1,083 research outputs found

    A surgical system for automatic registration, stiffness mapping and dynamic image overlay

    Full text link
    In this paper we develop a surgical system using the da Vinci research kit (dVRK) that is capable of autonomously searching for tumors and dynamically displaying the tumor location using augmented reality. Such a system has the potential to quickly reveal the location and shape of tumors and visually overlay that information to reduce the cognitive overload of the surgeon. We believe that our approach is one of the first to incorporate state-of-the-art methods in registration, force sensing and tumor localization into a unified surgical system. First, the preoperative model is registered to the intra-operative scene using a Bingham distribution-based filtering approach. An active level set estimation is then used to find the location and the shape of the tumors. We use a recently developed miniature force sensor to perform the palpation. The estimated stiffness map is then dynamically overlaid onto the registered preoperative model of the organ. We demonstrate the efficacy of our system by performing experiments on phantom prostate models with embedded stiff inclusions.Comment: International Symposium on Medical Robotics (ISMR 2018

    Novel Tactile-SIFT Descriptor for Object Shape Recognition

    Get PDF
    Using a tactile array sensor to recognize an object often requires multiple touches at different positions. This process is prone to move or rotate the object, which inevitably increases difficulty in object recognition. To cope with the unknown object movement, this paper proposes a new tactile-SIFT descriptor to extract features in view of gradients in the tactile image to represent objects, to allow the features being invariant to object translation and rotation. The tactile-SIFT segments a tactile image into overlapping subpatches, each of which is represented using a dn-dimensional gradient vector, similar to the classic SIFT descriptor. Tactile-SIFT descriptors obtained from multiple touches form a dictionary of k words, and the bag-of-words method is then used to identify objects. The proposed method has been validated by classifying 18 real objects with data from an off-the-shelf tactile sensor. The parameters of the tactile-SIFT descriptor, including the dimension size dn and the number of subpatches sp, are studied. It is found that the optimal performance is obtained using an 8-D descriptor with three subpatches, taking both the classification accuracy and time efficiency into consideration. By employing tactile-SIFT, a recognition rate of 91.33% has been achieved with a dictionary size of 50 clusters using only 15 touches

    Signal and Information Processing Methods for Embedded Robotic Tactile Sensing Systems

    Get PDF
    The human skin has several sensors with different properties and responses that are able to detect stimuli resulting from mechanical stimulations. Pressure sensors are the most important type of receptors for the exploration and manipulation of objects. In the last decades, smart tactile sensing based on different sensing techniques have been developed as their application in robotics and prosthetics is considered of huge interest, mainly driven by the prospect of autonomous and intelligent robots that can interact with the environment. However, regarding object properties estimation on robots, hardness detection is still a major limitation due to the lack of techniques to estimate it. Furthermore, finding processing methods that can interpret the measured information from multiple sensors and extract relevant information is a Challenging task. Moreover, embedding processing methods and machine learning algorithms in robotic applications to extract meaningful information such as object properties from tactile data is an ongoing challenge, which is controlled by the device constraints (power constraint, memory constraints, etc.), the computational complexity of the processing and machine learning algorithms, the application requirements (real-time operations, high prediction performance). In this dissertation, we focus on the design and implementation of pre-processing methods and machine learning algorithms to handle the aforementioned challenges for a tactile sensing system in robotic application. First, we propose a tactile sensing system for robotic application. Then we present efficient preprocessing and feature extraction methods for our tactile sensors. Then we propose a learning strategy to reduce the computational cost of our processing unit in object classification using sensorized Baxter robot. Finally, we present a real-time robotic tactile sensing system for hardness classification on a resource-constrained devices. The first study represents a further assessment of the sensing system that is based on the PVDF sensors and the interface electronics developed in our lab. In particular, first, it presents the development of a skin patch (multilayer structure) that allows us to use the sensors in several applications such as robotic hand/grippers. Second, it shows the characterization of the developed skin patch. Third, it validates the sensing system. Moreover, we designed a filter to remove noise and detect touch. The experimental assessment demonstrated that the developed skin patch and the interface electronics indeed can detect different touch patterns and stimulus waveforms. Moreover, the results of the experiments defined the frequency range of interest and the response of the system to realistic interactions with the sensing system to grasp and release events. In the next study, we presented an easy integration of our tactile sensing system into Baxter gripper. Computationally efficient pre-processing techniques were designed to filter the signal and extract relevant information from multiple sensor signals, in addition to feature extraction methods. These processing methods aim in turn to reduce also the computational complexity of machine learning algorithms utilized for object classification. The proposed system and processing strategy were evaluated on object classification application by integrating our system into the gripper and we collected data by grasping multiple objects. We further proposed a learning strategy to accomplish a trade-off between the generalization accuracy and the computational cost of the whole processing unit. The proposed pre-processing and feature extraction techniques together with the learning strategy have led to models with extremely low complexity and very high generalization accuracy. Moreover, the support vector machine achieved the best trade-off between accuracy and computational cost on tactile data from our sensors. Finally, we presented the development and implementation on the edge of a real–time tactile sensing system for hardness classification on Baxter robot based on machine and deep learning algorithms. We developed and implemented in plain C a set of functions that provide the fundamental layer functionalities of the Machine learning and Deep Learning models (ML and DL), along with the pre–processing methods to extract the features and normalize the data. The models can be deployed to any device that supports C code since it does not rely on any of the existing libraries. Shallow ML/DL algorithms for the deployment on resource–constrained devices are designed. To evaluate our work, we collected data by grasping objects of different hardness and shape. Two classification problems were addressed: 5 levels of hardness classified on the same objects’ shape, and 5 levels of hardness classified on two different objects’ shape. Furthermore, optimization techniques were employed. The models and pre–processing were implemented on a resource constrained device, where we assessed the performance of the system in terms of accuracy, memory footprint, time latency, and energy consumption. We achieved for both classification problems a real-time inference (< 0.08 ms), low power consumption (i.e., 3.35 μJ), extremely small models (i.e., 1576 Byte), and high accuracy (above 98%)

    Multimodal human hand motion sensing and analysis - a review

    Get PDF

    Object Recognition and Localization : the Role of Tactile Sensors

    Get PDF
    Tactile sensors, because of their intrinsic insensitivity to lighting conditions and water turbidity, provide promising opportunities for augmenting the capabilities of vision sensors in applications involving object recognition and localization. This thesis presents two approaches for haptic object recognition and localization for ground and underwater environments. The first approach called Batch Ransac and Iterative Closest Point augmented Sequential Filter (BRICPSF) is based on an innovative combination of a sequential filter, Iterative-Closest-Point algorithm, and a feature-based Random Sampling and Consensus (RANSAC) algorithm for database matching. It can handle a large database of 3D-objects of complex shapes and performs a complete six-degree-of-freedom localization of static objects. The algorithms are validated by experimentation in simulation and using actual hardware. To our knowledge this is the first instance of haptic object recognition and localization in underwater environments. The second approach is biologically inspired, and provides a close integration between exploration and recognition. An edge following exploration strategy is developed that receives feedback from the current state of recognition. A recognition by parts approach is developed which uses BRICPSF for object part recognition. Object exploration is either directed to explore a part until it is successfully recognized, or is directed towards new parts to endorse the current recognition belief. This approach is validated by simulation experiments

    CrunchBot : a mobile whiskered robot platform

    Get PDF
    CrunchBot is a robot platform for developing models of tactile perception and navigation. We present the architecture of CrunchBot, and show why tactile navigation is difficult. We give novel real-time performance results from components of a tactile navigation system and a description of how they may be integrated at a systems level. Components include floor surface classification, radial distance estimation and navigation. We show how tactile-only navigation differs fundamentally from navigation tasks using vision or laser sensors, in that the assumptions about the data preclude standard algorithms (such as extended Kalman Filters) and require brute-force methods

    Active Shape Completion Using Tactile Glances

    Get PDF
    One longstanding challenge in the field of robotics has been the robust and reliable grasping of objects of unknown shape. Part of that challenge lies in reconstructing the object's shape using only limited observations. Most approaches use either visual or tactile information to reconstruct the shape, having to face issues resulting from the limitations of the chosen modality. This thesis tries to combine the strengths of visual and tactile observations by taking the result from an existing visual approach and refining that result through sparse tactile glances. The existing approach produces potential shape hypotheses in voxel space which get combined into one final shape. This thesis takes that final shape and determines voxels of interest using either entropy or variance. These voxels will be targeted by the exploration, providing information about these voxels. This information will be used to assign weights to the original hypotheses in order for the combined shape to better fit the observations. All explorations are simulated and evaluated in MATLAB. The resulting shapes are evaluated based on their Jaccard Index with the ground truth model. The algorithm leads to improvements in the Jaccard Index, but not to drastically different looking shapes
    • …
    corecore