104 research outputs found

    Design and Implementation of an Agent-Based Model of Pertussis with Performance Considerations

    Get PDF
    Pertussis, also known as Whooping Cough, is an airborne communicable disease caused by the Bordetella pertussis bacterium. Symptoms include fever, runny nose, and a cough that typically progresses to the point where it interferes with breathing, producing the characteristic whoop from which the common name is derived. Complications, which disproportionately affect infants, include bacterial pneumonia which can lead to death. Pertussis is vaccine-preventable and vaccination programs exist in most countries yet a recent resurgence has been observed in jurisdictions with high vaccine coverage, including Alberta and Canada. Simulation modeling has a long history in the study of epidemiology, including that of pertussis, but most of such work has employed compartmental models. Agent-based models (ABMs) allow differentiation down to the individual level, which cannot be done in aggregate compartmental models, as well as simpler specification of heterogeneity and interaction patterns which can be tedious to implement in aggregate compartmental models. These benefits come at the cost of increased computational burden. This thesis seeks to design and implement an ABM representing the epidemiology of pertussis in Alberta, Canada, and apply that model to evaluate vaccination during pregnancy as a potential intervention strategy to reduce pertussis incidence in infants. In support of this objective, data structures will be explored to improve performance for large ABMs developed using AnyLogic software

    Agent-Based Modeling and its Tradeoffs: An Introduction & Examples

    Full text link
    Agent-based modeling is a computational dynamic modeling technique that may be less familiar to some readers. Agent-based modeling seeks to understand the behaviour of complex systems by situating agents in an environment and studying the emergent outcomes of agent-agent and agent-environment interactions. In comparison with compartmental models, agent-based models offer simpler, more scalable and flexible representation of heterogeneity, the ability to capture dynamic and static network and spatial context, and the ability to consider history of individuals within the model. In contrast, compartmental models offer faster development time with less programming required, lower computational requirements that do not scale with population, and the option for concise mathematical formulation with ordinary, delay or stochastic differential equations supporting derivation of properties of the system behaviour. In this chapter, basic characteristics of agent-based models are introduced, advantages and disadvantages of agent-based models, as compared with compartmental models, are discussed, and two example agent-based infectious disease models are reviewed

    Characterising two-pathogen competition in spatially structured environments

    Full text link
    Different pathogens spreading in the same host population often generate complex co-circulation dynamics because of the many possible interactions between the pathogens and the host immune system, the host life cycle, and the space structure of the population. Here we focus on the competition between two acute infections and we address the role of host mobility and cross-immunity in shaping possible dominance/co-dominance regimes. Host mobility is modelled as a network of traveling flows connecting nodes of a metapopulation, and the two-pathogen dynamics is simulated with a stochastic mechanistic approach. Results depict a complex scenario where, according to the relation among the epidemiological parameters of the two pathogens, mobility can either be non-influential for the competition dynamics or play a critical role in selecting the dominant pathogen. The characterisation of the parameter space can be explained in terms of the trade-off between pathogen's spreading velocity and its ability to diffuse in a sparse environment. Variations in the cross-immunity level induce a transition between presence and absence of competition. The present study disentangles the role of the relevant biological and ecological factors in the competition dynamics, and provides relevant insights into the spatial ecology of infectious diseases.Comment: 30 pages, 6 figures, 1 table. Final version accepted for publication in Scientific Report

    Using combined diagnostic test results to hindcast trends of infection from cross-sectional data

    Get PDF
    Infectious disease surveillance is key to limiting the consequences from infectious pathogens and maintaining animal and public health. Following the detection of a disease outbreak, a response in proportion to the severity of the outbreak is required. It is thus critical to obtain accurate information concerning the origin of the outbreak and its forward trajectory. However, there is often a lack of situational awareness that may lead to over- or under-reaction. There is a widening range of tests available for detecting pathogens, with typically different temporal characteristics, e.g. in terms of when peak test response occurs relative to time of exposure. We have developed a statistical framework that combines response level data from multiple diagnostic tests and is able to ‘hindcast’ (infer the historical trend of) an infectious disease epidemic. Assuming diagnostic test data from a cross-sectional sample of individuals infected with a pathogen during an outbreak, we use a Bayesian Markov Chain Monte Carlo (MCMC) approach to estimate time of exposure, and the overall epidemic trend in the population prior to the time of sampling. We evaluate the performance of this statistical framework on simulated data from epidemic trend curves and show that we can recover the parameter values of those trends. We also apply the framework to epidemic trend curves taken from two historical outbreaks: a bluetongue outbreak in cattle, and a whooping cough outbreak in humans. Together, these results show that hindcasting can estimate the time since infection for individuals and provide accurate estimates of epidemic trends, and can be used to distinguish whether an outbreak is increasing or past its peak. We conclude that if temporal characteristics of diagnostics are known, it is possible to recover epidemic trends of both human and animal pathogens from cross-sectional data collected at a single point in time

    An interaction-oriented multi-agent SIR model to assess the spread of SARS-CoV-2

    Get PDF
    It is important to recognize that the dynamics of each country are different. Therefore, the SARS-CoV-2 (COVID-19) pandemic necessitates each country to act locally, but keep thinking globally. Governments have a responsibility to manage their limited resources optimally while struggling with this pandemic. Managing the trade-offs regarding these dynamics requires some sophisticated models. "Agent-based simulation" is a powerful tool to create such kind of models. Correspondingly, this study addresses the spread of COVID-19 employing an interaction-oriented multi-agent SIR (Susceptible Infected-Recovered) model. This model is based on the scale-free networks (incorporating 10,000 nodes) and it runs some experimental scenarios to analyze the main effects and the interactions of "average-node-degree", "initial-outbreak-size", "spread-chance", "recovery-chance", and "gain-resistance" factors on "average-duration (of the pandemic last)", "average-percentage of infected", "maximum-percentage of infected", and "the expected peak-time". Obtained results from this work can assist determining the correct tactical responses of partial lockdown

    Modeling the long term dynamics of pre-vaccination pertussis

    Full text link
    The dynamics of strongly immunizing childhood infections is still not well understood. Although reports of successful modeling of several incidence data records can be found in the literature, the key determinants of the observed temporal patterns have not been clearly identified. In particular, different models of immunity waning and degree of protection applied to disease and vaccine induced immunity have been debated in the literature on pertussis. Here we study the effect of disease acquired immunity on the long term patterns of pertussis prevalence. We compare five minimal models, all of which are stochastic, seasonally forced, well-mixed models of infection based on susceptible-infective-recovered dynamics in a closed population. These models reflect different assumptions about the immune response of naive hosts, namely total permanent immunity, immunity waning, immunity waning together with immunity boosting, reinfection of recovered, and repeat infection after partial immunity waning. The power spectra of the output prevalence time series characterize the long term dynamics of the models. For epidemiological parameters consistent with published data for pertussis, the power spectra show quantitative and even qualitative differences that can be used to test their assumptions by comparison with ensembles of several decades long pre-vaccination data records. We illustrate this strategy on two publicly available historical data sets.Comment: paper (31 pages, 11 figures, 1 table) and supplementary material (19 pages, 5 figures, 2 tables

    Predicting unobserved exposures from seasonal epidemic data

    Get PDF
    We consider a stochastic Susceptible-Exposed-Infected-Recovered (SEIR) epidemiological model with a contact rate that fluctuates seasonally. Through the use of a nonlinear, stochastic projection, we are able to analytically determine the lower dimensional manifold on which the deterministic and stochastic dynamics correctly interact. Our method produces a low dimensional stochastic model that captures the same timing of disease outbreak and the same amplitude and phase of recurrent behavior seen in the high dimensional model. Given seasonal epidemic data consisting of the number of infectious individuals, our method enables a data-based model prediction of the number of unobserved exposed individuals over very long times.Comment: 24 pages, 6 figures; Final version in Bulletin of Mathematical Biolog

    Seasonality in epidemic models: a literature review

    Get PDF
    We provide a review of some key literature results on the influence of seasonality and other time heterogeneities of contact rates, and other parameters, such as vaccination rates, on the spread of infectious diseases. This is a classical topic where highly theoretical methodologies have provided new insight on the seemingly random behavior observed in epidemic time-series. We follow the line of providing a highly personal non-systematic review of this topic, mainly based on the history of mathematical epidemiology and on the impact of reviewed articles. Our aim is to stress some issues of increasing interest, such as the public health implications of the biomathematical literature and the impact of seasonality on epidemic extinction or elimination

    When Is Quarantine a Useful Control Strategy for Emerging Infectious Diseases?

    Get PDF
    The isolation and treatment of symptomatic individuals, coupled with the quarantining of individuals that have a high risk of having been infected, constitute two commonly used epidemic control measures. Although isolation is probably always a desirable public health measure, quarantine is more controversial. Mass quarantine can inflict significant social, psychological, and economic costs without resulting in the detection of many infected individuals. The authors use probabilistic models to determine the conditions under which quarantine is expected to be useful. Results demonstrate that the number of infections averted (per initially infected individual) through the use of quarantine is expected to be very low provided that isolation is effective, but it increases abruptly and at an accelerating rate as the effectiveness of isolation diminishes. When isolation is ineffective, the use of quarantine will be most beneficial when there is significant asymptomatic transmission and if the asymptomatic period is neither very long nor very shor
    • …
    corecore