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Abstract We provide a review of some key literature results on the influence of
seasonality and other time heterogeneities of contact rates, and other parameters, such
as vaccination rates, on the spread of infectious diseases. This is a classical topic
where highly theoretical methodologies have provided new insight on the seemingly
random behavior observed in epidemic time-series. We follow the line of providing
a highly personal non-systematic review of this topic, mainly based on the history
of mathematical epidemiology and on the impact of reviewed articles. Our aim is to
stress some issues of increasing interest, such as the public health implications of the
biomathematical literature and the impact of seasonality on epidemic extinction or
elimination.
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1 Introduction

The introduction of the one-year periodic contact rate (also known as ‘transmission
rate’ [38]) in various deterministic epidemic models allowed significant scientific dis-
coveries. In particular, this allowed demonstrating that the rich variety of oscillatory
phenomena observed in several epidemiological time series can stem from determin-
istic phenomena such as the seasonality of weather and the school calendar, and not
by the chance alone. Soper [102] was the first author to suggest this in 1928.

Although there is an ongoing debate on this point, it is appropriate to quote an
interesting observation by Keeling, Rohani and Grenfell: ‘The observed epidemics
cannot be solely the product of noise, either internally generated or external, as very
similar large amplitude epidemics are observed for all population sizes, despite the
fact that the relative amount of noise experienced will be very different [72].

A large number of scientific papers have investigated the rich nonlinear effects
caused by periodically varying contact rates in epidemic models, and some excellent
reviews exist [2,57].

Widely speaking, these reviews have mainly focused on how time heterogeneous
in contact rates induces various forms of time heterogeneity in the endemic state.
Less interest has elicited the other side of the coin: how the stability of disease-free
equilibrium depends on the seasonality, a topic that is far less trivial than one could
believe.

In order to provide a useful review to our readership, and not ‘yet another review
paper on periodic parameters in epidemic models’, we follow a few points of interest:
(i) we maintain, especially in the first subsection, a historical perspective; (ii) we try
to link the advances in the field of mathematical epidemiology to those of nonlinear
physics and analysis; (iii) we point out the relevance for public health; (iv) we stress the
relevance of seasonality in determining the properties of the disease-free equilibrium;
(v) we focus on the role of seasonality on vector-borne diseases; and last but not least
(vi) we provide a strictly personal way of choosing topics and papers: an objective
and complete treatise would be impossible in a narrow bunch of pages.

Finally, we stress that our review will not cover the whole area of non-autonomous
deterministic epidemic models. This subject is wide and also includes classes of dis-
eases non reviewed here, such as the so-called men-environment-men diseases (e.g.
those diseases with oro-faecal contagionmechanisms based on environment pollution)
for which temporal heterogeneity can be important [20].

2 The golden age

In the late seventies, research inmathematical epidemiology started paying attention to
themechanistic explanation of somewell-known characteristics of time-series of some
infectious diseases, and especially of childhood infectious diseases (CID). Indeed,
classical susceptible-infectious-recovered (SIR) and susceptible-exposed-infectious-
recovered (SEIR) models with vital dynamics predict constant endemic steady states.
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Of course, taking into account unavoidable randomness—both intrinsic (due to low
predicted prevalence) and extrinsic (random immigrations and other factors that were
not taken into account in the above mentioned models)—one could expect that the-
oretical endemic equilibria of deterministic systems in the real world correspond to
fluctuating time-series of various amplitudes.

On the contrary, some observed time-series were of a totally different nature. CID
showed, in particular, a series of recurrent epidemics whose peaks sometime revealed a
rough periodicity as, for example, alternation of large and small epidemics in a biennial
periodic fashion [14,69,90,102,105]. In his 1918 pioneering paper [15], Brownlee
performed a Fourier analysis of the time-series of measles-related deaths in London
between 1838 and 1913, which showed amulti-peak spectrum.However, a strong peak
centered at 1.865 years (97 weeks), thus very close to 2 years, was observed plus other
important peaks at 0.5, 1, 2.1 and 2.2 years, whose amplitude was the half of the above-
mentioned peak at 1.865 years. In the same paper, the periodogram corresponding to
the interval 1703–1828 reveal a far more complex scenario, but again the maximum
peak is around 2 years. This phenomenon was a first evidence of some underlying
deterministicmechanismdriving these ‘periodic’ epidemics, although stochastic birth-
death epidemic models were used by Bartlett [10] to explain periodicity in certain
measles time-series. In other cases, the amplitude of epidemic was widely distributed,
so that a genuine stochastic mechanism could have been the driving ‘force’ behind
this behavior.

These observations were contemporary to the early diffusion of computers in the
academic world (the UNIX operating systems as well as the related C programming
language were developed in 1969 [73,74]) amidst the first real wave of large use of
computers for simulations.

Moreover, theoretical investigations in nonlinear mechanics had shown that a non-
linear dynamical system periodically forced with a period T could exhibit solutions
with periods that are integer multiples of T . London and Yorke [83] were the first to
show that the biennial fashion of CID epidemics could be simply explained by the
periodic fluctuation of the contact rate. In their famous paper they considered the time
series data of CIDs in New York City and Baltimore. The data were fitted by a period-
ically forced model with delay and showed that the resulting contact rate is essentially
periodic, apart from a minor stochastic component.

London and Yorke pointed out two synergetic factors contributing to the one-year
periodicity of the contact rate: (i) weather seasonality: climatic factors that might
enhance the transmission of infectious diseases, such as coldweather, decreased indoor
relative humidity, etc.; (ii) seasonality of ‘social behavior’ of children due to school
terms. This was mirrored by ’the sharp rise and fall in …the mean monthly contacts
for all three diseases’ investigated in [83].

It is of interest to note that the time-series analyzed in [83] were characterized by
alternating large and small epidemics with a wide distribution of both the large and
the small peaks. In other words the time-series qualitatively seemed to be chaotic.1

On the contrary, the simulations obtained by the periodically filtered contact rate (see

1 Incidentally, the term ‘chaos’ was first introduced in the literature by Yorke himself 2 years later [81].
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Figure 3 of [83]) are two-year periodic for measles and one-year periodic for mumps
and chickenpox. In other words, although the authors failed to link seasonality of the
contact rate with chaotic time-series of CIDs (since they mainly focused on explaining
the biennial alternation of large and low CID epidemics), they were nonetheless the
first to obtain a seasonally varying contact rate from such data.

Stirzaker [103] was the first to employ the theory of parametric nonlinear resonance
to explain the role of parametric oscillations in the induction of biennial recurrent
epidemics.

However, both the models adopted by London and Yorke and by Stirzaker were
peculiar in that, in absence of oscillations of contact rates, they predicted endemic
prevalence for any value of the contact rate. In other words, in these models the
classical disease-extinction threshold did not occur. This was pointed out by Dietz
[28], who was the first to investigate the effects of one-year periodic contact rate in
the classical SIR and SEIR model. He considered a periodically varying contact rate
given by (we will refer to this as Dietz’s model)

β(t) = βm(1 + A cos(ωt)).

Note that the parameter A measures the degree of seasonality of the contact rate
[87]. Dietz showed that a one year periodic contact rate can induce solutions with
period bigger than one year. In his paper, Dietz also considered the important case of
vaccination of a fraction p of newborns.

Grossman [60] applied approximated analytical methods of nonlinear oscillation
theory to study the onset of subharmonic resonance in Dietz’s SIRmodel. He obtained
a threshold effect depending on the amplitude, A, of the sinusoidal perturbation of the
contact rate.

Pluriannual and other patterns caused by one-year oscillations of the contact rate
in Dietz’s SIR and SEIR models were investigated in depth by Smith, Schwartz and
Aron in 1983–1985, who first introduced the modern terminology and methods of the
theory of period-doubling bifurcations.

Smith [100] employed rigorous nonlinear analysis methods developed by Hale
[27,62,63] to show that at the above mentioned threshold value of A a period-two
solution stems from a period-one solution via bifurcation, and that this period-two
bifurcation is stable.

Quite interestingly, Smith showed in [100] the possibility of multi-stability: the
coexistence of multiple locally stable periodic solutions of various integer periods,
again adopting methodologies introduced by Hale et al. [24,64].

This fascinating kind of multi-stability is much more complex than the coexistence
of multiple stable equilibrium points. However for Dietz’s SEIR model, Smith and
Schwartz [99] showed an even more complex scenario: the possible coexistence of
infinite stable multi-year solutions! This allowed them to formulate the hypothesis that
the irregularity of CID time series can be explained as noise-induced jumps between
basins of attraction of coexisting locally attractive dynamic periodic orbits, thus result-
ing in a marked aperiodicity of the observations. We remind the reader that the SEIR
model with constant contact rate is monostable. The analysis of the attraction basins
for a case of bi-stability of Dietz’s SEIR model is investigated in [98], where it is
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shown that the basin of attraction of the stable solutions were strongly mixed amongst
each other.

Quite interestingly, Aron [4] showed that in some cases the presence of coexistent
multiple stable periodic solutions of disparate periods in Dietz’s SEIR model can be
triggered by the presence of vaccination of newborns.

Aron and Schwartz [5] numerically investigated Dietz’s SEIR model to show the
existence of pluriannual solutions. In particular, they also showed that increasing the
amplitude, A, of the sinusoidal component of the contact rate, the system undergoes
a series of period doubling bifurcations. Thus, they predicted that for such model a
transition to chaotic solutions via a Feigenbaum cascade of such bifurcations [50,51]
was very likely.We stress here that this has been thefirst time that a purely deterministic
mechanism was heuristically used to explain apparently stochastic behavior of CID
time series.

Note that in 1984 the onset of chaotic behavior via a Feigenbaum cascade of period
doubling bifurcation had been shown for the periodically forced Lotka–Volterra–
Gause model by Inoue and Kamifukumoto [68].

In the same period, the early 1980s, there was an unparalleled impetum in the study
on how to find/characterize the chaotic behavior in time series, especially with the
publication of fundamental papers, such as: Characterization of Strange Attractors
by Grassberger and Procaccia [56] (see also [11]); Detecting strange attractors in
turbulence by Takens [106]; The dimension of chaotic attractors by Farmer, Ott and
the pioneer of seasonality effects in epidemiology, Yorke [49];Determining Lyapunov
exponents from a time series by Wolf et al. [114].

These new exciting methodologies were applied by Shaffer and Kot [76,96] to the
time-series for measles in New York and Baltimore. We recall that these time-series
were among those investigated by London and Yorke [83]. They obtained strong evi-
dence of the chaoticity of these time-series. In particular, they showed the presence of
a pseudo-bidimensional strange attractor, and that the Poincaré section of the attractor
generated a one dimensional map flow (scalar discrete system):

Xn+1 = F(Xn),

where F(x) = Cxe−bx . Moreover, the resulting Liapunov exponents were positive,
for both the New York city and Baltimore data sets.

Schaffer and Kot also examined data for mumps and chickenpox, heuristically
showing simple dynamics affected mainly by the interplay between noise and deter-
ministic one-year fluctuations. In a follow-up paper, they obtained similar and deeper
results concerning time series of six types of CID for the city of Copenhagen [88].

At the end of the 1980s, the state of the art of the analysis of the irregular and regular
fluctuations observed for CID time-series was very well summarized by Olsen and
Shaffer in the abstract of their landmark 1990 paper Chaos versus noisy periodicity:
alternative hypotheses for childhood epidemics [87]. They wrote:

Whereas case rates for some childhood diseases (chickenpox) often vary
according to an almost regular annual cycle, the incidence of more efficiently
transmitted infections such as measles is more variable. Three hypotheses have
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been proposed to account for such fluctuations: (i) Irregular dynamics result from
random shocks to systems with stable equilibria; (ii) The intrinsic dynamics cor-
respond to biennial cycles that are subject to stochastic forcing; (iii) Aperiodic
fluctuations are intrinsic to the epidemiology.

In that work they ‘read’ the CID time series by means of Dietz’s SEIR model to show
that the prevalence data are inherently chaotic. Namely, they show that using epidemic
parameters ‘appropriate for measles’ one can observe that: (i) the first period doubling
bifurcation is observed at a threshold value close to A = 0.2; (ii) further increase of the
degree of seasonality leads to a Feigenbaum cascade of period doubling bifurcations
[50,51]; (iii) at around A = 0.28 the solutions are chaotic. On the contrary, adopting
epidemic parameters coherent with chickenpox one gets—if the population is large
enough—annual epidemics for the range A ∈ (0, 0.3]. Therefore Dietz’s SEIR model
generates artificial time series closely resembling those observed in some American
and European locations. The result does not sensibly change after adding stochastic
perturbations to the model. Finally, they stressed that in all cases, the presence of a
non-zero degree of seasonality is important to understand the studied time-series.

In the above-illustrated papers, one-parameter bifurcations of Dietz’s SEIR model
were investigated, except for a non-systematic study concerning a narrow parametric
subset in [5]. However, it is well-known that multidimensional bifurcation analysis is
able to explain in greater detail the asymptotic behavior of a dynamical system [61].

The first work where a systematic two-dimensional bifurcation analysis of Dietz’s
SEIR model was performed is [77]. They also were the first to investigate the
two-parameters bifurcation scenario for Dietz’s SIR model, which exhibits strange
attractors. Thus, at the best of our knowledge [77] was the first work to show that a
latency period between the infection and infectivity is not necessary for an epidemic
model to exhibits chaotic behavior. Moreover, by the authors showed that the bifurca-
tion portrait is more complex corresponding to low values of the latency length of the
SEIR model.

The degree of seasonality needed to trigger chaos in Dietz’s SEIR model is around
30%, which is often judged excessively large [46]. Lloyd [82] pointed out that in more
realistic epidemic models, where infectious and latent times are not exponentially
distributed, the level of seasonality needed to induce chaos could be different. Namely,
under the assumption that epidemic parameters follow an Erlang distribution, the
threshold to chaos is reduced compared to the classical Dietz’s SEIRmodel.Moreover,
another factor that can trigger, at low levels of seasonality, chaotic behavior is the
presence of extrinsic noise, as showed by Billings and Schwartz in [12].

A somewhat inverse approach, compared to all the above-summarized bifurcation
studies, has been adopted in [58], where mean value and seasonality degree of the
contact rate are fixed and the bifurcation parameter is the period of the sinusoidal
oscillations. The CID time-series used by many authors concerned a relatively limited
time range of some decades of the 20th Century. Much longer historical time series
for CID and smallpox were analyzed by Duncan, Duncan and Scott in a series of
interesting works that we could define as ‘historical epidemiology’ [40–45]. In these
works Dietz’s SIR and SEIR models were fit to long time-series and important epi-
demographical inferences were proposed.
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Note that the first rigorous proof of the existence of chaos in an epidemic model,
obtained by applying Melnikov method [61,113], was proposed by Glendinning and
Perry [55] for a SIR model with a nonlinear force of infection of the type F = β(t)I 2.
To the best of our knowledge, a formal proof showing the existence of chaos for Dietz’s
classical SIR and SEIR models is still missing. Moreover, in the analysis of [55], the
authors set a very sharp constraint, i.e. that ‘the timescales for infection, recovery and
reproduction are all of the same order of magnitude’.

3 The decline of the ‘sinusoidal age’

In 1984, Schenzle [97] studied the comparison of pre-vaccination and post-vaccination
eras in measles transmission. He introduced both age and time heterogeneity in the
contact rate. The most interesting feature of this work is that the components of the
contact rate matrix β (a1, a2; t) do not evolve sinusoidally as assumed in the previous
literature, but in a periodic piecewise constant fashion. This assumption was based on
the key idea that the main temporal heterogeneity for CID is induced by the alterna-
tion of school terms and school holidays. This led Schenzle to model β (a1, a2; t) as
follows:

β (a1, a2; t) = β0 (a1, a2) + H(t) β1 (a1, a2) ,

where H(t) is the indicator function of the school terms, i.e. H(t) = 1 when the
schools are open, and H(t) = 0 during holidays. Thus β (a1, a2; t) passes from the
low value β0 (a1, a2) during the holidays to a larger value β0 (a1, a2) + β1 (a1, a2)
during the school terms.

Thus, the problem of modeling the influence of school calendar in a realistic way
was set, and some works appeared that took into account the relevance of this topic.
For example in 1988, Kot et al. [76] proposed a non-sinusoidal continuous version of
the contact rate given by

β(t) = β0(1 + β1φ(t)),

where the degree of seasonality,

φ(t) = 0.68 + cos(ωt)

1 + (2/3) cos(ωt)
,

was chosen to model ‘more accurately…asymmetries in the school year’ than sinu-
soidal functions.

The interest for Schenzle’s approach to modeling the periodic fluctuations of the
contact rate was revived thanks to the paper [46] where a simple two state Schenzle-
like contact rate in a SEIR model was used (in conjunction with data on birth rates)
to explain a number of features of interest observed in the time-series of measles in
some large cities in the UK and USA. First, from the theoretical point of view, the
degree of seasonality necessary to induce chaos was shown to be smaller for the two-
state β(t) compared to its sinusoidally varying version. Second, the authors showed
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that for a relatively small average value of β (denoted by 〈β〉) many periodic solutions
coexist, whereas for large average values only few coexisting periodic solution are pre-
dicted. Moreover, for small 〈β〉 the basins of attraction of the various coexisting stable
solutions are strongly mixed, whereas for large 〈β〉 the basins are quite well distinct.
Finally, for even larger values of 〈β〉 there is a unique periodic solution. These findings
allowed the authors to explain the transitions observed in the above mentioned time
series. For example, in London time series the transition from biennial to seemingly
erratic time series is explained as a transition from a phase (in the pre vaccination age)
where 〈β〉 was large to a post-vaccination introduction phase with a smaller 〈β〉. This
can lead to a much richer and complex dynamics due to noise-induced jumps between
the multiple coexisting periodic solutions of disparate periods. Similar analysis was
adopted to explain the data from Liverpool. An inverse pattern was observed in New
York, and explained by means of the proposed mathematical model. In [72] the sim-
ulations of [46] were semi-analytically explained as the result of switching between
two nonlinear sinks corresponding to the two values of β, and each one has its own
distinct pseudo-period. The effect of possible intrinsic and environmental stochasticity
was also investigated. Further analytical inferences, and their applications, were also
investigated in [104].

Moreover, adopting the Schenzle-like two state β(t) in a meta-population SEIR
model, the same group of authors was able to mimic the transition from spatial syn-
chrony to asynchrony in the dynamic of measles in UK cities [93].

It is of interest to stress that for whooping cough, the time series cannot be well
fit by deterministic models, whereas a stochastic birth-death model with one-year
periodic contact rate obtains much better performances [72,94], again confirming the
importance of the non-constancy of the contact rate.

Recently, the onset of chaos in the SIR model forced by the two-values β has been
analytically shown in [9]. That work stresses the relevance of the opposition between
small mortality/birth rate and the large recovery and transmission rate. Namely, the
main results of [9] are obtained by assuming that the mortality/birth rate scales as a
small parameter ε and the recovery and transmission rate scales as 1/ε.

4 Going beyond both sinusoidal and two-valued contact rates

Both the above mentioned approaches in modeling the contact rate β(t) have their
pros and cons. Dietz’s approach consisting in modeling β(t) plus a more or less large
sinusoidal perturbation is simple andparsimonious. Indeed, the nonlinear systemmight
work to some extent as a nonlinear filter, which could clear out the harmonic of order
greater or equal to two. However, one could argue that its continuous nature does
not take into account the sudden decrease/increase of contacts between school pupils,
which are linked to the alternation of school terms and holidays. This alternation may
seem more adequately modeled by a piecewise continuous β(t).

On the other hand however, we stress thatmodeling the contact rate in the latter way,
the long periods during which β is constant do not take into account the influence of
the weather and of other continuously varying factors. Moreover, a discontinuity in the
contacts is maybe realistic whenmodeling the changes of the infection risk for a single
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pupil or workers, but it far less realistic at population level, so that a continuous model
of the contact rate is more appropriate. For example: (i) in many countries such as Italy
the school calendar is not uniform but it is region-dependent; (ii) in many countries
there are remarkable differences between the school and the work calendars, as in
France where pupils and their teachers have frequent 2 weeks holidays; (iii) in modern
times in large-income countries the holidays of the workers are totally asynchronous;
(iv) in many low- and middle- income countries many workers have no holidays at all
(which in the past worldwide occurred), or very short and, again, asynchronous. Note
that points ii–iv are of the utmost relevance to model childhood infectious diseases
since they also affect adults. To summarize, both kind of modeling of the one year
periodic fluctuations of the contact rate are good but not fully satisfactory.

As a consequence, two complementary approaches are important. In the first, one
considers generic forms for the contact rate. This approach is particularly important
to understand how seasonality can impact the stability of the disease free state of
an epidemic model. The second approach, instead, consists in finding which contact
rate is able to optimally fit given epidemiological data. The latter approach has until
now mainly focused on endemic time heterogeneous states, for which data are most
frequently available.

4.1 Role of seasonality in the stability of the disease-free state

The global asymptotic stability (GAS) of the disease-free equilibrium (DFE) of an
epidemic model has deep public health implications since it means that a disease that
is self-extinct or has been eliminated by means of an appropriate control strategy
cannot became endemic, even if it should happen a very large epidemic outbreak. If
vaccination campaign has been enacted, this circumstance can also be seen as the best
sign of the robustness of the adopted strategy. In case of constant contact rate, it is well
known that the GAS of the DFE is ruled by the a function of the system parameter
termed basic reproduction number, usually denoted as R0. If R0 ≤ 1, then the DFE
is GAS. Otherwise, ifR0 > 1, then the DFE is unstable.

Of course, even in the case of seasonally varying β, the assessment of the stability
of DFE remains of utmost relevance, but it is far less trivial. Some theoretical works do
not set assumptions at all on the ‘shape’ of β(t), apart from its positivity, boundedness
and periodicity. The first to adopt this quite general approach has been Herbert Het-
hcothe. In his pioneering work on the susceptible-infectious-susceptible (SIS) model
with periodic contact rate [66], hewas the first to stress the role of (using contemporary
words) the average instantaneous basic reproduction number (AIBRN). Given an epi-
demic model, the AIBRN is formally equal to theR0 of the constant coefficient model
computed by using the average contact rate. In [66] it is shown that if AIRBN≤ 1 then
the DFE of the SIS model with periodic contact rate is GAS, whereas if AIRBN > 1
the disease remains endemic and exhibits periodic oscillations.

The AIRBN also determines the global stability of the DFE in the SIR and SIRS
model under generic periodically varying contact rates. If this average is smaller than
one, then the DFE is GAS, otherwise the disease remains endemic and is uniformly
persistent. This is a consequence of a more general theorem by Thieme [108,109]
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on the qualitative behavior of the SIRS models with very general time-heterogeneous
coefficients. Similar GAS conditions for the DFE of the periodic SIR model hold in
case of presence of behavior-dependent contact rates [35], pulse vaccination strategies
[31], and behavior-dependent voluntary vaccinations [36–38].

For diseases described by multiple epidemic states and/or multiple population sub-
groups, the AIRBN no longer determines the GAS of the DFE in the general case.
For such models, the scenario is often slightly more complex. For example, Aronsson
and Mellander investigated the qualitative behavior of the multi-group SIS model for
gonhorrea of [78] in case of a periodic contact rate [6]. They showed that the GAS of
the DFE of that model is ensured provided that the dominant eigenvalue of the Flo-
quet matrix associated with the DFE (FMDFE) is inside the unit circle in the complex
plane. If this condition does not hold, then the system is globally attracted by a unique
periodic solution, with period equal to that of the contact rate. These two results were
used in [34] to investigate the global behavior of certain linear and non-linear contact
network-based epidemic models.

The behavior of the FMDFE also determines the GAS of the disease-elimination
state of SEIR diseases with periodic contact rates in cases with pulse vaccination
strategies [30] or voluntary behavior-dependent vaccinations [18]. Note that for the
particular case without vaccination, these results imply the GAS of the DFE of the
standard SEIR model.

Recently, in [16] the GAS criterion for the DFE of an SEIR model with behavior-
dependent vaccination and a periodic contact rate has been numerically compared
with the GAS criterion of a model with a constant contact rate. The result (for both
the cases of Dietz and two-values contact rate β(t)) is that the larger the amplitude
of the oscillations, the more likely the GAS condition is fulfilled. This apparently
paradoxical phenomenon is explained in [16] as a beneficial effect of the phase when
the contact rate is under its average value: the reduction of contact rate (for example
during holidays) under its annual average over-compensates for its increase during
periods of intense contacts.

It is worth of note that in all the works mentioned in this section, the GAS condition
for the DFE coincides with its local asymptotic stability (LAS) condition. Thus it is of
interest to stress that the LAS of the DFE of a general family of epidemic models with
periodic coefficients has been investigated by Heesterbeek and Roberts in [65]. They
showed the role for LAS of the FMDFE, and stressed the importance of generalizing
the concept of Basic Reproduction Number to non-autonomous epidemic systems.

The computation of theFMDFEcanbe rarely conducted analytically,with a remark-
able exception stressed in [111]: the two values contact rate. Indeed, in such a case
the FMDFE is equal to the product of two exponential matrices. The generalization to
more complex patterns of N -values contact rates can also easily handled.

For the SEIR model, it has been shown in [111] that the linearized equation at the
DFE is equivalent to a Newton equation with damping and elastic force with a periodic
elastic coefficient, which in turn can be transformed into a Hill equation [111]. In other
words, the local and global stability of the DFE of the SEIR equilibrium is related to
the classical mechanics problem of parametric resonance [79], as first suggested in
[30]. The Hill equation can be analytically solved for some common functional forms
of β(t). For example [111]: if the contact rate is of Dietz type, then the solutions of the
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Hill equation areMathieu functions; and if it is a periodic repetition of linear functions,
then the solutions areAiry functions. Finally, note that once one has analytically solved
(when possible, of course) the Hill equation, one can also analytically compute the
FMDFE.

For monostable epidemic models with constant contact rates, the relationships
between LAS and GAS conditions for a disease-free or endemic equilibrium point
most often coincide. Of course, formally proving this can be very complicated. Instead,
in case of vaccination models that are multistable, for example due to the presence
of backward bifurcations, the condition ensuring the GAS of the DFE is obviously
different from its LAS condition. Moreover, it is also steeper, since it requires a larger
vaccine uptake. If the contact rate is periodic, some examples of this scenario have
been investigated in [32–34].

In [8], Bacaër andGuernaoui generalized the definition ofR0 to study a periodically
varying vector population in a vector-host disease model. The periodicity is included
in the R0 through an integral eigenvalue problem. Later on, Bacaër extended this
approach and presented additional numerical methods for computing theR0, includ-
ing the use of Floquet theory for linear ordinary differential equations with periodic
coefficients [7].

The general definition of R0 in a periodic environment given in [8] has been
employed by Wang and Zhao [112] to establish the R0 for a large class of peri-
odic compartmental epidemic models. They showed that it is a threshold parameter
for the LAS of the disease-free periodic solution (and even for the global dynamics in
certain cases).

The class of seasonally forced epidemiological models considered in [112] has been
then studied by Bacaër et al. [92] who found several results about the persistence of the
disease. Following [54], they used an approach based on average Lyapunov functions
to find conditions which guarantee persistence of infected individuals when R0 > 1.
They also found suitable conditions ensuring that the disease dies out ifR0 < 1.

The investigation of conditions ensuring the uniform persistence [92,109,116] of a
given disease in a periodic environment has been the subject of a number of other stud-
ies including different epidemiological aspects as latency time, patchy environment,
human behavior changes, etc. (see for example, [16,86,115]).

4.2 In search of contact rates coherent with epidemiological data

Here we review results obtained in statistical literature on the fitting of the contact rate
of epidemic models to epidemiological data.

Of course there are someworkswhere the authors consider a pre-established param-
eterizedmodel ofβ(t) that depends on fewparameters. For example, in [25] the contact
rate was assumed to be in Dietz’s form β(t) = β0(1+β1cos(ωt−φ)), which depends
on three parameters; in [48], the authors investigated an SEIR model with the above-
described two-parameters contact rate, β(t) = β0(1 + β1φ(t)), introduced in [76].
Thus in practice in this type of analysis, the chosen quantitative [25] or semi-qualitative
[48] measures of deviation between model outputs and the (real or simulated) disease
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time-series is a function of few parameters. The minimization of this function fully
determines the contact rate.

In other articles, along the lines outlined by the theoretical works reviewed in
Sect. 4.1, no a priori hypotheses on β(t) are made (apart from, of course, positivity
and boundedness), see e.g. [26,71,83,107]. It is noteworthy that this was the approach
originally adopted by London and Yorke [83]. Thus in theory, it is the whole func-
tion β(t) that ought to be determined by optimization. Of course, in practice, often
one discretizes the function as a piecewise-constant [26,107] or piecewise-linear [83]
function or one adopts a truncated Fourier series [26].

An alternative approach has been followed in [91], where no hypotheses were for-
mulated on the contact rate, but cumulative cases were fit to a parameterized function.

Recently, one of the most active research groups in the statistical inference of the
seasonality of the contact rate is that of Grenfell and his colleagues. In [13,53], the
data on measles collected in the pre-vaccine age in England and Wales was fit to a
time-series-like discrete epidemic model with a time-varying transmission rate (the
TSIR model [13,53]). They showed that although the fitted transmission rate showed
a decrease during the holidays terms and an increase with the starts of the school
terms, the behavior of β(t) is substantially different from a piecewise constant contact
rate. In particular: (i) during the school terms the contact rate is not constant and it
is non-monotone; and (ii) the transmission rate begins to grow in the last days of
holidays.

In [85], the authors investigated the impact of seasonality on dynamics of six infec-
tious diseases by using data of the ‘pre-vaccinated era’ in the city of Copenhagen.
Although the fitted average age of infection with measles was in the range of school-
ing ages, they obtained substantial discrepancies with respect to the model ‘alternating
school terms/holidays’. For example, the fitted contact rate for the threemajor bacterial
childhood infections (pertussis, scarlet fever and diphtheria) exhibits large increases
during the summer vacations (see Figure 3, right panel, in [85]). Increases of β(t) dur-
ing the summer were also obtained for measles, mumps and varicella (see Figure 3,
left panel, in [85]).

Tanaka and Aihara [107] compared the phase portraits of the SIR model induced
by a two values β(t) with those generated by Metcalf’s fitting [85]. This procedure
was done for values of the mortality rate and infectious period ranging in a realistic
set. Interestingly, the obtained bifurcation diagrams were remarkably different.

Complex interplays between weather, non-school-related social phenomena and
space were revealed in a nation-wide investigation of seasonality in measles transmis-
sion in Nigeria by Ferrari et al. [52], who adopted a TSIR meta-population model. As
far as weather is concerned, the analyzed data suggested that the contact rate is con-
sistently in anti-phase to the rainfall patterns across the country, but it is not correlated
with the longitudinal gradient that the rainfall patterns show. A positive correlation
between the degree of seasonality of population size of the cities was found. These
results are in agreement with the local phenomenon of agricultural cycles, which
causes internal temporary migrations from urban areas to countryside during rainy
seasons.

The influences of rainfalls and temperature on smallpox spread in London between
1708 and 1748 were investigated in [39], where (in the framework of an SEIR model
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with disease specific fatalities) the authors assumed a linear relationship between the
contact rate β(t), the temperature T (t), and rain ρ(t) time series:

β(t) = β0 + βT T (t) + βρρ(t) + w(t),

wherew(t) is a white noise. Data fitting was obtained by applying nonlinear stochastic
filtering theory [70]. In agreement with biological intuition, the fitted values of βT was
positive whereas the fitted value for βρ was negative.

Although the assumption of periodic contact rates may be useful and enlightening,
in [39,52] it was shown that this assumption is a rough idealization. Real phenomena
mix one-year periodic ‘social’ component to other components that may be stochastic
and/or chaotic.

5 Role of seasonality in vector-borne diseases

Mathematical modeling of vector-borne diseases began in the early 20th Century with
Ronald Ross’ autonomous ordinary differential equation model of malaria transmis-
sion [95]. Amajor extension of thismodel that included immunity dynamics in humans
and seasonality in vector population densities was the Garki model [29]. Unlike the
models for childhood infectious diseases, this difference equation model allowed for
arbitrary patterns of seasonality. The authors fit the seasonal pattern of mosquito den-
sities to empirical data from Nigeria on the number of mosquito bites per person per
day, allowing them to capture realistic patterns of transmission. Although the authors
did not perform much mathematical analysis of this complicated periodically-forced
nonlinear model, they validated it against data and used it to determine the effective-
ness of two control interventions (spraying houses with insecticides to kill mosquitoes
and mass administration of antimalarial drugs to humans) in reducing prevalence and
achieving elimination.

As mentioned in Sect. 4.1, Bacaër et al. [7,8] conducted a more mathematical
treatment of the analysis of the impact of seasonality on thresholds for the stability
of the disease-free equilibrium, such as the basic reproductive number. Bacaër and
Guernaoui derived a compartmental population-basedmodel of a vector-borne disease
with a periodically varying vector population [8]. They fit themodel parameters to data
on cutaneous leishmaniasis from Morocco and numerically evaluated R0 through a
discretization to show that the epidemic could be stopped if the vector population was
reduced by a factor of four. Bacaër extended this approach and presented additional
numerical methods for computing R0, using the 2005–2006 chikungunya epidemic
in La Réunion as an example [7].

More recent analysis of vector-borne diseases has also shown (the co-existence
of different) multi-year epidemic peaks, as had been earlier shown for measles [46].
Chaves and Pascual fit case data of cutaneous leishmaniasis fromCosta Rica to various
climate predictors to show the existence of approximately three year cycles that are
coherentwith temperature andElNiñoSouthernOscillation indices cycles [21]. Childs
and Boots analyzed a malaria model with acquired immunity and periodically varying
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mosquito population (with a period of one year) to show the existence of multi-year
cycles, that they were able to match to case data from Kenya [22].

Hoshen and Morse developed a model of malaria transmission that included the
effects of climate (temperature and rainfall) on mosquito dynamics [67]. They did
not analyze it for periodic dynamics, but forced it with results of climate models to
develop a full non-autonomous non-periodic model that captured patterns of malaria
transmission across various locations in Africa. Tompkins and Ermert similarly devel-
oped a model that included the impact of climate and population density on malaria
transmission [110]. In addition to forecasting malaria, this model was used to estimate
the impact of climate change on malaria distribution [19].

The effects of seasonality in vector-borne disease has also been investigated in
connection with disease control. Several recent studies have focused on determining
optimal strategies to control/contrast vector-borne diseases in the presence of sea-
sonality. The main mathematical tool used in these studies is optimal control theory
[3,80]. In [17], optimal bed-net usage for a dengue disease model with seasonally
varying mosquito densities was investigated. One of the main results is that in the
presence of oscillations in vector birth rate, when the amplitude of seasonal force
is low or moderate, the insecticide spraying results to be very effective in reducing
the disease prevalence, both used alone or in combination with personal protections
as bed-nets. However, control effects appear to be negligible in regions where there
is a clear distinction between the wetter and drier months. Dengue fever has been
also targeted in [75], where a two-patch non-autonomous model has been studied
to investigate the effects of human movement and seasonality on preventive control
interventions such as mosquito repellents, reduction of the impact of vector breeding
grounds, and education campaigns to increase personal protection. The optimal use
of mosquito reduction strategies and personal protection has also been studied for the
case of West-Nile virus model with seasonality in [1].

Individual-based models have increasingly been developed since 1990, with the
increasing availability of computational power. Plaisier et al. [89] developed one of
the first individual-basedmodels to simulate the transmission and control of onchocer-
ciasis. Since then, a plethora of individual-basedmodels for vector-borne diseases have
been developed, primarily for malaria [23,47,59,101], but also for dengue [84]. These
models can incorporate multiple dimensions of seasonality, including vector popula-
tion densities, mosquito feeding frequencies, deployment of control interventions, and
even the seasonal movement of humans (for farming or forest work). Although it is
difficult to analyze these models mathematically, simulations of ensembles of models
with multiple random seeds and parameter values can provide uncertainty estimates
for predictions to help guide policy makers.

6 Conclusions

The periodicity of the contact rate, i.e. its time-heterogeneity due to social and
weather-related factors has been and is one of most fruitful fields of mathematical
and computational epidemiology. Many systematic reviews exist; therefore, we fol-
lowed the line of providing a highly personal non-systematic review of this topic,
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with the aim of stressing some issues that are less reported in previous reviews, and
providing a personal view of other better known issues.

Finally, we stress that although less work has been published on the impact of
time-heterogeneity of other parameters, a review dedicated to this topic is needed.
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