivalent circuit (PEEC) method

    Get PDF
    The decrease of IC feature size and the increase of operating frequencies require 3-D electromagnetic methods, such as the partial element equivalent circuit (PEEC) method, for the analysis and design of high-speed circuits. Very large systems of equations are often produced by 3-D electromagnetic methods. During the circuit synthesis of large-scale digital or analog applications, it is important to predict the response of the system under study as a function of design parameters, such as geometrical and substrate features, in addition to frequency (or time). Parameterized model order reduction (PMOR) methods become necessary to reduce large systems of equations with respect to frequency and other design parameters. We propose an innovative PMOR technique applicable to PEEC analysis, which combines traditional passivity-preserving model order reduction methods and positive interpolation schemes. It is able to provide parametric reduced-order models, stable, and passive by construction over a user-defined range of design parameter values. Numerical examples validate the proposed approach

    Calculation of Generalized Polynomial-Chaos Basis Functions and Gauss Quadrature Rules in Hierarchical Uncertainty Quantification

    Get PDF
    Stochastic spectral methods are efficient techniques for uncertainty quantification. Recently they have shown excellent performance in the statistical analysis of integrated circuits. In stochastic spectral methods, one needs to determine a set of orthonormal polynomials and a proper numerical quadrature rule. The former are used as the basis functions in a generalized polynomial chaos expansion. The latter is used to compute the integrals involved in stochastic spectral methods. Obtaining such information requires knowing the density function of the random input {\it a-priori}. However, individual system components are often described by surrogate models rather than density functions. In order to apply stochastic spectral methods in hierarchical uncertainty quantification, we first propose to construct physically consistent closed-form density functions by two monotone interpolation schemes. Then, by exploiting the special forms of the obtained density functions, we determine the generalized polynomial-chaos basis functions and the Gauss quadrature rules that are required by a stochastic spectral simulator. The effectiveness of our proposed algorithm is verified by both synthetic and practical circuit examples.Comment: Published by IEEE Trans CAD in May 201
    • 

    corecore