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 Abstract—Using a tactile array sensor to recognize an object 

often requires multiple touches at different positions. This process 

is prone to move or rotate the object, which inevitably increases 

difficulty in object recognition. To cope with the unknown object 

movement, this paper proposes a new Tactile-SIFT descriptor to 

extract features in view of gradients in the tactile image to 

represent objects, to allow the features being invariant to object 

translation and rotation. The Tactile-SIFT segments a tactile 

image into overlapping sub-patches, each of which is represented 

using a dn-dimensional gradient vector, similar to the classic SIFT 

descriptor. Tactile-SIFT descriptors obtained from multiple 

touches form a dictionary of k words, and the Bag-of-Words 

method is then used to identify objects. The proposed method has 

been validated by classifying 18 real objects with data from an 

off-the-shelf tactile sensor. The parameters of the Tactile-SIFT 

descriptor, including the dimension size dn and the number of 

sub-patches sp, are studied. It is found that the optimal 

performance is obtained using an 8-dimensional descriptor with 3 

sub-patches, taking both the classification accuracy and time 

efficiency into consideration. By employing Tactile-SIFT, a 

recognition rate of 91.33% has been achieved with a dictionary 

size of 50 clusters using only 15 touches. 

 
Index Terms— Tactile sensors, object recognition, robot tactile 

systems. 

I. INTRODUCTION 

HE sense of touch is irreplaceable for us human beings, 

especially when we explore the environment in close 

vicinity when vision is occluded. It conveys the sensory 

information, i.e., pressure, vibration, pain, temperature etc., to 

our central nervous system, therefore assisting us to perceive 

the ambient world and avoid potential injuries. Research has 

exhibited that, compared to vision and audition, the tactile 

sensations demonstrate superiority at processing the material 

characteristics and detailed shapes of objects [1]. As humans, 

robots are also expected to possess the tactioception. To 

achieve this goal, there is a rapid expansion of tactile sensor 

development using different sensing principles in last few 

decades [2]–[7]. In contrast, however, the research in decoding 

the conveyed tactile information is still in the early stage. The 

material characteristics and shapes of objects are the two main 
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objectives to be revealed by the tactile sensation. Some 

researchers have focused on identifying material properties 

[8]–[10]. Decherchi et al. take multiple techniques from 

computational intelligence to classify object materials with 

tactile data [9]. Liu et al. [10] apply a dynamic friction model to 

determine the surface physical properties while a robotic finger 

slides along the object surface with a varying sliding velocity.  

To recognize contact shapes, one approach is to recover local 

geometry from each contact point, i.e., surface normal and 

curvature. By using a cylindrical tactile sensor, Fearing et al. 

propose a nonlinear model-based inversion to recover contact 

surface curvatures [11]. Jia et al. analyze one-dimensional 

tactile data to describe a patch through polynomial fitting under 

an estimated Darboux frame determined by two principal 

directions and surface normal at the curve intersection point 

[12]. Clouds of contact points have also been used to 

reconstruct object shapes thanks to techniques of computer 

graphics [13]–[16]. Allen et al. fit resultant points from tactile 

sensors readings to super-quadric surfaces to reconstruct 

unknown shapes [15] and a similar process is conducted in [17] 

but tensor B-spline surfaces are used instead. Through these 

methods, arbitrary contact shapes can be identified by 

estimating surface curvatures.  However, the investigation of 

large object surface using this method can be time consuming 

and key features are not revealed. 

Another approach to recognize contact shapes is to use 

sensors with tactile arrays. One method is to employ machine 

learning techniques and it can be divided into two steps: 1) 

features are extracted from the gained tactile readings of objects 

with known contact shapes; 2) a classifier is then trained and 

applied to predict the shapes of test objects. By covariance 

analysis of pressure values in tactile readings, it is proposed in 

[18] to acquire three orthogonal principal axes, namely, 

eigenvectors of the covariance matrix of the pressure pattern; a 

Naïve Bayes classifier is fed with resultant axe lengths, main 

axe direction and shape convexity to recognize local object 

features. They also contribute a similar recognition process by 

transforming each tactile reading into a 512-feature vector and 

using a neural network classifier in [19]. The neural networks 

are also used in [20] to classify local shapes but it is found to be 

sensitive to pattern variations in positions and orientations.  

An alternative approach is to treat tactile arrays as images 

and apply vision descriptors to extract object features. Inspired 

by the similarities between tactile patterns and grey-scale 

images, Ji et al. [21] transform tactile data into histograms as 

structured features to discriminate four basic human-robot 

touch patterns, i.e., poking, a full finger contact, gripping  with 

three fingers and grasping  with whole hand. Research has also 
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been done to explore suitable features for the tactile recognition. 

In [22], the columns of each tactile matrix are concatenated to 

form a vector that is directly treated as a descriptor. Due to its 

essence, the recognition is not  invariant to object movements. 

Therefore, one identical object is recognized as distinct 

identities if it is placed in different orientations to the robotic 

gripper. The regional descriptors are utilized in [23] to 

recognize object shapes, but objects can only be classified into 

four classes, i.e., planar, one-edged, two-edged and cylindrical 

objects. The kernel PCA-based feature fusion is used in [24] to 

transform geometric features and Fourier descriptors into ones 

to better discriminate objects but only geometric shapes can be 

classified in this work. In [25], several descriptors from 

computer vision are employed and compared to achieve a 

satisfactory classification performance but a considerable 

quantity of contacts (around 50) is required. The Scale 

Invariant Feature Transform (SIFT) descriptor is created based 

on image gradients [26]. It has been proved that in computer 

vision applications the SIFT is robust to cope with the object’s 

pose variation. This is particularly useful for object recognition 

using tactile images, since the touch could introduce 

unexpected object rotation and translation. SIFT has been 

initially explored in [25] for tactile object recognition, however, 

it did not show good performance. The main reason could be 

due to that the design of the original SIFT is overcomplicated 

for processing tactile images. The high dimensional descriptor 

of the original SIFT tends to over-fit the lower dimensional 

tactile images. To overcome this problem, we propose a novel 

Tactile-SIFT descriptor which is suitable for processing the 

tactile images by reformatting the SIFT as follows: 1) scale 

pyramid building and key-point localization are eliminated; 2) 

the descriptor dimension is reduced to find an appropriate 

descriptor to achieve a high classification accuracy and good 

time efficiency at the same time; 3) each tactile image is 

segmented into overlapping sub-patches and a descriptor is 

extracted from each sub-patch. 

To recover the global identity of the object using the 

obtained local tactile images, several approaches have been 

proposed. Pezzementi et al. utilize tactile images to 

characterize local geometric surfaces and propose a mosaic 

method to synthesize these patches to recover the object-level 

surface using both histogram and particle filters [27], in which 

the objects are a set of raised letters. The tactile sensors are 

utilized to collect data formed as contact point clouds in [28] 

and a probabilistic model is built to classify objects. However, 

both these two approaches require large number of contacts. 

Another approach is to use the unsupervised learning to 

generate a codebook of tactile features for the object [21], [22], 

[25]. Among these methods, the Bag-of-Words (BoW) model, 

originally widely applied in image categorisation [29], has been 

proved to be easy for implementation and have high recognition 

accuracy. Thus, in this paper the BoW model is selected for the 

global tactile object recognition. 

The original design of Tactile-SIFT descriptor proposed in 

our previous work [30] has been further modified and studied in 

this paper. The contributions of this paper can be summarised 

as follows. 1) Tactile-SIFT descriptors with various dimensions 

are created and compared, and it is found that a high accuracy 

can be reached by using 8-dimensional Tactile-SIFT 

descriptors. Thus the 8-dim descriptors are chosen to be used in 

the tactile object shape recognition. 2) The methods to segment 

tactile images are also investigated and it is discovered that a 

good performance can be achieved when a tactile image is 

divided into three sub-patches with overlaps between each 

other. 3) 18 real objects are involved in the experiments. To the 

best knowledge of the authors, this is the largest real object 

sample size for studying tactile object recognition to date. The 

results demonstrate that the proposed Tactile-SIFT descriptor is 

suitable for tactile object recognition and a high recognition 

rate can be reached with a few touches. To conduct this study, a 

test rig was developed as shown in Figure 1. This test rig 

consists of a Weiss Robotics tactile array sensor WTS 0614-34 

with 6×14 sensing elements and a Sensable PHANTOM Omni 

device for tactile sensor positioning. 

 
Fig. 1. (a) Depiction of the system to recognize objects, with a tactile array 

sensor attached to a manipulator arm. (b) Tactile sensor and object interaction. 

(c) Tactile readings. 

II. METHODOLOGY 

A. Overview 

In general cases, the robotic fingertips are smaller than the 

objects 𝑂 = {𝑜1, 𝑜2, ⋯ , 𝑜𝑛} that they get in contact with. Thus 

only limited surface area of an object can be accessed by the 

“skin” of the fingertips during the manipulations in hand, which 

means that the objects are needed to be touched multiple times 

to obtain a global image. In our proposed system, the local 

observations of each object are acquired as tactile patches of the 

same size, which are presented in normalized pressure values of 

the sensing elements organized in a matrix form. To perform a 

global classification based on them, a BoW framework is 

employed and adapted, treating the tactual features of objects as 

words. A data flow is illustrated in Figure 2 and it works in the 

following way: 1) given the collected low-resolution tactile 

images, the Tactile-SIFT descriptors (features) [𝑝1, 𝑝2, ⋯ , 𝑝𝑛] 
are extracted; 2) a dictionary 𝑊 = [𝑤1, 𝑤2, ⋯ , 𝑤𝑘]  is then 

generated from these descriptors by k-means clustering; 3) 

histograms of word occurrences for object classes are then 

generated based on the features of the training dataset. Thus the 

robot can use these distributions to identify an object while 

touching it a few times at different positions and comparing its 

occurrence histogram with the histograms in the database.  

(b) 

(a) (c) 
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Fig. 2. The bag-of-words framework and recognition process to classify 

unknown objects. 

B. Feature quantization 

  We use words in our dictionary to describe explored objects 

and the words represent partial features of an object to form its 

monolithic image. For instance, with descriptions of “round”, 

“sleek”, “hard” and “thin handle” we can probably conclude an 

object as coffee mug. In the same way, in the robotic tactile 

perception, descriptors can also be extracted to represent 

essential information in a form of numerical vectors. To make 

descriptors invariant to object movements, we propose to adapt 

Scale-Invariant Feature Transform (SIFT) [26] descriptors to 

tactile object recognition, which have performed very well in 

the object recognition using visual images. 

In classic SIFT algorithm, a scale pyramid is first built to 

make descriptors scale invariant. However, unlike using 

camera vision for shape recognition, tactile sensing allows 

mapping real dimensions of pressed objects. Therefore, tactile 

images do not need to be scaled; that means that the scale 

pyramid needs not be built. Besides, in visual images key points 

such as corners are viewed as distinctive features and multiple 

can be detected in one image due to affluent information. But in 

each tactile image there is limited information present and such 

features are much less. Due to this reason, key point 

localisation is also eliminated and patch centre is taken as “key 

point” instead, as the way used in scene classification [31]. 

To make features more robust, it is proposed to segment each 

tactile image into several overlapping sub-patches and one 

descriptor is extracted for each. The sizes of sub-patches are all 

the same for different partitions. Two examples are illustrated 

in Figure 3. In Figure 3(a), the tactile image is segmented into 

three sub-patches and thus three descriptors p1, p2, p3 are 

obtained; in Figure 3(b), keeping the sub-patch size same as the 

case of Figure 3(a), the tactile image is interpolated along the 

vertical axis first and the resulted image is segmented into four 

sub-patches and four descriptors p1, p2, p3, p4 are obtained. 

 
Fig. 3. Examples of a regular grid of (a) three and (b) four sub-patches for a 

tactile reading. And one descriptor is obtained from each sub-patch. 

   The descriptor for each sub-patch is computed as follows. 

First, the gradient magnitude and orientation are calculated by 

using a difference-of-Gaussian function at each pixel of the 6×6 

sub-patch. To mitigate abrupt changes in the image, a Gaussian 

weighting function is applied independently to blur each 

sub-patch [26]. Second, the sub-patch is divided into a grid of 

cells and three sizes of grids, i.e., 4×4, 2×2, 1×1, are employed. 

Third, an orientation histogram is created for each grid cell 

from the gradient orientations of pixels within or intersect with 

the cell, which has 8 or 4 bins covering the 360
o
 range of 

orientations. The value of each bin is computed by summing 

products of each gradient magnitude of the pixels within or 

intersect with the grid cell and a weight (= 1-d), where d is the 

distance of the pixel to the center of the grid cell measured in 

units of the grid cell spacing. At last, all the orientation 

histogram entries are concentrated into a vector and the 

descriptor is obtained from normalizing the vector by the L2 

vector norm. As a result, descriptors of different dimensions, 

i.e., 4×4×8=128, 4×4×4=64, 2×2×8=32, 2×2×4=16, 1×1×8=8 

and 1×1×4=4, are created.  

    
                                (a)                                                          (b) 

Fig. 4. The 64-dim descriptor obtained from a 6×6 sub-patch tactile image. (a) 
The sub-patch is divided into 4×4 grid cells, in each of which an orientation 

histogram of 4 bins is obtained. All these histogram entries form the 64-dim 
descriptor. (b) The enlarged bottom left region of the sub-patch, marked by the 

dashed box in (a);  grid of cells are marked with red lines, pixels and grid cell 

centers are represented by blue circles and red crosses respectively. The 
orientation histogram formation of the grid cell is also illustrated, which is 

contributed by the gradients of four pixels within or intersect with this grid cell, 

labelled as px. Black arrows denote the distance of each pixel to the cell center. 

The formation of a 64-dim descriptor is illustrated in Figure 

4. A 6×6 sub-patch is divided into 4×4 grid cells, shown in 

Figure 4(a). The value of each bin, i.e., the length along that 

direction, is computed as follows: 1) each gradient vector of 

these four pixels is projected onto that direction; 2) the 
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projections are multiplied by the associated weights; 3) the 

products are summed up to obtain the length of that direction. 

Figure 4(b) illustrates the computational procedures. An 

orientation histogram of 4 bins is obtained for each grid cell of 

the sub-patch and all the histogram entries, the lengths of the 

arrows, are allocated into an array to form a 64-dim descriptor. 

C. Dictionary generation and histogram representation 

After the descriptors are created, they are clustered to obtain 

“codewords” that are similar to words in text documents. 

Therefore, this produces a “codebook”, similar to a dictionary. 

It means that a codeword can be considered as a representative 

of several similar descriptors. A set of clusters is obtained 

through unsupervised k-means clustering of training data, k 

refers to dictionary size, and the learned cluster centroids c are 

gained as codewords. Euclidean distances are used to compute 

the distances between descriptors p and codewords c as in (1).  

𝑑(𝑝, 𝑐) = ‖𝑝 − 𝑐‖ 

Fig. 5. Sample sub-patches assigned to an 8-dim codeword. (a) The vector 

representation of the codeword. (b) Sample sub-patches assigned to it. 

Some sub-patches are illustrated in Figure 5, whose 

descriptors are assigned to the same codeword. It can be noticed 

that a semicircle appears in each but at different positions and 

orientations. It shows that an 8-dim codeword is clustered 

regardless of how these features appear. In this way, the object 

recognition can be achieved invariant to object movements. 

The objects are then represented as occurrence histograms h
o
 of 

codewords with k bins in total. Each bin is initialized with a 

value 0 and is incremented by one when a descriptor is assigned 

to it. h
o
 is at last normalized by L1 norm as shown in (2). 

ℎ𝑜: =
ℎ𝑜

∑ ℎ𝑖
𝑜𝑘

𝑖=1

 

D. Classification using kNN 

The k-Nearest Neighbor (kNN) classifier is employed to 

classify objects in our system. Here the number of neighbors k 

is set to 1. For every object, the exploration procedure is 

repeated five times and the data of the first four exploration 

trials and the last one are taken as training set and test set 

respectively. To make the learned histograms more reliable, the 

training data for each object are taken together to form one 

occurrence histogram based on the codebook. The similarity 

between histograms of test objects and objects in the database 

are computed using histogram intersection [32] as in (3). Some 

other state-of-the-art classifiers such as Support Vector 

Machine (SVM) have also been studied in the experiments, but 

as only one histogram vector is obtained to represent each 

object in the training process, the classification results appear to 

be over-fitting. Thus kNN is employed at the end and the 

framework works well in the experiments. 
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E. Exploration strategies 

It is expected that a better exploration strategy improves the 

recognition rates [22] but to test the robustness of our algorithm 

to the variance of the relative positions and poses between the 

robot and observed objects, a uniformed exploration strategy is 

employed in our experimental study instead of an informed 

strategy and it has been shown that a good recognition rate can 

still be achieved using our algorithm. 

III. EXPERIMENTAL SETUP 

In the test rig, a resistive Weiss tactile sensor is attached to 

the stylus of Phantom Omni from Sensable that serves as a 

robotic manipulator. The tactile sensor consists of 6×14 sensor 

cells with a size of 51 mm by 24 mm as a whole and 3.4 mm by 

3.4 mm for each cell. The sensor is covered by elastic rubber 

foam to conduct the externally applied force. Though the 

maximum scanning rate is 270 frame/s, the sensor signals are 

sampled at a rate of 5 frame/s that is found to be sufficient 

based on our initial studies. The raw readings are pre-processed 

as follows: 1) if in a tactile image the maximum value or the 

sum of all the readings is lower than the predefined thresholds, 

it is considered to be collected unintentionally and deleted; 2) 

taking the non-linear sensor characteristics into consideration, 

the readings are normalized by the maximum value of each 

tactile image to achieve consistency in the dynamic range of 

collected tactile measurements, falling into [0, 1]. 

The data acquisition is carried out as follows: 1) an idle load 

is served as a reference measurement with no object-sensor 

interaction; 2) for every object, the exploration procedure is 

repeated five times and during each the stylus is moved 

manually with a speed of around 5 mm/s, keeping the sensor 

plane normal to the object surface; in this way, the entire 

surface of the object is covered while a number of tactile 

patches are collected. To verify the robustness w.r.t variance of 

poses, the relative object-sensor poses are chosen randomly. As 

a result, 7290 tactile images in total for 18 objects, shown in 

Figure 6, are collected. And the number of collected tactile 

images for every object is also listed, which varies with the 

object dimension. The data of first four exploration procedures 

the last one are taken as training set and test set respectively. A 

leave-one-out cross validation is carried out by utilizing 

different dataset as test data to validate the results and a similar 

performance has been observed. To verify that only a few 

touches are needed to recognize objects, m readings in the test 

set are sampled randomly to form a test trial. And to get a 

reliable conclusion, 25 test trials are carried out for each object 

in one classification procedure in which a same dictionary is 

used. The classification results for one object are averaged as the 
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individual accuracy and overall performance can be computed. 

The objects in the experiments, illustrated in Figure 6, are 

taken from either lab environment or daily life (fixed wrench, 

wooden cuboid, plier, wheel model, wrench, Allen key, coffee 

cup, soft ball, comb, mouse, tape, saws framework, tweezers, 

plug, scissors and wide fixed wrench) with two exceptions, i.e., 

3D printed point array on a flatbed and a character E on a 

hemisphere. Figure 6 also shows the corresponding sampled 

patches for each object (the tactile images are interpolated for 

visualization but in the processing raw data are used). As seen 

in the tactile images, relative sensor-object poses and positions 

are randomly selected as the same features appear at different 

orientations and positions in multiple patches of one object. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

There are four variables considered to be studied, i.e., 

descriptor dimension dn, sub-patch number for one tactile 

reading sp, dictionary size k and the number of touches m. As a 

whole, it is aimed to achieve high classification accuracy while 

the number of samples needed for recognition is minimized and 

time efficiency is increased. 

1) Dimensions of descriptors dn 

The descriptor dimension results from both the number of 

grid cells and the number of gradient directions. In this case, dn 

is investigated and varied whereas sp, k and m are fixed. Three 

descriptors are obtained from each tactile reading (sp=3), 

namely, each image is segmented into three sub-patches; the 

dictionary size k is set to 50; for each test trial m=15 samples are 

taken. The classification procedure (25 test trials each) is carried 

out 10 times and the average recognition rates are shown in 

Figure 7. It can be noticed that the descriptors by counting 

gradient orientations to 8 directions (dimensions 128, 32 and 8) 

outperform ones with 4 directions (dimensions 64, 16 and 4). It 

means that the increased division of the directions contributes to 

increment of the classification accuracy. On the other side, 

among those with 8 directions, 8-dim descriptors perform best, 

though 128-dim descriptors outperform 32-dim ones. In the 

cross validation tests, same results are also demonstrated. The 

probable reason is that the increase of the grid division brings 

noises to the classification and the count of 8 directions in the 

whole tactile image is enough to extract the local information 

embedded in the low resolution tactile image. 

  
Fig. 7. Recognition rates with different descriptor dimensions dn. 
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                           fixed wrench(346)     wooden cuboid(390)           plier(470)            wheel model(384)           wrench(524)              Allen key(278) 

 

    
                            coffee cup(430)            soft ball(283)                  comb(399)              character E(495)              mouse(425)                    tape(373) 
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Fig. 6. Objects used for tests. First, third and fifth rows are visual images of objects. The name and number of collected tactile readings are also listed under the 

picture of each object. Second, fourth and last rows are corresponding sampled tactile images, in which prominent features can be observed. 
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As in general the manipulations in hand are swift, they have a 

strict requirement for time efficiency. Because the classification 

procedures with same dictionary size and touch times take the 

same time, the main difference happens for different descriptors 

is the time taken to compute descriptors from the raw tactile 

images. The time taken to process one tactile image to acquire 3 

descriptors of different dimensions is listed in Table 1. It can be 

observed that it takes more time to compute the descriptors with 

8 directions than those with 4 directions and for both two cases, 

descriptors of lower dimensions cost less time. 

Table 1 Processing time of one tactile image to obtain 3 descriptors 

dn 4 8 16 32 64 128 

Time/ms 1.9 2.2 2.0 2.4 2.1 2.6 

Taking both the classification performance and time 

efficiency into account, 8-dimensional descriptors are proposed 

to be used as Tactile-SIFT features in tactile recognition. 

2) Number of sub-patches sp 

In this case, sp is investigated and varied whereas dn, k and m 

are fixed. 8-dim Tactile-SIFT descriptors are used (dn=8); 

dictionary size k is set to 50; the number of touches m for one 

test trial is chosen as 15. In a stepwise manner, one patch is 

divided into 1 (no segmentation), 2, 3, 4 and 5 sub-patches. For 

the cases of 1 and 2 sub-patches, the tactile readings are 

resampled but for the cases of 4 and 5 sub-patches, the tactile 

readings are interpolated along the vertical axis. Inspired by [25], 

the size of all these sub-patches is set to 6×6 and there are 

overlaps of 3 along vertical axis between the adjacent 

sub-patches. As shown in Figure 8, the classification accuracy 

has a dramatic decrease when the tactile reading is resampled 

due to information loss. It maintains a similar performance as 

the case of 3 sub-patches when the images are interpolated; in 

other words, adding virtual information has slight effect on the 

accuracy. But increasing partition brings more time burden to 

the system, thus it is chosen to divide each reading into 3 

sub-patches. 

  

Fig. 8. Overall classification accuracies with different number of sub-patches. 

3) Dictionary size k 

In this case, k is investigated and varied whereas dn, sp and m 

are fixed as follows. 8-dim descriptors are used (dn=8); one 

tactile image is segmented into three sub-patches (sp=3); m=10, 

12 and 14 touches are utilized. It is apparent that the larger the 

dictionary size k is the higher recognition rates can be achieved. 

As shown in Figure 9, it is evident that the accuracy increases as 

k grows but it levels off when the size is greater than 50. The 

likely reason for this is that “synonyms” happen when the size 

increases more, like when we describe objects. Thus at last a 

dictionary size of 50 is chosen. 

Fig. 9. Comparison of overall accuracies with various dictionary sizes. 

4) Number of touches m 

Besides, the effect of the number of touches m on the 

recognition rates is also investigated. In this case, dn, sp and k 

are fixed as follows. 8-dim descriptors are used (dn=8); one 

tactile image is segmented into three sub-patches (sp=3); k=40, 

50 and 60 are used for comparison. As for the evaluation of 

dictionary size k, the classification procedure (25 test trials each) 

is carried out 10 times and the mean values are calculated to 

mitigate the uncertainties. It is shown in Figure 10 that the more 

times the robot touches objects the more reliable it recognizes 

them correctly. But reasonable accuracy could be obtained when 

15 samples are collected; around 90 percent objects can be 

recognized correctly. Hence in conclusion the robot only needs 

a few observations to reach a reasonable guess. 

Fig. 10. Comparison of overall accuracies with different number of samples. 

5) Classification results 

Based on the discussion, in our final test, 8-dim Tactile-SIFT 

descriptors are used (dn=8); one tactile image is segmented into 

three sub-patches (sp=3); the dictionary size k is set as 50 and 

m=15 samples are used for each test trial. As a result, an overall 

classification accuracy of 85.46% is achieved by averaging the 

cross validation results and the confusion matrix with a 

recognition rate of 91.33% is shown in Figure 11. It proves the 

robustness of our algorithm w.r.t. different poses and relative 

positions between objects and the tactile sensor. On the other 

hand, some of the objects are assigned to wrong labels, e.g., 

some observations of the plier and wrench are wrongly 

concluded to be from the fixed wrench, which is caused by their 

common features such as lines. 

The robustness w.r.t. pose variance is also validated. The 

readings from a line shape orientated at an angle from 0 to 360
o
 

at an internal of 10
o
, as shown in Figure 12, are assigned to the 

same codeword with a rate of 88.9%. And the readings from a 
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corner shape orientated at the same orientation range are 

assigned to the same codeword with a rate of 81.5%. 

      
              (a)                         (b)                          (c) 

Fig. 12. Images of a line shape (upper) and a corner (lower) (a) and tactile 

readings obtained when they are put at 0
o
 (b) and 30

o 
(c). 

V. CONCLUSION AND DISCUSSION 

In this paper it is proposed to recognise objects invariant to 

their movements with a tactile sensor by using a novel local 

Tactile-SIFT feature in a framework of bag of words. The SIFT 

descriptors are adapted to process tactile images to extract 

features from segmented tactile sub-patches and different 

dimensional Tactile-SIFT descriptors are evaluated and 

compared. It is found that the 8-dimensional descriptors 

outstand taking both classification accuracy and time efficiency 

into consideration. The methods to segment tactile images are 

also tested. Based on the acquired descriptors, a vocabulary of k 

words is learned by k-means unsupervised learning and the 

histogram codebook is used to identify objects by kNN. The 

proposed system is validated with an off-the-shelf tactile sensor 

and high classification accuracy 91.33% has been achieved.  

The proposed method can be extended in the following 

aspects. 1) The classification accuracy in our experiments tends 

to reach a limit of around 90%. One of appropriate reasons is 

that the locations of the features obtained on the object are not 

considered in the current method. However, intuitively, these 

two information sources are correlated. Therefore, we will look 

into incorporating such information to improve the 

classification accuracy. 2) In this paper most investigated 

shapes are in 2D; thus in the future work it will be extended to 

the 3D object recognition. 3) It is also expected to extend the 

algorithm to recognizing contacts with multiple tactile sensing 

pads, such as an instrumented robotic hand with multiple tactile 

array sensors on the fingers and the palm. We will explore how 

to recognize the object with fewer touches in such case.  
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