

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Salman, Mohammed A T S

Title:
Toward Navigating Complex Terrains Using A Biomimetic Whisker Sensor Array

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.

Toward Navigating Complex Terrains
Using A Biomimetic Whisker Sensor

Array

By

Mohammed Salman

Department of Aerospace Engineering
University of Bristol

Supervisor:
Dr. Martin Pearson

A dissertation submitted to the University of Bristol in ac-
cordance with the requirements of the degree of Doctor of
Philosophy in Robotics in the Faculty of Engineering.

September 2018

Word count: 63,084

Abstract

This thesis proposes a parsimonious approach to localization, mapping and object recog-
nition for a pseudo-mobile robot equipped with a biomimetic array of tactile whiskers to
autonomously interact, explore and represent a real-world environment. Tactile whisker
sensors enable the robotic platform to perceive unique environmental properties and can
operate in extreme conditions that preclude the use of conventional sensors, however,
such sensors are disadvantaged by their limited range and sample sparsity. To address
the sparsity, the information contained in each contact should be fully exploited, whilst
the limited range of the array can be addressed through appropriate movement and
placement of the whiskers and the array.

An existing Simultaneous Localization and Mapping (SLAM) algorithm called Rat-
SLAM was adopted as the basis for the inference of location and demonstrated as suitable
for correcting odometry errors using whisker tactile sensing. The adoption of a closed
loop contact induced whisker placement strategy, directly inspired by rat whisking be-
havior, improved the performance of the algorithm in further reducing odometry error.
The fidelity of object shape reconstruction through the forward kinematic projection of
whisker contact locations was analyzed and a number of machine learning approaches
compared to assess their e�cacy at discerning radial distance to contact and thus im-
prove object shape reconstruction. A support vector regression technique was found to
reliably improve estimates of radial distance to contact along the whisker shaft following
natural, unconstrained whisker contacts. A framework for combining the 3D pose esti-
mation from RatSLAM with a 6D pose estimation system suitable for object recognition
is proposed with the 6D system implemented and demonstrated correctly identifying
household objects through tactile whisker exploration. The adoption of whisker array
placement strategies inspired by cutaneous-tactile research improved the robustness of
object identification and two regional search strategies were investigated for the purpose
of reducing the time taken to correctly classify objects.

I

Dedication and acknowledgments

Thank you Dr. Martin Pearson who has gone above an beyond in terms of supporting
me throughout this undertaking.

I would also like to thank Gareth Gri�th for his enthusiasm, kindness and all the
hard work he has put in supporting my work.

Thank you Jason Welsby for all the work you put in with the whiskers, without you
this thesis would not be possible either.

Last but not least I would like to thank my friends and family for all the love and
support they have given me in life. I would also like to thank my Father for all his e↵orts
in developing my love in technology, math and science.

III

Author’s declaration

I declare that the work in this dissertation was carried out in accordance
with the requirements of the University’s Regulations and Code of Practice
for Research Degree Programmes and that it has not been submitted for any
other academic award. Except where indicated by specific reference in the
text, the work is the candidate’s own work. Work done in collaboration with,
or with the assistance of, others, is indicated as such. Any views expressed
in the dissertation are those of the author.

SIGNED: DATE: ..

V

Mohammed Salman
3/1/2020

Table of Contents

Page

1 Introduction 1

2 Background 5
2.1 Localization and mapping . 6

2.1.1 SLAM . 6
2.1.1.1 Kalman Filter . 11
2.1.1.2 Particle Filter . 14

2.1.2 RatSLAM . 14
2.1.2.1 Algorithm . 15

2.1.2.1.1 1-Dimensional Example 16
2.1.2.1.2 Operation . 18

2.2 Hardware . 21
2.2.1 Robotic Arm Manipulator . 21
2.2.2 Whisker-tactile Sensor Array . 22

2.2.2.1 Hall E↵ect Sensor . 28
2.3 Sensing . 30

2.3.1 Whisker Control . 32
2.3.2 Whisker-Contact Localization . 33
2.3.3 Object Recognition . 39
2.3.4 Texture Identification . 41

2.4 Exploration Strategy . 42
2.5 Movement Through Higher Configuration Space 42

2.5.1 Working in 3-dimensions . 44
2.5.1.1 Point Feature Histogram 44
2.5.1.2 Quaternions . 49
2.5.1.3 Transformation matrices 50

2.6 Regression techniques . 53
2.6.1 Multilayer Perceptron . 53
2.6.2 Support Vector Regression . 55

2.7 Principal Component Analysis . 56
2.8 Robot Operating System . 57

2.8.1 MoveIt . 59

VI

TABLE OF CONTENTS

3 RatSLAM Navigation Using A Whisker-Sensor Array 61
3.1 Method . 61

3.1.1 Tactile Image . 62
3.1.2 Odometry . 63
3.1.3 Data Collection . 64

3.2 Experimental Setup . 64
3.2.1 OpenRatSLAM Parameters . 65
3.2.2 Whisker Control . 66
3.2.3 Performance Metrics . 67

3.2.3.1 Experience Metric (ExM) 68
3.2.3.2 Energy Metric (EM) . 70

3.3 Results . 71
3.3.1 Performance Metric Evaluation . 71
3.3.2 Vanilla Whisker-RatSLAM Performance 72
3.3.3 E↵ect of Whisker Control Strategy 73
3.3.4 E↵ect of Whisker-Contact Angle Estimation Strategy 74

3.4 Discussion . 75
3.4.1 Summary . 76

4 Object Shape Reconstruction 79
4.1 Method . 80

4.1.1 Whisking pattern . 81
4.1.2 Data collection . 81

4.1.2.1 Training set . 81
4.1.2.2 Validation set . 82
4.1.2.3 Ground truth and error calculation 82
4.1.2.4 Extraction of Whisker-Contact Features 85

4.1.2.4.1 Principal Component Analysis 85
4.1.3 Regression techniques . 88

4.2 Results . 89
4.2.1 Validation of Regression Models 89
4.2.2 Comparison with state-of-the-art 95

4.3 Discussion . 98

5 WhiskerRatSLAM 101
5.1 Algorithm Architecture . 101

5.1.1 Front End . 104
5.1.1.1 Features of Whisker Perception 104

5.1.1.1.1 Contact Time 105
5.1.1.1.2 Contact Localization 105
5.1.1.1.3 Contacted Surface Slope 107
5.1.1.1.4 Region similarity 109
5.1.1.1.5 Odometry . 110

5.1.2 Back End . 111

VII

TABLE OF CONTENTS

5.1.2.1 Grid of Pose Cells . 111
5.1.2.2 Feature recognition . 111
5.1.2.3 Path Integration . 113

5.1.2.3.1 Local Excitation 113
5.1.2.3.2 Local and Global Inhibition 114
5.1.2.3.3 Path Integration 117

5.1.2.3.3.1 Translational shift 117
5.1.2.3.3.2 Rotational shift 125

5.1.2.3.4 Best Pose . 127
5.1.2.4 Object Map . 130

5.1.2.4.1 Complex Experience Nodes 130
5.1.2.4.1.1 Relative Pose 130

5.2 Localization and Object Recognition Performance 132
5.2.1 Experiments . 132
5.2.2 Results . 135

5.2.2.1 Localization . 135
5.2.2.2 Object Identification . 135

5.2.3 Discussion . 138

6 Active Whisker-Array Exploration For Fast Shape Recognition 141
6.1 Method . 142

6.1.1 Surface Placement . 142
6.1.2 Surface Region Search . 146

6.1.2.1 Surface following . 147
6.1.2.2 Follow experience history 148
6.1.2.3 Least similar feature . 151
6.1.2.4 Object identification condition 152

6.1.3 Simulation Setup . 152
6.1.3.1 Object map generation 152

6.1.3.1.1 Odometry noise 154
6.1.3.1.2 Whisker-contact feature noise 155

6.1.3.2 Object Exploration . 156
6.1.4 Physical Setup . 156

6.2 Results . 157
6.3 Discussion . 160

7 Conclusions 163
7.1 Future work . 165

References 167

VIII

Chapter 1

Introduction

Figure 1.1: Depending on their size, environment and needs, animals such as elephants,
bees and sharks all have unique senses that help them achieve their goals. Elephants
have been shown to be able to sense ground vibrations that enable them to communicate
with one another across large distances (Mortimer et al., 2018). Honey bees are known to
sense magnetic fields surrounding flowers that communicate their level of nectar (Liang
et al., 2016). Hammerhead sharks are known to sense electromagnetic fields that enable
them to detect hidden prey (Kajiura & Holland, 2002).

Nature has shown us that no single sensory modality is perfect. The environmental

conditions of an animal’s habitat will largely determine which sensory modality is the

most e↵ective at detecting behaviorally relevant cues such as threats or rewards. Often

an animal will use multiple sensory systems in parallel to gain an ecological advantage

or, in many situations switch from relying on information from one sense to that of

another. The study of ecology has shown us that animals adapt to their environment

by developing sensory organs that exploit the nature of their surroundings for survival.

From our own lives we have experienced moments such as waking up in the middle

of the night to a pitch black room forcing us to blindly find our way to the light switch

1

CHAPTER 1. INTRODUCTION

using our hands. We adapt to the situation by exploiting our sense of touch and balance,

searching with our hands outstretched and sweeping them along our path, until we reach

a wall. Our hand moves quickly towards where we expect the light switch, only for it

to hit a corner wall. We track back, making large sweeps along the height of the wall,

eventually feeling the raised edges of the switch panel and finally flicking the switch.

Now our ability to navigate becomes much easier since our sense of vision grants us a

longer range and we may perceive our environment with greater detail. We can choose

shorter and direct paths towards our desired goal, an ability that could not have been

done so easily with only our sense of touch.

Analyzing such a scenario we can see how beautifully versatile our bodies are in

dealing with environmental changes and the temporary loss of vision. We can see how

we re-purpose our sense of touch to a proximity sensor that allows us to navigate well

enough to complete our task of switching the light on. We can also appreciate the way

we try to correct our estimation of where our hand is relative to the light switch once

we hit the corner wall. Hitting the corner wall made us realize that we were further

along the wall than we previously approximated, making us back track and make larger

sweeps along the height to increase our chances of hitting our target.

Robotics research has tried to replicate these navigational abilities ever since its

inception, drawing inspiration from nature as well as from human ingenuity. Algorithms

have been designed with the intention of mimicking our navigational capabilities and how

we determine our location by observing landmarks around us. Further, our remarkable

ability to maintain a map like representation of a new environment, which can be used for

working out not only shorter paths to our desired goal but also the one that requires the

least amount of e↵ort (Bird & Burgess, 2008). Some of these algorithms are bio-inspired

and derive their inspiration from neuroscience research on the navigational mechanisms

of rats and other animals. Other algorithms are more mathematical and programmatic

in design, dealing with precise distances and measurements as opposed to fuzzy terms

like ‘near’ and ‘far’ (Cadena et al., 2016).

Research has also been progressing towards improving our ability in identifying ob-

jects using artificial vision sensors like cameras. Methods have been designed to estimate

with great precision the distances that an agent has moved based on the changes in ob-

servations from these sensors. In combination, the coupling of object recognition and

sense of motion has been integrated into the navigational algorithms to develop robotic

systems that can negotiate new areas (Pillai & Leonard, 2015). Once familiar with their

environment these systems can navigate e�ciently and precisely, all while correcting for

over and under assumptions in how far they have moved, as well as misidentifying land-

2

marks. These systems are also adept at being able to correct their perceived location

within their surroundings once they observe familiar landmarks, such as the corner wall

in our light switch search scenario.

Obtaining information about its surroundings, a robot has to rely on multiple sensors

since, as seen in nature, no single sensing method is ideally suited for use in all scenarios.

For these reasons the area of research concerned with combining the data from multiple

sensors has been highly active (J.-H. Kim, Starr, & Lattimer, 2015). Di↵erent sensors

each have varying operating ranges that include temperature, altitude, pressure, radia-

tion and humidity. Operation outside of these limits can cause damage which is highly

likely in extreme environments like that experienced deep underwater, characterized by

high pressures and low light levels, or in proximity to fires and smoke, characterized

by high temperatures and particulate matter causing low visibility. If robots were to be

designed for operation in the latter case, careful consideration must be made by selecting

sensors that are not e↵ected by excessive air particulate matter or high temperatures,

and can continue to provide reliable measurements needed for environmental perception

and navigation (dos Santos, 2013).

Current robotic platforms that are designed for operating in smoky and high tem-

perature spaces rely on electromagnetic based sensors like radar and thermal imaging.

These sensors are expensive yet are advantageous due to their long range and fidelity. In

combination they are able to extract geometrical and thermal properties about objects

in the environment. One sensing modality that has been relatively neglected up until

recent years is tactile sensing, which can allow for the extraction of other rich features

such as texture and vibration frequency (Diamond & Arabzadeh, 2013).

Cutaneous-tactile sensors, which are inspired from the sense of touch available to us

through our finger and hands, typically have a small operational area and are more useful

for detecting fine spatial details of a surface (Liu, Wu, Sun, & Guo, 2017). Whisker-

tactile sensing, however, has an extended operational range and has been known to be

used for navigation in rats, mice and seals. As an array of whiskers, the sensing system

can cover a large surface area that allows for the extraction of geometric shape, texture

and vibration of objects. Additionally they can act as proximity sensors and, depending

on the method of construction, durable against impact. The working principle of arti-

ficial whisker systems is fairly simple and has the potential of being constructed with

technology that is resistant against harsh conditions. Whisker sensing is one modality

that has been undervalued in the robotics community as it has the potential of be-

ing a versatile complementary sensor for robotic perception and navigation in extreme

environments.

3

CHAPTER 1. INTRODUCTION

The work is therefore motivated by the aspiration towards the design of a whiskered

system that is able to navigate in a similar fashion to rats and mice. Drawing inspiration

from animal behaviour as well as the plethora of research carried out in the fields of

robotic vision, navigation and tactile sensing, it will be shown that whisker-tactile sensing

is worthy of consideration as one of sensory systems implemented on exploratory robotic

systems.

The following list includes publications that are a product of this thesis:

1. Salman and Pearson (2016). Advancing whisker based navigation through the

implementation of bio-inspired whisking strategies. In IEEE International Con-

ference on Robotics and Biomimetics (ROBIO 2016).

2. Salman and Pearson (2018). Whisker-RatSLAM applied to 6d object identification

and spatial localisation. In V. Vouloutsi et al. (Eds.), Biomimetic and Biohybrid

Systems (pp. 403–414). Cham: Springer International Publishing.

The list of novel contribution that this work has produced includes:

1. Adapt RatSLAM’s front end to work with a whisker-tactile sensor array.

2. Defining a RatSLAM specific performance metric that aids in tuning feature match-

ing thresholds as well as gauge the algorithm’s confidence matching observations’

similarity.

3. Produce a support vector regression based model to estimate radial-distance with-

out the need for specifying whisker length.

4. A whisker object-recognition system that is able to learn and recall 3-dimensional

objects.

4

Chapter 2

Background

Figure 2.1: The design of the whisker-tactile sensory array that is used in this work takes
inspiration from several rodents including Etruscan shrews, mice and rats (Pearson et al.,
2011). One of the major goals of this research is to develop the perceptual capabilities
of the artificial whisker-array to match that of animals.

The work that supports this thesis focuses on the the design of a localization and

mapping, and object recognition system that operates with a whiskered-sensor array,

the predominate sensing modality of this work’s robotic platform. This chapter begins

with a discussion of localization and mapping algorithms that are relevant to this work

as well as a general description about how they work. The robotic platform’s hardware

is then discussed, with a particular focus on the whisker-tactile array. The final section

5

CHAPTER 2. BACKGROUND

talks about the challenges of whisker-tactile sensing; observation of rat behavior and

artificial whisker-tactile sensing related research is discussed.

2.1 Localization and mapping

This section describes the group of localization and mapping algorithms that are most

relevant to this work’s robotic platform, and brief explanation of their operational prin-

ciples is given. A more in depth analysis of the chosen algorithm, RatSLAM, is given

in order to familiarize the reader with its architecture that would aid in understanding

our modifications to the default algorithm that is available online. Our work uses a

C++ and Matlab implementation of RatSLAM called OpenRatSLAM. The C++ ver-

sion supports ROS (Ball, 2018a) while the Matlab version (Ball, 2018b) is mainly used

for o✏ine testing. We stress that our search for an appropriate localization and mapping

algorithm was done with the intention of finding a proven solution and modifying it to

our needs. This work was done with the aim of integrating a whisker-tactile sensory

system with a navigating mobile robot platform and contributing to the improvement

of whisker-tactile based navigation, not the design of a state-of-the-art localization and

mapping algorithm. We therefore include a review of appropriate solutions found in

literature and clarify our choice.

2.1.1 SLAM

The localization and mapping algorithms are commonly referred to as Simultaneous

Localization and Mapping algorithms or SLAM for short (Durrant-Whyte & Bailey,

2006). These group of algorithms deal with the problem of determining a robots location

within an unknown space and do so by processing sensory information that inform it

of the robots motion as well as its external perception (Thrun, Burgard, & Fox, 2005).

Simultaneously the algorithms are tasked with mapping the robot’s space, which can

then be used for path planning and to inform the user of the robots environmental

layout.

The need for SLAM comes from the fact that there will always be a requirement

for mobile robotic platforms to navigate within spaces that lack the infrastructure or

reception needed to implement exact localization systems such as that o↵ered by Global

Positioning Systems or proximity sensor networks. Typically mobile robots, as well as

animals, rely on their sense of motion for estimating their current position, a process

known as dead-reckoning or path integration. Dead reckoning consists of integrating

6

2.1. LOCALIZATION AND MAPPING

one’s velocity over the period of time in which the motion occurred, adding this dis-

placement value to the initial position in order to calculate the current position. Since

self-motion sensors, be they artificial (Lozano-Perez, 2012) or biological (Etienne, Mau-

rer, & Séguinot, 1996), are susceptible to noise, the velocity values used in the integration

process are corrupted, leading to an accumulation of error and the inevitable drift of

estimated pose from the actual pose.

In robotics this problem is known as SLAM and the solution to it has been the

subject of research since the foundation of mobile robotics. SLAM solutions, or in

robotic applications SLAM algorithms, are generally known to use path integration for

estimating location, while at the same time using external perception sensors, such as

cameras, for recognizing previously visited locations and correcting the estimated robot

trajectory. The consequence of a more accurate trajectory is a more accurate distribution

of observed landmarks and, therefore, an improvement in map fidelity. The recognition of

a previously visited location is known as loop-closure and is a fundamental requirement

for SLAM algorithms since without it the system will not be able to infer the amount of

error built up from the path integration process.

The di↵erent subsystems of the SLAM algorithm can be divided into two, the front-

end, which is responsible for the processing of internal and external perceptions and the

back-end, which is responsible for processing the probabilities regarding the robots state

(such as its pose) and map based on the information input from the front-end (Cadena

et al., 2016).

The design of the front-end is very much specific to the robotic platform it was

intended for since it would be responsible for processing the sensory data, which is

therefore specific to the types of sensors used on it. Its functions include the extraction

of appropriate features from the external perception sensors, such as cameras, and iden-

tifying any matches with previous observations i.e. landmark recognition. The front-end

could also be responsible for processing the self-motion sensors, such as wheel encoders

or inertial motion units, in order to derive an estimate for the change in position i.e.

odometry (Thrun et al., 2005).

The back-end acquires the processed information in order to infer the robots current

state as well as its map using the concept of probabilities i.e. it measures the belief for

a given robot state and map layout conditioned on a set of previous measurements and

control inputs. A general SLAM back-end formulation is described mathematically in

7

CHAPTER 2. BACKGROUND

Equation 2.1, which is based on Bayesian inference.

p(xt,m|z1:t, u1:t) = ⌘p(zt|xt,m)

Z
p(xt|xt�1, u1:t)p(xt�1,m|z1:t�1, u1:t�1)dxt�1 (2.1)

The equation describes that the posterior probability of a robot state xt at the

current time t and a map m, given all sensory observations z1:t and control inputs u1:t

from initialization to the current time, may be calculated from product of two terms.

For the sake of brevity the left hand term may be reduced to a shorter notation that is

stated in Equation 2.2, and describes the belief in a particular outcome.

bel(xt,m) = p(xt,m|z1:t, u1:t) (2.2)

Using Equation 2.1, Equation 2.2 may be reduced to:

bel(xt,m) = ⌘p(zt|xt,m)

Z
p(xt|xt�1, u1:t)bel(xt�1,m)dxt�1 (2.3)

Thus, the belief bel(xt,m) is calculated by first predicting the state of the robot using

path integration. The integration involves the product of the motion model, which de-

scribes the likelihood of a past control input leading to the current state (p(xt|xt�1, u1:t)),

and the prior belief (bel(xt�1,m)) (Thrun et al., 2005).

This prediction is then corrected based on the measurement model or a measure

describing the belief in a particular measurement, or sensor observation, arising from

the current robot state and map combination (p(zt|xt,m)). Finally since probability

values lie between 0 and 1 the normalization term ⌘ is included to ensure that the values

for the posterior are between the desired range. Thus, a belief measure for a specific

robot state in a particular map can be obtained by first predicting the state based on

the system’s motion model and then correcting it based on the observations made by

the system’s sensors. As stated previously, Equation 2.1 is only one type of formulation

and we shall describe later on how some SLAM algorithms modify this function in order

to improve their performance. Following the calculation of posteriors for all states, the

combination returning the highest belief value is selected to be the current most likely

estimate (Thrun et al., 2005).

So far the description of the formulation has been focused mainly on the localization

portion of the SLAM problem. Once the most likely estimate of the trajectory has been

executed by the robot, the belief in a particular map can be generated using the sensor

measurement model (Thrun et al., 2005). There are typically two predominant variants

of mapping approaches used by conventional SLAM algorithms, these are occupancy

8

2.1. LOCALIZATION AND MAPPING

grid maps (Thrun, 2003) and topological maps (Thrun, 1998). The two methods are

sometimes combined to form a hybrid map to take advantage of both their strengths

while reducing the impact of their weaknesses (Tomatis, Nourbakhsh, Arras, & Siegwart,

2001).

Occupancy grid maps segment the environment into a grid like structure whose

dimensions vary depending on the desired application. Operation of a robot on a 2D

space will typically require a 2D grid map where each individual cell would contain

a particular belief in it being an occupied or otherwise, free space. Depending on the

desired resolution, the number of cells will increase quadraticaly for a 2D grid and cubicly

for a 3D grid. Since the belief of each cell needs to be calculated, a 3D grid for a large

volume of space would require a great deal of computational e↵ort. This disadvantage

is counterbalanced by the increase in precision that occupancy grid maps bring to the

system since they allows for more precise path planning as well as the construction of a

map with higher fidelity relative to topological maps (Thrun et al., 2005).

Topological maps instead resemble a graph like structure whose nodes represent

particular landmarks and their connections, or edges, describe the relative spatial po-

sitioning or required transition needed to move the robot from one node to the other

(Tomatis et al., 2001). The advantage of such a map is that there is no need to store any

information on the free space between each landmark, which saves on storage require-

ments as well as computational e↵ort. Of course this advantage is counterbalanced by

the reduction in path planning precision since only the relative placement of each land-

mark is known and the robot would need to make sure that a large enough perception

field is available for it to move from one node to another without getting lost (Thrun,

1998).

Hybrid maps combine both the pre-mentioned map structures by assigning regions

within the map a particular structure, be it grid like structure or a topological layout. If

a room requires precise path planning then a occupancy grid map like structure would

be assigned to it where as the transition between di↵erent rooms such as that within a

hallway would be better represented by a topological structure if the robot only needs to

know where to head towards in order to gain access to its desired destination (Tomatis

et al., 2001).

Selecting an appropriate mapping approach must take into account the size of the

intended exploration environment, the needs of the user, the types of sensors and actua-

tors that the robot would utilize as well as the computational limitations of the system.

The same may be said about the chosen SLAM algorithm since, currently, there is no

one-size-fits-all algorithm and the overall system specification must be taken into ac-

9

CHAPTER 2. BACKGROUND

count before a selection is made. A particularly important aspect of this work’s robotic

platform are the limitations of the external perception sensor i.e. the whiskered-array.

Unlike visual or range based sensors, whisker-arrays are very limited in terms of range,

resolution and sampling rate. State-of-the-art SLAM methods, especially those that map

3-dimensional space, are typically not designed for whisker-tactile sensors and instead

rely on those with inverse qualities such as that o↵ered by cameras and Lidar sensors

(Cadena et al., 2016).

With regards to running a SLAM algorithm for navigation on a whiskered-robot

platform, research work is very sparse. Two particularly relevant pieces of work include

the use of particle filter based SLAM algorithms with occupancy grid mapping (C. Fox,

Evans, Pearson, & Prescott, 2012; Pearson et al., 2013). The whiskered-robots were both

set to explore a small planar area (6.25m2 and 9m2 for (C. Fox et al., 2012) and (Pearson

et al., 2013) respectively) and the results indicated that only the work of Pearson et. al

performed a successful set of loop closures. The main di↵erences between the two pieces

of work was the number of whisker modules attached to the robot platform as well as

the array’s morphology with Pearson et. al using 18 active whiskers that are arranged

in a way that mimics that of a shrew, and Fox et. al using 4 passive whiskers that are

arranged in two v-shaped pairs. Since the robotic platform is similar to that in (Pearson

et al., 2013) a particle filter approach would be sensible.

Particle filters are a subset of non-paramteric Bayesian inference based solution for

estimating the robot’s state and map (Gustafsson et al., 2002), and unlike paramteric

Guassian based filters like the Kalman and Extended Kalman filter, are not limited

to describing the posterior probability of states as a uni-modal Gaussian distribution

(Thrun et al., 2005), thus allowing for the consideration of sensors that exhibit non

linear errors (Aulinas, Petillot, Salvi, & Lladó, 2008). The filter operates by sampling a

unique set of random variables from the posterior distribution that represents the belief

in robot state and map, which is defined in Equation 2.3. Each particle would move

according to the value drawn from the control model and assigns a weighting according

to the value drawn from the measurement model. The goal is to converge towards the

true state of the robot and map once the robot has gathered enough evidence, which

is done through exploration and observation. Alternative parametric based Bayesian

filters include the Extended Kalman Filter (EKF), which has been known to demonstrate

superior performance in certain cases (Cadena et al., 2016). Solutions such as FastSLAM

integrate both filters to leverage the versatility of particle filters and the speed of EKFs

(Montemerlo, Thrun, Koller, Wegbreit, et al., 2002), producing a capable SLAM solution

that could potentially be used for this work’s robotic system.

10

2.1. LOCALIZATION AND MAPPING

2.1.1.1 Kalman Filter

Figure 2.2: An illustration of a toy example where the state of a system, which in this
case is a boat’s position and velocity x̂k, is estimated using a combination of kinematic
equations based on previous state Fkx̂k�1. The boat’s ability to accelerate is taken into
consideration by the factor Bk~uk, where ~uk represents the external influence on the
system i.e. acceleration, which is illustrated by the yellow vector. In order to improve
the estimate of system state, a distance measuring sensor is used to infer position and
velocity, It can be seen that with a sloping shoreline, there exists a unique distance that
defines the boat’s position. To consider noise within the sensor device, measurements
are defined as a Gaussian probability distribution with a mean of ~zk and a covariance of
Rk .

Given a toy example, which is illustrated in Figure 2.2, a boat with a single degree of

freedom moves in the left hand direction, along the shoreline. Given a distance measuring

sensor, the rider needs to know its current position xk and velocity ẋk. The vector in

Equation 2.4 represents its current state. If the position and velocity of the boat are

correlated, their covariance matrix Pk in Equation 2.5 would a non-identity matrix.

The combination of mean and covariance imply a Gaussian distribution, which are the

ideal types of errors for which the Kalman filter is designed to correct against, however,

Kalman filters have also been shown to correct for other types of error distributions

(Kalman, 1960). For the sake of simplicity, this example assumes that all uncertainty

can be modeled by a Gaussian distribution.

x̂k =


xk
ẋk

�
(2.4)

Pk =

"
⌃xx ⌃xẋ

⌃ẋx ⌃ẋẋ

#
(2.5)

Taking into consideration x̂k�1 the previous state, part of the current state x̂k can

be estimated using kinematic equations, as shown in Equation 2.6.

11

CHAPTER 2. BACKGROUND

xk = xk�1 +�tẋk�1

ẋk = ẋk�1 (2.6)

In matrix form the predicted state vector would take the form of Equation 2.7.

x̂k =

"
1 �t

0 1

#
x̂k�1

x̂k = Fkx̂k�1 (2.7)

The matrix Fk is thus used in part to predict the current state based on the influence

of the system’s previous state. To update the covariance, the matrix identity relating the

covariance of a random vector to that of a random vector times a constant one (which is

stated in Equation 2.8 (Petersen, Pedersen, et al., 2008)) is used to derive the updated

state covariance matrix Pk. Thus, the covariance matrix for the current state would be

equal to Equation 2.9.

Cov(x) = ⌃

Cov(Ax) = A⌃AT (2.8)

Pk = FkPk�1F
T

k (2.9)

So far the influence of the system’s previous state is only considered. If the boat

in this example were to have a motor, this control input’s influence would also need to

considered. The motor’s operation would result in a change in acceleration, which a↵ects

position and velocity according to the Equation 2.10. The random control input matrix

is defined by the variable ~uk and the constant matrix relating the input to the boat’s

state is Bk. The current state vector in terms of the previous state and current control

input is defined in Equation 2.11.

xk = xk�1 +�tẋ+
1

2
ẍk�t2

ẋk = ẋk�1 + ~̈xk�t (2.10)

12

2.1. LOCALIZATION AND MAPPING

x̂k = Fkx̂k�1 +

"
�t

2

2

�t

#
~̈xk

= Fkx̂k�1 +Bk~uk (2.11)

In order to consider the uncertainty brought on by external influence such as wind

and drag the covariance matrix would need to be adjusted accordingly. This additional

uncertainty is represented by another covariance matrix that is added to Equation 2.9

and results in the updated state covariance being equal to Equation 2.12.

Pk = FkPk�1F
T

k +Qk (2.12)

So the current state vector and its corresponding covariance matrix represents the

systems predicted state. To further improve the estimate, sensor measurements that can

be used to infer system state can be included so that a best estimate can be calculated.

In the case of the boat example, a measurement of distance to the shoreline can be

used to infer position, and its derivative can be used to infer velocity. To map the

relationship between sensor measurement and system state a matrix Hk is defined in

Equation 2.13. The equation states that the sensor measurements can be predicted given

the multiplication of the constant matrix Hk with the current system state x̂k. Equation

2.13 also includes the covariance of the predicted sensor readings and is derived using

the same matrix identity in Equation 2.8.

~µpredicted = Hkx̂k (2.13)

⌃predicted = HkPkH
T

k (2.14)

This step is equivalent to saying that given the boat’s state x̂k, the predicted sensor

readings would have probability distribution with a mean of ~µpredicted and a covariance

of ⌃predicted.

The Kalman filter continues to obtain a best estimate of system state by taking into

account the actual sensor readings ~zk. Given a Gaussian distributed error for the sensing

system, the readings would thus have a mean of ~zk and a covariance of Rk.

The best estimate of system state would finally be equal to the mean of the distribu-

tion resulting from the intersection of the predicted sensor readings’ distribution and the

observed readings’ distribution. The final best estimate mean and covariance is defined

in Equation 2.15, where K is the Kalman gain.

13

CHAPTER 2. BACKGROUND

x̂
0
k = x̂k +K

0
(~zk �Hkx̂k)

P
0
k = Pk �K

0
HkPk

K
0
= PkH

T

k (HkPkH
T

k +Rk)
�1 (2.15)

From equation 2.11 it can be seen that the state matrix consists of a set of linear

equations. In the event that a state vector does not behave linearly and the state and

sensing systems are non-linear like that shown in Equation 2.16, one type of approach

would be to implement an Extended Kalman Filter. EKF uses Taylor Series expansion

to linearise the non-linear functions g() and h() in Equation 2.16 (Thrun et al., 2005).

x̂k = g(~uk, x̂k�1)

Pk = GkPk�1G
T

k

~zk = h(x̂k) +Rk (2.16)

Where Gk = �g(~uk,x̂k�1)
�x̂k�1

and Hk = �h(x̂k)
�x̂k

(Thrun et al., 2005).

2.1.1.2 Particle Filter

The Kalman Filter and EKF are both optimal for systems that exhibit Gaussian noise

and uncertainty. For certain cases were a system under consideration is not easily mod-

elled by Gaussian distributions, a Particle Filter might provide a better sollution. Par-

ticle Filters represent probability distribution in the form of discrete samples that are

drawn from a particular probability distribution and such a characteristic is advan-

tageous since a broader range of distributions can be approximated in comparison to

Gaussian distributions for which filters like the Kalman Filter and EKF are limited to.

The posterior belief of a particular system state is represented by the relative weight-

ing of each particle within the set �k, where �k := x̂
[1]
k
, x̂[2]

k
, ...x̂[M]

k
and M is the total

number of particle samples that the Particle Filter is set up to use. Each particle is

drawn from a probability distribution i.e. x̂
[m]
k

⇠ p(x̂k|~uk, x̂
[m]
k�1) and their weighting

would be equal to the probability that a system’s observed sensor reading ~zk matches

the estimated sensor reading i.e. w[m]
k

= p(~zk|x̂
[m]
k

) (Thrun et al., 2005).

2.1.2 RatSLAM

A relatively unique SLAM solution that does not explicitly use Bayesian probabilities and

instead draws inspiration from biology to solve the problem of SLAM is called RatSLAM

14

2.1. LOCALIZATION AND MAPPING

(Arleo & Gerstner, 2000; Sünderhauf & Protzel, 2010). RatSLAM is also unique relative

to previous SLAM methods in that it does not require the specification of a motion

model nor that of a measurement model. It instead only requires an odometry input

that describes the velocity of the sensor-array and a method of measuring similarity of

observations for the purpose of place-recognition.

The algorithm has been shown to perform loop closure over large terrains in real-

time running on multiple robotic platforms with modest hardware (Ball et al., 2013;

Milford & Wyeth, 2008). The lack of requirement for a motion and measurement model

would reduce the complexity of setting up the algorithm therefore making it easier to

transfer onto other platforms should the need arise. Such advantages make RatSLAM

a very attractive choice particularly since it has been ported to the Robot Operating

System and is available in open source (Ball et al., 2013). Literature has also shown

that RatSLAM can be modified so as to consider movement through higher dimensions

(Za↵ari, dos Santos, Duarte, d. A. Fernandes, & d. C. Botelho, 2016).

For these reasons RatSLAM is chosen as the main SLAM algorithm, noting that

although there are other algorithms available that are just as capable, RatSLAM o↵ers

an alternative to traditional algorithms and would therefore be interesting to investigate,

particularly any added benefit that its neural network based architecture can provide in

combination with neuromorphic hardware (Wang et al., 2017).

RatSLAM is a bio-inspired SLAM algorithm that mimics aspects of the spatial nav-

igation mechanisms of the mammalian brain, specifically the hippocampal formation

(Arleo & Gerstner, 2000; O’Keefe & Dostrovsky, 1971). The algorithm however comes

short of producing a faithful representation of the models explained in the literature due

to the author’s aim of developing a high performance robotic SLAM algorithm, giving

precedence over a more biologically plausible one.

2.1.2.1 Algorithm

The algorithm consists of a continuous attractor network model arranged into a 3 di-

mensional manifold of ‘pose cells’ that functionally represent the behaviour of ‘grid cells’

observed in entorhinal cortex of a rat (Moser, Krop↵, & Moser, 2008). A manifold in

this case is a continuous topological space that maps its locations to a Euclidean space;

an example of a 1 dimensional manifold is a circle that represents locations on a line. A

manifold structure is used as it provides the means to represent a large and continuous

environment with a discrete set of finite elements. In line with the requirement first

suggested by (O’Keefe & Dostrovsky, 1971), inputs that provide allothetic (external)

15

CHAPTER 2. BACKGROUND

and idiothetic (internal) cues are fed to the network so as to be able to build a coherent

cognitive map of the environment. RatSLAM was originally designed to obtain exter-

nal cues via visual sensors and therefore contains elements within its framework that

assume for such a decision, such as its definition of visual cells that refer to the nodes

containing observed environmental features. However, it must be noted that the algo-

rithm’s external cues may be sourced from any form of sensory modality given that the

observed features contain enough detail that allow for separating distinct locations from

one another. In order to remain consistent with the the author’s (Milford & Wyeth,

2008) description the terminology will remain the same.

2.1.2.1.1 1-Dimensional Example For the sake of brevity, the authors of Rat-

SLAM give a good description of the algorithms operation by focusing on a 1 dimen-

sional continuous attractor network (CAN) of HD cells as opposed to the 3 dimensional

pose-cell grid (Milford & Wyeth, 2008). The network is visualized by unfolding the

circular manifold into a line containing a series of interconnected head direction cells,

which due to the unfolding, now have wrapping connections between cells on the edge

of the line as seen in Figure 2.3.

Figure 2.3: (a) Excitatory (arrows), inhibitory (round) and self-motions for a continuous
attractor network representation of head direction cells. (b) A stable activity packet
centered at 120°. This figure was obtained with permission from the work of Milford et.
al (Milford & Wyeth, 2008)

16

2.1. LOCALIZATION AND MAPPING

The figure illustrates an instantaneous moment where a self-motion signal, denoting

a positive angular velocity, is given as input to a current heading of 120 degrees. The

self-motion node is connected to the HD cell’s via inhibitory and excitatory synapses

that allow for the shifting of cell activity in the appropriate direction, this process is

known as path integration. Each HD cell incorporates connections that excite itself as

well as, at a lower intensity, neighboring cells. In combination with global inhibition, the

connections serve to maintain a stable peak of activity centered on the head direction.

The overall process may be seen as a mechanism for integrating self-motion data, hence

the term path integration. The excitation of HD cells via self-motion signals will be

referred to as local excitation.

The term for estimating one’s position through path integration is called dead reckon-

ing. Dead reckoning, however, is susceptible to drift, which is an outcome of integrating

noisy odometry data, leading to a drift of perceived position from the actual position.

Unfortunately eliminating noise is not possible due to the innumerable sources of distur-

bances that a↵ect the accuracy of self-motion signals, including but not limited to, wheel

slippage and limited sensor resolution. This issue calls for a method that is capable of es-

timating the drift associated error and correcting for it. The correction mechanism that

RatSLAM implements is derived from the systems inherent filtering that occurs as the

influences of self-motion and external cues compete for HD cell packet dominance. The

figure shows a single HD cell packet, which contains HD cells 60 through to 180 degrees

with a peak centered on 120 degrees. The distribution resulting from local excitation is

of a Gaussian type. Unlike most other SLAM algorithms, the result of path integration

does not correspond to the built up uncertainty. The parameters of the Gaussian distri-

bution resulting from the self-motion signal is fixed in RatSLAM and therefore is not a

representation of accumulated uncertainty.

To enable the influence of spatial related cells by visual cues, local-view cells (LV)

are defined. LV cells each contain a template of the observed scene and a link to the

centroid of the active HD cell packet. In RatSLAM, a feature is extracted from the

template, which is then used to compare similarities against other scenes. RatSLAM

defines a template as a cropped region in an image that is pertinent in classifying scenes.

For example, an image from the dashboard of a car may be split into an upper and

lower region. The upper will contain the sky that lacks identifiable features, which is in

contrast to the lower region that is rich with details and thus abundant in identifiable

features. In the case of RatSLAM, the feature that is extracted from the template is

its scan-line profile intensity, a vector that contains the summed pixel intensities of the

template’s columns.

17

CHAPTER 2. BACKGROUND

The uniqueness, or similarity, of LV features is determined by calculating the sum

of absolute di↵erences between the feature vectors. A value lower than a user-defined

threshold would classify the features as similar, where as a value exceeding the threshold

would result in the creation of a new LV cell. In an e↵ort to link a spatial location with an

observation, a one-shot learning method is used to strengthen the connections between

co-activated LV and HD cells. The future activation of an LV cell would therefore result

in the associated HD cells being activated in parallel. Alternatively, the cessation of

LV cell activation would result in the decay of the HD cell’s activity. The emergence of

a dominant HD cell packet will therefore only occur given the ordered and consistent

activation of LV cells. The emergence of a dominant packet will shift the perceived

location from the currently held one, to the one associated with the activated LV cell.

Such a shift is referred to as a re-localization. This process describes the interplay

between internal and external cues that form the drift correction mechanism.

2.1.2.1.2 Operation For a robot operating in a conventional planar environment

RatSLAM requires 3 spatial variables for vertical y0, horizontal x0, and angular ✓0 posi-

tion. The manifold consists of pose cells (PC), each of which represents a unique pose

and encode both a discrete surface position and heading. The structure is thus referred

to as the pose cell grid. Similar to the drift correcting mechanism described in the

example, the pose cells operate within a competitive attractive network where internal

and external cues influence pose cell packet activity and vie for dominance, the centroid

of the dominant pose cell packet represents the systems best estimate of the agent’s

current pose. Equation 2.17 defines the change in pose cell activity according to the

activity level of a LV cell. The learnt connections between PC and LV cells are defined

by a connectivity matrix �, which is calculated according to equation 2.18 and results in

higher weights being assigned to highly activated PC and LV pairs. The pose code P is

defined as a matrix that contains activity levels of all the cells within the pose cell grid

while the view code V is defined as a vector that contains the activity levels of LV cells.

�Px0,y0,✓0 =
�

⌘act

X

i

�i,x0,y0,✓0Vi (2.17)

�t+1
i,x0,y0,✓0 = max(�t

i,x0,y0,✓0 ,�ViPx0,y0,✓0) (2.18)

It must be noted that this is not observed to be the mechanism employed in the code

provided by the authors of RatSLAM and the connections between LV and PC cells is

simply represented as the calculated location of the maximally active pose cell during

18

2.1. LOCALIZATION AND MAPPING

the time in which the LV cell was first generated. This simplification did not seem to

degrade the performance of the system and it continued to perform correct loop closure

on the several data sets (Ball & Milford, 2015) that were used in their publications (Ball

et al., 2013; Ball, Heath, Wyeth, & Wiles, 2010). The authors did mention that they

sacrificed biological correctness in favor of computational e�ciency and this may be one

of the areas in which they focused on (Milford & Wyeth, 2008).

The path integration mechanism is adapted for the pose cell grid by expanding the

variance of the excitation pattern from the 1 dimensional Gaussian distribution to a 3

dimensional one, its value calculated according to equation 2.19. For all equations, the

values (a, b, c) each represent distance between elements in the pose cell grid coordinates

(x0, y0, ✓0).

"a,b,c = exp�(�a
2+b

2)/kp exp�c
2
/kd (2.19)

The resulting change in pose cell activity due to the self-motion signal is defined in

equation 2.20. In an e↵ort to speed up the computation involved, activity related to

path-integration is shifted in the desired direction by copying the packet and placing it

in the required position. Global inhibition is defined in equation 2.21. To address the

wrap around connectivity of elements at the borders, equation 2.22 defines how their

distance values are to be derived. The values denoted by the variable n refer to the size

of the specified dimension and the variables i, j and k refer to the coordinate of the cell

in the excitation or inhibition matrix.

nx0�1X

i=0

ny0�1X

j=0

n✓0�1X

k=0

Pi,j,k"a,b,c (2.20)

�Px0,y0,✓0 =

nx0X

i=0

ny0X

j=0

n✓0X

k=0

Pi,j,k a,b,c � ' (2.21)

a = (x0 � i)(modnx0)

b = (y0 � j)(modny0)

c = (✓0 � k)(modn✓0)

(2.22)

In order to recall past poses along with their associated observations, an experience

map (EM) is constructed in order to store these links. Analogous to the cognitive map

that is described in the biology section, the EM consists of experience nodes that are

linked together, forming a topological map. An experience node is a structure that

19

CHAPTER 2. BACKGROUND

contains information regarding the pair of associated of pose and local view cells. In

addition to these associations, experience nodes contain their relative position to adjacent

experiences within the EM. Experience at index i is defined in equation 2.23 and contains

the coordinates of the highest active pose cell P and identification V of the LV cell that

were active during the creation of the experience. The third element pi is a vector that

contains the position of ei relative to ei�1 as defined by the odometry.

ei = {P i, V i,pi
} (2.23)

The creation of a new experience is ensued by a su�cient change in either pose

or observed scene. Equation 2.24 formulates this condition by defining metric S that

encodes experience similarity. A similarity value exceeding the threshold Smax would

create a new experience while one lower would result in the re-localization to a past

experience. A re-localization, or loop-closure, would result in the adjustment of all

experiences’ positions within the EM in order to correct for the perceived error that

was accumulated during the time before any localization occurred. This correction

mechanism is referred to as graph relaxation and works by spreading the accumulated

error across all nodes in an attempt to reduce the overall error in estimated robot

trajectory. By reducing the error in robot trajectory the positioning of the observed

landmarks would also be closer to the ground truth and a more coherent topological map

may be constructed. The adjustment to the experience position is defined by equation

2.25 where ↵ (optimally set by the authors to 0.5) is the rate of graph relaxation.

S = µp|P
i
� P |+ µv|V

i
� V | (2.24)

�pi = ↵

2

4
NfX

j=1

(pj
� pi

��pij) +
NtX

k=1

(pk
� pi

��pki)

3

5 (2.25)

RatSLAM’s mechanisms are inspired from theoretical models related to operations

within the hippocampus. The pose cell grid can be compared to the layers of conjunctive

grid cell networks that also exhibit the wrap around behavior with each of their layers

tuned to a particular heading (Burak & Fiete, 2009).

As mentioned previously, the original design of the RatSLAM algorithm took into

account the use of a camera as the main sensor for obtaining externel cues. We instead

would like to modify the algorithm in order for it to operate with this work’s whisker-

tactile sensor array. Before discussing the specifics of the modification, a description of

the the sensory system is given.

20

2.2. HARDWARE

2.2 Hardware

The complete list of hardware used in this work includes: the whisker-tactile array that

is mounted on the end of a UR10 or UR5 arm, and two computers that each control

the whisker-tactile array and the Universal-Robots arm. The whisker-tactile array is

connected to a lenovo x201 laptop via a USB port, and is loaded with Ubuntu 14.04

along with the drivers needed to communicate with the array’s custom FPGA, which

is responsible for motor control and sensory data retrieval. The Universal-Robots arm

is operated via a separate PC that uses the ROS framework for communication, which

includes arm control and pose retrieval.

2.2.1 Robotic Arm Manipulator

The work carried out in this thesis uses two Universal-Robots arms for di↵erent experi-

ments: a UR10 arm for the work in Chapter 3 and the UR5 for all remaining chapters.

The main di↵erence is their payload capacity and reach, which is higher for the UR10

arm (1.3m vs 0.85m). Precision of the arms with regards to pose repeatability was the

same for both models (±0.1 mm) (Universal-Robots, 2018a, 2018b).

Both arms were controlled via the Robot Operating System (ROS), specifically ROS

Indigo on a PC running Ubuntu version 14.04. A motion planning framework called

MoveIt was used for all Inverse Kinematic related tasks. Universal-Robots provides all

the drivers and arm description files needed to interface the manipulators with ROS and

MoveIt (Universal Robots ROS , 2018). All the proceeding work did not involve the need

for any specific velocity control and instead limited the motion planning trajectories to

low joint speeds for precautionary reasons (0.1 rad/s for all joints). MoveIt also provided

the necessary support for collision avoidance and other desirable restrictions such as the

limitation of trajectories to a certain range of joint values.

Collision avoidance works by defining a virtual environment that MoveIt uses to make

sure that any trajectories it generates do not cause the arm to come into contact with

any object. The arm’s virtual model can be modified to include the end-e↵ector i.e. the

whisker-tactile array. To avoid colliding the whisker-array with any obstacle, while still

allowing for the whisker-shafts to make contact, a mesh was modeled in order to serve

as the virtual end-e↵ector. The model is shown in Figure 2.4, where a surrounding mesh

is added to ensure the arm is not put in a position that prevents whiskers from being

able to fully retract.

21

CHAPTER 2. BACKGROUND

Figure 2.4: Using the MoveIt package from generating the arm’s trajectories, a virtual
environment is defined, one that best represents the real robot’s space in order for
the planner to avoid collisions. Modifications are made to the arm’s virtual model to
include a region of space that is to be avoided by the planner (shown in white). The
model includes a U-shaped mesh that represents the extreme locations of the whiskers
during their sweeping motion, which prevents the arm from being in a position that stops
the whiskers from reaching their fully retracted state. The green elispodal object is an
example of an environmental obstacle that the planner has to consider when planning a
movement.

2.2.2 Whisker-tactile Sensor Array

The physical whisker-sensor array consists of 18 individually actuated whisker modules

that are arranged in a manner that mimics the whisker-morphology of a shrew (Mitchin-

son, Pearson, Pipe, & Prescott, 2012a). More specifically, the whiskers are arranged into

3 concentric circles of 6 whiskers where each whisker measures approximately 60 mm,

100 mm and 160 mm from rostral to caudal.

The nature of all tactile-sensors is that they need to make contact with the surface

that is to be examined and therefore need to be manipulated across the surface at a close

distance. To facilitate this requirement the array is mounted to the end of a Universal-

Robots robotic arm that operates with 6 degrees of freedom. The arm also includes

position sensors that can return the exact position of the sensor-array relative to the

arm’s base thereby allowing us to use forward kinematics for contact localization and

22

2.2. HARDWARE

error calculations based on the ground truth measurements. For the work in Chapter 3

a UR10 arm with a reach of 1.3 m is used, and for the proceeding Chapters a UR5 arm

with a reach of 0.85 m is used. Aside from the di↵erence in reach and maximum payload

weight, the arms had similar specification with respect to their degrees of freedom and

joint-position sensors’ resolution and sampling rate. The whisker-array was mounted to

the end of the arm by a custom built adapter, which is shown in Figure 2.5.

1

2

456

3

Figure 2.5: The whisker-array is mounted onto the robotic arm via a 3D printed adaptor
(1). The adapter is connected to the whisker-array base (2) that is used to hold onto the
whisker-modules’ support structure (3). The structure supports 18 individually actuated
whisker modules, which are arranged in 3 concentric circles, with each circle containing
6 whiskers. In a rostral to caudal direction the length of the whiskers increase. The
approximate length of each whisker varies from 60 mm (5), 100 mm (6) and 160 mm
(7). The model used to generate this image was obtained with permission from work of
Pearson et al. (2013).

23

CHAPTER 2. BACKGROUND

The whisker-array has been used in several pieces of work including (Mitchinson et

al., 2012a; Mitchinson, Pearson, Pipe, & Prescott, 2012b; Pearson et al., 2013) with a

detailed technical specification of the individual whisker modules described in the work

of (Sullivan et al., 2012).

Z

X

Y

1

2

3

4

Figure 2.6: The whisker module consists of several components that include a whisker
shaft (1), artificial follicle (2), follicle-motor adaptor (3) and the motor casing (4). The
deflection sensor is placed within the follicle-motor adaptor and is able to detect move-
ment of the shaft’s base in two orthogonal directions. The whisker-angle sensor is placed
on the side of the motor casing and measures the rotation of the follicle-motor adap-
tor. The model used to generate this image was obtained with permission from work of
Pearson et al. (2013).

Each whisker module, which is illustrated in Figure 2.6 on page 24, consists of a

24

2.2. HARDWARE

3D printed linearly tapered whisker shaft. The whisker shafts were constructed from a

material called NanoCure RC25 on an Envisiontec rapid prototyping 3D printer. The

diameter at the base of each whisker (irrespective of length) was 2 mm, with a linear

taper toward a tip diameter of 0.6 mm. The whisker shaft is held in place within an

artificial follicle using a flexible polyurethane mold rubber, which allows for a limited

range of movement that approximately places the pivot point around the center of the

whisker’s bulbous base. A contact along the length of the whisker shaft will therefore

translate to a small movement of the whisker’s base. The base of the whisker holds a

magnet that is used along with a Melexis MLX90333 Hall-e↵ect based sensor, which is

able to measure changes in the magnet’s position along two orthogonal planar directions;

the design of the whisker allows us to detect deflection of the whisker shaft by observing

the displacement of its base, this is illustrated in Figure 2.7. This mechanism attempts to

mimic the phenomenon of how rats measure shaft deflection at the base of their whiskers

(Diamond & Arabzadeh, 2013).

+Y

-Y

Figure 2.7: The figure illustrates how the whisker deflection is translated to a motion
at the whisker base. The red circle highlights the position of a magnet attached to the
base of the whisker, which is detectable by a hall e↵ect sensor. The deflection signal is
therefore a representation of this motion. The 2D hall e↵ect sensor picks up motion in
thex(horizontal) direction as well, however, this is omitted from the figure for brevity.
The model used to generate this image was obtained with permission from work of
Pearson et al. (2013).

The artificial follicle in turn is fixed to the shaft of a brushless DC motor that is driven

by a custom built micro-controller PCB (Sullivan et al., 2012) that allows for a whisking

rate of up to 10Hz, equivalent to the dominant whisking frequency exhibited in rats

(Carvell & Simons, 1990). On the side opposite to where the motor shaft is fixed to the

follicle, another magnet sensor pair (Melexis MLX90316) measures the whisker’s angle

25

CHAPTER 2. BACKGROUND

of rotation. The combination of the sensor, signal processing software, and whisking

controller, results in a maximum sensory sampling rate of 2kHz (Sullivan et al., 2012).

It is therefore possible to measure the whiskers deflection at its base in two orthogonal

directions and its angle relative to base of the whisker module. Figure 2.8 illustrates

the rotational limits of a whisker module. The whisking range from a fully retracted to

protracted position spans 100 degrees, with the initial, fully retracted position starting

at 40 degrees o↵ the base of the module.

40°

Figure 2.8: The figure illustrates how the whisker angle is measured. The initial angle
starting from the fully retracted state is 40 degrees and ends at the fully protracted state
at angle 140 degrees. The angle of the whisker shaft is measured relative to a plane that
is parallel to the module’s base. The model used to generate this image was obtained
with permission from work of Pearson et al. (2013).

Figure 2.9 shows a readout for the deflection and angular sensors when the contact

is made close to the protraction limit. The time of contact, which is marked by the

vertical red line, can be estimated by first determining a peak within the Y-Deflection

signal using several signal processing tools, described in detail in Chapter 3. The Y-

Deflection signal is used in particular since it is parallel to the sweeping plane, and

therefore the dominant deflection value during contact. Once the Y-Deflection peak is

obtained, the time that the signal began to accelerate can be worked out to establish the

time of contact. The time of contact consequently allows for the whisker contact-angle to

be estimated, and other contact-signal features that allow for the extraction of geometric

features such as surface slope and the distance of the contact point along the whisker

shaft. The details regarding the estimation of these geometric features are described in

greater detail in Chapters 4 and Section 5.2.

26

2.2. HARDWARE

0 500 1000 1500

Sample

0

50

100

150
A

n
g

le
 (

d
e

g
)

Whisker Angle

Contact Onset

0 500 1000 1500

Sample

0

2

4

6

R
a

w
 V

a
lu

e

104 Y Deflection

0 500 1000 1500

Sample

0

2

4

6

R
a

w
 V

a
lu

e

104 X Deflection

Figure 2.9: Sensor readings during a contact made close to the whisker’s protraction
limit. A vertical red line indicates the estimated time of contact, which is derived by
finding the time at which the Y deflection signal begins to accelerate. The whiskers
are whisking in an open-loop and no whisking control strategy is implemented. The
whisking motion is relativly perpendicular to the surface of the contact obstacle since
thexdeflection is flat compared to the Y deflection. As discussed in the review, the
surface of a contact may be infered by finding the ratio of the Y-X deflection signals
during time of contact.

27

CHAPTER 2. BACKGROUND

The whiskers are driven in a sinusoidal manner with a cosine function set with an

amplitude of 100 degrees and a frequency of 1Hz, just as shown in Figure 2.9 on page 27.

This cyclic motion is referred to as whisking and is a behavior observed in animals, such

as rats, mice and shrews (Prescott, Mitchinson, & Grant, 2011). It must be noted that a

sinusoidal function is a simplification of the rats whisking motion since they are observed

to whisk in a more complex fashion where the frequency is actively varied depending

on their current task (Diamond & Arabzadeh, 2013). Rats also exhibit asymmetrical

whisking profiles when making contact with objects, maintaining a longer time in contact

with a surface, and retracting at a slower velocity (Grant, Mitchinson, Fox, & Prescott,

2009). A sinusoidal function with a fixed frequency is used since it is less taxing on the

motors and reduces the number of variables that have to be considered when trying to

improve the sensor array’s perception capabilities.

This work’s aim, with regards to the whisker sensor-array, is to maximize the qualita-

tive and quantitative information that can be gathered from the environment so that the

mobile robot can navigate e↵ectively. Whisker-tactile sensing is a particularly challeng-

ing sensory modality to use for navigation since it does not share a similar operational

range, resolution or sampling rate a↵orded to more conventional navigational sensors

like cameras. Environmental features thus need to be rich in detail so that we are able

to better segment di↵erent regions of space. This work therefore sets out to improve

the perceptual abilities of the whisker-tactile sensor array by using tools learned from

other fields that include image recognition, signal processing, cutaneous-tactile sensing,

machine learning and through the mimicry of rat whisking behaviour.

2.2.2.1 Hall E↵ect Sensor

The Melexis MLX90316 sensors in the whisker modules measure position by taking

advantage of the Hall e↵ect (Melexis, n.d.). The Hall e↵ect is the observation of a

potential di↵erence across a current carrying electrical conductor when a magnetic field

is applied (Ramsden, 2011). This e↵ect was first observed by Edwin Hall and was used

by him to determine what the sign of the predominate charge carriers are for a particular

material (Ramsden, 2011).

The potential di↵erence observed for a given material under such conditions is re-

ferred to as the Hall voltage and is defined by the Equation 2.31 (Ramsden, 2011). The

equation can be derived by observing that the charge carriers, when in a state of equi-

librium, have a balance of electrical field and magnetic field induced forces. Thus, the

equation of forces on a charged particle would be equal to Equation 2.26, where e is the

28

2.2. HARDWARE

+ + + + + +

- - - - - -

L II

A

E -
eE

evdB

vd

Figure 2.10: An electric conductor with a length L and a cross section area of A is
identified to have predominantly negative charge carriers using the Hall e↵ect. The Hall
e↵ect is an observation that an electric potential (called the Hall voltage) is built across
a conductors length when a magnetic field B is introduced and is is perpendicular to its
electrical current direction I. The charge carriers under a state of equilibrium experience
a balanced pair of forces, one induced from the electric field E and is equivalent to eE
where e is the magnitude of electric charge, and the second force from the magnetic field
and is equivalent to evdB, where vd is the charge’s average drift velocity. The final Hall
voltage in terms of magnetic field strength is defined in Equation 2.32, which illustrates
that the Hall voltage is proportional to the magnetic field strength and average particle
drift velocity. When the charge carrier is of positive polarity the drift velocity will be
of an opposite sign and the measured Hall voltage will be of the same sign. Thus, a
materials predominant charge carrier polarity may be deduced by measuring the Hall
voltage and observing its sign.

magnitude of electric charge, E is the magnitude of electric field, and B is the magnitude

of magnetic field (Ramsden, 2011).

eE = evdB (2.26)

Equation 2.26 can be rearranged for vd to give Equation 2.27.

vd =
E

B
(2.27)

The symbol vd refers to the drift velocity, which is a measurement of average charge

particle velocity within the conductor. The drift velocity is proportional to current and

an equation relating the two together is shown in Equation 2.28. Where n is the number

of charged particles per volume. Combining Equation 2.28 with Equation 2.27, Equation

2.29 may be obtained (Ramsden, 2011).

I = nevdA (2.28)

29

CHAPTER 2. BACKGROUND

I = ne(
E

B
)A (2.29)

Finally, to derive the Equation for Hall voltage, the definition of electric field strength,

which is the capacity of moving one unit charge per unit length i.e. Equation 2.30, and

Equation 2.29, can be combined to give Equation 2.31 (Ramsden, 2011).

E =
V

l
(2.30)

V =
IBl

neA
(2.31)

This equation holds true for the cuboid geometry shown in Figure 2.10. Note that

the figure illustrates the case where the charge carrier has a negative polarity. In the

case where the B and I stay constant, a positively charged carrier would move in the

opposite direction, resulting in a negative vd value. Combining Equations 2.26 and 2.30

to give Equation 2.32, it can be seen that a negative drift velocity would result in a

negative Hall voltage (Ramsden, 2011).

V = Blvd (2.32)

Since the distance between a magnetic device is inversely proportional to the mag-

netic field strength felt by the conductor (Zangwill, 2013), a linear distance sensor uti-

lizing the Hall e↵ect can be designed by noting the Hall voltage for varying distances.

For rotary position sensors such as the Melexis MLX90316, three conductors or magen-

tic flux components, are used to determine either linear motion, rotary or joystick type

motion (Melexis, n.d.).

2.3 Sensing

Touch or tactile sensing is a relatively new modality that has been implemented on cur-

rent robotic platforms, predominantly on humanoid robots that are needed for grasping

and object manipulation tasks (Dahiya, Metta, Valle, & Sandini, 2010). Tactile sensors

that are implemented on robotic hands are referred to as cutaneous-tactile sensors since

they attempt to mimic receptors found under the skin. These artificial sensors attempt

to extract the same information that our skin receptors can, which include object shape,

deformity, temperature and texture. There are additional receptors that are responsible

for detecting pain and some attempts have been made to replicate them artificially (Xu

30

2.3. SENSING

et al., 2015), however, these type of sensors are more state-of-the-art and are uncommon

on commercial robotic hands/platforms.

The following work instead focuses on whisker-tactile sensing and the implementation

of artificial whisker-tactile sensors for the purpose of object recognition and navigation.

As such the following section includes review of research dealing with the behaviour and

abilities of rats, including the morphology of their whiskers, and observed capabilities

in texture, shape and vibrational identification (Diamond & Arabzadeh, 2013). Subse-

quently, the section continues to describe advances in artificial whisker-sensing and how

challenges regarding contact localization, texture and object identification have been

addressed.

Rats major set of active whiskers may be found on their snouts with approximately

30 mirrored on each side. Rat whiskers are divided into two sets, Macrovibrissae and

Microvibrissae. Macrovibrissae are the larger set of whiskers that are motile, and are

mirrored on both sides of the rodent’s snout. Each side consists of approximitly 30

whiskers with the rostral (nearer to the nose) whiskers being the shortest, and those in

the caudal (nearer to the tail) direction, the longest. It has been suggested that this

arrangement allows for the rat to cover a concave and convex shape during its whisking

cycle (Towal, Quist, Gopal, Solomon, & Hartmann, 2011), which increases the variety of

shapes that it can come into contact with. A whisk is defined as the cyclic movement of an

individual or group of whiskers from a retracted (caudal) to a protracted (rostral) state.

Whisking has been shown to be greatly beneficial for texture identification (Diamond

& Arabzadeh, 2013) and general improvement in information gathering (Mitchinson &

Prescott, 2013a).

For example, rats are known to be able to discern with great accuracy and precision

the texture and shape of contacted surfaces (Diamond & Arabzadeh, 2013). Research has

been carried out with regards to understanding the mechanisms that rats use to achieve

such discernibility in identifying small variations in surface textures and object shapes

(Brecht et al., 2011; Diamond & Arabzadeh, 2013; Lucianna, Albarracin, Vrech, Farfan,

& Felice, 2016; Pammer et al., 2013; Towal et al., 2011). Rats are also known perceive

these changes under varying conditions of whisker approach and contact speed relative

to the surface (Huet, Rudnicki, & Hartmann, 2017), as well as changes in whisker-shape

after experiencing whisker breakages (Zuo, Perkon, & Diamond, 2011).

Research has focused on determining the sensitivity of the neurons responsible for

mechano-reception (Arabzadeh, Panzeri, & Diamond, 2006), the e↵ect that whisker

shape has on di↵erentiating contact distances along the length of the shaft (Ahn &

Kim, 2017; Lucianna et al., 2016), the e↵ect of whisker-morphology on the range of

31

CHAPTER 2. BACKGROUND

shapes that can be contacted (Towal et al., 2011) and the e↵ect that whisking-control

strategies have on the perfromance of whiskers in being able to operate in an e↵ecient

manner (Berg & Kleinfeld, 2003; Grant et al., 2009; Mitchinson & Prescott, 2013a).

2.3.1 Whisker Control

Observational studies (Grant et al., 2009) have shown that, following contact, rats control

their whiskers to exhibit three unique strategies; Contact Induced Asymmetry (CIA),

Rapid Cessation of Protraction (RCP) and Spread Reduction (SR).

CIA is described as the state in which the mean position of the right and left sided

whiskers are not symmetrical along the center line of the rat’s snout. The mean position

refers to the average angular position of the whiskers during its whisking motion, thus

group of whiskers retracting (caudal) and protracting (rostral) from -50 degrees to 50

degrees will have a mean position of 0 degrees. If the left sided whiskers where whisking

instead between -50 to 0 degrees while the right sided whiskers ranged between 0 and

50 degrees, the mean positions of the left and right sided whiskers would be -25 and 25

degrees respectively. Their mean positions will, therefore, be non-symmetrical along the

snout of the rat. This is typically observed when an obstacle is contacted while the head

is at an angle to its surface, thus causing he whiskers to adapt their positioning so that

as many contacts can be made while the head is in its current orientation.

RCP is the observation that rats stop protracting their whiskers following contact,

specifically at the site in which the contact was made.

SR describes the observation that the range between protraction and retraction is

reduced, on both sides, following the detection of contact. This change would cause

all whiskers to make contact at a relatively similar time since their relative angular

displacement will be reduced. It has been suggested that rat’s whisker control exhibit

Spread Reduction in order to maximize contact with an obstacle while and doing so in

a manner that minimizes excessive bending of the whiskers and spreads out the contact

time over a longer period (Grant et al., 2009). It can be observed from the high speed

recordings found in the supplementary materials of (Mitchinson & Prescott, 2013b) that

rats maintain their whiskers in an evenly distributed manner when targets are absent,

and whisk at a range that is less than their maximum protraction and retraction limits.

Once a contact is detected, the whiskers’ mean position is shifted in the rostral direction

and the whisking range is concentrated to an area closer to the protraction limit.

Together these responses have been summarized in a simple strategy referred to as

Minimum Impingement Maximum Contact (MIMC) (Mitchinson & Prescott, 2013b).

32

2.3. SENSING

The strategy of MIMC has been proposed to maximize the quality and quantity (num-

ber of contact points) of information gathered from the whisker array (Mitchinson &

Prescott, 2013b; Pearson et al., 2011).

It must be noted that although the figures illustrate these observations in the over-

head direction, rats exhibit this whisker-control behavior in both vertical and horizontal

planes (Grant et al., 2009). This is possible since rats have many whisker controlling

muscles that a↵ord them a high degree of freedom (Towal et al., 2011) unlike this work’s

artificial whiskers that are limited to a single degree of freedom.

2.3.2 Whisker-Contact Localization

Maximizing the number of contacts is but one important aspect of improving the per-

ceptual ability of whisker-tactile sensors. The other aspect is the quality of the extracted

tactile features that include geometrical and textural properties of the contacted surface

(Diamond & Arabzadeh, 2013). One large area of interest in whisker-tactile sensing is

understanding the mechanism that rats use for estimating the radial-distance to con-

tact, particularly for robotic applications since it would greatly improve the precision of

contact-localization and thus benefit any object recognition tasks.

The radial-distance of contact refers to the point along the whisker-shaft, relative

to its base, to where contact with a surface is made. The task is non-trivial since

there are no receptors along the shaft and the estimation of radial-distance needs to be

inferred based on the sensory feedback of the mechano-receptors located at the base of

the whisker, inside the follicle.

Rats have been observed to accurately and precisely determine the radial distance of

contact (Pammer et al., 2013). The authors of (Pammer et al., 2013) suggest that rats

could potentially employ one or more of three strategies when estimating contact radial

distance. Two of these strategies operate on the principle of triangulation that uses two

depth varying whisker contacts. The third being the use of deflection magnitudes at

the whisker follicle, which is based on the assumption that a whisker acts similar to a

fixed cantilever beam. Several studies have focused on the latter strategy as rats have

exhibited radial distance discrimination with a single whisker (Pammer et al., 2013).

Studies such as (Birdwell et al., 2007; D. Kim & Möller, 2007; Pammer et al., 2013) have

assumed the knowledge of the whisker’s material properties thus allowing them to use

the Bernoulli–Euler equation to derive an equation relating radial-distance to contact.

The Bernoulli–Euler equation describes the deflection experienced by a beam of a

particular material and shape, given a set of boundary conditions and applied force. For

33

CHAPTER 2. BACKGROUND

(D. Kim & Möller, 2007) the whisker is modelled as a non-tapered cylindrical beam with

one fixed end and one free end, while (Birdwell et al., 2007; Pammer et al., 2013) further

consider the e↵ects of tapering and include it in their radial-distance estimation models.

(Birdwell et al., 2007) describes the process of deriving the radial-distance estimation

model from the initial assumption of a straight cylindrical cantilever beam and for small

whisker deflection angles (< 14°). Under these assumptions the curvature of the beam

can be described by Equation 2.33 where curvature measures the extent at which a linear

object deviates from a line and is equal to:  = 1/R. R is the radius of the curvature

and is illustrated in Figure 2.11 for a bent beam.

Figure 2.11: The curvature  is equal to the inverse of the radius R of the curvature.

(x) =
d2y

dx2
=

M(x)

EI
(2.33)

Curvature for a one fixed end one free end cantilever beam can be calculated given its

E, which is the Young’s modulus and I, the second moment of area or moment of inertia

(Gere, 2004). Young’s modulus is a value describing how much a material deforms given

an application of force applied along its longitudinal axis. The second moment of inertia

describes the distribution of material about a particular axis (Gere, 2004). Given the

example cylindrical whisker shown in Figure 2.12, where the applied force is parallel to

the x-axis and results in a moment about the z-axis, the second moment of area needed

for the calculation of curvature would also need to be derived along the z axis. For a

34

2.3. SENSING

cylindrical cantilever beam, the second moment of area is Iz =
⇡

2 r
4, where r is the radius

of the cylinder.

L

a

Y

X

Fx

(a)

Y

Z

Fx

r

(b)

Figure 2.12: The curvature of a whisker due to a bending moment can be approximated
by modelling it as a cantilever beam with a cylindrical shape that is fixed on one end
and free on the other. The figure highlights the symbols used in the text and what
they represent, including the length of the whisker L, the distance from the base of the
whisker a at which a force Fx is applied. The subscript in Fx denotes the axis along
which the force acts along, which in this case is the x-axis. The moment M(x)z is a
rotating force that is experiences at a particular location x along the beam’s length,
and its direction is about the z-axis. The point a at which the linear force Fx acts,
the moment can be calculated as M(a)z = Fx ⇥ a. Since this Moment acts along the
z-axis, the resulting compressive and tensile forces will act parallel to it. To determine
the extent at which the beam would deform, the moment of inertia Iz about the z-axis
would need to be calculated. Looking at Figure 2.12b it can be seen that the moment
of inertia for this beam about the z-axis is that of a circle, which can be worked out to
Iz =

⇡

2 r
4 (Birdwell et al., 2007; Gere, 2004).

If the force is applied at a distance a from the base of the whisker, the moment at

that point would be equal to M(a) = F ⇥ a, and in general the moment experienced

at any point along the whisker is given by equation 2.34. Given a straight beam, the

curvature is naught beyond point a due to a lack of turning moment which can be seen

in 2.34.

M(x) =

8
<

:
F (a� x), 0  x  a

0, a  x  L
(2.34)

By integrating Equation 2.33 twice to derive an expression for y(x) which is the

35

CHAPTER 2. BACKGROUND

vertical displacement of the beam at a horizontal point x, and using the boundary

conditions dy

dx
= 0 when x = 0 and y(x) = 0 when x = 0 since at point x = 0 the beam

is fixed, (Birdwell et al., 2007) obtains Equation 2.35.

y(x) =

8
<

:

F

6EI
(3x2a� x3), x  a

F

6EI
(3a2x� a3), x � a

(2.35)

To consider the e↵ects of a tapered whisker (Birdwell et al., 2007) substitutes the

second moment of area for a circle I = ⇡r
4

4 into that of a tapered whisker. The tapered

whisker is modeled as a linearly tapered cone and its radius varies with respect to

horizontal distance according to the following equation: r(x) = rbase(1�
x

L
). The second

moment of area for a tapered whisker is thus found to be equal to Equation 2.36.

I =
⇡

4
(
rbase
L

)4(L� x)4 (2.36)

Using the same procedure for deriving Equation 2.35, the vertical displacement of a

cone shaped cantilever beam is found to be Equation 2.37.

y(x) =

8
<

:

2FLx
2

3E⇡r4base
(3La�Lx�2ax

(L�x)2), x  a

2FLa
2

3E⇡r4base
(3Lx�La�2ax

(L�a)2), x � a
(2.37)

Substituting Equation 2.36 and 2.34 into Equation 2.33 (Birdwell et al., 2007) shows

that under the assumption of small angle deflections an expression relating radial-

distance to contact, shown in Equation 2.38, can be derived and found to be a function of

rate of change of turning moment with respect to the rate of change of whisker deflection

angle.

d =
3EIbaseLBT

3EIbase +
dM

d✓
LBT

(2.38)

Note that LBT is the length of the whisker from its base to its tip when straight and

Ibase is the second moment of area of the whisker’s base, which is a circle and I = ⇡r
4

4 .

Authors of (Evans et al., 2013) on the other hand use a feature based classifier

to relate deflection magnitude and period to a radial-distance estimate. Figure 2.13

shows the deflection response when radial distance and contact speed are varied. Unlike

the equation based methodology, the classifier does not need explicit knowledge of the

whisker parameters, such as second moment of area or Young’s modulus (Evans et al.,

2013). The second moment of area describes the spread of an objects shape about

36

2.3. SENSING

a specific axis and the Young’s modulus describes how much a material is prone to

displacement given a set amount of applied force.

Figure 2.13: Magnitude of deflection, or force, has been used previously as a discrimi-
nator of radial distance to contact. Here the two traces are at di↵erent radial distances
(R), measured in millimeters, but create the same magnitude of deflection. Speed (S)
measured in millimeters per second. Colored arrows indicate how the extracted features
for classification are measured. Peak deflection magnitude (f1) and contact duration
(f2) are used to discriminate radial distance to contact and contact speed, respectively.
Figure copied from (Evans et al., 2013) with permission.

The latest research has shown that this could be achieved by measuring the axial

force and bending moments experienced at the base of the whisker at any time during

contact (Huet et al., 2017). The simulation results indicated that a neural network

trained to map the three forces to radial distance achieves an error of no more than

1.5% of the whisker length which is slightly lower than previous attempts at radial-

distance estimation 1.65% (Evans et al., 2013). Unfortunately the work of (Huet et al.,

2017) cannot be applied to this work’s hardware set up as the sensory system lacks the

capability of directly measuring the axial force experienced at the base of the whisker.

Similar to the work of (Huet et al., 2017) and (Evans et al., 2013), this work’s whiskers

were also designed with a linear taper, as it has been shown that for increasing values

of radial-distance to contact, a tapered whisker would deflect to a greater degree than a

non-tapered whisker. This degree of change would result in a higher variance of forces

experienced at the base of the whisker for a unique radial-distance value and thus allow

for better discenerability (Ahn & Kim, 2017; Pammer et al., 2013; Williams & Kramer,

37

CHAPTER 2. BACKGROUND

2010).

Y

XZ

Fz
Mx

My

Figure 2.14: When a whisker makes contact and is bent in a particular direction, there
is an induced set of forces at its base. The figure illustrates a whisker that experiences a
deflection in a predominately Y direction. The contact is illustrated by the arrow near
the tip of the whisker and illustrates the direction of the force produced by the contact.
The point along the whisker at which the contact was made can be estimated using the
values of the linear force acting along thexaxis, Fx, the moment acting around thexaxis,
Mx, and the moment acting around the Y axis, My. This distance is referred to as the
radial-distance to contact and is measured from the base of the whisker-shaft to the
point of contact along the arc of the whisker-shaft. The coordinate frame illustrated
in this figure is specific to this work’s system and sensory set up and its orientation is
di↵erent from that in (Huet et al., 2017). The model used to generate this image was
obtained with permission from work of Pearson et al. (2013).

The two pieces of work are, however, di↵erent in terms of the sensory data that

they use as well as the sampling rate that is possible. The work of (Huet et al., 2017)

for example requires sensory data that includes measurement of the axial force (Fz)

and bending moment at the whisker’s base (Mx and My), which are described more

clearly in Figure 2.14. The two values can then be used to train a regression model

to map to an appropriate radial-distance value that is extractable at any point during

the contact and is therefore mainly limited to the sampling rate of the sensory system.

The work of (Evans et al., 2013) instead presents a regression model that maps he

amplitude and period of the deflection signal (requiring sensors that measure Fy and

38

2.3. SENSING

Fx) experienced after a single whisking cycle to an appropriate radial-distance value and

is therefore restricted to extracting radial-distance estimates at a rate lower than the

whisking frequency. Both the regression models require the training to take place for a

whisker with a unique shape and material property. Chapter 4 includes a description of

the work carried out to design a regression model that aims to generalize to whiskers of

varying length while operating over a range of varying whisker dynamics.

The final whisker-contact position may be worked out by using forward kinematics

of the arm and sensor-array. Figure 2.15 on page 40 illustrates the positioning of each

whisker module in 3D space and contains the exact coordinates of each whisker at their

respective pivot points. The whisker contact angle can be determined by observing the

angle of the whisker at the estimated time of contact, which as explained previously,

is the time where the whisker-deflection signal begins to accelerate. Having knowledge

of the whisker-angle and sensor array pose, the contact position can be narrowed to

lying somewhere along the length of the whisker. Using an appropriate radial-distance

estimation method the contact position estimate can be narrowed down to a more precise

location in space. Having a better estimation of contact position would allow for a higher

quality reconstruction of shape, which would in turn improve the performance of object

recognition related tasks.

2.3.3 Object Recognition

Object recognition based studies using whiskered robotic platforms, in comparison to

cutenous-tactile sensing platforms, have been relatively lacking. One study (Russell &

Wijaya, 2005) involved using passive whiskers for determining the contours of an object.

Features such as lines and corners were extracted based on the sequence of contact points

which were used to infer the shape of the object, based on a database of known objects.

A mobile robot with multiple active whiskers is used in (D. Kim & Möller, 2007) to

determine object shape features including lateral and vertical shape and very elegantly,

slope of an objects surface. The authors have suggested that a surface’s slope may be

inferred from the slope of the vertical and horizontal deflection sensors, indicating a

linear relationship between sensory data slope and that of the contacted surface, as can

be seen in Figure 2.16.

The work of (D. Kim & Möller, 2007) presents some interesting methods for inferring

surface features, which is particularly useful since it provides an idea of what data is

relevant to designing an e↵ective classifier for object identification.

39

CHAPTER 2. BACKGROUND

Z

Y

X

Z

Label X (mm) Y (mm) Z (mm)

O 0 0 0

A1 48.752 201.860 -23.455

A2 58.967 181.903 -30.607

A3 69.181 161.946 -37.760

B1 49.305 201.860 22.270

B2 61.350 181.903 25.497

B3 73.394 161.946 28.725

C1 14.633 201.860 52.084

C2 19.903 181.903 63.386

C3 25.173 161.946 74.687

D1 -30.493 201.860 44.689

D2 -35.763 181.903 55.990

D3 -41.033 161.946 67.291

E1 -53.834 201.860 5.366

E2 -65.879 181.903 8.594

E3 -77.924 161.946 11.821

F1 -38.715 201.860 -37.790

F2 -48.929 181.903 -44.942

F3 -59.144 161.946 -52.095

Figure 2.15: To calculate the position of a contact point at a specific whisker, forward
kinematics is used. This figure illustrates the position of each whisker relative to the
array-arm mounting adapter (O). The measurement is made from the adapter to the
pivot point from which the whisker rotates. The model used to generate this image was
obtained with permission from work of Pearson et al. (2013).

40

2.3. SENSING

Figure 2.16: X–Y plot of deflection signals (a) examples of X–Y plot over two channels
with several slope tests (thick lines: estimated slope) (b) estimation of slope with X–Y
channels (deg: real data, solid line: theory) figure copied from (D. Kim & Möller, 2007)
with permission.

2.3.4 Texture Identification

In addition to geometrical features, whiskers are also able to extract textural information

from a contacted surface. Much research has been made in the area of texture identifica-

tion using whiskers (Diamond & Arabzadeh, 2013; Fend, Bovet, Yokoi, & Pfeifer, 2003;

Jadhav & Feldman, 2010; Lottem & Azouz, 2009; Zuo et al., 2011), however, all studies

have yet to conclude the mechanism by which texture invariance can be achieved (Dia-

mond & Arabzadeh, 2013). Texture invariance being the ability to re-identify a texture

irrespective of the contact condition, that is irrespective of contact speed or angle. The

problem arises from the fact that contact signature properties greatly vary with con-

tact conditions (Diamond & Arabzadeh, 2013). Contact signatures include the temporal

profile of whisker motion and whisker deflection velocity and spectral composition.

Some progress has been made with regards to designing texture classifiers that ex-

hibit good performance, such as in (C. W. Fox, Mitchinson, Pearson, Pipe, & Prescott,

2009). The authors of the paper have developed a 6-dimensional classifier that is able to

di↵erentiate 4 textures, at varying contact conditions, with a performance of 72±3% cor-

rect classifications. When identifying just two, rough and smooth, textures the classifier

performed much better at a correct classification of 91± 2%.

The 6 dimensional classifier described in (C. W. Fox et al., 2009) would serve as

a good starting point for implementing texture identification on this project’s system.

41

CHAPTER 2. BACKGROUND

However, in order to avoid over complicating the investigation this work focuses on

extracting high quality geometrical based features to improve our system’s place recog-

nition precision and leaves texture identification as part of future work. It is speculated

that the combination of geometrical and textural features for characterizing di↵erent

surface regions would serve to reduce the system’s likelihood of making false matches.

2.4 Exploration Strategy

Successful navigation hinges upon a good perception of the environment, which is why

the initial work focuses on improving the work-life of the whiskers and the precision

of their contact-localization estimates. Extending the work-life of whiskers would allow

us to maintain a high number of contacts during whisker-exploration, while improv-

ing contact-localization precision would allow us to better discriminate di↵erent regions

across the terrain. Another important factor in navigation is the exploration strategy.

Given the eventual desire for autonomous navigation that e�ciently maps a terrain,

Active Curios Exploration (ACE) would serve as a good strategy (Gordon, Fonio, &

Ahissar, 2014).

ACE describes the behavior of exploring an environment by driving the attention of

the agent towards areas of high novelty. Prior to implementing ACE, a model is needed

to describe what influences the attention of an agent, as well as the appropriate response

based on the location of the target. A study that implements such an attention seeking

model is described in (Mitchinson & Prescott, 2013b). The study includes the design

and simulation of a computational model that attempts to explain the observed behavior

in rats when whisking. In order to implement ACE the model would only need to be

adapted by including excitation from areas that have yet to be explored. An unexplored

area can be indicated by an open border, the location of which can serve as a point of

excitation that will compete for the agents attention with other ego-centric points of

excitation.

2.5 Movement Through Higher Configuration Space

We have previously eluded to the limitations of whisker tactile sensing over electromag-

netic sensing such as sampling density, resolution, sample rate and range. Tactile sensors,

be they cutaneous or whiskered, must therefore be actively moved across the surface of

an object to sample it e↵ectively. This will typically demand movement outside of a

simple 2D planar space, however, RatSLAM does not currently accommodate higher

42

2.5. MOVEMENT THROUGH HIGHER CONFIGURATION SPACE

dimensional state estimates. The work of (Pearson et al., 2013) also does not work in

higher dimensions and instead reduces the contact points obtained by the whisker-array

to a 2D projection and carries out localization in a 2D plane.

In regards to this work, the desire is to sample as many surface regions as possible,

which would require manipulation of the sensor array in higher spatial dimensions. By

sampling more surface regions the system would better suited to perceive higher level

features such as 3-dimensional shape.

In preparation for exploring a more complex environment the RatSLAM algorithm

would at least need to be adapted to consider changes in height. There have been numer-

ous studies trying to determine how an animal’s hippocampus interprets positioning in

a 3D world. One study (Yartsev & Ulanovsky, 2013) involving bats suggests place cells

being mapped to a volumetric space, thus each place cell is associated with a unique lo-

cation in 3D space. Unlike bats that move in 3D space, rats’ movements are constrained

to the floor. Studies regarding rats have shown that their navigation related cells (place,

grid and head direction cells) are most likely mapped to a 2D plane that lies on the en-

vironmental surface (floor) (Hayman, Casali, Wilson, & Je↵ery, 2015; Je↵ery, Jovalekic,

Verriotis, & Hayman, 2013) but instead include multiple mapped plannar spaces that

are di↵rentiated according to a non-metric term. These multi-planar maps are called

bi-coded maps and have been suggested by Je↵ery et. al as a likely method in which rats

and other 3-dimensional animals use to map their environment (Je↵ery et al., 2013).

Thus far a description of the robotic platform has been given, along with the potential

strategies that are inspired from both neuroscience and robotics research that can help

improve the perception capabilities of the whisker-tactile sensor array. The proceeding

chapters describe the implementation of whisker control strategies that improve the

longevity of a whisker’s life and the precision of contact localization estimates. Further,

work regarding the implementation of a regression model for improving radial-distance

estimates in a more practical robotic setting is presented. Combining the progress up to

this point, a novel whisker object-recognition system will be presented, one which is able

to extract the higher level environmental features including object shape. The system’s

operation is possible on account of it’s ability to accommodate movement through higher-

degrees of space, which is similar to how 3-dimensional dwelling animals (Yartsev &

Ulanovsky, 2013) are proposed to operate.

To operate in 3-dimensional space, our work takes advantage of appropriate feature

descriptors such as the point feature histogram to identify specific regions on a 3d surface.

Further, we utilize quaternions for the purpose of applying 3-dimensional rotations.

43

CHAPTER 2. BACKGROUND

2.5.1 Working in 3-dimensions

2.5.1.1 Point Feature Histogram

w = u × v

ns = u

φ

p
s

p
t

n
t

θ

α

v = (pt-ps) ×

 ||pt-ps||

u

v

w

u

 d = ||p t
-p s

||_______

Figure 2.17: The point feature histogram is a function of the 4 features that describe the
relative orientation and translation of one points coordinate frame (ps) and the normal
vector of its paired point (pt). The features are the ↵, ✓ and � angles, as well as the
relative distance between the two points d.

PFH is a statistical representation of a point cloud distribution i.e. a set of points

distributed in 3-dimensional space, which can be used to measure similarity in manner

that is robust to noise, occlusion and point cloud resolution (Wahl, Hillenbrand, &

Hirzinger, 2003). The authors of (Guo et al., 2016) perform evaluations of several 3D

feature descriptors and point out the benefits that the fast point feature histogram

(FPFH) has in terms of being ideal and computationally e�cient for data-sets that

include a low number of contact points. FPFH is an optimized variation of the point

feature histogram (PFH) and is intended to operate on data sets that include higher

resolution point clouds (Rusu, Blodow, & Beetz, 2009), much higher than this work’s 18

contact points. For this reason PFH was opted for so as to retain as much of the original

algorithms discriminating ability (Rusu et al., 2009).

A point feature histogram (PFH) is a statistical signature describing the geometri-

cal distribution of contact points relative to each other in the form of a 1-dimensional

vector. PFH is commonly used as a 3D feature descriptor that identifies common 3D

44

2.5. MOVEMENT THROUGH HIGHER CONFIGURATION SPACE

locations between misaligned point cloud data-sets (Rusu, Marton, Blodow, & Beetz,

2008), however, in the work of (Wahl et al., 2003) it has been shown that PFH performs

well in object recognition tasks as well.

The point feature histogram generation algorithm is based on the work of (Rusu et

al., 2008), with few modification that are pointed out in the text below.

The algorithm initial step includes iterating through all the points within the point

cloud and assigns each one a normal vector that is determined based on the distribution

of neighbouring points. Thus, for point pi, any point falling within a spherical volume

defined by the radius r↵, belongs to the set Pk↵. The normal vector ni is derived by

calculating the first principal component of the points in Pk↵. The principal component

is calculated by obtaining the eigenvalues and eigenvectors of the covariance matrix of

the 3D points. The eigenvector corresponding to the largest eigenvalue, and thus first

principal component, is selected as the direction of the normal vector of point pi.

It is observed that the contact points generated from the whisker-array following a

single whisk-sample are sparse (maximum of 18 points) and are generally spread out due

to the morphology of the whisker-array. Given these characteristics, it would be di�cult

to ensure that a minimum of 3 points (which is the minimum number of points required

to define a plane and thus be able to extract a normal vector) are located within the

Pk↵ set for a particular point pi. The selection criteria is therefore modified to being

the three closest points as opposed to all points that fall within the volume defined by

r↵.

When calculating the eigenvectors of a given matrix, the sign of the normal vector

is ambiguous. Reminding the reader that the standard definition of the eigenvalues and

eigenvectors for a square matrix A is:

Av = �v (2.39)

Where v is an eigenvector and � is an eigenvalue. Thus, the solution still holds whether

sign of the eigenvector v is positive or negative. The ambiguity of the normal vector’s

sign presents a problem when comparing sets of points from the same region.

Taking this into consideration, measures need to be taken so as to ensure that the

normal vectors are orientated in a consistent manner. This is done by exploiting the fact

that each sensor-array point cloud sample is extracted from a single point of view i.e. the

estimated contact point locations are all relative to the end-e↵ector’s coordinate frame.

In this work, the viewpoint is the coordinate of the origin (0, 0, 0). If the normal vector is

pointed away from the point of origin, the sign is flipped, thus maintaining a consistent

45

CHAPTER 2. BACKGROUND

normal vector orientation for all the whisk-samples. This condition is summarized in

Equation 2.40.

(v � pi) · ni

kv � pik
< 0, then ni = �ni (2.40)

Figure 2.18a visualizes the e↵ect of the normal vector orientation scheme, where the

top row illustrates the arrangement of normal vectors without any orientation scheme and

the bottom row illustrating the arrangement of normal vectors following the suggested

orientation scheme. For the sake of clarity, the normal vectors are processed for a fraction

of the points on the right half of the 3D model. Each column in the figure represents the

state of the normal vectors after adding some noise to the positions of the mesh vertices,

in imitation of how whisk-samples would be subject to noise every time a point cloud is

generated. It can be seen that in comparison to the first column, the sans orientation

scheme results in normal vectors changing their signs; the blue, red and green vectors

change signs even though the relative distribution of mesh vertices has not changed

significantly. When the orientation scheme is used, the same vectors keep the same

sign and are more similar to the normals in the first column in comparison to the sans

orientation scheme scenario. This advantage is highlighted even more clearly in Figure

2.18b where the histogram shows the values obtained when calculating the dot product

of the normal vectors from all the mesh’s vertices in the first column with that of the

remaining columns. A dot product closer to 1 indicates high similarity where as a dot

product closer to -1 indicates least similarity. It can be seen that the orientation scheme

makes it more likely to observe a similarly orientated normal vector for a given surface

region when the positioning of the vertices are corrupted by noise.

Once all normal vectors have been assigned, the algorithm iterates through all unique

combinations of neighbouring point pairs. The set of neighbours Pk�
, is determined based

on those points that fall within a spherical volume defined by the radius r� surrounding

a specific point pi. The value k� is the total number of points within the volume,

including the subject point pi. The combinations of point pairs pj1 and pj2 are bound

by the conditions: j1 < k� , j1 6= j2 and j2 < j1.

For each point pairs pj1 and pj2 , the algorithm assigns one of them to be the source

point ps. The source point will then be defined a Darboux frame from which its paired

point, now dubbed the target point pt, would have its normal vector nt measured against.

46

2.5. MOVEMENT THROUGH HIGHER CONFIGURATION SPACE
W

ith
ou

t o
rie

nt
at

io
n

sc
he

m
e

W
ith

 o
rie

nt
at

io
n

sc
he

m
e

(a)

With orientation scheme

-1 0 1
0

100

200

Without orientation scheme

-1 0 1
0

100

200

(b)

Figure 2.18: The consequence of implementing a consistent normal vector orientation
scheme. Figure 2.18a includes a visualization of normal vectors for when the normal
vector orientation scheme is either used (bottom row) or not (top row). For the sake
of brevity only a few normal vectors for each specific mesh vertex is shown. The first
column shows the normal vectors belonging to a specific set of mesh vertices before
any position noise is introduced, while the following columns show the changes in the
calculated normal vectors for the same set of vertices. Figure 2.18b plots two histograms
that quantitatively show that the normal vectors generated for the same 3D model albeit
with noise added to the positions of its vertices, are more likely to be similar when using
the orientation scheme. When a vector is closer in similarity and value of 1 is returned
while a vector that is maximally dissimilar i.e its sign is flipped, the value returned is
-1. It can be seen that without the normal vector orientation scheme the normal vectors
that are calculated following the introduction of noise to the mesh vertices are less likely
to be similar (they are therefore less positive). When the normal orientation scheme
is used, it is more likely to obtain a normal vector that is more similar to the original
normal vectors before noise is introduced to the mesh vertices.

47

CHAPTER 2. BACKGROUND

The condition under which the source point is selected is defined in Equation 2.41.

if (nj1 · (pj2 � pj1))  (nj2 · (pj1 � pj2))

then ps = pj1 , ns = nj1 pt = pj2 , nt = nj2

else ps = pj2 , ns = nj2 pt = pj1 , nt = nj1

(2.41)

The frame can then be defined according to Equation 2.42, which includes how each

of the 3 orthogonal unit vectors that define the pose of the frame can be worked out.

Following the frames definition, the four point feature histogram features for the pair

of points can be worked out. The four features are illustrated in Figure 2.17 on page

44 and include 3 angular values (↵, ✓,�) describing the orientation of the target point’s

normal vector nt against the source’s Darboux Frame (u, v, w), and one linear distance

� between the points. Equation 2.43 includes the formulas used to calculate these four

features, noting that kk2 refers to the Euclidean norm.

u = ns

v =
(pt � ps)⇥ u

�

w = u⇥ v

(2.42)

↵ = v · nt

✓ = atan2(w · nt, u · nt)

� = u ·
(pt � ps)

d

� = kpt � psk2

(2.43)

The values are then stored within a histogram whose dimensions are determined by

the user. � corresponds to the number of divisions each feature should be discretized

to. For example, given a scenario where there is 1 feature, its value normalized to its

max-min range will vary between 0 and 1, and given a value of d = 3, values between

0 � 1
3 will be represented with an index of 1, 1

3 �
2
3 with an index of 2, and 2

3 � 1 with

an index of 3. Thus if there were 4 features, like is the case with the point feature

histogram, it would require d4 bins to represent all possible combinations of 4 features,

each with a division of d.

The bin index that is to be incremented can be worked out according to Equation

2.44. The the scalar value fi refers to that of one of the four features (↵, ✓,�, �) and

48

2.5. MOVEMENT THROUGH HIGHER CONFIGURATION SPACE

fimax and fimin are their maximum and minimum possible values. The [·] operator refers

to an integer operation where contained value is rounded up to the nearest whole value.

idx =
i3X

i=0


fi · (d� 1)

fimax � fimin

�
· di (2.44)

Thus, given a histogram for each Pk�
set of points, with d4 bins, the bin number

corresponding to idx is incremented by 1. Once all increment operations are complete,

each of the bins is normalized according to the total number of unique pair combinations,

which is equal to (k� ·
(k�+1)

2).

For this work the Pk�
radius is set to r� = 0.3 m, which would result in all whisker-

contacts being considered. One histogram is therefore generated for each whisk-sample.

To measure the similarity of one point feature histogram with that of another, a

chi-squared divergence measure is used and is calculated according to the equation 2.45

(Hetzel, Leibe, Levi, & Schiele, 2001).

�2(q,v) =
X

i

(qi � vi)2

(qi + vi)
(2.45)

Where q and v are the pair of histogram vectors that are to be compared, and qi

and vi are their respective ith element.

2.5.1.2 Quaternions

Quaternions are a form of mathematical notation that is useful for representing 3-

dimensional orientations as it provides means by which rotational operations can be

performed without succumbing to gimbal lock (Jazar, 2010). Gimbal lock is used to

describe a scenario where rotation applied along a specific axis is rendered useless due to

its alignment with another axis, which is a common problem associated with alternative

methods of rotational operations such as with Euler angles (Jazar, 2010).

One method of deriving the quaternion describing the orientation of a body is by

equation 2.46. The vector ✓ is a 4-dimensional axis-angle vector. An axis angle vector

is another method of representing orientation, albeit a more intuitive one. However,

although easier to visualize, axis angle representations lack quaternion’s qualities that

allow for faster calculations of rotational operations as well as being more suited for

applying small rotations (Jazar, 2010).

An axis angle again may either be represented as a 4-dimensional vector, or a 3-

dimensional one. For the purpose of this explanation the more intuitive 4-dimensional

representation is used and an axis-angle vector ✓ = [ex, ey, ez, ✓], where the first three

49

CHAPTER 2. BACKGROUND

elements represent the axis along which a point is rotated by ✓ radians. To convert the

axis-angle to a 3-dimensional vector the vector is reduced by multiplying the magnitude

of rotation ✓ to the unit vector consisting of the rotation axis, thus giving [ex, ey, ez, ✓] =

[✓ex, ✓ey, ✓ez]

q =

2

66664

exsin(✓/2)

eysin(✓/2)

ezsin(✓/2)

cos(✓/2)

3

77775
(2.46)

In order to rotate a body represented by a current orientation of q = [q0+ q1i+ q2j+

q3k] by a rotation represented by p = [p0 + p1i+ p2j+ p3k] a quaternion multiplication

operation is used to give r = q⇥p = [r0 + r1i+ r2j+ r3k]. Where the elements of r are

derived using the equation 2.47. Note that in this example the ⇥ represents a quaternion

multiplication and not a cross product (Jazar, 2010).

2

66664

r0 = q0p0 � q1p1 � q2p2 � q3p3

r1 = (p0q1 + p1q0 � p2q3 + p3q2)

r2 = (p0q2 + q0p2 + p1q3 � q1p3)

r3 = (p0q3 � p1q2 + q0p3 + p2q1)

3

77775
(2.47)

2.5.1.3 Transformation matrices

Homogeneous transformation matrices are used for translational and rotational opera-

tions throughout this work. Transformation matrices that operate in a 3-dimensional

environment take the form of a 4⇥4 matrix. One way to visualize transformation matri-

ces is to use a moving frame that describes a particular pose for a given body. The term

pose includes a reference to both the translational and rotational state of a body. Given

a fixed world frame (small frame shown in Figure 2.19, a point’s pose can be described by

a transformation matrix with the form shown in Equation 2.48 and visualized in Figure

2.19a.

T 1
ob =

2

66664

0 0 0 1

0 0 0 2

0 0 0 3

0 0 0 1

3

77775
(2.48)

The subscript of the transformation matrix specifies the frame from which the current

one is being referenced from. In this case, the B refers to the current body’s frame, and

50

2.5. MOVEMENT THROUGH HIGHER CONFIGURATION SPACE

O the origin frame. TOB may be read as the transformation matrix describing the pose of

the body in relation to the origin’s frame. In a transformation matrix the three rows in

the last column represent the x, y, z coordinates of the frame, while the 3⇥3 sub-matrix

from columns 1 to 3 and rows 1 to 3, represent the orientation of the frame.

For example, when the initial body frame T 1
OB

is rotated by 45° about the x-axis,

a rotation matrix specific to a rotation about the x-axis, defined in Equation 2.49, is

multiplied with the initial body frame T 1
OB

so as to obtain the new transformation matrix

T 2
OB

. The resulting frame is shown in Figure 2.19b. To translate the T 2
OB

frame along

the z-axis, the z-axis specific translation matrix defined in Equation 2.54 is multiplied

with T 2
OB

to obtain T 3
OB

. This final frame is shown in Figure 2.19c and the operations

to reach this final form is shown in Equation 2.55.

Rx(✓) =

2

66664

1 0 0 0

0 cos(✓) �sin(✓) 0

0 sin(✓) cos(✓) 0

0 0 0 1

3

77775
(2.49)

Ry(✓) =

2

66664

cos(✓) 0 sin(✓) 0

0 1 0 0

�sin(✓) 0 cos(✓) 0

0 0 0 1

3

77775
(2.50)

Rz(✓) =

2

66664

cos(✓) �sin(✓) 0 0

sin(✓) cos(✓) 0 0

0 0 1 0

0 0 0 1

3

77775
(2.51)

Trx(d) =

2

66664

0 0 0 d

0 0 0 0

0 0 0 0

0 0 0 1

3

77775
(2.52)

Try(d) =

2

66664

0 0 0 0

0 0 0 d

0 0 0 0

0 0 0 1

3

77775
(2.53)

51

CHAPTER 2. BACKGROUND

Trz(d) =

2

66664

0 0 0 0

0 0 0 0

0 0 0 d

0 0 0 1

3

77775
(2.54)

T 2
OB = T 1

OBRx(45°)

T 3
OB = T 2

OBTrz(1) (2.55)

To return to a previous transformation, or perform a reverse operation, the inverse

of the transformation matrix is multiplied with the desired frame. Equation 2.56 shows

the operations needed to return from T 3
OB

to T 1
OB

.

T 2
OB = T 3

OBTrz(1)
�1

T 1
OB = T 2

OBRx(45°)�1 (2.56)

5-5
-5

0z

y

0

x

0

5

-55

(a) Initial body pose T 1
OB

5-5
-5

0z

y

0

x

0

5

-55

(b) T 1
OB

rotated 45° about x-
axis results in T 2

OB

5-5
-5

0z

y

0

x

0

5

-55

(c) T 2
OB

translated 1 unit
along z-axis to result in T 3

OB

Figure 2.19: Illustrations of a body’s pose, which represented by a coordinate frame, un-
dergoing transformation through the multiplication of appropriate transformation ma-
trices.

Rotation matrices specific to other axis are included in Equations 2.50 and 2.51 which

represent rotations in the y and z axis respectively. Translations along the x and y axis

are included in Equations 2.52 and 2.53 (Craig, 2009).

52

2.6. REGRESSION TECHNIQUES

I2

I3

I4

I5

I1

H11

w11

w21

w31

w41

w51

Input Layer Hidden Layers Output Layer

Figure 2.20: An example of a multilayer perceptron with a 5 input 1 output network. In
this particular example the sum of the weighted input from each input node wiIi defines
whether a particular hidden layer node H is activated. In the case of node H11 and a
binary threshold activation function, its state will be active given

P5
i=1wiIi > 0.

2.6 Regression techniques

2.6.1 Multilayer Perceptron

The multilayer perceptron refers to uni-directional networks made up of artificial neu-

rons. MLP’s tend to be limited to feedforward networks, which means that the data that

is input is passed on forward from the input layer, through the hidden layer and finally

to the output layer (Negnevitsky & Intelligence, 2005). Figure 2.20 shows an example of

such a network and includes 5 input neurons, two hidden layers with 4 neurons in each

layer, and finally a single output neuron.

Each neuron consists of its set of input connections, activation function, and output.

Considering the first hidden layers neuron H11, its output would be a function of the

weighted sum of all inputs. For a simple perceptron where a binary function is used

the output would be equal to 1 provided a positive sum of weighted inputs, and 0 for a

negative one. This calculation is summarized in Equation 2.57. Alternative activation

functions include sigmoid, tanh and ReLu, all of which are plotted in Figure 2.21.

53

CHAPTER 2. BACKGROUND

-5 0 5

x

0

0.2

0.4

0.6

0.8

1
y

(a) Binary Threshold

-5 0 5

x

0

0.2

0.4

0.6

0.8

1

y

(b) Sigmoid

-5 0 5

x

0

1

2

3

4

5

y

(c) ReLu

-5 0 5

x

-1

-0.5

0

0.5

1

y

(d) TanH

Figure 2.21: Examples of di↵erent activation functions. Given an input whose value cor-
responds to a particular x-axis value, a node’s activity will be equal to the corresponding
y-axis value.

H11 =
5X

i=1

wiIi =

8
<

:
1 ifH11 > 0

0 otherwise
(2.57)

MLP’s are trained by presenting the network with a series of training data sets

where the error for each training sample is used to adjust the weights of the network

connections. Thus, given a loss function that measures error of the network i.e. the error

between the target output t and the network output y, an optimization problem can be

formulated such that the function L(t, y) is minimized for a given set of weights wi...n.

For a simple one-input-one-output example, a gradient descent algorithm can be

used for adjusting the weights of the network to learn the underlying function from the

training data. The algorithm calculates the derivative of the loss function for a given

pair of weights and identifying, from the gradient, the direction in which the value would

need to be adjusted so that a decrease in error can be achieved. Given many training

samples the system should converge to a solution and the system would have learnt the

underlying function.

For more complex networks, e�cient back-propagation algorithm variations have

been developed including those that use Newtons method for optimization and Levenberg-

Marquardt method. Each variation have their strengths and weaknesses and for our work

we limited the training algorithm to the Levenberg-Marquardt method using Bayesian

regularization since research has shown that it is better suited for smaller data sets due

to its consideration for the prevention of over-fitting (Zhang, Xu, & Zhou, 2010).

One of the major advantage of a neural network for the purpose of regression is its

ability to approximate any smooth function given a finite number of hidden neurons

(Murphy, 2012).

54

2.6. REGRESSION TECHNIQUES

2.6.2 Support Vector Regression

Support vector machine based regression, or support vector regression (SVR) for short,

is a form of supervised learning where a line of best fit is derived to describe the under-

lying function relating the input data x to the output y. The function is obtained by

minimizing the cost function described in Equation 2.58 while subject to the boundary

conditions described in Equation 2.59.

minimize
1

2
||w||

2 + C
nX

i=1

(⇠⇤i + ⇠i) (2.58)

subject to

8
<

:
yi � hw,xii � b  ✏+ ⇠⇤

i

hw,xii+ b� yi  ✏+ ⇠i
(2.59)

In a simplified example where an input sample consists of a single dimension, Equa-

tion 2.58 includes a variable w that refers to the weight of a given input xi, which defines

the gradient of the line used to approximate the underlying function f(x) = y in figure

2.22. The variable C is a penalty parameter that is used to adjust the influence of sup-

port vectors i.e. the points that exists outside of the margin. The margin is defined by

the parameter ✏ and is included to avoid over-fitting the function to the data. A lower

penalty parameter will result in a smoother curve while a higher penalty parameter will

result in a sharper one.

The constrains defined in Equation 2.59 includes a dot product operator h· i that is

performed on the weight and input vectors. For an example such as the one shown in

Figure 2.22 the dot product is used to approximate a linear function and intuitively,

measures the similarity of the vector w and xi in a feature space that assumes a linear

relationship. To consider cases other than linear functions, support vector regression

uses the ‘kernel trick’, which is a method that allows for the measurement of vector

similarity in other feature spaces without the need for explicitly mapping the input to

said feature space.

When a support vector machine is tasked with classifying (as opposed to regression)

non-linearly separable data sets such as that shown in 2.23a, the data set would need to

be mapped onto a feature space of higher dimensions. For example, by taking the inputs

x and y, a third dimension z can be calculated according to z = x2 + y2, which would

result in the data being linearly seperable. Figure 2.23b highlights in green the linear

hyperplane that is capable of separating the two distinct classes. In the case of support

vector regression the same logic holds true and a linear function defining the hyperplane

can be derived that best fits otherwise non-linear data.

55

CHAPTER 2. BACKGROUND

y

x

ξ

ξ*

+ε

+ε

0

Figure 2.22: The illustration shows the di↵erent variables involved when carrying out
support vector regression on a set of data that is assumed to be linear. The margin ✏
defines the boundary at which points do not influence the shape of the function. Points
closest to the boundary are referred to as support vectors and are directly responsible for
the shape of the estimated function. The aim of SVR is to reduce the distance between
the function’s margins and the support vectors i.e. the distance represented by ⇠.

2.7 Principal Component Analysis

Principal component analysis is the procedure for analysing the contribution that di↵er-

ent independent variables have on the variance of the overall data. Given a toy example

(illustrated in Figure 2.24) where the data consists of three column vectors x1, x2 and

x3, each generated using a normal distribution with a mean of 0 and a standard devia-

tion of 0.5, 0.3 and 0.9 respectively, the PCA of the data x = [x1,x2,x3] indicates the

higher contribution of variables x1 and x3 to the overall data variation. This contribu-

tion is visualized by the component vectors, color coded in red, green and blue, which

are respectively in increasing order of Eigenvalues.

Each corresponding Eigenvector represents the direction of a specific component vec-

tor and the Eigenvalue its magnitude. The importance of each dimension i.e. x1,x2,x3,

can then be determined by analysing the principal component, which is the Eigenvector

with the largest Eigenvalue. The principal component vector will consist of n-number

of elements, where n corresponds to the number of dimensions in the data. In our toy

56

2.8. ROBOT OPERATING SYSTEM

-2 -1 0 1 2

x

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y

(a)

1

2

3

4

5

6

7

z

2

y
0 210

x
-1-2 -2

(b)

Figure 2.23: An illustration of how a non-linear data set can be linearly separated by a
hyper-plane given the addition of another dimension. In this example the extra dimen-
sion is defined as z = x2 + y2. In the case of support vector machines and regressions,
this explicit mapping is not required an instead a kernel is used to measure similarity in
this di↵erent dimension.

example, the first element corresponds to the first dimension x1, the second to x2, and

so on. The principal component in this example is highlighted by the blue vector, and

the largest element is the third element, which corresponds to the the third dimension

x3, followed by the first element which is x1, and finally the second element which

corresponds to x2.

2.8 Robot Operating System

The Robot Operating System (ROS) is a framework that provides standardized messages

and protocols that hardware and software can use to communicate with one another.

Under this framework there exists a master node that is responsible for the overall

organization of other nodes and their respective processes (Quigley et al., 2009). Each

node typically belongs to a unique system such as a sensory system. This sensory system

can, for example, publish its readings at a specific frequency, such as the Ultrasonic

sensor specific node shown in Figure 2.25. The publishing process involves transmitting

a message to a unique topic, which has an associated message type and publishing

57

CHAPTER 2. BACKGROUND

-2.5

-2

-1.5

-1

-1

-0.5

0
x

3

0.5

1

x
1

0

1.5

2

0.5

x
2

1
0

-0.5

Figure 2.24: Example of principal component analysis being carried out on a 3-
dimensional set of data x = [x1,x2,x3]. The component vectors are determined by
calculating the Eigenvector and Eigenvalues of the covariance of the data x, where an
Eigenvector determines the component vector’s direction and the Eigenvalue its mag-
nitude. The component with the largest Eigenvalue is called the principal component
vector. By analyzing the elements of the principal component vector the dimension with
the largest absolute value would indicate the dimension that contributes the most to
the data’s variance. In this example the data is generated with a zero mean normal
distribution with a standard deviation of 0.5, 0.3 and 0.9 respectively for dimensions x1,
x2 and x3. The principal component from this example is found to be [0.1337, -0.0634,
0.9890]. Taking the absolute values, it can be seen that the third dimension is the largest
contributor, followed by the first then second.

frequency. Other nodes can subscribe to said topics and obtain readings at the rate

specified by the topic, which in Figure 2.25 would be the SLAM specific node. Alternative

communication methods include broadcasting services. For example, given a service

broadcasting node associated with an imaging subsystem, a user can obtain an image

by making a request via the broadcast service. Services di↵er with respect to publishers

58

2.8. ROBOT OPERATING SYSTEM

Service

Ultrasonic
Sensor

Topic

SLAM

Publish

Subscribe

Camera

User
Display

Topic

Wheel
encoder

Publish

Subscribe

Figure 2.25: An example showing an overview of a simple ROS network. The figure
shows how an Ultrasonic sensor publishes its readings to a specific topic from which
other nodes, like the SLAM specific node, may subscribe to. In the event that a user
wants to take a picture of the robots current view, they may request an image from
the camera specific node, which is broadcasting a service for capturing and returning
images.

in that the parent node only performs the necessary work when requested, instead of at

regular intervals.

To aid in debugging, ROS provides a manner for which an entire session can be

emulated and played back in either real time or otherwise at varying speeds. To store

this playback data, .bag files are used.

2.8.1 MoveIt

MoveIt is a motion planning framework that works with ROS and provides functions

related to the operation of arm manipulators. Arm manufacturers are able to provide

support for their specific manipulators so that MoveIt is able to perform inverse kine-

matics, motion planning and environment set up and collision detection (Chitta, Sucan,

& Cousins, 2012).

59

Chapter 3

RatSLAM Navigation Using A

Whisker-Sensor Array

The following chapter is based on previously published work (Salman & Pearson, 2016).

This chapter focuses on the work carried out to investigate whether the whisker-

sensor array in combination with RatSLAM is capable of solving a SLAM problem. A

novel RatSLAM specific metric is described and used to measure the suitability of the

place-recognition image matching threshold, along with how confident the algorithm

is with each observation. Furthermore, the chapter includes an analysis of RatSLAM’s

performance when using a more accurate estimate for whisker-angle at contact and when

using an RCP whisker control strategy.

3.1 Method

To evaluate the capability of the RatSLAM whisker-array system, a terrain that visually

had enough variation across its surface was constructed and used to facilitate place-

recognition. The terrain was constructed on a 1.35 ⇥ 1m re-configurable maze, which

was composed of several plastic walls and posts. The maze, along with the whisker-array

and UR10 arm platform, are shown in Figure 3.1.

The arm was set to move to a set of hard-coded positions on a planar surface (with

the resulting path shown in Figure 3.3), while the whiskers were in a continuous state of

whisking. In addition to the sensory data described in 3.1.3, odometry of the end-e↵ector

and the generated whisker-tactile images were also logged for the duration of each run

so that RatSLAM could be tested o✏ine and its parameters tuned quickly.

Since this work uses the ROS version of OpenRatSLAM, the algorithm requires two

61

CHAPTER 3. RATSLAM NAVIGATION USING A WHISKER-SENSOR ARRAY

Figure 3.1: Whisker-array mounted on a UR10 Universal-Robots arm and positioned
above the maze used to evaluate the RatSLAM algorithm. The inset focuses on an indi-
vidual whisker and highlights the directions of measured whisker-deflection (x, y) as well
as the pivot point around which the whisker-angle (✓) was measured. The deflection in
thezdirection is not measurable and its inclusion in the image is to clarify the orientation
of thexand y component vectors.

inputs: An image of the current observation and an odometry reading describing the

angular yaw velocity and the linear translational velocity of the sensor-array.

3.1.1 Tactile Image

The tactile image was generated by first defining an image that had each pixel represent

a specific whisker on the sensor-array. Figure 3.2 shows the mapping of whisker to pixel.

The 8-bit image was in grey scale and its pixel values ranged between 0 and 255.

The intensity of each pixel was proportional to the approximate vertical height of

any obstacle detected using a measure of whisker angle, ✓, at point of contact and the

forward kinematics of the specific whisker.

62

3.1. METHOD

Figure 3.2: The tactile image is composed of 18 pixels that are arranged in a similar
distribution to that of the whiskers in the sensor-array. Each pixel corresponds to a
specific whisker, which can be identified according to the label. Each of the six collumns
are identified using letters (A-F) and the three rows using numbers.

The angle of contact was derived at the end of each whisk cycle using two approaches;

the first, which is called max angle, was taken as the maximum whisker angle observed

throughout the cycle; the second, known as contact angle, is the angle measured at

the time when the magnitude of the first derivative of the whisker deflection crosses a

threshold.

The angle of the whisker at that time in the whisk cycle is then passed through

the forward kinematics to determine depth. Max angle is found to be robust to sensor

noise, however, it did reduce the frequency of positive wall detection as the whisker

must remain in contact with the wall for the duration of the whisk cycle. Contact angle

generated a larger number of contact measurements, but, was susceptible to sensor noise

and therefore spurious observations.

3.1.2 Odometry

The odometry and tactile image were both published at a rate of 1.5Hz. OpenRatSLAM

requires the odometry message to include: the velocity of the yaw angle, which would

e↵ect the estimated heading value, followed by the linear translational velocity. The

63

CHAPTER 3. RATSLAM NAVIGATION USING A WHISKER-SENSOR ARRAY

odometry needs to be considered in that order since the algorithm carries out path

integration by rotating and then translating.

Due to the low sampling frequency of this work’s system, path integration using the

odometry input resulted in the accumulation of error. The errors have been characterized

by comparing the linear and angular displacements to the ground truth displacement.

For linear displacement, the errors were found to be strictly positive with a log normal

distribution best fitting the data Lognormal(�4.3, 0.45). The angular displacement

error was found to follow a Normal distribution N (8.39e�4, 0.3).

Without any correction, the estimated pose of the robot based on pure path integra-

tion will drift from the true value as shown in Figure 3.3. Thus, to improve the accuracy

of the estimated pose and map, RatSLAM is used to minimize the accumulated errors.

3.1.3 Data Collection

The whisker-array’s sensor data was sorted in a series of .csv (comma seperated values)

files, with each file capturing the data from a single whisk cycle. A single file 4 columns

with each column belonging to the angular sensor data, deflection in the x-direction and

deflection in the y-direction respectively. The last column does not contain any relevant

information and exists as a placeholder for possible system modifications that includes

adding extra sensors.

The sensory data from the arm included the pose of the end-e↵ector i.e. the whisker-

array. The pose was published to custom ROS topic at a rate of 1Hz in the form of a ROS

message of type geometry msgs/PoseStamped.msg. The message held the systems

current time, a 3-dimensional Cartesian coordinate, an orientation that is represented

by a quaternion vector and included the latest whisker data .csv name that was created

at the time of generating the message. .bag files were used to log ROS messages and

tune the RatSLAM parameters o✏ine.

3.2 Experimental Setup

Since RatSLAM assumes that the sensor array moves within a planar environment,

the sensor-array’s movement is constraint to a plane set 77 mm above the maze. The

chosen height prevents the whiskers from contacting the floor and limits contact to the

protruding walls that were distributed across the terrain. Rotation is also limited to a

single degree of freedom and the whisker-array can only rotate about its major axis.

64

3.2. EXPERIMENTAL SETUP

Table 3.1: The OpenRatSLAM parameter values selected for our work in Chapter 3.
These values were obtained during the tuning session and are fixed for subsequent runs.

Parameter Value
vt shift match 0
vt step match 1
vt active decay 1

template x size 6
template y size 3

pc dim xy 30
pc cell x size 0.015
exp delta pc threshold 1
exp loops 10
exp initial em deg 180

The whisker-array was then translated around a maze, following this work’s prede-

termined path, which is illustrated in Figure 3.3 on page 68. The whiskers were set to

whisk continuously at a rate of 1Hz at all times. Each run included 3 complete clockwise

circuits of the path, 3 complete anti-clockwise circuits and a subsequent clockwise and

anti-clockwise circuit.

The first run was used to tune OpenRatSLAM’s parameters, specifically those related

to the measurement model.

3.2.1 OpenRatSLAM Parameters

Before evaluating any performance results, OpenRatSLAM needs to be set up for use

with this work’s robotic system, which includes taking into consideration the platform’s

velocity range. The parameter pc cell x size scales the translational velocity and needs to

be set such that path integration causes a shift of one cell per iteration (Ball et al., 2013).

For this work’s system, the value is specified in Table 3.1. Other modified parameters

include the dimensions of the pose grid cell pc dim xy, which was kept large so as to

reduce the likelihood of false re-localizations occurring due to pose-cells representing too

many regions in the environment (Ball et al., 2013). The Local View cell decay value

vt active decay and the threshold defining the change in pose needed to result in a new

experience exp delta pc threshold were not modified and were kept the same as that of

the iRat dataset (Ball et al., 2013).

The tuning process mainly dealt with two parameters, which are the visual tem-

65

CHAPTER 3. RATSLAM NAVIGATION USING A WHISKER-SENSOR ARRAY

plate matching threshold and the pose cell inject energy. The visual template matching

threshold parameter refers to the threshold used to define whether two separate visual

templates are similar. The similarity measure was modified to include all pixels when

calculating the sum of absolute di↵erences, as opposed to the sum of the image columns

used in (Ball, 2018a). The formula of the modified similarity measure is shown in Equa-

tion 3.1, where A and B are the two images being compared, and a and b are their

respective pixel from row i and column j.

S(A,B) =
X

ij

q
|aij � bij | (3.1)

Since the tactile-image has a significantly lower number of pixels as opposed to a

typical camera based image, down-sampling is not needed; this work’s visual template is

equivalent to the raw tactile-image that is fed into RatSLAM. The similarity measure is

used to compare against the threshold and provided that it is lower, the templates are

considered to be a matching pair.

When a visual template is matched, the activity in the associated pose cell is in-

creased. The pose cell inject energy parameter a↵ects the degree in which the activity is

increased by. A balance between the matching threshold and injection energy is needed

to make sure that occasional false matches do not cause to much influence while still

allowing for occasional correct matches to cause regular re-localization.

3.2.2 Whisker Control

An additional aim of this chapter is to evaluate the benefit that a bio-inspired whisking

strategy brings to the navigational performance of a whisker-sensing mobile platform.

Rapid cessation of protraction is one of the three behaviors observed in rats (Mitchinson

& Prescott, 2013a); it involves the cessation of whisker protraction when an unexpected

contact is made, followed by a retraction. The behavior suggests an attempt to protect

the integrity of the whiskers, which is a desirable objective. Given the fragility of this

work’s artificial whiskers, the implementation of RCP is necessary. Further, the current

work seeks to investigate whether RCP brings any additional benefit to improving the

navigational performance of the system and include two extra variable parameters for

the set of runs: Open-loop whisking and RCP whisking.

Open-loop consisted of a simple trajectory tracking of each whisker angle following

a sinusoidal 1Hz pattern of fixed magnitude that moved the whiskers throughout their

full range of motion.

66

3.2. EXPERIMENTAL SETUP

RCP mode received the same desired trajectory, however, the actual angle of each

whisker could also be perturbed by local feedback from the whisker deflection sensors

themselves. The magnitude of the perturbation was defined as the absolute average

deflection, in the y direction, that exceeded the contact threshold.

The contact threshold was calculated at time of calibration as ±20x the standard

deviation of the recorded noise from the mean of the deflection data during free-whisking,

i.e., whilst the whiskers were whisking at 1Hz in absence of any obstacles. An increase

in perturbation resulted in a decrease of whisking amplitude, while keeping the initial

whisking angle at the start of each cycle constant. Keeping the initial whisk angle

constant is desirable as it meant the mean whisking angle kept the whiskers in a region

that was higher than the tallest obstacle, thereby reducing the chances of any whiskers

getting trapped within the maze’s walls.

An additional variable parameter is the method of estimating whisker contact-angle,

which varies between max angle and contact angle. There are thus two variable parame-

ters, the method of contact-angle estimation and the whisker control strategy, with each

parameter having two distinct states. When varying these parameters, the tactile-image

changes, which in turn requires the OpenRatSLAM parameters that are discussed in

section 3.2.1 to be re-tuned. Given the empirical derivation of the parameter values, 3

additional repetitions are made so that a statistical analysis can be performed.

To better tune OpenRatSLAM’s parameters, as well as analyze the benefit that each

of the di↵erent whisker control and angle estimation brings to the performance of the

SLAM algorithm, a novel RatSLAM specific metric called the Experience Metric (ExM)

is designed.

3.2.3 Performance Metrics

Two metrics were used to quantitatively assess the performance of the RatSLAM algo-

rithm. The Experience Metric (ExM) is novel and is designed specifically for use with the

RatSLAM algorithm while the second, Energy Metric (EM), is derived from (Kummerle

et al., 2009), and is a more general metric for evaluating SLAM algorithms.

A benchmark visual data set was taken from an online repository (Ball & Milford,

2015) (and described here (Ball et al., 2010)), to serve as a sanity check for discussion of

the more general performance of whisker based SLAM. The iRat data set was selected

because it was derived from a similarly sized environment to the maze used here, as well

as containing ground truth pose data.

67

CHAPTER 3. RATSLAM NAVIGATION USING A WHISKER-SENSOR ARRAY

Figure 3.3: Actual path taken by the whisker module (circle markers) and the path
derived from integrated odometry data (rectangular markers), the latter of which was
cropped to only include the first three clockwise loops. Each loop increases in color
saturation in order to show their progression in time additionally a large circle marks the
start/end of a loop. The image highlights the e↵ects that accumulating small odometry
error has on the estimation of robot pose and thus a need for an appropriate error
filtering mechanism that SLAM is known for solving.

3.2.3.1 Experience Metric (ExM)

At each RatSLAM iteration, there exists an active experience that represents the sys-

tem’s current belief in pose and location within the experience map. When a loop closure

or re-localization occurs, the active experience is replaced with the experience that rep-

resents the previous pose and observation. Figure 3.4 plots these changes for the iRat

data set.

In order to assess the correctness of these re-localizations, the range of experiences

that represent the initial loop must first be defined. Thus, when a future re-localization

occurs, and the active experience is set to one of the experiences in the initial loop,

68

3.2. EXPERIMENTAL SETUP

Figure 3.4: RatSLAM Metric Labeling. The image shows how RatSLAM associates the
agents current position and observations with an experience ID. An experience ID that
is visited more than once signifies a re-localization and is considered correct or incorrect
based on the specifications of the user regarding their desired accuracy in pose. Novel
experiences following an incorrect re-localization are deemed invalid as their accuracy
can’t be validated until a correct re-localization occurs.

the re-localization’s correctness can be determined by comparing the current true pose

(actual pose) with that of the true pose at the time at which the experience was first

generated (perceived pose).

In Figure 3.4, the experiences to the left of the vertical line are a part of the initial

loop. A re-localization is therefore considered correct provided the di↵erence between

its perceived and actual position and angle are below a certain threshold.

To consider the scenario where a re-localization occurs to an experience outside of

the initial loop set, a set of valid and invalid experiences are defined. Valid experiences

are those that proceed a correct experience and their positions are not corrupted by

previous false re-localizations. Invalid experiences are, however, corrupted by a preced-

ing incorrect experience and any re-localizations to these set of experiences would be

deemed as incorrect.

The Experience Metric returns two values, the Average Rate of Re-localization

69

CHAPTER 3. RATSLAM NAVIGATION USING A WHISKER-SENSOR ARRAY

(ARR) and the Average Rate of Correct Re-localization (ARCR).

ARR is defined as the average number of re-localizations over the total number

of experiences not including the original base set. The value is influenced greatly by

the pose cell inject energy parameter since it a↵ects the magnitude that a matching

observation has on the activity of pose-cells. A perfect score of 1 indicates that all

proceeding experiences in the subsequent loops originated from the intial base set, and

that the sensor-array is repeating the first loop perfectly.

ARCR is defined as the average number of correct re-localizations over the total

number of re-localizations. A correct re-localization is one where the absolute di↵erence

between perceived and actual pose do not exceed 0.1m and 25°. A perfect score of 1

means that the algorithm is able to correctly localize at every iteration following the

initial loop.

The two values, ARR and ARCR, can be used to tune the OpenRatSLAM paramters

described in 3.2.1. Exceeding the optimal pose cell inject energy would result in a high

ARR but lower ARCR, while a low pose cell inject energy would results in a high ARCR

but lower ARR. The latter is true because a low pose cell inject energy would reduce

the influence that a matching observation has on the belief of the system, and would

therefore require a longer series of matching observations before a re-localization can

occur; the system would spend more time (low ARR) confirming its place and making

sure it has gathered su�cient evidence before it changes its current belief which would

be more likely correct (high ARCR). The opposite is true for when the pose cell inject

energy is high and any matching observation would result in a re-localization.

Given a fixed pose cell inject energy value, the reduction of the visual template match-

ing threshold would result in lower ARR and higher ARCR. When the threshold is de-

creased, an observations needs to be more similar before a match occurs, thus increasing

the likelihood of a correct re-localization (high ARCR). However, at the same time, since

the requirements are more stringent, the likelihood of observing such similar matches is

hindered by noise and other factors that reduce the likelihood of a re-localization from

even occurring (low ARR).

The pseudo-code shown in Algorithm 1 on page 77 describes the steps taken to

calculate the Experience Metric.

3.2.3.2 Energy Metric (EM)

The Energy metric was derived from (Kummerle et al., 2009). The authors measured the

performance of a SLAM algorithm by defining the energy that it takes to transform the

70

3.3. RESULTS

trajectory of the agent according to the SLAM algorithm to, ideally, the true trajectory

of the agent.

The Energy Metric is defined by Equation 3.2 where N is the number of relative

relations (an experience point in the RatSLAM experience map and its corresponding

sample point from the set of collected pose data). The variable �i,j is defined in Equation

3.3 and is the relative transformation from node xi to node xj . The functions trans(·)

and rot(·) refer to translation and rotation respectively. The Energy Metric indicates a

good performance by returning a low value, with zero being a run that resulted in no

error at all.

"(�) =
1

N

X

i,j

trans
�
�i,j �

⇤
i,j

�2
+ rot

�
�i,j �

⇤
i,j

�2
(3.2)

�i,j = xj xi (3.3)

3.3 Results

3.3.1 Performance Metric Evaluation

The Experience Metric was validated using the iRat data set and the Energy Metric for

comparison. The data set was replicated and modified by“kidnapping” the agent, i.e.,

skipping it forward to a future position, thereby creating two data sets for comparison,

the latter set should result in a reduction of performance to confirm the correctness of

the metric.

The results of this test is shown in Figure 3.5, which by the decrease in ARR and

increase in the Energy Metric, indicates the expected drop in performance. The decrease

in ARR may be attributed to the fact that the chain of “visual” scenes that leads to

a re-localization was disrupted by the kidnapping and thus temporarily prevented any

re-localization. In the case of the Energy Metric, RatSLAM was penalized for not de-

tecting the kidnapping immediately, which led to the increase in error. ARCR remained

relatively constant, which indicated that the RatSLAM parameters were appropriately

tuned to correctly associate “visual” templates.

With confirmation of a valid metric behavior, it was then used for a quantitative

evaluation of the impact on performance of RatSLAM through the adoption of the

di↵erent whisker contact-angle estimation methods and whisker motion control schemes.

71

CHAPTER 3. RATSLAM NAVIGATION USING A WHISKER-SENSOR ARRAY

Figure 3.5: Performance Metric Validation. The results show that for a manipulated
data-set designed to reduce the performance of the RatSLAM algorithm, this work’s
novel RatSLAM specific performance metric, the Experience Metric, does indeed show
a reduction in performance via a reduction in the frequency of re-localizations (ARR).
This reduction of performance is also observed by the increase in the general SLAM
performance metric, the Energy Metric (EM) (Kummerle et al., 2009). The Average
rate of correct re-localization (ARCR) indicates that the algorithm was able to maintain
its re-localization accuracy.

3.3.2 Vanilla Whisker-RatSLAM Performance

Using the simple open-loop mode of whisker control and the max angle scheme for

whisker tactile to image transform, the RatSLAM-Whisker system was proven capable

of accommodating the relatively sparse sensory information from the whisker “tactile

images” by demonstrating loop closure and expressing only a limited number of incor-

rect re-localizations, as indicated by the transition from the erroneous path in Figure

3.3 to the corrected path in Figure 3.6.

When faced with changes to path direction, it was observed that for all data sets,

experiences created when driven in an anti-clockwise direction were not associated with

their clockwise counterparts, instead they were treated as unique locations. By alter-

nating the path direction multiple times, the separate loops from the clockwise and

72

3.3. RESULTS

Figure 3.6: Plots showing trajectory estimates derived from whisker-RatSLAM following
multiple runs of alternate robot loop directions (clockwise in red and anticlockwise in
green). The Left plot emphasizes how the di↵erent directions of travel generate di↵erent
estimates of path trajectory. However, this di↵erence reduces in Right panel following
repeated iterations of loop closure in both directions. This was due to links being
made between points of similarity in the maze leading to re-localization through shared
experiences, which was particularly apparent at the turning points in the trajectory

anticlockwise runs began to overlap as the agent observed similar tactile images when

rotating at corners. This scenario of overlap can be seen in Figure 3.6.

3.3.3 E↵ect of Whisker Control Strategy

The following set of results compare the performance of the robot when its whiskers are

controlled using the open-loop and RCP schemes described earlier.

Figure 3.7 shows that the adoption of RCP whisker control improves the performance

of the whiskered robot by making frequent correct re-localizations as indicated by the

increase in ARR values from 0.1765 to 0.2257. ARCR remained constant for both open-

loop and RCP. The improvement in performance through the adoption of RCP based

whisker control was also observed using the Energy Metric that resulted in a decreased

average measure of 0.1568 from 0.1916 across all data sets.

73

CHAPTER 3. RATSLAM NAVIGATION USING A WHISKER-SENSOR ARRAY

Figure 3.7: RatSLAM Performance comparison between open-loop and RCP whisker
control. Increasing ARCR and ARR and decreasing EM indicate improvement in per-
formance.

3.3.4 E↵ect of Whisker-Contact Angle Estimation Strategy

The previous runs were processed such that the whisker image was constructed based

on the max angle method, the following results are however the results of the second

method contact angle.

The Experience Metric shows a clear improvement in performance with increasing

ARR values for both open-loop and RCP variations as shown in Figure 3.8. Open-

loop’s ARR value is also observed to increase following the use of contact angle. EM

performance shows slight improvement in the case of open-loop, unlike RCP, which

shows a very small reduction in performance. The visual template matching threshold

was increased during the use of contact angle, which suggested a reduction in ‘image’

ambiguity.

74

3.4. DISCUSSION

Open loop using max_angle
Open loop using contact_angle
RCP using max_angle
RCP using contact_angle

Evaluation of contact-angle estimate methods

Figure 3.8: Results illustrating the benifit of implementing rapid cessation of protraction
and a contact angle approach for estimating contact-angle. Increasing average rate of
re-localization (ARR) and decreasing energy metric (EM) indicate an improvement in
performance. A relatively stable average rate of correct re-localization (ARCR) shows
that the increase in re-localization rates are not causing a decrease in re-localization
accuracy.

3.4 Discussion

In summary, this chapter highlights three accomplishments; first, the fusion of active

whisker tactile data with the vision based RatSLAM by transforming contact height

detected by the whiskers into pixel intensity; secondly, the introduction of a RatSLAM

specific performance evaluation algorithm, the validity of which has been confirmed using

the Energy Metric from (Kummerle et al., 2009); and third, an empirical evaluation of

a biomimetic whisker control strategy.

The ultimate ambition of this is work is to develop a system that is capable of

building a map of its environment and maintaining an accurate estimate of its loca-

tion through whisker based touch using minimal computational resources. Through the

75

CHAPTER 3. RATSLAM NAVIGATION USING A WHISKER-SENSOR ARRAY

adoption of the RatSLAM algorithm, it has been demonstrated that this algorithm has

the potential for further investigation as a substrate for e�cient tactile mapping and lo-

calization. Further, it is now possible to empirically evaluate the change in performance

of RatSLAM, in response to di↵erent sensory placement strategies and pre-processing

schemes, by measuring the dynamics of experience association within the algorithm.

Theoretically, if RatSLAM were to map the environment completely it would create no

further experiences, instead associating each new visual/tactile image with a previous

experience and therefore re-localizing confidently. This condition would be indicated by

the Experience Metric returning an ARR value of 1 and would be visualized in Figure

3.4 as an absence of new experiences following the establishment of the initial base set

(as indicated by the red dotted line). In addition if the algorithm were performing per-

fectly all re-localizations would be deemed correct and therefore the Experience Metric’s

ARCR would also be 1. This ability to decompose the performance of the RatSLAM

algorithm highlights the advantage of using the Experience Metric over the more generic

Energy Metric.

3.4.1 Summary

This chapter presented results confirming that RatSLAM, in combination with this

work’s whiskered-tactile sensory array, is capable of performing SLAM on a planar sur-

face. Implementation of Rapid Cessation of Protraction whisker control in combination

with the contact angle for identifying the angle of whisker contact resulted in the best

localization performance since it showed a reduction in tactile ‘image’ ambiguity.

The experiment’s maze surface is more crowded than that of a o�ce floor and there-

fore would not be representative the intended work environment. In order to navigate

within an o�ce like environment where the floor is of a uniform texture and character-

istics, there is a need for identifying higher level features such as object shape.

To better characterize the shape of an object the whisker-sensors’ perceptual abilities

need to be improved, particularly its precision in estimating the location of contact.

Chapter 2 described how contact localization accuracy is dependent on the whisker’s

contact angle and radial-distance estimates. Having realized an e↵ective solution for

estimating whisker-angle at time of contact, the next step is to obtain an appropriate

solution for estimating radial-distance to contact.

76

3.4. DISCUSSION

Algorithm 1: Experience Metric

1 function ExperienceMetric (E,P, ibase, �p, �✓);
Input : Experience Log E = (e1e2 . . . en)

Ground Truth Log P = (p✓,px,py)
ibase = final index of base set in E
�p = position error threshold
�✓ = angular error threshold

Output: Average rate of correct relocalization c

Average rate of relocalization r

2 C = unique(E[1 : ibase]) ; // Remove duplicates

3 ⌘c, ⌘ = 0;
4 rc = True;
5 for i = ibase + 1 to n do
6 ei�1 = E[i� 1];
7 ei = E[i];
8 Epast = (e1 . . . ei�1);
9 r1 = ei 2 Epast;

10 r2 = (ei = ei�1) ^ (ei�1 /2 R);
11 if r1 and not r2 then
12 R[⌘] = ei ; // Relocalization

13 ⌘++;
14 end
15 if ei 2 R then
16 ptrue = (px[i],py[i]); // Ground Truth

17 ✓true = (p✓[i]);
18 ipast = for e in Epast[j = 1 . . . i� 1] return last j where e = ei; // Perceived

19 pperceived = (px[ipast],py[ipast]);
20 ✓perceived = (p✓[ipast]);
21 ✏p = norm(ptrue � pperceived); // Euclidean

22 ✏✓ = abs(✓true � ✓perceived); // Absolute

23 c1 = (ei 2 C) ^ ((✏p < �p) ^ (✏✓ < �✓));
24 c2 = (ei = ei�1) ^ (ei�1 2 Rc);
25 if c1 and c2 then
26 Rc[⌘c] = ei ; // Correct relocalization

27 ⌘c++;
28 rc = True;
29 else
30 rc = False;
31 end
32 end
33 if rc then
34 if ei�1 /2 C then
35 append C with ei�1

36 end
37 end
38 end
39 ⌘exp = length(E)� ibase;
40 r = ⌘/⌘exp; // ARR

41 c = ⌘c/⌘; // ARCR

77

Chapter 4

Object Shape Reconstruction

The work included in this chapter addresses the problem of constructing an internal 3D

model of an object encountered by an active array of artificial whisker sensors mounted

as the end-e↵ector of a robotic arm.

One of the goals of this work is to identify unique tactile landmarks that can be

used to create sparse topological maps. Operating in such environments implies a high

likelihood of making uncontrolled contacts with objects resulting in damage and loss of

whiskers. Therefore, it is desirable that any object discrimination algorithm is robust to

variation in whisker shape and collision dynamics. Toward this end, the performance of

3 regression techniques, taken from standard machine learning literature, are applied to

active whisker 3D object reconstruction and are compared.

This work’s stated method of estimating the 3D point of contact is a two step process,

which involves estimating pose of the whisker shaft at the onset of contact, followed by

the estimation of radial-distance along the whisker shaft to the point of contact. The

focus of this chapter is, therefore, to improve the the accuracy of the estimated radial-

distance to contact. In addition to improved accuracy, the aim of this work seeks to

design a method that reduces the work involved when replacing broken whiskers on the

sensory array, which is a reasonably common problem. Whisker replacements cannot

always be guaranteed to preserve the dimensions of the whisker that’s being replaced,

and would therefore vary in length.

It was therefore decided to explore a suitable regression model that can map a

whisker’s sensory signals’ features to a radial-distance measurement while generalizing

for di↵erent whisker dimensions. The work would be limited to using a single material

for the construction of the whiskers and would assume that the ratio of tip and base

diameters is constant.

79

CHAPTER 4. OBJECT SHAPE RECONSTRUCTION

4.1 Method

(a) (b)

Figure 4.1: Experimental apparatus. Figure 4.1a includes a photograph of the rod and
single whisker module that were used to gather a training data set of whisker point
contacts at known radial distances. The arm was moved parallel to the whisker length,
pausing at di↵erent radial distances whilst a range of whisking frequencies were applied
and the deflection data collected. Figure 4.1b includes a photograph of the Box shaped
object and full whisker array during the collection of the validation data-set. The left
inset shows a full view of the UR-5 arm mounted to the aluminum sca↵old. The right
inset includes a diagram of an individual whisker module highlighting the reference
frames that defines the whisker deflection vector x and y, and whisker rotation ✓. The
z direction in the image is only for clarifying the frame’s orientation and is not available
as a sensor reading.

To collect the training and validation data sets, the whisker-array, which consists of

18 whisker modules, is mounted onto the end of a Universal-Robots UR5 arm. The arm

is described in greater detail on page 21 and the whisker-array and individual modules

are described on page 22.

Fixed at the base of each whisker shaft is a magnet, which is positioned above a 2D

Hall-e↵ect sensor to measure deflections in the orthogonal axes referred to as x and y (see

inset of figure 4.1b). A small brush-less DC motor built into the housing enables whisking

80

4.1. METHOD

through ±50° in 1 degree of freedom referred to as ✓. The whisk angle is controlled and

monitored by an embedded 16-bit micro-controller which relays the sensory information

(x, y, ✓) back to the remote data capture computer at 0.5 millisecond intervals. A more

in depth description of the whisker module can be found in (Sullivan et al., 2012). The

array was mounted as the end-e↵ector of a Universal Robotics UR-5 arm as shown in

Figure 4.1. This was mounted onto an aluminum sca↵old to demarcate the workspace

with each actuator controlled and coordinated using the ROS execution framework.

4.1.1 Whisking pattern

The whisking pattern of each whisker was controlled using using a global sinusoidal

pattern individually modulated by an analogue of RCP to reduce excessive stress on the

whiskers and constrain the range in sensory response of deflections (Salman & Pearson,

2016). RCP was implemented by triggering an early retraction of the whisker in the

event that a threshold in its deflection magnitude was crossed.

Since one of the signal features described below includes the amplitude of the deflec-

tion signal, it is logical to assume that the inclusion of an RCP strategy would serve to

saturate the signal’s amplitude. To reduce the likelihood of this saturation occurring,

the threshold was set to the maximum detectable deflection value. The threshold thus

prevented extreme bending, while still allowing for the amplitude to vary in most sce-

narios. It is noted that even without RCP the contact amplitudes would still saturate

due to the limitation of the sensor. However, with RCP causing an immediate retraction

regardless of whether the whisker reached a fully protracted state the chances of whiskers

breaking are reduced.

4.1.2 Data collection

To derive the approximations of the functions mapping whisker sensor features to radial-

distance, the performance of three standard regression techniques are investigated: Poly-

nomial Regression, Neural Networks and Support Vector Regression. To investigate

which of these techniques performs best for our application, appropriate training and

validation data-sets were collected.

4.1.2.1 Training set

The training set data was collected by whisking whiskers of di↵erent lengths into a rod

set to make contact at various radial distances (see Figure 4.1a). The set of whiskers used

to obtain this training data included only a subset of whiskers since it was decided to

81

CHAPTER 4. OBJECT SHAPE RECONSTRUCTION

leave the remaining whiskers with unique lengths as a means of validating the generality

of the models. The whisker lengths used in the training set were: 65 mm, 78 mm, 87 mm,

88 mm, 94 mm, 107 mm, 113 mm and 137 mm. The collection involved the horizontal

displacement of a whisker, fixed on the end of the UR-5 arm, from its base to its tip

at 20 equally spaced intervals starting from 25mm from the base of the whisker-shaft.

Each run consisted of whisking between 0.2 and 2.5Hz at each radial distance.

4.1.2.2 Validation set

To assess the performance of each technique in a mobile setting, a data-set that consisted

of the whiskers exploring a box shaped object was recorded (see Figure 4.1b). The

trajectory of the end-e↵ector was set by manually positioning the arm in desired poses

and hard coding these as way-points. The way-points were selected such that contact

occurrences ranged from tip to anywhere along the length of the whiskers. Since contact

speed has been shown to be an important contact feature in classification of radial

distance, the data-set needed to include samples in which the end-e↵ector was held still,

as any motion would be translated to the whiskers and therefore influence the response

of the deflection signal. The arm was therefore held at each way point for one minute

before continuing on to the next pose. The length of each mounted whisker was measured

for use as one of the input variables to the estimators. The number of unique whisker

lengths outnumbered those used for the training portion of the investigation, to allow

an evaluation of the generality of each estimator. The set of unique whisker lengths

included in the validation set and not in the training set were: 50 mm, 64 mm, 80 mm,

95 mm, 101 mm, 127 mm, 128 mm, 150 mm and 154 mm.

4.1.2.3 Ground truth and error calculation

To assess the quality of reconstruction from each regression technique, a set of simulated

ground truth contact locations were derived. This required the calibration of the arm’s

position with respect to the work-space so that a virtual object could be placed in the

same position as the physical one. Calibration was carried out by mounting a short

straight whisker at the midpoint of the end-e↵ector, followed by positioning the whisker

in the center and on the surface of the workspace center point, thus obtaining the desired

reference point. An algorithm was developed to simulate what would be the anticipated

contact position given the assumptions of a movable and rigid whisker.

The algorithm operates by using the known position of the end-e↵ector in world

frame to locate the pose of each whisker base using forward kinematics. Each whisker

82

4.1. METHOD

is then swept from its retraction to protraction limits at intervals of 1 deg within the

world frame. Given the intersection of the swept vectors and faces of the box model,

a list of intersection points can be generated. Figure 4.2a highlights a moment in time

where a single whisker is swept through its entire range of motion and points of intersect

are filtered such that the point closest to the retraction limit and the whisker base is

selected. Since the whisking trajectory initiates in retraction, the first occurrence of a

contact would be from that direction.

The radial-distance error is therefore defined as:

�r =
(dm � dgt)

dwl

(4.1)

Where dm is the radial-distance estimate according to the specific regression model, dgt

is the radial-distance value according to the simulated ground truth method, and dwl as

the length of the whisker whose error is being measured.

The whiskers in simulation are assumed to be rigid and straight, which is not the

case for the physical whiskers. This assumption leads to variations in the estimated

whisker angle at moment of contact between the simulated ground truth and that of the

whisker-contact feature extraction methods described in section 4.1.2.4. The variation of

contact angle would a↵ect the simulated ground truth 3D contact location and in turn,

the radial-distance. The histogram of the contact angle errors is plotted and shown in

Figure 4.3 on page 86, which illustrates the distribution of angle di↵erences between the

simulation derived contact angles and those using the whisker-contact feature extraction

method described in the following section. The plot indicates that the median angle

error is -16.7°.

Still, variations in contact angle would suggest that either the simulated ground

truth or the feature extraction method are not representative of the real ground truth,

and, since there is no definitive way of solving this ambiguity, additional analysis of the

models’ prediction performance is included. These analyses, which are the distribution of

estimated points to model distances, do not rely on the simulated contact approach and

therefore should provide a better overall comparison. The distributions would illustrate

the fidelity of object reconstruction.

It has been mentioned that the feature extraction method includes an estimate for

whisker-angle at the point of contact. The following section continues to describe this

estimation procedure, along with details about the extraction of other signal features

that are to be used as inputs to the proposed regression models.

83

CHAPTER 4. OBJECT SHAPE RECONSTRUCTION

1100

100

1000

900z
 (

m
m

)

0

800

700

y (mm)

-100

Anticipated Intersect

400-200

x (mm)500-300

Retraction

Protraction

Contact Point

Whisker Base

(a) Illustration of Anticipated In-
tersect algorithm.

0

-100

y
(m

m
)

Frame: 247

1100
-200

1050

1000

500

950

900

x (mm)

850

z
(m

m
)

400

800

750

-300

700

300

End Effector

650

200

Estimated Contact
Anticipated Contact
Whisker Base

(b) A comparison between anticipated an estimated
whisker contacts.

Figure 4.2: Given the position of a whisker, it is swept from its retraction to its protrac-
tion limit, which is illustrated in Figure 4.2a. With the assumption of a straight and rigid
whisker, the contact point is selected from the list of intersect points that are nearest to
the retraction limit and whisker base. The assumption results in the variation of contact
angle, which in turn, might result in small or large discrepancies in contact location
depending on the radial distance. An example of this discrepancy may be observed in
4.2b by noting the pair of contact points within the 950-1000 range in thezdirection,
both of which are estimated and anticipated contact locations for the same whisker.

84

4.1. METHOD

4.1.2.4 Extraction of Whisker-Contact Features

Using a moving average filter, the deflection and angular sensor data for each whisk-

sample was smoothed and further processed to extract the following contact features;

deflection velocity, deflection acceleration, angular velocity, angular acceleration, contact

period and contact amplitude.

Contact period and amplitude have been used by (Evans et al., 2013) to estimate

radial-distance to contact and are therefore also included in the set of potential input

variables.

Birdwell et. al specifies how angular velocity and rate of change of moment are

needed to work out radial-distance to contact. Since the deflection is proportional to the

moment (Evans et al., 2013), the rate of change of deflection (deflection velocity) should

be proportional to the rate of change of moment. The angular velocity and deflection

velocity are therefore included in the set of potential input variables.

Deflection acceleration, angular acceleration were also included in the set of potential

inputs so as to provide the regression model with a complete description of the whisker’s

state during contact.

To confirm what variables are indeed important for estimating radial-distance to con-

tact, principal component analysis was carried out in order to determine which variables

contribute the most variation in the data, and thus, are most informative in estimating

radial-distance. Further, with the intention of developing a regression model that does

require whisker dimension measurements, multiple regression models are trained using

a variety of unique contact-feature combinations in order to discern the best performing

set of inputs

The contact-features were extracted by processing the deflection and angular sensors’

signal following a complete whisk-cycle. A contact, under ideal conditions, generates a

single prominent peak in the y component of the deflection signal as shown in Figure

4.4 on page 86. To identify these peaks the Matlab function findpeaks (findpeaks, 2017)

was used. Ideal conditions are those where the contact is made without any slippages

occurring, and the whisker maintains contact with an obstacle through out its protraction

phase. Figure 4.5 on page 87 illustrates other types of signals that include whiskers

slipping o↵ an obstacle as it continues to protract, and when the whisker-array moves

while a whisker is in contact with an obstacle.

4.1.2.4.1 Principal Component Analysis

85

CHAPTER 4. OBJECT SHAPE RECONSTRUCTION

Angle error
mu: -16.7 | std: 17.6 | median: -16.7

-150 -100 -50 0 50 100 150
Angle (deg)

0

0.01

0.02

0.03

0.04

0.05

D
en

si
ty

 o
f p

ro
ba

bi
lit

y

Figure 4.3: Distribution illustrating the di↵erence between our simulated ground truth
contact-angle estimates and those derived using our contact-feature extraction methods
detailed in section 4.1.2.4.

0 140 280 420 550 690 830 970 1110

Time (ms)

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

W
h

is
k
e

r
D

e
fl
e

c
ti
o

n
 (

s
c
a

le
d

)

Deflection Signal Contact Features

Smoothed Deflection Signal

No Contact Deflection Signal

Contact Start

Contact Stop

Peak

Prominence Reference

Angular Acceleration Range

Whisker Angle

Retraction Threshold

50

100

150

W
h

is
k
e

r A
n

g
le

 (d
e

g
)

Figure 4.4: Illustration of a deflection signal during contact under ideal conditions where
slipping does not occur, and contact occurs during the protraction phase of the whisk-
cycle. A deflection value in the upper half suggests a deflection in the positive direction
of the y-axis while a value in the lower half suggests a deflection in the negative direction
of the y-axis, the values of the deflection signal are scaled such that limits are between
1 and -1. The whisker angle sensor data is represented in degrees and its axis is shown
on the right hand side.

86

4.1. METHOD

0 500 1000 1500
Sample

0

50

100

150

An
gl

e
(d

eg
)

Whisker Angle
Contact Onset

0 500 1000 1500
Sample

0

2

4

6

Ra
w

Va
lu

e

104 Y Deflection

0 500 1000 1500
Sample

0

2

4

6

Ra
w

Va
lu

e

104 X Deflection

(a) Ideal contact

0 500 1000 1500

Sample

0

50

100

150

A
n

g
le

 (
d

e
g

)

Whisker Angle

Contact Onset

0 500 1000 1500

Sample

0

2

4

6

R
a

w
 V

a
lu

e

104 Y Deflection

0 500 1000 1500

Sample

0

2

4

6

R
a

w
 V

a
lu

e

104 X Deflection

(b) Contact Slip

0 500 1000 1500

Sample

0

50

100

150

A
n

g
le

 (
d

e
g

)

Whisker Angle

Contact Onset

0 500 1000 1500

Sample

0

2

4

6

R
a

w
 V

a
lu

e

104 Y Deflection

0 500 1000 1500

Sample

0

2

4

6

R
a

w
 V

a
lu

e

104 X Deflection

(c) Head retraction

Figure 4.5: Figures illustrating the whisker sensory signals for di↵erent contact scenarios.
Each figure contains the sensory data from a single whisk-cycle i.e. a whisker moving
from a fully retracted position to a fully protracted position and back. The top row
includes the angular sensor’s data, the middle the Y-deflection sensor’s data and the
bottom the X-deflection sensor’s data.4.5a highlights a scenario where the whisker makes
contact with an obstacle and results in an ideal contact that includes continuous contact
with an obstacle during its protraction phase. 4.5b highlights a scenario where the
whisker makes contact with an obstacle and slips before completing its protraction phase.
4.5c highlights a scenario where the whisker makes contact with an obstacle throughout
its protraction phase while the whisker-array retreats from the obstacle. It can be seen
that by working out the time in which contact occurs, via the method described in
section 4.1.2.4, the whisker angle at time of contact can also be inferred by looking at
the point of intersect of the contact onset line (vertical red line) and the angular sensor’s
plot line.

Principal Component Analysis was performed on the training data set to determine

which set of contact features are most relevant in explaining the variance in the data,

and therefore, necessary function variables. Due to the di↵erence in feature units as

well as their respective magnitudes varying by several orders of magnitude, the data

is run through a whitening pre-processing step. Whitening includes normalization of

the feature values such that their standard deviation is equal to 1. Figure 4.6 plots

the coe�cients of the 3 highest principal component vectors to illustrate the relative

importance of each contact feature.

The figure highlights the low contribution of angular acceleration and whisker length

87

CHAPTER 4. OBJECT SHAPE RECONSTRUCTION

in explaining the variance in the collected data. It is therefore decided to proceed with

the regression models’ analyses with the input variables being fixed to: contact amplitude

and period, deflection velocity and acceleration and angular velocity. The potential gain

in estimation accuracy brought on by including the whisker length in the set of input

variables is also investigated.

1
: 1 + 1.17e-09

8.13e-08 5.95e-06 1.58e-04 2.14e-03

1.00e+00

2.04e-04 1.58e-07

CP CA DV DA AV AA WL
0

0.5

1

1.5

2
: 1 + 1.04e-14

2.62e-01
1.12e-01 4.36e-02

9.57e-01

2.06e-03 4.20e-05 1.61e-07

CP CA DV DA AV AA WL
0

0.5

1

1.5

 E
ig

e
n

v
e

c
to

r
C

o
e

ff
ic

ie
n

ts

3
: 1 + 2.22e-15

8.44e-01

1.58e-01

4.37e-01
2.70e-01

5.07e-04 2.03e-07 1.67e-08

CP CA DV DA AV AA WL
0

0.5

1

1.5

Figure 4.6: Principal component analysis on the learning data-set. The figure illustrates
the relative importance of each variable in explaining the variability in the Training
data-set that includes varying radial distance to contact. The plots illustrate the three
vectors with the highest eigen values i.e. those that most a↵ect the variation in radial-
distance value. The coe�cients represent the contact features, listed as follows from left
to right: Contact Period (CP), Contact Amplitude (CA), Deflection Velocity (DV),
Deflection Acceleration (DA), Angular Velocity (AV), Angular Acceleration (AA) and
Whisker Length (WL). Since the units of the variables are di↵erent, as well as having
significant variance in their range of values, the data was taken through a pre-processing
step called whitening. The first three principal components, following the whitening
process, suggest that CP, CA, DV, DA and AV to be major contributors to the variance
seen in the data. Thus if dimensionality reduction were to be carried out, these would
be the more relevant variables that should be kept in order to minimize precision loss.

4.1.3 Regression techniques

The three regression techniques for radial distance estimation that have been evaluated

using these data sets were; neural networks, support vector machines and polynomial

regression. Polynomial regression was specifically chosen so as to compare against the

work of Evans et al. (Evans et al., 2013). The neural network approach, specifically the

Multi-Layer Perceptron (MLP) model, was chosen for to its generalised ability in pattern

recognition and classification problems (Cheng & Titterington, 1994). Finally, Support

88

4.2. RESULTS

Vector Regression (SVR) was selected due to its well established performance in pattern

classification problems (Karamizadeh, Abdullah, Halimi, Shayan, & Javad Rajabi, 2014)

and the smaller number of hyper-parameters compared to MLPs (fitrsvm, 2017).

To measure the performance of the trained models, K-fold cross-validation with K

set to 10 was used. Polynomial regression was implemented using the Matlab function

polyfitn (polyfitn, 2017). To determine the appropriate order of the polynomial model

the bounds of the search space was set to include orders between 2 and 6. Using K-

fold cross-validation to obtain the averaged validation mean square error, a 3rd order

polynomial regression was found to be optimal.

For the neural network model, optimization of the network’s structure was carried

out by searching for the number of hidden layers and hidden nodes that resulted in the

best performance. Using the following equation Nh = (Nin +
p

Np)/L to set an upper

limit on the number of hidden nodes, as described by (Gnana Sheela & Deepa, 2013).

Further, the optimization search was limited by setting a boundary on the number of

hidden layers to 2 to reduce the computational cost of the search. The optimum value

was found to be 2 layers with 58 hidden nodes in each layer.

The final regression technique was the regression variant of Support Vector Machines.

The optimization and training was performed using the Matlab function fitrsvm (fitrsvm,

2017) which included the support to search through linear, polynomial and Gaussian

kernel functions as well as their specific parameters. The results of the optimization

indicated that a Gaussian Kernel performed the best for these data sets.

4.2 Results

4.2.1 Validation of Regression Models

The results include a total of 12 regression models and Table 4.1 includes their respective

labels and specific input variables.

Each of the regression models were trained using the training data sets described in

section 4.1.2.1 and then validated on the validation set. Two sets of results are included:

The first being the distributions of the point to model distances i.e. the distance between

the model estimated contact-location and the nearest face of the object model (shown

in Figure 4.8 on page 92). The second set of results include the radial-distance error,

where the error is defined as the di↵erence between the radial-distance estimate and

the simulated anticipated radial-distance value (shown in Figure 4.9 on page 93). The

radial-distance error was normalized against the actual whisker length to give a value

89

CHAPTER 4. OBJECT SHAPE RECONSTRUCTION

Figure 4.7: Contact point estimates derived from tip assumption versus a trained Sup-
port Vector Regression (SVR) model (id: svr9) superimposed over the validation object
model. This figure includes contacts collected across 8 sequential whisk-samples, where
in these samples 3 whiskers made contact with the object. It can be seen that the radial
estimation using the SVR model is more accurate than the tip assumption, although it
is not perfect as shown by the whisker in the most positive x-direction where the SVR
estimate underestimates the radial-distance to contact and is further away from the face
model than the tip based estimate.

90

4.2. RESULTS

Table 4.1: Regression models’ labels and input variables. The inputs variables are
contact period (CP), contact amplitude (CA), deflection velocity (DV), deflection accel-
eration (DA), angular velocity (AV) and whisker length (WL).

Label Features
nn1 CP-CA-DV-DA-AV-WL
nn2 CP-CA-DV-DA-AV
nn3 CP-CA-DV-DA-WL
nn4 CP-CA-DV-DA
poly5 CP-CA-DV-DA-AV-WL
poly6 CP-CA-DV-DA-AV
poly7 CP-CA-DV-DA-WL
poly8 CP-CA-DV-DA
svr9 CP-CA-DV-DA-AV-WL
svr10 CP-CA-DV-DA-AV
svr11 CP-CA-DV-DA-WL
svr12 CP-CA-DV-DA

between -1 (underestimating) and 1 (overestimating).

Two additional cases have also been included for comparing the performance of each

regression model against: a crude tip assumption where the radial-distance is always

equal to the whisker length, and a uniformly distributed random radial-distance estima-

tion method that is bound between 0 and the whisker length. Due to the morphology of

the whiskers, the shape of the object, and arm motion, the data sets include a higher oc-

currence of tip-contacts. To minimize the e↵ect of this bias, contacts where the simulated

ground truth occurs  0.7dwl are considered.

Looking at Figure 4.8 on page 92 it can be seen that the models svr9 and svr10

performed the best, as indicated by their low median and standard deviation values,

which would suggest that the contact points reconstructed the object with greatest

accuracy and precision in comparison to other models. A two-sample Kolmogorov-

Smirnov test is performed to quantitatively assess whether the distributions were similar

to the tip based assumption, or otherwise to the random distribution. The results

indicated that within a 1% significance level neither distribution was similar to the tip

or random distribution. Reminding the reader that svr9 and svr10’s input variables were

CP-CA-DV-DA-AV-WL and CP-CA-DV-DA-AV respectively, the two distribution were

similar at a 5% significance level. This suggests that a similar radial-distance estimation

performance level can be achieved regardless of whether whisker length is included or

not in the set of model inputs.

91

CHAPTER 4. OBJECT SHAPE RECONSTRUCTION

nn1

mu: 1.454e-02 | std: 2.296e-02 | median: 1.454e-02

-0.1 -0.05 0 0.05 0.1

error (m)

0

1000

2000

c
o

u
n
t

nn2

mu: 1.214e-02 | std: 2.121e-02 | median: 1.214e-02

-0.1 -0.05 0 0.05 0.1

error (m)

0

1000

2000

c
o

u
n
t

nn3

mu: 1.566e-02 | std: 2.025e-02 | median: 1.566e-02

-0.1 -0.05 0 0.05 0.1

error (m)

0

1000

2000

c
o

u
n

t

nn4

mu: 1.469e-02 | std: 2.131e-02 | median: 1.469e-02

-0.1 -0.05 0 0.05 0.1

error (m)

0

1000

2000

c
o

u
n

t

poly5

mu: 2.942e-02 | std: 2.221e-02 | median: 2.942e-02

-0.1 -0.05 0 0.05 0.1

error (m)

0

1000

2000

c
o

u
n

t

poly6

mu: 1.448e-02 | std: 2.047e-02 | median: 1.448e-02

-0.1 -0.05 0 0.05 0.1

error (m)

0

1000

2000

c
o

u
n

t

poly7

mu: 1.923e-02 | std: 2.086e-02 | median: 1.923e-02

-0.1 -0.05 0 0.05 0.1

error (m)

0

1000

2000

c
o

u
n

t

poly8

mu: 1.647e-02 | std: 2.215e-02 | median: 1.647e-02

-0.1 -0.05 0 0.05 0.1

error (m)

0

1000

2000

c
o

u
n

t

svr9

mu: 4.467e-03 | std: 1.195e-02 | median: 4.467e-03

-0.1 -0.05 0 0.05 0.1

error (m)

0

1000

2000

c
o

u
n

t

svr10

mu: 6.161e-03 | std: 1.384e-02 | median: 6.161e-03

-0.1 -0.05 0 0.05 0.1

error (m)

0

1000

2000

c
o

u
n

t

svr11

mu: 6.302e-03 | std: 1.358e-02 | median: 6.302e-03

-0.1 -0.05 0 0.05 0.1

error (m)

0

1000

2000

c
o

u
n

t

svr12

mu: 6.362e-03 | std: 1.550e-02 | median: 6.362e-03

-0.1 -0.05 0 0.05 0.1

error (m)

0

1000

2000

c
o

u
n

t

tip

mu: 6.017e-03 | std: 1.596e-02 | median: 6.017e-03

-0.1 -0.05 0 0.05 0.1

error (m)

0

1000

2000

c
o

u
n

t

random

mu: 1.133e-02 | std: 1.902e-02 | median: 1.133e-02

-0.1 -0.05 0 0.05 0.1

error (m)

0

1000

2000

c
o

u
n

t

Figure 4.8: Histograms detailing the distribution of contact-point to model face dis-
tances. A tight distribution centered on zero would suggest that the model performs
well with respect object reconstruction fidelity. It can be seen that based on the lowest
median value followed by the lowest standard deviation, the two best performing models
are svr9 and svr10. A two-sample Kolmogorov-Smirnov test performed on the models
indicated that using a 1% significance level the distributions are not similar to the tip
or random distributions. At a 5% significance level they are, however, similar to one
another. Since the di↵erence between svr9 and svr10 is that svr10 does not include
whisker length as an input variable, their being similar would suggest that leaving out
whisker length would not cause significant deterioration in the model’s performance.

92

4.2. RESULTS

nn1

mu: 1.545e-01 | std: 3.882e-01 | median: 1.545e-01

-1 -0.5 0 0.5 1

error

0

1000

2000

c
o

u
n
t

nn2

mu: 1.392e-01 | std: 3.539e-01 | median: 1.392e-01

-1 -0.5 0 0.5 1

error

0

1000

2000

c
o

u
n
t

nn3

mu: 2.176e-01 | std: 3.783e-01 | median: 2.176e-01

-1 -0.5 0 0.5 1

error

0

1000

2000

c
o

u
n

t

nn4

mu: -5.098e-02 | std: 3.593e-01 | median: -5.098e-02

-1 -0.5 0 0.5 1

error

0

1000

2000

c
o

u
n

t

poly5

mu: -8.520e-02 | std: 4.918e-01 | median: -8.520e-02

-1 -0.5 0 0.5 1

error

0

1000

2000

c
o

u
n

t

poly6

mu: 2.158e-01 | std: 3.812e-01 | median: 2.158e-01

-1 -0.5 0 0.5 1

error

0

1000

2000

c
o

u
n

t

poly7

mu: 1.493e-01 | std: 4.095e-01 | median: 1.493e-01

-1 -0.5 0 0.5 1

error

0

1000

2000

c
o

u
n

t

poly8

mu: 1.304e-01 | std: 3.883e-01 | median: 1.304e-01

-1 -0.5 0 0.5 1

error

0

1000

2000

c
o

u
n

t

svr9

mu: -5.277e-03 | std: 1.275e-01 | median: -5.277e-03

-1 -0.5 0 0.5 1

error

0

1000

2000

c
o

u
n

t

svr10

mu: -1.702e-03 | std: 1.790e-01 | median: -1.702e-03

-1 -0.5 0 0.5 1

error

0

1000

2000

c
o

u
n

t

svr11

mu: -2.540e-02 | std: 1.563e-01 | median: -2.540e-02

-1 -0.5 0 0.5 1

error

0

1000

2000

c
o

u
n

t

svr12

mu: -2.109e-02 | std: 1.962e-01 | median: -2.109e-02

-1 -0.5 0 0.5 1

error

0

1000

2000

c
o

u
n

t

tip

mu: 4.745e-01 | std: 1.034e-01 | median: 4.745e-01

-1 -0.5 0 0.5 1

error

0

1000

2000

c
o

u
n
t

random

mu: -1.931e-02 | std: 3.052e-01 | median: -1.931e-02

-1 -0.5 0 0.5 1

error

0

1000

2000

c
o

u
n
t

Figure 4.9: Histogram of the radial-distance errors, where the error is defined as the
whisker-length normalized di↵erence between the model-estimated radial-distance and
the simulated ground-truth radial-distance. A tight distribution would suggest good
model percision where are one that is centred on zero would suggest good accuracy. The
comibination of a tight and zero centred distribution is desired as this would suggest
both good accuracy and percision. It can be seen the the svr models perfrom the best
as indicated by their low standard deviation and median that is close zero.

93

CHAPTER 4. OBJECT SHAPE RECONSTRUCTION

The superiority of the two support vector regression models are further highlighted

by their radial-distance error distributions that again display the best performance as

noted by their combined low values of median and standard deviation. In comparison

to the tip-based radial-estimation method, the svr9 and svr10 models are able to better

predict the radial-distance according to the simulated ground truth. A two-sample

Kolmogorov-Smirnov test was also carried out to compare the similarity of the two

models’ distributions against the tip, random and each others’ distributions (svr9 vs.

svr10 and vice versa). It was found that at a 1% significance level, neither model shared

any similarity with the tip, random or with each other. Since svr9 and svr10 are not

similar, and with svr9 (which includes whisker length as an input variable) having a

lower median error and tighter distribution, it would suggest that including whisker

length would result in a better performing model according to the radial-distance error

distributions. This better performance is however very moderate as the di↵erence in

median values is less than an order of magnitude, which is significantly less than the

performance loss seen in models svr11 and svr12.

Since the radial-distance error is measured against a simulated ground truth, which

itself contains some error (as shown in Figure 4.3), a higher weight could be placed

on the results of the fidelity distributions, which suggests that with the set of features

being ‘CP-CA-DV-DA-AV’, the benefit of including whisker length (WL) is negligible,

particularly when attempting to faithfully reconstruct an object’s shape with whisker-

sensors.

Reminding the reader that svr9 and svr11 contain whisker length, and their features

are ‘CP-CA-DV-DA-AV-WL’ and ‘CP-CA-DV-DA-WL’ respectively, while svr10 and

svr12 do not contain whisker length and their features are ‘CP-CA-DV-DA-AV’ and

‘CP-CA-DV-DA’ respectively. Looking at Figure 4.8 it can be seen that if the desire is

to maintain the same performance as the best SVR model (svr9), while reducing the

number of features, the available options are omitting either angular velocity or whisker

length. Since angular velocity is e↵ortless to include, relative to the manual measurement

of whisker length every time a replacement is needed, it would be best to include AV in

the set of model inputs. It is thus concluded that given the hardware and initial goals of

simplifying the whisker replacement process, the best option is to use a support vector

regression model that maps ‘CP-CA-DV-DA-AV’ (svr10) to radial-distance.

94

4.2. RESULTS

4.2.2 Comparison with state-of-the-art

Looking back at Chapter 2, the state-of-the-art approach that most resembles our radial-

distance machine learning approach and hardware is that of Evans et al. (2013). Here

we compare the performance of our newly proposed support vector regression model

and input features ‘CP-CA-DV-DA’ (svr12), with those proposed in Evans et al. (2013),

which use contact amplitude and contact period, referred to as f1 and f2 respectively

in their text, and a 5th order polynomial model. Our comparison omits AV from the set

of independent variables since the data set that we obtained from Evans et al. (2013)

does not include whisker angle sensor values. Omitting AV would result in our radial-

estimation model being less than optimal, however, if the model does indicate better

performance than that in Evans et al. (2013) it can safely be said that our proposed

model and feature combination would result in better performance than that proposed

in Evans et al. (2013).

The data set obtained from Evans et al. (2013) is specifically for the X-Y positioning

robot, with the whisker material being of Acrylonitrile butadiene styrene (ABS) material,

as opposed to our whisker’s NanoCure RC25 material. The whisker deflection sensors

on the whisking module in Evans et al. (2013) is similar to our Melexis MLX90333 Hall

e↵ect sensors. The X-Y positioning robot simulates whisker contact by driving a rod

linearly into a fixed whisker, retracting once a deflection threshold is reached. The data

set included 101 di↵erent radial distance ranging from 80-180 mm, 26 speeds ranging

from 36-216 mm/s and each combination being repeated 4 times, bringing the total

number of samples to 101⇥26⇥4 = 10504. The data set included one whisker of length

185 mm, and 2 mm to 0.5 mm diameter from the base to the tip. Our learning data set

included multiple whiskers with lengths 65, 78, 87, 88, 94, 107, 113 and 137 mm, each

tapering from 2 mm to 0.6 mm.

Model training and testing was carried out by randomly splitting the contact data

set into 70 and 30% respectively. The set of input features f1 and f2 are labelled as

‘Evans features’ and ‘CP-CA-DV-DA’ as ‘Our Features’. The box plot allows for a visual

detection of median di↵erence at a significance level of 5% and if the box’s notches do

not overlap, the medians (illustrated by horizontal red lines) can be said to be di↵erent

with a 95% confidence level.

To observe the e↵ectiveness of the solution proposed in Evans et al. (2013), Figure

4.10 plots the distribution of errors when training and testing a particular model and

input feature combination on a whisker with a specific length. For every case, it can

clearly be seen that the SVR models result in significantly lower errors with respect to

95

CHAPTER 4. OBJECT SHAPE RECONSTRUCTION

the polynomial models. The e↵ect of feature input is more subtle, and in most cases our

proposed set of feature inputs result in lower errors. Highlighting the results from the

Evans et al. (2013) data set, it can be seen that the best performance is resulted from

our combination of proposed regression type and input features, with the median of the

polynomial and ‘Evans features’ combination being 3.3651% and the median of the SVR

and ‘Our features’ combination being 2.7671 %.

poly svr poly svr poly svr poly svr poly svr poly svr poly svr poly svr poly svr
0

5

10

15

20

25

30

E
rr

o
r

a
s

%
 o

f
w

h
is

ke
r

le
n
g
th

Evans features
Our features

65 mm 78 mm 87 mm 88 mm 94 mm 107 mm 113 mm 137 mm 185 mm

Figure 4.10: Box plots showing the distribution of radial-distance estimation error (as
a percentage of whisker length) for each model and input feature combination, when
trained and tested on a whisker with a specific whisker length. Note that the y-axis
is capped to 30% of the whisker length so as to better discern the characteristics of
the distributions. The results of the data set from Evans et al. (2013) is highlighted at
furthest right of the Figure, which is the 185 mm whisker.

The polynomial model that is produced in the work of Evans et al. (2013) is trained on

a whisker of a unique length, and unlike our work, does not try to generalize the model

to work with whiskers of varying lengths. We continue this comparing of solutions

by replicate the methodology described in Evans et al. (2013) and train a 5th order

polynomial model on a whisker with a unique length, and observes its accuracy in radial-

distance estimation for contacts occurring on the same whisker, and those occurring on

whiskers with di↵erent length. To compare the e↵ectiveness of the proposed solution in

Evans et al. (2013) with that of ours, the polynomial model is trained using their f1 and

f2 contact features as input, as well as, our ‘CP-CA-DV-DA’ feature input. Furthermore,

we investigate the e↵ect that regression model type has on the radial-distance estimation

accuracy.

Figure 4.11 thus shows two scenarios: Figure 4.11a shows the absolute error, as a

percentage of whisker length, when the models are trained on a whisker of a unique length

96

4.2. RESULTS

(in this case 107 mm) and is tested on whiskers of varying length. Figure 4.11a, however,

trains and tests the models on whiskers of varying lengths. It can clearly be seen that

training needs to be done on whiskers of varying lengths so as to enable generalization

to varying lengths. Furthermore, the figures clearly show a significant improvement

in accuracy when using the SVR model to carry out radial-distance estimation while

maintaining whisker-length generalizability, which is indicated by the lower median of

absolute errors. Another observation is the improvement that our set of feature inputs

has on the performance of the estimation model when trained and tested on whiskers of

varying lengths.

poly poly svr svr
0

10

20

30

40

50

60

70

80

90

100

E
rr

o
r

a
s

%
 o

f
w

h
is

ke
r

le
n
g
th

Train one test all

Evans features
Our features

(a) Training on one whisker, testing on
whiskers of varying lengths.

poly poly svr svr
0

10

20

30

40

50

60

70

80

90

100

E
rr

o
r

a
s

%
 o

f
w

h
is

ke
r

le
n
g
th

Train all test all

Evans features
Our features

(b) Training and testing on whiskers of varying
lengths.

Figure 4.11: Box plots showing the distribution of radial-distance estimation error (as
a percentage of whisker length) for two scenarios that attempt to highlight the gener-
alizability of the proposed solutions, from our work and that of Evans et al. (2013), in
regards to whisker length. Figure 4.11a focuses on the scenario where a model is trained
on a unique whisker (of length 107 mm in this case) and is set with radial-distance esti-
mation on whiskers of varying lengths, while figure 4.11b is both trained and tested on
whiskers of varying lengths. It can clearly be seen that the SVR models perform better
than the polynomial models, as well as the significant improvement in whisker length
generalization when the model is trained on whiskers of varying lengths.

In conclusion these results clearly show an improvement of radial-distance estimation

accuracy brought on by employing a support vector regression model with our proposed

97

CHAPTER 4. OBJECT SHAPE RECONSTRUCTION

set of input features.

4.3 Discussion

The overall motivation for this work is to evaluate and develop algorithms to enable

a whiskered robotic platform to navigate more e↵ectively through complex, cluttered

environments. The two principle challenges to overcome are somewhat in conflict with

each other; firstly, the range and sampling frequency of the whisker sensor array is

limited to the length of the whiskers and the rate at which the array is whisked; and

secondly, interpreting the world as a rich metric map of occupancy derived through

whisker contacts is memory intensive, thereby, limiting the size of the state space that

can be represented and explored using bounded computational resources.

Addressing the first challenge, if whiskers do not make contact during their whisk

cycle the only information that can be derived is that the space through which those

whiskers traveled was unoccupied. Therefore, when the platform encounters an object,

as observed in the behavior of whiskered mammals, it should attempt to maximize the

number of whisker contacts. Further, the information content from each contact should

be fully exploited to maximize likelihood of correctly identifying the spatial region in

which the whiskered platform is located.

This leads into the second challenge of how to represent that spatial region e�-

ciently such that a robot can use the information to navigate e↵ectively through a large

state space. One approach is to adopt a topo-metric representation of the global space

(Bazeille & Filliat, 2011), in other words, rich metric representations of small regions of

space connected topologically through sparsely represented regions.

To realize such a scheme, the problem of identifying unique landmarks through the

local 3D reconstruction of objects encountered using a point-cloud of contact points has

been focused on. Toward this end, it has been demonstrated that the fidelity of such a

reconstruction can be improved by training a regression algorithm to accommodate vari-

ation in whisker morphology and contact dynamics in determining the radial distance

to contact. This is highlighted in the fidelity distribution plots in Figure 4.8 on page 92

where the validation data-set, which included whiskers not included in the training data-

set, resulted in the support vector regression models outperforming the crude tip-based

assumption, a uniformly random distribution, neural network models and polynomial

regression models. Similarly, these fidelity distributions also include contacts that oc-

curred under a broad range of whisker dynamics as is clear from Figure 4.12 on page

98

4.3. DISCUSSION

100, which plots the range of linear and angular velocities and accelerations measured

at the points of whisker contact.

The limitation of the support vector regression model is that it does not account for

the movement of the whisker-array. Movement of the whisker-array would significantly

alter the sensory features extracted at the time of contact and would therefore a↵ect the

radial-distance estimate. The current approach is to fix the whisker-array at a particular

pose whenever a sample is to be taken. Additionally, a whole whisk-cycle needs to occur

before any estimate can be carried out, and the sampling frequency is therefore mainly

limited by the array’s whisking-frequency. This is unlike the proposed method in the

work of Huet et. al (Huet et al., 2017). Figure 4.12 on page 100 also illustrate how

the range of whisker contact dynamics did not greatly di↵er between the training and

validation phases, it therefore cannot be said that the model generalizes to whisker

dynamics beyond those experiences in the training phase.

Nevertheless, it has been shown that, given this work’s hardware configuration, the

system is able to reconstruct the shapes of contacted objects to a higher accuracy and

precision than the tip-assumption that was used in Chapter 3.

99

CHAPTER 4. OBJECT SHAPE RECONSTRUCTION

Learning data

-0.01 0 0.01 0.02

Linear velocity (m s
-1

)

0

0.1

0.2

0.3

0.4

p
ro

b
a

b
il
it
y

Validation data

-0.01 0 0.01 0.02

Linear velocity (m s
-1

)

0

0.1

0.2

0.3

0.4
p

ro
b

a
b

il
it
y

Learning data

-2 0 2

Linear acceleration (m s
-2

)

0

0.1

0.2

0.3

0.4

p
ro

b
a

b
il
it
y

Validation data

-2 0 2

Linear acceleration (m s
-2

)

0

0.1

0.2

0.3

0.4

p
ro

b
a

b
il
it
y

(a) Histogram illustrating the probability of
a particular linear velocity or acceleration
occuring at the time of contact within either
the training or validation data set.

Learning data

-10 0 10 20

Angular velocity (deg s
-1

)

0

0.1

0.2

0.3

0.4

p
ro

b
a

b
il
it
y

Validation data

-10 0 10 20

Angular velocity (deg s
-1

)

0

0.1

0.2

0.3

0.4

p
ro

b
a

b
il
it
y

Learning data

-2000 0 2000

Angular acceleration (deg s
-2

)

0

0.1

0.2

0.3

0.4

p
ro

b
a

b
il
it
y

Validation data

-2000 0 2000

Angular acceleration (deg s
-2

)

0

0.1

0.2

0.3

0.4

p
ro

b
a

b
il
it
y

(b) Histogram illustrating the probability of
a particular angular velocity or acceleration
occuring at the time of contact within either
the training or validation data set.

Figure 4.12: A comparison between the distributions of linear and angular velocity and
acceleration during time of contact for the Validation and Training data-sets. It can be
seen that the validation data set does not include any significant number of contacts
that resulted in whisker dynamics beyond the range of that experienced in the training
data set. However, both phases include occurrences in which whisker contact was made
under a range of whisker dynamics, which would suggest that the SVR model is able
to estimate radial distance given the range of whisker dynamics shown in the above
plots. The linear components are dependent on the radial distance to contact and thus,
to illustrate that the work did vary the whisking frequency during the di↵erent phases
of data collection, the histograms detailing the distribution of angular velocities and
accelerations within each data set are included.

100

Chapter 5

WhiskerRatSLAM

This chapter is split into two section: the first describes the WhiskerRatSLAM archi-

tecture, and the second section describes how well the algorithm performs with respect

to 6D localization precision, and object recognition. The second section is based on

previously published work (Salman & Pearson, 2018).

WhiskerRatSLAM’s process is very similar to RatSLAM in that it maintains the

concept of pose cells for determining belief in a particular pose, as well as the generation

of a topological like map that includes a distribution of experience nodes that each

encapsulate a unique set of observations and pose state. The major di↵erences, however,

are the increase in dimensions that the algorithm has to consider, and the type of features

that are used for the purpose of feature recognition.

The second major di↵erence between WhiskerRatSLAM and RatSLAM, is that the

latter assumes for a single visual based feature describing a single observation. Whisker-

RatSLAM on the other hand uses two whisker-sensor features for describing a single

observation. As such, the mechanism of processing sensory data as well as evaluating

feature similarity must be modified.

5.1 Algorithm Architecture

Reminding the reader that WhiskerRatSLAM is intended to be used as a 3D object

recognition algorithm, and with the intention of using it in conjunction with the planar

RatSLAM algorithm, like OpenRatSLAM (Ball et al., 2013), for navigation. The purpose

of WhiskerRatSLAM is thus, to provide the lower level navigational algorithm with

higher level feature identification, which in this case is object recognition. Figure 5.1

provides a general guide as to how these algorithms are to be fused together in order to

101

CHAPTER 5. WHISKERRATSLAM

create a more robust navigational architecture for a whiskered robotic platform.

With the whisker-array mounted to the end of a 6 degrees of freedom arm ma-

nipulator, the nature of the sensory platform requires it to be manipulated across the

surface of an object in order to extract contact features — WhiskerRatSLAM would

need to operate in 6-dimensions so as to be able to consider the observations made by

the whisker-array from all possible poses. This would therefore require modifications

to be made to the RatSLAM’s original pose cell, experience map and experience node

structures.

WhiskerRatSLAM’s process can be outlined clearly by looking at its main function,

which is shown in Algorithm 2.

Algorithm 2: WhiskerRatSLAM function

1 function wratslam {Pi,Ei,Fi,oi};
Input : Set of pose cells for current iteration P = px,y,z,↵,�,� 2 Rm⇥m⇥m⇥k⇥k⇥k

Set of experiences for current iteration Ei = {e1 . . . ez}
Set of features for current iteration
Fi = {f1 . . . fn} = {[pfh1, sda1] . . . [pfhn, sdan]}
Odometry input for current iteration oi = [v,!,�t]

Output: Set of pose cells for next iteration Pi+1

Set of experiences for next iteration Ei+1

2 matched idx = match features(Fi);
3 fmatched idx = Fi(matched idx);

4 P = feature excitation(Pi,Fi);
5 Pi+1 = path integration(P,oi);

6 best pose cell location = get best pose cell location(Pi+1);

7 Ei+1 = process object map(Pi+1,Ei,Fi,oi,fmatched idx);

8 return {Pi+1,Ei+1}

The Front End section covers how the set of features obtained from the whisker-array

are processed as well as how they are compared with features of similar form, so as to

determine their similarity. The Back End section continues to describe how the grid

of pose cells are e↵ected by the recognition of features as well as by the direction and

intensity of motion described by the odometry. The section also includes the description

of the process used for calculating the best pose cell location, which is the averaged

location of the highest active pose cell within the grid of pose cells i.e. the algorithms

best estimate for pose. The final part of the Back End section describes the 6-dimensional

object map that is generated from the mapping process, including the description of the

complex experience nodes and the methods used to process their pose within the map.

The following description focuses on the di↵erences of WhiskerRatSLAM, in com-

102

5.1. ALGORITHM ARCHITECTURE

Co
m

pl
ex

 E
xp

er
ie

nc
e

N
od

e

[x
_p

c,
 y

_p
c,

 z
_p

c,
 r

ol
l_

pc
, p

it
ch

_p
c,

 y
aw

_p
c]

Be
st

 P
os

e
Ce

ll
Lo

ca
Ɵo

n

��
N

od
e

ID
 #

1
��

N
od

e
ID

 #
2

��
...

Li
nk

ed
 N

od
es

[x
_m

, y
_m

, z
_m

, q
_m

]

N
od

e
Po

se

N
o

de
 ID

 #

Fe
at

u
re

 ID
 #

Fe
at

ur
e

Ce
ll

Fe
at

ur
e

Ce
ll

Fe
at

u
re

 ID
 #

Po
in

t
Fe

at
u

re
 H

is
to

gr
am

Sl
op

e
D

ir
ec
Ɵo

n
A

rr
ay

Si
m

pl
e

Ex
pe

ri
en

ce
 N

od
e

[x
_p

c,
 y

_p
c,

 y
aw

_p
c]

Be
st

 P
os

e
Ce

ll
Lo

ca
Ɵo

n

��
N

od
e

ID
 #

1
��

N
od

e
ID

 #
2

��
...

Li
nk

ed
 N

od
es

[x
_m

, y
_m

, y
aw

_m
]

N
od

e
Po

se

N
o

de
 ID

 #

Fe
at

u
re

 ID
 #

Fe
at

ur
e

Ce
ll

O
bj

ec
t

N
od

e

[x
_p

c,
 y

_p
c,

 y
aw

_p
c]

Be
st

 P
os

e
Ce

ll
Lo

ca
Ɵo

n

��
N

od
e

ID
 #

1
��

N
od

e
ID

 #
2

��
...

Li
nk

ed
 N

od
es

[x
_m

, y
_m

, y
aw

_m
]

N
od

e
Po

se

O
bj

ec
t

Ex
p

lo
ra
Ɵo

n
M

ap

N
o

de
 ID

 #

CE
N

Z_m

X_
m

Te
rr

ai
n

 E
xp

lo
ra

it
on

 M
ap

O
N

SE
N

Y_m

X_
m

F
ig
u
re

5.
1:

P
ro
p
os
ed

n
av
ig
at
io
n
al

fr
am

ew
or
k
th
at

co
m
b
in
es

R
at
S
L
A
M

fo
r
p
la
n
ar

n
av

ig
at
io
n
an

d
W

h
is
ke
r-
R
at
S
L
A
M

fo
r

ob
je
ct

re
co
gn

it
io
n
to

re
su
lt

in
a
m
or
e
ro
b
u
st

la
n
d
m
ar
k
b
as
ed

S
L
A
M

al
go

ri
th
m

fo
r
w
h
is
ke
r-
ta
ct
il
e
se
n
si
n
g.

T
h
e
fo
ll
ow

in
g

w
or
k
fo
cu

se
s
on

W
h
is
ke
r-
R
at
S
L
A
M

an
d
h
ow

an
ob

je
ct

m
ay

b
e
id
en
ti
fi
ed

d
u
ri
n
g
fu
tu
re

en
co
u
nt
er
s
by

fi
rs
t
ch
ar
ac
te
ri
zi
n
g
it
’s

su
rf
ac
e’
s
fe
at
u
re
s
by

ge
n
er
at
in
g
an

ob
je
ct

m
ap

.
C
h
ar
ac
te
ri
za
ti
on

in
vo

lv
es

th
e
m
ap

p
in
g
of

u
n
iq
u
e
ge
om

et
ri
ca
l
fe
at
u
re
s
w
it
h
in

a
fe
at
u
re

ce
ll

to
ea
ch

re
gi
on

on
an

ob
je
ct
s
su
rf
ac
e.

T
h
e
fe
at
u
re

ce
ll

in
cl
u
d
es

tw
o
ve
ct
or
s:

P
oi
n
t
fe
at
u
re

hi
st
og
ra
m

an
d
sl
op
e

di
st
ri
bu
ti
on

ar
ra
y,

w
h
ic
h
d
es
cr
ib
e
th
e
co
nt
ac
t
lo
ca
ti
on

an
d
su
rf
ac
e
sl
op

e
re
sp
ec
ti
ve
ly

at
a
p
ar
ti
cu

la
r
w
h
is
ke
r-
ar
ra
y
p
os
e.

103

CHAPTER 5. WHISKERRATSLAM

parison to RatSLAM (Milford & Wyeth, 2008) , and details the modifications made to

the OpenRatSLAM algorithm (Ball, 2018b) so that it may be used with the whisker-

tactile sensor array. This modification includes the changes made to the front end of

OpenRatSLAM, which is the subsystem responsible for the processing of sensory data

and external cues.

5.1.1 Front End

With its current implementation (Ball, 2018b), OpenRatSLAM relies on images captured

by an on board set of cameras. A visual template represents the observation at each

given iteration, and is generated by first pre-processing the raw image.

OpenRatSLAM includes pre-processing the input image by converting it into grey

scale, cropping the resulting image to a region that is most informative, flattening the

image to a vector by summing up each column in the cropped image, and finally, nor-

malization of the resulting array by its sum. The vector that results from these pre-

processing steps is thus defined as a visual template. Visual templates are compared

with one another by calculating the sum of absolute di↵erences, where a user-defined

threshold is set to determine whether one visual template matches another. To consider

slight variations in the pose of the camera, the vectors are shifted in the positive and

negative directions and compared at each instance with one another. For example, if an

image taken again from a slightly more right position, it would be better matched with

the correct visual template once an appropriate o↵set is applied and the values align

more precisely.

5.1.1.1 Features of Whisker Perception

In the case of WhiskerRatSLAM the set of external features are the: contact locations

and the surface slope at the point of contact. The contact locations estimated for each

whisker in the sensor-array, following a single whisk-cycle, is collected and represented

as a point cloud. The point cloud is reduced to a 3D feature descriptor called a point

feature histogram (PFH) that is in the form of a 1-dimensional vector. The estimated

slope, or orientation, of the contacted surface is again collected for each whisker to

produce an overall slope distribution that is experienced across the whole whisker-array.

This distribution of slope values across the whole array is represented in the form of a

1-dimensional vector called a slope distribution array (SDA).

The quality of the contact localization and slope estimates are all dependent on the

accuracy of the contact time estimate. Contact time allows for the inference of whisker

104

5.1. ALGORITHM ARCHITECTURE

angle at moment of contact and thus, the azimuth and altitude of the contact location.

Slope of the contacted surface is also dependent on contact time accuracy as its value is

derived using the gradient of the x-y deflection signals during the initial contact period.

5.1.1.1.1 Contact Time

Contact time is estimated by running the pre-processed y-deflection signal through the

findpeaks (findpeaks, 2017) Matlab function, so as to determine the location and char-

acteristics of any prominent peaks. Pre-processing includes running all whisker sensory

signals through a moving average filter with a span of 100 samples. The y-deflection was

used specifically because it was the direction parallel to the motion of the whisker, and

thus had the largest variation in magnitude given the occurrence of a contact.

Running the signal through the findpeaks function, the important set of variables

needed to result in a good detection rate are: the minimum peak width (100 samples

in our work), minimum peak prominence (500 count in our work, where count is the

unit describing the value output from the sensor’s analogue to digital converter), and

the limit of there being 1 peak within a single whisk-sample.

Using the location of the peak, the time of contact (contact onset) is determined by

back tracking towards the instance closest to the peak in which the derivative of the

signal changes sign. A similar approach was used for determining the time at which

the contact was lost (contact o↵set), which included finding the first instance after the

contact peak that resulted in first derivative of the signal changing sign. The final check

to confirm the occurrence of a contact includes checking whether the distance between

the peak’s height and the mean of the free-whisking deflection signal is above a set

threshold. The free-whisking deflection signal is selected as the final 100 samples of the

deflection signal where no contact would likely occur.

Given the calculation of contact time, the azimuth and altitude of the contact loca-

tion can be estimated. The following section continues to describe how a more precise

estimate of contact location is calculated.

5.1.1.1.2 Contact Localization

Contact location is determined using three steps:

• Obtaining the transformation matrix relating the base of the robotic arm to the

base of the whisker that is under consideration

• Determining the angle of the whisker at contact onset

105

CHAPTER 5. WHISKERRATSLAM

• Estimating the distance from the base of the whisker, to the contact point along

the whisker shaft (radial-distance to contact)

The 4 ⇥ 4 homogeneous transformation matrix needed to determine the location of

whisker i’s shaft’s base Wi, relative to the robotic arm’s base B is TBWi . The matrix can

be derived using the following equation: TBWi = TBETEWi , where TEWi describes the

transformation matrix relative the frame of the end-e↵ector to the whisker shaft’s base.

The CAD model of the whisker-array, illustrated in Figure 2.15, is used to derive the

values of TEWi for each whisker. To derive TBE , the ROS package MoveIt uses forward

kinematics to determine the current pose of the end e↵ector, relative to the arm’s base,

by taking into consideration the dimensions of the arm’s links and joint positions.

Once TBWi is calculated, the coordinate frame needs to be rotated such that it

reflects the angle of the whisker shaft’s base at time of contact. The angle is estimated

by extracting the whisker angle sensor value at contact onset. In this work’s case, the

frame represented by TBWi needs to be rotated about the z axis Rz(✓), with ✓ = 50°
placing it in its maximum protraction limit and ✓ = �50° in its maximum retraction

limit. The Rotation matrix is defined as a 4⇥ 4 matrix with the form:

Rz(✓) =

2

66664

cos(✓) �sin(✓) 0 0

sin(✓) cos(✓) 0 0

0 0 1 0

0 0 0 1

3

77775
(5.1)

The pose of the whisker shaft’s base at time of contact tc is thus T
tc
BWi

= TBWiRz(✓tc).

The length of the whisker shaft projects along the y-axis given this work’s coordinate

frame set up. Given a whisker-tip radial-distance estimation method, the contact loca-

tion would be the Cartesian coordinate found in the matrix T tc
BWci

, where the subscript

Wci refers to the contact point along the shaft of whisker Wi. The matrix is calculated

according to the following equation: T tc
BWci

= T tc
BWi

Ty(r), where r is the radial-distance

value and the translation matrix is:

Ty(r) =

2

66664

0 0 0 0

0 0 0 r

0 0 0 0

0 0 0 1

3

77775
(5.2)

T tc
BWci

thus refers to the position of the contact point detected by whisker i. This

process is repeated for all the whiskers within the array to come up with a set of 3-

106

5.1. ALGORITHM ARCHITECTURE

dimensional points that would ideally characterize the shape of the given region on the

objects surface.

The set of contact points need to be compared to a database of point sets, each of

which represent a particular surface region. Taking into consideration the noisy nature

of the sensory system, the scarcity of contact points, and the need for a computationally

e�cient algorithm, research concluded that a point feature histogram (Rusu et al., 2008)

would be a suitable 3-dimensional feature descriptor for this work’s whisker-array contact

data. The method under which a PFH is generated based on a collection of 3-dimensional

data points is described in Chapter 2.

The second geometrical feature that is extracted from each whisker-contact is the

slope of the contacted surface, which is inspired from the work of (D. Kim & Möller,

2007), and is used in combination with the point feature histogram to characterize the

geometrical distribution of a whisked surface region.

5.1.1.1.3 Contacted Surface Slope Kim describes in their work (D. Kim &Möller,

2007) that the slope of a contacted surface may be inferred by the gradient of the function

describing the change of the y-deflection signal against the x-deflection signal, during

the initial contact period.

Figure 5.2 on page 108 is included to better demonstrate the method of inferring

contacted surface slope. The figure includes the sensory data extracted from a single

whisker where a contact was made. The deflection signal along the sensor’s x-axis (x-

deflection) is plotted against the deflection signal along the sensor’s y-axis (y-deflection)

signal, and is shown in the bottom plot. The plot highlights the region that is considered

as the initial contact period. The initial contact period is defined as the time between

the estimated time of contact and the time at which the y-deflection peaks. A line is

fit to these points and resulting gradient is extracted, which is then used as a measure

of surface slope. This process is completed for each whisker in the array and values are

concatenated into an array that is referred to as the Slope Distribution Array (SDA).

The SDA is made up of 18 elements, which corresponds to the 18 whiskers on the sensor-

array. For each whisk-cycle a single SDA is produced.

To measure similarity against other SDAs a normalized mean square error is used,

which is defined in equation 5.3. The vectors x and y are the pair of SDA vectors being

compared and 0 is a zero vector with the same dimensions as x and y. MSE refers to

the mean square error and is defined in Equation 5.4. The operator kk2 refers to the

107

CHAPTER 5. WHISKERRATSLAM

0 500 1000 1500
0

50

100

150

A
n

g
le

 (
d

e
g

)

Whisker Angle

Contact Onset

0 500 1000 1500
0

2

4

6

C
o

u
n

t

10
4 Y Deflection

0 500 1000 1500
0

2

4

6

C
o

u
n

t

10
4 X Deflection

2 2.5 3 3.5 4 4.5

X (count) 10
4

3.2

3.4

3.6

3.8

Y
 (

c
o

u
n

t)

10
4 X-Y Deflection

Gradient = -1.94

(a)

0 500 1000 1500
0

50

100

150

A
n

g
le

 (
d

e
g

)

Whisker Angle

Contact Onset

0 500 1000 1500
0

2

4

6

C
o

u
n

t

10
4 Y Deflection

0 500 1000 1500
0

2

4

6

C
o

u
n

t

10
4 X Deflection

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2

X (count) 10
4

3.4

3.6

3.8

Y
 (

c
o

u
n

t)

10
4 X-Y Deflection

Gradient = 2.14

(b)

Figure 5.2: The figure includes 2 di↵erent moments in which a particular whisker made
contact with a surface of di↵erent curvature. The angular data of each whisker is in-
cluded through out the whisk-cycle, along with the whisker’s X and Y deflection signals.
All three signals are plotted against the sensor sample number. The bottom figure,
however, includes a plot of the x-deflection signal against the y-deflection signal for the
entire whisk-cycle. The region that is considered as the initial contact period is high-
lighted in red, which shows that by considering that range of points in the X-Y plot,
the gradient value can be inferred from the line fit to the data (highlighted in green).
According to (D. Kim & Möller, 2007), the calculated gradient is proportional to the
surface orientation. The initial contact period is defined as the time between the esti-
mated time of contact and the time at which the y-deflection peaks. The gradient value
that is calculated will be included in the whisker-array’s slope distribution array (SDA),
which is a vector whose elements corresponds to each whisker’s detected surface slope.
The SDA in combination with the point feature histogram will thus make up the two
feature vectors that are used to characterize the shape of a particular surface region
covered by the whisker-array.

108

5.1. ALGORITHM ARCHITECTURE

Euclidean norm, n is the number of elements for vectors x and y.

NMSE(x,y) =
MSE(x,y)

MSE(x,0)
(5.3)

MSE(x,y) =
kx� yk22

n
(5.4)

5.1.1.1.4 Region similarity Each surface region oi is represented by a point feature

histogram fi and a slope distribution array si. To compare one region against another,

Equation 2.45 is used to measure similarities of point feature histograms and Equation

5.3 to measure similarities of slope distribution arrays.

At each iteration of the WhiskerRatSLAM algorithm, the current region on of the

latest observation needs to be compared against all previous observations o1...(n�1) that

are considered unique and part of the previously mapped objects set.

The similarity measures for the current observation against previous observations are

concatenated with each row belonging to a unique pair of regions. Iterating from 1 to

n� 1, each row would be in the form shown in Equation 5.5.

Similarity(on, oi) = [�2(fn, fi) , NMSE(sn, si)] (5.5)

The final 2-dimensional matrix, where each row compares the currently observed

region on with a stored region observation oi, is thresholded element-wise to determine

which rows should be considered as the potential set of matching observations. Thus a

row is considered if the following condition is met:

if �2(fn, fi) < Tpfh & NMSE(sn, si) < Tsda

Where the symbol & refers to a logical And operation. The points feature histogram

threshold Tpfh and slope distribution array threshold Tsda are both unique and their

values were obtained through manual tuning. From these set of potential matching

observations, the PFH and SDA similarity measures are summed so as to reduce the

similarity vector to a scalar value:

SUM(Similarity(on, oi)) = �2(fn, fi) +NMSE(sn, si)

The equation results in single value for each row, and the observation oi belonging to

the minimum value of SUM(Similarity(on, oi)) would be considered as the matching

observation.

109

CHAPTER 5. WHISKERRATSLAM

Thus far, the front-end portion of WhiskerRatSLAM that is responsible for the pro-

cessing of external cues has been described. The following section will discuss the meth-

ods used to process internal cues i.e the 6 degrees of freedom odometry.

5.1.1.1.5 Odometry Reminding the reader that one of RatSLAM’s main compo-

nents is its grid of pose cells, which is a 3-dimensional manifold in which the algorithm’s

belief in robot pose is distributed. The activity of the cells are influenced by the activity

of visual cells (cells that are activated when an observation specific to one that they each

represent is seen), and by the self-motion of the robot i.e. odometry.

The grid of pose cells in WhiskerRatSLAM is represented as a 6-dimensional man-

ifold; 3 dimensions representing the position in Cartesian coordinates (x, y, z) and 3

dimensions representing orientation using Euler angles (↵,�, �).

Orientations in 3D space can be defined using di↵erent notations that include quater-

nions, rotation matrices and rotation vector representations (Diebel, 2006). The system

represents orientation within the grid of pose cells using Euler representation so as to

take advantage of the fact that it defines a particular orientation using 3 values as well as

being intuitive to interpret. The latter property is desirable particularly for debugging

purposes as it allowed us to better visualize whether the dynamics of this work’s grid of

pose cells is operating correctly.

Other representations such as the rotation vector, quaternion and rotation matrices

require 3, 4 and 9 values respectively in order to define orientation. The rotation vector,

although requiring only 3 values, is not intuitive in 3 dimensional form and was therefore

not used to represent orientation in this work’s pose cells. Rotation vectors are defined

as:

✓ = ✓e (5.6)

Where ✓ is the angle rotated about and axis defined by the unit vector e. When

expanded to an axis-angle representation, the rotation becomes more intuitive, however,

the advantage of a 3 dimensional representation is lost. For these reasons orientation in

the pose cells is represented using Euler angles.

For processing odometry input either the axis-angle or rotation matrix representa-

tions may be used as they are not susceptible to gimbal lock, which is a problem for

Euler angle representations. Gimbal lock describes a scenario where the orientation

of an object is such that any transformation using the Euler angle conventions would

result in the loss of a degree of freedom and thus prevent the target orientation from

being reached (Diebel, 2006). The rotational matrix representation is therefore used to

110

5.1. ALGORITHM ARCHITECTURE

perform rotational transformations and the axis-angle representation to represent the

rotational velocity of the end e↵ector.

The odometry input o is a vector with the following form:

o = [v,!,�t] (5.7)

Where v = [�x

�t
, �y

�t
, �z

�t
] is the translational velocity and ! = !e is the rotation

vector describing the angular velocity ! about an axis e.

Thus far, a description of how the odometry is processed has been given and its form

shown. Furthermore, a description regarding how the whisker-array ’observations’ are

processed into a pair of vectors that describe the distribution of the contact points (PFH),

as well as the orientation of the contacted surface experienced across the whole array

(SDA), has been given. Each of the two features are compared against other previously

observed features using to their own specific metrics, thus providing a mechanism for

measuring observation novelty.

The following section describes the back-end of the WhiskerRatSLAM algorithm that

includes a description of the pose cell dynamics and experience map construction.

5.1.2 Back End

The back-end of the WhiskerRatSLAM algorithm is responsible for processing the ex-

ternal and internal cues of this work’s robotic system. It expects an input of processed

sensory features that it may use for landmark recognition as well as self motion signals

in the form of odometry input so as to be able to a↵ect its belief in robot state and map.

5.1.2.1 Grid of Pose Cells

As described in Chapter 2, RatSLAM’s belief in robot pose is influenced by the activity in

the grid of pose cells. The distribution of pose cell activity may be shifted, increased and

decreased, according to three sources of influence: path integration, feature recognition

and global inhibition mechanisms.

5.1.2.2 Feature recognition

Given the identification of a similar set of observed features, a process that is described

in Section 5.1.1, the underlying RatSLAM algorithm calls for the input of additional

activity to the pose cell associated with the matched features. Each unique set of fea-

tures are associated with the system’s current best pose cell location. The process for

calculating best pose cell is detailed on page 127, however, it essentially is the average

111

CHAPTER 5. WHISKERRATSLAM

location of the highest activated packet of activity within the grid of pose cells. Thus,

when a feature f = [pfh, sda], belonging to the latest observation, is matched to one

of those collected from previous iterations, the best pose cell location associated with

the matched feature would be used to locate the pose cell that requires an increase in

activity level.

The precise value of the activity level increase is a function of matching occurrences.

If the particular feature is being matched to at a high rate per iteration, the injected

activity value will decrease. If instead the rate of matching occurrences are low, the

injected activity value will increase. The purpose of this mechanism is to prevent a single

feature from gaining too much influence over a re-localization event (Ball, 2018b). The

mechanism instead requires the coordinated e↵ort across multiple features, as opposed

to a single one, for influencing the distribution of activity in the grid of pose cells.

The formula for the activation level is obtained from the work of (Ball et al., 2013)

and (Ball, 2018b), and is stated in Equation 5.8.

⌦ = ⇣ ⇤ 1/30 ⇤ (30� e(1.2⇤fdecay)); (5.8)

Where ⌦ is the activation that is added to the associated pose cell px,y,z,↵,�,� , ⇣ is

the maximum activation level that can be added to a pose cell and is defined by the user

at run-time, and fdecay is the decay value that is a function of matching occurrences.

The decay value is decreased at every iteration, down to 0, so that ⌦ increases

towards its limit ⇣. Given a matching observation, the term is increased only when a

match occurs. The value fdecay is therefore unique for each feature within the set of

features Fi.

The value of the maximum activation level ⇣ can be interpreted as a level of con-

fidence associated with external observations. A higher value would therefore increase

the likelihood of a re-localization occurring given fewer repeated observations, while a

lower one would require more repeated observations before a re-localization can occur.

In this work a value of ⇣ = 0.3 was obtained empirically.

Given the pose cell coordinate, which is determined from the best pose cell location,

the pose cell’s activity is adjusted according to Equation 5.9.

px,y,z,↵,�,� = px,y,z,↵,�,� + ⌦ (5.9)

Thus far, the process of pose cell excitation due to feature recognition has been

described. It included a description of how the activation of a specific pose cell, which

is associated with the recognized feature, is varied according to the rate at which the

112

5.1. ALGORITHM ARCHITECTURE

feature is being recognized. The function feature excitation is described in Algorithm 2

on page 102. Following its execution, the proceeding step includes the path integration

process that involves the shifting of pose cell activity in a manner that represents the

direction and intensity of the odometry motion.

5.1.2.3 Path Integration

The process of path integration can be described by returning to the 1-dimensional

RatSLAM example shown in Figure 2.3 on page 16. When a particular pose cell contains

any level of activity, such as the cell belonging to the 120° head direction, it elicits activity

in its neighbours that is proportional to a function of its own activity and the shape of

the excitation distribution. This behavior is referred to as local excitation and is the

source of the Gaussian shaped packet of activity centered around each active pose cell in

Figure 2.3. For the 1-dimensional example, the grid of pose cells instead is represented

as a vector of head direction cells that represent the orientation � as opposed to this

work’s 6-dimensional pose cells, which represents (x, y, z,↵,�, �).

5.1.2.3.1 Local Excitation To implement local excitation to the head direction

cells computationally, the excitation connections are defined in the form of a weight

matrix. For the 1-dimensional case, this would be a vector whose elements are valued

according to the probability density function of a univariate normal distribution. Figure

2.3 on page 16 is recreated using the algorithm found in OpenRatSLAM (Ball, 2018b)

in order to familiarize the reader with the mechanisms used in the grid of pose cells.

By noting the number of excitation connections shown in Figure 2.3, the length of

the excitation vector can be worked out to being equal to 5. Assuming that the Figure

illustrates the state of the head direction cells after the first application of the excitation,

all head direction cells are set with an activity of 0 while the activity for the 120° cell

is set to 1 (activity levels in the head direction cells are normalized according to the

maximum activity, thus, the values range between 0 and 1). The state of the head

direction cell activation levels after the application of local excitation according to is

shown in Figure 5.3a on page 115.

To process the pose cells so that their activities reflect the e↵ect of the excitation

connections, Algorithm 3 is used.

The process is analogous to image convolution where the excitation matrix is akin to

a kernel and the grid of pose cells an image. To consider the case where the excitation

matrix is centered on a pose cell that results in it over extending beyond the limits of

the head direction cells vector, the wrap around function g() is used. Reminding the

113

CHAPTER 5. WHISKERRATSLAM

Algorithm 3: Local Excitation Function

1 function LocalExcitation (HDCells, ExcitationV ector)
Output: ExcitedHeadDirectionCells

2 ExcitedHDCells = zeros(size(HDCells)) for i = 1 to len(HDCells) do
3 ExcitedHDCells(g(i)) = ExcitedHDCells(g(i)) +HDCells(i). ⇤ExcitationV ector

; // ".*" is element wise multiplication. [Vector = Vector + Scalar.*Vector]

4 end
5 return ExcitedHDCells

reader that the head direction cells, or grid of pose cells in the higher dimension case,

act as a manifold and any influences that extend beyond their borders would result in

cells on the opposite side being a↵ected. The wrap around function g() therefore takes

this manifold structure into account and provides a way for directing the values of over

extended values to their appropriate cells on the other side. Figure 5.3 illustrates two

cases where local excitation is applied onto a vector of head direction cells when the

initial activation is made about the 120° cell, and another about the 0° cell that more

clearly shows how the wrap around function directs activity to the appropriate cells.

To maintain this Gaussian shaped packet of activity, given no additional excitation

from the path integration or landmark recognition components, a combination of local

and global inhibition is required in order to prevent the over saturation of the neigh-

bouring cells, following subsequent algorithm iterations.

5.1.2.3.2 Local and Global Inhibition

Local inhibition is implemented in a similar manner as local excitation, however, the final

vector describing the head direction cells is the di↵erence between the local excitation

output and the local inhibition output. The pseudo-code of the local inhibition function

is included in Algorithm 4.

Algorithm 4: Local Inhibition Function

1 function LocalInhibition (ExcitedHDCells, InhibitionV ector)
Output: InhibitedHeadDirectionCells

2 Inhibition = zeros(size(ExcitedHDCells)) for i = 1 to len(ExcitedHDCells) do
3 Inhibition(g(i)) = Inhibition(g(i)) + ExcitedHDCells(i). ⇤ InhibitionV ector ;

// ".*" is element wise multiplication. [Vector = Vector + Scalar.*Vector]

4 end
5 InhibitedHDCells = ExcitedHDCells� Inhibition
6 return InhibitedHDCells

The global inhibition function is the second inhibition component that makes sure

114

5.1. ALGORITHM ARCHITECTURE

0 30 60 90 120 150 180 210 240 270 300 330

Head Direction (degrees)

0

0.5

1

0 30 60 90 120 150 180 210 240 270 300 330

Head Direction (degrees)

0

0.5

1

N
o

rm
a

li
z
e

d
 d

e
n

s
it
y
 o

f
p

ro
b

a
b

il
it
y

(a) Two successive frames showing how the ac-
tivity levels of head direction cells change when
the excitatory connections elicit activation in
cells neighbouring the initially activated head di-
rection cell of 120°.

0 30 60 90 120 150 180 210 240 270 300 330

Head Direction (degrees)

0

0.5

1

0 30 60 90 120 150 180 210 240 270 300 330

Head Direction (degrees)

0

0.5

1

N
o

rm
a

li
z
e

d
 d

e
n

s
it
y
 o

f
p

ro
b

a
b

il
it
y

(b) Two successive frames showing how the ac-
tivity levels of head direction cells change when
the excitatory connections elicit activation in
cells neighbouring the initially activated head
direction cell of 0°. Note the wrapping e↵ect
around the 1-dimensional manifold structure.

Figure 5.3: This figure illustrates the change in head direction cells’ activation levels
following the application of the local excitation function. The local excitation function
mimics the behavior that is expected from excitatory connections protruding from a cell
to itself and its surrounding neighbours as shown in Figure 2.3 on page 16. Two examples
are shown in which the initial head direction cell that is active is varied. Figure 5.3a
recreates the state of the head direction cells shown in Figure 2.3 and initiates activity
in the 120° cell, while Figure 5.3b the 0° cell. The latter is shown to highlight the
e↵ect of the wrap around function g() that is responsible for redirecting activity to the
appropriate cells on the opposite sides of the vector. The same principle applies to this
work’s 6-dimensional case.

115

CHAPTER 5. WHISKERRATSLAM

cells that are no longer receiving any activity input, decay and cease to be active after

time. The function is parameterized by a threshold value that specifies the minimum

cell activity level needed before it is turned o↵. The threshold also defines how much

activity is subtracted from all cells during every iteration. The pseudo code for the

global inhibition function is shown in Algorithm 5. Global inhibition is applied after

local excitation and inhibition, according to (Ball, 2018b). The value for the global

inhibition threshold has been kept equal to that used in Ball et. al’s algorithm, which

is 2e�5.

Algorithm 5: Global Inhibition Function

1 function GlobalInhibition (InhibitedHDCells,GinhibThreshold)
Output: FinalHDCells

2 FinalHDCells = zeros(size(InhibitedHDCells))
AboveThresholdIdx = InhibitedHDCells >= GinhibThreshold
F inalHDCells(AboveThresholdIdx) =
InhibitedHDCells(AboveThresholdIdx)�GinhibThreshold

3 return FinalHDCells

In the case of this work’s 6-dimensional grid of pose cells, the local excitation/inhibition

is implemented using a 6-dimensional matrix that also takes form of a Gaussian distri-

bution. The excitation and inhibition is applied in a similar manner to that described

in Algorithm’s 3 and 4 respectively.

In order to maintain a stable packet of activity, that is, an activity that does not lead

to the saturation of all pose cells as time progressed, manual tuning needed to be carried

out so as to determine the values for the two matrices’ dimensions and distribution

variances. This process was carried out on a grid of pose cells that was cut o↵ from any

path integration or landmark recognition influence.

This stable packet behavior is illustrated in Figure 5.4 on page 118, where a 6-

dimensional grid of pose cells with a centered activity about the grid’s midpoint is

plotted. The 3 dimensions of orientation are segmented into 5⇥ 5⇥ 5 individual blocks

of 5 ⇥ 5 ⇥ 5 grids representing translation. Pose cells within each individual block are

fixed with respect to their (↵,�, �) values, however, the cells vary with respect to their

(x, y, z) values. The image highlights the state of the grid of pose cells a few samples after

initialization, which is the time needed for the system to stabilize with respect to the

pose cells’ activity levels - at this point the activity is centered about the initialization

point x : 3|y : 3|z : 3|↵ : 3|� : 3|� : 3.

The excitation matrix is set to one with a length of 5 for each of the 6-dimensions and

with a covariance matrix being an identity matrix and each dimension’s variance equal

116

5.1. ALGORITHM ARCHITECTURE

to 1. The inhibition matrix is similar in length, however it has a diagonal covariance of

2s. The values of each element within the matrix are calculated using Equation 5.10,

which is derived from the standard equation for the probability density function of a

multivariate Gaussian distribution (Bishop, 2006).

wx,y,z,↵,�,� =
1p

(2⇡�2)6
· exp

�(x�µ)2�(y�µ)2�(z�µ)2�(↵�µ)2�(��µ)2�(��µ)2

2(�2)6 (5.10)

It has been mentioned previously that the dimensions of the grid of pose cells and

the excitation and inhibition matrices are dependent. Thus, any change in dimensions of

the grid of pose cells would require re-tuning of the excitation and inhibition matrices’

parameters. For the remainder of this work these values are fixed to the values quoted

in the above text.

Following the selection of the excitation and inhibition parameters, as well as the grid

of pose cell dimensions, the following section describes how pose cell activity is moved

about to reflect the odometry input i.e. carry out path integration.

5.1.2.3.3 Path Integration As shown in Figure 5.4 on page 118, there are a discrete

set of voxels that contain a 3-dimensional grid of pose cells. Within each voxel, the set

of pose cells P↵,�,� have a fixed set of unique orientation values (↵,�, �), while their

positioning within the 3-dimensional grid determines their respective (x, y, z) values.

Path integration implemented by the RatSLAM algorithm does not involve integra-

tion of velocity over time, the work of Milford et. al (Milford & Wyeth, 2008) and

Ball et. al (Ball et al., 2010) all specify that the shifting of pose cell activity is instead

proportional to the magnitude of velocity.

The underlying RatSLAM algorithm assumes no noise for the motion of the robot and

instead directly shifts the belief of the pose in the direction described by the odometry

(Sünderhauf & Protzel, 2010) and that of a pose cell’s property. This shifting of pose

cell activity is split into two steps: one that involves the translational component of the

odometry, followed by a shift specific to the rotational component (Ball, 2018b).

5.1.2.3.3.1 Translational shift The translational shift is implemented by first

iterating through each of the unique set of orientation value (↵,�, �) found in the grid of

pose cells. Given a unique combination, for example (↵0,�0, �0) i.e a specific voxel shown

in Figure 5.4 and focused on in Figure 5.5, the translational velocity vector v is rotated

so that it reflects the motion of a robot with an initial orientation equal to (↵0,�0, �0).

117

CHAPTER 5. WHISKERRATSLAM

Figure 5.4: The figure illustrates a stable packet of activity centered around an arbitrary
point in this work’s 6-dimensional grid of pose cells. The grid’s dimensions are defined
to have a length of 5 for the (x, y, z) dimensions and a length of 5 for the (↵,�, �)
dimensions. Each voxel that is specific to a unique combination of roll, pitch and yaw
values ((↵,�, �) respectively) is segmented using planes. Thus, each unique combination
of roll, pitch and yaw has its own 3-dimensional grid of cells that represent a unique
combination of x, y, z.

Given a length of 5 for each of the 6-dimensions of the grid of pose cells, each step

in a particular rotation dimension would represent a change of 360°
5 = 72°. Thus, for the

set of pose cells P↵0,�0,�0 , their corresponding velocity vector would be equal to:

v
T
↵0,�0,�0 = R↵0,�0,�0v

T

Where the the superscript T refers to the transpose of the row vector v so that it

results in a column vector. The matrix R↵0,�0,�0 is the rotation matrix representing the

Euler orientation defined by the values (↵0,�0, �0).

The translation is applied to the 3-dimensional grid of cells by considering it in 3

separate planar views (x, y), (x, z) and (y, z). An example of a planar view is illustrated

in Figure 5.6, it’s noted that this is not a 2-dimensional grid but a 3-dimensional one, and

118

5.1. ALGORITHM ARCHITECTURE

1

2

3

4

z

4

4

y

3

Frame: 5
RPY = (1,1,1)

x

3
2

2
1 1

Figure 5.5: The figure illustrates a stable packet of activity centered around an arbitrary
point in a set of pose cells that have a fixed orientation value i.e the set P↵0,�0,�0 where
↵0 = 1, �0 = 1, � = 10. Given a length of 5 for each of the (↵,�, �) dimensions, the set
of pose cells on display would represent an orientation of 0° for each of the roll, pitch and
yaw Euler angles. An additional increment in one of the orientation dimensions would
include a step of 360° ÷ 5 = 72°.

the rear elements cannot be observed since the view is orthogonal. This process is done

to simplify the calculations needed to shift the activity in a 3-dimensional environment

by breaking down the process into 3 steps where the 3-dimensional vector’s components

are broken down into 3 2-dimensional vectors.

Since the pose cells are represented as a matrix, shifting of the cells is limited to 8

di↵erent directions: North, North East, East, South East, South, South West and West

(N,NE,E, SE, S, SW,W). To reflect more subtle variations in direction and velocity,

the activation values of the cells are spread out in a direction and intensity that is

proportional to the angle of the vector and its magnitude.

This is more clearly illustrated in Figure 5.6, which includes a 3⇥ 3⇥ 3 matrix that

is viewed from the (x, y) plane, and a single active cell p1,2,2 that is highlighted in black.

On the right hand side of the Figure 5.6, the state of the grid of pose cells after the

translation has been applied is illustrated, and the cells adjacent to p1,2,2, and within

119

CHAPTER 5. WHISKERRATSLAM

the direction of the translation vector, are injected with activity. In this example the

velocity vector is v = [�0.5, 1] and the velocity magnitude is 0.3. Since the chosen

velocity vector has higher +Y component and a lower �X component, the upper cell

(relative to p1,2,2) is activated more so than the left cell. The direction in which activation

is spread is therefore proportional to the direction of velocity vector while the intensity

of the spread is instead proportional to the magnitude of the velocity.

Y

X

Figure 5.6: This figure presents a toy example where we illustrate, from a planar view,
the shifting process due to translation in a 3-dimensional matrix. The 3-dimensional
velocity vector is split into two components relevant to the current view, which is used
to determine which direction the activity should be re-positioned. Given a NW vector
v = [�0.5, 1], the activity of each cell is moved one step up and one step to the left. The
magnitude of the activity that is re-positioned is determined by the weight matrix. This
weighted shifting method that takes into account the finer details of the vector’s angle
as well as it’s magnitude.

More specifically, the final matrix, which is shown on the right hand side, is obtained

by summing 4 matrices that is referred to as the weighted shift matrices. Each matrix

represents a specific direction and magnitude of the activation spread.

The weighted shift matrices are derived using a set of geometric equations that are

dependent on the quadrant of the velocity vector. Given the example’s velocity vector

v = [�0.5, 1], its angle relative to the horizontal axis given the current view (x, y) is

✓ = acos([�0.5, 1]T · [1, 0]) ⇡ 2 ⇡ 117°. This places the vector in the second quadrant

according to Figure 5.7.

Given the NW direction of the velocity vector, there are three degrees of freedom

from the original 8 shifting directions, that can be used to spread out the cells’ activity.

These three directions are North, West and North West. Additionally, the magnitude of

the activity left in the same position can be specified. Thus, there are four shift directions

that require weights. Figure 5.10 illustrates a guide to how the relative weighting of each

of these 4 components can be calculated given a velocity vector in the 2nd quadrant.

120

5.1. ALGORITHM ARCHITECTURE

Q2 Q1

Q3 Q4

N

90°

S

270°

E

0°

W

180°
X

Y

Figure 5.7: The weight matrices that define how much activity is spread and what direc-
tion it should be spread in can be calculated according to a set of geometric equations.
These geometric equations vary depending on the quadrant that the velocity vector is
in. Depending on the angle of the vector, or otherwise, the signs of individual vector
elements, the quadrant can be determined. Given this example’s vector v = [�0.5, 1],
the quadrant would be 2.

The weighting related to the current position is the gray shaded box in the bottom

right sector (BR). The N component in this case is referred to as the top right sector

(TR), the NW the top left section (TL) and the W component the bottom left sector

(BL). The weights for each of the 4 shift components are defined by the area of their

rectangular sectors, which in turn is defined by the angle of the vector and its magnitude.

These 4 scalar weight values (wtl, wtr, wbl, wbr) are then multiplied their respective shifted

matrices to produce 4 individual matrices as shown in the middle of Figure 5.8 on page

122.

To produce the 4 set of shifted matrices, the axis associated with a particular di-

mension in the matrix needs to be considered. For this example’s 3⇥ 3⇥ 3 matrix, the

first, second and third dimensions are (x, y, z) respectively. Given a plane view of (x, y)

and a shift direction of NW, the matrix would be shifted one step backwards in the first

dimension (x), one forward in the second dimension (y) and zero in the third dimension

(z). For a N shift direction the matrix would be shifted zero steps in the first and third

dimensions, while for the second dimension it would be shifted forwards one step. The

121

CHAPTER 5. WHISKERRATSLAM

remain component does not require any shifting and the original matrix is used.

Once the shifted matrices are generated, their elements are each multiplied by their

specific weights. Looking at Figure 5.10 on page 124, it can be seen that for the N shifted

matrix, the weight belonging to the top right sector should be used. For the NW shifted

matrix, the top left sector’s weight. For the W shifted matrix the bottom left sector’s

weight and finally, for the remain component, the bottom right sector’s weight should

be used.

The weighted shift matrices are then summed together and following the considera-

tion of any wrap around requirements, the final 3⇥ 3⇥ 3 matrix for the (x, y) plane of

view is obtained.

Figure 5.8: Given a NW direction of motion that places the velocity vector in the 2nd

quadrant, there are 3 primary directions in which the activity in the matrix may be
shifted towards: North, West and North West. A fourth component is also included so
as to be able to define how much of the activity should be kept in the current position.
The weightings of each of these 4 components can be defined according to the areas
of their corresponding sectors. The current position can be represented by the bottom
right (BR) square sector and the remaining 3 directions, N, NW and W, using the
top right (TR), top left (TL) and bottom left (BL) sectors respectively. Using the
equations specific to the 2nd quadrant shown in Figure 5.10 on page 124, the areas may
be calculated and thus each of the 4 component’s weights. The 4 matrices in the middle
of the figure represent the shifted original image multiplied by their relevant weights.
The final matrix is shown on the right hand side and is a sum of these 4 matrices.

Shifting involves moving an elements’ activity from its current position, to that of

its neighbour in the desired direction. To consider the case where the activity is shifted

towards the outside of the matrix, a wrap around function is used to redirect the activity

to the appropriate elements on the opposite side of the matrix. This process is illustrated

in Figure 5.9 on page 123.

Thus far, the procedure for a single plane of view (x, y) and a velocity vector in the

122

5.1. ALGORITHM ARCHITECTURE

(a) Wrapping activity when the velocity
vector has more than one non-zero com-
ponent and therefore results in activity ex-
tending towards corners.

(b) Wrapping activity when the vector’s di-
rection is towards one of the cuboid’s side.

Figure 5.9: In the case of the elements that end up outside of the matrix, the wrap
around function redirects them to the appropriate positions on the opposite sides of
the matrix. For the typical case where the velocity vector has more than one non-
zero component, and the activity is directed towards one of the matrices corners, the
activity is wrapped around in manner illustrated in Figure 5.9a. The figure shows two
large cubes; the largest cube is the temporary matrix used for holding the values of the
shifted activity from the smaller cube. The grid of pose cells are therefore represented
by the small cube, and the wrap around function needs to re-arrange the activity that
has been pushed out into the temporary matrix back into this original matrix. The
cuboids that are to be re-arranged given the direction of motion are each highlighted in
a specific color. Those that are shown in the temporary matrix, indicate the elements
that are to be re-arranged back into their corresponding locations in the original smaller
matrix. Their correspondence is indicated by their colors and it can be seen that they
are mirrored along the plane perpendicular to the direction of motion. The length of
the shortest side of each cuboid is a single element, while the remaining dimensions are
defined such that completely cover the three sides of the smaller matrix. The direction
of motion used for this example is indicated by the direction that the cone structure
is pointing towards. The simplest case is when the velocity vector has one non-zero
component and the activity is therefore directed towards one of the matrices sides, and
non towards a corner. This case is highlighted in Figure 5.9b where the direction of
motion is towards the bottom of the matrix. Using the same logic, the method can be
applied to all motions directed to any of the other 6 sides of the matrix.

123

CHAPTER 5. WHISKERRATSLAM

second quadrant has been described. To consider other quadrants, the equations along

with their respective weights sectors guide are included in Figure 5.10 on page 124. To

consider di↵erent view planes the shifting of the matrix needs to take into account which

dimension in the matrix belongs to which axis and shift appropriately. Thus, for the

3⇥ 3⇥ 3 matrix, the first, second and third dimensions are (x, y, z) respectively. Given

a plane view of (x, y) and a shift direction of NW, the matrix would be moved one step

backwards in the first dimension (x), one forward in the second dimension (y) and zero

in the third dimension (z). Given a plane view of (y, z) and the same shift direction, the

matrix would be moved zero steps in the first dimension (x), one step backwards in the

second dimension (y) and one forwards in the third dimension (z).

TL TR

BL BR

ɽ

vsin(ɽ)
1-vsin(ɽ)

vcos(ɽ)1-vcos(ɽ)

TR = vsin(ɽ)·vcos(ɽ)
TL = vsin(ɽ)·(1-vcos(ɽ))
BR = vcos(ɽ)·(1-vsin(ɽ))
BL = 1-(TR + TL + BR)

Q1
TL TR

BL BR

ɽ

vsin(ɽ) 1-vsin(ɽ)

vc
os

(ɽ
)

1-
vc

os
(ɽ

)
TR = vcos(ɽ)·(1-vsin(ɽ))
TL = vcos(ɽ)·vsin(ɽ)
BR = (1-vcos(ɽ))·(1-vsin(ɽ))
BL = 1-(TR + TL + BR)

Q2

TL TR

BL BR
ɽ

vsin(ɽ) 1-vsin(ɽ)

vcos(ɽ)
1-vcos(ɽ) TR = (1-vsin(ɽ))·(1-vcos(ɽ))

TL = vsin(ɽ)·(1-vcos(ɽ))
BR = vcos(ɽ)·(1-vsin(ɽ))
BL = 1-(TR + TL + BR)

Q3
TL TR

BL BR

ɽ

vsin(ɽ)
1-vsin(ɽ)

vcos(ɽ)1-vcos(ɽ)

TR = vcos(ɽ)·(1-vsin(ɽ))
TL = (1-vsin(ɽ))·(1-vcos(ɽ))
BR = vcos(ɽ)·vsin(ɽ)
BL = 1-(TR + TL + BR)

Q4

Figure 5.10: Depending on which quadrant the 2-dimensional velocity vector is in, the
shift matrices’ weights can be calculated according to the equations shown in this Figure.
The illustrations on the left hand side show how the weights for the 4 shift components
are equal to the area of their respective sectors. The darker shaded sector refers to the
location that the motion is assumed to take place from. From example if the motion is in
the 3rd quadrant and therefore in the SW direction, 3 shifted matrices corresponding to
a W, SW and S motion need to be calculated. The 4th shifted matrix would correspond
to no motion and instead be used to determine how much activity should remain in
it’s original location. The weights that are then multiplied with the 4 shifted matrices
are equal to the areas of their respective sectors. The W, SW and S shifted matrices
would use the weights defined by the areas of sectors TL, BL and BR, while the remain
component would use the weight defined by the area of sector TR.

Once the weighted shifted matrices have been summed together the set of pose cells

124

5.1. ALGORITHM ARCHITECTURE

P↵0,�0,�0 that have undergone a translation may be obtained. The second step of the

path integration process is to consider the rotational component of the odometry.

5.1.2.3.3.2 Rotational shift The pose cells represent orientation using the three

Euler angles referred to as roll (↵) pitch (�) and yaw (�). By looking at Figure 5.4, it

may be seen that a rotational shift corresponding to a particular angular motion can

be achieved by shifting the matrix towards one of the cube’s sides. Since the figure

illustrates the 6-dimensional grid of pose cells as a 3-dimensional matrix, a single shift

step in a particular rotational dimension would be akin to shifting the 25⇥25⇥25 matrix

5 steps.

Given a length of 5 for each of the rotational dimensions, a single rotational shift

corresponds to an angle change of �� = 360°
5 = 72°. Thus, if the odometry input included

yaw angular velocity of 72°, the 25 ⇥ 25 ⇥ 25 matrix would be shifted 5 steps in the

positive yaw direction, which is illustrated in Figure 5.11.

To reflect more subtle variations in angular velocity, a similar weighted shift approach

is applied, similar to that used in the translational shifting case. Figure 5.11 illustrates

the change in activity values for each layer of pose cells that have the same yaw value.

With an initial state shown on the left hand side, the 1st yaw layer is fully active.

Following an input of 158°s�1, the resultant matrix is shown on the right hand side,

and is composed of a weighted sum of two shifted matrices. The two shifted matrices are

obtained by finding the rounded down and rounded up ratio of the input angular velocity

158°s�1 and the step value (72°). These two values are floor(15872) = 2 and ceil(15872) = 3

respectively, where the functions floor and ceil round down and up respectively. Two

matrices that are each shifted 2 and 3 steps respectively are thus produced. The weight

for the lower bound shifted matrix is equal to 1 � (!�

��
%1) and !�

��
%1 for the upper

bound shifted matrix, where !� is the angular velocity for the yaw component, �� is the

rotational step size in the yaw direction and the % is the modulo operator. Using these

equations the weights can be calculated to being equal to 0.8 and 0.2 for the lower and

upper bound shifted matrices respectively.

Multiplying each of the shifted matrices with their corresponding weight values, the

next step includes summing them to produce the final matrix that reflects the example’s

given angular velocity input. In the case of additional angular velocity components,

the same process is repeated, however, the orientation of the layers and therefore their

direction of shift changes depending on which axis the specific angular component lies

on. The final rotational matrix is then equal to the combination of all lower and upper

125

CHAPTER 5. WHISKERRATSLAM

Yaw

Pitch

Roll

Figure 5.11: The following figure illustrates a scenario where the grid of pose cells receives
an odometry input with an angular velocity of !� = 158°s�1 for the yaw angle only. The
initial state of the grid is shown on the left hand side with a single yaw layer being in a
fully activated state. A single yaw layer includes all pose cells that have a fixed yaw value,
which in this example is the first layer. The rotational shift is applied by determining
the lower and upper bound shifts needed to enclose the full range of the input. The
step size for both these lower and upper bound shifts can be determined from the lower
and upper bound ratios of the angular velocity and the rotational shift step size. The
rotational shift step size is determined by the length of the angular dimension, which
in work is 5, thus, each rotation step is equivalent to �gamma = 360°

5 = 72°. Given an
angular velocity input of 158°s�1, the lower and upper bound ratios are floor(15872) = 2
and ceil(15872) = 3 respectively, where the functions floor and ceil round down and up
respectively. The remainder of the ratio (15872 %1 = 0.2), where % is a modulo operation,
is used to calculate how much each of lower and upper bound shifts need to be weighted.
Again, this is to reflect the more subtle changes in angular velocity that is less than a
full rotation step. The weight for the lower bound shifted matrix is equal to 1�0.2 = 0.8
and 0.2 for the upper bound shifted matrix. The final matrix is the combination of the
weighted lower and upper bound matrices, which is illustrated on the right hand side.

126

5.1. ALGORITHM ARCHITECTURE

bound weighed matrices for each Euler angle. The same wrap around function, described

in the previous section detailing the process of a translational shift, applies here as well.

Thus far a description regarding the di↵erent processes involved in influencing the

activity of the grid of pose cells has been given. In order for the algorithm to determine

what it’s current belief in pose should be, the average center of the activity surrounding

the maximally active pose cell is calculated. This center location is referred to as the

best pose.

5.1.2.3.4 Best Pose The distribution of activity around the grid of pose cells reflects

the algorithm’s distribution of belief in pose. Therefore, in order to determine which

pose the algorithm most likely believes in, the highest active pose cell needs to be

calculated. However, given WhiskerRatSLAM’s path integration process and how pose

cell activity is spread in a direction and intensity proportional to the motion direction

and magnitude, the location of the highest active pose cell should take into account the

activity of its neighbouring cells as well. Furthermore, considering that the grid of pose

cells are a discrete representation of location and orientation, a population vector coding

(Georgopoulos, Schwartz, & Kettner, 1986) approach is used to increase the accuracy of

the estimated pose.

The population vector approach includes calculating the average direction of a vector

from a linear combination of weighted vectors that each have a unique direction. The

benefit of this approach is that a higher resolution can be represented given a set of

unique discrete values.

An example of the population vector approach can be seen in Figure 5.12 where three

head direction cells, out of a total set of 5, are each active to a di↵erent degree. To obtain

the weighted sum of the headings, the angular values are converted to a 2-dimensional

unit vector representation. Thus for headings 360°, 288°and 216°the unit vectors would

be [cos(360), sin(360)], [cos(288), sin(288)] and [cos(216), sin(216)] respectively. Given

an activation level of 1 for the 360°head direction cell, 0.8 for 216°and 3.1 for 288°, the
sum of the weighted vectors would be equal to:

1 ·

"
cos(360)

sin(360)

#T

+ 3.1 ·

"
cos(288)

sin(288)

#T

+ 0.8 ·

"
cos(216)

sin(216)

#T

= [1.311,�3.419]

The average angle can now be calculated using the atan2 function, where atan2

returns the inverse tangent using two variables and takes into consideration the quadrant

127

CHAPTER 5. WHISKERRATSLAM

72 144 216 288 360

Head DirecƟon Cells

0

0.5

1

1.5

2

2.5

3

3.5

Ac
Ɵv

ity
 le

ve
l

Y

X

72

288

216

144

360

Figure 5.12: An example of a population vector approach for calculating the average
heading from a set of discrete head direction cells. The benefit of this approach is
that a more precise value can be derived by calculating the weighted sum of discrete
values, where the weights can be interpreted as a vote or an indication of preference for
a particular value. In this example the head direction cells of 216°, 288°and 360° each
have an activity level of 0.8, 3.1 and 1 respectively while the remaining head direction
cells are inactive, as indicated by the bar graph on the right hand side. The activity level
may be interpreted as an indication of preference and its value is therefore used as the
weights for each head direction. To derive the average angle represented by the weighted
headings, the angles are represented in the form of a unit vector. The weighted sum of
the vectors (where the individual vectors for each heading value is represented as a grey
arrow on in the left figure) results in a vector (black arrow) whose direction is equal to
the average angle. Using the atan2 function the average angle can be calculated from
the weighted sum vector. Given a value that is outside the range of the head direction
cells, a modulo operator can be used to wrap the value to the desirable range.

that the vector lies in thus being able to return an unambiguous angle value. The angle

given the sum of the weighted vector is:

atan2(�3.419, 1.311) = �69.022°

Using modulo operator, the above angle can be wrapped around the circular manifold

defined for the head direction cells to produce:

128

5.1. ALGORITHM ARCHITECTURE

�69.022 % 360 = 290.978°

Thus, by using the population vector method described above, an average heading

value with a higher precision value than any of the individual cell’s heading can be

calculated.

A similar approach is used to calculate the best pose location from the maximally

active pose cell and its neighbouring cells. Given a 6-dimensional matrix that includes

only the maximally active pose cell along with its neighbouring cells, the matrix is

summed along each dimension to produce a set of six vectors. Given the vector ↵

belonging to the roll (↵) dimension, each element would represent a unique orientation

value. The vector ↵ is defined as follows:

↵ = [↵1↵2...↵n] (5.11)

↵i =
X

x,y,z,�,�

px,y,z,↵i,�,� (5.12)

Where n is the length of the ↵ dimension, and px,y,z,↵i,�,� represents the value of a

pose cell that is fixed in the ↵ dimension to ↵i.

In this work, the length of each dimension is n = 5, thus, elements 1 through to 5

represent a heading of 72°, 144°, 216°, 288°and 360°respectively. The value found in each

element would represent the activation level of its corresponding heading. The average

heading can then be determined using the same process described in the above example

where the headings are converted to a 2-dimensional unit vector representation and

their weighted sum is calculated. The resulting vector’s angle can be calculated using

the atan2 function and, using a modulo operator, the value can be wrapped around the

dimension’s 360° limit.

The same process can be applied to the translational dimensions, and each element

in the sum vector similar to Equation 5.11, can be represented as an angle similar to

the rotational dimensions. For both translational and rotational dimensions, the final

step involves converting the wrapped average angle to an index value. Given a vector of

length n, and a wrapped average angle of �, the wrapped average element index would

be: �· n

360 . Thus the location of the best pose cell can be determined using the coordinate

specific to the grid of pose cells matrix.

129

CHAPTER 5. WHISKERRATSLAM

5.1.2.4 Object Map

The RatSLAM algorithm generates a topological-like map referred to as an experience

map, which is a graph consisting of edges and nodes that describe the connectivity and

positioning of experiences. An experience is defined as a combination of external obser-

vations coupled with the believed pose at the time of the observation. The experience

map is beneficial for both path planning as well as providing the user with a layout of the

robot’s environment. Since RatSLAM operates on a planar space, the nodes represent

their pose using 3-dimensions that includes a 2-dimensional Cartesian coordinate and a

single angular value describing its heading/yaw angle.

Unlike RatSLAM, the WhiskerRatSLAM algorithm operates in a 6-dimensional space

and generates a 6-dimensional map. To set apart these di↵erences WhiskerRatSLAM’s

version of an experience map is referred to as an object map. An object map shares

the same function as an experience map and its only di↵erence is that the experience

nodes represent their pose in 6-dimensional space.

5.1.2.4.1 Complex Experience Nodes The object map consists of complex ex-

perience nodes, which are a structure for containing the pair of whisker-tactile features

that are described in section 5.1.1, the location of the best pose cell that is described on

page 127, its own pose in the object map space, and the set of experience nodes that

may be reached from its current pose.

To specify the nodes pose in 6-dimensional space, 3 Cartesian coordinates are used

for position and a quaternion vector is used for orientation. A quaternion representation

is used, as opposed to a Euler angle representation such as that by the pose cells, since it

is not susceptible to gimbal lock. The experience nodes’ pose is defined as being relative

to another node, and the process of defining new experiences would always call for

rotational operations. Choosing a quaternion representation would prevent gimbal lock

scenario from posing a problem during these calculations (Morais, Georgiev, & Sprößig,

2014).

5.1.2.4.1.1 Relative Pose A new experience is created given a su�ciently large

change in best pose cell location, or otherwise, the observation of a unique set of features.

Between the creation of a new experience, WhiskerRatSLAM integrates the velocity over

time and stores the accumulated displacement for dimensions (x, y, z,✓). Thus, for each

iteration the accumulated change in the x-dimension would be:

dxi = dxi�1(vx · �t) (5.13)

130

5.1. ALGORITHM ARCHITECTURE

Where vx is the transnational velocity in the x-direction, �t is the time elapsed since

the last odometry input was received, and the subscript i denotes the current iteration

of the algorithm. A similar approach is taken for calculating the accumulated change in

dimensions y and z.

In the case of calculating the change in orientation, angular velocity which is rep-

resented as a 3-dimensional rotational-vector (Diebel, 2006) in the odometry input (see

Equation 5.7, is integrated over time and the change in orientation is represented as

a quaternion. This resulting quaternion, which represents the change in orientation

experienced since the last iteration, is accumulated until a new experience is created.

Reminding the reader that angular velocity is represented in the form of a rota-

tional vector ! and is defined in Equation 5.7. Thus for every iteration, the change in

orientation is updated according to Algorithm 6.

Algorithm 6: Delta Quaternion

1 function deltaQ (!,�t) Output: �q

2 � = ! ⇥�t⇥ 0.5
3 � = norm(�)
4 if ✓ > 0 then
5 p = sin(�)/�
6 �q = [cos(�) p�]
7 end
8 else
9 �q = [1 �]

10 end
11 return �q

Where the conversion from rotation vector notation to quaternion is obtained from

(Diebel, 2006) and is shown in Equation 5.14.

�q�(�) = �q�✓(�✓) =

"
cos(�✓

2)
�✓
�✓

sin(�✓

2)

#
(5.14)

Thus, given �q, the current orientation relative to the initial orientation q0 is:

qi = qi�1 ⇥�q (5.15)

Where the ⇥ operator refers to a quaternion multiplication, which is defined in (Stevens,

Lewis, & Johnson, 2015).

When a new experience ei+1 is created, the accumulated change in orientation rep-

resents its orientation relative to the current iterations experience ei, thus:

qei!ei+1 = qi

131

CHAPTER 5. WHISKERRATSLAM

To obtain the orientation of the new experience in the object map space q
ei+1
m , the

orientation of the current iterations experience qeim is multiplied with qi:

q
ei+1
m = q

ei
m ⇥ qi

The measurement of orientation in object map space is done so relative to the ori-

entation of the first experience node. WhiskerRatSLAM initializes the orientation with

the following values qe1m = [q0 q1 q2 q3] = [1 0 0 0], where the the elements are referring

to the coe�cients of the quaternion vector of the form shown in Equation 5.16 (Stevens

et al., 2015).

q = q0 + iq1 + jq2 + kq3 (5.16)

5.2 Localization and Object Recognition Performance

The following section describes the experimental setup used to gather both the physical

and simulation based data-sets for analyzing the localization and object recognition

performance of WhiskerRatSLAM, as well as the presentation of the experimental results

and its discussion.

5.2.1 Experiments

Experiments were designed to assess the accuracy of WhiskerRatSLAM to localize across

a variety of object shapes and to discriminate between objects. The data included a

set taken using a physical whisker array as it explored the surface of a box shaped

object (see panel A of Figure 5.13). Five simulated data sets were also generated using

ROS/Gazebo for trajectory and odometry, and Matlab for calculating the positions of

the whiskers’ points of contact as well as their 2D deflection vectors. The simulation

data sets incorporated additive noise in the odometry, contact position and deflection

vectors, which were all derived from the statistics of the original physical data set. An

overall description of the experimental set up is described further in Figure 5.13 on page

133. To validate the simulation, the virtual box object was explored using the same

trajectory as used for exploring the physical box object. All the other simulated objects

were explored using the same trajectory but di↵erent from that used to explore the box

(see Figure 5.14 on page 134 for details).

The experimental parameters that were adjusted between runs were: the features

used to characterize a surface region (PFH only, SDA only, and both PFH & SDA

132

5.2. LOCALIZATION AND OBJECT RECOGNITION PERFORMANCE

1

2

3

SDA

PFH

SDA

PFH

SDA

PFH

A B

C

Figure 5.13: Experimental configuration for physical and simulated data set acquisition.
A: The physical data set was acquired using a UR-5 arm to move an array of active
tactile whiskers around the contours of a plywood box. The whisker-array consists of 18
whisker modules that are able to sense their whisk angle and 2D deflection forces at their
base; a detailed description of the sensor array may be found in (Sullivan et al., 2012)
and Chapter 2. The known location of the object was calibrated against the workspace
of the UR-5 to serve as a measure of ground truth to whisker contact locations.
B: The odometry data was generated using ROS/Gazebo which simulated the motion of
the UR-5 arm, while the simulated whisker deflection data were calculated using Matlab.
The three images were taken from Gazebo at the end of consecutive whisks as the array
moved in a downwards direction across the surface of the Kettle. The plots to the right
of each image illustrate the two contact features that were used to identify a region. The
top is the slope distribution array (SDA), a vector whose elements encode the slope of the
surface that each whisker has made contact with, while the bottom is the point feature
histogram (PFH) of the points of contacts detected during the whisk by the whole array.
C: Several simulated object models were used to test the robustness of the algorithm
and to evaluate its ability to discriminate between objects. The average bounding box
for all the objects is 20 ⇥ 20 ⇥ 35 cm. From left to right the objects are named Top:
Barrel, Blob, Plane. Middle: Mug, Box and Kettle. Bottom: Skull.

133

CHAPTER 5. WHISKERRATSLAM

combined); the introduction of a feature update mechanism that averages matching fea-

ture vectors; the approach taken to determine point of whisker-contact (tip-assumption

against support vector regression (SVR)). The SVR approach was trained to map whisker

deflection characteristics and whisker length to a more precise radial distance estimate

with an approximate accuracy of 25% relative to the whisker length (see figure 4.9 on

page 93). Therefore, a total of 12 runs were processed for each object with each run

consisting of a unique set of parameters that are summarized in Table 5.1.

Table 5.1: Set of unique experimental parameters.

Features PFH SDA PFH + SDA
Feature update ON OFF
Contact algorithm Tip SVR

0.8

0.7

0.6

0.5

Z

0.2

0.4

0.3

-0.2

Y (m)

0

X

0
-0.2

0.2

A

B

(a)

Delta Translation Error

0 5 10 15 20

Error (cm)

0

10

20

30

40

Delta Rotation Error

-50 0 50

Error (deg)

0

20

40

60

80

100

120

(b)

Figure 5.14: Object exploration trajectories. Figure 5.14a plots of the two trajectories
used to explore the various objects; Trajectory A, used for building the Object Maps, and
trajectory B, a novel trajectory used to gather validation data sets to test the robustness
of the system. Figure 5.14b includes the distribution of displacement errors between
those obtained from the ground truth and integrated odometry measurements captured
during a complete cycle of trajectory A.

134

5.2. LOCALIZATION AND OBJECT RECOGNITION PERFORMANCE

5.2.2 Results

5.2.2.1 Localization

The localization accuracy was determined through the positional and rotational errors

measured between the ground truth and re-localization estimates of the whisker-array

pose. The positional error was calculated using a Euclidean distance while the rotational

error was calculated as the minimum angle required to align the estimated and ground

truth orientation in quaternion space following the method described in (Hodaň, Matas,

& Obdržálek, 2016). The distribution of displacement errors between ground truth pose

and integrated raw odometry during the complete exploration of an object are shown in

Figure 5.14b on page 134. Specific to this thesis work, a SLAM algorithm is considered

to operate correctly provided that it reduces errors in pose estimates to less than or

equal to the minimum step size taken between observations; the step size is measured

as the change in pose from one surface region that a sample is taken to the next. The

step size used for objects other than the box were approximately 11 cm and 12°, while
for the Box object the values were approximately 3 cm and 3°.

The aggregated results for all objects used in the experiments are shown in Figure

5.15 on page 136. The lowest errors in re-localization estimates were recorded when us-

ing SVR based radial distance estimation, both the PFH and SDA features combined for

region matching, and not including the proposed feature merging method. With the ex-

ception of the Kettle object, all other objects returned localization errors that were lower

than their associated step size. Analysis of the Kettle localization results revealed that

the large errors were due to confusion brought on by symmetry. These erroneous localiza-

tion estimates were eventually corrected following subsequent observations, highlighting

a familiar problem for SLAM algorithms failing to localize in symmetrical environments.

Similarly, symmetrical objects such as the Barrel and Mug, did not su↵er so markedly

due to their position in space relative to their associated exploration trajectories. The

trajectory around the kettle followed a loosely spheroid outline that shared the same

geometric center as the kettle. This resulted in very similar observations from the whisker

sensors at a range of array poses.

5.2.2.2 Object Identification

The second set of experiments focused on the use of WhiskerRatSLAM for object iden-

tification. The object map created by WhiskerRatSLAM is a topological map relating

the features of each recorded surface region relative to one another in 6D space. The

object map thus characterizes an object by its shape and can be used for identifying

135

CHAPTER 5. WHISKERRATSLAM

Box (R) Box (S) Barrel Blob Plane Kettle
0

20

40

60
E

rr
o

r
(c

m
)

Mean Positional Errors

1.8 (1.4) 1.5 (1.1)
4.2 (0.9)

25.8 (7.0)

5.4 (6.9)

32.7 (32.2)

Median

25%-75%

Adjacent values

Best settings

Box (R) Box (S) Barrel Blob Plane Kettle
0

50

100

E
rr

o
r

(d
e

g
)

Mean Rotational Errors

4.6 (4.4) 2.1 (1.9)
6.8 (0.5)

51.3 (9.3)

6.6 (9.1)

74.6 (77.2)

Figure 5.15: Box plot illustrating the distribution of localization errors (positional and
rotational) for each object. Box(R) refers to the physical box data set, while Box(S)
the simulation data set. The values within the brackets pertain to star shaped markers,
which are the results of the runs using the best set of parameters: SVR based radial
distance estimation, Unmerged contact features and Both (PFH and SDA combined)
features for region matching. With regards to the notation of the box plot: the blue
boxes mark the edges at which 25% or 75% of the data lies below while the adjacent
values are used for marking the edges of where the majority of the data distribution
lies. The exact formulation for calculating the position of these markers may be found
in (Velleman & Hoaglin, 1981).

future encounters with the same object and for determining novel objects. The concept

is analogous to treating each object as a room within a building, whereby the agent, in

this case the whiskered robot, is switched on and left to explore a particular room with

no prior knowledge of its path to that room. A re-localization to a previously explored

room, or object in this work’s case, would indicate that the agent has recognized which

room it is currently in. Frequent re-localizations on subsequent samples by its whiskers

would indicate an increased confidence of room/object identity.

Using this analogy, experiences from each object map were appended to construct an

experience history that assumes sequential visits to multiple objects with no topological

connection between them (as shown in Figure 5.16 on page 137). The whiskered robot

is then presented with an unknown object and is set to explore its surface using either

the same trajectory used for generating the object maps, trajectory A, or the novel

trajectory, trajectory B, for testing (see Figure 5.14a on page 134 for details). Figure

136

5.2. LOCALIZATION AND OBJECT RECOGNITION PERFORMANCE

0 2000 4000 6000 8000 10000 12000 14000

0

1000

2000

3000

4000
Plane

Blob

Barrel

Kettle

Mug

Correct Relocalization

Incorrect Relocalization

0 1000 2000

0

2

4

6

8

Plane

0 1000 2000

0

2

4

6

8

Blob

0 1000 2000

0

2

4

6

8

Barrel

0 1000 2000

0

2

4

6

8

Kettle

0 1000 2000

0

2

4

6

8

Mug

Plane

Figure 5.16: The response of Whisker-RatSLAM as the whisker-array is presented with
the previously explored toy Plane object for the purpose of object identification. The
top panel displays the history of the experiences generated through the exploration of
all objects (white line). Each individual experience has an index (y-axis) and a sample
number (x-axis) with the horizontal colored regions indicating that these experiences
were generated whilst exploring the object named to the left. The transition between
objects has been removed, i.e., the experiences representing each object have been se-
quentially appended in no particular order. The black line of experiences outside of the
colored region represent new sample points as the whisker array explores an unknown
object. The re-localizations that occur (indicated by green and red dots) indicate that
a sample is very close to an existing experience which increases the belief in identity of
the unknown object. The green markers indicate a re-localization to the correct object
identity while the red markers indicate a re-localization to an incorrect object identity.
The lower panel illustrates the time course of belief in each objects identity during
the exploratory phase of the experiment, i.e., sample points > 10500 in the experience
history plot. The dynamics of belief are governed by a simple leaky integrator which is
injected with an impulse when a re-localization occurs and has a fixed decay constant.
A user defined confidence threshold (horizontal red line) marks the desired level in be-
lief required to confidently identify an object. The results in this image belong to the
case where the exploration trajectories for the map generation and object identification
portions are the same (trajectory A). 137

CHAPTER 5. WHISKERRATSLAM

5.16 on page 137 details a single case in which a previously mapped object (Plane) is

explored using trajectory A and how the rate of re-localization events (green/red dots)

serves as a measure of confidence in classifying object identity.

The complete set of results from all cases are are shown in Figure 5.17 on page 140.

For the Skull object, which has not been mapped and therefore does not feature in

the experience history, the system exhibits very low confidence levels across all known

object identities. It is also clear that when using trajectory B the confidence in object

identity is much lower than using trajectory A. This is understandable since features

would inevitably vary due to changes observed features and thus reduce the probability

of experiencing consistent observations that lead to re-localizations. The level of activity

is however correlated to the correct object identity. It can be seen that in some cases

di↵erent object maps receive somewhat equal activity levels indicating ambiguity in

object identity.

5.2.3 Discussion

Using both physical and simulation based experiments WhiskerRatSLAM is shown to

successfully localize an array of mobile tactile whiskers in 6D space. Further, using

the object maps that are generated during object exploration object identity can be

confidently classified, including the recognition that an object is novel and not from a

previously observed set.

The results illustrate that the algorithm can accommodate novel exploration trajec-

tories for object identification but with significantly reduced confidence. A potential

problem is that the set of features for each particular surface region are not pose invari-

ant. Pose invariance refers to the property of being consistent regardless of a change in

viewing orientation or distance. The PFH feature, as described earlier, is pose invariant,

while SDA is not. The results have shown that both features are required to obtain a

good localization accuracy and forgoing the SDA feature for the purpose of gaining the

pose invariant property of PFH is not desirable.

To address this issue the next chapter will focus on implementing a low level controller

that ensures a consistent whisker-array placement strategy. By limiting the distance and

angle of the whisker-array relative to an object’s surface, future encounters with a region

should result in similar feature sets. Furthermore, ambiguity in object identity could be

addressed by exploiting the topological properties of the object maps to determine which

region from a set of ambiguous maps are least similar and therefore drive the whisker-

array towards it. In the situation where a satisfactory level of confidence still can not be

138

5.2. LOCALIZATION AND OBJECT RECOGNITION PERFORMANCE

reached then the algorithm can consider the object to be novel and, therefore, generate

a new object map. Thus the next chapter will focus on improving the performance of

object recognition.

139

CHAPTER 5. WHISKERRATSLAM

ExploraƟon Trajectory A

0
2000

0 2 4 6 8
Plane

0
2000

0 2 4 6 8
Blob

0
2000

0 2 4 6 8
Barrel

0
2000

0 2 4 6 8
KeƩle

0
2000

0 2 4 6 8
M

ug

0
2000

0 2 4 6 8
Plane

0
2000

0 2 4 6 8
Blob

0
2000

0 2 4 6 8
Barrel

0
2000

0 2 4 6 8
KeƩle

0
2000

0 2 4 6 8
M

ug

0
2000

0 2 4 6 8
Plane

0
2000

0 2 4 6 8
Blob

0
2000

0 2 4 6 8
Barrel

0
2000

0 2 4 6 8
KeƩle

0
2000

0 2 4 6 8
M

ug

0
2000

0 2 4 6 8
Plane

0
2000

0 2 4 6 8
Blob

0
2000

0 2 4 6 8
Barrel

0
2000

0 2 4 6 8
KeƩle

0
2000

0 2 4 6 8
M

ug

0
2000

0 2 4 6 8
Plane

0
2000

0 2 4 6 8
Blob

0
2000

0 2 4 6 8
Barrel

0
2000

0 2 4 6 8
KeƩle

0
2000

0 2 4 6 8
M

ug

0
2000

0 2 4 6 8
Plane

0
2000

0 2 4 6 8
Blob

0
2000

0 2 4 6 8
Barrel

0
2000

0 2 4 6 8
KeƩle

0
2000

0 2 4 6 8
M

ug

ExploraƟon Trajectory B

0
2000

0 2 4 6 8
Plane

0
2000

0 2 4 6 8
Blob

0
2000

0 2 4 6 8
Barrel

0
2000

0 2 4 6 8
KeƩle

0
2000

0 2 4 6 8
M

ug

0
2000

0 2 4 6 8
Plane

0
2000

0 2 4 6 8
Blob

0
2000

0 2 4 6 8
Barrel

0
2000

0 2 4 6 8
KeƩle

0
2000

0 2 4 6 8
M

ug

0
2000

0 2 4 6 8
Plane

0
2000

0 2 4 6 8
Blob

0
2000

0 2 4 6 8
Barrel

0
2000

0 2 4 6 8
KeƩle

0
2000

0 2 4 6 8
M

ug

0
2000

0 2 4 6 8
Plane

0
2000

0 2 4 6 8
Blob

0
2000

0 2 4 6 8
Barrel

0
2000

0 2 4 6 8
KeƩle

0
2000

0 2 4 6 8
M

ug

0
2000

0 2 4 6 8
Plane

0
2000

0 2 4 6 8
Blob

0
2000

0 2 4 6 8
Barrel

0
2000

0 2 4 6 8
KeƩle

0
2000

0 2 4 6 8
M

ug

0
2000

0 2 4 6 8
Plane

0
2000

0 2 4 6 8
Blob

0
2000

0 2 4 6 8
Barrel

0
2000

0 2 4 6 8
KeƩle

0
2000

0 2 4 6 8
M

ug

F
igu

re
5.17:

T
im

e
cou

rse
of

b
elief

in
ob

ject
id
entity

as
th
e
rob

ot
exp

lores
an

u
n
kn

ow
n
ob

ject
(sh

ow
n
in

th
e
im

ages
to

th
e

left)
follow

in
g
th
e
origin

al
tra

jectory
u
sed

for
object

m
ap

gen
eration

(A
)
or

th
e
n
ovel

tra
jectory

(B
).
T
h
e
fi
ve

colu
m
n
s
u
n
d
er

each
exp

loration
tra

jectory
rep

resent
th
e
b
elief

for
each

p
reviou

sly
m
ap

p
ed

ob
ject

(P
lan

e,
B
lob

,
B
arrel,

K
ettle

an
d
M
u
g).

T
h
e
S
ku

ll
ob

ject
h
as

n
ot

b
een

m
ap

p
ed

w
h
ich

refl
ects

in
th
e
low

level
in

b
elief

in
oth

er
ob

ject
id
entities.

140

Chapter 6

Active Whisker-Array

Exploration For Fast Shape

Recognition

The previous chapter discussed the performance of WhiskerRatSLAM in 6-dimensional

pose localization and object identification. The chapter ended on a discussion stating

the need for a consistent whisker-array placement strategy such that the set of observed

features for a given surface region is more likely to be similar when encountered again.

This chapter focuses on determining the e↵ectiveness of the surface-placement strategy,

as well as the comparison of di↵erent search strategies for confirming object identity

quickly.

Based on the workings of RatSLAM, which is the underlying architecture on which

WhiskerRatSLAM is based on, the localization/object recognition can only occur once

a series of consecutive surface features that are known to be in close proximity to each

other, are observed. The cause of which is due to the the rise in pose cell activity that is

associated with feature recognition and path integration. To ensure that the algorithm

has a higher likelihood of recognizing features from the same region a low level controller

for whisker-array placement was designed. The controller attempts to maintain a consis-

tent whisker-array orientation and distance to an object’s surface, thereby limiting the

variation in observed features at a given region. This array-to-surface placement con-

troller is inspired from the work of (Pezzementi, Plaku, Reyda, & Hager, 2011) where a

cutaneus-tactile sensor is used to identify object shapes.

The cutaneus-tactile sensors used in the work of Pezzementi is similar to this work’s

whisker-tactile sensors in that they both have a limited range, field of view and both

141

CHAPTER 6. ACTIVE WHISKER-ARRAY EXPLORATION FOR FAST SHAPE

RECOGNITION

require physical contact with a surface in order to perceive it. Representing their sensory

data as a series of images, they observed that samples gathered from a specific region,

albeit at varying sensor orientation, reduced the likelihood of recognition. To facilitate

recognition, the authors generate rotation and intensity invariant local features for each

image. In addition, the authors implement a surface contact controller that reduces

the variation in observed features, which again is to facilitate feature recognition for

previously observed regions.

A 3-dimensional equivalent to the rotation invariant transforms used in the work of

Pezzementi is the point feature histogram, which is one of the features used by Whisker-

RatSLAM for surface region characterization. One option for tackling the object recog-

nition problem is to implement a similar bag-of-features approach as that in (Pezzementi

et al., 2011). However, it is argued that the approach of exploiting the 6-dimensional lo-

calization capability of WhiskerRatSLAM would serve to reduce the time taken to reach

an appropriate object identity confidence level, by targeting more distinctive regions.

The following chapter thus continues the work of Section 5.2 and uses the Whisker-

RatSLAM architecture and the concept of re-localization in 6D space as a means of

determining the algorithm’s confidence in object identity. To improve the performance

of the object identification system, a surface placement strategy is described, followed by

two region search strategies that are used to confirm object identity or otherwise remove

doubt in object identity. Furthermore, the physical and simulation set ups for object-

map generation and object recognition experiments are described. The final section

includes the results and discussion of the experiments’ outcome.

6.1 Method

The first of the proposed methods for improving object identity performance using

WhiskerRatSLAM is the implementation of a consistent whisker-array placement strat-

egy, relative to the contacted surface.

6.1.1 Surface Placement

When approaching an object’s surface with the whisker-array, the features that are

generated would be dependent on the pose of the array relative to the surface. In an

attempt to increase the rate of re-localization, limiting the pose of the array whenever it

is in contact with a surface should reduce the variety in these features and thus facilitate

feature recognition.

142

6.1. METHOD

F
ig
u
re

6.
1:

T
h
e
se
qu

en
ce

of
fr
am

es
h
ig
h
li
gh

ts
a
su
rf
ac
e
p
la
ce
m
en
t
p
ro
ce
ss

af
te
r
an

in
it
ia
l
co
nt
ac
t
by

th
e
w
h
is
ke
r-
ar
ra
y
w
it
h

a
sp
h
er
ic
al

ob
je
ct
.
T
h
e
su
rf
ac
e
p
la
ce
m
en
t’
s
fi
rs
t
at
te
m
p
ts

to
or
ie
nt

th
e
w
h
is
ke
r-
ar
ra
y
su
ch

th
at

th
e
m
ed

ia
n
co
nt
ac
t
lo
ca
ti
on

(g
re
en

m
ar
ke
r)

is
w
it
h
in

a
vo

lu
m
e
th
at

il
lu
st
ra
te
d
by

th
e
co
n
e
ou

tl
in
e
(f
ra
m
es

1,
3
an

d
6)
.
T
h
e
se
co
n
d
st
ep

in
cl
u
d
es

tr
an

sl
at
io
n

al
on

g
th
e
m
a
jo
r
ax

is
of

th
e
co
n
e
su
ch

th
at

th
e
m
ed

ia
n
d
is
ta
n
ce

to
th
e
p
oi
nt
s
al
on

g
th
e
w
h
is
ke
r-
ar
ra
ys

y-
co
m
p
on

en
t,

ar
e

w
it
h
in

a
sp
ec
ifi
ed

ra
n
ge

th
at

is
il
lu
st
ra
te
d
by

th
e
p
ai
r
of

st
ra
ig
ht

cy
an

li
n
es

(f
ra
m
e
9)
.
In

ea
ch

fr
am

e,
n
oi
se

is
ar
ti
fi
ci
al
ly

ad
d
ed

to
th
e
co
nt
ac
t
p
oi
nt

lo
ca
ti
on

s,
w
h
ic
h
ar
e
sh
ow

n
in

re
d
.
T
h
e
m
ed

ia
n
of

th
es
e
co
nt
ac
t
p
oi
nt
s
is

sh
ow

n
in

gr
ee
n
,
an

d
is

th
e
p
oi
nt

th
at

th
e
su
rf
ac
e
p
la
ce
m
en
t
co
nt
ro
ll
er

is
at
te
m
p
ti
n
g
to

p
la
ce

w
it
h
in

th
e
d
es
ir
ed

b
ou

n
d
ar
y
d
efi

n
ed

by
th
e
co
n
e

ou
tl
in
e.

T
h
e
m
ed

ia
n
p
er
p
en

d
ic
u
la
r
d
is
ta
n
ce

to
th
e
p
oi
nt
s
is

n
ot

sh
ow

n
in

th
e
fi
gu

re
an

d
is

in
st
ea
d
d
es
cr
ib
ed

in
th
e
m
ai
n

te
xt
.

143

CHAPTER 6. ACTIVE WHISKER-ARRAY EXPLORATION FOR FAST SHAPE

RECOGNITION

The process of ensuring a consistent placement strategy includes:

1. placing the median of the contact points within a specific field of view of the

whisker array

2. positioning the whisker array such that the median distance to all contact points

are within a specific perpendicular range

3. Fixing the orientation of the whisker-array with respect to the direction of gravity

Figure 6.1 illustrates this process, where frames 1, 3 and 6 show the process of

orienting the whisker-array towards the median of the contacts so that it falls within

the field of view, which is represented by the cone outline. Frame 9 shows the process of

translating towards the surface such that the median perpendicular distance is within a

specific perpendicular range, which is represented by the pair of parallel lines.

The consistent surface placement controller (SPC) is implemented in the form of a

function that returns the desired goal coordinate frame belonging to the end-e↵ector/whisker-

array. The function first attempts to correct the orientation of the whisker-array, followed

by its translational position. At all times, the function returns a goal coordinate frame

that maintains a fixed yaw value relative to the direction of gravity. The direction of

gravity is assumed to be known, otherwise this could be obtained from an accelerometer.

The function is shown in Algorithm 7 and its internal function maintain yaw, which is

responsible for correcting the roll of the target pose, is shown in Algorithm 8.

The maintain yaw function defines the target pose’s coordinate frame by first defin-

ing its y-component. The y-component would determine the direction that the whisker-

array would point towards, as such, the normal to the surface region is used to define

its value.

The next step includes defining the z-component, which would be equivalent to

setting the whisker-array’s yaw value. The z-component would need to be defined such

that it lies on the same plane defined by the gravity vector and the y-component, and

since the y and z components are perpendicular, the z-component can be defined as the

vector 90° away from the y-component, in the direction of the gravity vector. The x-

component can then easily be calculated as the cross product of the y and z components.

Thus, given the definition of the correct pose function, the pose of the whisker-array

is constantly checked to ensure that all conditions are met before a new surface region

is targeted.

144

6.1. METHOD

Algorithm 7: Consistent surface placement function

1 function correct pose {tf
i
ee
, ci, µ,�✓,�l,�u, �✓, �x};

Input : End e↵ector coordinate frame for current iteration tf
i
ee
2 R4⇥4

Estimated contact points ci = [[x1, y1, z1] . . . [xn, yn, zn]]
T

Minimum number of contact points µ
Half angle of cone volume where median must lie in �✓
Minimum number of contact points µ
Lower and upper bound of perpendicular distance that median contact
distance must lie in �l&�u
Rotation and translation division steps �✓&�x

Output: Goal coordinate frame tfgoal 2 R4⇥4

2 eey = tf
i
ee
[1 : 3, 2];

3 eeposition = tf
i
ee
[1 : 3, 4];

4 if size(ci) � µ then

/* correct rotation */

5 eci = median(ci);
6 n = normalize(eci � eeposition);
7 ✓ = acos(eey · v);
8 if ✓ > �✓ then
9 region normal = �v;

10 tf = maintain roll(tf i
ee
, region normal);

11 tfgoal = divide steps(tf i

goal
, �✓);

12 return tfgoal

/* correct distance */

13 vee!c = ci � eeposition;
14 v

y
ee!c

= vee!c · eey;

15 edy = median(vy
ee!c

);

16 if edy < �l or edy > �u then
17 midd = mean([�l,�u]);

18 v = edy �midd;
19 vtrans = v/�x;
20 tf = translate(tf i

ee
,vtrans);

21 vy = tf [1 : 3, 2];
22 tfgoal = maintain roll(tf ,�vy);
23 return tfgoal

145

CHAPTER 6. ACTIVE WHISKER-ARRAY EXPLORATION FOR FAST SHAPE

RECOGNITION

Algorithm 8: Maintain yaw according to the direction of gravity

1 function maintain yaw {tf ,n};
Input : Target coordinate frame before roll correction tf 2 R4⇥4

Target region’s normal vector n =2 R3⇥1

Output: Goal coordinate frame tfgoal 2 R4⇥4

2 eeposition = tf [1 : 3, 4] ; // target frame’s position

3 ytarget = �n ; // target frame’sycomponent vector

4 vgravity = [0, 0, 1] ; // vector directed away from gravity i.e. -z

5 ✓vy = acos(ytarget · vgravity);
6 ✓vz = ✓vy �

⇡

2 ; // angle to orient vgravity to target frame’szcomponent

7 rvz = vgravity ⇥ ytarget ; // define rotation axis from which vgravity ! ztarget

8 axis angvz = [rvz, ✓vz];
9 rotvz = RotationMatrix(axis angvz);

10 ztarget = rotvzvgravity;
11 xtarget = ytarget ⇥ ztarget ; // target frame’sxcomponent is perpendicular

toy&zcomponents

12 tfgoal =


xtarget ytarget ztarget eeposition

0 0 0 1

�
;

6.1.2 Surface Region Search

Reminding the reader that each unique feature is associated with a particular pose cell,

and that, when a feature is recognized, that particular pose cell’s activity is increased

leading to the formation of a new activity packet. As the whisker-array moves, pose

cell activity will be shifted around the grid according to the motion described by the

odometry. In the event that pose cells, which are in the path of the newly formed activity

packet, are activated via feature recognition, the activity of the packet will increase and

given su�cient excitation, will lead to a re-localization if the current pose estimate is not

in agreement. These series of consecutive feature recognitions must therefore correspond

to neighboring regions that are along the path taken by the whisker-array.

Linked experience nodes within the object map represent such neighboring regions.

It is therefore conceivable to induce re-localizations by moving the whisker-array from

one experience node to another linked experience node. However, a choice must be made

in selecting a node to move to, since experience nodes could potentially have multiple

links. Two selection criteria are proposed: 1) Following the experience history generated

during the object map’s generation, 2) Moving towards a region that is most dissimilar

to all plausible regions.

146

6.1. METHOD

6.1.2.1 Surface following

Each experience includes a description of its pose relative to a linked experience, and a

transformation matrix that moves the whisker-array to the desired region, described by

the target experience, can be formulated. The problem, however, is that these measure-

ments are corrupted by some form of noise.

The relative pose between experiences may be determined either based on their pose

in object map space, or otherwise, the recorded odometry input that led to a change

from one experience to the other. The poses in object map space are constantly being

adjusted at each iteration based on the occurred re-localizations. These corrections are

part of the inherent SLAM mechanism of updating the algorithm’s latest belief in map

layout. Thus the relative pose of each experience in object map space should contain

less error than those calculated from the odometry. For brevity the relative pose of

experiences in object map space is referred to as the ‘map pose’ and those from the

odometry the ‘odometry pose’.

Irrespective of the choice, the successive execution of transformations, based on either

the map or odometry poses, across multiple experiences would inevitably drift from the

intended target. The proposed method for resolving this issue is to: segment the motion

for an experience step (one experience to another) and limit the requested motion to 2-

dimensions. By implementing these conditions following all changes in pose, the whisker-

array should reduce the variation in observed features and facilitate feature recognition

for previously observed regions. In case the whisker-array drifts beyond the intended

target region, the proposed search methods both monitor re-localization events and

update their trajectories. Logically, the continuous updating of trajectory should ensure

the arrival of the whisker-array to its intended target, provided correct re-localizations.

An example of this proposed method can be seen in Figure 6.2. To generate this

image, the simulated whisker-array was set to move across several faces along a line of

latitude. The transformation matrix describing the motion at each iteration was then

corrupted with noise and two additional whisker-arrays are included. The two whisker-

arrays’ pose highlight the e↵ect that a surface placement controller has on pose of the

whisker-array when trying to move from one region to another based on noisy odometry

input. The figure shows that, by using the proposed surface placement controller (SPC),

the whisker-array’s whiskers maintain contact with the object’s surface and its yaw angle

is fixed relative to the direction of gravity (-z).

147

CHAPTER 6. ACTIVE WHISKER-ARRAY EXPLORATION FOR FAST SHAPE

RECOGNITION

-0.2

-0.1

0

0
0.1

x (m)

-0.1

z
 (

m
)

0.2

0

0.2

y (m)

0.3

0.1

0.4
0.4

Figure 6.2: The consequence of the surface placement controller is that the whiskers are
kept in constant contact with the surface of the object. In this example a whisker-array
is simulated to move around a sphere and the motion is re-created using noisy odometry
(N (0, 1cm) for translation and N (0, 5°) for orientation). Two RGB coordinate frames
shown represent the final pose of the whisker-array when its pose is determined via path
integration while the CMK frame shows the final pose of the ground truth. The larger
of the two RGB frames illustrates the case where the placement controller is activated,
while the smaller of the two illustrates the contrary case.

6.1.2.2 Follow experience history

The agent is confident of an object’s identity when the rate of re-localization is high

enough to cause its confidence level to exceed a preset threshold. The rate of re-

localization is the highest when the agent follows a similar path as that during the

generation of the object map as shown in (Salman & Pearson, 2018). However, this path

cannot be replicated exactly and will instead be approximated according to the stored

148

6.1. METHOD

experiences.

The history of active experiences is stored to allow for the segmentation and merging

of object maps, which is part of the recognition process described in Section 5.2. The

path way can therefore be approximated by following each successive experience as

indicated by the history. It is an approximation since the relative positioning of one

experience to another is determined by odometry data and will therefore include some

form of noise. The vector describing the placement of the next experience relative to the

supposed current one will be reduced to a 2D component. To ensure the agent does not

drive into the obstacle and to give the surface placement control mechanism ample time

to react and correct its pose, the translation is split into smaller step sizes (3 cm in this

work).

By following the experience history, the motion of whisker-array attempts to play

back the series of movements made when generating the original object map. The

experience history refers to the log of the active experience at each WhiskerRatSLAM

iteration. For example, when exploring the surface of an object, at each iteration there is

an experience that represents the current state of the whisker-array, which is referred to

as the current experience. As the exploration proceeds, an occurrence of a re-localization,

movement or new observation, results in a change of of state and thus, current experience.

The experience history is therefore a log of which experience was active at each specific

iteration.

In Section 5.2 Figure 5.16 illustrates the concept of using the rate of re-localization,

to an object’s set of experiences, as a measure of confidence in that object’s identity.

The top plot includes the experience history of the exploration run (black line) in which

the identity of the object is initially unknown. It can be seen that as the whisker-array

is set to explore the object, WhiskerRatSLAM recognizes, at several iterations, that the

experience that best describes the whisker-arrays current state, is from a set belonging

to the Plane object.

The trajectory executed in the case of Figure 5.16 is the same as that used for obtain-

ing the Plane object map, hence the near constant occurrence of correct re-localizations.

The proposed follow history search strategy attempts to recreate the original trajectory

by moving from one experience to the next. Thus, given a re-localization to a particular

object’s experience, the next experience as indicated in the experience history, would be

the target.

149

CHAPTER 6. ACTIVE WHISKER-ARRAY EXPLORATION FOR FAST SHAPE

RECOGNITION

1
0.40.8

0.6

y

1.3

0.4 0.2

1.2

1.1

x

z

1

0.9

0

0.8

0.7

0.6

1
0.40.8

0.6

y

0.4 0.2

1.3

1.2

x

1.1

z

1

0

0.9

0.8

0.7

0.6

(a)

0 20 40 60 80

bin

0

0.1

0.2

0.3

0.4

0.5

0.6

c
o

u
n

t

current pfh

0 5 10 15 20

whisker #

-3

-2

-1

0

1

2

3

lo
g

(s
d

a
)

current sda

0 20 40 60 80

bin

0

0.1

0.2

0.3

0.4

0.5

0.6

c
o

u
n

t

least similar pfh

0 5 10 15 20

whisker #

-3

-2

-1

0

1

2

3

lo
g

(s
d

a
)

least similar sda

(b)

Figure 6.3: Using the least similar region approach, the region whose features are least
similar to the current region are targeted. The red markers shown in Figure 6.3a highlight
the region that the whisker-array is currently at, and the blue markers highlight the
contacts associated with the least similar region. The aim is to visit the least similar
region so as to reduce ambiguity in object identity. In the following example, the true
identity of the object being probed is the Box object. By targeting the region on the
opposite side, which belongs to the Box-stack object, the system’s confidence in Box-
stack object would be lower than the Box object as the array would fail to observe the
least similar region. The least similar region is calculated based on the similarity of
regions’ features, which include the point feature histogram and slope distribution array.
The region features are shown in Figure 6.3b and the current region’s features are in the
left column while the least similar region’s features are in the right column. The method
used to calculate the least similar features is detailed in the main text.

150

6.1. METHOD

6.1.2.3 Least similar feature

When exploring an unknown object, there is a possibility of having a non-zero confidence

in multiple object identities. To cope with ambiguity, the proposed approach is to search

for the region that least resembles the current region, from the entire set of possible

objects.

It is computational expensive to search for the global solution regarding the least

similar region from among the sets of likely objects. This is because each feature would

have to be compared against the remaining features, resulting in a complexity of O(n2).

The proposed solution is to instead define the current observation as the reference from

which other regions are measured against.

S(on, Op) =

2

664

[on , oi1]
...

[on , oiend]

3

775 (6.1)

=

2

664

[�2(fn, fi1) , NMSE(sn, si1)]
...

[�2(fn, fiend) , NMSE(sn, send)]

3

775 (6.2)

Equation 6.1 shows the similarity matrix comparing each of the likely objects’ fea-

tures oi 2 Op, i 6= n, against the current observation on. Each row in the matrix is

the similarity vector defined in Equation 5.5, and the first column is a measure of point

feature histogram similarity, while the second is a measure of slope distribution array

similarity.

The similarity matrix is sorted according to the first column, followed by the second,

in descending order. Thus, the least similar feature, smin, will correspond to the first

row.

smin could potentially be associated with multiple experiences Esmin . The solution is

to determine which target experience e 2 Esmin has the lowest associated cost of getting

to. The cost from one experience node to another is defined in Equation 6.3 where wt

is the translational distance, wr is the angular displacement and nl is the number of

connections to and from other nodes.

w = wt + wr +
1

nl

(6.3)

The path from the current experience to a potential experience node is calculated

using Matlab’s graphshortestpath function (The MathWorks, 2018), which is set to use

151

CHAPTER 6. ACTIVE WHISKER-ARRAY EXPLORATION FOR FAST SHAPE

RECOGNITION

Dijkstra’s algorithm for calculating the shorted path based on the cost defined in Equa-

tion 6.3.

Once the paths from the current experience to all the potential experiences Esmin

are calculated, the experience with he shortest path is targeted. The whisker-array is

moved towards the target experience, until a desired confidence level is reached. If the

confidence of another object identity exceeds the current highest object identity, the

procedure is repeated and a new least similar region is targeted. Figure 6.3 illustrates

an example of a region and its associated least similar region.

6.1.2.4 Object identification condition

In the work described in Section 5.2, the algorithm concludes that a particular object has

been identified given a confidence level that is higher than a pre-defined threshold (RC

method). Through further analysis it has been observed that a better measure would

be to integrate the confidence and observe when it exceeds a pre-defined threshold (IC

method).

Through integration, the history of the confidence level for a particular object is

taken into account. If an identity has a non-zero confidence for a larger period of time, it

would suggest that more evidence has been gathered in its favour. The previous method

of choosing the identity whose confidence first exceeds a threshold is premature as the

sudden increase in confidence may be attributed to false re-localizations. The integral

approach is an attempt to minimize the e↵ect of false re-localizations and improve the

robustness of the recognition system.

Figure 6.4 illustrates the raw and integrated confidence plots for the Box-Stack and

Box objects. Using the RC method, and a threshold value of 3, the correct identity will

be selected. However, this given a slight change to the threshold value, for example 4,

the incorrect identity would be selected. Looking at the confidence integral plot, the IC

method allows for a larger margin of error with respect to a specific threshold value.

6.1.3 Simulation Setup

6.1.3.1 Object map generation

Before object recognition can be carried out, each object needs to be mapped. A map is

generated by exploring each object and visiting multiple regions across its surface, saving

the resulting object-map generated by WhiskerRatSLAM. The order and placement of

each visited region, in the case of the current work, is defined by an ellipsoid mesh that

is fit around each object. The whisker-array is set to visit each face of the ellipsoid mesh

152

6.1. METHOD

0 200 400 600 800 1000

Iteration

0

500

1000

1500

2000

2500

3000

3500

4000

C
o

n
fi
d

e
n

c
e

 i
n

te
g

ra
l

0 200 400 600 800 1000

Iteration

0

1

2

3

4

5

6

7

8

C
o

n
fi
d

e
n

c
e

BothBoxes

BoxS

Figure 6.4: Confidence and integrated confidence plots. The integrated confidence is
found to be a more robust measure of object identity as it takes into account past
confidence levels for a particular object. The previous method (RC) that only considers
the raw confidence value is vulnerable to noise as a threshold can be crossed given a
sudden spike in confidence levels. Using the IC method, a continuous high confidence
level is required before a change in dominant object identity can occur.

(a) Box Stack (b) Box

Figure 6.5: The simulation runs include the whisker-array exploring 2 unique objects.
The Box and Box Stack objects were specifically selected to observe how well the object
recognition system performs when presented with ambiguous objects.

and, following contact, adjust according to the surface-placement strategy. Once the

conditions of the surface-placement strategy was met, the whisker-array moved on to

the closest unvisited face. A single loop is defined as the visitation of all the mesh faces

once. A total of two loops were executed to ensure that a good variety of features were

observed for each surface region.

153

CHAPTER 6. ACTIVE WHISKER-ARRAY EXPLORATION FOR FAST SHAPE

RECOGNITION

Noise was added to the odometry of the whisker-array, as well as to the simulated

whisker-contact features.

6.1.3.1.1 Odometry noise To calculate an iteration’s odometry input, the displace-

ment from the previous iteration’s pose to the next is derived using Equation 6.4, where

Ti�1!i is the transformation matrix describing the change in pose and T�1
i�1 is the inverse

of the previous iteration’s pose, and Ti the current iteration’s pose.

Ti�1!i = T�1
i�1Ti (6.4)

To obtain a plausible velocity value that was within the expected range of a phys-

ical run, the angular velocity is drawn from a normal distribution of the form ! s
N (0.03, 0.0087), where the parameters are based on the observed distribution of angular

velocities in the physical data-set used in Section 5.2.

Ri�1!i = Ti�1!i[1 : 3, 1 : 3] (6.5)

Angular displacement is calculated by first converting the rotation matrix Ri�1!i,

which is defined in Equation 6.5, to an axis-angle representation of the form [eT , ✓]. The

rotation axis is a column vector e, and the magnitude of rotation is ✓.

Further noise is added to the rotational component of the odometry by rotating

the rotation matrix Ri�1!i. The rotation noise is defined according to a vector of euler

angles, where each element is drawn from the normal distribution N (0, 2.5°). Converting
the Euler vector to rotation matrixR⌘, the resulting noisy rotation matrix can be derived

using Equation 6.6

Ri�1!i⌘ = Ri�1!iR⌘ (6.6)

Converting Ri�1!i⌘ back to an axis-angle representation [eT⌘ , ✓⌘], the rotation ve-

locity vector included in the odometry input can be calculated according to Equation

6.7.

!⌘ = !e⌘ (6.7)

To calculate linear velocity, the change in time is first set according to the values of

the noisy angular displacement and velocity values:

�t = ✓⌘/! (6.8)

154

6.1. METHOD

Using the displacement vector � = Ti�1!i[1 : 3, 4], noise is added to its magnitude

k�⌘k = k�k+ ⌘, where ⌘ s N (0, 1 cm).

�⌘ =
�

k�k
· k�⌘k (6.9)

The noisy displacement vector is calculated according to equation 6.9 and the noise

velocity vector according to equation 6.10.

v⌘ = �⌘/�t (6.10)

The noisy odometry input is thus of the form shown in Equation 6.11.

o⌘ = [v⌘,!⌘,�t] (6.11)

Noise was also added to the simulated whisker-contact features that include the

positions of the contact points and the contacted surface slope.

6.1.3.1.2 Whisker-contact feature noise Contact points were obtained using the

same simulated ground truth process described in Chapter 4. Noise is added to the esti-

mated contact location according to N (0, r⌘), where r⌘ is equal to 25% of the whisker’s

length. In the simulated environment, the whisker-lengths were 60 mm, 100 mm and

160 mm, for each row going from the rostral to caudal direction.

To calculate the slope measure at each whisker, the normal vector of the contacted

mesh face is first determined according to Equation 6.12. Given the pose of the whisker’s

base at the time of contact, which is defined by a transformation matrix T tc
BWi

, the face’s

normal vector is projected onto the coordinate framesxand y components i.e. the vectors

corresponding to the direction of the Hall-e↵ect sensors. The slope is then equal to the

ratio of theyandxprojected normal.

nx = �n · T tc
BWi

[1 : 3, 1] (6.12)

ny = �n · T tc
BWi

[1 : 3, 2] (6.13)

slope = ny/nx (6.14)

Slope noise is defined by the normal distribution N (0, s⌘), where s⌘ = 0.33, which is

based on the inspection of the physical data-sets used in Section 5.2.

Furthermore, a contact was registered at a probability of 98%, which is an arbitrary

value chosen to test the robustness of the algorithm.

155

CHAPTER 6. ACTIVE WHISKER-ARRAY EXPLORATION FOR FAST SHAPE

RECOGNITION

Having obtained the object maps, an unknown object is presented to the whisker-

array, which is tasked with exploring the surface until a desired confidence threshold is

reached, or otherwise, a time limit is exceeded.

6.1.3.2 Object Exploration

The current chapter explores the e↵ectiveness of the surface placement controller, as well

as the two proposed region search strategies for improving the recognition capabilities

of the whiskered system, using the objects illustrated in Figure 6.5.

The simulation based experiments are carried out such that the state of the whisker-

array during initialization can be controlled by a seed parameter. For a given unique

seed value, the simulation is run three times so as to observe the e↵ect of using: 1) the

default trajectory, 2) the least similar region search strategy and 3) the follow experience

history strategy. A total of 10 unique seed values are used to result in a total of 30 runs.

The default trajectory generated for the whisker array follows a spherical mesh,

which is unlike the ellipsoid mesh used during the creation of the object map. The seed

number a↵ects the starting face that the whisker-array visits and thus the initial pose of

the whisker-array. Once a confidence in a particular object identity increases, one of the

proposed region search strategies takes over as the method of generating trajectories.

The default method is activated given a zero confidence level for all objects, or otherwise

if the whisker-array loses contact with the surface.

6.1.4 Physical Setup

The reality-based setup for gathering the object maps and running the object-recognition

experiments is similar to the one described in Section 5.2. Like the simulation-based set

up, the Box and Box-Stack objects are used, which are shown in Figure 6.5.

To generate an object map, the default trajectory was generated according to a

virtual ellipsoid mesh that is fit to the object, and each mesh face is targeted. Following

contact, the whisker-array is free to adjust itself according to the surface placement

strategy. The number of surface placement adjustments were limited to 10 iterations

to reduce the data-set collection time. A total of two loops, where one loop included

visiting all the ellipsoid faces, are executed when generating an object map.

An RCP whisker control scheme was implemented at all times to reduce the likelihood

of whisker breakages. RCP, which is described in Chapter 4, is set so that the whisker

retracts only after the deflection sensor reaches its maximum value, thereby avoiding any

156

6.2. RESULTS

early saturation of deflection-amplitude. The support vector regression model (svr10)

generated in Chapter 4 is used as the radial-estimation model.

Once the object maps are collected, the object exploration can be started. The

object exploration trial involves presenting the whisker-array with an unknown object

and observing its confidence in object identity. Each object is explored in manner where

the trajectory, by default, is generated according to a spherical mesh. Given a rise in

object identity confidence, the most promising search strategy suggested by the results

of the simulation-based experiments will be used for confirming object identity.

6.2 Results

Figure 6.6 shows the e↵ect that the surface placement strategy has on the confidence level

for object identity. The results were obtained by setting the whisker-array to explore the

Box-Stack object using a spherical mesh based trajectory. The correct object identity in

this case would be the Box-Stack object while the incorrect identity would refer to the

Box object.

With the surface placement controller (SPC) enabled, the average confidence value for

the correct object identity is significantly higher than when the SPC is disabled. Enabling

SPC also is seen to increase the average confidence in incorrect identity, however, the

increase is not as great as that for the correct identity.

Considering the simulation-based runs, the performance is measured using two met-

rics. The first metric is the size of the margin between the time for the correct IC value

to reach the chosen threshold, and that for the incorrect IC value to reach the same

threshold. This metric is referred to as the Identity Margin (IM) and a higher positive

value measures how well the algorithm performed at discriminating between the correct

and incorrect object identities. The second metric measures how quickly the correct

object identity is recognized and is referred to as the successful recognition time (SRT).

A suitable integrated confidence threshold was selected by searching for a value that

resulted in a high IM median and low spread. Figure 6.7 includes four box plots that

vary the IC threshold between 100, 300, 600 and 900. It can be seen that by increasing

the threshold, a higher IM value can be achieved at the expense of higher variance. The

optimum value is observed to be approximately 300.

With an IC threshold of 300, the LSR strategy is seen to improve the performance

of the recognition system as seen by its higher IM median relative to the default search

strategy and FEH. However, with 95% confidence, the medians are not considered dif-

ferent and the improvement in performance is not statistically significant. The same is

157

CHAPTER 6. ACTIVE WHISKER-ARRAY EXPLORATION FOR FAST SHAPE

RECOGNITION

SPC disabled SPC enabled
0

2

4

6

8

10

12

14

16

18

20
m

e
a

n
 c

o
n

fid
e

n
ce

 v
a

lu
e

SPC effect on correct confidence

SPC disabled SPC enabled
0

2

4

6

8

10

12

14

16

18

20

m
e

a
n

 c
o

n
fid

e
n

ce
 v

a
lu

e

SPC effect on incorrect confidence

Figure 6.6: The mean confidence levels for the correct (left) and incorrect (right) object
identity across multiple runs where the SPC was either enabled or disabled. For each
of the two cases, 10 runs were made, using the default trajectory as the search strategy.
The red line indicates the median of the data set, and the triangle markers indicate
the boundary that the neighbouring group’s median must lie beyond, in order for their
medians to be considered significantly di↵erent at a 5% significance level. In the case
of the results shown in this figure, the enabling of SPC results in a significant increase
of confidence in the correct object identity. Similarly, the enabling of SPC results in a
significant increase of confidence in the incorrect object identity, however, the increase
is not as large as that for the correct case.

true for the FEH case, which relative to both LSR and the default strategy, has the

highest IM variance.

Figure 6.9 plots the distributions of the successful recognition times for each search

strategy. An improvement of performance will be illustrated by a reduction in SRT value

as this would imply a quick recognition of correct object identity. It can be seen that

the LSR median is the lowest out of the three strategies, however, neither the LSR or

FEH strategies result in a statistically significant improvement of performance.

The results from the reality-based experiments using the LSR strategy are shown in

Figure 6.10, and include both the raw and integrated confidence values for each particular

object identity. Two runs were carried out, including one where the Box-Stack object

was the correct object identity (top row) and a second where the Box object was the

correct identity (bottom row).

Looking at the bottom plot in Figure 6.10b, it can be seen that the IC value of

158

6.2. RESULTS

FEH LSR Default
-600

-400

-200

0

200

400

600
IC threshold = 100

(a)

FEH LSR Default
-600

-400

-200

0

200

400

600
IC threshold = 300

(b)

FEH LSR Default
-600

-400

-200

0

200

400

600
IC threshold = 600

(c)

FEH LSR Default
-600

-400

-200

0

200

400

600
IC threshold = 900

(d)

Figure 6.7: The e↵ect of integrated confidence (IC) threshold on the distribution of the
time di↵erence between incorrect and correct identity classification. It can be seen that
in the direction of increasing IC threshold, a desirable increase in Identity Margin (IM)
is observed, however, this is at the expense of increasing variance. Optimizing for a
high IM median and low variance for all three search strategies, an IC value of 300 is
obtained.

159

CHAPTER 6. ACTIVE WHISKER-ARRAY EXPLORATION FOR FAST SHAPE

RECOGNITION

FEH LSR Default
-600

-400

-200

0

200

400

600

Difference in time taken to reach IC threshold of 300
between incorrect and correct identity

Figure 6.8: By calculating the di↵erence between the time taken for the incorrect object
identity to reach an integrated confidence value of 300, and that for a correct object
identity, the performance of the recognition system can be measured. This performance
measure is referred to as the Identity Margin (IM) and its distribution for each of the
three search strategies is illustrated in this figure. With the highest IM median, LSR is
seen to improve the performance of the recognition system. However, this improvement
is not considered significant at a 5% significance level.

the incorrect (Box-Stack) object rises first, which is eventually beaten by the correct

(Box) identities IC value. In the case of the upper plot where the correct object is the

Box-Stack, the correct object identity always maintains a higher IC value. In both cases

ambiguity in object identity occurs since both identities have a non zero IC value before

the threshold is reached. However, in both cases, the correct object identity’s IC value

crosses the threshold first, which is considered as a successful recognition.

6.3 Discussion

The next step from Section 5.2 was to address the significantly lower confidence values

experienced when using an exploration trajectory that is not the same as that used during

object-map generation. The work described in this chapter addresses this problem by

implemented the surface placement controller (SPC), which is shown in the previous

160

6.3. DISCUSSION

None Least Follow
0

100

200

300

400

500
Time to successful recognition

Figure 6.9: The figure includes a box plot that illustrates the distribution of successful
recognition time (SRT) for each search strategy. SRT measures the time taken for
the correct object identity’s integrated confidence to reach the set threshold of 300,
and a lower value would imply a quicker recognition process. A statistically significant
improvement is not observed for either FEH or LSR relative to the default strategy.

results section that it does significantly raise the raw confidence value for the correct

object identity.

The second goal from this chapter included developing a search strategy that min-

imizes the time taken to correctly identify an object, as well as deal with ambiguity.

Figure 6.9 shows that the LSR search strategy does reduce the time taken for a suc-

cessful recognition, while Figure 6.8 shows that when exploring partially similar object

shapes, the LSR strategy does improve the algorithms ability to discriminate between

correct and incorrect object identities. For both results, using a 5% significance, the im-

provements are not significant, however, the improvements do suggest that the concept

of moving towards least similar regions does cause an increase of performance, which

would warrant further investigation.

Ambiguity also is not always resolved as observed in other experimental runs. This

could potentially be due to a low time constant for pose cell activity. Reminding the

reader that the two object used are ambiguous in the upper region where the Box and

Box-stack are most similar. Going lower down the body, the two object di↵er since the

Box-stack has a protruded smaller Box object attached. If the time constant describing

the decay of the pose cell activity were increased, e↵ectively increasing the memory

length of WhiskerRatSLAM, the system can better discriminate ambiguous objects as

older evidence can be utilized. In the case of the two objects, is the whisker-array moves

from the upper region towards the lower, less ambiguous region, the pose-cell activity

packet associated with the correct object identity would more likely survive the journey

and be able to receive the activity associated with observing the less ambiguous region.

161

CHAPTER 6. ACTIVE WHISKER-ARRAY EXPLORATION FOR FAST SHAPE

RECOGNITION

0 100 200 300 400 500 600 700 800

Iteration

0

1

2

3

4

5

6
C

o
n

fid
e

n
ce

Box-Stack

Box-Stack
Box

0 100 200 300 400 500 600 700 800

Iteration

0

1

2

3

4

5

6

C
o

n
fid

e
n

ce

Box

(a) Raw confidence value.

0 100 200 300 400 500 600 700 800

Iteration

0

500

1000

1500

2000

In
te

g
ra

te
d

 c
o

n
fid

e
n

ce

Box-Stack | 353

Box-Stack
Box
IC threshold

0 100 200 300 400 500 600 700 800

Iteration

0

200

400

600

800

In
te

g
ra

te
d

 c
o

n
fid

e
n

ce

Box | 460

(b) Integrated confidence value.

Figure 6.10: The reality-based object recognition experiments present the whisker-array
with two di↵erent objects and use the LSR strategy for confirming object identity. Two
runs are highlighted in the results where the top row belongs to the run where the
Box-Stack object is the correct object identity and the bottom, the Box object is the
correct object identity. Ambiguity occurs in both runs as there is a non-zero IC value for
multiple identities before the IC threshold is crossed. For both cases the correct object
identity is recognized as the IC value for the correct identity is the first to reach the
chosen threshold of 300. It must be noted that the y-axis limit of the plots in Figure
6.10b are not the same — this is to show more clearly the state of the IC levels at the time
of threshold crossing. In summary, both runs highlight successful object recognition.

Observing the e↵ect that pose-cell decay has on WhiskerRatSLAM’s ability to deal with

ambiguous objects would be an interesting topic for future work.

In conclusion an e↵ective strategy for ensuring consistent region observations is de-

veloped for the whisker-array system. The WhiskerRatSLAM system is shown to be

more confident using SPC of the correct object identity, and a trajectory other than

the one used to generate the object-map may be used. This work however was not able

to conclude which method was best for confirming object identity as neither strategy

resulted in significant performance gains.

162

Chapter 7

Conclusions

The scope of this work was limited to exploring an o�ce like environment using whisker-

tactile and odometric sensors that are mounted to a mobile wheel based platform with

a 6-dof arm.

The environment is assumed to be made of a uniformly textured and flat ground with

spurious number of simply shaped objects such as chairs, tables, trash cans and multiple

rooms. It’s been discussed that such a space would be well suited to being mapped using

a topological mapping approach, since the environment was populated with landmarks

across a uniform surface.

Chapter 3 details the tasks undertaken to set up the localization and mapping sys-

tem, which includes the integration of whisker-tactile sensing data with the RatSLAM

algorithm. The work included the mapping of whisker-array sensing data to an image

representation of contact features, the evaluation of di↵erent contact-angle estimating

methods, and the evaluation of the bio-inspired whisker control strategy, rapid cessation

of protraction. The chapter’s findings illustrate how the use of RCP, and a deflection

based method for estimating contact angle, result in contact features that are less am-

biguous for di↵erent surface regions that in turn improve the localization performance

of the algorithm. RCP was also observed to reduce the likelihood of whiskers breaking.

Furthermore, the compatibility of a RatSLAM-Whisker combination was confirmed via

a successful loop closure over a 2D surface with detectable random deformities.

Such an ideal terrain would not typically be encountered in an o�ce-like environ-

ment, and would instead consist of a uniformly textured floor with sparsely distributed

objects. To address this case, the proposed robotic-whisker system would need to extract

higher quality whisker-contact features so as to recognize higher level environmental fea-

tures such as shapes. The set of features known to be available to whisker sensors are

163

CHAPTER 7. CONCLUSIONS

geometric and textural features. The current work focuses on geometrical local features

for object/shape recognition. In an e↵ort to improve the distinguishing capability of the

future 3D object recognition system, a contact localization method that is of a higher

fidelity than the crude tip-assumption method used in Chapter 3 is needed.

Given the system’s hardware set up, a machine learning approach is taken for esti-

mating radial distance based on whisker-deflection data. Chapter 4 thus includes an in-

vestigation into which regression model is better suited for improving the radial-distance

accuracy. The results show that given the sacrifice of a slightly lower precision, a support

vector regression model can be used to map sensory features to a radial-distance value,

without the need to measure whisker length. With an improved reconstruction fidelity

the system is better able to discriminate di↵erent object shapes, which desirable given

the planned design of an object recognition system.

A particularly important issue that needed to be addressed is the inherent require-

ment for tactile-sensors’ to orient and translate along a surface in order to sense and

identify an object, which would call for a SLAM solution that is capable of handling

the movement through higher dimensions. Chapter 5 presents a description of a novel,

RatSLAM based algorithm dubbed WhiskerRatSLAM, which operates in 6-dimensional

physical space.

The capabilities of the new algorithm is explored in Section 5.2 and is shown to be

able to identify an object shape by having the whiskers whisk along its surface while

performing 6D SLAM. The results include the precision of end-e↵ector localization along

an objects surface and the identification of an object from among a series of other

previously mapped objects. The results indicated that the recognition performance was

poor when the exploration trajectory of the whisker-array di↵ered from the trajectory

used to initially map the object. Chapter 6 addresses this problem by implementing a

surface placement controller that reduces the variation in observed features at a given

surface region.

Chapter 6 also explored di↵erent region search strategies that attempt to reduce

the time taken to confirm an object’s identity. The results from this chapter show a

statistically significant improvement in correct object recognition when using the surface

placement controller and no significant changes to recognition speed when using the

proposed Least Similar Region or Follow Experience History search strategies.

It has thus far been illustrated that two sub-systems that are each required for object

and terrain exploration, have been shown to operate successfully in Chapters 3 and 6

respectively.

164

7.1. FUTURE WORK

7.1 Future work

Future work should include the implementation of an active surface exploration ap-

proach, which is described in the work of Mitchinson (Mitchinson & Prescott, 2013b),

the integration of object maps into the terrain exploration model as described in Fig-

ure 5.1 such that the platform can navigate e�ciently through a sparsely populated

landscape defined by richly represented tactile landmarks.

With regards to Chapter 6, the strategies for increasing object recognition times

failed to show any significant improvement and further investigation is needed to address

this problem of dealing with object ambiguity. Adding more regional features such as

textures could potentially result in improvement for both the Least Similar Region and

Follow Experience History approaches. Another potential avenue for investigation is

the way similarity is measured, currently a normalized mean square error is used to

measure similarity of Slope Distribution Arrays. Alternative approaches could include

the consideration which whisker experiences a particular value of slope, and therefore

take into account changes in whisker-array orientation.

To finalize the integration of the terrain and object exploration modes, the challenge

of identifying the cues needed to switch between modes needs to be addressed. This

includes investigating how the system can di↵erentiate between obstacles and objects,

such as encountering a wall or when encountering a large box shaped object.

There is also the problem of whisker being caught in gaps, or at an angle that

prevents it from whisking. A real-time system that can adapt the pose of the whisker-

array, instantaneously and organically once a whisker is found to be in such a scenario

needs to be implemented if the whisker-array is to be used in real-life applications.

The overall speed of the system is also very slow. The whisking speed is limited to

avoid nose in the deflection data. This could be addressed by using: advanced filtering

techniques found in research (Anderson et al., 2010), changing the whisker’s material to

one with a higher damping coe�cient, and utilizing more complex whisking trajectories

that exhibit spread reduction behavior.

The whisker-array also would require additional sensors as a last resort obstacle

avoidance mechanism for deployment in real-life operations. The current system is

heavily controlled and the environment is exactly mapped prior to trajectory genera-

tion, thereby allowing the system to avoid collision. If the system is to be implemented

in real-life, a more robust avoidance mechanism is needed, such as the nose sensor on

the Shrewbot (Pearson et al., 2011) that include an array of passive microvibrissae.

165

References

Ahissar, E., & Knutsen, P. M. (2008, Jun 01). Object localization with whiskers. Bio-

logical Cybernetics, 98 (6), 449–458. Retrieved from https://doi.org/10.1007/

s00422-008-0214-4 doi: 10.1007/s00422-008-0214-4

Ahn, S., & Kim, D. (2017). Radial distance estimation with tapered whisker sensors.

Sensors, 17 (7), 1659.

Anderson, S. R., Pearson, M. J., Pipe, A., Prescott, T., Dean, P., & Porrill, J. (2010).

Adaptive cancelation of self-generated sensory signals in a whisking robot. IEEE

Transactions on Robotics, 26 (6), 1065–1076.

Arabzadeh, E., Panzeri, S., & Diamond, M. E. (2006). Deciphering the spike train of a

sensory neuron: counts and temporal patterns in the rat whisker pathway. Journal

of Neuroscience, 26 (36), 9216–9226.

Arleo, A., & Gerstner, W. (2000). Spatial cognition and neuro-mimetic navigation: a

model of hippocampal place cell activity. Biological Cybernetics, 83 (3), 287–299.

Aulinas, J., Petillot, Y. R., Salvi, J., & Lladó, X. (2008). The SLAM problem: a survey.

CCIA, 184 (1), 363–371.

Ball, D. (2018a). OpenRatSLAM C++. Retrieved from https://github.com/

davidmball/ratslam

Ball, D. (2018b). OpenRatSLAM Matlab. Retrieved from https://github.com/

davidmball/ratslam matlab

Ball, D., Heath, S., Wiles, J., Wyeth, G., Corke, P., & Milford, M. (2013, Apr 01).

OpenRatSLAM: an open source brain-based SLAM system. Autonomous Robots,

34 (3), 149–176. Retrieved from https://doi.org/10.1007/s10514-012-9317-9

doi: 10.1007/s10514-012-9317-9

Ball, D., Heath, S., Wyeth, G., & Wiles, J. (2010). iRat: Intelligent rat animat technol-

ogy. Proceedings of the 2010 Australasian Conference on Robotics and Automation,

1–3.

Ball, D., & Milford, M. (2015, January). OpenRatSLAM datasets. Retrieved from

167

https://doi.org/10.1007/s00422-008-0214-4
https://doi.org/10.1007/s00422-008-0214-4
https://github.com/davidmball/ratslam
https://github.com/davidmball/ratslam
https://github.com/davidmball/ratslam_matlab
https://github.com/davidmball/ratslam_matlab
https://doi.org/10.1007/s10514-012-9317-9

REFERENCES

https://wiki.qut.edu.au/display/cyphy/openRatSLAM+datasets

Bazeille, S., & Filliat, D. (2011). Incremental topo-metric slam using vision and robot

odometry. In IEEE International Conference on Robotics and Automation 2011

(ICRA) (p. 4067-4073).

Berg, R. W., & Kleinfeld, D. (2003, Jan). Rhythmic whisking by rat: Retraction as well

as protraction of the vibrissae is under active muscular control. J Neurophysiol ,

89 (1), 104–117. doi: 10.1152/jn.00600.2002

Bird, C. M., & Burgess, N. (2008). The hippocampus and memory: insights from spatial

processing. Nature Reviews Neuroscience, 9 (3), 182.

Birdwell, J. A., Solomon, J. H., Thajchayapong, M., Taylor, M. A., Cheely, M., Towal,

R. B., . . . Hartmann, M. J. Z. (2007). Biomechanical models for radial distance de-

termination by the rat vibrissal system. Journal of Neurophysiology , 98 (4), 2439–

2455. Retrieved from http://jn.physiology.org/content/98/4/2439 doi:

10.1152/jn.00707.2006

Bishop, C. M. (2006). Pattern recognition and machine learning (information science

and statistics). Berlin, Heidelberg: Springer-Verlag.

Brecht, M., Naumann, R., Anjum, F., Wolfe, J., Munz, M., Mende, C., & Roth-

Alpermann, C. (2011, 10). The neurobiology of Etruscan shrew active touch.

Philosophical Transactions of the Royal Society of London B: Biological Sciences,

366 (1581), 3026–3036.

Burak, Y., & Fiete, I. R. (2009). Accurate path integration in continuous attractor

network models of grid cells. PLoS computational biology , 5 (2), e1000291.

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., . . . Leonard,

J. J. (2016). Past, present, and future of Simultaneous Localization And Mapping:

Toward the robust-perception age. IEEE Transactions on Robotics , 32 (6), 1309–

1332.

Carvell, G. E., & Simons, D. J. (1990). Biometric analyses of vibrissal tactile discrimi-

nation in the rat. Journal of Neuroscience, 10 (8), 2638–2648.

Cheng, B., & Titterington, D. M. (1994). Neural networks: A review from a statistical

perspective. Statistical science, 2–30.

Chitta, S., Sucan, I., & Cousins, S. (2012). Moveit![ros topics]. IEEE Robotics &

Automation Magazine, 19 (1), 18–19.

Craig, J. J. (2009). Introduction to robotics: mechanics and control, 3/e. Pearson

Education India.

Dahiya, R. S., Metta, G., Valle, M., & Sandini, G. (2010, Feb). Tactile sensing from

humans to humanoids. IEEE Transactions on Robotics , 26 (1), 1-20. doi: 10.1109/

168

https://wiki.qut.edu.au/display/cyphy/openRatSLAM+datasets
http://jn.physiology.org/content/98/4/2439

REFERENCES

TRO.2009.2033627

Diamond, M. E., & Arabzadeh, E. (2013). Whisker sensory system – from receptor

to decision. Progress in Neurobiology , 103 , 28 - 40. Retrieved from http://www

.sciencedirect.com/science/article/pii/S0301008212000895 (Conversion

of Sensory Signals into Perceptions, Memories and Decisions) doi: http://dx.doi

.org/10.1016/j.pneurobio.2012.05.013

Diebel, J. (2006). Representing attitude: Euler angles, unit quaternions, and rotation

vectors. Matrix , 58 (15-16), 1–35.

dos Santos, J. P. M. (2013). SmokeNav-Simultaneous Localization And Mapping in

reduced visibility scenarios. University of Coimbra.

Durrant-Whyte, H., & Bailey, T. (2006, June). Simultaneous Localization And Mapping:

part I. Robotics Automation Magazine, IEEE , 13 (2), 99-110.

Etienne, A. S., Maurer, R., & Séguinot, V. (1996). Path integration in mammals and

its interaction with visual landmarks. Journal of Experimental Biology , 199 (1),

201–209.

Evans, M., Fox, C., Lepora, N., Pearson, M., Sullivan, J. C., & Prescott, T. (2013).

The e↵ect of whisker movement on radial distance estimation: a case study in

comparative robotics. Frontiers in Neurorobotics, 6 , 12. Retrieved from http://

journal.frontiersin.org/article/10.3389/fnbot.2012.00012 doi: 10.3389/

fnbot.2012.00012

Fend, M., Bovet, S., Yokoi, H., & Pfeifer, R. (2003, Oct). An active artificial whisker

array for texture discrimination. In Intelligent Robots and Systems, 2003. (IROS

2003). Proceedings. 2003 IEEE/RSJ International Conference on (Vol. 2, p. 1044-

1049 vol.2). doi: 10.1109/IROS.2003.1248782

findpeaks. (2017, Nov). Retrieved 15/11/2017, from https://www.mathworks.com/

help/signal/ref/findpeaks.html

fitrsvm. (2017, Nov). Retrieved 14/11/2017, from https://uk.mathworks.com/help/

stats/fitrsvm.html

Fox, C., Evans, M., Pearson, M., & Prescott, T. (2012, May). Tactile SLAM with a

biomimetic whiskered robot. In IEEE Int. Conf. Robotics and Automation (ICRA)

(p. 4925-4930). doi: 10.1109/ICRA.2012.6224813

Fox, C. W., Mitchinson, B., Pearson, M. J., Pipe, A. G., & Prescott, T. J. (2009).

Contact type dependency of texture classification in a whiskered mobile robot. Au-

tonomous Robots, 26 (4), 223–239. Retrieved from http://dx.doi.org/10.1007/

s10514-009-9109-z doi: 10.1007/s10514-009-9109-z

Georgopoulos, A. P., Schwartz, A. B., & Kettner, R. E. (1986). Neuronal population

169

http://www.sciencedirect.com/science/article/pii/S0301008212000895
http://www.sciencedirect.com/science/article/pii/S0301008212000895
http://journal.frontiersin.org/article/10.3389/fnbot.2012.00012
http://journal.frontiersin.org/article/10.3389/fnbot.2012.00012
https://www.mathworks.com/help/signal/ref/findpeaks.html
https://www.mathworks.com/help/signal/ref/findpeaks.html
https://uk.mathworks.com/help/stats/fitrsvm.html
https://uk.mathworks.com/help/stats/fitrsvm.html
http://dx.doi.org/10.1007/s10514-009-9109-z
http://dx.doi.org/10.1007/s10514-009-9109-z

REFERENCES

coding of movement direction. Science, 233 (4771), 1416–1419.

Gere, J. M. (2004). Mechanics of materials (6th ed.). Thomson Learning.

Gnana Sheela, K., & Deepa, S. N. (2013, 06). Review on methods to fix number of

hidden neurons in neural networks. Mathematical Problems in Engineering , 2013 .

Gordon, G., Fonio, E., & Ahissar, E. (2014, October). Learning and control of

exploration primitives. J. Comput. Neurosci., 37 (2), 259–280. doi: 10.1007/

s10827-014-0500-1

Grant, R. A., Mitchinson, B., Fox, C. W., & Prescott, T. J. (2009). Active touch sens-

ing in the rat: Anticipatory and regulatory control of whisker movements during

surface exploration. Journal of Neurophysiology , 101 (2), 862–874. Retrieved from

http://jn.physiology.org/content/101/2/862 doi: 10.1152/jn.90783.2008

Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J., & Kwok, N. M. (2016). A

comprehensive performance evaluation of 3d local feature descriptors. International

Journal of Computer Vision, 116 (1), 66–89.

Gustafsson, F., Gunnarsson, F., Bergman, N., Forssell, U., Jansson, J., Karlsson, R., &

Nordlund, P.-J. (2002). Particle filters for positioning, navigation, and tracking.

IEEE Transactions on signal processing , 50 (2), 425–437.

Hayman, R. M. A., Casali, G., Wilson, J. J., & Je↵ery, K. J. (2015). Grid cells on steeply

sloping terrain: evidence for planar rather than volumetric encoding. Frontiers in

Psychology , 6 , 925. Retrieved from http://journal.frontiersin.org/article/

10.3389/fpsyg.2015.00925 doi: 10.3389/fpsyg.2015.00925

Hetzel, G., Leibe, B., Levi, P., & Schiele, B. (2001). 3d object recognition from range

images using local feature histograms. In Proceedings of the 2001 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition. CVPR 2001

(Vol. 2, p. II-394-II-399 vol.2). doi: 10.1109/CVPR.2001.990988

Hodaň, T., Matas, J., & Obdržálek, Š. (2016). On evaluation of 6d object pose estima-

tion. In European Conference on Computer Vision (pp. 606–619).

Huet, L. A., Rudnicki, J. W., & Hartmann, M. J. (2017). Tactile sensing with whiskers

of various shapes: determining the three-dimensional location of object contact

based on mechanical signals at the whisker base. Soft robotics, 4 (2), 88–102.

Jadhav, S. P., & Feldman, D. E. (2010). Texture coding in the whisker system.

Current Opinion in Neurobiology , 20 (3), 313 - 318. Retrieved from http://

www.sciencedirect.com/science/article/pii/S095943881000036X (Sensory

systems) doi: http://dx.doi.org/10.1016/j.conb.2010.02.014

Jazar, R. N. (2010). Theory of applied robotics: kinematics, dynamics, and control.

Springer Science & Business Media.

170

http://jn.physiology.org/content/101/2/862
http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00925
http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00925
http://www.sciencedirect.com/science/article/pii/S095943881000036X
http://www.sciencedirect.com/science/article/pii/S095943881000036X

REFERENCES

Je↵ery, K. J., Jovalekic, A., Verriotis, M., & Hayman, R. (2013, 10 008). Navigating

in a three-dimensional world. Behavioral and Brain Sciences , 36 (5), 523-543. doi:

10.1017/S0140525X12002476

Kajiura, S. M., & Holland, K. N. (2002). Electroreception in juvenile scalloped hammer-

head and sandbar sharks. Journal of Experimental Biology , 205 (23), 3609–3621.

Kalman, R. E. (1960, 03). A New Approach to Linear Filtering and Prediction Problems.

Journal of Basic Engineering , 82 (1), 35-45. Retrieved from https://doi.org/

10.1115/1.3662552 doi: 10.1115/1.3662552

Karamizadeh, S., Abdullah, S. M., Halimi, M., Shayan, J., & Javad Rajabi, M. (2014).

Advantage and drawback of support vector machine functionality. In Computer,

Communications, and Control Technology (I4CT), 2014 International Conference

on (pp. 63–65).

Kim, D., & Möller, R. (2007). Biomimetic whiskers for shape recognition. Robotics

and Autonomous Systems , 55 (3), 229 - 243. Retrieved from http://www

.sciencedirect.com/science/article/pii/S0921889006001400 doi: http://

dx.doi.org/10.1016/j.robot.2006.08.001

Kim, J.-H., Starr, J. W., & Lattimer, B. Y. (2015). Firefighting robot stereo infrared

vision and radar sensor fusion for imaging through smoke. Fire Technology , 51 (4),

823–845. Retrieved from http://dx.doi.org/10.1007/s10694-014-0413-6 doi:

10.1007/s10694-014-0413-6

Krupa, D. J., Matell, M. S., Brisben, A. J., Oliveira, L. M., & Nicolelis, M. A. L. (2001).

Behavioral properties of the trigeminal somatosensory system in rats performing

whisker-dependent tactile discriminations. Journal of Neuroscience, 21 (15), 5752–

5763. Retrieved from http://www.jneurosci.org/content/21/15/5752

Kummerle, R., Steder, B., Dornhege, C., Ruhnke, M., Grisetti, G., Stachniss, C., &

Kleiner, A. (2009). On measuring the accuracy of SLAM algorithms. Autonomous

Robots, 27 (4), 387–407. Retrieved from http://dx.doi.org/10.1007/s10514

-009-9155-6 doi: 10.1007/s10514-009-9155-6

Liang, C.-H., Chuang, C.-L., Jiang, J.-A., & Yang, E.-C. (2016). Magnetic sensing

through the abdomen of the honey bee. Scientific reports , 6 , 23657.

Liu, H., Wu, Y., Sun, F., & Guo, D. (2017). Recent progress on tactile object recognition.

International Journal of Advanced Robotic Systems , 14 (4), 1729881417717056.

Retrieved from https://doi.org/10.1177/1729881417717056 doi: 10.1177/

1729881417717056

Lottem, E., & Azouz, R. (2009). Mechanisms of tactile information transmission through

whisker vibrations. The Journal of Neuroscience, 29 (37), 11686-11697. Re-

171

https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
http://www.sciencedirect.com/science/article/pii/S0921889006001400
http://www.sciencedirect.com/science/article/pii/S0921889006001400
http://dx.doi.org/10.1007/s10694-014-0413-6
http://www.jneurosci.org/content/21/15/5752
http://dx.doi.org/10.1007/s10514-009-9155-6
http://dx.doi.org/10.1007/s10514-009-9155-6
https://doi.org/10.1177/1729881417717056

REFERENCES

trieved from http://www.jneurosci.org/content/29/37/11686.abstract doi:

10.1523/JNEUROSCI.0705-09.2009

Lozano-Perez, T. (2012). Autonomous robot vehicles. Springer Science & Business

Media.

Lucianna, F. A., Albarracin, A. L., Vrech, S. M., Farfan, F. D., & Felice, C. J. (2016). The

mathematical whisker: A review of numerical models of the rat’s vibrissa biome-

chanics. Journal of Biomechanics, 49 (10), 2007 - 2014. Retrieved from http://www

.sciencedirect.com/science/article/pii/S0021929016305905 doi: https://

doi.org/10.1016/j.jbiomech.2016.05.019

Melexis. (n.d.). MLX90316 rotary position sensor IC. Retrieved 2019, from

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=

1&ved=2ahUKEwip4d284cPmAhU0BWMBHYwzBfsQFjAAegQIAxAC&url=https%3A%

2F%2Fwww.melexis.com%2F-%2Fmedia%2Ffiles%2Fdocuments%2Fdatasheets%

2Fmlx90316-datasheet-melexis.pdf&usg=AOvVaw3Zvu1SXMZ3RpxisnrhySMo

Milford, M., & Wyeth, G. (2008, Oct). Mapping a suburb with a single camera using

a biologically inspired SLAM system. Robotics, IEEE Transactions on, 24 (5),

1038-1053.

Mitchinson, B., Pearson, M., Pipe, A., & Prescott, T. (2012a). The emergence of action

sequences from spatial attention: Insight from rodent-like robots. In T. Prescott,

N. Lepora, A. Mura, & P. Verschure (Eds.), Biomimetic and Biohybrid Systems

(Vol. 7375, p. 168-179). Springer Berlin Heidelberg.

Mitchinson, B., Pearson, M. J., Pipe, A. G., & Prescott, T. J. (2012b). Predictive prey

pursuit in a whiskered robot. In Conference Towards Autonomous Robotic Systems

(pp. 343–353).

Mitchinson, B., & Prescott, T. J. (2013a, 09). Whisker movements reveal spatial atten-

tion: A unified computational model of active sensing control in the rat. PLOS

Computational Biology , 9 (9), 1-16. Retrieved from https://doi.org/10.1371/

journal.pcbi.1003236 doi: 10.1371/journal.pcbi.1003236

Mitchinson, B., & Prescott, T. J. (2013b). Whisker movements reveal spatial attention:

Unified computational model of active sensing control in the rat. PLoS Computa-

tional Biology , 9 (9).

Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B., et al. (2002). FastSLAM: A

factored solution to the simultaneous localization and mapping problem.

Morais, J. P., Georgiev, S., & Sprößig, W. (2014). Real quaternionic calculus handbook.

Springer.

Mortimer, B., Rees, W. L., Koelemeijer, P., & Nissen-Meyer, T. (2018). Classifying

172

http://www.jneurosci.org/content/29/37/11686.abstract
http://www.sciencedirect.com/science/article/pii/S0021929016305905
http://www.sciencedirect.com/science/article/pii/S0021929016305905
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwip4d284cPmAhU0BWMBHYwzBfsQFjAAegQIAxAC&url=https://www.melexis.com/-/media/files/documents/datasheets/mlx90316-datasheet-melexis.pdf&usg=AOvVaw3Zvu1SXMZ3RpxisnrhySMo
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwip4d284cPmAhU0BWMBHYwzBfsQFjAAegQIAxAC&url=https://www.melexis.com/-/media/files/documents/datasheets/mlx90316-datasheet-melexis.pdf&usg=AOvVaw3Zvu1SXMZ3RpxisnrhySMo
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwip4d284cPmAhU0BWMBHYwzBfsQFjAAegQIAxAC&url=https://www.melexis.com/-/media/files/documents/datasheets/mlx90316-datasheet-melexis.pdf&usg=AOvVaw3Zvu1SXMZ3RpxisnrhySMo
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwip4d284cPmAhU0BWMBHYwzBfsQFjAAegQIAxAC&url=https://www.melexis.com/-/media/files/documents/datasheets/mlx90316-datasheet-melexis.pdf&usg=AOvVaw3Zvu1SXMZ3RpxisnrhySMo
https://doi.org/10.1371/journal.pcbi.1003236
https://doi.org/10.1371/journal.pcbi.1003236

REFERENCES

elephant behaviour through seismic vibrations. Current Biology , 28 (9), R547–

R548.

Moser, E. I., Krop↵, E., & Moser, M.-B. (2008). Place cells, grid cells, and the brain’s

spatial representation system. Annual review of neuroscience, 31 .

Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.

Negnevitsky, M., & Intelligence, A. (2005). A guide to intelligent systems.

O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map: Preliminary

evidence from unit activity in the freely-moving rat. Brain research.

Pammer, L., O’Connor, D. H., Hires, S. A., Clack, N. G., Huber, D., Myers, E. W., &

Svoboda, K. (2013, 04). The mechanical variables underlying object localization

along the axis of the whisker. The Journal of Neuroscience : The O�cial Journal of

the Society for Neuroscience, 33 (16), 6726–6741. Retrieved from http://www.ncbi

.nlm.nih.gov/pmc/articles/PMC3733083/ doi: 10.1523/JNEUROSCI.4316-12

.2013

Pearson, M., Mitchinson, B., Pipe, A., & Prescott, T. (2011). Biomimetic vibrissal

sensing for robots. Phil. Trans. of the Royal Society, B , 366 , 3085-3096.

Pearson, M. J., Fox, C., Sullivan, J. C., Prescott, T. J., Pipe, T., & Mitchinson, B.

(2013). Simultaneous localisation and mapping on a multi-degree of freedom

biomimetic whiskered robot. In Robotics and Automation (ICRA), 2013 IEEE

International Conference on (pp. 586–592).

Petersen, K. B., Pedersen, M. S., et al. (2008). The matrix cookbook. Technical

University of Denmark , 7 (15), 510.

Pezzementi, Z., Plaku, E., Reyda, C., & Hager, G. D. (2011, June). Tactile-object

recognition from appearance information. IEEE Transactions on Robotics , 27 (3),

473-487. doi: 10.1109/TRO.2011.2125350

Pillai, S., & Leonard, J. (2015). Monocular SLAM supported object recognition. arXiv

preprint arXiv:1506.01732 .

polyfitn. (2017, Nov). Retrieved 14/11/2017, from https://uk.mathworks.com/

matlabcentral/fileexchange/34765-polyfitn

Prescott, T. J., Mitchinson, B., & Grant, R. A. (2011). Vibrissal behavior and function.

Scholarpedia, 6 (10), 6642. (revision #153103) doi: 10.4249/scholarpedia.6642

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., . . . Ng, A. Y. (2009).

ROS: an open-source Robot Operating System. In ICRA workshop on open source

software (Vol. 3, p. 5).

Ramsden, E. (2011). Hall-e↵ect sensors: theory and application. Elsevier.

Russell, R. A., & Wijaya, J. A. (2005, Aug). Recognising and manipulating

173

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3733083/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3733083/
https://uk.mathworks.com/matlabcentral/fileexchange/34765-polyfitn
https://uk.mathworks.com/matlabcentral/fileexchange/34765-polyfitn

REFERENCES

objects using data from a whisker sensor array. Robotica, 23 (5), 653–664.

Retrieved from https://www.cambridge.org/core/article/recognising

-and-manipulating-objects-using-data-from-a-whisker-sensor-array/

121F1D0AB2031AEE4E845642F96982D7 doi: 10.1017/S0263574704000748

Rusu, R. B., Blodow, N., & Beetz, M. (2009, May). Fast Point Feature Histograms

(FPFH) for 3D registration. In 2009 IEEE International Conference on Robotics

and Automation (p. 3212-3217). doi: 10.1109/ROBOT.2009.5152473

Rusu, R. B., Marton, Z. C., Blodow, N., & Beetz, M. (2008). Learning informative

point classes for the acquisition of object model maps. In Control, Automation,

Robotics and Vision, 2008. ICARCV 2008. 10th International Conference on (pp.

643–650).

Salman, M., & Pearson, M. (2016). Advancing whisker based navigation through the

implementation of bio-inspired whisking strategies. In IEEE International Con-

ference on Robotics and Biomimetics (ROBIO 2016).

Salman, M., & Pearson, M. J. (2018). Whisker-RatSLAM applied to 6d object iden-

tification and spatial localisation. In V. Vouloutsi et al. (Eds.), Biomimetic and

Biohybrid Systems (pp. 403–414). Cham: Springer International Publishing.

Solomon, J. H., & Hartmann, M. J. (2006, 10 05). Biomechanics: Robotic whiskers

used to sense features. Nature, 443 (7111), 525–525. Retrieved from http://

dx.doi.org/10.1038/443525a

Stevens, B. L., Lewis, F. L., & Johnson, E. N. (2015). Aircraft control and simulation:

dynamics, controls design, and autonomous systems. John Wiley & Sons.

Sullivan, J. C., Mitchinson, B., Pearson, M. J., Evans, M., Lepora, N. F., Fox, C. W., . . .

Prescott, T. J. (2012, Feb). Tactile discrimination using active whisker sensors.

IEEE Sensors Journal , 12 (2), 350-362. doi: 10.1109/JSEN.2011.2148114

Sünderhauf, N., & Protzel, P. (2010). Beyond RatSLAM: Improvements to a biologi-

cally inspired SLAM system. In Emerging Technologies and Factory Automation

(ETFA), 2010 IEEE Conference on (pp. 1–8).

Szwed, M., Bagdasarian, K., Blumenfeld, B., Barak, O., Derdikman, D., & Ahissar,

E. (2006). Responses of trigeminal ganglion neurons to the radial distance of

contact during active vibrissal touch. Journal of Neurophysiology , 95 (2), 791–802.

Retrieved from http://jn.physiology.org/content/95/2/791 doi: 10.1152/

jn.00571.2005

The MathWorks, I. (2018, May). graphshortestpath. Retrieved from https://

uk.mathworks.com/help/bioinfo/ref/graphshortestpath.html

Thrun, S. (1998). Learning metric-topological maps for indoor mobile robot navigation.

174

https://www.cambridge.org/core/article/recognising-and-manipulating-objects-using-data-from-a-whisker-sensor-array/121F1D0AB2031AEE4E845642F96982D7
https://www.cambridge.org/core/article/recognising-and-manipulating-objects-using-data-from-a-whisker-sensor-array/121F1D0AB2031AEE4E845642F96982D7
https://www.cambridge.org/core/article/recognising-and-manipulating-objects-using-data-from-a-whisker-sensor-array/121F1D0AB2031AEE4E845642F96982D7
http://dx.doi.org/10.1038/443525a
http://dx.doi.org/10.1038/443525a
http://jn.physiology.org/content/95/2/791
https://uk.mathworks.com/help/bioinfo/ref/graphshortestpath.html
https://uk.mathworks.com/help/bioinfo/ref/graphshortestpath.html

REFERENCES

Artificial Intelligence, 99 (1), 21–71.

Thrun, S. (2003). Learning occupancy grid maps with forward sensor models. Au-

tonomous robots, 15 (2), 111–127.

Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. MIT press.

Tomatis, N., Nourbakhsh, I., Arras, K., & Siegwart, R. (2001). A hybrid approach for

robust and precise mobile robot navigation with compact environment modeling.

In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International

Conference on (Vol. 2, p. 1111-1116 vol.2).

Towal, R. B., Quist, B. W., Gopal, V., Solomon, J. H., & Hartmann, M. J. (2011).

The morphology of the rat vibrissal array: a model for quantifying spatiotemporal

patterns of whisker-object contact. PLoS computational biology , 7 (4), e1001120.

Universal-Robots. (2018a). Ur10 technical document. Retrieved from

https://www.universal-robots.com/media/1801323/eng 199901 ur10 tech

spec web a4.pdf

Universal-Robots. (2018b). UR5 technical document. Retrieved from

https://www.universal-robots.com/media/1801303/eng 199901 ur5 tech

spec web a4.pdf

Universal Robots ROS. (2018). Retrieved from https://github.com/ros-industrial/

universal robot

Velleman, P. F., & Hoaglin, D. C. (1981). Applications, basics, and computing of

exploratory data analysis. Duxbury Press.

Wahl, E., Hillenbrand, U., & Hirzinger, G. (2003). Surflet-pair-relation histograms: a

statistical 3d-shape representation for rapid classification. In 3-d digital imaging

and modeling, 2003. 3dim 2003. proceedings. fourth international conference on

(pp. 474–481).

Wang, R., Thakur, C. S., Cohen, G., Hamilton, T. J., Tapson, J., & van Schaik, A.

(2017). Neuromorphic hardware architecture using the neural engineering frame-

work for pattern recognition. IEEE transactions on biomedical circuits and sys-

tems, 11 (3), 574–584.

Williams, C. M., & Kramer, E. M. (2010). The advantages of a tapered whisker. PLoS

One, 5 (1), e8806.

Xu, T., Wang, W., Bian, X., Wang, X., Wang, X., Luo, J. K., & Dong, S. (2015,

08 13). High resolution skin-like sensor capable of sensing and visualizing various

sensations and three dimensional shape. Scientific Reports , 5 , 12997. Retrieved

from http://dx.doi.org/10.1038/srep12997

Yartsev, M. M., & Ulanovsky, N. (2013). Representation of three-dimensional space

175

https://www.universal-robots.com/media/1801323/eng_199901_ur10_tech_spec_web_a4.pdf
https://www.universal-robots.com/media/1801323/eng_199901_ur10_tech_spec_web_a4.pdf
https://www.universal-robots.com/media/1801303/eng_199901_ur5_tech_spec_web_a4.pdf
https://www.universal-robots.com/media/1801303/eng_199901_ur5_tech_spec_web_a4.pdf
https://github.com/ros-industrial/universal_robot
https://github.com/ros-industrial/universal_robot
http://dx.doi.org/10.1038/srep12997

REFERENCES

in the hippocampus of flying bats. Science, 340 (6130), 367–372. Retrieved from

http://science.sciencemag.org/content/340/6130/367 doi: 10.1126/science

.1235338

Za↵ari, G. B., dos Santos, M. M., Duarte, A. C., d. A. Fernandes, D., & d. C. Botelho,

S. S. (2016, April). Exploring the dolphinslam’s parameters. In Oceans 2016 -

shanghai (p. 1-5). doi: 10.1109/OCEANSAP.2016.7485531

Zangwill, A. (2013). Modern electrodynamics. Cambridge University Press.

Zhang, H., Xu, F., & Zhou, L. (2010, July). Artificial neural network for load fore-

casting in smart grid. In 2010 international conference on machine learning and

cybernetics (Vol. 6, p. 3200-3205). doi: 10.1109/ICMLC.2010.5580713

Zuo, Y., Perkon, I., & Diamond, M. E. (2011). Whisking and whisker kinematics

during a texture classification task. Philosophical Transactions of the Royal So-

ciety of London B: Biological Sciences, 366 (1581), 3058–3069. Retrieved from

http://rstb.royalsocietypublishing.org/content/366/1581/3058 doi: 10

.1098/rstb.2011.0161

176

http://science.sciencemag.org/content/340/6130/367
http://rstb.royalsocietypublishing.org/content/366/1581/3058

	Introduction
	Background
	Localization and mapping
	SLAM
	Kalman Filter
	Particle Filter

	RatSLAM
	Algorithm
	1-Dimensional Example
	Operation

	Hardware
	Robotic Arm Manipulator
	Whisker-tactile Sensor Array
	Hall Effect Sensor

	Sensing
	Whisker Control
	Whisker-Contact Localization
	Object Recognition
	Texture Identification

	Exploration Strategy
	Movement Through Higher Configuration Space
	Working in 3-dimensions
	Point Feature Histogram
	Quaternions
	Transformation matrices

	Regression techniques
	Multilayer Perceptron
	Support Vector Regression

	Principal Component Analysis
	Robot Operating System
	MoveIt

	RatSLAM Navigation Using A Whisker-Sensor Array
	Method
	Tactile Image
	Odometry
	Data Collection

	Experimental Setup
	OpenRatSLAM Parameters
	Whisker Control
	Performance Metrics
	Experience Metric (ExM)
	Energy Metric (EM)

	Results
	Performance Metric Evaluation
	Vanilla Whisker-RatSLAM Performance
	Effect of Whisker Control Strategy
	Effect of Whisker-Contact Angle Estimation Strategy

	Discussion
	Summary

	Object Shape Reconstruction
	Method
	Whisking pattern
	Data collection
	Training set
	Validation set
	Ground truth and error calculation
	Extraction of Whisker-Contact Features
	Principal Component Analysis

	Regression techniques

	Results
	Validation of Regression Models
	Comparison with state-of-the-art

	Discussion

	WhiskerRatSLAM
	Algorithm Architecture
	Front End
	Features of Whisker Perception
	Contact Time
	Contact Localization
	Contacted Surface Slope
	Region similarity
	Odometry

	Back End
	Grid of Pose Cells
	Feature recognition
	Path Integration
	Local Excitation
	Local and Global Inhibition
	Path Integration
	Translational shift
	Rotational shift

	Best Pose

	Object Map
	Complex Experience Nodes
	Relative Pose

	Localization and Object Recognition Performance
	Experiments
	Results
	Localization
	Object Identification

	Discussion

	Active Whisker-Array Exploration For Fast Shape Recognition
	Method
	Surface Placement
	Surface Region Search
	Surface following
	Follow experience history
	Least similar feature
	Object identification condition

	Simulation Setup
	Object map generation
	Odometry noise
	Whisker-contact feature noise

	Object Exploration

	Physical Setup

	Results
	Discussion

	Conclusions
	Future work

	References

