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Abstract

Collaborative manipulation of objects is usually a trivial activity for humans

but is still very challenging for robots. Such tasks involve many complex as-

pects, such as human and object safety, social and handling context, grasping

stability, slip detection, and ergonomics. Although huge research efforts have

been devoted over decades to endow robots with the skills required for grasp-

ing, manipulation, sharing of objects, and collaboration with humans, there

is still a need for reliable systems capable of reacting to unexpected events.

As for humans, the sense of touch is essential for robots to perform many

tasks as it provides information that can not be obtained through contactless

sensing modalities. Thus, recent trends in robotics research explore the use

of tactile sensing in human-robot object manipulation.

An important aspect that is often overlooked in the existing literature

is that tactile sensing is inherently sequential and therefore should be ap-

proached as a continuous process. The aim of this thesis is to explore contin-

uous tactile sensing to enhance robot collaboration capabilities for object ma-

nipulation. The contribution of this work is threefold: firstly, an innovative

multimodal technique that identifies the surface materials of objects using

continuous tactile sensing is developed. Secondly, continuous tactile sensing

is used to provide contact information to a control system that grasps objects

of unknown geometry. Finally, an approach to hand over objects between

xiii



a robot and a human, relying on continuous tactile sensing, is developed to

ensure the safety of the robot and the object during the transfer.

In this thesis, the proposed approaches are evaluated on real physical

robotic platforms. A comparison with the state-of-the art techniques in ma-

terial recognition shows that the proposed multimodal approach enhances

identification speed and accuracy. The experimental results also show excel-

lent performance of the proposed approach for grasping objects even when

information about their geometry is not available. Finally, the proposed ob-

ject handover algorithm is proven to adapt to unexpected force perturbations

on the object and release it in a timely manner without dropping. This work

entails significant progress towards the development of autonomous robots

that collaborate with humans in everyday tasks.
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Notation

In this thesis, the notation will be kept as simple as possible but, in order

to be consistent, it is useful to define the general terms for symbols and

abbreviations. We write:

x for scalars (i.e. lowercase);

x for vectors (i.e. bold lowercase);

X for matrices (i.e. bold capital letters);

xi referring to the ith element of the vector x and, similarly, Xij cor-

responding to the element in the ith row and jth column of the matrix

X;

x̂ for predictions;

x̃ for random variables;

p(x) is the compact way of denoting p(x̃ ≤ x) for continuous variables

and p(x̃ = x) for discrete variables.
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Chapter 1

Introduction

Touch is at the core of many human skills such as grasping, material identi-

fication, and temperature detection. Although a large component of human

perception is obtained through vision, it is often complemented with tactile

sensing; for instance, when grabbing a pencil. Experimental analysis of hu-

man visual and tactile representations show that they are closely linked, and

that the same brain regions are activated during visual and tactile exploration

of objects. Tactile sensing in humans involves two main sub-modalities, ki-

naesthetic and cutaneous. The former receives sensory inputs that occur

within the body, i.e. muscles or tendons, while the latter receives the sen-

sory inputs from different types of receptors of the skin.

Recent trends in robotics explore the applications of tactile sensing to

endow robots with human-like capabilities. By convention, robotics tactile

sensing refers only to the cutaneous sub-modality. Hence, in this thesis, no

distinction is made between cutaneous and tactile sensing. In robotics, ki-

naesthetic information is typically perceived using kinematic/dynamic mod-

els of the robot and joint positional/torque sensors, while tactile (i.e. cuta-

neous) information is obtained using tactile sensors. Despite human tactile
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sensing being continuous in nature, the existing literature on robotic tactile

sensing often relies on episodic readings or does not consider the potential of

tactile sensing to provide adaptation upon contact. This work investigates

tactile perception as a continuous process to enhance awareness of the outer

surface of the robot. In particular, this thesis focuses on continuous tactile

perception from robotic fingertips.

Robots have traditionally perceived their environment through contact-

less sensing (e.g. proximity, laser, visual). While extensive research in

robotics has focused on vision, the research on robotic tactile sensing is still

in its infancy. However, contact properties such as the friction coefficient,

compliance or roughness cannot be perceived using contactless sensing. Iden-

tifying the material from which an object is made is crucial for robots, as the

objects contact properties are related to the surface material. The contact

properties of an object can be inferred when its surface material is known

and, therefore, can be used to improve robotic capabilities for object manip-

ulation.

For a robot to manipulate an object, a required and fundamental skills

is the ability to grasp. Most of the object manipulation tasks in everyday

scenarios involve grasping an object. While humans grasp objects intuitively,

it is still very challenging for robots, especially if the geometry of the object

is not known. Tactile sensing plays a significant role towards the integration

of robotic grasping systems that adapt to different object geometries. This

work will research the applications of continuous tactile sensing to enhance

robotic grasping of objects when their geometry is unknown.

In the near future, robots are expected to collaborate with humans in

everyday tasks. Reliable grasping systems are essential for robotic manip-

ulation of objects, moreover, the ability to collaborate with humans often
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requires material or object interactions. Such interactions require, on the

part of the robot, complex sensory and cognitive systems that consider the

physical properties of the object and the unexpected events that may arise

during the manipulation. A typical object manipulation task for humans

when collaborating with each other is object handover. State-of-the-art ob-

ject handover systems are still limited to laboratory experimental conditions

and the safety of the robot and the object has not been addressed properly

in current research. This challenge is addressed in this thesis.

In summary, this research explores robotic tactile sensing as a continuous

process and presents applications of this paradigm for material identification,

grasping and robot-human object handover.

1.1 Objectives of the Thesis

The aim of this research is to explore continuous tactile sensing to enhance

robot collaboration capabilities for object manipulation. Addressing tactile

perception as a continuous process will advance the incorporation of robots

in human-centric environments. In particular, this work paves the way for

the development of autonomous robots in three ways. Firstly, continuous

tactile sensing will be used to enhance material identification of object sur-

faces, which provides crucial information necessary for underpinning effective

grasping strategies. Secondly, robotic grasping of unknown shaped objects

will be addressed by taking advantage of the contact properties determined

by the surface material and adapting the grasp using tactile sensing. Thirdly,

a system to handover objects between a robot and a human, while simultane-

ously providing continuous adaptation to perturbation forces on the object,

will be implemented on a real robot. To fulfil the aim of this thesis, the
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following objectives have been identified:

• Design a continuous material surface identification mechanism based

on tactile sensing that produces optimal classification results in a min-

imum time;

• Implement a robotic system capable of grasping a range of objects

without previous information of their geometry;

• Develop a tactile sensing based system to hand over objects in a secure

manner between a robot and a human.

As it will be shown in Chapter 2, these objectives entail a number of open

challenges. For instance, material identification through tactile sensing is a

difficult problem as state-of-the-art tactile information is multimodal and,

in order to achieve high classification accuracy, relevant descriptors need to

be extracted from sequential data. Moreover, the enhancement of robotic

grasping and manipulation through tactile sensing involves the design of

advance control systems using contact models from multimodal data.

1.2 Thesis Contributions

The work detailed in this thesis provides a significant and innovative con-

tribution to robotics. The main contribution of this thesis is to approach

robotic tactile sensing as a continuous process and explore its applications

to enhance human-robot collaboration in object manipulation tasks. The

research has been published in four peer-reviewed top-tier conferences [6–9]

and has contributed to two journal papers [10,11]. Thus, the specific contri-

butions of this thesis are:
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• Continuous material identification through tactile sensing:

– A material identification approach that takes into account of the

continuous nature of tactile sensing [6, 10];

– The design of a multimodal approach for continuous material iden-

tification of object surfaces [7, 10];

– The definition of new descriptors for material identification based

on the heat transfer between the tactile sensor and the object

surface material [7, 10];

– A comparative study with state-of-the-art tactile material identi-

fication techniques and descriptors [10];

• Robotic grasping of unknown shaped objects:

– An approach for an accurate modelling of the contact forces in the

fingertips of a robot using BioTAC tactile sensors [8];

– A method to find the homogeneous transformation between a

Shadow Robot hand and a Microsoft Kinect sensor;

– The implementation of a precision grasp controller that allows

grasping of objects of unknown shape;

• Robot-human object handovers through continuous tactile sensing:

– Design of an effort controller that allows robots to adapt object

grasps when unexpected perturbation forces act on the object dur-

ing grasping [8];

– Design of a continuous tactile perception approach for detection

of perturbation force directions during object grasping [9, 11];
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– Development of a system to hand over objects between a robot

and a human that provides adaptation to perturbations on the

object and releases only when it is safe for the robot and the

object [8, 11].

1.3 Outline of the Thesis

Chapter 2 presents a critical review of the current state-of-the-art in robotic

tactile sensing with special emphasis on its applications to material iden-

tification, grasping and object handover. Chapter 3 describes the robotic

platform used in this work and provides insights into the techniques used to

fulfil the aims of this research. A detailed description of the contributions

of this research is provided in Chapters 4, 5, and 6. Finally, Chapter 7 con-

cludes this thesis and details future potential research directions. A synopsis

of the remaining chapters in this thesis is detailed below:

• Chapter 2 includes a thorough literature review of tactile sensing.

Bioinspiration of robotic tactile sensing, the taxonomy of tactile sens-

ing hardware, and applications of robotic tactile sensing are described.

Special attention is paid to material identification, grasping and ob-

ject handover to understand the shortcomings of the state-of-the-art

techniques.

• Chapter 3 details the robotic platform used in this work. Additionally,

a description of the techniques used in this thesis is detailed in this

chapter and covers three main areas: machine learning, robotics and

control systems, and signal processing.

• Chapter 4 presents a material identification approach using contin-
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uous tactile sensing of vibration signals generated when sliding a tac-

tile sensor over the surface of an object. The proposed approach is

extended to include additional sensing modalities and a method to en-

hance material identification using thermal information is presented.

Both approaches, vibration only and multimodal, are compared with

state-of-the-art material identification techniques.

• Chapter 5 describes a technique to grasp objects of unknown shape.

A model of the contact forces using BioTAC tactile sensors is pre-

sented and further used in a precision grasp controller that adapts the

hand configuration upon contact to perform the grasp. The proposed

strategy is evaluated in a tabletop manipulation scenario, providing a

solution for grasping a variety of objects.

• Chapter 6 outlines the development of a system to hand over objects

between a robot and a human. The system guarantees continuous

adaptation of a robotic hand to perturbations on the object using an

effort controller based on the contact force model detailed in Chapter 5.

Additionally, continuous identification of perturbation force directions

is used to trigger the object release when the human pulls the object.

• Chapter 7 concludes this thesis and summarises the results. A dis-

cussion of future directions of this research is presented and how these

directions, together with the work in this thesis, could contribute to

the development of autonomous robots that interact in human envi-

ronments.
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Chapter 2

Tactile Sensing in Robotics

2.1 Introduction

Tactile sensing in robotics has been for decades an under researched area,

yet has great potential to improve object perception, grasping and manip-

ulation. While applications of other sensing modalities (e.g. vision) have

been widely explored, the application of tactile sensing for many fundamen-

tal problems in robotics has received much less attention. Just as humans use

the sense of touch to perceive their surrounding objects, robotic perception

can be enhanced by tactile information. Although human tactile perception

is inherently continuous (i.e sequentially unfolds over time), existing works

on tactile perception treat it as an episodic event. This work aims at explor-

ing the continuous nature of tactile sensing and its application to material

identification, grasping and object handover. This chapter provides a critical

review of robotic tactile sensing research for these areas.

The chapter is organised as follows. Section 2.2 provides a brief introduc-

tion to the importance of tactile sensing in humans and robots. Section 2.3

provides an overview of the tactile sensing hardware. Section 2.4 presents
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an introduction to the applications of tactile sensing in robotics. The three

subsequent sections present thorough literature reviews of the applications of

robotic tactile sensing explored in this thesis. Section 2.5 reviews the state-

of-the-art of robotic material identification systems. A literature review of

robotic grasping using tactile sensing is presented in Section 2.6. Section

2.7 reviews the state-of-the-art techniques for handing over objects between

robots and humans. Finally, Section 2.8 concludes the chapter with a sum-

mary of the literature on tactile sensing and highlights the issues addressed

in this thesis.

2.2 From Human to Robotic Tactile Sensing

Biological perception is the way a living being organises, identifies, and in-

terprets sensory information [12]. It is a complex process in which typically

a large number of sensors are involved. For instance, in the fingertips of a

human adult, 241 mechanoreceptors (i.e. pressure and vibration sensors) per

square centimetre are embedded in the skin at different depths [13]. Humans

gather information from their environment through their senses and, thus,

they can perceive the world from different modalities like vision, smell or

touch.

The combination of multiple sensory modalities is needed to build accu-

rate representations of the environment [14] as this typically maximises the

information derived from each modality and enhances the reliability of the

sensory estimation. In human cognition, different weights are given to the

combination of sensing modalities depending on the nature of the perceived

stimuli and the task to be executed [15]. For instance, the perception of size

and shape obtained combining visual and haptic information in an optimal
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manner [16] is more reliable than the unimodal estimate [15].

Furthermore, the analysis of visual and haptic representations in humans

suggests that they are closely linked, since it has been observed that the

same brain regions are activated during visual and haptic exploration of ob-

jects [17]. However, priority of vision over tactile sensing when humans intend

to identify an object is proved in [18]. In contrast, the sense of touch seems to

play a more significant role than vision for material perception [19]. One can

conclude that tactile sensing is better suited to detect microgeometric prop-

erties while vision is better for macrogeometric properties. Moreover, tactile

sensing is especially important during object grasping and manipulation, as

the lack of tactile information precludes the coordination and control of a

grasp [20], reducing the accuracy of the grasp and temporal performance.

Similarly, traditional robotic perception and object manipulation systems

(i.e. using vision only) have severe limitations caused by sensor noise, the

complex ways to combine perceived information and the uncertainty of the

environments. Relevant information can be obtained using tactile sensing

to deal with these limitations and enhance robotic manipulation [21]. Al-

though, in comparison with other robotic sensing modalities (e.g. vision)

tactile sensing is still in its infancy, applications and development of robotic

tactile sensing have significantly grown during the last decade, with the ad-

vent of commercially available sensors.

2.3 Robotic Tactile Sensing Hardware

Although robotic tactile sensing is a relatively young area of research, differ-

ent sensors designs i.e. pressure sensors [22] or haptic tools [23], have been

explored during the last decades. Nowadays, robotic tactile sensing outper-
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Figure 2.1: Concept of tactile sensor consisting of standing cantilevers with

piezoresistors arrayed in orthogonal directions for shear stress detection [1].

forms human skills on surface material identification [24] and state-of-the-art

sensors provide a variety of sensing modalities (e.g. 3-axis forces, microvi-

brations, pressure, fingertip compliance, temperature and thermal flux) that

allow robots to understand the meaning of haptic adjectives [25]. A com-

mon practice when it comes to classifying tactile sensor types is to use their

transduction (i.e. the different ways to build the sensing devices) to define a

taxonomy [26]. There are eight main different types of tactile sensors, based

on their transduction of contact information, which are:

• Piezoresistive sensors. These are composed of materials that change

their electrical resistance when mechanical strain (i.e. deformation) is

applied [27]. Therefore, variations in the forces applied to the material

map into electrical resistance, which can be measured as a change in

a resultant current or voltage. The materials possessing this feature

are called piezoresistors [27]. An overview of a piezoresistive sensor

is shown in Figure 2.1. Piezoresistive sensors present a number of

drawbacks. The materials used in this type of sensor may change their

properties according to the temperature and moistness [28], they are
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Figure 2.2: Conceptual scheme of tactile sensors based on capacitive effect.

fragile to shear forces and their response is non-linear. Additionally, the

repeatability is highly limited as a piezoresistor may never recover its

initial form after deformation, a phenomena known as hysteresis [29].

Nevertheless, piezoresistive sensors are used in robotics as they are easy

to manufacture, and piezoresistors are commercially available while

providing a flexible solution.

• Capacitive sensors. Capacitance is the ability of a body to store an

electrical charge. Thus, capacitive sensors are built with two conductive

plates separated by a dielectric material as in Figure 2.2. Applied forces

are measured by detecting changes to the capacitance [22, 30]. Their

main advantage is the higher frequency response in comparison with

piezoresistive sensors [26]. However, capacitive sensors are sensitive to

electromagnetic noise and changes of temperature, and their response

is non-linear.

• Piezoelectric sensors. The piezoelectric effect refers to the electric

charge that is accumulated in certain materials, such as ceramics, quartz

crystals or polymers, in response to applied forces [31]. Piezoelectric

tactile sensors frequently use polyvinylidene fluoride (PVDF) layers,

such as the one in Figure 2.3, embedded into a rubber cover as they
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Figure 2.3: Conceptual scheme of a PVDF film used in a piezoelectric tactile

sensor [2].

provide flexibility and chemical stability [26]. Despite providing faster

dynamic response than capacitive sensors they are only suitable for dy-

namic measurements, sensitive to temperature [32], and their electrical

junctions are fragile.

• Quantum tunnel effect sensors. Quantum tunneling happens when a

particle breaks through an energy barrier that it typically could not

cross [33]. Sensors composed of quantum tunnel composite (QTC)

materials are capable of measuring applied forces. For instance, Figure

2.4 shows a conceptual scheme of a 3-axial sensor presented in [3].

Four electrodes sandwiching the electrode layers are used to measure

the changes in the resistance. When a force is applied, the QTC pill

is compressed and, therefore, the resistances are changed. Quantum

tunnel effect sensors deteriorate with use and, therefore, lose sensitivity.

Nonetheless, tactile sensors based on quantum tunnel composites have

been integrated in some robots such as older versions of the Shadow

robot hand [34].
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Figure 2.4: Conceptual scheme of the cells of a three-axis quantum tunnel

effect sensor [3].

• Optical sensors. The optical reflection between elements with different

refractive indices is used in optical sensing to measure the pressure ap-

plied. Typically, photo detectors measure the light intensity generated

by an array of light transmitters, for example LEDs, which is propor-

tional to the magnitude of the pressure applied [35]. Moreover, some

optical sensor designs are sensitive to shear forces [36] and multi-degree-

of-freedom forces [37]. Although optical sensors suffer from high energy

consumption and computational cost [38], they provide good sensitiv-

ity, high repeatability and are immune to electromagnetic noise [39].

• Structure-borne sound tactile sensors. The term structure-borne sound

refers to vibrations and waves spread in solid bodies. Accelerometers

or microphones can be used to measure structure-borne sounds and

detect contact with an object [40]. Although some approaches have

been explored to use structure-borne sound tactile sensors during close

proximity situations, for instance to estimate the distance to an object

[41], they are only suitable for dynamic measurements.

• Sensors based on barometric measurements. This type of device con-

tains a liquid that propagates the sound waves generated by contact

microvibrations [42]. These sensors usually implement pressure trans-
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Figure 2.5: BioTAC hardware scheme [4].

ducers to measure the pressure in liquids inside the sensor [28]. Thus,

sensors within this group provide high frequency responses and allow

the sensors to be deformed. Additionally, some sensors based on baro-

metric measurements have been implemented in a low cost manner

using non liquid materials such as silicon rubber and a barometer [43].

However, they have low frequency responses and, therefore, it is pre-

ferred to use a liquid as a propagation media when a high frequency

response (e.g 10-1040 Hz) is desired.

• Multimodal tactile sensors provide information about different cuta-

neous sensing modalities [42], such as microvibrations, forces or ther-

mal properties, to emulate human hand fingertips [44]. State-of-the-art

multimodal tactile sensors contain static pressure distribution arrays,

thermal, proximity and dynamic tactile sensors [26].

Until recently, tactile sensing hardware was built ad hoc by researchers

in the field but the development of commercially available sensors opened a

window of opportunity to further investigate this sensing modality. Nowa-
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days, a number of tactile sensors are commercially available [26]. Among

them, it is worth highlighting the BioTAC sensor [4, 42, 45], which has been

the experimental platform for this research. The BioTAC is a biomimetic

sensor designed to provide multimodal tactile information. According to the

taxonomy listed above, the BioTAC consists of a multimodal design that em-

beds a barometric measurement based sensor. The BioTAC (Syntouch, Los

Angeles, CA, USA) consists of a rigid core containing all the required elec-

tronics and surrounded by an elastic skin, which is filled with a conductive

fluid (see Figure 2.5). The BioTAC enables detection of three sensory modal-

ities. Firstly, the fluid is deformed when forces are applied to its skin. The

deformation of the sensor skin causes changes in the impedance perceived

by an array of electrodes built into the surface of the core. Secondly, vibra-

tions are detected by a hydro-acoustic pressure transducer, which is installed

inside the core. Thirdly, thermal properties are measured by a thermistor

installed in the BioTAC’s tip. By detecting 19 impedance measurements, ab-

solute pressure and temperature, vibration, and dynamic temperature, the

BioTAC tactile sensor presents an accurate set of contact data from different

tactile modalities.

2.4 An Overview of Robotic Tactile Sensing

Applications

During the last decades, the development of new tactile sensing hardware

and the subsequent appearance of commercially-available tactile sensors has

led to significant developments of a number of applications of robotic tactile

sensing. Similar to humans, tactile sensing can provide information that is in-

accessible using other contact-less sensing modalities. Hence, tactile sensing
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has been used to enhance the performance of robots in contact localization,

identification of object properties, object recognition, robot control, slip de-

tection and prediction, and grasping. An overview of the existing literature

of tactile sensing applications in robotics is presented in this section.

2.4.1 Contact Localization

A fundamental application of tactile sensing in robots is contact detection

and location. The advantages of tactile sensing for locating the contact dur-

ing manipulation tasks (i.e. rotation and translation of objects) were shown

in [46]. The authors compared the use of tactile sensing for contact location

with other force-torque based approaches and concluded that, although both

solutions are valid, tactile sensing was immune to problems caused by cali-

bration inaccuracies, transient forces, and low grasp force. Further research

has been subsequently explored in order to improve contact location systems

using tactile sensing [47–53]. Among these works it is worth mentioning [51]

and [52], which proposed a Bayesian perception system for contact location

using tactile sensing. Interestingly, their approach achieved better perceptual

accuracy than the available sensor resolution (i.e. hyperacuity) by interpo-

lating between taxel positions.

These works explored contact location between the tactile sensor and the

object. A recent area of research interest is locating the contact between

two objects; for instance, when using a hammer to pound down a nail. In

[54] tactile sensing was used to estimate the location of contact between a

grasped object and the environment using force and vibration data obtained

from a BioTAC sensor. Three data-driven approaches (i.e. Artificial Neural

Networks, Gaussian Processes, and Support Vector Machines) were used to

detect the positions and directions of the contact points with an error of
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2.5cm/10o.

2.4.2 Tactile Sensing and Control

The perception of incipient physical stimulus through tactile sensing is being

explored for robot control. One of the pioneering works in tactile sensing

for robotic manipulation was presented in [55]. The authors implemented

a control system for pushing objects that rest on a surface along a desired

trajectory using only tactile feedback. A control framework for event-based

dexterous manipulation using tactile sensing was proposed in [56]. Their

proposed approach relies on the changes in contact conditions between the

grasped object and either the robot or the external environment to achieve

smooth transitions between manipulation tasks. Despite the fact that the

tactile sensors used were rudimentary in comparison with todays state-of-

the-art sensors, the authors showed the potential of using tactile sensing

to make smooth transitions between different manipulation tasks. Another

example of early research in robot manipulation approaches using only tactile

sensing was presented in [57]. Using an ad-hoc tactile sensor [58] to estimate

the contact location, the authors proposed a control system that requires no

prior information of the grasped object and prevents object rolling during

manipulation.

Although previous works have presented diverse techniques to control a

robot’s end-effector using tactile feedback, [59] introduced the term “tactile

servo” to refer to this practice. The authors relied on different moments of

the tactile sensor image to track edges and manipulate a pin rolling using

a PUMA 260 industrial robot manipulator. In [60] a control framework is

proposed for tactile servoing using a PID controller. The authors used a

16x16 tactile sensor array mounted in a KUKA lightweight robot (LWR)
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to perform a series of tactile exploration experiments. By simply adjusting

a projector matrix that sets what tactile servoing primitives should be ap-

plied, their control framework was used to perform a number of tasks such

as tracking the contact point, a cable, the edge of an object, exploring the

shape of an unknown object, and controlling the area of contact between

the finger tip and the object. In [61] a system to insert a USB stick in a

mating hole (the well known peg-in-hole problem) using tactile images from

a GelSight optical sensor and a Rethink Robotics Baxter robot was imple-

mented. Recently, [62] combined active perception and haptic exploration

to perceive surface features of objects such as edges on ridges. The authors

implemented their tactile servoing exploration system to follow the edge of

circular disks and to follow ridges with different shapes using a 6-DoF robot

arm with a TacTip tactile fingertip mounted as the end effector. In [63] a

Schunk SDH-2 hand attached to a KUKA LWR was used to perform a set

of exploratory movements using a tool covered with a tactile matrix. The

authors present a technique to obtain the homogeneous transformation of a

grasped tool object. The learned transformation was used with the robot

kinematics to make a new kinematic chain, which was used for tracking the

edge of an unknown object.

Another work on tactile servo was presented in [64]. Zero-Moment pres-

sure (ZMP) features were used to control the rotation of the end-effector

around two axes and a novel inverse tactile Jacobian matrix was used to gen-

eralize a hybrid (i.e. tactile-position) controller for different tactile servoing

tasks. Their approach was tested in two robots, a KUKA LWR and a pneu-

matic Shadow arm with a Shadow robot hand attached, both equipped with

6x14 Weiss Robotics WTS0614 tactile arrays to follow edges, roll a cylinder

and keep a plate in balance. The performance of a novel 6-axis force/torque
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sensor installed under a rubber skin was tested for tactile servoing tasks

in [53]. Although their proposed approach to follow the contour of a surface

was prone to getting stuck in local minima, the authors defined an interesting

set of algorithms to contact sensing (i.e. contact location on the fingertip, the

friction, normal forces, and the local torque) using their novel tactile sensor.

The integration of visual and tactile sensing information has been also

explored in servoing tasks. A control framework was implemented in two

KUKA LWR arms to combine tactile and visual servoing [65]. A robot

equipped with tactile sensor arrays maintained desired contact patterns dur-

ing surface exploration while the pose of an unknown object was monitored

using computer vision. Another control framework using tactile and visual

sensing was presented in [66]. The authors tested their dexterous manipu-

lation framework on a real manipulator robot and implemented a position

control using visual features in combination with fingertip contact force con-

trol. Precise in-hand location of a tool was achieved using computer vision

in [67] to perform a scraping task with a spatula in an altered environment

using Dynamic Motion Primitives (DMPs) and tactile feedback. The au-

thors implemented their approach in a real 7-DoF KUKA LWR mounting

a low-cost robot gripper equipped with tactile sensors. Probabilistic hierar-

chical object representations were used for object localization and a motion

controller was learnt through a reinforcement learning approach that used

tactile feedback.

More applications of tactile sensing for robot manipulation were presented

in [68]. Their work proposed progressively refining the estimate of an object’s

pose using tactile data and their proposed approach was used to manipulate

a box and to grasp a door handle. Despite the technique to enhance object

perception during manipulation presented in this work being interesting, it is
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worth noting that the number of sides of the object model linearly increases

the time needed for the algorithm to achieve high precision and, therefore,

there is a trade-off between estimation precision and run time.

2.4.3 Slip Detection and Prediction

Although humans can distinguish incipient events during the manipulation

of objects through tactile sensing, for instance slippage, this is still difficult

for robots. Incipient slippage during the manipulation of objects may result

in breaking the contact and the object falling. For this reason slip detection

and prediction techniques have been explored in order to allow the robot to

ensure robust grasps during manipulation [69–72] .

In [69] an approach for on-line estimation of the friction coefficient during

contact is presented. The authors proposed an adaptive strategy for slipping

avoidance during object manipulation using the friction coefficient and the

Kalman Filter residual, i.e. the difference between the observed value and

the estimated value. The work in [71] used the measures obtained from an

array of dynamic tactile sensors to classify slippage between the robot and

the object. The authors ran a classification algorithm that constantly dis-

tinguishes between hand/object and object/world slips to prevent incipient

contact breaking during grasping and manipulation. Although promising, the

work in [71] suffers from occasional false positives when no slip occurs and

noise is sensed by the tactile arrays. Three random forest classifiers were

used in [70] to create generalizable slip predictors for three different look-

ahead periods, i.e. 0.01, 0.015, and 0.02 seconds. Using the output of these

classifiers in a feedback loop, an object stabilization controller counteracts

incipient slip events and keeps the grasp of unknown objects stable.

A Barret hand and BioTAC tactile sensors were used in [72] to estimate
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the finger contact forces. Different machine learning methods were compared

when classifying slip events and the authors concluded that a 3-layer Neu-

ral Network showed better performance than Locally Weighted Projection

Regression (LWPR) and an analytical approach using linear regression. A

grip force controller was also designed to maintain a stable grasp relying on

tactile information and the output of the classifier. With similar purpose, an

ad-hoc three-axis tactile sensor mounted on the fingertips of a multi-fingered

humanoid robot arm was used in [73] to adjust grasp pressure using the

perceived normal and shear forces as inputs for a control system. Although

the authors also presented an approach to determine the object’s hardness

during object manipulation, it is limited to binary detection, i.e. an object

being hard or soft.

2.4.4 Object Recognition

Tactile sensing has also been used for object recognition [74]. In [75] an

active exploration/touch strategy for learning and identifying objects using

a tactile skin was implemented. The authors proposed a two-step approach

where initially a robot explores the workspace and then learns the physical

properties (i.e. surface texture, stiffness, and thermal conductivity) of the

objects using active touch to minimise the number of exploratory movements.

Similarly, a series of grasps was performed in [76] to identify objects. Us-

ing low-resolution intensity images obtained from tactile sensors, a feature

vocabulary was learnt using k-means clustering. The authors used a bag-

of-features classifier [77] to identify the object among a group of 21 trained

objects. In order to minimise the number of grasps required for identification,

a decision framework based on the reduction of uncertainty in the estimation

of the object was proposed in [76].
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Object recognition using tactile sensing has also been explored in com-

bination with visual information [78]. A multivariate-time-series model of

the tactile sequence and the covariance descriptor of the image were used to

learn 18 household objects using k-Nearest Neighbours and Kernel Sparse

Coding methods. Promising results show that this method, named Joint

Group Kernel Sparse Coding (JGKSC), outperforms other methods evalu-

ated and this work concludes that combining tactile and visual information

enhances object identification.

2.4.5 Identification of Object Properties

Furthermore, robotic tactile sensing has been explored to identify the phys-

ical properties of an object. The works in [79] and [80] implement a series

of algorithms to enable BioTAC tactile sensors to quantify an object’s com-

pliance, thermal properties, roughness and fineness of its texture. [61] used

high-resolution tactile maps obtained from a GelSight optical sensor [81] to

localize the pose of small objects grasped by the robot hand. [73] estimated

the hardness of an object by using the normal and shear forces measured by

an ad-hoc tactile sensor. A switching velocity-force controller implemented

in a Willow Garage PR2 was presented in [82] to estimate an object’s de-

formation properties during grasping and detect the internal state of bottles

(i.e. being full of empty) using the high frequency components of tactile

information.

While most of these works extract the tactile information in a passive

manner (i.e. without intentional exploratory movements), active tactile sens-

ing methods (also called active touch procedures) use the motion of the robot

to extract additional information [83, 84]. For instance, when detecting an

object’s edge sharpness static touch on the edge will provide partial infor-



2.5 Material Identification 25

mation compared with sliding it across the edge [85]. An active sensing

method to gauge the compliance of various rubber samples using tactile in-

formation was proposed in [86]. A closed-loop control was implemented in a

Barrett arm/hand system equipped with a BioTAC tactile sensor to perform

a number of exploratory movements following an active touch procedure to

estimate the compliance of an object. Another active touch procedure was

proposed in [87]. Using tactile sensing and two sensimotor control strategies,

autonomous object exploration for shape reconstruction was improved when

compared with passive perception, i.e. data not affecting the motion. [88]

presented a method to estimate the shape of an object by performing two

in-hand exploratory movements (i.e. squeezing and re-grasping) using an

iCub. A grasp stabilization controller was used to add robustness to a Ker-

nel Regularized Least-Squares algorithm in order to learn an object’s shape

and softness.

In addition to all these works, surface material identification through tac-

tile sensing has attracted significant research interest. A thorough literature

review of robotic material identification through tactile sensing is presented

in Section 2.5 as it is one of the main research areas explored in this work.

Object grasping is another of the areas explored in this dissertation and,

therefore, Section 2.6 details the state-of-the-art of robotic grasping systems

using tactile sensing. Moreover, Section 2.7 reviews the existing approaches

to pass objects between a robot and a human.

2.5 Material Identification

One of the most fundamental capabilities required to endow robots with ob-

ject manipulation skills is material identification. The surface material of an
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object provides information about some of its underlying properties, such as

friction coefficient or elasticity, that are essential to perform reliable object

grasping and manipulation. Material identification is usually performed by

sliding the tactile sensor on the object surface and analysing the data ob-

tained during the contact. Existing research on material identification relies

on batch surface recognition approaches, i.e. a whole sliding movement of the

sensor over the material surface has to be performed for the identification to

occur. Although this limits the identification speed, several excellent works

provided unimodal (vibration only) batch approaches to material identifica-

tion using different types of tactile sensors and techniques. In a pioneering

work in tactile sensing for surface recognition [89] a finger with a microphone

was used to detect the vibration induced by 3D printed textured surfaces.

The authors defined a set of features to characterise the vibration signal cap-

tured by the microphone such as the modal frequency and power, and the

average vibration amplitude. The performance of the k-Nearest Neighbour

(kNN) algorithm was evaluated using these features and the Fast Fourier

Transform (FFT) of the raw signal projected through Principal Component

Analysis (PCA). Although this work focuses on texture identification, not

real material identification, it established the methodological approach of

using features for material recognition using tactile sensing, which was fol-

lowed by later works. The work presented in [90] uses a three-axial force

sensor to classify 10 different paper types through two different techniques.

In one approach, the most likely texture was selected by finding the minimum

euclidean distance between the mean frequency spectrum of the evaluation

set and training examples. A second approach used a set of five distinctive

features (friction coefficient, mean, variance, kurtosis and spectrum slope of

the vibration signal) as inputs to an Artificial Neural Network (ANN). The
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paper shows that both methods were proven to be equally accurate and shows

evidence of the usefulness of the defined features. An accelerometer based

vibrotactile sensor attached to a fingertip was used in [91] to measure the

changes in the norm of the acceleration vector and to create spectrotemporal

histograms as features for classification. A set of five exploratory movements

was performed to gather data from the material surfaces, and Support Vector

Machines (SVM) and kNN were used to successfully identify 20 materials.

A tactile sensor measuring the strain applied on the finger surface is pre-

sented in [92]. After segmenting the input signal, removing the average and

band-pass filtering, the authors extracted a set of features consisting of five

peaks identified on the smoothed FFT profile. Combining these features with

the average strain readings, the authors compared different machine learning

approaches, which successfully differentiate between nine materials with high

accuracy. Another comparison of machine learning algorithms for material

identification based on tactile sensing is presented in [93], where two kernel

methods (SVM and Regularised Least Square), and one neural network were

used to classify pairs of materials based on the raw strain measurements

of the sensor. Although the authors concluded that the SVM showed the

best trade-off between classification accuracy and computational complex-

ity, they also observed that the raw sensor signals did not provide a good

discrimination performance compared to other works. [94] presents a tactile

micro-sensor able to differentiate surfaces with spatial periods within a 40 µm

difference. This sensor was used to classify textiles through a robotic finger

that slid across the materials for two seconds. Using wavelet transforms, the

evolution over time of features like the peak power was obtained and fed into

a kNN classifier. The work in [95] presents a texture based material clas-

sification through SVMs, with a set of temporal domain features obtained
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from one second time windows as input. Specifically, the components of

the feature vector were obtained from the accelerometer in the finger, and

whitened individually before feeding the classifier. This work splits the whole

set of readings into short time intervals to obtain more training data, but

the approach is still batch-based, since the authors do not exploit sequential

information for classification.

Another accelerometer based fingertip texture recognition approach is

presented in [96], where seven different fabrics are classified based on a mix-

ture of temporal (acceleration variance) and frequency (power spectra) fea-

tures. Since these features do not provide enough discriminative power on

their own, the authors use a neural network with the FFT coefficients over

a given frequency range as the input. A GelSight optical sensor was used

in [97] to capture high-resolution tactile images of different materials. The

authors extracted Local Binary Patterns (LBP) of several tactile images with

different orientations for each texture and used them to identify new samples

according to the distance between their histograms, i.e. Hellinger similar-

ity metric [98]. Their method was capable of identifying 40 materials with

high accuracy. However, its application in real time is compromised by the

number of training samples used due to a trade-off between identification

accuracy and computational cost.

Recently, [99] explored real time classification of eight materials using a

soft three axis tactile sensor with a new set of features. Specifically, the mean

value of the three dimensional vibration signal and the Frobenius norm of the

covariance matrix were used to train and classify a cascade of binary SVM

classifiers, grouping materials together in each classification step. Although

their approach is fast and accurate it becomes computationally expensive for

a large number of materials since the depth of the cascade and the number
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of classifiers to train grows quickly. A flexible tactile skin attached to the

fingers of a DLR Hand-II was used in [100] to discriminate 6 tubes made from

different materials by stroking at them with the thumb and index fingers.

The authors present a comparative study of different classification techniques

and conclude that a convolutional deep learning network outperforms other

classifiers such as kNN and SVM, especially when repositioning the tactile

skin. In other recent work [101, 102] a custom made tactile sensor was used

for material identification using only the heat transfer from the sensor to an

object. The authors showed that, although changes on the experimental set-

up (initial conditions, ambient temperature and contact duration) have an

impact on the performance, a multi-class SVM can classify eleven materials

with high accuracy.

Nearly all the works mentioned so far rely on vibration signals obtained

from ad hoc sensors. However the appearance of the SynTouch BioTAC com-

mercial fingertip has made tactile sensing widely accessible and provided the

opportunity of performing multimodal sensing. Using this tactile sensor, a

series of works [79,80,86] explored Bayesian exploratory movements to clas-

sify materials using vibration and temperature signals. Bayesian inference

was used to perform different exploratory movements in order to increase

the classification certainty. The classification itself was based on features

extracted from the sequences and the external force needed to slide the fin-

gertip across the material, i.e. information about the friction coefficient of

the material and the BioTAC’s rubber skin was included. The combination

of several exploratory movements enabled a high material identification rate

with a large range of materials. A novel approach for identify the surface tex-

ture of a grasped object was presented in [103]. The authors used a Shadow

robotic hand equipped with five BioTAC tactile sensors to perform small



30 2.5 Material Identification

sliding motions of the fingertips during grasping. Although the system was

designed for in-hand object recognition, their results showed that their ap-

proach was capable of identifying objects with the same geometrical shape

but with different surface materials. Using the vibrations generated during

motion and geometric information obtained from the fingertip deformation

upon contact, a SVM classifier identified 10 objects with identical geometrical

shape with high accuracy.

One of the first multimodal approaches to material identification is pre-

sented in [104] and [24] where raw temperature and vibration signals were

projected through PCA and used as inputs to an ANN. The authors show

that this classifier outperforms humans in similar experimental conditions.

The approach presented in [105] distinguishes between 49 objects with high

accuracy using multimodal data from 5 different object explorations. The

authors performed a thorough analysis of tactile features found in the liter-

ature and concluded that simple descriptors, such as average values of the

filtered signal, outperform more sophisticated feature extraction techniques.

All these works achieve good material recognition ratios using one or sev-

eral batch readings and combinations of exploratory movements (see Table

2.1). However, some materials might have a characteristic texture or spe-

cial thermal properties and might therefore be identified faster than others,

i.e. using shorter readings. Moreover, combining these two modalities (i.e.

vibration and temperature) might improve the identification accuracy, for

instance, for materials with similar textures but different thermal proper-

ties. Chapter 4 presents a multimodal recursive identification approach to

material identification through tactile sensing.
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Table 2.1: State-of-the-art in tactile material identification.
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2.6 Grasping

An essential skill for robotic object manipulation is grasping [106]. Grasp-

ing is a complex problem that requires advances in a number of areas, such

as planning, control or object detection among others, for different types of

end-effectors (e.g. dexterous hands and grippers). There are two strategies

for the grasping problem in the existing literature: grasp planning and execu-

tion, and grasp control. While the first uses known models of the object that

will be grasped, the latter relies on sensory feedback to find a stable grasp.

Splitting the grasping into planning and execution tasks allows for the esti-

mation of a stable grasp configuration off-line, computation of collision free

trajectories using a path planner, and then movement of the robot towards

the grasping pose. Significant research has been conducted in grasp planning

during the last three decades [107–110] in order to generate hand configura-

tions that ensure a precise grip of an object. One of the problems of planning

and execution strategies is that the success of the execution stage depends

on the planning process being accurate, which assumes that a perfect model

of the object and the environment is available. However, uncertainties on

the object pose (i.e. position and orientation) and shape are very frequent

when perceiving the object through contact-less modalities. Tactile sensing

feedback has been used to adjust the contact points locally when touching

the object surface and, thus, correct the inaccuracies caused by uncertain

object shape and pose estimation (often computed using vision) during the

planning stage [111–116].

A capacitive contact sensor (i.e. 22 cells array) was used in [111] to grasp

objects using a PR2 gripper. Their approach first computes where to grasp

the object using vision (i.e. grasp planning) and subsequently corrected the
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initial estimation using tactile feedback until a robust grasp is obtained. Al-

though their experimental results show that the robot was capable of grasping

30 objects with different shapes, it is limited to robot grippers and requires

several explorations before achieving a robust grasp. Another grasping sys-

tem using the PR2 gripper was presented in [40]. The authors implemented

a position control to pick up objects using only one-point pressure signals

(i.e. no visual information). Their system assumed the grasp location was

provided (i.e. using the approach in [111]) and proposed a framework to

perform a number of manipulation tasks such as close, load, lift and hold, re-

place, unload, and open objects. The approach presented in [117] adjusts the

contact configuration using tactile sensing to obtain local object geometry

measurements at the contacts. Their null-space grasp control uses a non-

linear control strategy that slides the contacts over the object surface until

convergence to unit frictional equilibrium, i.e. a special case of force-closure

grasp.

The work in [113] proposed a data driven approach to evaluate the vi-

ability of the grasp before performing it. During grasp execution, contact

information was exploited to update the object model used for planning.

Thus, the system can predict an unstable grasp using a SVM classifier and

then plan a new grasp using reconstructed local geometry from tactile sens-

ing to grip objects using the fingertips (i.e. precision grasp). [114] presented

other grasp adaptation framework using tactile sensing. A stability estimator

was implemented using two non-linear classifiers (GMM and SVM) to solve

a one-class classification problem, i.e. stable data only. A precision grasp

was predicted as stable if its GMM likelihood or the SVM classifier output

exceeds a given threshold. The output of the stability estimator was used to

adapt the grasp stiffness when the grasp was unstable. Their approach was
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tested in an Allegro hand equipped with three BioTAC tactile sensors and

proved to adapt to physical uncertainties during grasping.

An approach to grasp objects under position uncertainty was proposed

in [115]. Although no tactile sensing was used, the authors used a joint torque

sensor to detect contact during the grasp approach. A reactive compliant

control strategy was used to soften the impact and then adjust the grasp

position using a virtual spatial spring framework. An approach to perform

precision grasps under shape uncertainty was presented in [116]. A control

strategy to achieve smooth transitions between position and force control for

grasp execution was implemented in two robots: an Allegro hand equipped

with BioTAC tactile sensors and a Barret hand. The authors rely on their

previous work to estimate the force using a data driven approach [114], and

their compliant closing-finger controller implements the transition between

controllers as a function of the distance between the finger position and the

output position of the grasp planner. Besides dealing with uncertainties,

tactile sensing was used in [112] to maintain the contact between the fingers

and a grasped object, thus, avoiding losing the grasp due to perturbation

forces arising on the object during manipulation. A Barret hand equipped

with tactile pressure sensors was used to increase the joint torques applied

to the fingers when contact is below a given threshold. Their results show

that the algorithm avoids contact breaking or slippage of objects although

its centre of gravity changes during manipulation.

On the other hand, other approaches treat grasping exclusively as a con-

trol problem [113]. Those methods aim to reach the desired contact con-

figuration between the robot and the object using sensing data feedback.

Although humans rely heavily on tactile sensing when grasping and manipu-

lating objects [20], many grasp control approaches use mixed position/force
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control [106, 118] or impedance control [119, 120]. This thesis focuses on the

applications of tactile sensing for grasp control strategies.

One of the first attempts to grasp objects using a grasp control strategy

with tactile sensing was presented in [121]. The authors implement a grasp

and lift algorithm in a two-fingered manipulator and used three controllers

(position, force, and stiffness) during the different stages of the experimental

procedure. Although their results were preliminary, the authors concluded

that tactile and force sensing improves grasping and smooths movement tran-

sitions during manipulation. A novel approach for combining position control

and fingertip force control in a three fingered custom robotic hand was pre-

sented in [122]. The position control guides the hand closing stage and the

force controller performs the grasp. External force limitation and collision

systems were designed to switch both controllers smoothly. Additionally, an

adaptive grasp force control adjusts online the initial grasp force estimation

according to the slippage measured using tactile sensing.

The work in [123] implemented a grasp controller for a Barret Hand

equipped with a force/torque sensor and pressure sensors on the fingetips. In

order to adapt to inaccuracies on the object’s expected conditions, a number

of grasp primitives were used to find a stable grasp before applying pressure

on the object. [124] combined visual and tactile sensing to grasp a rod using

the gripper of a Zebra-Zero manipulator. Using tactile feedback and motion

primitives, a gripper was controlled to point towards a single axis while align-

ing with the object. A system to increase the number of points of contact

between a fingertip tactile sensor and an object was presented in [125]. Their

proposed approach adapts the contact of the fingertips to grasp objects with-

out the need of a model for the environment or the object. The grasp control

strategy in [126] used tactile sensing to centre the robot gripper joints over an
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object. A controller for object reaching was implemented using the relative

positions between the object and the robot, obtained using vision. Then, the

authors use a self-organized neural network to learn a mapping from tactile

images centroids to displacements that were used during the grasping phase

to drive the robot.

Some researchers performed object exploratory procedures to find a valid

grasp configuration without previous grasp planning. [127] approached the

grasping and manipulation problems relying solely on tactile and force feed-

back and a set of exploratory movements. The experimental platform was a

three fingered robotic hand totally covered with ad-hoc tactile sensors con-

sisting of a Hall-effect (proximity) sensor with a rubber coating. Motion

primitives were used to guide the hand until the object and the palm were

in contact. Although no tactile feedback was used for the grasping, experi-

mental results show that low impedance values allowed the fingers to adapt

to different object shapes. Moreover, the authors concluded that tactile data

collected during the manipulation of an object implicitly carries information

regarding its shape.

The work in [128] grabs a curved object placed on a table by rolling a pair

of fingers on the object’s surface. Tactile sensing was used to detect the points

of contact and, therefore, localizing the fingers with respect to the object.

When two antipodal contacts are achieved, the grasp control strategy uses

the fingers to apply forces along inward normal directions. Although their

approach was proven to work in simulation, no experiments on real robots

were presented and the object rolling solution for grasping may require several

explorations.

Another approach to guide the search for contact locations was presented

in [129]. Their grasp strategy switches between two controllers according to
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the local curvature of the object. Despite providing a valid control strategy,

the gradient following algorithm is prone to getting stuck into local minima.

A series of works in [130] and [131] proposed a tactile exploration strategy

to find stable configurations to grasp objects using multifinger robot hands.

Their approach explored an unknown object to find opposite object faces

that could be grasped, discarding impossible grasps and selecting the grasp

affordance with the highest score according to four geometric features: par-

allelism, minimum face size, mutual visibility, and face distance. However,

their approach was only tested on simulation and required a previous esti-

mation of the object size, position, and orientation.

Grasp synthesis (i.e. finding a suitable set of contacts given an object

and a set of constraints) was presented in [132] in terms of contact relative

motions (i.e. units of control where the contacts move from one contact

configuration to another) and, thus, re-state grasping as an optimal control

problem. Their approach finds the strategy that minimises the number of

steps required to grasp an object. The problem was stated as a k-order

Markov Decision Process and solved it using Reinforcement Learning on a

NASA-JSC space humanoid robot. Although sometimes their approach was

capable of synthesising the grasp only in one step, some objects and initial

configurations required a sequence of contact relative motions.

A summary of the state-of-the-art in tactile sensing for robotic grasping is

shown in Table 2.2. Although most of these works present valid grasp control

approaches, they either use force sensors or rely on data-driven approaches

to estimate the contact forces. In this thesis we present an approach for

adaptive control grasping using a contact model of the BioTAC fingertips.

The proposed approach allows to grasp a significant number of objects with

different shapes by only knowing their approximate location, i.e. without
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Table 2.2: State-of-the-art in tactile sensing for robotic grasping.
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grasp planning. Chapter 5 presents the methods and experimental results of

the proposed approach to grasp unknown objects using a custom cartesian

position/tactile-force controller and a Microsoft Kinect camera.

2.7 Object Handover

Object handover is a fundamental skill to endow robots with the ability to

collaborate with humans in everyday tasks. Human-robot object handover

involves many complex aspects such as human and object safety, social and

handling context, grasping stability, slip detection, and ergonomics. Huge

research efforts have been devoted to endow robots with the skills required

for sharing objects, working and collaborating with humans. However, there

is still a need for safe, smooth, and reliable interaction in any combined task.

Humans show a high degree of adaptability when exchanging objects with

a robot [133]. Notwithstanding, to ensure the safety of the robotic hand

and the object, robot-human object handovers typically aim to facilitate

the task for the human [134]. Some efforts have been devoted to study

human preferences during robot-human handover. After conducting a survey

with human subjects, [135] concluded that the participants preferred different

approaches for a robot handing over objects (i.e for instance placing the

object on a table or the robot approaching the human for deliver the object)

depending on their current activity or the scenario in which it takes place.

[136] showed human receivers have a preference for the robot arm to be

extended, the object to be delivered being visible, and the object handle in

a default orientation (i.e. straight up).

Another study of the handover process from the receiver’s perspective

was presented in [137]. A biomechanic model of the receiver was used to
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find an obstacle-free handover position that allowed the receiver to reach the

object in an optimal manner considering the receivers height, weight, range of

motion, and strength. Additionally, [137] showed that the electromyography

(EMG) signal of a human receiver during a series of trials showed a decrease

in the effort exerted during the handover when the robot picked the handover

location using their algorithm, i.e. less muscle activity. Their algorithm was

later used in [138] for assisting amyotrophic lateral sclerosis patients by using

their electronic health record. The height, weight, and gender of the patients

were used to customise a patient recognition system and the object handover

position selection.

A fundamental problem in safe robot-human handover is deciding when to

release the grasp and, thus, allow the object transfer. Since a robotic hand

has to maintain a stable grasp on the object until the human is ready to

hold it, the approach in [139] considered a tight relationship between object

handover and grasp stability to trigger the object release. A three fingered

robotic hand released an object when the forces applied on the object induced

a change in a number of grasp stability metrics. In particular, the authors

used a combination of joint angles, contact, kinematic, and dynamic stabil-

ity indices of the hand to decide whether to release the object (robot-human

handover), to hold it (human-robot handover), or to re-grasp it using a new

finger configuration. The approach presented in [140] used a Kinect sensor

to detect the receiver hand and the object, and released the object when

both where detected as a single cluster of 3D points. Although the authors

implemented a complete handover procedure, the system was not reliable

since the object could be released even when the receiver was not grasping

it. The work presented in [141] proposed a mechanism to hand over a drink,

where the robot opened the gripper only if a human face was detected and
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simultaneously the compliant hand of a PR2 was displaced by one centime-

tre in the vertical direction. Despite handing over the object in a secure

manner, their approach requires the human receiver to pull the object strong

enough to move the arm above the threshold, which impacts on the system

responsiveness. The first effort to imitate the actual way humans handover

objects is presented in [142]. Their experiments showed that humans adapt

the grasping force according to the change in the estimated weight of the

object. The authors used a two finger hand and force sensors to release the

object according to its slippage, i.e. the tipping point on the Coulomb force.

A thorough analysis of human handover was presented in [143] and their

results were subsequently used in [144] to implement a release controller on a

PR2 robot. Their human-inspired handover system controlled the grip force

of the robot according to the weight of the obstacle the robot perceived in the

wrist. Moreover, the authors found a user preference for the human-inspired

controller when compared to four other handover controllers for quick release

and constant grip forces. Another approach relying on the sensed load force

was presented in [145], which implements a grip force controller based on the

feedback of a force/torque sensor installed on a KUKA LWR robot with an

Allegro hand attached. The authors found that the object handling occurs

faster when using their controller compared with state-of-the art approaches.

Furthermore, their approach significantly reduces the forces applied on the

object by the robot and the human, resulting in fast and smooth handovers.

Although most of these works rely on some force estimate acting upon

the object, they all assume the handover is going to take place without any

problem. In a recent work [146] a system consisting of acceleration and

force sensors mounted on a gripper was used to ensure fail-safe handovers.

The authors compared the grip force with the sum of forces applied to the
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object for a given static friction coefficient, and implemented a controller for

re-grasping if the object’s downward acceleration exceeds a given threshold.

To endow robots with the ability of safely interacting in complex situa-

tions, such as a workshop or an operating room, the control system should en-

sure smooth and reliable handovers even if the human cannot securely grasp

the object. Performing reliable robot to human object handover requires a

system capable of adapting against uncertain events and perturbations that

are not meant to end in a handover such as a receiver’s unsecured grasping

or collisions. In situations like these, the robot should be able to keep itself

and the object safe. Avoiding damage to the hand and the object falling

is an extremely complex problem which requires quick readjustment of the

fingers to maintain a stable grasping during a potentially large perturbation.

In addition, a multi-fingered grasp may not be manipulable as forces during

an unintended handover could make the object move in a direction that the

robot cannot reach if it does not have enough degrees of freedom. Under

these circumstances the robot could be damaged and result in the object

dropping. However, state-of-the-art approaches often assume that there are

no perturbation forces applied on the object during the handover, i.e. see Ta-

ble 2.3 for a summary of robotic handover state-of-the-art approaches. This

thesis contributes to reliable object handover by presenting a tactile sensing

based handover system (see Chapter 6) that ensures neither the robot nor

the object are damaged. We achieve this by adapting the fingers to force

perturbations on the object and releasing only if the human is ready to hold

the object.
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Table 2.3: State-of-the-art in robotic object handover.
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2.8 Summary

The combination of diverse stimulus modalities (visual, hearing, and tactile)

allows humans to build an accurate representation of their surroundings and

solve potential perceptual conflicts, i.e. to make decisions and to act under

uncertain or incomplete information. Similarly, the integration of a range

of sensing modalities is a must in order to develop fully autonomous robots

that are capable of interacting with complex environments. The advent of

commercially available tactile sensors has attracted increasing research inter-

est of the robotics community towards endowing robots with touch sensing

and combining it with other sensing modalities. However, advances in the

development of robotic tactile sensing are still well behind other modalities

like proximity sensing or vision systems.

Despite tactile sensing being inherently continuous, many existing ap-

proaches in the literature treat it as an episodic process. In particular, the

recognition of objects and their properties is normally not addressed as a

continuous process. Episodic tactile sensing limits the accuracy and restricts

identification speed of the robotic systems as they rely only on the latest sen-

sor measurements, i.e. discarding previous information. Moreover, although

a number of tactile sensing modalities exist (i.e. vibration, temperature, and

pressure) state-of-the-art systems rarely take advantage of data from a va-

riety of sensors. The combination of several tactile sensing modalities can

enhance the sense of touch in robots. For instance, an object can be diffi-

cult to distinguish by its shape, but it may have characteristic thermal or

microgeometric properties.

Different to tactile object recognition, tactile sensing is generally treated

as a continuous process in grasping and manipulation. However, the inte-
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Figure 2.6: Generic definition of tactile sensing solutions for robotic grasping

and object handover.

gration of continuous tactile sensing to enhance the reliability of the robotic

systems needs to be explored for many applications. Robotic grasping of

objects is still a challenging task that usually requires a priori knowledge

of the object. When this information is not available, a robot could rely on

tactile sensing to perform the grasp in a similar manner to that of a human.

Another unexplored application of tactile sensing is to enhance the re-

liability of robots in uncontrolled environments. Continuous adaptation to

perturbations or unexpected events is fundamental in order to endow robots

with the capability to interact in human environments. For instance, when

grasping or handing over objects between a robot and a human, perturba-

tions on the object may damage the robot and the object. Tactile sensing

can be used to quickly react to unexpected events and guarantee the object

is delivered in a secure manner. Figure 2.6 shows a generic definition for

robotic grasping and handover systems using tactile sensing.

Consequently, this thesis will combine robotics with signal processing,

machine learning, and control theory techniques to tackle the following issues

that have not been addressed in the existing literature:
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• Design of a continuous identification system that allows integration of

various sensing modalities and its implementation for object surface

material identification.

• Design and implementation of a tactile contact model and a precision

grasp control that allows object grasping when information of the object

geometry is not available.

• Design and implementation of an algorithm using robotic tactile sens-

ing to ensure that a robot hands over objects to humans in a reliable

manner.

Chapter 3 reviews the methods used in this thesis and describes the

robotic platform in which the algorithms have been implemented. This will

provide the foundations to address the issues stated above in Chapters 4, 5,

and 6.
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Chapter 3

Robotic platform & methods

3.1 Introduction

This chapter presents a systematic review of the robotic platform used in

Chapters 5 and 6 and the methods used during the research described in

Chapters 4, 5 and 6. Although this thesis focuses in robotic tactile sensing

and, in particular, its applications in perception and manipulation, the tech-

niques used in this research can be grouped into four main areas: Machine

Learning, Signal Processing, Robotics, and Control Systems.

The rest of the chapter is organised as follows. A detailed description

of the robotic platform is provided in Section 3.2. Section 3.3 will detail

the Machine Learning techniques used in this thesis. Section 3.4 will provide

insights of the techniques used for signal processing. A review of the methods

used to control the robotic platform used in this research will be detailed in

Section 3.5. Finally, Section 3.6 concludes this chapter and summarises the

robotic platform and methods detailed in this chapter.
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3.2 Robotic Platform: The Shadow Dexter-

ous Hand

In dexterous manipulation a number of mechanisms (i.e. fingers) collaborate

to grasp and manipulate an object [147]. Considering the human dexterous

manipulation skills it seems logical that most of the robot hands designed

for this purpose are anthropomorphic. The Shadow Dexterous hand is a

humanoid robotic hand build by the Shadow Robot Company. The robot is

similar in shape (see Figure 3.2) and size to an average human hand.

The standard tendon driven Shadow hand has 20 actuated degrees of

freedom (DoF) and a further 4 under-actuated movements using a total of

24 joints. This range of DoF is very close to the 27 DoF a human hand

has [148] and, together with its anthropomorphic shape, allows the robotic

hand to manipulate objects in a human-like manner.

Although some versions of the Shadow hand mount only three fingers, the

Shadow hand used in this work has 5 fingers. In this version of the robot,

the first, middle and ring finger have three actuated joints plus one under-

actuated i.e. joint 1. The little finger includes an additional joint (i.e. joint

5) that allows it to rotate towards the thumb. While the design is similar for

the first, middle, ring and little finger, with the exception of the additional

joint on the little finger, the thumb implements a totally different design and

all its 5 joints are actuated. Additionally, the wrist has two joints that allow

the hand to move forward, backwards, and in lateral directions. A complete

scheme of the links and joints of a five fingered Shadow hand is shown in

Figure 3.1.

As shown in Figure 3.2, the Shadow hand used in this research has been

modified to be equipped with three BioTAC tactile sensors installed in the
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Figure 3.1: Scheme of the joints in a regular Shadow hand [5].
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Figure 3.2: The Shadow robotic hand. On the left, robot dimensions scheme

[5]. On the right, the Shadow hand equipped with BioTAC tactiles sensors

on the thumb, first and middle fingers.

thumb, first and middle fingers. The fingertips were attached to the last

joint (joint 1) of each of those fingers, which was disabled. Therefore, two

under-actuated joints (i.e. in first and middle fingers) and one actuated joint

(i.e. in the thumb), as well as their corresponding DoF, were lost because of

the integration of the tactile sensors.

In addition to providing tactile sensing, the Shadow hand measures the

angle of rotation of the joint by the use of a Hall effect sensor (i.e. transducer

that responds to a magnetic field by varying its output voltage) mounted

on each joint locally. The Shadow hand also provides data of the tension

difference between both ends of each tendon. It is worth noting that, although

described as force measurements in the Shadow Robotic Hand documentation

[5], they are not the joint torques nor can they be directly used to calculate

the wrenches applied at the end-effectors (see Section 3.5.2.1).
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The Shadow hand implements two PID controllers that can be used to

perform effort control or joint’s position control. The first one controls the

effort applied on the tendons to move each joint guaranteeing that the effort is

within the safety constrains and implements a friction compensation system.

The latter relies on the effort control to keep the rotation angle of the joints

at certain values and, thus, controls their positions. During the research in

this thesis all controllers have been implemented as an additional layer over

the joint’s effort controller.

Considering its dexterity and the integration of state-of-the-art tactile

sensors, the Shadow hand is the ideal platform for conducting the research

that is presented in this thesis.

3.3 Machine Learning

During this thesis, a number of supervised and unsupervised learning tech-

niques are used for surface material identification and detecting perturbation

force directions during object grasping. In particular, dimensionality reduc-

tion of tactile microvibration signals after their conversion to frequency do-

main is computed using Principal Component Analysis in Chapter 4. Linear

regression is also used in Chapter 4 to approximate the thermal flux of mate-

rials upon contact with a robotic fingertip. The Expectation Maximization

algorithm is used in both Chapters 4 and 6 to model the likelihood functions

of perturbation force directions and surface materials. Finally, the approach

presented in Chapter 4 is compared with three algorithms for data classifi-

cation, which are commonly used in the state of the art (see Chapter 2). All

these Machine Learning techniques were used in Chapters 4 and 6 and the

input data were collected using the experimental platforms described in these
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chapters. Examples of the datasets are displayed on Sections 4.2.1 and 6.5.3,

i.e. for material identification and object handover respectively. In order to

understand the rationale of the application of these techniques, this section

presents a thorough revision of the Machine Learning algorithms used in this

thesis.

3.3.1 Principal Component Analysis

When dealing with highly dimensional data it is useful to consider that,

as the dimensionality of the space increase, the data become sparser. High-

dimensional functions are likely to be more complicated than low-dimensional

ones and, therefore, harder to deal with [149]. This problem is known as the

curse of dimensionality. To illustrate the problematic nature of this sparsity

we can address the problem of grouping data into similar clusters. If data

lays on a high dimensional space, sparse data appear to be dissimilar and

prevent clustering algorithms from being efficient. Therefore, sometimes it is

useful to project the data to a lower dimensional subspace while minimizing

the average reconstruction error.

One of the most used techniques for dimensionality reduction is Principal

Components Analysis (PCA), also known as the Karhunen-Loève transform.

Using this technique it is possible to find a lower dimensional projection of a

dataset in which data are better represented by minimizing the sum-square

error. Assuming we have a set of data points xi ∈ Rn where i = 1, . . . , n

following a multivariate Gaussian x ∼ N (µ,Σ), we can define a data PCA

projected matrix Y as:

Y = R>(X− µ), (3.1)

where X ∈ Rn is input data, µ is a d -dimensional mean vector and R is a n×n

rotation matrix. We could find a solution to PCA in terms of eigenvectors
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of the covariance matrix of the input data. However, we also can generalise

the notion of eigenvectors from square matrices to any kind of matrix using

an alternative approach based on Singular Value Decomposition (SVD). Any

real n× d matrix M can be decomposed using SVD as follows:

M = UDV∗, (3.2)

where U is an n× n unitary matrix, D is a n× d diagonal matrix with non-

negative real numbers on the diagonal, and V∗ denotes the complex conjugate

transpose (Hermitian matrix) of the d× d unitary matrix V. Therefore, the

main diagonal of D contains the singular values σi ≥ 0, the columns of U are

the left singular vectors, and the columns of V are the right singular vectors.

Assuming n > d and since there are at most d singular values, the last n− d

columns of U will be multiplied by 0, thus being irrelevant. In order to

estimate the proportion of the variance (i.e. energy) that each eigenvector

represents we could divide each eigenvalue of D by the sum of all eigenvalues.

Therefore, the rotation matrix R can be obtained by truncating the size of U

according to the established energy value and the spectrum of eigenvectors

in D.

3.3.2 Expectation Maximization

Finding structure in a dataset is a fundamental problem of unsupervised

learning. The main idea relies on organizing objects into groups whose mem-

bers are similar according to some criteria. EM is an iterative algorithm that

updates an initial estimation for a set of given parameters with k components

Θ = {α1, ..., αk,θ1, ...,θk} by maximizing the likelihood within each cluster.

Many variants of the algorithm can be found in the literature with different

applications, for instance EM for Hidden Markov Models [150] or Variational
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Figure 3.3: Examples of the EM algorithm running on different datasets. On

the left the clusters are clearly separated while on the right the proximity of

the clusters result in the Gaussians being overlapped.

Bayes EM [151]. In this section we focus on the EM for the estimation of

Gaussian Mixture Models (GMMs). This method groups data into clusters

that follow Normal probability distributions and finds the maximum likeli-

hood of the parameters for a given dataset as shown in Figure 3.3. Hence,

the parameters θ for each Gaussian distribution in the mixture are defined

by their mean µ and covariance Σ. Each iteration performs an expectation

(E) step and a maximization (M) step. The E-step creates a function for

the expectation of the log-likelihood evaluated using the current estimate

for the parameters. The M-step computes parameters maximizing the ex-

pected log-likelihood found on the E-step, which will be used to determine

the parameter values in the next iteration of the E-step.

For a given data set D = {x1, . . . ,xn} where xi is a d dimensional data

vector i.i.d, from an underlying density p(x). Then, p(x) is defined as a finite
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mixture model with k components:

p(x|Θ) =
k∑
j=1

αjp(x|θj), (3.3)

where p(x|θj) are the mixture components with parameters θj, and αj are

the mixture weights.

The EM algorithm can be initialized either by using some heuristic method

to do an initial estimate [152] [150], such as k-means algorithm [153] [154], or

choosing the initial parameters randomly [155]. In this work, better results

were obtained using the second approach and selecting the initial parameters

randomly from the data set D instead of the vector space.

During the E-step, given the latest estimate of Θ, the membership weights

ωij of all data points xi are computed for all mixture components such that
k∑
j=1

ωij = 1. Specifically,

ωij =
p(xi|θj)αj

k∑
m=1

p(xi|θm)αm

, 1 ≤ j ≤ k, 1 ≤ i ≤ n. (3.4)

The resultant n× k matrix of membership weights Ω is used during the

M-step to update the current estimate of Θ. For α we have the sum of

membership weights for each mixture component. Thus, the number of data

points assigned to component k can be computed as the sum of each row in

Ω as:

nj =
N∑
i=1

ωij, (3.5)

and used to obtain new mixture weights:

αj =
nj
n
. (3.6)

Additionally, we update the values of θj and, since we aim to obtain a

mixture of Gaussian distributions, new mean µj and covariance Σj estimates
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are computed for each component of the mixture using the weighted data as:

µj =
1

nj

n∑
i=1

ωijxi, (3.7)

Σj =
1

nj

n∑
i=1

ωij(xi − µj)(xi − µj)T . (3.8)

The M-step is completed when all new parameters are computed and

the algorithm keeps iterating until convergence. Generally, convergence is

defined using the value of the log-likelihood:

log l(Θ) =
n∑
i=1

(
log

k∑
j=1

ωjp(xi|θj)

)
, (3.9)

where p(xi|θj) is the Gaussian density for the j-th mixture component.

3.3.3 Linear Regression

Regression techniques are used to model functional relationships among vari-

ables. More specifically, a given dataset can be used to estimate the param-

eters of a predictor function that models the relationship between a scalar

dependent variable and one or more independent variables (i.e. explanatory

variables). Thus, one could estimate the typical value of the dependent vari-

able for any given value of the independent variable. A basic technique to

compute the regression of a dataset is linear regression (see Figure 3.4).

In linear regression, given a data set {yi, xi1, . . . , xip} of n data points,

the dependent variable yi is a linear combination of the data points explana-

tory variables xip, where i = 1, . . . , n. Interestingly, despite the dependent

variable being a linear combination of the p-vector of explanatory variables

it does not need to be linear in the independent variables. A variable εi

captures the error between yi and the explanatory variables. Therefore, we
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Figure 3.4: Examples of linear regression applied to different datasets. While

data can be intuitively fitted into a line in the left figure, the figure on the

right shows a sparser dataset and their corresponding regression line.

assume the response following a linear function of the inputs as:

yi = β01 + β1xi1 + ...+ βpxip + εi, 1 ≤ i ≤ n. (3.10)

or its vector form:

y = Xβ̂ + ε, (3.11)

where y is the vector of dependent variables, ε = {ε1, . . . , εn} are the re-

gression errors and Xβ̂ is the matricial form of the product between the

explanatory variables xi and the parameters βi.

We can compute β̂ in a straightforward manner using ordinary least-

squares estimation. This method minimises the sum of squared residuals

leading to a closed-form expression for the estimated value as:

β̂ = (X>X)−1X>y, (3.12)

where (X>X)−1X> is the pseudo inverse of X. Additionally, we can compute

the regression error ε as the difference between the expected value of each
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(a) (b)

Figure 3.5: The classification problem. On the left, given 2 classes of training

data, A and B, decide which of the two classes a new point (i.e. green×)

belongs to. On the right, a multiclass (k = 3) classification problem.

point in the dataset and their real values.

3.3.4 Classification Techniques

While regression statistical techniques model the relationship between vari-

ables by estimating a continuous output, classification could be understood

as a similar approach for discrete values. Here the goal is to learn a map-

ping from inputs x to outputs y, where y ∈ {1, . . . , k}, being k the num-

ber of classes. Figure 3.5 shows two examples of the classification problem

statement. Given a labeled dataset, we aim to approximate some unknown

function y = f(x) that makes accurate predictions of unseen data. A large

number of classification techniques and variations exists in the machine learn-

ing literature. In this section we detail three of the most popular algorithms

for data classification k-Nearest Neighbours, Artificial Neural Network and

Support Vector Machine.
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3.3.4.1 k-Nearest Neighbours

k -Nearest Neighbours (kNN) is a non-parametric method of data classifica-

tion. The main idea is to find the k points in the training set that are nearest

to the test input, i.e. count how many members of each class are in this set

and return the empirical fraction as the estimate. Although a great variety of

distances can be used, the most common distance is the Euclidean distance.

More formally, we can define kNN as a probabilistic model with the form

p(y|x) as follows:

p(y = c|x,D, k) =
1

k

∑
i∈Nk(x,D)

1(yi = c), (3.13)

where D is the training set and x is the test input, Nk(x,D) are the k nearest

points to x in D and 1(e) is the indicator function defined as:

1(e)

1 if e is true

0 if e is false

Despite its simplicity, in many cases the kNN classifier outperforms other

more sophisticated algorithms. However, the main problem is that it does not

work well with high dimensional inputs as, due to the curse of dimensionality,

long distances may not be accurate predictors of the input-output function

at a given point.

3.3.4.2 Artificial Neural Networks

An Artificial Neural Network (ANN) is a learning classifier inspired by biolog-

ical neural networks, i.e. nervous systems of animals and humans. According

to its computational units, an ANN can be group into different generations,

for instance, Spiking Neural Networks are considered the third generation
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Figure 3.6: Artificial Neural Network. Each circular node represents a neuron

and the arrows represent connections from the output of one neuron to the

input of another.

of ANNs [156]. For simplicity, we will thereafter use the term ANN to re-

fer to second generation of Artificial Neural Networks. ANNs approximate

non-linear functions of the form f : x → y as series of logistic regression

models stacked on top of each other, with a final layer being another logistic

regression. The synapses in the ANN store parameters called “weights” that

manipulate the data during the calculations.

Typically, an ANN is defined by three types of parameters: the activation

function that converts a neuron’s weighted input to its output activation, the

interconnection pattern between the different layers and the learning process

for updating the weights of the interconnections. Although a number of

functions can be used as activation functions, such as the hyperbolic tangent

or rectifier function, one of the most commonly used is the sigmoid function

[157], defined as:

g(z) =
1

1 + e−z
. (3.14)

An ANN consists of a set of neurons typically arranged in layers, connec-
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tions and weights, where each connection transfers the output xi of a neuron

i to the input of another neuron. Each connection is assigned a weight wi,

which is used by the neurons to compute their activation function:

a =
∑
i

wixi. (3.15)

Thus, the output of a neuron is given by its propagation function as:

h(x) = g(a). (3.16)

This can be conveniently represented as a network structure, with arrows

depicting the dependencies between variables. For instance, Figure 3.6 shows

an example interconnection pattern of an ANN with three input and two

output neurons, using one hidden layer with two neurons. The neurons of

the input layer provide an input interface for the network while the neurons

in the output layer serve as output interface.

Additionally, the output and all hidden layers have a bias node, whose

value is always 1 and connects to all the neurons of the next layer. If a

neural network did not have a bias node in a given layer, the output of the

propagation function in the neuron of the next layer would not be able to

differ from 0 when their input values are 0.

The aim of the learning process is to find a function Y = f(X) that

matches a given set of example pairs (x,y), where x ∈ X and y ∈ Y. In other

words, we wish to infer the mapping implied by the data. More formally,

given a specific task to solve and a set of parameters Θ = {θ1, θ2, ..., θn}

(i.e. weights), we use a set of observations to find the values of Θ∗ that

solve the task in some optimal sense. This entails defining a cost function

J(Θ) ∈ R such that there is no solution with lower cost than the cost of the

optimal solution Θ∗. The cost function J(Θ) is a measure of how far away

a particular solution is from the optimal solution.
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A commonly used cost is the mean-squared error [155], which tries to

minimize the average squared error between the network’s output, f(x), and

the target value y over all the sample pairs. When one tries to minimize this

cost using gradient descent for the class of neural networks called multilayer

perceptrons (MLP), one obtains the common and well-known backpropa-

gation algorithm [158] for training neural networks. This is done by simply

taking the derivative of the cost function with respect to the network weights

and then changing those parameters in a gradient-related direction.

In a nutshell, the learning algorithm of an ANN searches (i.e. through

the solution space) for a function f(x) that has the smallest possible cost, as

J(Θ) is related to the mismatch between the mapping and the data.

3.3.4.3 Support Vector Machine

Let’s assume some given data points, each one belonging to one of two classes.

The goal is to decide which class a new data point will be in as in Figure

3.5(a). In the case of a Support Vector Machine (SVM), a data point is

viewed as a p-dimensional vector, and we want to know whether we can

separate such points with a (p − 1)-dimensional hyperplane. This is called

a linear classifier. There are many hyperplanes that might classify the data.

One reasonable choice as the best hyperplane is the one that represents the

largest separation, or margin, between the two classes, since in general the

larger the margin the lower the generalization error of the classifier. So

we choose the hyperplane so that the distance from it to the nearest data

point on each side is maximized. If such a hyperplane exists, it is known as

the maximum-margin hyperplane and the linear classifier it defines is known

as a maximum margin classifier; or equivalently, the perceptron of optimal

stability.
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Whereas the original problem may be stated in a finite dimensional space,

it often happens that the sets to discriminate are not linearly separable in

that space, i.e. there is no hyperplane that perfectly separates the points. For

this reason, we can opt for mapping the original finite-dimensional space into

a much higher-dimensional space, potentially making the separation easier

in that space.

“The kernel trick” consists of replacing all inner products of the form u ·v

with a kernel function κ(u,v). It is worth noticing that κ(u,v) needs to be

a Mercer kernel for this trick to work [155]. The mappings used by SVM

schemes are designed to ensure that inner products may be computed easily

in terms of the variables in the original space, by defining them in terms of a

kernel function κ(u,v) selected to suit the problem. Thus, the computational

load is kept reasonably low while the kernel function provides an indicator

of similarity.

To train an SVM, the first step is to choose the kernel function. Some

of the most common kernels are the hyperbolic tangent, polynomial kernels

and the Radial Basis Function (i.e. Gaussian kernel) [159]. Given a dataset

X = {x1,x2, . . . ,xn} and their transformation Y = {y1,y2, . . . ,yn} using

the kernel trick, we aim to maximize L(α) defined as:

L(α) =
n∑
k=1

αi −
1

2
−

n∑
k,j

αkαjzkzjy
t
jyk, (3.17)

subject to the constraints:
n∑
k=1

zkαk = 0 αk ≥ 0, k = 1, . . . , n, (3.18)

where n is the number of points, αi are undetermined Lagrange multipliers

[149], and zk = ±1 is an indicator of the class point to which k belongs to.

Different to the kNN and ANN algorithms, which can perform classifica-

tion of more than two classes (i.e. multiclass classification), SVM classifiers
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are binary. However, some techniques can be used to take into account more

than two classes when using binary classifiers. This is an active field of re-

search nowadays and a variety of approaches has been proposed. We focus

on two of the most common strategies: One-Vs-All and One-Vs-One.

In the One-Vs-All (OvA) strategy, i.e. also know as One-Vs-Rest or One-

Against-All, a single binary classifier is trained for each class. Each classifier

trains data of one class as positive samples and all other samples as negatives.

To make a final decision of the predicted class ẑ, OvA applies all classifiers

to an unseen sample x and predicts the label i for which the corresponding

classifier fi(x) reports the highest confidence score:

ẑ = argmax
i∈{1,,k}

fi(x), (3.19)

where k is the number of classes in the multiclass problem. This can result

in regions of the input space being predicted to be more than one class and,

therefore, being ambiguously labeled. Additionally, the performance of each

binary classifier in an OvA strategy may be affected by class imbalance if,

for instance, there are significantly more negative examples than positive.

In the one-vs.-one (OvO), also known as all pairs, k(k−1)
2

binary classifiers

are trained, one for each pair of classes. At prediction time, each classifier

evaluates the unseen sample and a majority voting procedure determines the

final prediction. Although usually more accurate than OvA, OvO predictions

are prone to ambiguities, as some classes may receive the same number of

votes. It is worth noting that SVM’s do not model uncertainty using proba-

bilities and, therefore, their output scores are not comparable across classes.

Ignoring this fact might result in inaccuracies when using the multiclass so-

lutions.
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3.4 Signal Processing

The efficiency of the classification methods described above can be improved

by processing the raw data to discard unnecessary information and obtain

descriptors that keeps the relevant one. The approach presented Chapter 4

converts the time-domain tactile microvibration signals into frequency do-

main using the Fast Fourier Transform algorithm and uses the resultant

coefficients as descriptors for classifying the material of an object’s surface.

In order to visualise the datasets used in the experiments, a number of Fast

Fourier Transform examples of tactile vibration signals for different materi-

als are shown in Section 4.2.1. Moreover, signal processing techniques can

be used to analyse a signal and, for instance, fit a mathematical model to

a data set. A robust estimation algorithm (the Random Sample Consensus

algorithm) is used in Chapter 5 to find shape primitives in a depth map

obtained from a Microsoft Kinect sensor. Examples of the datasets (i.e. the

depth maps) used for segmenting the experimental tabletop manipulation

scenario are displayed in Section 5.4.1. This section provides some insight

into these algorithms and shows a comparative example between the perfor-

mance of robust line estimation and linear regression.

3.4.1 Fourier Transform

In the Fourier series, periodic functions are stated as a sum of sinusoidal

wave functions. The properties of sine and cosine allow one to recover the

amplitude of each wave in a Fourier series using an integral. We can do it

by computing the Fourier Transform (FT). It is worth noting that in order

to compute the FT, it is essential that the integral of the absolute value of

the input function f(t) is a finite value, i.e.
∫∞
−∞ |f(t)|dt <∞.
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The FT is the limit of the Fourier series when the period of the function

approaches infinity [160]. Hence, if t is an independent variable representing

time and the transform variable ω represents frequency, we define the Fourier

Transform (FT) F (ω) as:

F (w) =

∫ ∞
−∞

f(t)e−2πitωdt, ∀ω ∈ < (3.20)

where the Euler’s formula e−2πitω = cos(2πω)+i sin 2πω is used to simplify the

Fourier series in terms of basic waves. The representation of sines and cosines

as complex exponentials ensures that the Fourier coefficients are complex

valued. Therefore, the FT of a function is a complex-valued function of the

frequency, whose absolute value represents the “amount” of that frequency

existing in the original function, and whose complex argument is the phase

offset of the basic sinusoid in that frequency. If the original input function

is equally spaced in their input variables (i.e equal time steps), then the FT

is known as a discrete Fourier transform (DFT) and can be computed using

the Fast Fourier Transform (FFT) algorithm [161].

The DFT converts the sequence of n numbers x0, x2, ..., xn−1 into an n-

periodic sequence of complex numbers:

yk =
n−1∑
j=1

xje
−2πikj/n, k ∈ Z (3.21)

where the complex number yk encodes amplitude and phase of a sinusoidal

component of a sequence xj. The sinusoid’s frequency is k cycles per n

samples.

Although discussing all of properties of the DFT goes beyond the scope

of this section (see [162] [163] for in depth discussion), the DFT certainly has

some relevant properties for the work presented in this thesis. For instance,

the DFT is symmetric when the input values are real numbers i.e. the real-

input property. Thus, we can split the DFT into N
2
− 1 Fourier components
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while still carrying all relevant information. Other examples are periodicity

and shift theorem properties, which ensure that splitting a time domain

periodic signal into several windows with the same size generates similar

DFTs.

3.4.2 Random Sample Consensus Algorithm

Random sample consensus [164] (RANSAC) is a robust estimation algorithm

to fit a mathematical model to a set of observed data. The basic assumption

is that the dataset contains a combination of data whose distribution can be

explained by a set of model parameters and data that do not fit the model

(i.e. outliers). The problem is the following: given a set of data points Z

and an error threshold ε, find the subgroup of points X that minimizes the

sum of squared perpendicular distances while ensuring none of the points in

X deviates from a given model m(X,θ) by more than ε units, i.e. θ are the

model parameters.

Instead of obtaining an initial solution and then removing invalid data-

points, RANSAC starts by selecting a random subset of k correspondences.

Then, this subset is used to compute an initial estimate for X. The support

of X is measured by the number of inliers computed as ‖m(X,θ)‖ ≤ ε. The

random selection is repeated n times and the best estimate of X is considered

the robust fit.

Figures 3.7(a) and 3.7(b) show different approximations of a line for a

given dataset using linear regression (see Section 3.3.3) and RANSAC re-

spectively. While the first is significantly affected by the outliers, in the

latter the support for lines is given by the number of points within a thresh-

old distance of the lines. For instance, the line obtained using the points

{a, b} has a support of 10 and the line given by {c, d} has a support of 2
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Figure 3.7: Comparison between linear regression and robust line estimation.

and, therefore, RANSAC would choose the line obtained using {a, b} as the

robust estimation.

To ensure the algorithm has high probability of finding the true set of

inliers, a sufficient number of trials needs to be computed. The likelihood

that all k random samples are inliers (i.e. in one trail) is pk, where p is the

probability that any point in X is valid. The likelihood that n trials will not

find a subset X in which all points are inliers is 1−P = (1−pk)n , where P is

the total probability of success after n trials. Hence, the required minimum

number of trials is given by:

n =
log(1− P )

log(1− pk)
. (3.22)

In practice, one tries to keep the number of sample points k as low as

possible since the value of n grows quickly for greater values of k [165].
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3.5 Robotics and Control Systems

This section details the foundations used in Chapters 5 and 6 to explain the

proposed approaches for object grasping and robot-human handovers. The

techniques used in Chapters 5 and 6 to control the motion of the robot are

also presented in this section. Bayesian filtering techniques are explored in

this thesis for different applications. For instance, Bayesian filtering is used

in Chapter 6 to smooth the trajectory of the angular deviation of the contact

forces through time and to estimate their corresponding velocities. Another

Bayesian filtering method (i.e. Recursive Bayesian Estimation) is used to

develop a novel tactile data classification technique, which is explored in

Chapters 4 and 6.

3.5.1 Robot Kinematics

A robotic mechanism is a system of rigid bodies with poses determined by

their position and orientation in space. Those rigid bodies are connected

by joints. Kinematics involve the design, analysis and control of a robotics

mechanism and focusses on its motion regardless of the forces/torques that

cause it. Thus, robot kinematics describe the rigid body poses (i.e. position

and orientation), velocities, accelerations, and higher-order derivatives of the

poses.

A fundamental concept to represent robot poses is the coordinate frame,

also known as frame. A frame consists of an origin position vector and

three mutually orthogonal basis vectors (defining an orientation) that are

all fixed within a particular body. The pose of a body is always relative to

another body and, thus, it can be understood as the pose of one coordinate

frame relative to another. Therefore, in Cartesian coordinates a point can be
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represented in space as the origin position o of a frame relative to another

reference frame

joi =


joxi
joyi
j0zi

 , (3.23)

where the origin of the coordinate frame i is relative to the frame j.

Similarly, the motion of a rigid-body can be expressed as displacements

between two frames where one of them stays fixed to the work space. A

displacement in which no point of a rigid body remains in its initial position

and all its straight lines remain parallel to their initial orientations is called

translation. It can be represented by the combination of its position before

and after the translation. Therefore, the position can be used to create

representations of the translation and vice versa.

Although a point in space has only three degrees of freedom (i.e. position),

the minimum number of coordinates required to locate a coordinate frame in

Euclidean space and, therefore, a rigid body is six i.e. three for position and

three for its orientation. While a point in space can only move along the x, y

and z axes, a coordinate frame can also rotate. A rotation is a displacement

in which at least one point in the rigid body remains in its initial position and

not all lines in the body remain parallel to their initial position. Similarly to

position and translation, orientation can be used to create representations of

the rotation and vice versa.

The orientation of a coordinate frame i relative to coordinate frame j can

be denoted by

jRi =


x̂i · x̂j ŷi · x̂j ẑi · x̂j
x̂i · ŷj ŷi · ŷj ẑi · ŷj
x̂i · ẑj ŷi · ẑj ẑi · ẑj

 , (3.24)

where {x̂i, ŷi, ẑi} are the basis vectors representing the orientation for frame
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i and {x̂j, ŷj, ẑj} denote the basis vectors of frame j. As those vectors are

unit vectors and the dot product of two unit vectors is the cosine of the angle

between them, we can find matrices for elementary rotation of frame i about

the axis of frame j as:

Rx =

1 0 0

0 Cθ −Sθ

0 Sθ Cθ

, Ry =

 Cθ 0 Sθ

0 1 0

−Sθ 0 Cθ

, Rz =

Cθ −Sθ 0

Sθ Cθ 0

0 0 1

, (3.25)

where C and S are the compact notations for cos and sin respectively, and

θ is the angle of rotation on the corresponding axis. To perform more com-

plex rotations, we can combine rotation matrices by multiplying them. For

instance, the orientation of frame i relative to frame k can be computed as:

kRi =k Rj
jRi . (3.26)

3.5.1.1 Homogeneous Transformations

Sometimes, it is necessary to combine a number of successive translations

and rotations about a reference frame. As already explained, any point p

expressed relative to coordinate frame i can be also expressed relative to the

coordinate frame j if the position and orientations of i are known relative to

j such as jp = jRi
ip + joi or its homogeneous representation form:

jp

1

 = jAi

ip

1

 , (3.27)

where
(j

p 1
)>

and
(i

p 1
)>

are the homogeneous representations of the points

jp and ip in the j and i reference frames, and

jAi =

jRi
joi

0T 1

 , (3.28)
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is the 4 x 4 homogeneous transformation matrix, which transforms points

from frame i to j, and 0 is a 3-dimensional column vector of zeros. An

interesting property of the homogeneous transformation matrix is that its

inverse jA−1
i = iAj transforms points from coordinate frame j to i. As with

rotations, we can compute compositions of transformations though matrix

multiplication. For instance:

kAi = kAj
jAi . (3.29)

The homogeneous transformation of a simple rotation about an axis is:

R(x, θ) =

Rx 0

0> 1

 , R(y, θ) =

Ry 0

0> 1

 , R(z, θ) =

Rz 0

0> 1

 , (3.30)

where Rx, Ry and Rz are the 3 x 3 rotation matrices described above and

θ is the angle of rotation. The homogeneous transformation of a simple

translation along an axis is:

T(x, d) =


1 0 0 d

0 1 0 0

0 0 1 0

0 0 0 1

, T(y, d) =


1 0 0 0

0 1 0 d

0 0 1 0

0 0 0 1

, T(z, d) =


1 0 0 0

0 1 0 0

0 0 1 d

0 0 0 1

.
(3.31)

Although this representation method is not as computationally efficient

as other methods, for instance screw transformations [166] or matrix expo-

nential parametrization [166], the compact notation used in homogeneous

transformations simplifies the representation of robot poses.

3.5.1.2 Forward Kinematics

A fundamental problem in robot manipulation is to find the pose of the end-

effector (i.e. the tool at the end of the arm) relative to the inertial reference

system of the manipulator to which it is attached, given the positions of all
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joints and the geometric properties of the links. This is known as the forward

kinematics (FK) problem for a serial-chain manipulator. In practice, the

solution for the FK problem is obtained computing the frame transformation

between the end-effector and the base, i.e. the manipulator’s joint that fixed

to the world space. By convention, the coordinate frame attached to joint i is

defined relative to the coordinate frame i−1. Therefore, FK can be calculated

in a straightforward manner by concatenating homogeneous transformations

between frames as explained in Section 3.5.1.1. For instance, in a six-degrees-

of-freedom serial-chain manipulator the transformation is

BAE = BA1
1A2

2A3
3A4

4A5
5AE. (3.32)

where BAE is the 4x4 homogeneous transformation matrix from the end-

effector’s coordinate frame (E) to the base frame B.

3.5.2 Differential Motions

Differential motions are, by definition, small movements of a mechanism. If

a motion is measured in a small period of time, the velocity relationships

between different parts of the mechanism can be derived. While solving

the FK problem we can find the pose of a manipulator’s end-effector given

the joint positions (i.e. angles), but it is sometimes useful to compute the

relationship between the joint and end-effector velocities.

3.5.2.1 The manipulator Jacobian

The Jacobian matrix converts differential motions or velocities of the joints

to differential motions or velocities of the end effector. It represents the

differential geometry of the elements of a mechanism. As the joint positions

vary in time, the Jacobian is time-related and the magnitude of its elements
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also vary in time. One can calculate the Jacobian matrix by taking the

derivatives of each position equation with respect to all variables, i.e. joint

angles.

Given a set of equations yi in terms of a set of variables xj as:

yi = fi (x1, x2, . . . , xj) , ∀ 1 ≤ i ≤ n, 1 ≤ j ≤ m. (3.33)

The differential change in yi as the result of a differential change in xj is:

δy1 = ∂f1

∂x1
δx1 + ∂f1

∂x2
δx2 + · · ·+ ∂f1

∂xj
δxm

δy2 = ∂f2

∂x1
δx1 + ∂f2

∂x2
δx2 + · · ·+ ∂f2

∂xj
δxm

...

δyi = ∂fi
∂x1
δx1 + ∂fi

∂x2
δx2 + · · ·+ ∂fn

∂xj
δxm

(3.34)

and its matricial form is: 
δy1

δy2

...

δyn

 = J


δx1

δx2

...

δxm

 , (3.35)

where J is the Jacobian matrix defined as:

J =


∂f1

∂x1

∂f1

∂x2
. . . ∂f1

∂xm

∂f2

∂x1

∂f2

∂x2
. . . ∂f2

∂xm
...

. . .

∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xm

 , (3.36)

Applying this principle to a robot mechanism, we can use the following

equation to relate the joint differential motions to the differential motions of

its end-effector. For example, the corresponding equation for a six-degrees-

of-freedom robotic arm manipulator can be written as:

∆x = J(θ) ∆θ, (3.37)
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where ∆x = (δx δy δz δα δβ δγ)> is a vector representing the differential

motions (δx, δy, δz) and differential rotations (δα, δβ, δγ) of the end effec-

tor, ∆θ = (δθ1 . . . δθm)> are the differential motion of the m joints in the

kinematic chain and J(θ) is a 6 ×m Jacobian matrix computed for θ as in

equation 3.36. It is worth mentioning that, if ∆x and ∆θ are divided by

∆t, they represent the velocities instead of differential motions and equation

3.36 becomes dx
dt

= J(θ)θ̇, where θ is a vector of joint angle positions and θ̇

is a vector of joint angular velocities. Thereafter, we will refer to differential

motions while, in fact, can be understood as differential motions or velocities.

Therefore, using the manipulator Jacobian one can obtain the differential

motions of the end-effector given the joints differential motions. Additionally,

we can calculate how fast each joint needs to move for the end-effector to yield

a desired differential motion by calculating the inverse of the Jacobian matrix

as ∆θ = J−1 ∆x. Moreover, the Jacobian can also be used to represent the

relationships between wrenches f applied at the end-effector and joint torques

Γ such as:

Γ = J> f . (3.38)

We can use this relation to find what joint torques are required to resist a

force applied on the end-effector, i.e. applying a wrench. Similarly, like when

using equation 3.37, we can use the inverse of the Jacobian to know what is

the resultant end-effector wrench if we apply a set of joint torques.

3.5.3 Motion Control

When controlling the motion of a robotic manipulator, it can suffer from

steady state errors when trying to get a certain configuration. In other

words, when a controller sends a signal to one of the actuators, the joint

may overshoot and go beyond the target value even if feedback is used to
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stop the motion as soon as the joint reaches the target destination. This

happens because of the linkage and the actuators have inertia, and may

not stop immediately when the torque signal is turned off. Therefore, we

need to control the motion of the robot so that we can achieve the desired

configuration with an acceptable margin of error. We can differentiate the

control strategies into two groups according to their objectives [166] such as

trajectory tracking and regulation strategies. The goal of trajectory tracking

is to follow a time-varying joint reference trajectory; which, obviously, must

be set inside the manipulator workspace limits. Regulation, also called point-

to-point, control aims to place and keep the joint at a desired configuration.

The selection of the control strategy may depend on the type of task to be

performed. For instance, if the manipulator is only intended to move from one

position to another without requiring significant precision during the motion,

one could solve it using regulation strategies. On the other hand, tracking

controllers are required when, in addition to the desired target configuration,

we need to control the joint velocity and acceleration over time to perform a

desired trajectory.

3.5.3.1 PID Controllers

Proportional-integral-derivative (PID) is a type of feedback control mecha-

nism designed to solve the regulation control problem. The PID controller

continuously calculates an error e(t) in the desired configuration and applies

a correction based on proportional (P ), integral (I) and derivative (D) terms.

The error e(t) is calculated at each time step as the difference between the

desired and measured values.

The PID controller is used for regulation as it tries to minimise the error

over time by adjusting the control action u(t). The general form of a PID



3.5 Robotics and Control Systems 77

(a) Proportional controller. (b) PID controller.

Figure 3.8: PID controller schemes. Figure (a) shows a proportional con-

troller. Figure (b) shows a proportional-integral-derivative (PID) controller.

controller can be written as:

u(t) = Kpe(t) +Ki

∫ t

0

e(t)dt+Kd
de(t)

dt
, (3.39)

where Kp, Ki and Kd are the coefficients of the P , I and D terms respectively

such as:

• P accounts for present values of the error. For example if the error is

large the proportional action term will be also large.

• I accounts for past values of the error. For example, if the regulation

value is not strong enough, the integral value will accumulate over time,

and the controller will apply a stronger action signal.

• D accounts for the expected change of the error based on its current

rate of change.

Sometimes, one may want to set some of the parameters Ki or Kd to zero.

This is acceptable if our control system does not require all of the three terms

and, according to what parameters are zeroed, we refer to the controller as

a P , PI or PD controller.
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Figure 3.9: Response of different PID-type controllers for similar input sig-

nals.

Figure 3.8 shows two block diagrams of PID controllers. While Figure

3.8(b) represents an standard PID controller, Figure 3.8(a) represents a pro-

portional (P) controller and, therefore, the integral and derivative are set to

zero. Due to their simplicity, P controllers are very common. In many situa-

tions, a correct adjustment for the values of Kp is enough to make the system

behave in a particular way. In others cases, it is not possible to achieve sat-

isfactory results in terms of setting time or precision (i.e. how close to the

desired configuration can the system reach). Figure 3.9(a) shows an example

of a proportional controller response reaching the desired configuration for

the plant (i.e. system to control) G(s) = 1
(s+1)s

. The value Kp = 0.25 was

selected to have optimal response without oscillations. Using a greater value

of Kp would have faster response but it would oscillate about the reference

value. Differently, a proportional controller will never reach the reference

value for the plant G(s) = 1
(s+1)3 (see Figure 3.9(b)) and, therefore, more

sophisticated controllers are required.



3.5 Robotics and Control Systems 79

While the setting time can be reduced using a PD controller, the preci-

sion can be improved by including an integral term (PI controller); notwith-

standing there is a trade-off between setting time and precision. The PID

controller provides optimal trade-off between setting time and precision for

tuned Kp, Ki and Kd values (see Figure 3.9). However, using the deriva-

tive term amplifies the process noise and, therefore, can cause the output to

change abruptly. Discarding the derivative term also makes the system less

responsive to real alternation (i.e. not only to noise) and, thus, slower on

reaching the set-point, using a PI controller instead of a PID controller is

a valid solution when fast setting time is not required.

3.5.4 Bayesian Filtering

In an ideal scenario where all information is available and the robot reacts in

real time to the commands, robot control is a relatively simple problem. Un-

fortunately, having perfect control of mechanical structures is not a realistic

assumption. A complete world model is almost never available and, addi-

tionally, the robot actuators can not execute perfect motion commands as

they are discretised. To overcome this lack of information, sensing elements

are used to supply information about the state of the robot and the environ-

ment. However, the sensed data may be noisy, not accurate, or insufficient

to perform the desired task. Bayesian filtering methods can provide precise

estimations of the states of a dynamical system relying on the sensed data.

In this section, we will detail two of the most common estimation techniques:

the Recursive Bayesian Estimation and the Kalman Filter.
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3.5.4.1 Recursive Bayesian Estimation

Recursive Bayesian estimation (RBE), also called Bayes filter, is a proba-

bilistic approach for estimating the unknown probability density function of

a set of parameters recursively over time. Using the most recently acquired

sensor data, this iterative algorithm allows for continuous updating of the

probabilities of a set of multiple beliefs.

The aim of the RBE is to compute the marginal posterior distribution of

the true state at each time step k given the history of measurements up to

that time step. Assuming the true state x is an unobserved Markov process,

the next state is based exclusively on its present state (i.e. Markov property)

such as:

p(xk|xk−1) = p(xk|xk−1,xk−2, . . . ,x0), (3.40)

where xk is the true state of the Markov process at time step k.

Therefore, we can cast the problem to a HMM where the sensing data zk

are the observed variables and, similarly to the true state, the measurement

at time step k is dependent only upon the previous state:

p(zk|xk−1) = p(zk|xk−1,xk−2, . . . ,x0). (3.41)

For a sequence of k observed outputs z1:k, the RBE computes p(xk|z1:k)

in two steps. First, we compute the probability distribution associated with

the predicted state p(xk|z1:k−1) as:

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1) dxk−1, (3.42)

where the probability distribution p(xk|xk−1) is associated with the transition

from time step k − 1 to k and p(xk−1|z1:k−1) is the posterior distribution of

the true state given the history of measurements at the previous time step.
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Secondly, the probability distribution of the update is computed using

the Bayes rule:

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
, (3.43)

where the denominator is a normalization constant that is obtained using

p(zk|z1:k−1) =

∫
p(zk|xk)p(xk|z1:k−1)dxk. (3.44)

3.5.4.2 Kalman Filter

The Kalman filter(KF), presented in [167], is a special case of RBE for the

LQG (linear quadratic Gaussian) state space model [168]. This algorithm

deals with the inaccuracies and noise of individual sensor measurements by

computing the estimate of unknown variables based on series of observation

measurements.

Let us consider a discrete-time linear time-invariant dynamical system

model:

xk = Fkxk−1 + Bkuk + wk

zk = Hkxk + vk

(3.45)

where x is the state vector. The KF model assumes the true state xk at time

k evolved from the state at k−1, given the state transition model Fk, and the

control-input vector uk applied through the action model Bk. The process

noise wk is assumed to follow a multivariate normal distribution with zero

mean and covariance Qk, i.e. wk ∼ N (0,Qk). At time k an observation

zk (i.e. measurement) dependent on the true state xk is made according to

the observation model Hk that maps the state space into the observed space.

Similar to the process noise, the observation noise vk is assumed to follow a

Normal distribution with zero mean and covariance Rk, i.e. vk ∼ N (0,Rk)
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The general problem is to recursively estimate the state of the system xk

given the above model of the system (equation 3.45), the known input uk

and some noisy sensor measurements zk. The KF is a recursive estimator

that performs two steps, predict and update, during each iteration. In the

first step (i.e. predict), a prediction of the state is computed based on the

previous state and the input applied. We first compute the a priori state

estimate x̂k|k−1:1 at time k given all observations up to k − 1:

x̂k|k−1:1 = Fkx̂k−1|k−1:1 + Bkuk, (3.46)

where x̂k−1|k−1:1 is the posterior state estimate obtained during the update

state at time k−1. During the predict state, the KF algorithm also computes

the a priori estimate covariance:

Pk|k−1:1 = FkPk−1|k−1:1F
>
k + Qk, (3.47)

where Pk−1|k−1:1 is the posterior estimate covariance computed during the

update state at time step k − 1.

In the second step we update the estimate by including the new measure-

ments. Firstly, we obtain the innovation as:

νk = zk −Hkx̂k|k−1:1, (3.48)

and the innovation covariance matrix as:

Sk = HkPk|k−1:1H
>
k + Rk. (3.49)

Then, we use the Kalman gain

Kk = Pk|k−1:1H
>
k S−1

k , (3.50)

to map the innovation into a correction for the predicted state. Thus, we can

update the estimate based on the observation by computing the posterior
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estimates of the state x̂k|1:k and covariance matrix Pk|1:k as:

x̂k|1:k = x̂k|k−1:1 + Kkνk

Pk|1:k = (I−KkHk)Pk|k−1:1

(3.51)

where I is the identity matrix.

It is worth mentioning that the KF can be used asynchronously when

necessary. If no sensor information is available at a particular iteration, we

can compute the prediction step and finish the iteration without performing

the update. However, its practical implementation is not always optimal due

to the number of assumptions that the KF does, i.e. LQG. The algorithm

requires a reasonable initialization of x̂0|0 and P0|0 and fairly accurate esti-

mations of the noise covariance matrices Qk and Rk, which is still an active

field of research nowadays.

3.6 Summary

This chapter provides a thorough revision of the methods and robotic plat-

form used in this thesis. The methods used in this research can be grouped

into four main areas: Machine Learning, Signal Processing, Robotics, and

Control Systems. The Machine learning techniques detailed in this chapter

include Principal Component Analysis (PCA), Expectation Maximization

(EM) algorithm for Gaussian Mixture Models (GMM), linear regression, and

a number of classification methods. Other techniques detailed in this chapter

are the Fast Fourier Transform (FFT) algorithm, Random Sample Consen-

sus algorithm (RANSAC), Recursive Bayesian Estimation (RBE) and the

Kalman filter. Furthermore, this chapter details the foundations of Robotics

and Control Systems used in Chapters 5 and 6 to control the motion of the

robot.
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The following three chapters present innovative approaches to material

identification, object grasping and robot-human object handover. The ap-

proach presented in Chapter 4 uses Bayesian Filtering and Machine Learning

methods to identify the surface material of an object through continuous tac-

tile sensing. Robotic foundations, Control Systems, and Signal Processing

methods are used in Chapter 5 to grasp objects of unknown shape. Finally,

the approach to hand over objects between a robot and a human presented

in Chapter 6 rely on Robotic foundations, Control Systems and Machine

Learning methods to ensure the object transfer is performed in a reliable

manner.
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Chapter 4

Continuous Tactile Sensing for

Robotic Material Identification

4.1 Introduction

Material identification is a fundamental problem for robot manipulation and

grasping as it entails additional information about the properties of an ob-

ject such as its friction coefficient or weight. Although tactile sensors are

sequential, existing works on material identification through tactile sensing

present episodic surface recognition approaches, i.e. a whole movement or a

sequence of movements has to be completed for the identification to occur.

Additionally, few existing approaches in the material identification literature

are multimodal, as they usually rely on vibration or force sensing exclu-

sively. However, human identification of surface materials is multimodal.

For instance, one may identify a material because it feels smooth and cold,

or rigid and warm.

We propose a novel multimodal approach to material identification, which

accounts for the sequential nature of robot sensing. This research makes use
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of vibration, temperature and deformation of the fingertip skin information

from the BioTac tactile sensor. The proposed approach presented in this

chapter can be applied online and allows for the integration of other infor-

mation sources, either from tactile sensing or other modalities. In summary,

the proposed approach processes the signals to obtain a set of features that

represent the vibration and thermal conductivity responses upon contact with

a surface. For each trained material, both input signals (vibration and ther-

mal conductivity) are modelled as mixtures of Gaussian distributions. The

Recursive Bayesian Estimation algorithm uses these models for continuous

identification of the materials.

The contribution of this chapter is threefold. First, a continuous approach

that allows fast and very accurate material identification using vibration sig-

nals, and can be extended to other sensing modalities, is presented. Second,

it is shown that including temperature information significantly reduces the

time needed to identify the material correctly. Finally, the proposed ap-

proach is compared with state-of-the-art tactile material identification tech-

niques such as kNN, ANN and SVM, and with a set of descriptors found in

the literature to characterise the vibration signal.

Part of the work presented in this chapter has been published in the

following articles:

• Continuous material identification through tactile sensing. In Interna-

tional Joint Conference on Neural Networks (IJCNN 2016) [6].

• A multi-modal approach to continuous material identification through

tactile sensing. In IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS 2016) [7].

The remainder of the chapter is organised as follows. Section 4.2 presents
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the methodology used for the proposed continuous material identification ap-

proach, including processing of the raw data, probabilistic modelling of the

readings of each material, and the recursive classification technique applied.

Additionally we detail the descriptors found in the literature to compare with

the proposed approach and enhance continuous material identification by in-

cluding thermal information. Section 4.3 presents experimental results and a

comparison with state-of-the-art approaches. Finally, Section 4.4 summarises

the findings of this chapter.

4.2 Continuous Material Identification

State-of-the-art methods achieve good material identification ratios using one

or several batch readings and combinations of exploratory movements. How-

ever, episodic identification is not time efficient as some materials might have

a characteristic texture or particular thermal properties that allow them to

be identified faster than others. This section presents a material identifica-

tion approach that takes into account the continuous nature of tactile sensing

and identifies the material surface as fast as possible. Concisely, the PCA

projected Fast Fourier Transform (FFT) of the vibration signal, and the ther-

mal power transferred to the material are proposed as feature descriptors in

a Recursive Bayesian Estimation algorithm to classify the materials.

4.2.1 Signal Processing and Vibration Features

When the BioTAC fingertip interacts with a material, a vibration signal is

induced in the liquid gel. Upon contact, this vibration signal is generated

as a combination of oscillatory signals with a frequency spectrum dependent

on the material. For this reason, one can use the Fourier Transform of the
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(a) Copper. (b) Aluminium.

(c) Synthetic leather. (d) Genuine leather.

Figure 4.1: FFT representation of four materials used in the experiments.

vibration signal to characterise the material texture. In particular, the Fast

Fourier Transform (FFT) algorithm is proposed to convert the vibration

signal ν(t) into the frequency domain ρ(ω).

As this work aims to implement continuous material identification (in-

stead of episodic), the FFT is computed for small non-overlapping windows

of duration ∆t. The existing literature [89] indicates that good discrimination

results are obtained by using the frequency response in the range between

2 Hz and 500 Hz, therefore, for consistency this range was used to identify

the materials.

For a ∆t window, the FFT is a high dimensional vector of complex num-
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bers ρ(w) ∈ Cd∆t , where the dimension d∆t depends on the selected time

interval ∆t and the sampling period. Principal Component Analysis (PCA)

is used over ρ(ω) to obtain a lower dimensional feature vector ρ̄ ∈ <d, where

ρ̄ is the result of projecting ρ(ω) and d� d∆t.

The complex nature of ρ(ω) requires special care when processing the FFT

through PCA. Despite the fact that PCA can be used with complex vectors, it

was found that the modulus of the FFT carries the discriminative information

for material identification. However, the centering process was performed

over the complex vectors by subtracting the complex mean before computing

the projection matrix of the FFT modulus. Thus, applying PCA to the

centred vectors ρ − µρ, with mean complex values of the FFTs µρ ∈ Cd∆t ,

helps to cancel the random noise in the FFT, as white noise’s phase is random

while its amplitude is fixed.

Figure 4.1 shows the average values of the FFT frequencies modules for

small periods (∆t = 0.25 second) of the vibration signal upon contact with

different materials. Clear differences can be observed in the FFT of the

vibration signal when comparing materials, although some plots correspond

to surfaces that that are difficult to differentiate by human tactile sensing

alone, such as copper and aluminium or synthetic and genuine leather.

Many existing works in the literature extract features from the vibration

signal instead of using the Fourier coefficients. These features reduce the

dimension for the vector used to characterise the material by encoding gen-

eral properties of the vibration reading such as its total energy or statistical

properties (e.g. average energy or temporal variance). However, this process

discards relevant information for identifying the surface material. Moreover,

if one is extracting frequency domain features, the process is not very efficient

computationally as it is necessary to perform the FFT anyway. In Section
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4.3, the filtered FFT projected through PCA ρ̄ will be compared with a vec-

tor x of six features (x ∈ <6) found in the related literature as discussed

below, that combine independent information in the frequency and temporal

domains. Therefore, the feature vector x = {x1, x2, . . . , x6} is defined using

the following descriptors:

• The filtered average energy [79] is computed from the band pass filtered

FFT as:

x1 =
1

n

n∑
i=1

|ρi|2, (4.1)

where ρi = ρ(ωi) is the Discrete Fourier Transform (DFT) of the vi-

bration, ω1 = ωm and ωn = ωM are the limit frequencies of the band

pass filter, and n is the number of samples within the frequency range

[ωm, ωM ].

• The high frequency to low frequency energy ratio [96] is another fre-

quential feature computed as:

x2 =

k∑
i=1

|ρi|2

n∑
i=k+1

|ρi|2
, (4.2)

where ρi = ρ(ωi), ωk <= ωth, ωk+1 > ωth and ωth is a threshold that

defines what low and high frequencies are (as in [96] we set ωth =

100Hz).

• The spectral centroid [79] is computed from the FFT as the weighted

frequency as follows:

x3 =

n∑
i=1

|ρi|2ωi
n∑
i=1

|ρi|2
, (4.3)

where ρi is defined as above for the corresponding frequency ωi.
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• Temporal variance of the signal was used as a feature in [96] and [95],

and can be computed from the raw signal as:

x4 =
1

n

n∑
i=1

(νi − µν)2, (4.4)

where νi = ν(ti) is the temporal signal of the vibration, µν is its average

value, and n is the number of vibration samples considered, which

are also used to compute the temporal Skewness and Kurtosis of the

vibration signal.

• Temporal Skewness of the signal [95] is another temporal statistic of

the distribution of vibration values, computed as:

x5 =

1
n

n∑
i=1

(νi − µν)3

[
1

n−1

n∑
i=1

(νi − µν)2

] 3
2

. (4.5)

• Temporal Kurtosis of the signal, also used in [95], is a higher central

moment of the vibration values computed as:

x6 =

1
n

n∑
i=1

(νi − µν)4[
1
n

n∑
i=1

(νi − µν)2

]2 − 3. (4.6)

The feature vector representing the vibration signal will be hereafter re-

ferred to as ρ̄, the PCA projected FFT, although when performing the com-

parison with the features defined above, ρ̄ is substituted by x as an input for

the classifiers.

4.2.2 Statistical Modelling of Vibration

We will denote by m̃ the discrete random variable encoding the n material

textures to be identified, i.e. {m1,m2, · · · ,mn}, and P ∈ <d the random
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vector of features, FFT projected through PCA. Training sets were collected

to estimate the conditional probability density function of the vibration signal

for each material, p(P = ρ̄|m̃ = mj). For simplicity, we will use the compact

notation p(ρ̄|mj) = p(P = ρ̄|m̃ = mj). The conditional probability of each

material were modelled as a mixture of Gaussian distributions, i.e. Gaussian

Mixture Model (GMM), of the form:

p(ρ̄|mj) =

Kj∑
i=1

αjiN
(
µji ,Σ

j
i

)
(4.7)

where Kj is the number of Gaussians in the mixture for material mj, αji is the

prior probability (i.e. weight) of the ith Gaussian, and N (µ,Σ) represents

a normal distribution with mean µ and covariance Σ. Therefore, for each

material j, we obtained Kj normals with different means (µji ) and covariances

(Σj
i ), and their corresponding weights αji .

A GMM was estimated for each material and their parameters were ob-

tained using the Expectation-Maximisation (EM) algorithm (see Chapter 3).

The number of Gaussian functions for each material was empirically chosen

observing the increase of the maximum likelihood of the model. Figure 4.2

shows the log-likelihood of the model as a function of Kj for two materials,

copper and a synthetic fabric. The slope of the curve is large for small values

of Kj while it decreases and become more stable as Kj increases. There-

fore, one can choose the value so that a greater number of clusters does not

significantly increase the likelihood of the model.

4.2.3 Material Recursive Bayesian Estimation

In contrast with the approaches used in the literature where material iden-

tification is treated as a batch classification problem, a Recursive Bayesian
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(b) Synthetic fabric

Figure 4.2: Log-likelihood of a GMM as a function of the number of clusters

kj for three different materials.

Estimation algorithm was implemented to estimate over time an identifica-

tion probability of each of the materials to be identified. Although recursive

estimation algorithms are widely used in robotics they have not been used

for material identification. At this stage we have the conditional probability

density function p(ρ̄|mj) for each of the tested materials, which would al-

ready allow identification of the materials using a maximum likelihood (ML)

classifier. Alternatively, one could classify according to the maximum a pos-

teriori (MAP) probability of a material by using the Bayes rule for a set

of prior probabilities p(mj) to estimate the posterior material probabilities

p(mj|ρ̄). The classification results of both ML and MAP approaches are

identical under the assumption of uninformative priors p(mj) = 1
n

for all j.

Nevertheless, this work aims at identifying materials continuously without

the need to collect a long sequence of readings. The vibration signal ρ̄ is used

to iteratively obtain new probability posteriors for each material. Before the

robot hand starts the identification of a material, the initial prior probabilities
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are distributed evenly among all materials. Then, the material posterior at

each time step p(mj
k|ρ̄k) will be used as prior probability p(mj

k−1|ρ̄k−1) for

the next iteration. In summary, at ∆t intervals the feature vector ρ̄k was

obtained sequentially from the BioTAC data stream by computing the PCA

projection of the filtered FFT, and update the material probabilities using:

p(mj
k|ρ̄k) =

p(ρ̄k|m
j
k)p(m

j
k−1|ρ̄k−1)

p(ρ̄k)
, (4.8)

where the normalisation constant p(ρ̄k) can be obtained as:

p(ρ̄k) =
n∑
i

p(ρ̄k|mi
k)p(m

i
k−1|ρ̄k−1). (4.9)

In each iteration the algorithm updates the posterior probability p(mj
k|ρ̄k)

for all materials, j = 1, · · · , n, and the material with the highest posterior can

be considered to be the one the robot is touching. Alternatively, one could

define a confidence level to decide on a material only if the posterior prob-

ability is above some threshold. Instead of predicting the perceived texture

in one episode, the Recursive Bayesian Estimation algorithm incrementally

updates the probability estimate of the material.

4.2.4 Multimodal Continuous Material Classification

Using Thermal Features

A multimodal (i.e. vibration and thermal properties) tactile approach is

proposed to enhance continuous material identification. Most of the state

of the art methods for material identification, as well as the approach pre-

sented in Section 4.2.3, rely on the vibrations generated during the contact

between the fingertip and the surface. However, the proposed approach (Sec-

tion 4.2.3) allows a straightforward inclusion of other modalities. Combining
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vibration with thermal information might improve the identification accu-

racy, for instance, for materials with similar textures but different thermal

properties. As detailed in Chapter 2, a heating device maintains the core of

the BioTAC higher than room temperature. Thus, the BioTAC can measure

the temperature at the core, which typically decreases during contact with

a material because of the heat flux leaving the finger through the contact

surface, which is at room temperature. This can be used to discern a sur-

face as each material has a different thermal conductivity. In addition to the

thermal conductivity of the material, the thermal energy lost also depends

on the contact area and the temperature difference between the finger and

the external material. In particular, the thermal power lost (thermal energy

per unit of time ∂E
∂t

) is defined as the integral of the heat flux over the contact

surface:

∂E

∂t
=

∮
S

~φ · ~dS (4.10)

where ~φ is the heat flux, and the integral is computed on the contact area S

between the two materials. We can assume the flux ~φ always leaves the finger,

and its modulus – measured by the BioTAC sensor – increases with the tem-

perature difference and the thermal conductivity of the material (although

the thermal conductivity of the finger might play a role). The thermal flux

is assumed to be directed towards the surface normal as the thermal con-

ductivity of the air compared with the material is small, and the friction is

assumed to be too weak to generate thermal energy. Since the contact area

is typically small, the power loss can be approximated as the product of the

average flux modulus φ̄ by the contact area. Considering all objects to be

identified are at room temperature, the temperature difference depends only

on the temperature of the core, and therefore the thermal conductivity of

the material can be approximated as φ̄A
T

, where A is the contact area, and T



96 4.2 Continuous Material Identification

is the finger core temperature.

The contact area is estimated from the readings of the 19 electrodes

placed in the core under the BioTAC’s skin. These electrodes measure the

impedance, which is related to the thickness of the fluid between the core

and the finger skin at their corresponding locations. When the fingertip is in

contact with a surface, it causes a deformation in the rubber skin and, thus,

the value of the readings in the surrounding electrodes decreases. Electrodes

with negative value with respect to their resting level indicate contact. The

contact area for each electrode i is approximated as a circle of radius ri equal

to half the distance between the electrode and its nearest neighbour. There-

fore, the contact area of the fingertip and the material can be approximated

as a weighted sum of small circular areas:

A =
∑
i

λiπr
2
i , (4.11)

where λi ∈ [0, 1] is a scale factor that depends on the value returned by

electrode i. At the resting level (or above) λi is zero, and it increases to 1

for decreasing impedances down to a fixed minimum threshold em (in this

case em = −400), and is 1 for values below that threshold. To calculate the

scale factor λi we define a piece-wise linear function of the change of the

impedance value ei of each electrode relative to the resting level ēi as:

λi =


1 if ei ≤ em

1− ei−em
ēi−em if em < ei < ēi

0 if ei ≥ ēi

(4.12)

Additionally, another two thermal features were experimentally found

to improve the material identification accuracy. A linear regression of the

thermal flux as a function of time was performed for each sequence of ∆t
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readings, and used the slope and the regression error as additional features.

Therefore, in addition to the vibration feature vector ρ̄k, a three dimensional

heat based feature vector θk was obtained for each ∆t time window.

Similarly to the modelling of the vibration signal, the conditional proba-

bilities were computed for training each material p(θ|mj) using the technique

presented in Section 4.2.2. As for the vibration only approach (see Section

4.2.3), the material probabilities can be updated at every time step k using:

p(mj
k|ρ̄k,θk) =

p(ρ̄k,θk|m
j
k)p(m

j
k−1|ρ̄k−1,θk−1)

p(ρ̄k,θk)
, (4.13)

where the normalisation constant p(ρ̄k,θk) is:

p(ρ̄k,θk) =
N∑
i=1

p(ρ̄k,θk|mi
k)p(m

i
k−1|ρ̄k−1,θk−1), (4.14)

and,the vibration and thermal features are assumed to be conditionally inde-

pendent with each individual likelihood function given by the corresponding

GMM model for material mj, i.e. p(ρ̄k,θk|m
j
k) = p(ρ̄k|m

j
k)p(θk|m

j
k). At each

iteration, the algorithm updates the estimated probability p(mj
k|ρ̄k,θk) for

all materials, j = 1, · · · , n, and the perceived material is considered to be

the one with the highest posterior probability.

4.2.4.1 A note on sensor fusion

In Section 4.3 the proposed approach is compared with other state of the art

techniques for material identification such as kNN, ANN and SVM. The mul-

timodal recursive material identification framework combines vibration and

thermal information in a straightforward manner by assuming both modali-

ties are conditionally independent. Therefore, one can compute the likelihood

function of the combined data as the product of the individual likelihood

functions. However, this approach is not possible in the case of kNN, ANN
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and SVM. There are several ways in which one can combine the data for

those classifiers, for instance, one could classify each modality independently

and then use another classification level to make a final decision on the ma-

terial. We opted instead for performing the sensor fusion at the feature level

by defining a single feature vector x̂ joining together the vibration and ther-

mal features x̂ = [ρ̄ θ] (alternatively x̂ = [x θ]). This is simpler than a

combination of classifiers as there is no need to evaluate several classifiers to

make the final decision. However, the components of the vector provided as

an input to the classifier are obtained from diverse sources and, therefore,

they have different numerical scales. To avoid negative effects of the scaling

on the classifier’s performance, data whitening was implemented as a pre-

processing step for the learning techniques used. Hence, the training and

testing datasets were transformed to have zero mean and covariance equal to

the identity matrix.

4.3 Experimental Results

To evaluate the continuous material identification approach explained above,

a series of experiments in which 34 materials were used for classification was

performed. In this section, the results for continuous material identification

using the two different vibration feature sets, ρ̄ and x, detailed in Section

4.2.1 are shown. Moreover, results of the multimodal approach presented in

Section 4.2.4 are shown in this section. As continuous material identification

aims to identify the material as fast as possible, the average identification

accuracy and the time needed for successful recognition were used as perfor-

mance measures. Figure 4.3 shows the classification pipeline followed in our

experiments, including a comparison with other state-of-the-art techniques.
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Figure 4.3: Material identification pipeline scheme.

The colour boxes represent the proposed approach while the plain boxes show

features and classifiers commonly found in the literature. In addition to thor-

oughly evaluating the presented continuous material identification approach

(i.e. GMM/RBE) and its multimodal extension, the identification accuracy

was compared with other classification approaches such as k -Nearest Neigh-

bour (kNN ), Artificial Neural Network (ANN) and Support Vector Machine

(SVM).

The main advantage of our algorithm is that it minimises the time needed

to identify a material, as the classification is performed over several small data

windows. Conversly, all batch approaches existing in the material identifi-

cation literature decide on a single, typically larger window. Therefore, the

time interval required for successful material identification for the proposed

approach and the assessed machine learning techniques cannot be compared.

However, in the first set of experiments, the average number of iterations that

the recursive Bayesian estimation takes to successfully classify a material was

measured, and this information was used to perform a fair comparison be-

tween the recursive identification and the kNN, ANN, and SVMs algorithms.
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4.3.1 Experimental Set-Up

The experimental setup is shown in Figure 4.4(a) and consists of a turntable

moved by a step motor through a set of reduction gears and a BioTAC sensor

attached to a worm drive bar. The motor was controlled by an Arduino

board, which sets the turning speed of the motor to rotate the turntable at

4 secs per lap. A second motor is also controlled by the Arduino board to

move up and down the worm drive bar. This additional motor allows the

BioTAC to touch the material on the turn table when the bar is driven down.

Friction between the surface and the fingertip is proportional to the contact

force. A high contact force (i.e. large friction) stops the turntable, as the

motor has not enough power. Therefore, the contact force has to be kept low

which also implies the thermal energy created by the friction (i.e. E = Ffd,

where Ff is the friction force and d the displacement of the turntable) is low.

It is worth noting that the temperature of the finger takes time to reach a

steady state. The finger was allowed to warm up until the temperature was

stable before gathering any of the data-sets, either for training or testing.

Then the speed of the turntable was set and then the fingertip was moved

down until it touched the material surface. The readings were collected con-

tinuously storing all the information provided by the BioTAC sensor running

at 4.4 kHz, the maximum communication rate. Thus, the absolute temper-

ature, impedance and thermal flux are collected at a sampling frequency of

100 Hz, while the vibration signal has a maximum frequency of 2.2 kHz.

In the experiments a set of materials were purposely selected to include

different groups and several materials in each group. Figure 4.4 shows and

labels a total of 34 materials used in the identification experiments, which

are listed in Table 4.1. The selection contains materials with very different



4.3 Experimental Results 101

(a) Experimental setup. (b) Materials used in the experi-

ments.

Figure 4.4: Experimental setup for material identification.

textures such as the glass from a mirror and wood, but also a number of

fabrics and materials which are dissimilar. As some of the fabrics have dif-

ferent textures on both sides of the cloth, for instance materials 2 and 3, and

materials 30 and 31, these fabrics were used as separate materials and thus

increased the number of materials used on the experiments. Genuine and

synthetic leather, materials 16 and 18 respectively, were also included and

materials 13 and 14 were obtained using both sides of a padded envelope,

material 13 being the side of the bubbles, i.e. plastic, and material 14 the

paper side. Other pairs correspond to both sides of the same object such as

materials 6-7, 22-23 and 28-29, although their surfaces were clearly different.

4.3.2 Microvibrations-based Material Identification

In the first set of experiments the proposed approach for tactile material iden-

tification was evaluated using vibration information only. As it is explained

in Section 4.2, the FFT of the vibration signal was computed, band pass

filtered and projected into a lower dimensional space. In all experiments, the
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Table 4.1: List of materials used in all our classification experiments.

Idx Material Idx Material

1 Synthetic Green fabric 18 Genuine leather

2 Synthetic Pink fabric 1 19 Linen

3 Synthetic Pink fabric 2 20 Mirror

4 Cardboard box 21 Normal paper

5 Cardboard disk 22 Ping pong paddle 1

6 Carpet 23 Ping pong paddle 2

7 Rubber 24 Plastic

8 Baize 25 Plastic dish

9 Can of drink 26 Rough fabric

10 Copper 27 Slate stone

11 Cork 28 Sponge 1

12 100% Cotton 29 Sponge 2

13 Padded envelope 1 30 Leopard fabric 1

14 Padded envelope 2 31 Leopard fabric 2

15 Aluminium 32 Watercolour paper

16 Synthetic leather 33 Wood

17 Floor tiles 34 Peach skin fabric
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frame rate for continuous material classification was set to 4 Hz by splitting

the time domain signal into non-overlapping windows of ∆t = 0.25 secs. The

corresponding window is a sequence of 550 pressure samples that is trans-

formed into the frequency domain by computing the FFT. The resultant FFT

is band pass filtered by selecting only the 2 − 500 Hz frequency range and,

therefore, reduced to 124 FFT spectral components. It is worth noting that,

given the short time interval selected, the frequency interval between spectral

components is approximately 4 Hz, that is the actual minimum frequency

in the band pass filter. The 124 spectral components were projected to a 16

dimensional space, computing the complex average with the training dataset

for all 34 materials, while projecting their amplitude vectors. The number

of reduced dimensions was chosen to keep 97% of the total variance of the

original vectors and, therefore, the input to the recursive classification will

be ρ̄ ∈ <16.

The resultant feature vectors, the filtered FFT components projected

through PCA, were used for training the models of the likelihood functions

for each material as GMMs using the EM algorithm.To evaluate the pro-

posed approach 10-fold cross-validation was performed on the 10 minutes of

data sequences recorded for each material. The datasets were split into 10

groups of 60 secs sequential readings using alternatively 9 of the groups for

training and one for testing. It was found that the RBE approach always

identifies the correct material if enough evidence is presented and, once it

is detected, the rest of the sequence maintains a high probability estimate

of the correct material. The evaluation procedure used 60 secs of test time

series of every material starting from the first sample and stopping once the

recognition was successful (i.e. correct material detected), storing the num-

ber of required iterations. The first sample was then discarded (creating a
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shorter test sequence) and the process was repeated until the sequence was

too short for the algorithm to identify the material (typically sequences of

0.25 secs). This process was repeated for each testing sequence in the 10-

fold cross-validation to compute the average number of iterations needed for

successful identification and its standard deviation. Because the RBE algo-

rithm always identifies correctly the material, the ratio of successful material

classification cannot be considered as a performance measure. Therefore,

this experiment evaluates how long the approach takes to detect a material

based on the maximum posterior probability p(mj
k|ρ̄k), alternatively, using

the feature vector p(mj
k|xk) (see Section 4.2.1). The average number of iter-

ations and its standard deviation was computed, and translated into seconds

multiplying by ∆t (0.25 secs). These timings will be used in Section 4.3.2.1

to compare the proposed RBE approach to other state-of-the-art classifiers.

Table 4.2 shows the average time (in secs) required to correctly identify

each material over the 10 trials of the 10-fold cross-validation. Most of the

time, the algorithm was found to identify the materials within less than 0.5

secs when using the FFT-PCA components to model the material vibrations.

The results illustrate an average recognition time of 0.36 secs, which is just

greater than one iteration, with a standard deviation of 0.2 secs (i.e. just less

than one iteration). Although, obviously the recognition time is a discrete

random variable with positive skewness, attending to the probabilities of a

normal distribution, one can conclude that, with nearly 99% probability, the

time required for successful identification is less than one second, i.e. average

time plus three standard deviations.

Similar performance measures are applied to the results shown in Ta-

ble 4.2 to evaluate the presented approach when using the six dimensional

feature vector x = (x1, x2, . . . , x6) instead of ρ̄ (see Section 4.2.1). The
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Table 4.2: Average time (in seconds) needed for material classification using

the FFT of the vibration signals and 10-fold cross-validation. First number

is the average time and second is the standard deviation.

Material 1 2 3 4 5

FFT+PCA 0.39+0.21 0.35+0.19 0.35+0.19 0.43+0.28 0.39+0.25

Features 0.74+0.62 0.64+0.56 0.56+0.42 0.68+0.41 0.72+0.64

Material 6 7 8 9 10

FFT+PCA 0.3+0.12 0.33+0.14 0.44+0.26 0.34+0.16 0.3+0.2

Features 0.34+0.20 0.64+0.51 0.90+0.46 0.79+0.59 1.58+1.29

Material 11 12 13 14 15

FFT+PCA 0.3+0.11 0.35+0.18 0.33+0.16 0.34+0.17 0.3+0.16

Features 0.48+0.34 0.54+0.53 0.76+0.60 0.49+0.28 0.56+0.48

Material 16 17 18 19 20

FFT+PCA 0.44+0.25 0.46+0.34 0.32+0.14 0.49+0.35 0.29+0.11

Features 0.74+0.59 1.24+1.29 0.41+0.28 0.77+0.63 0.41+0.28

Material 21 22 23 24 25

FFT+PCA 0.39+0.25 0.38+0.22 0.36+0.19 0.38+0.22 0.38+0.21

Features 0.42+0.28 0.55+0.41 1.06+0.70 1.01+0.83 1.15+0.79

Material 26 27 28 29 30

FFT+PCA 0.27+0.07 0.42+0.25 0.29+0.13 0.32+0.14 0.27+0.08

Features 0.33+0.15 0.64+0.46 0.47+0.39 0.60+0.44 0.30+0.16

Material 31 32 33 34 Avg.

FFT+PCA 0.27+0.08 0.46+0.3 0.52+0.34 0.4+0.26 0.36+0.2

Features 0.35+0.25 0.29+0.12 0.98+0.70 0.65+0.63 0.67+0.51
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10-fold cross-validation results show that the time needed to recognise the

correct material is on average 0.67 secs (more than two iterations), while

the standard deviation is also slightly greater than two iterations (0.51 secs).

Following the same reasoning, high probability of successful material identi-

fication is above 2 secs, i.e. µ + 3σ, when modelling the vibration response

through the feature vector x. Hence, one can interpret that Table 4.2 quan-

tifies the (expected) benefit of using the whole frequency spectrum instead of

a set of features. Furthermore, it shows why previous material identification

works based on features require over one second long vibration readings. The

improvement in the average detection time when using PCA-FFT is above

45%, with improvement of 81% for material 10, and over 60% for materials

17, 23, 24, and 25. One can conclude that using the PCA-FFT features re-

duces both average identification time and standard deviation, making this

input vector less sensitive to variations in the signal. Moreover, using the

whole frequency spectrum information (from 2 Hz to 500 Hz) makes material

identification more than twice as fast for these materials. Interestingly, the

watercolour paper (material 32) is the only one identified faster using the

state-of-the-art features than using the FFT.

4.3.2.1 Evaluating the classification accuracy against standard Ma-

chine Learning methods

A comparison between the proposed RBE approach for continuous material

identification and the most commonly used algorithms in the machine learn-

ing literature (kNN, ANN, and SVM) was performed. In order to conduct a

fair comparison, the same amount of information was provided to each clas-

sification technique. The classification time results presented above showed

that the RBE typically takes approximately one second to identify the cor-
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rect material (µ+ 3σ secs) when using the vibration model based on ρ̄, and

more than two secs when using the vibration feature vector x. New FFT-

PCA vectors from one second data streams, and new feature vectors x from

2.25 secs length data streams, were generated to train and evaluate the kNN,

ANN and SVM classifiers, from the same datasets of the 34 materials. In the

case of the RBE approach for material identification this means that, using

ρ̄, a classification failure is considered when the online algorithm takes more

than four iterations (i.e. 1 second) to identify the material. Similarly, in the

case of the feature vector x, a classification failure was considered if the algo-

rithm takes longer than nine iterations (i.e. 2.25 secs). This provides a fair

comparison between the two methods as they are all required to classify the

surfaces in the same amount of time with the same amount of information

(although in the case of the RBE it can be observed in shorter time windows).

Although the same amount of variance (97% of the original signal) was kept

when projecting the FFT vector though PCA, taking longer temporal se-

quences of vibration readings changes the dimension of ρ(ω). Therefore, the

training vectors for these algorithms have a higher dimension, specifically the

ρ̄ used to train and evaluate the kNN, ANN, and SVM have dimension 49,

after band pass filtering (between 2Hz and 500Hz) and PCA projection.

In order to determine the optimal value of k for the kNN algorithm, a

systematic search procedure was implemented using Euclidean distance and

10-fold cross-validation. Test values from k = 1 to k = 21 were used to

find adequate values of k and k = 5 was concluded to perform best for both

the FFT-PCA vector and the feature vector x. In a similar manner, the

topology of the two hidden layer ANNs was set by running 10-fold cross-

validation tests for different numbers of units on each of the layers. The

number of outputs corresponds to the number of materials to be identified,
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i.e. 34 outputs encoding the materials as a binary output vector, while the

number of inputs was 49 for the FFT-PCA input vectors and 6 for the feature

vector x. The best trade-off between the network size and the identification

accuracy was achieved for networks with 34 units in both hidden layers for the

feature vector x. As a reflection of its higher dimensionality, 65 units in both

hidden layers were used for the FFT-PCA input vector. The input vectors of

the training and testing datasets were pre-processed through whitening (i.e.

scaled to have zero mean and identity covariance matrix), and the networks

were trained using the Levenberg-Marquardt algorithm. Finally, a One-Vs-

One strategy multiclass approach was designed for the classification using

SVMs, as it was found experimentally that it performs better than the One-

Vs-All alternative. Although it provided better identification accuracy, the

One-Vs-One approach needs to perform n(n−1)
2

binary classifications for each

input pattern, which in this case (since there is 34 materials) corresponds to

561 binary classifications. Therefore, this classification approach is the most

computationally expensive, and difficult to implement in an online set-up.

The kernel for all the SVMs was the standard Radial Basis Function (RBF),

and its scale parameter was chosen through a grid search.

These three classification techniques (i.e. kNN, ANN, and SVM) are typ-

ically used in tactile material identification literature. Their classification

accuracies were compared, using both FFT-PCA input vectors and the fea-

ture vector x, with the proposed RBE approach “with a recognition timeout”.

As expected, all techniques worked better when the PCA projected Fourier

transform was used as an input (kNN 98%, ANN 85.5%, SVM 92.2%, and

RBE 96.6%), instead of the feature vector (kNN 73.2%, ANN 54.2%, SVM

53.7%, and RBE 81.7%). It is worth noting that besides the performance

decrease, the feature vectors were collected over more than twice the time.
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Hence, there is a reduced identification rate and much slower identification

time. Interestingly, the recursive material identification is the best perform-

ing classifier when the six dimensional feature vector x is used (81.7%), since

it actually performs nine different classifications with much lower certainties,

but combines the material probabilities in an optimal way. All in all, when

using the FFT-PCA input vector, the kNN algorithm outperforms the other

approaches with a 98% average accuracy over the 10-fold cross-validation,

followed by the RBE 96.6%. Nevertheless, the latter can typically identify

the materials faster, meaning that the material is often identified in less than

one second.

4.3.3 Multimodal Material Identification

This section presents experimental results of the material identification ap-

proach described in Section 4.2.4 using vibration information and thermal

features (θk). Similar to Section 4.3.2, the 34 materials listed in Table 4.1

were classified using the proposed RBE and, for comparison purposes, the

same three machine learning techniques (i.e. kNN, ANN and SVM). Similarly

to the vibration only approach, the proposed recursive multimodal approach

always identified the materials correctly if enough evidence was obtained,

i.e. in a variable number of iterations. This occurs for both multimodal

approaches, either using the FFT-PCA or the feature vector x as input de-

scriptors of the vibration. It is worth mentioning that processing, training,

and testing procedures are identical to those presented in the vibration only

section, i.e. ∆t = 0.25 secs.

Although the thermal features are also computed in 0.25 secs intervals,

only 25 impedance and heat flux readings are obtained on each time window

because of the differences in sampling frequencies. To estimate the thermal
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power loss, the heat flux and impedance readings are averaged during the

measuring interval, while the heat flux slope and error are computed with

all the samples. The number of Gaussian functions in the mixture model

of the thermal features is estimated using the change in the training data

likelihood, which was typically 2, except for materials 4, 8, 12 and 23 which

was estimated as 3.

A 10-fold cross-validation procedure was performed on 10 minutes of data

sequences to identify the average time required by the RBE to successfully

identify the materials. The average identification times across the ten it-

erations for both sets of input vectors (i.e. FFT-PCA vs. features both

enhanced with thermal information) are shown in Table 4.3. Similarly to the

vibration only approach, faster material classification is achieved using the

PCA projected Fourier coefficients. However, in this case the time difference

is smaller than before as the improvement of the classification using features

is much greater when thermal information is included. Thus, a 40% reduc-

tion in the average identification time is achieved when thermal information

is combined with the feature vector x (0.4 secs vs. 0.67 secs in Table 4.2), and

a 22% improvement is achieved when combined with the FFT-PCA vector ρ̄

(0.28 secs vs. 0.36 secs in Table 4.2) was achieved. The multimodal average

identification time (and its standard deviation) for the feature sets x is close

to the time of the vibration only case when using FFT-PCA, nonetheless

faster identification is achieved when using the Fourier coefficients to charac-

terise vibration. Therefore, the average identification time when combining

the FFT-PCA with thermal information is slightly above one single itera-

tion, i.e. 0.28 secs. Attending to the standard deviations of the identification

times, one could say that, if combined with thermal features, to have good

identification accuracies (µ+3σ) the multimodal approaches need to see data
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Table 4.3: Average time (in secs) needed for multimodal material classifi-

cation using 10-fold cross-validation. First number is the average time and

second is the standard deviation.

Material 1 2 3 4 5

FFT+PCA 0.28+0.08 0.28+0.10 0.29+0.11 0.28+0.10 0.31+0.14

Features 0.32+0.16 0.39+0.29 0.39+0.28 0.29+0.11 0.59+0.54

Material 6 7 8 9 10

FFT+PCA 0.26+0.06 0.27+0.08 0.33+0.18 0.32+0.17 0.26+0.03

Features 0.29+0.12 0.30+0.14 0.50+0.31 0.64+0.50 0.41+0.35

Material 11 12 13 14 15

FFT+PCA 0.25+0.02 0.28+0.09 0.29+0.13 0.26+0.06 0.25+0.01

Features 0.26+0.04 0.31+0.15 0.71+0.60 0.35+0.17 0.39+0.34

Material 16 17 18 19 20

FFT+PCA 0.38+0.25 0.32+0.17 0.30+0.14 0.30+0.14 0.26+0.50

Features 1.11+1.55 0.50+0.48 0.39+0.17 0.53+0.47 0.31+0.15

Material 21 22 23 24 25

FFT+PCA 0.26+0.04 0.27+0.07 0.29+0.11 0.27+0.07 0.31+0.14

Features 0.27+0.09 0.31+0.17 0.41+0.27 0.34+0.19 0.53+0.44

Material 26 27 28 29 30

FFT+PCA 0.25+0.01 0.32+0.17 0.25+0.01 0.27+0.07 0.26+0.06

Features 0.25+0.01 0.48+0.43 0.27+0.07 0.32+0.18 0.29+0.12

Material 31 32 33 34 Avg.

FFT+PCA 0.25+0.01 0.29+0.13 0.30+0.12 0.26+0.06 0.28+0.09

Features 0.25+0.01 0.26+0.05 0.50+0.40 0.27+0.08 0.40+0.28
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for approximately 0.5 secs (two iterations) in the case of the Fourier coeffi-

cients, and 1 second (four iterations) for the vector x. These values will be

used as the baseline for comparison with other learning approaches in the

following section.

4.3.3.1 Comparison of the multimodal recognition against com-

monly used machine learning approaches

As previously discussed, the multimodal RBE approach was compared with

three machine learning techniques: kNN, ANN, and SVM. A 10-fold cross-

validation was performed for each of the four algorithms using 10 minutes of

data sequences from the 34 material dataset. As stated in Section 4.2.4.1,

the datasets were whitened to have zero mean and identity covariance when

evaluating kNN, ANN and SVM and their optimal parameters were obtained

using the same criteria as in Section 4.3.2.1. Similarly to the vibration only

approach, the kNN algorithm achieved optimal accuracy for k = 5 in both

two tested multimodal combinations (FFT-PCA and feature vector com-

bined with thermal features). The topology of the ANN was selected to have

two hidden layers with 65 units on each layer for the Fourier coefficients

combined with the thermal features, and 30 hidden units for the combined

vibration-thermal feature vector. Finally, SVMs multiclass classification was

performed using One-Vs-One strategy and RBF kernels, for which param-

eters were tuned through a grid search. The input data streams for all

classifiers were chosen to have a length according to the same principle used

in Section 4.3.2.1. Therefore, relying on the results shown in see Table 4.2

the input data is classified for three iterations long (0.75 secs) when using

the Fourier coefficients, and five (1.25 secs) for the vibration features. To

provide a fair comparison with the presented approach the same number of
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Table 4.4: Summary of material identification results.

kNN ANN SVM RBE

Vibration - Features 73.2% 54.2% 53.7% 81.7%

Vibration - FFT+PCA 98.0% 85.5% 92.0% 96.6%

Multimodal - Features 76.6% 82.9% 82.4% 93.8%

Multimodal - FFT+PCA 89.4% 94.6% 97.5% 98.6%

iterations was set as a deadline for successfully identifying the material using

the RBE algorithm.

Table 4.4 summarises the average identification accuracy of all 4 classi-

fication techniques (i.e. RBE, kNN, ANN and SVM) using vibration only

and the multimodal approaches. While the first two rows show the classi-

fication accuracy of vibration only material identification (i.e. either using

FFT-PCA or the feature vector) presented in Section 4.3.2.1, the last two

rows correspond to the multimodal cases. The selected criteria of the av-

erage time taken by the RBE to identify the materials was also followed in

the multimodal cases. Therefore, despite the fact that the time window sizes

used as input for some columns are different (i.e. 0.25 secs for the RBE and

1 second for the state-of-the-art classifiers), the same amount of informa-

tion is fed into all classification techniques when evaluating the performance.

Table 4.4 shows that, regardless of the classification technique and the way

of characterising the vibration (i.e. Fourier coefficients or features), includ-

ing thermal information improves the identification accuracy and shows that

the proposed feature vector provides an excellent description of the thermal

properties of the materials. An exception occurs for the kNN classifier when

combining the Fourier coefficients with thermal features. In that case, the

identification accuracy decreases from 98% to 89.4% as the data whitening
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Table 4.5: Iterative estimation of material 17 using vibration only approach

with FFT-PCA.
Iteration 0 1 2 3 4 5 6 7 8

P (m17) 0.03 0.03 0.01 0.01 0.05 0.61 0.98 0.99 1.00

1− P (m17) 0.97 0.97 0.99 0.99 0.95 0.39 0.02 0.01 0.00

maxP (mi), i 6= 17 0.03 0.88 0.95 0.99 0.95 0.39 0.02 0.01 0.00

preprocessing step (necessary to perform the combination) changes the dis-

tances between clusters. Moreover, despite the fact that the performance

does not decrease when using vibration features for the kNN classifier its

increase is relatively low (from 73.2% to 76.6%) compared to the other ap-

proaches evaluated. Table 4.4 also shows that using the full spectral range

always results in better classification. Therefore, these results pinpoint the

difficulty of identifying materials using the vibration features found in the

literature as they typically extract only statistical measures of the vibration

signal, completely ignoring the spectral components which actually charac-

terise the interaction between the BioTAC fingertip and the material. In

short, the best identification results were obtained when using the multi-

modal recursive Bayesian estimation (98.6%). It is worth noticing that this

identification accuracy corresponds for a classification deadline (i.e. within

the specified time range), notwithstanding the RBE algorithm could achieve

perfect identification accuracy if longer time sequences are used.

To further illustrate the improvement of the RBE algorithm when mul-

timodal information is provided, Tables 4.5 and 4.6 show the evolution of

the posterior probabilities for the same test sequence (i.e. material 17) using

only vibration and multimodal approaches. In both sequences the FFT-

PCA was used to characterise the vibration and the initial prior probabil-
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Table 4.6: Multimodal iterative estimation of material 17.
Iteration 0 1 2 3 4

P (m17) 0.03 0.98 0.99 0.99 1.00

1− P (m17) 0.97 0.02 0.01 0.01 0.00

maxP (mi), i 6= 17 0.03 0.01 0.01 0.01 0.00

ities (i.e. iteration 0) were uninformative. Both tables show the proba-

bility of the correct material P (m17), the combined probability of all the

wrong materials 1 − P (m17), and the highest probability of a wrong ma-

terial maxP (mi), i 6= 17. While Table 4.5 shows that it takes 5 iterations

to identify material 17 with a probability of P (m17) = 0.61 using vibration

only, Table 4.6 shows material 17 is identified in the first iteration with a

probability of P (m17) = 0.98. As it can be clearly seen, including thermal

information makes the identification correct from the first iteration on, re-

ducing in this case the identification time from 1.25 secs to 0.25 secs, i.e. from

5 to 1 iteration. It is worth mentioning that once the algorithm has detected

the correct material with probability 1.00 it maintains that probability value

as the prior for any other material in the next iteration will be zero.

4.4 Summary

This chapter presents a multimodal approach to tactile based continuous

material identification. Despite the fact that tactile sensors provide tem-

poral sequences of readings, state-of-the-art material recognition approaches

are episodic, i.e. a whole sequence of readings is processed to identify the

material. This work presents a continuous identification technique using re-

cursive estimation of the probability of identifying a set of materials. This

allows faster identification of most materials and does not require several
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exploratory movements. The experimental results show that when enough

evidence is gathered, the system achieves perfect recognition using the ex-

perimental set of 34 materials.

While existing approaches for robotic material identification mostly rely

on vibration information, including thermal features was shown to enhance

the recognition accuracy and reduce the time required for successful identifi-

cation. Moreover, standard tactile identification techniques typically require

a sequence of at least one second to classify materials. Using the proposed

continuous material identification approach, a robot endowed with tactile

sensors can identify materials in an average of 0.28 seconds with a very small

deviation from that time lapse. Although the proposed approach allows the

integration of one or more sensing modalities, this high detection speed is due

to the use of multimodal information. Hence thermal sensing enables a faster

identification than a vibration only approach, i.e. 0.36 seconds. Addition-

ally, including thermal information brings the average material identification

time very close to the window size. Faster identification could be achieved

by reducing the size of the window, yet the selection of ∆t = 0.25 was empir-

ically found to provide an excellent recognition time vs. accuracy trade-off.

The proposed approach was shown to perform better than any of the existing

alternatives when using the same data set.

Material identification can be used to enhance robotic grasping and ma-

nipulation of objects. For instance, grasping an object made of a fragile

material requires a precise estimation of the contact forces, i.e. to grasp the

object without breaking it. Chapter 5 presents an innovative technique to

grasp objects of unknown shape by adapting the fingers to reach an adequate

set of contact forces.
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Chapter 5

Precision Grasp control

through Tactile Sensing

5.1 Introduction

The identification of the material from which an object is made allows one to

infer some properties such as the coefficient of friction or the object compli-

ance. Such properties are important to endow robots with grasping capabili-

ties. Robotic grasping of objects is a core skill to allow robots to manipulate

objects in real environments. Robotic manipulation of objects requires grasp-

ing systems capable of ensuring that the contact between the robot and the

object is never lost, as this would result in the object being dropped and

damaged if the object is fragile.

A grasp is defined as a set of contacts on the surface of an object that

restricts the potential movements of the object when external perturbation

forces occur [169]. Humans use precision grasps to increase control on the

object (i.e. using only the fingertips) as opposed to power grasp where the

aim is to increase strength [170, 171]. While grasping strategies for robotic
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grippers are typically limited to using only the thumb and index finger facing

each other, or to hook grip the object (e.g. holding a suitcase), state-of-

the-art robotic dexterous hands have enough degrees-of-freedom (DoF) to

perform different types of grasps [172]. Finding a suitable set of contacts to

grasp an object is usually addressed by either using planning and execution

strategies (i.e. estimating the contact points for a given object) or using

sensory feedback control. While the first uses a model of the object to plan

a set of contacts that will result in a stable grasp, the latter adapts the

joints configuration until finding a suitable grasp, for instance, performing a

sequence of exploratory movements. However, most of the state-of-the-art

approaches to robotic grasping rely on previous known information about

the object geometry and surface material.

This chapter presents an approach for grasping objects using a Shadow

dexterous hand when information about the object geometry is not avail-

able, and ensuring neither the robot or the object are damaged. The con-

tributions of this chapter are three-fold. Firstly, the contact forces of the

BioTAC tactile sensor are modelled using the impedance and pressure sig-

nals. Secondly, a technique to approximately detect the position of an object

and find the homogeneous transformation between a Shadow Robotic hand

and a Microsoft Kinect sensors reference frames is presented. Finally, a pre-

cision grasp controller is implemented in a Shadow Robotic hand combining

Cartesian position and contact force control.

The work presented in this chapter has been partially published in the

following article:

• Reliable object handover through tactile force sensing and effort con-

trol in the Shadow Robot hand. In IEEE International Conference on

Robotics and Automation (ICRA 2017) [8].
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The remainder of the chapter is structured as follows. Section 5.2 presents

the precision grasp controller used to grasp objects with unknown geometry,

and the technique used to estimate the contact force using the BioTAC tac-

tile sensor. Section 5.3 proposes a method to obtain the centre position of an

object in a tabletop manipulation scenario using a Microsoft Kinect sensor.

Section 5.3 also presents a technique to obtain the homogeneous transfor-

mation between the reference frames attached to the Kinect sensor and the

Shadow robot forearm, and provides insights to the practical implementation

of the proposed approach. Experimental results are presented in 5.4. Finally,

Section 5.5 concludes the chapter and summarises the findings.

5.2 Precision Grasp Control through Contin-

uous Tactile Sensing

Existing reports in the grasping literature approach the grasping problem

using either planning and execution, or grasp control strategies (see Chapter

2). However, they often rely on information about the objects geometry,

which it is not always accurate. It is worth noting that inaccurate contact

forces applied during the grasp may damage the object or the robot. For

instance, applying a large wrench on a rigid object might damage the robot

or applying too much force on a fragile object might break it.

This section presents a grasp control strategy to grasp objects of unknown

shape while ensuring the integrity of the robot and the object is maintained

in a stable grasp. Using the surface material classification approach presented

in Chapter 4 the robot could identify the material from which the object is

made and use the material properties to find a suitable contact force con-

figuration that ensures neither the robot nor the object are damaged. The
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proposed approach drives the fingers towards the object and adapts the con-

tact configuration to grasp it using a Shadow robotic hand equipped with

BioTAC tactile sensors. Section 5.2.1 presents the technique used to estimate

the contact force using the BioTAC tactile sensor, and Section 5.2.2 presents

the proposed controller to perform precision grasps of unknown shaped ob-

jects.

5.2.1 Cartesian Force Estimation using the BioTAC

If the hand and finger joints have torque sensors attached, the wrench applied

to an object can be easily computed from the measured torques Γ using the

pseudo-inverse Jacobian matrix for the corresponding configuration J(q)†

since Bf = J(θ)†Γ. However, the sensors included in the joints of the Shadow

hand measure the differential tension on the tendons [5], not the applied

torque in the joints. Therefore, this section presents an alternative approach

using the SynTouch BioTAC [4] multimodal tactile sensors to estimate the

contact forces in the fingertips Ef instead of the applied wrench.

Although the BioTAC is not a force sensor, we can estimate the contact

force from its measurements. Specifically, the force applied in the direction of

the normal to the object surface can be approximated by using the pressure,

the contact area, and the normal vector to the object surface. While the

pressure measurements are obtained directly from the BioTAC’s raw data,

the contact area and the normal vector to the object surface can be estimated

from the skin deformation. Upon contact, the increase in the pressure (P )

measured by the BioTAC can be converted into the norm of a contact force

(|f |) by using the relationship |f | = Pa, where a is the contact area with the

object. Although the pressure is obtained from the sensor, the contact area

can only be estimated through impedance measurements from 19 electrodes
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located across the finger core. The measured impedances are directly related

to the distance between the core and the rubber skin at the electrode’s cor-

responding locations. Thus, the impedance value with respect to the resting

level (i.e. no contact) decreases when the rubber skin is deformed.

The BioTAC sensor and the approach detailed in Chapter 4 are used to

approximate the contact area corresponding to each electrode ‘i’ as a circle

of radius ri equal to half the distance between the electrode and its nearest

neighbour. Although the fingertip of the BioTAC also applies a torque at the

contact point, there is no way to estimate it, nor to compute the component

of the force tangential to the object without knowing the friction coefficient

between the skin and the object. Therefore, it is assumed that the full

length of the force is applied in the direction perpendicular to the contact

surface. The technique presented in [173] is used to estimate the contact

direction based on the unit vectors normal to the BioTAC fingertip at each

electrode position. Similar to the approach used to compute the area (see

Chapter 4), a weighted average of the normal vectors using the change in the

corresponding impedances relative to the resting levels is used to compute

the contact direction. Given the normal vectors for the BioTAC electrodes

with respect to the reference frame at its core n̂i, i = 1, · · · , 19, the total

estimate of the contact force can be computed as:

Ef =
|f |

|
∑

i λin̂i|
∑
i

λin̂i, (5.1)

where the force norm |f | is as defined above and λi ∈ [0, 1] is an impedance

dependent scale factor. The scaling factor λi is a piecewise linear function

of the average impedance value ei of each electrode (as described in Section

4.2.4). Thus, λi is zero at the resting level (or above), meaning no contact at

the electrode position, and it linearly increases to 1 for decreasing impedances
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up to a minimum threshold em (experimentally set to em = −400) and is 1

for values below the threshold.

It is worth noting that Equation 5.1 corresponds to the contact force in

the reference frame of the fingertip. The proposed precision grasp controller

uses Ef as an input to adapt the hand joints upon contact to reach a desired

contact force configuration.

5.2.2 Precision Grasp Controller

In this section, a strategy to perform precision grasps using three fingers

and a Cartesian position/contact force controller is presented. The proposed

approach has been proven to effectively grasp a large range of objects, without

having a priori information about their shape and size, by driving the fingers

towards a Cartesian position (typically inside the object) and, once the fingers

are in contact with the object, adapting the robot configuration to reach a

given set of contact forces. Upon contact, the transition between Cartesian

position and force control was designed to be sufficiently smooth to avoid

contact loss and sudden changes in the trajectory of the fingers.

The controller has two inputs: a desired Cartesian position x̄ relative to

the coordinate frame attached to the palm of the robot, and a contact force

f̄ relative to the coordinate frame of the BioTAC tactile sensor equipped as

the finger’s end-effector. Assuming the set of contact forces and the reference

Cartesian positions for all fingers are known, the precision grasp controller

will drive the fingers to reach their input positions or contact forces depending

on whether there is contact or not. The transition between driving the finger

towards x̄ and adjusting to f̄ (i.e. from position to contact force control)

needs to be sufficiently smooth to prevent the contact from being lost. The

proposed precision grasp controller ensures that the transition is smooth
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using a piece-wise linear function of the modulus of the contact force defined

as:

g(f) =


0 if |f| ≤ a

|f| − a
|̄f| − a

if a < |f| < |̄f|

1 if |̄f| ≤ |f|

(5.2)

where a is a threshold that defines the force magnitude of |f| at which g(f)

becomes greater than 0. The threshold value a = 0.005 was found to provide

smooth transitions between position and contact force control.

When the BioTAC does not detect any contact the proposed approach

behaves as a Cartesian position controller. As the fingers of the Shadow

robotic hand only have 3 joints (4 in the thumb) the workspace of each

finger is limited and, therefore, reaching a desired pose might not be possible.

Sometimes a given position could be reached but only for a small number

of orientations. This issue was addressed by only controlling the position

of fingertip, i.e. the orientation of the finger is not controlled. Thus, the

proposed approach finds a suitable pose that guarantees the finger’s end-

effector to reach the desired Cartesian position.

Although the plant (i.e. the model of the system and the actuator) of the

robotic hand is unknown, a first-order transfer function with an integrator

of the form:

Y (s) =
κ

(τs+ 1)s
, (5.3)

is assumed, where the parameters κ and τ define the first-order system.

Since the aim is to always reach the desired position when the finger is not

in contact but no time constrains are considered, a proportional controller

was used to drive the fingers towards x̄ = (ox, oy, oz, rx, ry, rz). It is worth
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Figure 5.1: Precision grasp control diagram.

mentioning that although the orientation values rx, ry, and rz are different to

zero, the proposed approach does not control the orientation of the finger as

the gain Kx zeroes the orientation components of the pose error xε = x̄− x.

Thus, the Cartesian position controller feeds back the joint angles of the

finger’s kinematic chain q and computes the position of the end-effector x

using Forward Kinematics (see Section 3.5.1).

While the proposed controller only considers x̄ when there is no contact,

it solely relies on f̄ when |f| ≥ |̄f|. Another proportional controller was used

with the contact force f estimated using BioTAC tactile sensors (see Section

5.2.1). Figure 5.1 shows a block diagram of the proposed control system used

for each finger. The torques Γ ∈ <n applied in each iteration for each of the

n joints of the kinematic chain are computed as:

Γ = (1− g(f))JTKx(x̄− x) + g(f)JTKf (̄f− f), (5.4)

where J is the n x 6 Jacobian matrix for the corresponding finger, Kx ∈ <6

are the gains of the Cartesian position controller, and Kf ∈ <6 are the gains

of the force controller.

The geometrical description of the hand is given by the Denavit-Hartenberg
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Table 5.1: Thumb D-H parameters of a standard Shadow Dexterous hand

[174], where di, ai, αi, are respectively the offset, length and twist of the link

i, and θi is the angle of the ith joint.

Joint di ai−1 αi−1 θi Max. Min.

1 0 0 0 θ1 θ1 60o −60o

2 0 0 90o θ2 θ2 75o 75o

3 0 b2 0 θ3 θ3 15o −15o

4 0 0 90o θ4 θ4 30o −30o

5 0 b3 0 θ5 θ5 90o −10o

(D-H) parameters [175]. An example of the D-H parameters of the thumb in

a standard Shadow robot hand is shown in Table 5.1. Therefore, a kinematic

model of the robot can be obtained using the D-H parameters to obtain

the homogeneous transformations as detailed in Section 3.5.1. Additionally,

the mathematical description of the hand motion can be obtained using the

equation of motion [175]. For each chain of links (i.e. fingers) the motion of

the robot can be represented in matrix form as a set of coupled differential

equations:

Λ = M(q)q̈ + C(q, q̇)q̇ + G(q), (5.5)

where q, q̇ and q̈ are the joint coordinates, velocities and accelerations, M

is the joint-space inertia matrix, C is the Coriolis and centripetal coupling

matrix, G is the gravity loading, and Λ is the vector of actuator forces asso-

ciated with the joint coordinates q. However, the dynamic model of the hand

was not used in this thesis as the precision grasp control was not implemented

on simulation and the controller parameters were adjusted empirically.
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Figure 5.2: The Shadow robot hand attached to a Shunk arm.

5.3 Precision Grasp Control for Tabletop Ma-

nipulation

In order to perform a grasp, a Cartesian position inside the object is passed to

the proposed grasp controller, which will result in the fingers eventually being

in contact with the object surface. Upon contact, the robot adapts to reach

a desired set of contact forces that was previously selected to suit a point

contact with friction model (i.e. Coulomb friction model) for a three finger

precision sphere grasp. Although the generated configuration of the finger

poses and contact forces does not imply the system will always perform a

stable grasp, high friction between the rubber skin and the object is assumed

and, therefore, the object grasp will display a stable behaviour in spite of the

inaccuracies.

This section presents an approach to finding the Cartesian position inputs

so as to use the proposed precision grasp controller in a tabletop manipulation

scenario. The proposed approach is implemented in a Shadow robotic hand

attached to a Schunk arm (see Figure 5.2). Although the precision grasp
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control detailed in this chapter assumes the arm stays fixed and the object

is reachable by the hand, it can be extended to drive the arm so the object

is within the hand workspace. A Kinect sensor facing the robot from a

lateral position, from a distance of approximately 70 cm was used to find the

object and the homogeneous transformation between the reference frames

was defined by the Kinect sensor and the robot forearm poses.

5.3.1 Scene Segmentation using Microsoft Kinect Sen-

sor

Although the Kinect sensor also features an RGB camera and a multi-array

microphone, this work only uses the embedded depth sensor consisting of an

infra-red laser projector combined with a monochrome CMOS sensor [176].

Therefore, the Kinect provides a depth map Z of the scene in front of the

sensor, which is assumed to be a tabletop manipulation scenario for one

object. The depth map Z was processed using the Point Cloud Library

(PCL) [177] and the RANSAC algorithm [164] was used repeatedly to extract

the objects in the scene.

The first stage of the scene segmentation is removing all points in Z that

are at a distance greater than 1 metre from the Kinect sensor as the object is

at a distance of approximately 70 cm. Removing far points allows subsequent

segmentation of objects to be performed faster than using all points in Z as

it reduces the number of trials required by the RANSAC algorithm to ensure

certain probability of success (see Section 3.4.2). Then, the resultant depth

map Z1 was used to find the table plane using the RANSAC algorithm. Using

a point x, a normal vector n̂ = (nx, ny, nz) and a distance d of the plane from

the origin, the equation of the plane can be defined by its Hessian normal

form x · n̂− d = 0. Thus, a model of the plane mπ = {nx, ny, nz, d} was used
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in RANSAC to find the points in Z1 that best match the shape of a plane.

Upon completion, the points matching the plane Π were extracted from Z1

and the resultant depth map Z2 was then used to find the forearm of the

Shadow robotic hand.

The forearm of the Shadow robotic hand was modelled as a parametric

cylinder with a radius between 3 and 10 cm. A cylinder in 3D space can

be defined as ||x − p − (x − p) · v̂ · v̂||2 = r2, where p = (px, py, pz) is a

point on its axis, v̂ = (vx, vy, vz) is the axis direction, and r is the radius of

the cylinder. Therefore, the cylinder model was defined by seven coefficients

mc = {px, py, pz, vx, vy, vz, r} that the RANSAC algorithm used to find the

best match in Z2. The points estimated to fit in the cylinder model C were

extracted from Z2 to obtain another depth map Z3.

Z3 contains the points corresponding to the robotic hand (except the

forearm) and the object. A k-means clustering approach [155] was used to

partition the points in Z3 into two clusters. In order to find the cluster that

is closer to the table, the euclidean distances from the centre of each cluster

µi to the plane Π were computed as:

di(µi,Π) = |µin̂− d|, (5.6)

where i ∈ {1, 2} denotes the index of the cluster. The cluster that is closer

to the plane argmin
i∈{1,2}

di(µi,Π) was selected as the depth map of the object Ω

placed on the tabletop. It is worth noting that Ω (similarly to other depth

maps detailed in this section) only reflects points from the point cloud that

can be seen from the sensor viewpoint and, as some faces of the object are

totally or partially occluded, it does not represent the whole surface of the

object.
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Figure 5.3: Tabletop manipulation scene diagram.

5.3.2 Kinect-Robot Frame Transformations

All points in the depth maps, extracted as described in Section 5.3.1, are

relative to the reference frame attached to the Kinect sensor. However, the

Cartesian position input x̄ of the precision grasp controller (see Section 5.2.2)

is relative to the reference frame defined by the palm joint pose (i.e. posi-

tion and orientation) of the Shadow robotic hand. For simplicity we will

refer thereafter to the coordinate frames defined by the palm and forearm

joint position and orientations as the palm reference frame P and the base

(or forearm) frame B. As the transformation between the Shadow robot

hand’s forearm and palm reference frames can be obtained using the robot’s

kinematic chain and forward kinematics, the problem is now to find the ho-

mogeneous transformations between the Kinect sensor and the forearm frame

of the Shadow hand.

As detailed in Chapter 3, the homogeneous transformations jAi allow

any point to be expressed in the coordinate frame i relative to the frame j.

Therefore, the homogeneous transformation between the Kinect sensor and
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the base frame of the Shadow hand is defined as:

BAK =

BRK
BoK

0T 1,

 , (5.7)

where BoK is the origin of the coordinate frame B relative to the frame

K, BRK is the matrix representing their relative orientation and 0 is a

3-dimensional column vector of zeros. Figure 5.3 shows a diagram of the

tabletop manipulation scenario including the reference frames attached at

the Kinect sensor and the robot forearm. The x, y and z orientation axis of

the reference frames (i.e. the Kinect and the forearm frames) are represented

using a red, a green and a blue arrow respectively, and the transformation

between the Kinect frame and the forearm frame BAK is represented using

a grey arrow. Although BAK is unknown as it depends on the location of

the Kinect and the robot, an approach to estimate it using the depth maps

of the cylinder C and the plane Π (see Section 5.3.1) is presented below.

The matrix BRK can be built using the normalised vectors that define

each axis of the coordinate frame B relative to frame K. The z -axis of

frame B is computed as v̂z = v
|v| , where v is the axis vector of the cylinder

obtained during its segmentation using the Kinect. The palm of the robot

is assumed to be aligned with the z -axis of the base frame B and facing

the table. Considering the cross product of two linearly independent vectors

is a vector perpendicular to both, it is possible to obtain the vector that

defines the x -axis as the cross product of v̂z and the normal vector to the

tabletop as v̂x = n̂× v̂z, where n̂ is the normal vector to the tabletop surface

obtained during the segmentation of the plane. This approach works under

the assumption of the palm facing the table, which suits the experimental set

up used in this work, i.e. the robotic arm is fixed. However, this restriction

could be overcome through deeper analysis of the arm configuration to suit
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any relative pose of the palm joint. In a similar manner it is possible to

obtain the vector defining the y-axis v̂y = v̂z × v̂x and, therefore, define the

orientation fo the reference frame B relative to K as:

BRK = [v̂xv̂yv̂z]
T . (5.8)

To obtain the origin BoK , we first compute the position of the mean point

in the depth map of the cylinder C. The mean point c̄ is approximately

centred in the y and z axis of the cylinder. To find the centre of the cylinder,

the point c̄ is projected on the axis v̂z as:

c̄′ = p +
[
(c̄− p) · v̂z

]
v̂z. (5.9)

The robot’s forearm reference frame is attached to the base of the cylinder

but the average of the points detected by the Kinect is in the middle of the

cylinder and, therefore, the point c̄′ needs to be translated along the z-axis

to match the base frame origin. Using the height of the forearm cylinder

h = 18.3 cm. the origin of the frame can be obtained as:

BoK = c̄′ − h

2
v̂z. (5.10)

5.3.3 Grasping Objects with Unknown Shape

Instead of performing a detailed grasp planning strategy, the proposed ap-

proach moves the fingers towards the object and adjusts the contact forces

to find a suitable configuration for grasping when the fingertips touch the

object. To perform the grasp, a force vector relative to the fingertip refer-

ence frame Ef and a Cartesian position relative to the frame defined by the

robot’s palm position and rotation Px are passed as inputs to the precision

grasp controller presented in Section 5.2.2. While the Ef vector is assumed
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to provide a successful object grasp configuration, Px is a Cartesian posi-

tion inside the object. Thus, the position control always achieves contact

between the finger and the surface of the object leading smoothly to contact

force control.

An approximation of the object position can be computed using the depth

map of the object Ω described in Section 5.3.1. As the object is unknown

and the depth map only represents the surface of the object that is visible

from the viewpoint of the Kinect sensor, it is not possible to estimate the

centre of the object accurately. The object centre is assumed to lie at some

point in the vector v̂z, i.e. is roughly aligned with the arm. Therefore, the

centre of the object is computed by projecting the average position of the

depth map Ω to the vector v̂z as:

Kx = ō−
[
(ō− p) · v̂x

]
v̂x, (5.11)

where ō is the average point position of Ω.

If the homogeneous transformation matrix BAK and the kinematic chain

of the robot hand are known, it is possible to transform any point relative to

the coordinate frame K to be relative to the palm frame Px using Forward

Kinematics (see Section 3.5.1). As the object position is (approximately)

known, one option is to compute Px and command all three fingers to move

towards that position. Instead, a virtual sphere is set inside the object and,

therefore, the grasp is approached as a precision sphere grasp. Figure 5.4

shows a flow chart of the proposed grasp operation to be performed by the

shadow robot hand.

Thus, a virtual sphere with radius r1 and centred at the object position

Kx is defined and its grasp locations denoted as Kxj, where r1 < r0 is the

radius of the virtual sphere, r0 is the radius of the depth map Ω, j = 1 is the

thumb, j = 2 is the first finger, and j = 3 is the middle finger. The contact
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Figure 5.4: Flow chart of the proposed precision sphere grasp operation.

location of the thumb is the intersection of the vector v̂ and the virtual

sphere that is closest to the hand and is computed as Kx1 = Kx− v̂zr1. The

contact locations of the first Kx2 and middle Kx3 fingers were computed by

converting Kx1 to spherical coordinates and finding the points in the sphere

that lie at azimuth angles of ±170◦ relative to Kx1.

When trying to reach Kx the trajectory of the finger is discontinued upon

collision as the target position is inside the object. Depending on the initial

configuration of the joints, the size and shape of the object, the grasp could

fail if the trajectories are interrupted in a joint configuration that prevents the

precision grasp controller adapting to a suitable contact force configuration.

For instance, if the initial position of all fingers is facing the same side of the

object the fingers might push the object instead of grasp it. To deal with this

issue, the proposed grasp approach was split into two stages: pre-grasping

and grasping. During the pre-grasping stage, the fingertips are driven to

find contact locations with a virtual sphere of r2 > r0 (typically r2 = 6 cm),

which is assumed to be bigger than the object, i.e. the pre-grasping stage

will result in no contact with the object. The pre-grasping stage could be

finished once the controller has reached the desired configuration within a

distance threshold. Instead, after 5 seconds the grasping stage is triggered

by passing new contact locations for a virtual sphere of r1 = 1 cm (i.e. inside
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the object) to the precision grasp controller. As the motion required during

the pre-grasping stage is relatively small, 5 seconds is sufficient to reach any

hand configuration if the precision grasp controller is tuned, i.e. Kx selected

to provide optimal response without oscillations.

During the grasping stage, the fingertips are driven towards the object

in order to grasp the virtual sphere of radius r1 = 1 cm placed inside the

object. However, the fingertips will always contact the object surface before

reaching the commanded position. The BioTAC tactile sensors detect arising

contact forces and the precision grasp controller will adapt the joint angles

to reach the desired force contact configuration. As detailed in Section 5.2.2,

the transition between driving the fingers towards the contact locations of

the virtual sphere and adapting to the desired grasp force configuration is

set progressively as a function of the magnitude of the contact forces.

When the contact force of a finger is small the target contact locations of

the virtual sphere will still play a significant role on the commanded torques

to the finger so that the contact force increases. Once the measured contact

force reaches the magnitude of the desired contact force, the precision grasp

controller will adapt relying only on contact force control. If the contact

force magnitude increases above the commanded contact force magnitude,

the force control module would reduce the pressure applied on the object.

Hence, the precision grasp controller adapts the finger’s joint positions to

find a suitable grasp force configuration and guarantees the contact with the

object is maintained constant.
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(a) Tabletop manipulation set-up. (b) Alternative set-up.

Figure 5.5: Tabletop manipulation experimental set-ups.

5.4 Experimental Results

The proposed approach was evaluated on a tabletop manipulation scenario

using a Microsoft Kinect sensor and a Shadow Robot Hand equipped with

BioTAC tactile sensors. The hand was attached to a Schunk arm, which

stays fixed in all of the experiments as shown in Figure 5.5. The initial

configuration of the robot manipulator was set in stretch position (i.e. the

arm and the hand are straight and horizontal). The Kinect sensor was placed

on a box that raised it 19 cm from the table plane facing the robot from a

lateral position at a distance of approximately 70 cm from the object and the

robot palm. It is worth noting that the proposed approach would detect the

table, the object and the forearm for any configuration of the Kinect and,

therefore, it is not limited to the experimental set-up described.

The approach presented in Section 5.3 finds an object in a tabletop manip-

ulation scenario and its homogeneous transformation to the reference frame

attached at the palm joint position and orientation. Although the object

position could be reached by driving the manipulator arm to place the palm
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of the robot close to the object, the experimental set up used to grasp objects

raised them using a box so the object is in the hand workspace, i.e. all fin-

gertips can reach the object position. This implies that an additional plane

must be segmented during the scene processing. Section 5.4.1 details the

additional steps required when the object is placed on a box and presents ex-

perimental performance results in comparison with the approach described

in Section 5.3.1. Section 5.4.2 evaluates the proposed scene segmentation

approach and Section 5.4.3 presents experimental results from grasping a

number of objects with different shapes and materials using the proposed

precision grasp controller.

5.4.1 Scene Segmentation

In this experiment the depth maps from two different tabletop manipulation

scenarios were segmented. First, the scene segmentation method described

in Section 5.3.1 was used to extract the object, the robot’s forearm, and the

table in a typical tabletop manipulation scenario as shown in Figure 5.5(a).

Additionally, an experimental set-up where the object was placed on a box

that, in turn, is on the table (see Figure 5.5(b)) to raise it closer to the

hand was segmented. The scene segmentation method described in Section

5.3.1 was adapted to suit the additional box in the experimental set-up by

extracting a vertical plane (i.e. the face of the box that looks at the Kinect

sensor) using the RANSAC algorithm. A similar model of a plane mπ to

that used in Section 5.3.1 to extract the tabletop was used to obtain the

parameters of the vertical plane. Note that, due to the relative angle of the

plane and the sensor, the Kinect sensor detects more points from the vertical

plane than the horizontal plane. Thus, the RANSAC algorithm will detect

the vertical plane first if the data points representing both (i.e. the vertical
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(a) Object lays on the tabletop. (b) The object is raised.

Figure 5.6: Segmentation of a tabletop manipulation scene.

and the horizontal) planes are in the depth map used as an input. Therefore,

the plane of the box is extracted from Π immediately after the points that

are far away from the sensor are cleaned, and subsequent segmentation steps

extract the tabletop and the robot’s forearm from the depth map resulting

from the extraction of the box.

Figure 5.6 shows the scene segmentation for the two tabletop manip-

ulation experiments described above. The data points of the depth map

obtained from the Kinect data (i.e. before any signal processing) are shown

in black and the cylinder corresponding to the robot forearm is coloured in

green. The horizontal plane representing the tabletop, the vertical plane cor-

responding to one side of the box, and the object are coloured in white, red,

and blue, respectively. Considering the size of Z1 in the experiments, run-

ning k = 22 iterations of the RANSAC algorithm is sufficient for detecting

the plane with 99 % of total probabilities of success (see Section 3.4.2). Sim-

ilarly, extracting the cylinder using k = 52 iterations provides 99% chance

of finding the forearm. In this experiment, k = 300 was used for both, the

plane and the cylinder, as it provides a very low probability of missing the
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Table 5.2: Standard deviation σ1 of the position estimation for three different

objects.

Cube Cylinder Prism Average

σ1 (cm.) 0.25 0.69 0.49 0.48

object, i.e. 3× 10−25 % for the plane and 1.9× 10−12 % for the cylinder. It

was found that the proposed approach can accurately extract the object from

the original depth map, which is a pre-requisite to continue with the process

of finding the object position relative to the robot’s coordinate frame.

5.4.2 Finding the Shadow Robotic Hand and the Ob-

ject

In this section a number of object segmentation experiments were performed

on a tabletop manipulation scenario to further obtain the object position

relative to the coordinate frame attached to the Kinect sensor Kx, and the

homogeneous transformation between the Kinect sensor and the Shadow

robot forearm BAK . This experiment aims at evaluating the accuracy of

the method presented in Section 5.3 to estimate the values of Kx and BAK .

The objects used in this experiment were a cube of size 4.5× 3.9× 3.25 cm,

a cylinder with radius 2.45 cm and height 5 cm, and an octagon prism with

height 4.8 cm and radius 2.45 cm. The objects were raised to be within the

workspace of the robot hand using a box as shown in Figure 5.5(b).

This experiment evaluates the robustness of the proposed approach when

estimating the Shadow forearm frame and the object position. Depth maps

of the tabletop manipulation scene were collected using the Kinect sensor for

100 iterations for each object, and the estimate of the values of Kx, BoK ,

and BRK was computed for each iteration. To evaluate the accuracy of the
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proposed approach in finding the object in the scene, a 100×3 data matrix X

for each object was computed including all values of Kxi for i = {1 . . . 100},

and its covariance matrix ΣX. The eigenvalues λj of ΣX for j = {1, 2, 3}

represent the variance of the object position Kx in the directions defined by

the eigenvectors. Table 5.2 shows the square root of the larger eigenvalue (i.e.

standard deviation of Kx) for all three objects evaluated in this experiment,

which on average is 0.48 cm. Assuming the object position error follows

a normal distribution, one can conclude that the error is less than three

times the standard deviation of Kx with 99.7% accuracy, i.e. ε = 3σ1. It is

worth noting that, given the size of the objects used in this experiment, the

proposed approach guarantees the point Kx is always inside the object and,

therefore, the control mechanism will drive the fingers towards contact when

used as input to the proposed precision grasp controller.

The error of BoK was also evaluated using a similar procedure. A 100×

3 matrix O was defined using the values of BoK collected during all the

iterations in this experiment. The covariance matrix of O was computed

and the square root of the larger eigenvalue was taken as standard deviation

σo = 0.22 cm of the forearm position. Similarly to the case when the object

position was evaluated, the cylinder position error was assumed to follow a

normal distribution and, therefore, 99.7% of the time the error of BoK lie

within three standard deviations, i.e. ε = 3σo. Hence, the proposed approach

can estimate BoK with an error of less than 0.66 cm.

This experiment also evaluates the accuracy of the estimate of the robot

forearm orientation. The azimuth θ and elevation φ angles of the forearm

reference frame with respect to the Kinect reference frame were computed for

each of the 100 trials and their average and standard deviation were obtained.

The results in Table 5.3 show the average µ and standard deviation σ of the
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Table 5.3: Mean µ and standard deviation σ (in degrees) of the robot forearm

orientation relative to the Kinect reference frame.

µ σ

θ −178.90o 0.07o

φ −58.84o 0.06o

Figure 5.7: Objects used in the experiment presented in Section 5.4.3.

rotation angles (θ and φ) of the forearm reference frame relative to the Kinect

reference frame. The values of σ are 0.07o for the azimuth and 0.06o for the

elevation angle and, therefore, the variations in the estimate of the robot

forearm orientation relative to the Kinect coordinate frame are very small.

More precisely, assuming the error of BAK follows a normal distribution, one

can conclude that 99.7% of the time the proposed approach can find BAK

with an error less than 0.21o, i.e. 3σ.
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5.4.3 Precision Grasp Control through Continuous Tac-

tile Sensing

In this section, the method to grasp objects of unknown shape detailed in

Section 5.2 was evaluated for 10 different objects. The objects are shown

in Figure 5.7 and were purposely selected to have different shape, size, and

surface material. The set-up used in this experiment is a tabletop manip-

ulation scenario where the object is raised 19 cm above the table to place

it in a location within the robot hand workspace such as in Figure 5.5(b).

However, this assumption can be relaxed if the hand is attached to a movable

arm. The proposed approach segments the scene using the RANSAC and the

k-means algorithms to obtain the reference Cartesian position command for

each finger’s precision grasp controller. Thus, the grasp of the object was

executed in two stages (i.e. pre-grasping and grasping), and then the object

was lifted.

All executions of the RANSAC algorithm used in this experiment set

the maximum number of iterations to k = 300 although, as detailed in Sec-

tion 5.3.1, a smaller number of iterations could provide sufficient certainty

of finding all objects. Despite the fact that the performance of the proposed

approach can be enhanced by providing a specific set of contact forces for

each object (i.e. considering the object material) the same contact force con-

figuration was used for all objects, which was selected empirically. This as-

sumption can also be relaxed if a set of contact forces specific to the detected

object material are obtained a priori. Nonetheless, the proposed approach

was capable of grasping and lifting all objects used in the experiment.

Figure 5.8 shows sequences of trials using the proposed approach to grasp

4 different objects: a boiled egg, a foam prism, a tennis ball, and a foam cube.
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(a) Egg 1. (b) Prism 1. (c) Ball 1. (d) Cube 1.

(e) Egg 2. (f) Prism 2. (g) Ball 2. (h) Cube 2.

(i) Egg 3. (j) Prism 3. (k) Ball 3. (l) Cube 3.

(m) Egg 4. (n) Prism 4. (o) Ball 4. (p) Cube 4.

(q) Egg 5. (r) Prism 5. (s) Ball 5. (t) Cube 5.

Figure 5.8: Four sequences of grasping different objects. An egg in the first

column, a foam prism in the second column, a tennis ball in the third column,

and a foam cube in the fourth column.
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Although no information of the object shape and size was provided, the hand

always grasped and lifted the objects. While the whole grasping process was

performed using the approach presented in Section 5.2, the lift was performed

manually by applying a torque on the wrist joint of the Shadow robotic hand

using the default user interface and, therefore, varied from trial to trial. In

order to support the case that the proposed controller can keep the object

grasped during manipulation in spite of arising perturbations, more complex

object manipulation tasks are necessary.

To illustrate the behaviour of the proposed approach the magnitude of the

contact forces for each finger was analysed. Figure 5.9 shows the evolution

over time of the force magnitude for the thumb, first and middle fingers

during the grasp of an octagon prism as shown in the sequence of the second

column in Figure 5.8. The magnitude of the thumb’s reference force was

set to be twice as large as the the reference forces of the first and middle

fingers since it has to compensate the forces applied by the other two fingers.

Thus, the reference force magnitude |̄fi| for each finger ‘i’ is represented with

a horizontal blue line in Figure 5.9, and the force magnitude at every time

step |fi| is represented by a red line. The green vertical dashed line shows the

approximate moment in which the object lift begins. The results show that

the proposed approach adapts to keep the contact force magnitudes below

the reference threshold and increase the pressure when a variation in the

contact forces is detected during the lift.

There is a small chance of the proposed approach failing to grasp any

of the objects used in this experiment. For that to happen, the estimation

error of the object position and the robot reference frame would have to

match their maximum values simultaneously, which would result in some

of the Cartesian positions passed as inputs to the precision grasp controller
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Figure 5.9: Force magnitude evolution over time for grasping and lifting an

octagon prism.

being outside of the object. This is a very unlikely situation and it does

not necessarily result in the object grasping failing as the object would be

pushed by some of the fingers. To deal with this issue, the robot could reset

the system without completing the grasp and, therefore, segment the scene

again if any of the fingers reaches the input Cartesian position within a safety

threshold. This approach to solve the potential issue of missing the object

is grounded on the results presented in this work although, in practice, the

system never encountered this situation during the experiments ran.

5.5 Summary

This chapter presents a control strategy to grasp objects of unknown shape.

Although a number of approaches for robotic grasping exists, they often re-

quire an accurate model of the objects or they perform several exploratory

procedures. This work proposes a precision grasp controller using tactile

sensing that adapts the grasp configuration upon contact with the object.
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The approach drives the fingers to grasp a virtual sphere inside the object

and, when contact is detected, the joint positions adapt to a contact force

configuration that was set a priori to provide a suitable grasp. Therefore,

the proposed controller applies joint torques on each finger according to two

inputs: the contact force vector for that finger, and a Cartesian position for

that finger corresponding to the grasp of the virtual sphere. While the set of

contact forces are assumed to be known (i.e. computed according to the sur-

face material of the object), the reference Cartesian positions for each finger

were obtained using a Microsoft Kinect sensor. Additionally, a method for

segmenting the tabletop manipulation scenario, finding the object, and ob-

taining the homogeneous transformation matrix between the reference frames

attached to the Kinect sensor and the Shadow robot’s forearm was presented.

The experimental results showed that the proposed approach could success-

fully grasp 10 objects with different shapes and sizes, despite the fact that

no information about the object geometry was provided.

All objects tested in this experiment were successfully grasped and lifted,

but a number of other objects could not be grasped due to their shape,

weight, compliance or the surface material being too slippery for the given

contact forces (e.g. a hammer, a jelly block or an ice cube). While the low

friction of the object surface could be addressed by using an adequate contact

force configuration, objects with certain shapes, weights, or compliances re-

quire alternative grasp approaches or previous knowledge of the shape of the

object (i.e. to compute grasp planning). However, a large range of objects

that are found in everyday scenarios can be grasped using this approach.

Hence, the grasping approach presented in this chapter contributes towards

the integration of robots in human environments.

In a typical robot-human scenario a common collaboration task to be
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performed by the robot, after an object has been successfully grasped, is to

hand the object to a human. Chapter 6 presents an innovative approach for

reliable object handover between robots and humans.
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Chapter 6

Continuous Tactile Sensing for

Reliable Robot-Human

Handovers

6.1 Introduction

The exchange of objects between humans is an everyday occurrence, although

such interactions are trivial tasks for humans, they are still very challenging

for robots. Existing approaches to robot-to-human object handover assume

that no potential problems occur during the object transfer. However, unin-

tentional perturbation forces can be occasionally applied to the object while

it is being grasped. In that case, the robot and the object could be damaged

if the robot maintains the current grasp configuration; for instance, being

the object dropped. Instead of trying to maintain the current grasp, the

system could move to a different configuration to reach another stable grasp;

nonetheless, this would entail losing contact with the object at some point in

time resulting in a high chance of the object dropping. Hence, maintaining a
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Figure 6.1: Flow chart of the proposed reliable object handover algorithm.

stable grasp could turn out not to be possible when the object is perturbed

by external forces.

This chapter presents a novel approach to reliable object handover that

ensures the safety of the robot and the object. A flow chart of the proposed

approach is shown in Figure 6.1. Relying on tactile sensing, the system uses

an effort controller to adapt the grasp forces in the presence of perturbations.

Moreover, the proposed approach identifies perturbation forces being applied

to the object. When a perturbation event is detected, the algorithm classifies

the direction of the pulling forces to decide whether to release it or not. The

reliable handover system was implemented and evaluated using a Shadow

Robot hand equipped with BioTAC tactile sensors. The results show that

the system correctly adapts to the forces applied on the object, and maintains

the grasp, releasing the object only if the human receiver pulls in the correct

direction.

The work presented in this chapter has been partially published in the

following articles:

• Reliable object handover through tactile force sensing and effort con-

trol in the Shadow Robot hand. In IEEE International Conference on

Robotics and Automation (ICRA 2017) [8].
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• Towards Robot-Human Reliable Hand-over: Continuous Detection of

Object Perturbation Force Direction. In 26th IEEE International Sym-

posium on Robot and Human Interactive Communication (RO-MAN

2017) [9].

The rest of the chapter is organised as follows. Section 6.2 presents the

grasping effort controller used to keep the object grasped while perturba-

tions act on the object. Section 6.3 presents a release detection approach

based on the findings of a preliminary study with näıve users. Both grasp-

ing effort controller and release detection approach are core functionalities

implemented in the reliable handover algorithm, which is detailed in Sec-

tion 6.4. Section 6.5 presents experimental results and guidelines to tune

the algorithm parameters. Finally, Section 6.6 summarises the findings and

concludes the chapter.

6.2 Grasping Effort Controller

Ensuring the robotic hand and the grasped object are not damaged during the

handover process needs a system capable of adapting the hand configuration

when a perturbation is applied on the object. The proposed approach relies

on tactile sensing to obtain contact information used by an effort controller

that keeps the grasp forces constant. The proposed approach assumes that

the object being handed over is rigid, the initial configuration of the hand is

ready for the handover, and a stable grasp using three fingers is set. Using

a fixed position control entails contact loss or increased efforts in the joints,

which could result in the robot being damaged. To illustrate the effect of

forces when controlling the position of the fingers, a perturbation force was

applied to a single finger of the Shadow robotic hand equipped with BioTAC
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Figure 6.2: Changes in the fingertip force length for effort vs. position con-

trol.

tactile sensors. Figure 6.2 shows a comparison of the response in the norm

of the force of the middle finger over time for the proposed effort controller

and a position control (see Chapter 5 for how to compute the contact force).

Although the Shadow hand fingers provide some compliance through their

mechanical design with tendons and springs, the force sensed for a small

perturbation using a position control is more than twice the force sensed

when the effort controller is running, which significantly reduces the risk of

damaging the hand.

The fingers used for grasping the object will be labelled j = 1, 2, 3, where

j = 1 is the thumb, j = 2 is the first finger, and j = 3 is the middle finger,

and refer to the coordinate frame defined by the forearm joint position and

orientation as the base reference frame. The effort controller changes the

hand configuration to maintain an initial wrench (i.e. force and torque)

while adapting to perturbation forces on the object. The wrench B f̄j set on
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the hand for the stable grasping in the robot base reference can be obtained

as:

B f̄j = Jj(qj)
†Γj, (6.1)

where qj is the configuration of the finger joints, Γj their corresponding

torques, Jj(qj)
† is the pseudo-inverse of the Jacobian for finger j, and the

superscript B states the wrench is in the base reference frame. The necessary

conditions to maintain a stable grasp are assumed to be obtained by con-

verting the forces and torques of the initial wrench to the object reference

frame and taking into account the friction coefficients, and the normals at

the contact points.

In order to maintain the stability of the grasp in the presence of a pertur-

bation while ensuring that neither the hand nor the object are damaged,

one could keep the wrenches in the object reference frame O f̄j constant,

since the palm reference suffers only small changes. Instead of maintain-

ing the wrenches constant in the object reference frame, the contact forces

and torques were kept and restored as computed in the base frame B f̄j for a

stable grasp for each finger. The proposed effort joint control considers the

fingers individually and uses the stable grasp wrench B f̄j as a reference while

the perturbed measured wrench Bfj is fed back to the controller. Therefore,

given the difference between the j-th finger contact wrench Bfj and the one

for the stable grasp the effort to be applied is computed as:

Γj = KjJj(qj)
T
(
B f̄j − Bfj

)
, (6.2)

where Jj(qj) is the Jacobian of finger j at the joint position qj, and Kj is a

square gain matrix of size equal to the number of joints used to restore the

stable grasping wrench. Thus, for instance, the finger will move backwards

to keep the force constant if a perturbation increases the contact force while
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maintaining the direction and torque. Generally, the product of a perturbed

wrench and the Jacobian results in motion of the finger to compensate for

external forces and torques. When a perturbation force is applied (since

the grasped object is rigid), a change in the contact force and torques is

perceived by all three fingers. All fingers will move individually to maintain

the stable grasping wrench in the base frame. Experimentally it was found

that this control mechanism kept a stable grasp while the object moved due

to external perturbations. In this manner the proposed control mechanism

implements compliance in the tactile force.

6.3 Release Detection

While adapting to perturbations allows to maintain the object grasp and

avoid the hand to be damaged, releasing the object in a timely manner is vital

to ensure the safety of the object, i.e. it should never be dropped. In order to

find how humans behave when receiving an object from a robot Section 6.3.1

presents a preliminary study with näıve users. Relying on the results of that

study, the proposed approach triggers the object release based on an event

detection system and a method to identify the perturbation force direction.

Thus, Section 6.3.2 presents a system to detect perturbations on the object

during grasping. Section 6.3.3 defines the features used in Section 6.3.4 to

classify the direction in which a perturbation force is applied.

6.3.1 Robot-Human Handovers: A Näıve User Study

A study with näıve human participants was proposed to determine when

to release an object. In the experiment, the Shadow Robot hand (installed

on a Schunk arm) was presenting the object (see Figure 6.3) and the näıve
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Figure 6.3: Receiver positions.

human participants were the receivers of the handover. The robotic hand

was equipped with three SynTouch BioTAC tactile sensors mounted on the

thumb, index and middle fingers, which were used to hold the object while

the tactile sensors estimated the force applied by the fingertips. In this

experiment, 10 subjects (2 females and 8 males) were asked to receive an

object from the robotic hand, while keeping the Schunk arm fixed. The

effort controller presented in Section 6.2 was used to adapt the grasp of the

fingers preventing damage to the robot by the forces and torques applied

over the object while picking it up. A cube was the object used for the

handover in all experiments, grasped by the robot hand in approximately

the same position and rotation for all experiments. To perform the analysis,

the contact forces obtained from the BioTAC (see Chapter 5) for each finger

were stored during the whole process.

For this experiment, the subjects were placed in front of the robot hand

(position 1 in Figure 6.3), at a distance of approximately 35 cm from the
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Figure 6.4: Initial configurations.

object. The subjects were explained that the purpose of the study was to

evaluate robot-human handover, and they were instructed to use their dom-

inant hand to approach the object, but no further indication of how to act

during the handover was given. The goal of the first trial was to determine

whether a näıve user would pull the object or expect the robot hand to re-

lease it as soon as the human grasps it. An additional dataset of a steady

grasp, in which the object was grasped but no pulling force was applied in any

direction, was collected as a comparison baseline. Although with different

timings, all of the participants pulled the object in different directions and

with variable strengths, but in some cases the subjects clearly expected the

robot to release the object. The force change was quantitatively measured

through the angular changes of the individual finger forces relative to the

static grasping forces in the reference system of each finger-tip (more details

are given in Section 6.3.3). An analysis of the forces, and a comparison with

the grasp only task, clearly showed that the sum of the angular variations of
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Figure 6.5: Azimuth θ and elevation φ angle variations for all participant

first fingers.

the finger forces for all participants during pulling was significantly greater

than the values during a grasp-only state. This showed that it is possible to

detect the object being pulled by a näıve user before it is taken away from

the robot hand.

After the initial experimental trial, the subjects were asked to perform a

robot-human handover in the five different grasp configuration scenarios (A to

E) shown in Figure 6.4 and three orientations relative to the robot arm, ±30o

deviation from the middle position (see Figure 6.3). A total of 150 different

handover trials (i.e. 15 trials per participant) were recorded and analysed

off-line. The force analysis showed that the perturbation force applied to the

object was dependent on variables such as the receivers position, whether

he/she was left/right handed, and the grasp configuration. Figure 6.5 shows

the variations in the azimuth θ and elevation φ angle, of the force detected in



156 6.3 Release Detection

the first finger for all participants in this trial, i.e. see Section 6.3.3 for how

to compute θ and φ. The plot in Figure 6.5 shows how participants pulled

from the object in different directions (cf. for example participant 8 and 10),

therefore showing the need for accurate pulling direction identification.

6.3.2 Load Force Variations for Event Detection

Based on the observations in Section 6.3.1, the proposed handover algorithm

was designed to release the object based on two events: the detection of a

perturbation event and the pulling force direction. The change in the per-

ceived load force was used to identify when a perturbation has been applied

on the object and trigger a classification process (see Section 6.3.4) to iden-

tify the direction of the pulling force. Therefore, at every time step, a fixed

size sliding window of duration ∆t seconds (∆t = 0.05) is updated to include

the latest forces Bf measured by the BioTAC sensors. The window BW is

divided in two equal sized sequences BW1 and BW2, where BW1 denotes the

oldest data and BW2 the most recent. The averages of the force Bf over the

windows are computed and used for detecting load force variations.

Most of the object handover approaches in the literature rely on changes

in the load force to control grasping forces. Here, the estimate of the load

force in the base frame BfL corresponds to the sum of all the contact forces

BfL =
∑
j

(Bfj). Therefore, a change in the norm of BfL, ∆BfL can be detected

when an external action is being carried out over the object. In the context

of the reliable object handover algorithm, this norm change event triggers a

classification process to identify the type of event as described below. When

a perturbation force is applied to the object, the range in which the contact

force varies is different for the x, y and z coordinates (i.e. with respect

to the BioTAC’s frame). A plausible assumption is that this is caused by
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the conductive fluid being displaced more easily in some directions than in

others due to the design of the BioTAC, which shape is not homogeneous.

Because of the ranges of BfL, ∆BfL is more sensitive to perturbations in

some directions than in others. For instance, despite being very sensitive

to lateral movement perturbations with respect to the fingertips, the change

in the norm was not as responsive for frontal movements due to contact

force variations having a smaller range than the lateral ones. In order to

solve this issue, an approach that takes into account the scale of the contact

force variations for each axis is proposed. Instead of using the norm of BfL,

the proposed approach computes the variation in the load forces using the

Mahalanobis distance [149] between E
[
BW1

]
and E

[
BW2

]
:

∆BfL = E
[
BW∗

]T BΣ−1E
[
BW∗

]
, (6.3)

where E
[
BW∗

]
= E

[
BW1

]
−E

[
BW2

]
, E
[
BW i

]
denotes the expected value

of the corresponding sub-window BW i, and BΣ is the covariance matrix

of BW . Therefore, Equation 6.3 provides a direction independent distance

measure between two vectors i.e. contact forces. The values for BΣ−1 were

empirically found by computing the covariance of the load force BfL during a

steady state grasp of the object by the hand, i.e. without perturbation forces

applied. If ∆BfL exceeds a fixed threshold the proposed approach determine

that an external force is acting on the object. The threshold fth = 0.002 was

experimentally chosen while perturbing the object with the grasping effort

controller running. It is worth noting that selecting fth without using the

grasping effort control system will generate a threshold value that is too large

as a consequence of the hand not adapting to perturbations, i.e. resulting in

larger contact forces.
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6.3.3 Features for force direction detection

A perturbation force BfL being applied to the object can be detected if ex-

ceeding a given threshold. However, as not all perturbations are expected to

result in a handover, identification of the direction of perturbation force that

will trigger release if and only if it is safe to do so is also needed.

The variations of the contact force Efj were estimated using the BioTAC

for each individual finger j = 1, 2, 3 with respect to their corresponding

resting forces E f̄j. Therefore, the variations of the contact force Efj were

modelled to classify the direction of a perturbation force over the object.

Given the initial grasp of the object the resting forces E f̄j were computed

as the average response within a window of ∆t seconds. A sliding window,

which is updated at the sensor sampling interval, was used to retain all Efj

estimates obtained during the last ∆t seconds. As the human touches the

object, potentially starting a handover, the robot computes the perturbed

forces of each finger as the average of the forces in the sliding window Efj =

E
[
Efj(tk)

]
. It is worth noting that both the resting and the perturbed forces

are in the fingertip reference system.

The azimuth and elevation angles of the contact (perturbed) force for each

finger ‘j’ were denoted as θf
j and φf

j respectively, i.e. the spherical coordinates

of the force vector in the reference system of the fingertip. Similarly, θf̄
j and φf̄

j

are respectively the azimuth and elevation angles of the forces at the resting

position. To identify the pulling force direction, a feature vector containing

the differences between the azimuth θj = θf
j − θf̄

j and elevation φj = φf
j − φf̄

j

angles of the contact forces and those corresponding to the resting position

forces of each finger in their corresponding fingertip reference frame was

defined, where θf
j = arctan

[
f jy

f jx

]
and φf

j = arctan

[
f jz√

(f jy )2+(f jx)2

]
. The resultant
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feature vector ϑ = (θ1, φ1, θ2, φ2, θ3, φ3) is the angular deviation of the contact

forces, which is an invariant descriptor against changes on the hand position,

object geometry and size.

Finally, a Kalman Filter was used to estimate the angular deviation ve-

locities of the contact forces ϑ̇. The posterior state estimate x̂k|k will be used

as the feature vector for detecting perturbation force directions (see Section

6.3.4). A constant velocity model was used to compute the state estimate

x̂k+1 at time k + 1 from the true state xk at time k. The true state xk was

obtained by concatenating the angular deviation of the contact forces ϑ and

their velocities ϑ̇ at time k. Constant process and observation noise in the

model were assumed and appropriate initialization for the covariance matrix

of the process noise was empirically found. Before detecting any event or

pulling direction readings 5 seconds of reading were collected and used to

compute values of ϑ and their covariance. The observation noise was set by

using the covariance of ϑ in the calibration data, which was assumed to be

obtained without exerting any perturbation on the contact forces. Therefore,

at each time step k the state x̂k|k−1 and covariance matrix Pk|k−1 using the

latest posterior estimate x̂k−1|k−1 were predicted. Then, the posterior esti-

mate for both the state x̂k|k and covariance Pk|k were updated, which will be

used for estimating a priori parameters in the next time step k + 1.

Filtering the feature vector ϑ using a Kalman filter before classifying

the perturbation force directions enables to overcome two issues. First, the

feature vector ϑ is often very noisy and leads to some misclassifications [9].

More importantly, using ϑ as a descriptor for perturbation force directions

results in occasional false positives which trigger the hand to release the

grasp, resulting in the object falling [9]. By filtering the angular deviation

of the contact forces abrupt changes in the trajectory estimation of the an-
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gles’ deviation that put the safety of the object at risk will not occur; for

instance, when the object perturbation force has ended a bounce effect might

happen after sudden release. Secondly, by computing the posterior state of

the observation the angular deviation velocity ϑ̇ of the contact forces can be

estimated, which provides additional information to enhance classification

accuracy with respect to using the contact force angular deviations ϑ as the

feature vector [9].

6.3.4 Statistical learning of perturbation force direc-

tions

Object release detection is based on two events: the change in the perceived

load force (see Section 6.3.2), and the issue of a pulling force by the receiver

with a predetermined direction. The classification of the pulling force direc-

tion applied to the object is characterised as follows. The discrete random

variable representing the different perturbation force directions was denoted

as H, i.e. the n events to be identified {h1, h2, · · · , hn}, and x̂k the 12-

dimensional random vector of features encoding the posterior state estimate

through the Kalman filter at time step k. In this case the number of ob-

ject perturbation forces is n = 5, corresponding to forward, backward, up

and down pulling directions (with respect to the robot palm) and a receiver

steady grasp event (i.e. no pulling). Training sets were obtained to estimate

the likelihood functions of the feature vectors for each event, p(x̂|hj), which

are modelled as normal distributions N (µ,Σ) with mean µ and covariance

Σ. Therefore, for each event j, a normal distribution with mean µ and

covariance Σ is obtained.

Having the models of the likelihood function p(x̂|hj) for all events and

given a set of prior probabilities p(hj), one can estimate, through the Bayes
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rule, the posterior probabilities p(hj|x̂), and classify input data according to

the maximum a posteriori (MAP) probability. For simplicity, the Kalman

filter’s state estimate at time k will be denoted thereafter as x̂k = x̂k|k.

Under the assumption of initial uninformative priors, p(hj) = 1
n

for all pulling

directions j, the current estimate is updated when the change of the load

force ∆BfL exceeds a threshold fth = 0.002 (see Section 6.3.2). Therefore

the feature vector x̂ will be used to iteratively obtain new posteriors for each

event, and the posterior probability p(hjk|x̂k) at step k will be the prior for

obtaining the next estimate p(hjk+1|x̂k+1). When a significant change in the

load force is first detected, the initial prior probabilities are distributed evenly

among all events. The contact forces were estimated from the BioTAC data

stream and the feature vector x̂k was computed in windows of time length

∆t. The posterior probabilities were updated when a significant variation in

the load force is detected, using:

p(hjk|x̂k) =
p(x̂k|hjk)p(h

j
k|x̂k−1)

p(x̂k|x̂k−1)
, (6.4)

where p(x̂k|hjk) is given by the likelihood function of perturbation force di-

rection hj, and the normalization constant p(x̂k|x̂k−1) can be obtained as:

p(x̂k|x̂k−1) =
N∑
i

p(x̂k|hik)p(hik|x̂k−1). (6.5)

6.4 The Reliable Object Handover Algorithm

The pseudocode for the proposed approach for reliable object handover is

shown in Algorithm 1. In each iteration the algorithm estimates the load

force variations (line 5) and, if required, updates the conditional probability

p(hjk|x̂k) for all perturbation events, j = 1, · · · , n (line 15). The object

perturbation force direction which has the highest posterior probability can
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be considered the one that the robot is perceiving at time step k. However,

the aim of this chapter is to endow robots with a method that guarantees

reliable handovers. As mentioned before, a single false positive would result

in the object falling. Hence, the proposed algorithm only releases the object

if a pre-set pulling direction h∗ (i.e. direction in which the human is expected

to pull the object) is detected during more than tth seconds (lines 17-21). As

the value of tth is small (0.25 secs), the system is still responsive enough to

release the object in a timely manner (see Section 6.5.2). The reliable object

handover algorithm ensures the safety of the object by releasing only when

the pulling force direction is consistent with the pre-set perturbation force

direction for a period of time. As detailed in Section 6.2, the algorithm also

ensures the safety of the object by maintaining the initial wrench (line 23)

when perturbation forces are applied on the object.

6.5 Experimental Results

The algorithm presented was evaluated on a real Shadow Robot Hand at-

tached to a Schunk arm modified to compensate for the additional weight.

Figure 6.6 shows the experimental set-up. Although the arm stays fixed in

all of the experiments, the set-up provides a natural handover configuration

by placing the forearm parallel to the ground. The initial configuration of

the fingers was manually set in the centre of the hand workspace (i.e. posi-

tions that the end-effectors can reach) and was used for all the experiments

as a starting point for the initial grasping. This position allowed large finger

motions without lost of contact when perturbation forces are applied to the

object. From this initial approximate position, the fingers were manually ad-

justed to generate a stable grasp of the object. Therefore, every experiment
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Algorithm 1 Reliable object-handover algorithm
1: procedure object-handover(Efj) . BioTAC forces

2: Bfj ← T (Efj) . Transform Efj to base

3: Update EW with Efj . Pull detect sliding window

4: Update BW1 and BW2 with
∑
j

Bfj . Event detect sliding window

5: ∆BfL ←Mahalanobis
[
E
[
BW2

]
, E
[
BW1

]]
. Load force change

6: Set empty ϑ

7: for j = {1, 2, 3} do . For each finger

8: ∆Eθj ← arctan

[
f̄jy

f̄
j
x

]
− arctan

[
fjy

f
j
x

]
9: ∆Eφj ← arctan

[
f̄jz√

(f̄
j
y)2+(f̄

j
x)2

]
− arctan

[
fjz√

(f
j
y)2+(f

j
x)2

]
10: ϑ← ϑ

⋃
[∆Eθj ,∆

Eφj ] . Angular changes feature vector

11: end for

12: Compute x̂k|k−1 and Pk|k−1 . Kalman Filter Predict Step

13: Compute x̂k and Pk|k . Kalman Filter Update Step

14: if ∆BfL > fth then . Event detection

15: Update p(hjk|x̂k) ∀j ∈ [1...n] using Bayes Rule

16: dirk = max
x̂

p(hjk|x̂k)

17: if dirk 6= dirk−1 then

18: t∗ = t

19: else if t− t∗ > tth and dirk = h∗ then

20: ReleaseObject & End

21: end if

22: end if

23: Γj ← KJ(qj)T
(
B f̄j − Bfj

)
. Send efforts to joints

24: end procedure

had slightly different configurations of grasp forces applied on the object.

Before performing the experiments the electrodes of the BioTAC were cali-

brated to avoid drifts of the readings due to changes in the sensor gel after a

series of runs. In order to avoid damaging the robotic hand when applying

a perturbation force, the grasp effort controller (see Section 6.2) was used

during all the experiments. The effort controller adapts the contact forces

online to the initial configuration and, thus, ensures the safety of the hand

and the object. However, the effort controller interaction also makes the

problem of detecting the object perturbation force direction more complex
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Figure 6.6: Experimental set-up.

as the controller tries to restore the forces and reduce the perturbation.

Readings for four perturbation force directions were collected, i.e. from

the receiver’s horizontal grasp perspective forward, backward, up and down,

which were used to obtain models of their corresponding likelihood function.

All training data were obtained from the initial grasp configuration using a

foam cube of size 4.5 x 3.9 x 3.25 cm. The training data are stored when the

variation of the load forces exceeds a threshold (fth = 0.5) as the algorithm

only computes the posterior probability of the perturbation force directions

when this condition is met (see Section 6.3.2). This implies that the number

of training trials required varied for each perturbation class. The number of

trials used to model each object perturbation force was typically between 5

and 10.

As mentioned in Section 6.3, the detection of pulling force directions re-

lies on the variations of the contact force estimate of each finger. It was

experimentally found that a sequence of perturbations is often applied to the

object by the human receiver of the object instead of one unique pulling force

direction. For instance, small force perturbations might be applied while the
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receiver grasps the object, followed by a pull action. Data of small pertur-

bations in random directions that are generated when an object is grasped

simultaneously by the robot and the human were collected and used to model

the shake/jerk generated during the “joint grasp” state. Unlike training data

from intentional perturbation forces, the data used for obtaining the models

of the “joint grasp” state were sampled at fixed rate. This method resulted

in collecting more data for each trial than in other perturbations data collec-

tion and, consequently, the number of trials used to model the “joint grasp”

state was reduced to three. Although the system does not release the object

when detecting a “joint grasp”, considering small perturbations in random

directions was found to enhance the reliability of the handovers (see Section

6.5.2).

6.5.1 Force Evolution Filtering

In this experiment a number of object perturbations was performed on a

grasped object to understand the effect of the Kalman Filter on the force

angle variations with respect to the stable grasp reference. As explained in

Section 6.3.3, the true state xk is filtered to reduce the noise and to obtain

additional hidden features, i.e. angle variation velocities. The experiment

was evaluated on three foam objects with different geometries: a cube, a

cylinder and an octagonal prism (see Figure 6.6); and the initial grasping

forces were used as the reference for the controller. A perturbation force was

then applied to the object and the posterior x̂ and true x force states were

stored at every time step. Figure 6.7 shows the evolution of the raw and fil-

tered angle variations, and their corresponding velocities during a downward

perturbation force. Figure 6.7(a) plots the azimuth angle variations of the

index finger θ2 and Figure 6.7(c) represents the elevation angle variations φ2



166 6.5 Experimental Results

0 50 100 150

Time steps

0

0.5

1

1.5

2
R

a
d

ia
n

s

(a) Azimuth angular deviation.

0 50 100 150

Time steps

-0.5

0

0.5

1

1.5

2

2.5

3

R
a
d

ia
n

s
/s

e
c

(b) Azimuth angular velocity.

0 50 100 150

Time steps

-0.2

0

0.2

0.4

0.6

0.8

1

R
a
d

ia
n

s

(c) Elevation angular deviation.

0 50 100 150

Time steps

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

R
a
d

ia
n

s
/s

e
c

(d) Elevation angular velocity.

Figure 6.7: Index finger angle variations during downwards perturbation

force.

for the same finger. The solid lines represent the angular deviations of true

force state x while the filtered angle trajectories, θ̂2 and φ̂2, are represented

by dashed lines. Figures 6.7(b) and 6.7(d) show the velocity hidden state of

the azimuth
˙̂
θ2 and elevation

˙̂
φ2 angles respectively i.e. obtained from the

posterior force state x̂.

It can be observed that filtering the signal reduces the noise in x, smooth-

ing the trajectory. Furthermore, it was found that smooth trajectories to-

gether with velocities simplify statistical modelling and enables each per-
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turbation to be modelled as a Normal distribution (see Section 6.3.4), i.e.

instead of using mixtures of Gaussians as in [8] and [9]. Hence, the pre-

sented approach eliminates the need to provide the number of Gaussians of

each mixture model and allows one to deal effectively with occasional sudden

changes in the object perturbation forces.

6.5.2 Object Perturbation Release Detection Experi-

ments

This section presents the experimental results of the approach described in

Section 6.3 for detecting object perturbation force directions. In this set

of experiments a total of 48 trials were collected from four different object

perturbation directions and 12 additional trials of “joint grasps” (i.e. small

perturbations in random directions) using three objects: a cube, an octagonal

prism and a cylinder. For all data collection, the initial grasp configurations

were manually adjusted to generate an initial stable grasp approximately sim-

ilar in all trials. This led to slightly different grasp configurations and applied

forces over the objects. The variations in initial grasp configurations are not

the only differences between trials, since the object pulling forces were not

controlled and the output of the grasp effort controller varies across trials.

Figure 6.8 shows the classification estimate for one second long perturbation

forces in forward and downward directions. It was found that the perturba-

tion forces very often consist of a sequence of two or more force perturbations

over the object. For instance, both examples depicted in Figure 6.8 detect a

“joint grasp” at the beginning of the perturbation since the pulling force is

not significant enough yet. Then, although the initial estimate might be in-

correct, the system always estimates the correct perturbation direction when

sufficient evidence is presented, proving that the system can generalise to un-
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Figure 6.8: Recursive estimation of perturbation force directions.

seen objects as the cylinder or the octagon prism were not used for training.

Moreover, it can be observed that the largest estimated probability remains

stable after the correct perturbation force direction has arisen.

As explained in Section 6.4, the reliable object handover algorithm detects

that the receiver is pulling the object in a certain direction when its estimate

is higher than any other direction estimate during tth seconds. Therefore,

the value of tth establishes a trade-off between system responsiveness and

classification accuracy. The aim is to find a value of tth that guarantees that

the system will perform reliable handovers. This is discussed in the next

sections.

6.5.2.1 Response vs. Accuracy

In this experiment the time required for successful identification of the correct

perturbation was computed for different values of tth seconds using the 48

trials from four different perturbation force directions detailed above. The

time needed to detect the “joint grasp” state is not considered as the proposed

algorithm only computes a new estimate of perturbation force directions if

a significant change on the load force is detected. This makes it impossible
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Figure 6.9: Identification speed for different values of tth.

to replicate similar conditions with the whole algorithm running as the data

used for modelling a “joint grasp” were collected without using the event

detection system. Furthermore, considering that the handover should never

be completed during the detection of a “joint grasp” state, the time needed to

detect it would not be representative of the system responsiveness for object

release.

Figure 6.9 shows the average time needed for successful identification µ

and standard deviation (σ) for different values of tth since the perturbation

force is first applied on each trial used in this experiment. It is worth noting

that there is a lower bound of identification time as perturbations are detected

when the estimate is consistent during a period longer than tth seconds.

Therefore, the minimum time that detecting the correct perturbation can

take is tth seconds and it is represented by a red dotted line (see Figure

6.9). The solid line represents the average time (µ) needed for successful
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Figure 6.10: Identification accuracy for different values of tth.

identification while µ + 3σ is represented by the dashed line, showing the

range in which successful object perturbation force detection is performed

99.7% of the times. Despite the average detection time growing progressively

with increasing tth, the standard deviation significantly increases for values

greater than 0.25. It can be concluded that, although the value of tth should

remain as small as possible, a good response is achieved for values smaller or

equal to 0.25, for which the detection seldom takes longer than 0.4 seconds.

Additionally, the average classification accuracy of the proposed approach

for different values of tth is analysed using the same 48 trials from four differ-

ent object perturbation force directions used in the rest of the experiments

of this section. This experiment considers the 12 additional trials of “joint

grasps” discussed in Section 6.5.2 as their misclassification could result in

unexpected object release. Figure 6.10 shows the average accuracy as a func-

tion of tth. An 81.57% identification accuracy is obtained when only one

estimate is considered (i.e. tth = 0) and increases along with larger values
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Table 6.1: Confusion matrix of perturbation force directions for tth = 0.15.

Back Front Down Up Joint grasp

Back 88.54 % 0.00 % 0.00 % 0.00 % 11.46 %

Front 1.75 % 92.98 % 0.00 % 0.00 % 5.26 %

Down 0.00 % 0.00 % 97.49 % 2.51 % 0.00 %

Up 0.00 % 0.00 % 0.00 % 97.41 % 2.59 %

Joint grasp 0.00 % 0.00 % 0.00 % 0.00 % 100.0 %

of tth. In order to choose an appropriate value for tth, one could select the

value such that greater values do not significantly increase the classification

accuracy. According to that criterion, a 95.29% identification accuracy was

obtained when selecting tth = 0.15.

6.5.2.2 Tuning for Reliable Handovers

In practice a reliable handover system should never release the object when

it is not supposed to. Although the results of the previous experiment show

that tth = 0.15 provides the best trade-off between system responsiveness

and classification accuracy, the aim is also to keep the rate of false positives,

that might trigger the object release, as low as possible. Table 6.1 shows

the confusion matrix of perturbation force directions for tth = 0.15 which, as

mentioned above, provided the best trade-off between system responsiveness

and classification accuracy. Despite the average classification accuracy being

95.29%, one can understand that trials misclassified as “joint grasp” will not

make the system fail as the object will not be released on this state, i.e. yellow

cells on the table. However, it is fair to say that it makes the system less

responsive, as detecting the “joint grasp” state while a perturbation force is
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Table 6.2: Confusion matrix of perturbation force directions for tth = 0.25.

Back Front Down Up Joint grasp

Back 85.71 % 0.00 % 0.00 % 0.00 % 14.29 %

Front 0.00 % 100.0 % 0.00 % 0.00 % 0.00 %

Down 0.00 % 0.00 % 100.0 % 0.00 % 0.00 %

Up 0.00 % 0.00 % 0.00 % 98.16 % 1.84 %

Joint grasp 0.00 % 0.00 % 0.00 % 0.00 % 100.0 %

being applied in the direction set for object release will delay the completion

of the handover.

In Table 6.1 the colour of the cells of true positives is green. Red cells

are false positives that may result in unexpected release. Therefore, the

system will erroneously release the object 1% of the time when tth = 0.15.

Nevertheless, this limitation can be overcome by increasing tth at the cost

of reducing the system responsiveness. As discussed in Section 6.5.2.1, the

system response is not significantly decreased for values of tth ≤ 0.25 secs.

The confusion matrices for different values of tth were computed and it was

found that the number of false positives that might result in unexpected

object releases was zero for values greater than or equal to 0.25 seconds.

Table 6.2 shows the confusion matrix for tth = 0.25 in which only the values

belonging to the diagonal or the “joint grasp” are different from zero. It is

worth noting that tth = 0.25 maintains good system responsiveness as the

average time needed for successful identification is 0.27 seconds (see Figure

6.9). Therefore, tth = 0.25 provides an adequate balance between average

accuracy (96.77%), average responsiveness (0.27 secs) and system reliability

(0% unexpected object releases).
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6.5.3 Force Adaptation and Object Handover

This section presents experimental results of the reliable handover algorithm

when a sequence of perturbation forces with different directions is applied to

the object. Specifically, force direction detection experiments were performed

along with the effort adaptation controller for sequences of two combined

perturbations. Hence, the response of the approach was tested using a variety

of consecutive events including, at the end, a perturbation force that was

pre-set to be the direction that completes the handover, i.e. the hand has

to open the fingers releasing the object. The algorithm was evaluated for

every combination of perturbing forces such as two opposite object rotations,

vertical forces, pushing forward and pulling backwards.

(a) Image 1. (b) Image 2. (c) Image 3.

(d) Image 4. (e) Image 5. (f) Image 6.

Figure 6.11: Object rotation and pulling event sequence.
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Figure 6.11 shows the sequence of one of the trials, where the object is

rotated in a counter-clockwise direction and then pulled backwards from the

robot hand, i.e. triggering the object release. Although the fingers adapt

individually and the controller has no information on the geometry of the

object, the system kept contact with the object and maintained a stable

grasp when the object was rotated by the human (see Figures 6.11(b) and

6.11(c)). Then, the object was released when a perturbation force backwards

was detected as shown in Figures 6.11(d) to 6.11(f).

Figure 6.12 shows the evolution of the components of the forces over

time in their corresponding end-effector frame for the above experiment.

The first two solid vertical lines (i.e. left column) in the time sequence

represent the start and end of the object rotation and were set using the

event detection system (see Section 6.3.2). The third vertical line (i.e. right

column) sets the beginning of the pulling force perturbation while the final

vertical line signals the pulling force and consequent object handover. During

a perturbation force, the contact forces deviate from the initial configuration

and the fingers change their position while trying to keep the difference with

the reference forces as small as possible. When the perturbation force ends

the controller keeps trying to restore the reference contact forces. However,

the hand could not generate the exact same forces since the configuration of

the fingers changed and the robot did not have enough degrees of freedom to

compensate for these variations. This happens in many trials because each

finger has only three joints and therefore the grasping configurations were

not manipulable. Nonetheless, the controller maintained the forces close to

the initial reference and, although the configuration of the hand changed

after the first perturbation, the proposed approach successfully detected the

pulling event and released the object.
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Figure 6.12: Forces response against object rotation (left column) and pulling

(right column) events for each finger.
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(a) Counterclockwise roll perturbation force

detection.

(b) Detection of backwards pull perturba-

tion force triggers the object release.

Figure 6.13: Perturbation on object classification of a sequence of events.

The performance of the continuous detection of the perturbation force

directions was tested in the current experiment. Figure 6.13 plots the results

of the classification for the time periods in which the object perturbations are

applied which corresponds to the time periods of Figure 6.12 from 2 to 3.3

seconds, and 5.5 to 8.2 seconds. In Figure 6.13, the horizontal axis is the time

while the vertical axis is the probability of each direction. A solid vertical line

shows the exact moment when the correct force perturbation is detected i.e.

consistent estimation during more than 0.25 secs. It is worth noting that the

algorithm only computes the posterior estimates of the perturbation events

when a change in the load force is detected (see Section 6.3.2) and, there-

fore, the classification procedure in Figure 6.13 is not performed at a fixed

rate. Although the object rotations were not included in the training sets,

the system was able to correctly classify an object perturbation force being

applied upwards when rotating the object counter-clockwise. Intermediate

object perturbation force directions were detected for a short period of time,

prior to the detection of the correct one. Moreover, Figure 6.13(a) shows a
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sequence of posterior estimates when the object was released from the roll

rotation. Interestingly, this sequence of estimates is an inversion of the one

observed prior to the detection of a perturbation upwards. However, none

of these sequences of estimates kept a consistent estimate for longer than

tth = 0.25 seconds and, thus, they did not result in an object release. Fig-

ures 6.13(a) and 6.13(b) show that only the probability of the correct force

direction is consistently estimated sufficiently long enough to be detected

and, if required, triggered the object release (see Figure 6.13(b)).

6.6 Summary

This chapter presents an algorithm to perform reliable robot to human ob-

ject handovers, which has been implemented using a Shadow Robot Hand

equipped with BioTAC tactile sensors. Current, state-of-the-art approaches

assume the handover is going to take place with no potential problem. How-

ever this is not always the case as external forces could be applied on the

object during the handover process, resulting in the object falling or the

robot hand being damaged. To solve these two issues, the proposed approach

adapts the grasping with respect to perturbation forces over the object and

releases the object only when the receiver pulls the object in a pre-set di-

rection. Relying on tactile sensing, the proposed algorithm combines effort

joint control, event detection, and identification of object perturbation force

directions in order to perform reliable handovers.
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Chapter 7

Conclusions and Future Work

The combination of various stimulus modalities (i.e. visual, hearing, tactile)

is crucial for humans to build an accurate representation of their surround-

ings and act under uncertainty or incomplete information. While tradition-

ally robots have perceived their environment through contactless sensing (e.g.

proximity, visual), the applications of tactile sensing in robotics have recently

received increasing research interest. Chapter 2 presented a literature review

of tactile sensing and its applications in robotics and identified three short-

comings that were subsequently addressed in this thesis:

• Robotic material identification of object surfaces being approached only

in terms of an episodic process;

• Robotic grasping approaches that do not implement active exploration

methods being restricted to objects with known geometry;

• Robot-Human handover systems not considering unexpected perturba-

tions during the object transfer.

Chapter 3 reviewed the techniques employed to address these limitations.

Machine learning, robotics and control systems, and signal processing meth-
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ods were exploited to endow robots with innovative tactile sensing capabil-

ities. Additionally, Chapter 3 described the robotic platform used in this

thesis for the implementation of the proposed grasping and object handover

approaches.

Chapter 4 presented a technique for surface material identification that

approached tactile sensing as a continuous process, combining the vibration

signals generated when contacting a surface with thermal information. The

proposed approach was proven to outperform state-of-the-art material iden-

tification approaches when the same information was provided.

Chapter 5 detailed a model of the contact forces using the BioTAC tactile

sensor. The proposed model was used to design a precision grasp controller

that allows a Shadow robotic hand to grasp objects of unknown geometry by

adapting the fingertips towards a given set of contact forces.

Chapter 6 designed an innovative system to hand over objects between a

robot and a human while preventing the robot from damage if force pertur-

bations occur on the object. The proposed approach adapts the grasp using

an effort controller to keep the contact forces constant and release the object

only when the human can reliably retain the object. The system thus avoids

damage to robot or object.

7.1 Summary of Thesis Contributions

The primary focus of this thesis was to explore tactile sensing to endow

robots with the ability to collaborate with humans in object manipulation

tasks. To fulfil this objective, the work presented in Chapters 4, 5, and 6

contributes towards enhancing robotic capabilities on material identification,

robotic grasping, and robot-human handovers. Sections 7.1.1, 7.1.2, and 7.1.3
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summarise the contributions of this thesis.

7.1.1 Continuous Material Identification through Tac-

tile Sensing

Object material identification provides information relating to contact prop-

erties such as its friction coefficient or compliance, which are significant to

endow robots with robust manipulation of objects. The continuous material

identification approach presented in Chapter 4 performs a sequence of eval-

uations during the same exploratory movement, updating the estimate of all

trained materials using the latest tactile information. The contribution of

the proposed material identification approach is three-fold:

Continuous material identification. The proposed approach allows fast

and very accurate material identification using vibration signals, taking into

account the sequential nature of tactile sensing.

Multimodal continuous material identification. The vibration-only ap-

proach can be easily extended to other sensing modalities. Thus, including

temperature information was found to significantly reduce the time needed

to identify the material correctly.

Benchmarking with state-of-the-art. A comparative study with tactile

material identification techniques (i.e. kNN, ANN and SVM) and a set of

descriptors taken from the literature to characterise the vibration signal was

performed. The experimental results showed that the proposed multimodal

continuous material identification approach outperformed the other methods

when the same information was used.
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7.1.2 Robotic Grasping of Unknown Shaped Objects

Robotic grasping is a core skill to allow robots to manipulate objects as the

majority of tasks requires, at some point, that an object is held in the hand.

The robotic grasping system presented in Chapter 5 provides continuous

adaptation of the fingers upon contact, to reach a suitable contact force

configuration. The contribution of this method is three-fold:

Contact forces model of the BioTAC. Although the BioTAC sensor is not

a force sensor, a model of the contact forces was developed to allow a Shadow

robotic hand to be controlled. The contact forces at the fingertip were mod-

elled using the impedance and pressure signals of the BioTAC tactile sensor.

“Shadow Robot - Kinect sensor” homogeneous transformation. A tech-

nique to compute the homogeneous transformation between a Shadow Robotic

hand and the Microsoft Kinect sensor was presented. The homogeneous

transformation enables computation of the coordinates of an object (i.e. de-

tected using a Kinect sensor) relative to the robot and, therefore, sends the

Cartesian position commands to the proposed precision grasp controller.

Precision grasp controller. A precision grasp controller was implemented

in a Shadow Robotic hand equipped with BioTAC sensors in the thumb,

first, and middle fingers. The proposed robotic grasping technique com-

bined Cartesian position and contact force control using the proposed contact

model to drive the fingers towards the object and adapt the grasp configu-

ration upon contact. The proposed approach was evaluated in a tabletop

scenario and experimental results proved the system was capable of grasping

a variety of objects with different shapes, size, and contact properties.
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7.1.3 Robot-Human Object Handovers through Con-

tinuous Tactile Sensing

One of the most common object manipulation tasks that humans perform

when collaborating with each other is object handover. It is a difficult process

that needs to consider setbacks during its execution such as human shaking

or collisions with other objects that can result in the object, the robot, or

both being damaged. Moreover, the release of the object was designed to be

triggered only if the receiver is holding the object in a secure manner. The

contribution of the approach developed in this thesis is three-fold:

Grasping effort controller. The proposed approach for handing over ob-

jects between a robot and a human used a grasping effort controller that

adjusts the grasp to keep the contact forces constant and, thus, continuously

adapt to perturbations on the object.

Continuous classification of perturbation force directions. When a per-

turbation event was detected, a continuous classification of the direction in

which the receiver pulled was computed using tactile information and, thus,

the reliable handover algorithm decided whether to release the object or not.

Reliable handover algorithm. When the proposed approach perceived a

perturbation being applied on the object, it triggered the continuous classi-

fication of perturbation force directions. If the human receiver pulled in the

correct direction during 250 ms the robot released the object, as it could be

confident that the object was secured by the human. This technique reduces

the computational cost of running the continuous classification of perturba-

tion force directions and provides reliability against small-scale variations on

the contact forces. Experimental results on a Shadow Robot hand equipped

with BioTAC sensors shows that the system correctly adapted to the forces
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applied on the object, maintained the grasp and released the object only if

the human receiver could reliably hold the object.

7.2 Future Work

The contributions of this thesis entail significant improvements for robotic

tactile perception and manipulation of objects. However, endowing robots

with the required skills to collaborate with humans in a reliable manner

involves developments in many other areas. This section outlines a number

of directions in which the work can be extended in order to progress towards

autonomous robots collaborating in human environments.

Although the material identification approach presented in Chapter 4 was

proven to be more accurate than other state-of-the-art approaches when the

same information was provided, its performance in a real robot has not been

evaluated in this thesis. To obtain relevant data for classification using the

recursive material estimation algorithm, the robot should be able to keep the

contact forces of the finger constant during the exploration of different shaped

surfaces. An interesting approach to perform this exploration could combine

the precision grasp controller presented in Chapter 5 to drive the fingers upon

contact commanding small magnitude contact forces, with compliant motion

control of one finger to perform small explorations on the surface, as in [103],

until the highest material estimate does not change any more.

This thesis also contributes to material identification by defining new

descriptors using the heat transfer between the tactile sensor and the ob-

ject surface material. Although the proposed descriptors enhance recogni-

tion speed and accuracy when combined with tactile micro-vibrations using

the continuous material identification approach, they are not suitable for
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thermal-only material identification. The definition of additional descriptors

could provide the necessary information to identify materials by their ther-

mal properties and enhance multimodal material identification. Moreover,

the proposed recursive Bayesian estimation framework enables an easy in-

tegration with other sensing modalities. For instance, kinaesthetic sensing

information obtained during the surface exploration could be integrated and

material identification speed and accuracy could be enhanced by generating

visual texture based priors.

While the proposed precision grasp controller was proven to grasp a num-

ber of objects made with different materials, more sophisticated grasping

could be achieved if providing adequate contact force configuration for the

material of which the object is made. Analysis of the contact properties such

as friction coefficients or compliance of all materials trained in the material

identification approach could be used to find the optimal contact force con-

figuration to command the precision grasp controller. Hence, the proposed

approach could be used to grasp highly delicate objects without breaking

them.

The contact force model developed in this thesis can be exploited for

purposes other than object grasping and handover. Future research will

explore different applications of the contact force model such as, for instance,

object manipulation, slip detection or object recognition. Moreover, the

proposed method to find the homogeneous transformation between a Shadow

Robot hand and a Microsoft Kinect sensor allows the integration of 3D vision

for dexterous manipulation tasks. However, a scenario with more than one

Shadow Robot hand has not been evaluated in this thesis. Future steps could

include a second Shadow Robot hand (i.e. left handed) to take advantage of

3D vision and tactile sensing when performing dual arm manipulation tasks.
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The proposed approach to grasp unknown shaped objects could be easily

generalised to other experimental scenarios by addressing the motion of the

robotic arm to which the robot is attached. Therefore, moving the Schunk

arm so the palm of the Shadow hand is facing the object at a certain distance

would significantly increase the workspace of the robot. In addition, the

precision grasp controller could be used in teleoperated robots. A number of

input devices such motion capture, data gloves, or brain-computer interfaces

can be used to capture the movements of the hand and the arm of a human

operator. As the proposed precision grasp controller adjusts the pressure

applied to the object, the robot could be teleoperated by a human to perform

precision grasps without the risk of breaking the object or the robot.

Future research will also further investigate the human-robot interaction

protocol to predict the direction in which the receiver is going to pull the ob-

ject during the handover. While this work provides insights into how humans

receivers pull in different directions during object handover, the factors that

determine the direction need to be explored in depth. Thus, visual informa-

tion could be used to analyse the conditions in which the handover is going

to take place (e.g receivers height, pose or approaching hand) and predict the

pulling direction that should trigger the object release. Moreover, using the

precision grasp controller presented in Chapter 5 together with a vision sys-

tem for detection of grasped objects could be used to develop a system that

allow robots to act as a receiver in human-robot and robot-robot handover

scenario. The collection of data used to train the recursive identification

of perturbation force directions system could be speeded up significantly by

controlling the motion and forces applied on the object when the receiver

pulls from it.

Comprehensive analysis of the robot arm kinematics could be used to
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extend the proposed robot-human handover approach to a full arm/hand

system. The integration of kinaesthetic information in the proposed effort

controller could allow the robot to adapt to perturbations applied on the

robot and the object. Finally, collaboration with researchers on cognitive

science and physiology could extend the understanding of how humans per-

form handovers and the social implications during human-robot interaction.

These findings could contribute to the development of more advanced sys-

tems that empower robotics to collaborate with humans in daily tasks.

7.3 Conclusion

The aim of this thesis was to use tactile sensing to improve robot-human col-

laboration capabilities in object manipulation tasks. The research described

in this dissertation addresses the objective by presenting contributions in

the areas of material identification, unknown shaped object grasping and

Robot-Human object handover. Approaching tactile sensing as a continuous

process was a cross-sectional concept of this thesis, which was explored to

enhance robotic perception and adaptation upon contact. This thesis is a

step towards the development of autonomous robots that collaborate with

humans in every day scenarios.
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[6] A. Gómez Egúıluz, I. Rañó, S. Coleman, and T.M. McGinnity. Con-

tinuous material identification through tactile sensing. In IEEE World

Congress on Computational Intelligence (IEEE WCCI), 2016. proceed-

ing in International Joint Conference on Neural Networks (IJCNN).



190 BIBLIOGRAPHY
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