
Design and Implementation of an Agent-Based

Model of Pertussis with Performance

Considerations

A Thesis Submitted to the

College of Graduate and Postdoctoral Studies

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

G. Wade McDonald

c©G. Wade McDonald, February 2020. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the

University of Saskatchewan, I agree that the Libraries of this University may make it freely available for

inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for

scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their

absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not

be allowed without my written permission. It is also understood that due recognition shall be given to me

and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should

be addressed to:

Head of the Department of Computer Science

University of Saskatchewan

176 Thorvaldson Building, 110 Science Place

Saskatoon, Saskatchewan S7N 5C9

Canada

Or

Dean

College of Graduate and Postdoctoral Studies

University of Saskatchewan

116 Thorvaldson Building, 110 Science Place

Saskatoon, Saskatchewan S7N 5C9

Canada

i

Abstract

Pertussis, also known as Whooping Cough, is an airborne communicable disease caused by the Bordetella

pertussis bacterium. Symptoms include fever, runny nose, and a cough that typically progresses to the

point where it interferes with breathing, producing the characteristic whoop from which the common name

is derived. Complications, which disproportionately affect infants, include bacterial pneumonia which can

lead to death. Pertussis is vaccine-preventable and vaccination programs exist in most countries yet a recent

resurgence has been observed in jurisdictions with high vaccine coverage, including Alberta and Canada.

Simulation modeling has a long history in the study of epidemiology, including that of pertussis, but most

of such work has employed compartmental models. Agent-based models (ABMs) allow differentiation down to

the individual level, which cannot be done in aggregate compartmental models, as well as simpler specification

of heterogeneity and interaction patterns which can be tedious to implement in aggregate compartmental

models. These benefits come at the cost of increased computational burden.

This thesis seeks to design and implement an ABM representing the epidemiology of pertussis in Alberta,

Canada, and apply that model to evaluate vaccination during pregnancy as a potential intervention strategy

to reduce pertussis incidence in infants. In support of this objective, data structures will be explored to

improve performance for large ABMs developed using AnyLogic software.

ii

Acknowledgements

There are a number of people I would like to thank for their assistance and support in my studies

culminating in this thesis.

Firstly, I would like to thank Dr. Nathaniel D. Osgood, my supervisor, who I have enjoyed working with

since 2016 when I began as an Undergraduate Student Research Assistant in his Computational Epidemiology

and Public Health Informatics Lab (CEPHIL). Dr. Osgood boasts a wealth of knowledge and experience

which he is happy to share with his students. Dr. Osgood has provided me with invaluable guidance both

academically and in my interactions with colleagues and stakeholders of various backgrounds. Through his

“Bootcamps” and “Simulathons,” Dr. Osgood has exposed me and his other students to a wide variety of

projects and collaborators beyond the classroom and lab. I am greatly appreciative of Dr. Osgood taking

me on as a student and look forward to continuing to work with him in the future.

I would further like to thank Christine Hillis for keeping Dr. Osgood’s lab organized and running efficiently

and patiently guiding me through policies and procedures. I thank Drs. Ian McQuillan, Eric Neufeld, and

Volker Gerdts for agreeing to be on my committee and investing time and effort in evaluating my work. Drs.

Alexander Doroshenko and Karsten Hempel are thanked for their leadership, work, and domain expertise

applied to the pertussis model. Dr. Mark Keil was invaluable for his advice on computational geometry

and associated algorithms. I thank Reid McDonald, my brother, for help with R, GIS, editing, and personal

support. Finally, I would like to thank my parents, Alfred and Charleen McDonald, for personal and logistical

support in my return to post-secondary studies.

iii

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents iv

List of Tables vii

List of Figures viii

List of Abbreviations ix

1 Introduction 1
1.1 Motivation . 1
1.2 Pertussis . 1
1.3 Agent-Based Modeling . 1
1.4 Goal . 2

2 Background 3
2.1 Pertussis . 3

2.1.1 Disease Progression . 3
2.1.2 Pre-Vaccination Era . 4
2.1.3 Vaccines . 4
2.1.4 Epidemiological Trends . 4
2.1.5 Pertussis in Alberta . 5

2.2 Modeling . 5
2.2.1 Overview of Simulation Modeling . 5
2.2.2 Agent-Based Modeling in Health . 10
2.2.3 Dynamic Modeling of Pertussis . 11

2.3 Data Structures . 14
2.3.1 Range Search . 14
2.3.2 Grid Structure . 14
2.3.3 k-d Tree . 15

2.4 Latin Hypercube Sampling . 18

3 Pertussis Model 19
3.1 Group Model Building . 19

3.1.1 Team Composition . 19
3.1.2 Advisory Panel . 19
3.1.3 Modeling Process . 20

3.2 Model Structure . 21
3.2.1 Agents . 21
3.2.2 Networks . 25
3.2.3 Parametrization . 27
3.2.4 Scenarios . 32
3.2.5 Ancillary Structures . 33

3.3 Calibration . 38
3.3.1 Manual Calibration . 38

iv

3.3.2 Automatic Calibration . 38
3.4 Experiment Design . 39

3.4.1 Focus . 39
3.4.2 Population . 41
3.4.3 Setup . 41

3.5 Results . 42
3.6 Sensitivity Analyses . 43
3.7 Discussion . 43
3.8 Division of Work . 44

4 Data Structures 45
4.1 k-d Tree . 45

4.1.1 Existing Libraries . 45
4.1.2 Implementation . 46

4.2 Grid Structure . 47
4.2.1 Implementation . 47

4.3 Library . 47
4.4 Parallelism and Concurrency Considerations . 47

4.4.1 Definitions . 48
4.4.2 Java . 49
4.4.3 AnyLogic . 50
4.4.4 Implementations in this Work . 51

5 Performance Evaluation 53
5.1 Objectives . 53
5.2 Testing . 53

5.2.1 Test Harness . 53
5.2.2 Test Systems . 54
5.2.3 Grid Bin Width . 54
5.2.4 Testing Procedure . 55

5.3 Results . 55
5.3.1 Run Time Scaling with Agent Count . 56
5.3.2 Run Time Scaling with Connection Range . 57
5.3.3 Memory Scaling with Agent Count . 57
5.3.4 Memory Scaling with Connection Range . 58
5.3.5 Use with Full Model . 58

5.4 Discussion . 58

6 Conclusion 63
6.1 Deliverables . 63
6.2 Contributions and Findings . 63

6.2.1 Pertussis Model . 63
6.2.2 Data Structures . 63

6.3 Limitations . 64
6.3.1 Pertussis Model . 64
6.3.2 Data Structures . 65

6.4 Future Work . 65

References 67

Appendix A Code Listings 72
A.1 KDPoint . 72
A.2 DoublePoint . 74
A.3 HasDoublePointCoordinate . 79
A.4 RangeSearchGrid2D . 80

v

A.5 SimpleRangeSearchTree2D . 81
A.6 SimpleRangeSearchGrid2D . 88
A.7 Logger . 93

vi

List of Tables

3.1 Epidemiological Parameters . 28
3.2 Demographic Parameters . 29
3.3 Disease Configuration Parameters . 30
3.4 General Configuration Parameters . 31
3.5 Preliminary Results for Main Experiment with Vaccine Coverage of 50% 42
3.6 Preliminary Results for Main Experiment with Vaccine Coverage of 75% 43
3.7 Preliminary Results for Sensitivity Analyses . 43

vii

List of Figures

2.1 Pertussis Incidence in Alberta 2000–2018 . 6
2.2 Pertussis Vaccine Coverage in Alberta 2007–2018 . 7
2.3 A Simple Compartmental Model in SD and ODE Notation 8
2.4 Statechart for ABM Adaptation of Hethcote’s 1997 Model By Doroshenko et al. 13
2.5 Range Searches: General (left), Orthogonal and Circular (right) 15
2.6 An Example of Inserting Records into a k-d Tree . 17

3.1 Statecharts for the Person Agent . 21
3.2 Statechart for the “Hethcote Plus” Disease Module . 24
3.3 Statechart for the De Novo Disease Module . 25
3.4 Visualization in Epi Curves Agent . 26
3.5 Dynamic Graphs in Model GUI . 33
3.6 Dynamic Graphs in Model GUI . 34
3.7 Likelihood Profiles . 40

5.1 Optimization of Bin Width for Grid Structure . 55
5.2 Run Time Scaling with Agent Count . 56
5.3 Run Time Scaling with Agent Count (Log-Log Scale) . 57
5.4 Initialization Time Scaling with Agent Count (Log-Log Scale) 58
5.5 Total Time Scaling with Agent Count . 59
5.6 Total Time Scaling with Agent Count (Log-Log Scale) . 60
5.7 Total Time Scaling with Connection Range . 60
5.8 Memory Usage Scaling with Agent Count . 61
5.9 Memory Scaling with Connection Range . 61
5.10 Total Time Scaling in Full model . 62
5.11 Memory Scaling in Full model . 62

viii

List of Abbreviations

ABM Agent-Based Model
aP Acellular Pertussis Vaccine
API Application Programming Interface
CDC Centers for Disease Control and Prevention
CDF Cumulative Distribution Function
CEPHIL Computational Epidemiology and Public Health Informatics Lab
CGAL Computational Geometry Algorithms Library
CIRN Canadian Immunization Research Network
CSV Comma-separated Value
DES Discrete Event Simulation
DTP Diptheria, Tetanus, and Whole-Cell Pertussis Vaccine
DTaP Diptheria, Tetanus, and Acellular Pertussis Vaccine
DTwP Diptheria, Tetanus, and Whole-Cell Pertussis Vaccine
GIS Geographic Information Systems
GUI Graphical User Interface
IHDA Alberta Interactive Health Data Application
JAR Java Archive
JDK Java Developer Kit
JNI Java Native Interface
JVM Java Virtual Machine
LHS Latin Hypercube Sampling
MCMC Markov Chain Monte Carlo
NNV Number Needed to Vaccinate
ODE Ordinary Differential Equation
OR Odds Ratio
ORI Outbreak Response Immunization
PFP Preventable Fraction in the Population
PI Principal Investigator
RAM Random Access Memory
SD System Dynamics
SEIR Susceptible-Exposed-Infective-Recovered
SEIRS Susceptible-Exposed-Infective-Recovered-Susceptible
SIR Susceptible-Infective-Recovered
SIRS Susceptible-Infective-Recovered-Susceptible
Tdap Tetanus Diptheria, and Acellular Pertussis Vaccine
VC Vaccine Coverage
VE Vaccine Effectiveness
WHO World Health Organization
wP Whole-cell Pertussis Vaccine

ix

1 Introduction

1.1 Motivation

Infectious disease is among the leading causes of death worldwide. Pertussis, in particular, affects 20 to 40

million people globally, leading to about 400,000 deaths annually. Approximately 1,000 to 3,000 people per

year are known to be infected in Canada. Children under 1 year are at the greatest risk, especially if not

current in their vaccinations [1].

1.2 Pertussis

Pertussis, also known as Whooping Cough, is an airborne communicable disease caused by the Bordetella

pertussis bacterium. The disease is spread through droplets produced by coughing or sneezing. Symptoms,

which generally appear seven to ten days after infection, include fever, runny nose, and a cough that typically

progresses to the point where it interferes with breathing, producing the characteristic whoop from which

the common name is derived. Untreated patients may be contagious for three weeks or more following the

onset of symptoms [2].

Pertussis is vaccine-preventable and the World Health Organization (WHO) estimates that in 2008 global

vaccination against pertussis prevented approximately 687,000 deaths [2]. Two types of vaccines exist: whole-

cell and acellular. Since its development, some countries have moved towards the use of the acellular vaccine

due to concerns about adverse reactions to the whole-cell vaccine, while others have continued to use the

whole-cell vaccine due to its lower cost [3].

In Alberta, pertussis vaccines are given at ages 2, 4, 6, and 18 months, 4− 6 years, and 14− 16 years. All

vaccines have been acellular since 1997, prior to which the whole-cell vaccine was used [4].

A resurgence of pertussis has been observed in recent years in some jurisdictions with high vaccine

coverage, including Alberta and Canada [3, 4, 5].

1.3 Agent-Based Modeling

Agent-based modeling is a dynamic simulation modeling technique in which “a system is modeled as a

collection of autonomous decision-making entities called agents” [6]. Agents have the properties of being

autonomous and unique, and interact with their environment and other agents locally. Agents may change

1

over time, have memory of previous states, and progress through life cycles [7].

Agent-based models (ABMs) allow us to examine emergent behaviour of a system. That is, “system

dynamics that arise from how the system’s individual components interact with and respond to each other

and their environment” [7].

1.4 Goal

This thesis seeks to design and implement an ABM representing the epidemiology of pertussis in Alberta,

Canada, and apply that model to evaluate vaccination during pregnancy as a potential intervention strategy

to reduce pertussis incidence. The model is required to be tractable for a nominal population of 500, 000, and

represent vaccination and disease history of individual people as well as transfer of maternal immunity and

waning of both vaccine- and disease-induced immunity. Heterogeneity in contact patterns is to be captured

as well as clustering of populations with low vaccine coverage. As a means to this end, data structures,

algorithms, and design patterns will be explored to improve performance for large ABMs developed using

AnyLogic software [8].

2

2 Background

2.1 Pertussis

Pertussis, also known as Whooping Cough, is a communicable disease, spread through respiratory droplets,

caused by the Bordetella pertussis bacterium.

2.1.1 Disease Progression

Pertussis is mainly transmitted through airborne respiratory droplets, produced by coughing or sneezing. It

may also be transmitted through contact with contaminated clothing or other items [2, 9].

Pertussis is a toxin-mediated disease where bacteria attach to respiratory epithelial cells. Toxins produced

by the bacteria paralyze the cilia of these cells and cause inflammation of the respiratory tract, thereby

interfering with the clearing of pulmonary secretions [9].

The incubation period of the disease is generally 7 − 10 days with a range of 4 − 21 days. The onset—or

first stage of infection—is described by the Centers for Disease Control and Prevention (CDC) as “insidious,”

in that the symptoms of runny nose, sneezing, low-grade fever, and mild occasional cough are similar to those

of the common cold. This stage may last for 1 − 2 weeks [9].

During the second, or paroxysmal stage, the infected person has paroxysms—or bursts—of rapid coughs

in an effort to expel thick mucus. Following the paroxysm of coughs, “a long inspiratory effort is usually

accompanied by a characteristic high-pitched whoop” [9]. This second stage lasts an average of 1 − 6 weeks

but may last up to 10 weeks. During this stage, the frequency of paroxysmal attacks average 15 per day.

The first two weeks of this stage show an increase in paroxysmal attack frequency, followed by steady-state

frequency for 2 − 3 weeks, and ultimately a gradual decrease [9].

The third and final stage of the disease, called convalescent, is characterized by a gradual recovery in

which the paroxysmal nature of the cough lessens and disappears within 2 − 3 weeks [9]. Untreated patients

are most contagious for three weeks following the onset of symptoms [2, 9].

Infants less than six months of age are at greatest risk of developing complications with pertussis, the

typical one being bacterial pneumonia. CDC data indicate that 5.2% of the general population and 11.8%

of infants under 6 months contract pneumonia as a complication. Most pertussis-related deaths are due to

pneumonia [9].

3

2.1.2 Pre-Vaccination Era

Prior to introduction of vaccination against pertussis, the disease was a frequent cause of sickness and death,

especially among infants and children [9]. In Canada, pertussis incidence averaged 156 cases per 100, 000

population in the five years prior to introduction of vaccination in 1943 [10]. Solid mortality figures for the

pre-vaccination era are difficult to find. The CDC estimates that, prior to vaccination, the United States

annually saw around 200, 000 childhood pertussis cases, resulting in about 9, 000 deaths [11]. In Canada,

from 1934–1943, 35 deaths were reported per 1,000 cases notified [12].

2.1.3 Vaccines

Whole-cell pertussis vaccine (wP) contains complete Bordetella pertussis cells that have been inactivated to

prevent them from reproducing and causing the full-blown disease. It is typically distributed as a combined

vaccine which also inoculates against diptheria and tetanus, commonly abbreviated as DTP or DTwP. Adverse

reactions to wP were common, and included redness, swelling, pain at the injection site, and fever [9]. Use

of wP began in 1943 in Canada [10].

Acellular pertussis vaccines (aP) contain particular components of the Bordetella pertussis cell which

have been purified and inactivated. Two commercial formulations exist that contain different components, or

antigens. These are further combined with diptheria and tetanus vaccine formulations to produce a pediatric

formulation, abbreviated DTaP, and an adolescent and adult formulation, abbreviated Tdap. Tdap differs

from DTaP in having lower concentrations of diptheria and pertussis antigens in comparison with DTaP [9].

Use of aP vaccines began in Canada in 1997 [10].

The WHO “estimates that in 2008 global vaccination against pertussis prevented approximately 687,000

deaths” [2]. Since its development, some countries have moved towards aP use due to concerns about adverse

reactions to wP, while others have continued to use wP due to its lower cost [3].

2.1.4 Epidemiological Trends

Following introduction of pertussis vaccination in 1943, overall Canadian incidence trended downwards to a

mean annual minimum of 7 cases per 100, 000 population between 1984 and 1988. A resurgence occurred in

the 1990s, peaking at 34.9 cases per 100, 000 in 1994, followed by a decline from 1998 reaching its nadir in

2011 with an incidence of 2 cases per 100, 000, the lowest ever recorded. 2012 featured another significant

jump in incidence [10].

Smith et al. [10] further observe that local maxima in incidence consistently occur every 2 − 5 years, in

spite of being less visible in periods of low absolute incidence. Grenfell and Anderson [13] remark that the

“inter-epidemic” period for pertussis was not altered by the introduction of vaccination in the UK context.

Domenech de Cellès et al. [14] point out that, worldwide, there is no consistent resurgence of pertussis.

Of 63 countries examined in their analysis, they found that “pertussis incidence had increased in 16 countries

4

but decreased in 32 countries, with no significant trend in 15 countries” [14]. Even among countries where

the general trend was one of increase since 1980, most had one or more intervening periods of decrease. They

report that “only four [countries]—Australia, Israel, the Netherlands and the USA—experienced no decrease

in pertussis incidence over 1980–2012” [14].

2.1.5 Pertussis in Alberta

Pertussis is notifiable by law in Alberta. In order to be considered a case by Alberta Health, a suspected case

of pertussis must be either confirmed by a laboratory test or have an epidemiological link to a laboratory-

confirmed case along with demonstration of compatible symptoms [4].

In Alberta, pertussis vaccines are given at ages 2, 4, 6, and 18 months, 4− 6 years, and 14− 16 years. All

vaccines have been aP since 1997, prior to which wP was used [4].

Liu et al. [4] wrote in 2017 that “There has been a resurgence of pertussis cases in Alberta in the last

15 years among all age groups, despite high vaccination coverage.” Figure 2.1 shows Alberta-wide pertussis

incidence since 2000. While rates are high overall, the general trend is downward towards a minimum of

less than 2 cases per 100, 000 in 2010, followed by an upward trend, peaking in 2017. This aligns with the

Canada-wide trends reported by Smith et al. [10], see Section 2.1.4. Vaccine coverage in Alberta has been

consistently high since 2007, as seen in Figure 2.2.

2.2 Modeling

2.2.1 Overview of Simulation Modeling

Simulation Modeling

Use of models is pervasive in science, but what exactly is meant by the term “model” can vary between fields

and disciplines. Some examples include “the billiard ball model of a gas, the Bohr model of the atom, the

Lotka-Volterra model of predator-prey interaction, the Mundell-Fleming model of an open economy, and the

scale model of a bridge” [16]. Many people primarily think of models as describing physical objects, however,

a model could also describe “a social theory, an element of human behavior, or a relationship among statistical

variables” [17], among other concepts.

Railsback and Grimm [7] cite Starfield [18] in describing a model as “a purposeful representation of some

real system.” Law and Kelton [19] suggest that a model constitutes the collection of assumptions made about

how a system works in order to understand how it behaves. Simple models can often yield an exact analytical

solution using the tools of mathematics and statistics. More complex models must be evaluated numerically

using a computer in a process called simulation. Simulation involves calculating model outputs, numerically,

for a given set of inputs and then evaluating the outcomes [19]. Dynamic simulation modeling, specifically,

involves simulations that are calculated over time.

5

0

5

10

15

20

25

2000 2005 2010 2015 2020
Year

In
ci

de
nc

e
(c

as
es

 p
er

 1
00

,0
00

)
IHDA Pertussis Incidence

Figure 2.1: Pertussis Incidence in Alberta 2000–2018 [15]

Dynamic systems simulation modeling represented in the public health and health care space can be

largely divided into three methodologies: System Dynamics (SD), Discrete Event Simulation (DES), and

Agent-Based Modeling. The present work focuses exclusively on Agent-Based Modeling.

Compartmental Models

The term compartmental model generally refers to an Ordinary Differential Equation (ODE) or System

Dynamics (SD) model. These models divide quantities into compartments and define rates of change of

the size of those compartments using differential equations. Historically, most epidemiological models have

been aggregate ODE models, going back as far as work in 1911 by Ross [20] and in 1927 by Kermack and

McKendrick [21].

The System Dynamics branch of compartmental modeling techniques were developed by Jay W. Forrester

at the Massachusetts Institute of Technology in the 1950s [22] and abstract ordinary differential equations

into diagrams consisting of stocks, which represent a quantity, and flows, which represent change of a quantity.

While SD and ODE techniques are essentially equivalent mathematically, SD has the advantages of being

6

0

25

50

75

100

2005 2010 2015 2020
Year

V
ac

ci
ne

 C
ov

er
ag

e
(%

) Dose

Dose 1 − Age 2

Dose 2 − Age 2

Dose 3 − Age 2

Dose 4 − Age 2

Dose 5 − Age 7

Dose 6 − Age 16

IHDA Pertussis Vaccine Coverage

Figure 2.2: Pertussis Vaccine Coverage in Alberta 2007–2018 [15]

simple to understand, especially for non-mathematicians, and making explicit feedbacks and accumulations

in a system that can be non-obvious when looking at a system of differential equations. ODE methods, on the

other hand, have a long history pre-dating Forrester’s work and continue to be preferred by many researchers

because they do not abstract away from the mathematical equations.

Figure 2.3 shows a simple compartmental model expressed using SD stocks and flows and as an ODE. In

the SD diagram, A represents a stock, which is a quantity. The double arrows, F and G, represent flows,

which change the value of the stock A over time. The single arrows indicate instantaneous dependencies,

so the value of G immediately and directly depends on the value of the stock A and the parameter p. This

diagram translates to an ODE where the time-derivative of the stock, A, is equal to the sum of flows into A

minus the sum of flows out of A.

Agent-Based Models

Agent-Based Models (ABMs), are simulation models defined by placing a number of agents within an envi-

ronment; these models constitute a subset of Individual-Based Models, although the latter term is sometimes

7

A
G

p

F

Figure 2.3: A Simple Compartmental Model in SD and ODE Notation

used interchangeably with “Agent-Based Model”. Railsback and Grimm [7] describe agents as “unique and

autonomous entities that usually interact with each other and their environment locally.” Elucidating several

terms in the previous definition:

• Uniqueness implies that agents have one or more characteristics or properties which differ from agent

to agent [7].

• Local Interaction “means that agents do not interact with all other agents but only with their

neighbors” [7].

• Autonomy “implies that agents act independently of each other and pursue their own objectives” [7].

Agents retain a state that can potentially include memory of the agent’s own history, allowing agents to

move through “different ‘life cycles’ or stages... possibly including birth and death” [7]. Further, an agent’s

behaviour can adapt in response to changes in its own state, other agents, and the environment [7].

Analyses applying ABMs focus on emergence by specifying agent properties and behaviours and then

observing “system dynamics that arise from how the system’s individual components interact with and

respond to each other and their environment” [7] while running the model. Railsback and Grimm [7] refer to

ABMs as across-level models, to emphasize the fact that ABMs can represent changes in the system resulting

from individual behaviour as well as changes in individual behaviour resulting from the state of the system.

Additionally, ABMs often feature time- and space-variation of state variables of both individual agents and

the environment [7].

8

Comparing Methodologies

Historically, aggregate ODE models have represented as a traditional, established form of dynamic modeling

in epidemiology—most particularly mathematical epidemiology—with other methods occasionally being met

with skepticism by scientists established in that field. Since the present work is an ABM, it is reasonable

to address some strengths and limitations of the ABM approach when compared to the traditional aggre-

gate ODE method. For simplicity in terminology, ODE/compartmental models referred to below will be of

aggregate character unless otherwise stated.

• Heterogeneity of the population can be achieved simply in ABMs by adding properties to the agent

definition and comes at a small incremental cost in terms of computation and memory. Compartmental

models can also achieve heterogeneity via stratification, however it comes at the cost of adding com-

partments in a combinatorial way. For example, if a basic model has 3 compartments and we desire

to stratify it in two sexes and five age groups, we end up with 3 × 2 × 5 = 30 compartments in the

final model; moreover, the changes required to support a new dimension of heterogeneity extend across

the breadth of the areas of the model that must handle it. While such stratification—sometimes called

“subscripting” or “arraying”—is well-supported by many SD modeling packages, the combinatorial

expansion in model size is limiting [23, 24].

• Individuality is something that can not be captured in aggregate compartmental models, since they

must divide the population into a finite number of compartments within which complete and random

mixing is assumed. ABMs allow agents to have distinct, even unique, properties, including retaining a

history of states, if required [23, 7].

• Interaction between agents in an ABM is said to be local [7]. Which other agents interact with a

given agent can typically be specified with simple declarative rules that can vary at the individual level.

Compartmental models can approximate this down to the compartment level. For example, in epidemi-

ology, age-structured compartmental models typically specify contact rates between compartments in

a contact or transition matrix. But such approaches cannot duplicate it to the individual level [24].

• Scalability in terms of computational resource requirements with growing population size favours

compartmental models. A compartmental model can handle any population size without change in

resource requirements provided that the number of compartments is fixed, i.e., O(1), while ABM

performance scales with population size, often super-linearly. Moreover, the constants involved strongly

favour the run-time of compartmental models, which can often have run-times measured in seconds or

minutes while large ABMs can take multiple hours to run [23].

• Explainability to stakeholders who may be non-technical or be experts in domains other than simu-

lation modeling can be a valuable feature. Compartmental models summarized using the declarative

diagramming language of SD have been found to be easily understood by people of varying backgrounds

9

[25]. ODE representations can be valuable for those with mathematical backgrounds—although ele-

ments of the formulation can be complicated by the need to reason about aggregation involved. ABMs,

on the other hand, can contain a significant amount of computer source code, which are often indeci-

pherable to non-programmers, and other components whose relationships may be non-obvious to people

other than the model builder without strong documentation efforts [24].

2.2.2 Agent-Based Modeling in Health

One of the early contributions to mathematical modeling in health was Kermack and McKendrick’s 1927 A

Contribution to the Mathematical Theory of Epidemics [21], which proposed what is now known as the SIR

model. SIR stands for Susceptible-Infectious-Recovered, which are the three compartments in the model.

The model assumes a “closed”, randomly mixing population with no births, deaths, or migration, and that

a single infection confers permanent immunity. A large number of basic variations on this model have since

been proposed and applied; these include the following:

• SIRS – Susceptible-Infective-Recovered-Susceptible allows for waning of immunity, whereupon people

leave Recovered and return to Susceptible.

• SEIR – Susceptible-Exposed-Infective-Recovered adds a latent Exposed period, in which individuals

are infected but not yet infectious.

• SEIRS – Susceptible-Exposed-Infective-Recovered-Susceptible provides a latent period as well as im-

munity waning.

These models can additionally be modified to characterize birth, death, migration, demographic stratifi-

cation, and structured contact patterns, among other features.

Deterministic aggregate compartmental models have long been preferred in epidemiology “because it is

easy to solve them numerically, interpret their results directly, and gradually increase their complexity by

adding new compartments” [26]. These models, however, cannot fully account for some aspects of disease

behaviour such as randomness and heterogeneity in contact patterns [26].

ABMs are gradually being adopted in health research. Badham et al. [27] state that there are now “calls

for greater use of ABMs to understand public health issues and to formulate and evaluate plans to address

them.” They go on to state that ABMs can “effectively model systems governed predominantly by micro-

level interactions or where there is substantial heterogeneity in agents’ characteristics or their environment.”

Auchinloss and Diez Roux [28] encourage adoption of ABMs in epidemiology, suggesting that doing so may

“promote thinking about the ways individuals interact with each other and with their environments.” Chalabi

and Lorenc [29] cautiously recommend use of ABMs while pointing out that rules governing agent behaviour

must be evidence-based and that some may view them as black-box models. El-Sayed et al. [30] state that

use of ABMs may enable researchers to “understand the etiologic implications of heterogeneity within the

10

population, social interaction, and environmental influence simultaneously” but suggest that more work needs

to be done in social network analysis in order to be able to draw solid conclusions from ABMs within that

domain.

2.2.3 Dynamic Modeling of Pertussis

Compartmental Models

Mathematical modeling of pertussis began as early as 1989 in work by Grenfell and Anderson [13]. This study

adapted previous ODE models of measles, mumps, and rubella to investigate the epidemiology of pertussis

in the UK, specifically England and Wales. The model was stratified into 5 age groups, assumed that infants

were born susceptible, and characterized primary vaccine failure and waning of vaccine-induced immunity.

Analysis suggested that waning of natural disease-induced and vaccine-induced immunity, variability in case

reporting efficiency, and seasonal variations all played a role in explaining observed trends.

A seminal contribution, upon which much further work was based, was made in 1997 by Hethcote [31].

This was an age-structured ODE model of pertussis featuring waning of both natural disease-induced and

vaccine-induced immunity, as well as multiple degrees of infectivity. The model is a modified SIRS model

with 12 compartments: four stages of natural disease-induced immunity (R1, R2, R3, R4), four stages of

vaccine-induced immunity (V1, V2, V3, V4), as well as three levels of infectivity (I, Im, Iw). The model

replicated American incidence data from 1940 to 1995 and projected to 2040. The simulations suggested that

vaccination of children alone as was, and continues to be, the practice, could not possibly produce a herd

immunity effect for pertussis due to waning of immunity and persistence of low-level infections.

Hethcote and other authors went on to further develop the model to examine additional research ques-

tions. In one such study, Van Rie and Hethcote [32] applied the model to examine alternative vaccination

strategies, including vaccination of adolescents, adults, and households with newborns (sometimes referred

to as cocooning), in a US context. They found that, of the strategies examined, vaccinating adolescents had

the lowest number needed to vaccinate (NNV) to prevent one case of pertussis in the general population,

while cocooning had the lowest NNV to prevent one case in infants.

Hethcote, Horby, and McIntyre [33] performed a similar study in Australia with a modified version of the

1997 model to assess a recent change to vaccination scheduling in that country, and found that the change

was likely to reduce pertussis incidence as intended.

Fabricius et al. [34] applied a modification of Hethcote’s 1997 model to evaluate the impact of adding

a vaccine dose at 11 years of age in an Argentinian context. They found that, while the additional dose

reduced incidence overall, it did little to benefit infants, who are most vulnerable. Their recommendation

was to instead improve first-dose coverage.

Pesco et al. (2014) [35] applied a modification of Hethcote’s 1997 model to examine recent trends of

increasing pertussis incidence in multiple jurisdictions within the United States. The study focused specifically

11

on vaccine effectiveness and effective transmission rates. Findings were that reduction of vaccine effectiveness

led to increased incidence in infants and children, while changes to transmission rates led to higher incidence

in adolescents with large cyclic outbreaks.

Pesco et al. (2015) [36] applied a modification of Hethcote’s 1997 model to examine reduction of delays

in vaccine administration as a strategy to reduce incidence in an Argentinian context. Findings indicated

that reducing delays improves vaccine coverage and protection of infants.

Gambhir et al. [37] fitted a compartmental model of pertussis designed by the researchers to incidence

data from the United States using Markov Chain Monte Carlo (MCMC) methods. The goal was to examine

potential causes for increasing pertussis incidence. Their results suggested a difference in efficacy between

the whole-cell (wP) and acellular (aP) pertussis vaccines, that “adults and adolescents may be a significant

reservoir of infection,” and that the immunity induced by the wP vaccine may be “nearly equivalent to that

of the natural infection.”

Agent-Based Models

Sanstead et al. [38] developed an ABM representing pertussis epidemiology in Dakota County, Minnesota,

USA using NetLogo software; the focus of the study lay in examinining possible causes for observed increases

in pertussis incidence. People in the model were divided into four age groups. Some key assumptions were

that vaccinated children received the full 5-dose series with “no delays and 85% vaccine efficacy,” vaccine-

induced immunity did not apply until the first three doses were received, and waning of immunity was

“instantaneous and complete”. Individuals were assumed to interact with each other “randomly each day

without restrictions” with transmission probabilities that were derived from Hethcote’s 1997 model. The

latent period of infection was neglected, variable degrees of infectiousness were not represented, and infected

people were assumed to be infectious for 21 days regardless of symptoms unless treated with antibiotics.

People treated with antibiotics were assumed to have reduced infectiousness and be sequestered from in-

teractions. The model successfully replicated age-structured pertussis incidence in Dakota County during

three key outbreaks. The model was highly sensitive to adult immunity parameters. Findings suggested that

current trends may be influenced by waning of vaccine-induced immunity, underreporting, and fluctuations

in adult immunity.

Doroshenko et al. [5] developed an ABM representing pertussis epidemiology in Alberta, Canada using

AnyLogic software, with a focus on examining outbreak response immunization (ORI) as a possible interven-

tion strategy. Findings suggested that “outbreak response may yield modest benefits for protecting infants”.

This model was a key reference for the present work due to the involvement of co-authors Drs. Doroshenko

and Osgood, the focus on pertussis in Alberta, and the use of AnyLogic as the development tool.

Key features of the Doroshenko et al. model are [5]:

• A nominal population size of 500, 000 people with dynamic births and deaths (an “open” population).

12

• The population was distributed across a stylized square urban area with a high-density core surrounded

by a lower density periphery.

• Agents were connected within a distance-based contact network, meaning two agents were connected

if and only if their Euclidean distance was below a certain threshold. The threshold itself was age-

dependent, with a larger radius being used if both agents were under 16 years of age.

• Disease was represented using an ABM adaptation of Hethcote’s 1997 compartmental model [31], the

statechart for which is shown in Figure 2.4.

• An ORI module designed to detect incipient outbreaks within the model and apply the intervention.

• A Grid data structure which provided improved range search performance over AnyLogic’s built-in

methods.

Figure 2.4: Statechart for ABM Adaptation of Hethcote’s 1997 Model [31] by Doroshenko et al. [5]

This work has drawn materially on the Doroshenko et al. [5] work in three key ways. First, learning

from the implementation of the stylized square urban area was applied in development of the population

density map for this work. Second, the ABM adaptation of Hethcote’s model [31] was used both as-is and

in a modified form, see Disease Module in Section 3.2.1. Third, the Grid data structure was incorporated

into this work, as detailed in Sections 2.3.2 and 4.2.1.

13

2.3 Data Structures

AnyLogic’s built-in agentsInRange() method for an agent, A, returns a collection of other agents within

a population lying within a specified range of A; to accomplish this, it searches the entire population and

computes the distance to each other agent. For a given population size n, this procedure is O(n) for each

operation and is always worst-case. Thus it becomes advantageous to search for algorithms and data struc-

tures to improve this search time. Storing the network connections, on the other hand, requires O(e) storage,

where e is the number of edges in the graph. AnyLogic stores the network graph as an adjacency list in

each agent, so this has an upper bound of O(n2) storage, where n is the number of agents, so enhancing

computational efficiency in this area is also of interest.

2.3.1 Range Search

Range search is considered “a central problem in computational geometry” [39] and, stated plainly, involves

determining which points lie within a specified subset of a space.

The specific case applicable to this project involves determining, in 2-dimensional space, which other

points lie within a certain distance of a given point. Here, the range, in its geometric sense, delineates

a circle centred at the coordinates of the given point. Further, we are not simply interested in reporting

the geometric coordinates, but using this method as an index into a set of agents to speed searching. An

additional simplifying consideration in this application is that the agents are not freely mobile; instead, their

positions remain static throughout the majority of the model run.

Agarwal [39] indicates that a single range search query can be solved by brute force in O(n) time, which

is what AnyLogic’s built-in agentsInRange() method does. Most applications, however, including this one,

require many queries, so the goal becomes pre-processing the set of points into a data structure that speeds

searching.

Orthogonal range searching [39] further constrains the problem by applying the restriction that the ranges

be rectangular and axis-aligned. For this application, the range is a circle, so the strategy is to do an

orthogonal range search within a square bounding box, and to then refine the search by computing distances.

Figure 2.5 shows a general range search on the left and an orthogonal range search with inscribed circle on

the right.

2.3.2 Grid Structure

The Grid structure was originally implemented in AnyLogic by Weicheng Qian [5], but is not particularly

novel by computer science standards. Two-dimensional Cartesian space is divided into grid squares of a

chosen size. A data structure, accessible by index, represents those grid squares. The record of each grid

square contains a sequentially accessed data structure which stores references to every record whose position

falls within the bounds of that square, geometrically.

14

Figure 2.5: Range Searches: General (left), Orthogonal and Circular (right)

The benefit of the Grid structure is realized when performing a Range Search. To obtain a set of agents

within a certain distance of a given agent, A, one need only search the square to which the A belongs and

any adjacent squares that are enclosed by or intersect with a circle representing the maximum range. This

reduces the search space, speeding the operation; however, the scaling remains O(n). For large populations

and relatively short ranges, this can result in a significant improvement, while in the worst case it is O(n),

where n is the entire population—no worse than the built-in algorithm.

The grid square size must be tuned for given space dimensions and agent density in order to secure the

best average-case performance. The worst case would have a single square for the entire space, which reduces

the problem to sequential search of the entire population, O(n). In the opposite extreme, making squares

arbitrarily small increases the memory overhead of the Grid as well as allocation time.

To perform a range search on agents in the Grid structure, first the indices of bins to search are com-

puted from the coordinates of the index agent and a given range. This first step is key to the performance

improvement sought, as it eliminates computation of distance for agents far out of range of the index agent.

The agents contained in the selected bins are then further filtered based on their computed distance from

the index agent and the final set of agents in range is returned. Geometrically, it would be possible to add

an entire bin to the result, without computing distances, if it was known to be fully contained in the range

circle, leading to additional gains; this is not the case in the current implementation, however.

2.3.3 k-d Tree

A k-d Tree, standing for k-dimensional tree, is a binary tree-based data structure for storing data with

multidimensional keys. Branches of the tree are partitioned based on a single dimension of the key, cycling

15

through the dimensions as the tree deepens. Comparing based on only one dimension at each level has the

benefit of reducing computation as well as storage compared to the QuadTree, another method for storing

point data. A disadvantage of the k-d Tree is that its structure depends on the order of insertion of data as

well as the chosen order of alternation through the dimensions of the key. Another disadvantage is that a

subtree of a k-d Tree is not a valid k-d Tree [40].

Samet [40] describes a specific variant of the k-d Tree—termed a Point k-d Tree—that “partitions the

underlying space at the data points and cycles through the different axes in a predefined and constant order.”

The implementation in this work specifies an x, y, x, y... order. This particular tree is summarized below and

further implemented in Java as part of this work, as described in Section 4.1.

The discriminator indicates which dimension of the key is being considered for the current node. If a

given node, N , is an x-discriminator, then all nodes in its left subtree have x-values less than that of N and

all nodes in the right subtree have x-values greater than or equal to that of N [40].

To insert a node into a k-d Tree [40]:

• If the tree is empty, insert the new node as the root of the tree.

• Otherwise, search the tree for a match for the new node’s key.

• If an exact match is found, then the record of the new node replaces that of the found node.

• Otherwise, create the new node at the found location, which is an empty leaf node.

Consider the example of inserting several records into a two-dimensional point k-d Tree, adapted from

Samet [40], shown in Figure 2.6. On the left, the partition of 2-d space is shown, and on the right, a diagram

of the tree structure. (a) shows insertion of the first two nodes; node A is the first record inserted, and is thus

placed at the root of the tree. A becomes an x-discriminator, so to insert B we compare on the x-coordinate.

Because 66 > 48, we move to the “high” child of A, which is empty, so B is inserted there. (b) to insert

node C, we first compare its x-coordinate to that of A; 10 < 48, so we move to the “low” child of A, which

is empty, so C is inserted. (c) inserting D, we again compare its x-coordinate to that of A; 75 > 48, so

we move to the “high” child, which is B. B is a y-discriminator, so we compare D with B on the basis of

their y-coordinates; 12 < 58, so we move to the “low” child of B, which is empty, so D is inserted there. (d)

inserting E, we compare its x-coordinate to that of A; 20 < 48, so we move “low” and compare with C based

on the y-coordinate. 18 < 56 so we move “low” again and insert E as the “low” child of C. (e) inserting F ,

we compare with A based on x. 53 > 48 so we move “high” and compare with B based on y. 90 > 58, so we

move “high” again and insert F there.

In performing a range search, subtrees that are outside of the bounding box of the range can be excluded,

reducing the number of nodes that must be traversed. The search is performed recursively, beginning at

the root of the tree. If the coordinates of the node being examined lies within the bounds of the range,

then the record(s) at that node are added to the result. If the coordinate of a child node, according to its

16

y

x

d = x

A(48, 47)

A(48, 47)

B(66, 58)

B(66, 58)

(a)

(b)

(c)

(d)

(e)

y

x

d = x

A(48, 47)

A(48, 47)

B(66, 58)

B(66, 58)

C(10, 56)

C(10, 56)

y

x

d = x

A(48, 47)

A(48, 47)

B(66, 58)

B(66, 58)

C(10, 56)

D(75, 12)

D(75, 12)

C(10, 56) d = y

y

x

d = x

A(48, 47)

A(48, 47)

B(66, 58)

B(66, 58)

C(10, 56)

E(20, 18)

E(20, 18)

D(75, 12)

D(75, 12)

C(10, 56) d = y

y

x

d = x

A(48, 47)

A(48, 47)

B(66, 58)

B(66, 58)

F(53, 90)

F(53, 90)
C(10, 56)

E(20, 18)

E(20, 18)

D(75, 12)

D(75, 12)

C(10, 56) d = y

Figure 2.6: An Example of Inserting Records into a k-d Tree

17

discriminator, falls within the bounds, then it is examined recursively; otherwise, it can be “pruned”, being

excluded from the search [40, 41, 42].

Theoretical timing for the k-d Tree is O(kn log(n)) for setup, where k is the key size or number of

dimensions, and O(log(n)) for access [41, 42]. In order to maintain this performance, the tree must remain

in balance. In the worst case, where the tree is fully unbalanced, it becomes a list and access is sequential,

O(n). Tree balance is discussed further in Section 4.1.2.

2.4 Latin Hypercube Sampling

Latin Hypercube Sampling (LHS) is a technique developed by McKay et al. in 1979 [43] to sample from high

dimensional spaces. In a Latin Square sample, the 2-dimensional sample space is divided into a square grid,

and the sampling procedure ensures that there is one sample in each row and one in each column [43, 44].

Extending this concept and generalizing this invariant to three or more dimensions yields a Latin Hypercube

Sample [43].

18

3 Pertussis Model

An Agent-Based Model (ABM) of pertussis disease was developed using AnyLogic software. This chapter

discusses the development process and resulting model.

3.1 Group Model Building

An interdisciplinary group model building process was employed in development of the model, as outlined in

this section.

3.1.1 Team Composition

This model was developed by an interdisciplinary team consisting of the following members:

• Dr. Alexander Doroshenko, MD, MPH is an Associate Professor in the Division of Preventive

Medicine and Adjunct Professor in the School of Public Health at the University of Alberta, as well

as a Medical Officer of Health with Alberta Health Services. Dr. Doroshenko served as the primary

stakeholder, expert in epidemiology and medicine, and co-Principal Investigator on the project.

• Dr. Karsten Hempel, PhD is a Postdoctoral Fellow in the Department of Medicine at the University

of Alberta. Dr. Hempel brings expertise in statistics and mathematical modeling and served as one of

the primary model builders on the project.

• Dr. Nathaniel Osgood, PhD is a Professor in the Department of Computer Science and Associate

Faculty in the Department of Community Health and Epidemiology and Division of Biomedical Engi-

neering at the University of Saskatchewan. In addition to his capacity as supervisor for this thesis work,

Dr. Osgood served as the primary expert on dynamic modeling and computer science and co-Principal

Investigator on this project as well.

• Wade McDonald, BE, BSc is a Master’s student in the Department of Computer Science at the

University of Saskatchewan, and the author of this thesis. Mr. McDonald served as one of the primary

model builders on the project.

3.1.2 Advisory Panel

The project was further advised by an Advisory Panel consisting of the following experts:

19

• Dr. Natasha Crowcroft, MD, PhD is a Professor in the Dalla Lana School of Public Health at the

University of Toronto.

• Dr. David Fisman, MD, MPH is a Professor in the Dalla Lana School of Public Health at the

University of Toronto as well as an Attending Physician at a number of Toronto-area hospitals.

• Dr. Scott Halperin, MD is a Professor in the Division of Infectious Diseases, Faculty of Medicine

at Dalhousie University.

• Dr. Nicola Klein, MD, PhD is a Senior Research Scientist at the Kaiser Permanente Northern

California Division of Research and director of the Kaiser Permanente Vaccine Study Center.

• Dr. Pejman Rohani, PhD is a Professor at the Odum School of Ecology and the Department of

Infectious Diseases, College of Veterinary Medicine at the University of Georgia.

3.1.3 Modeling Process

The modeling process was generally conducted according to an iterative cycle of model development by the

primary model developers, consultation with the principal investigators, and periodic review by the Advisory

Panel.

This model was initially envisioned as an extension of the model developed by Doroshenko et al. in 2016

[5]. Dr. Doroshenko, as primary stakeholder, requested that a number of additional features be added to the

model. After discussions on how features would be implemented, it was decided that a new model would be

created, while incorporating key features from the 2016 model.

Plans were presented to the Advisory Panel and implementation of the model proceeded. Work was

organized such that the primary model builders worked independently while having approximately weekly

video meetings to coordinate their efforts. Each would meet with their local co-PI to discuss progress and

issues. A number of times throughout the project, all four core team members would gather at the University

of Alberta or University of Saskatchewan for intensive three to four day work sessions.

At the second Advisory Panel meeting, a working model was presented that implemented key features.

With feedback from the advisory panel, model development continued, adding a number of additional features.

At the third Advisory Panel meeting, a substantially feature-complete model was presented. After includ-

ing feedback from the panel, the process of calibration began. Calibration of the model was initially done in

a “manual” manner, where parameter values were selected, the model was run, and outputs were judged for

realism.

Leading up to the next Advisory Panel meeting, summary statistics and objective functions for automated

calibrations were developed. A tentative parameter set was selected and the main experiment was run, along

with sensitivity analyses. These changes and outputs reflecting them were discussed at the fourth Advisory

Panel meeting.

20

With input from the Advisory Panel, work proceeded with a fulsome automated calibration, discussed

further in Section 3.3. Following this, the main experiment and sensitivity analyses were to be run again to

produce results; see Section 3.5.

3.2 Model Structure

The model was developed using AnyLogic software; its construction is outlined in this section.

3.2.1 Agents

The model was composed of the agent types outlined below.

Person

The Person agent represented a human being in the model. People were parametrized as having an initial

age, sex, and initial vaccine acceptance. At initialization, a Person was assigned a Household, and either a

Workplace or School—depending on their age. The behaviour of a Person in the model was further governed

by statecharts representing pregnancy and vaccinations depicted in Figure 3.1 as well as a DiseaseModule,

described below. Definitions for statechart iconography can be found in the AnyLogic Online Help [45].

Figure 3.1: Statecharts for the Person Agent

21

A Person may be not pregnant, or may be in the first, second, or third trimester of pregnancy, or may be

in a post-birth period. A male Person was prevented from entering pregnancy states by a guard statement

on the pregnancy transition. A female Person would become pregnant with a fertility rate determined by

their age and number of previous children. Upon entering the thirdTrimester state, the pregnant Person

may receive a maternal vaccination if this intervention was enabled for the model run. Upon exiting the

thirdTrimester state, a new Person of age 0 would be instantiated and added to the Household associated

with the mother.

In the vaccination statechart, a Person would first enter the beforeInit state, where their vaccine

acceptance was updated before placing them in either the onSchedule or nonCompliant state. A Person

would transition between onSchedule and nonCompliant at a rate depending on their vaccine acceptance.

While onSchedule, a Person will receive vaccines according the the schedule. If nonCompliant, they would

not receive the vaccine but may catch up to the prescribed schedule if they return to onSchedule at a later

time.

As a Person aged, pregnancy rate and death rate were updated annually. At age 18, a Person would

leave their current Household and seek a new one, as well as leaving their School and joining a Workplace.

At age 65, a Person would leave their Workplace, representing retirement.

Household, School, and Workplace

Household, School, and Workplace agents represented contact venues, or pools, in which people could spread

disease if infectious. They were constructed using the Agent class within AnyLogic but did not have true

agency within the model. Each of these venues kept track of the people that belonged to it as well as some

conditions for membership, e.g., grade levels for Schools, and summary statistics.

Schools and Households had a vaccineAcceptance property, which influenced the vaccine acceptance

of their members; this component was added to the model as a simple way to achieve clustering of people

with similar vaccine attitudes, as is observed in Alberta [15].

Households persist; once the last Person residing there dies, the Household would be re-occupied by a

new Person coming of age. If a Person came of age and there was no Household available, one would be

instantiated.

Disease Module

The DiseaseModule was implemented following the Modular Design Pattern established by Kreuger [46].

This design pattern allowed the implementation of multiple representations of the disease mechanics of

pertussis which could easily be swapped out one for another. In effect, this allowed parametrization of model

structure.

The interaction of the DiseaseModule was defined by a Java interface called DiseaseMechanicModule,

which specified the contract through which the module implementation interacted with the rest of the model

22

[46], see Listing 3.1. Each model run was parameterized by a specific class implementing the Disease-

MechanicModule interface, with each Person agent in that run being associated with an instance of that

class, which determines their disease behaviour.

1 public interface DiseaseMechanicModule

2 {

3 public boolean handleExposure(double forceOfInfection);

4 public void handleVaccination(VaccineType type);

5
6 public void initializeImmuneState(double protectionLevel , PrimingType primingType);

7
8 public boolean isInfected ();

9 public boolean isInfective ();

10 public boolean isSusceptible ();

11
12 public double getForceOfInfection ();

13 public double getInfLevel ();

14 public double getProtectionLevel ();

15 }

Listing 3.1: Disease Mechanic Module

Four Disease Modules were implemented:

• “Hethcote” – the agent-based adaptation of Hethcote’s [31] compartmental model by Doroshenko et al.

[5].

• “Hethcote Plus” – a modification of the above to add states for maternal antibody immunity in infants.

• “De Novo” – a new model of pertussis pending publication.

• “Null” – a minimal module to reduce computational burden for testing purposes.

The “Hethcote” module was implemented exactly as was done by Doroshenko et al. [5], see Figure 2.4.

The “Hethcote Plus” module added five states for maternal immunity in infants, as shown in Figure 3.2.

The methods of the DiseaseModule interface returned specified values based on the current state of the

statechart.

The “De Novo” module represented disease states as continuous values, rather than discrete states. It also

contained a statechart, shown in Figure 3.3, to indicate basic infection progression. getForceOfInfection(),

getInfLevel(), and getProtectionLevel() returned continuous values representing disease state.

The “De Novo” model was developed by Drs. Doroshenko and Hempel. In it, protection, P , was measured

as a number between 0 and 1. Exposure to pertussis caused protection to jump by an amount, specified in

a parameter, depending on whether it was a disease exposure, or an administration of whole-cell pertussis

vaccine (wP), or acellular pertussis vaccine (aP). Each disease module retained memory of the highest P it

had attained due to each source of exposure. Immunity waned at a rate that depended on the source of the

protection, with the rates of waning also being specified in parameters.

Maternal protection may be transferred to an infant upon birth, depending on a parameter setting. This

passive protection, initially equal to the mother’s active protection, would wane with a mean period of

23

Figure 3.2: Statechart for the “Hethcote Plus” Disease Module

6 months. A blunting effect may optionally be enabled, wherein passive protection would interfere with

protection conferred by vaccination of infants. The parameter dose blunting proportion, ranging from 0

to 1, specifies the factor by which the jump in protection is reduced if a child’s mother was vaccinated during

pregnancy.

Epi Curves

The EpiCurves agent is another construct within the model that used the Agent class but lacked true agency.

Use of the Agent class allowed the EpiCurves to be implemented in the AnyLogic graphical user interface

(GUI), reducing development time compared with a simple Java class. Its purpose was to log model output

for and render visualizations of disease incidence over time, stratified according to specified age groups,

sometimes called Epi Curves. The EpiCurves agent could log case counts and incidence in three categories

for up to fifteen age groups in each of two time intervals. Age groups and time intervals were specified in

parameters for easy modification. Figure 3.4 shows an example visualization in the EpiCurves agent during

a model run.

24

Figure 3.3: Statechart for the De Novo Disease Module

3.2.2 Networks

The model implemented multiple networks, each described below. Here, network refers to connections be-

tween agents through which they communicate or interact. In this model, the networks represented a contact

network, through which an infected Person could expose other Person agents to the pathogen. For per-

formance reasons, the built-in Connections construct in AnyLogic, which is typically used to implement

networking, was eschewed in favour of a custom implementation, discussed in detail in Chapters 4 and 5.

Household, School, and Workplace

The Household, School, and Workplace contact venues were implemented as agents which contain a list of

member Person agents. Person agents were assumed to be fully connected within the venue. By default,

random mixing is assumed within all venues. The Household and School optionally allowed weighting of

contact rates by age, and the School also allowed biasing contacts towards students in the same grade level.

A School had a nominal capacity and grade level range specified as parameters. Children were allocated

to the nearest School of the appropriate grade level with free capacity. If nearby Schools were at or above

capacity, a tradeoff between distance and capacity would occur.

25

Figure 3.4: Visualization in Epi Curves Agent

Background Contacts

Background contacts represented any contacts that did not occur in the Household, School, or Workplace

venues. Background contacts were implemented in two ways: Via fixed rates regardless of age, or via a

contact matrix.

When using fixed rates, an infectious Person would send an exposure message to a random Person, se-

lected with uniform probability, within backgroundConnectionRange at the rate—probability per unit time—

of backgroundContactRate. The parameters backgroundConnectionRange and backgroundContactRate

did not vary from one Person to the next, this differed from the 2016 Doroshenko et al. model [5] which

varied the connection range.

A contact matrix is typically used in aggregate compartmental modeling to define mixing rates between

compartments, often representing age groups, where random mixing is assumed within those compartments.

Each element, aij , of a contact matrix, A, represents the rate of contact between an infected person of age i

and another person of age j [47]. In this model, when using the “contact matrix” setting, the probability of

selecting a particular Person as a contact depended on the age of the index Person and that of the Person

to be contacted, rather than the probability of selection being uniform across other individuals within range.

26

3.2.3 Parametrization

Directly Specified Parameters

Some parameters for the model were specified directly in the AnyLogic editor or, optionally, loaded from a

comma-separated value (CSV) file listing their values. The parameterSetFilePath parameter specified the

directory path to a parameter set file to be loaded. If parameterSetFilePath was null then values set in

the AnyLogic editor or model GUI would be used.

Table 3.1 lists parameters that describe the epidemiology of the model. Table 3.2 lists parameters that

describe the demography of the model, which also influences epidemiology.

Table 3.3 specifies configuration parameters that affect the epidemiology of the model. Changes to these

parameter values can be considered changes to model assumptions, and may necessitate re-calibration.

Table 3.4 lists configuration parameters that do not affect the epidemiology of the model. These parameter

values can be freely adjusted without influencing model outcomes.

Inputs

Specific inputs that included many subcomponent values were loaded from files to allow for flexibility without

adding large numbers of parameters. These are:

• Population Density Map – This file defined the model space, divided into a square grid, and specified

the population density of each square. The specific file to be loaded was specified in the parameter

densityFile. This mechanism is discussed further in Section 3.4.

• Live Birth Probabilities (LiveBirth probs.csv) – defined the rate (probability per unit time) of

live births per day per fertile woman stratified by age of mother and number of children she already

has. This is used to set the pregnancy rate of the Person agent. Derived from Alberta Open Data [55].

• Household Types (household type AB.csv) – defined the distribution of household types and was

used in initialization of the population. Households were divided into Couple, Single Male, and Single

Female types. Derived from Alberta Open Data [55].

• Number of Children (num children AB.csv) – defined the distribution of the number of children

per household stratified by household type and was used in the initialization of the population. Derived

from Alberta Open Data [55].

• Age of Children (child ages AB.csv) – defined the distribution of child ages within a household

and was used in initialization of the population. Derived from Alberta Open Data [55].

• Age of Parents (adult ages AB.csv) – defined the distribution of adult ages stratified by number of

children in the household and was used in initialization of the population. Derived from Alberta Open

Data [55] and Canada 2016 Census [56].

27

Table 3.1: Epidemiological Parameters

Parameter Value Unit Source

backgroundConnectionRange 23.1 distance Calibration

exogenousInfectionRate 0.037117117 day−1 Calibration

vaccineCatchupDelay 30 day Expert

catchupVaccineCutoffAge 18 year Expert

maxBackgroundConnections 100 person Arbitrary

backgroundContactRate 0.036 day−1 Calibration

householdContactRate 0.09 day−1 Calibration

schoolContactRate 0.5 day−1 Calibration

workplaceContactRate 0 day−1 Arbitrary

schoolVaccineAcceptance p 2.6 – Calibration

schoolVaccineAcceptance q 0.9 – Calibration

primedProtectionVacc 0.65 – Arbitrary

primedProtectionDisease 0.75 – Arbitrary

probOfPrimaryVaccineFailure 0.15 – [48]

epsilonAgePreferenceForSchoolContacts 0.9 – Arbitrary

thresholdForTransmission 0.75 – Arbitrary

thresholdForCaseCount 0.25 – Arbitrary

pJump 0.25 – Arbitrary

probOfPrimaryVaccineFailureDose6 0.15 – [48]

Pactive decay acel 5.48 × 10−5 day−1 [49, 50]

Pactive decay inf 2.74 × 10−5 day−1 [51]

Pactive decay whole 2.74 × 10−5 day−1 [51]

probOfMissingDose5and6 0.33 – Calibration

primingBetaP 10 – Arbitrary

adultReportingEfficiency 0.01 – Arbitraty

Ppassive decay 0.022 day−1 [52]

28

Table 3.2: Demographic Parameters

Parameter Value Unit Source

childrenProportion 0.2167513 – [53]

schoolCapacityRatio 0.8 – [53]

postBirthPeriodLength 6 month Expert

schoolHoursStart 9 hour Arbitrary

schoolHoursEnd 15 hour Arbitrary

workHoursStart 9 hour Arbitrary

workHoursEnd 17 hour Arbitrary

• School List (school list.csv) – defined a sampling of Alberta schools with grade ranges and student

capacity and was used in the initialization of School agents. Derived from Alberta Student Population

Enrolment [53]

• Death Rates (deathrates AB.csv) – defined the mortality rate (probability per unit time) stratified

by age. This was used to set the death rate for Person agent. Derived from Canada 2016 Census [56].

• Vaccination Schedule (vaccination schedule.csv) – defined the vaccination schedule, and indi-

cated the age in years at which a child is due for a vaccine, and the type of vaccine administered.

• Contact Matrix File (POLYMOD Finland.csv) – defined a contact matrix for background contacts

[54].

• Household Contact Matrix (household contact.csv) – defined a sought contact matrix within

households for use in objective functions.

• Polymods Probabilities – defined a contact matrix to optionally weight within-household contact

rates by age. The specific file to be loaded was specified in the parameter probsFile.

• Exogenous Weights (exogenousInf multipliers.csv) – defined a set of weights to be optionally

applied to the exogenous infection rate, modifying its age distribution.

• School Age Weights (schoolcontact multipliers.csv) – defined a set of weights to be optionally

applied to in-school contacts, modifying the age distribution.

• Target Frequency Size (Target freqSize.csv) – defined a reference for outbreak size and duration

for early objective function tests.

• Target Vaccine Coverage (Target vaccineCoverage.csv) – defined a reference for vaccine coverage

for early objective function tests.

29

Table 3.3: Disease Configuration Parameters

Parameter Default Value Description

diseaseMechanic DE NOVO The disease module to be used, see Disease

Module in Section 3.2.1

contactRegime BACKGROUND -

MATRIX

The Contact Regime to be used, discussed

under Directly Specified Parameters in

Section 3.2.3

matrixContactEventInterval 0.041666667 Time interval in days for contact matrix

contact events

probOfVaccinationDuring-

Pregnancy

0 Probability that a pregnant woman will re-

ceive a pertussis vaccination.

cocooningFrac 0 Fraction of pregnant women to which a coc-

cooning intervention is applied.

rateOfTetanus 0 Rate per day at which a risk of tetanus oc-

curs, prompting a prophylactic adult Tdap

dose

isUsingHouseholdPolymods FALSE Apply a POLYMOD-like [54] age-preference

to household contact rates

probsFile – Probability input file for applying

POLYMOD-like [54] age-dependent contact

rates

isUsingExogenousPolymods TRUE Apply a POLYMOD-like [54] age-preference

to exogenous exposure rates

isUsingSchoolEpsilon TRUE Apply a same-age-preference for school con-

tacts

transferImmunityOnly-

UponIntervention

TRUE Transfer maternal immunity only if the

mother received vaccination during preg-

nancy

narrowLL FALSE Use narrow log-likelihood for objective func-

tions

dose blunting proportion 0 Degree to which vaccination in infants is

blunted by their mother having vaccination

during pregnancy

30

Table 3.4: General Configuration Parameters

Parameter Default Value Description

drawAgents FALSE Should agents be drawn on screen?

drawBins FALSE Should population bins be drawn on screen?

isExportingData TRUE Should model outputs be exported to files?

isLoggingExposures FALSE Should individual exposures be logged to a

file (deprecated)?

vaccCoverageUpdateInterval 30 Days between updates of vaccine coverage

stats

vaccCoverageAges [2.0, 2.0, 2.0, 2.0, 7.0,

15.0, 21.0]

Ages for vaccine coverage stats

isHeadless TRUE Is the simulation running without a GUI?

cellSizeFactor 21 Ratio of binWidth to cellWidth

caseReportInfThreshold 0 Infection level threshold below which a case

is subject to underreporting. Deprecated.

useUnderreporting FALSE Apply underreporting to outputs?

modelRunTimeInYears 50 Model run time

minAgeWaningStats 5 Minimum age for immunity waning stats

output

maxAgeWaningStats 10 Maximum age for immunity waning stats

output

isUsingSimpleGrid TRUE Use Grid data structure?

isUsingOnDemandBGContacts FALSE Calculate background contacts as-needed?

burnInPeriodInYears 0 Number of years at the beginning of the

model run to exclude from outputs

viewSubClinicalInEpiCurves TRUE Display sub-clinical cases in the Epi Curves

agent?

viewUnreportedInEpiCurves TRUE Display unreported cases in the Epi Curves

agent?

useMemoryEfficientLoggers TRUE Log more outputs directly to disk?

isSuppressingLargeDatasets TRUE Minimize output data stored in memory?

discardThreshold 1.0 × 10−5 Used in early objective function tests

31

• Target Yearly Frequency Size (Target yearFreqSize.csv) – defined a reference for yearly inci-

dence frequency size for early objective function tests.

• Target Incidence Frequency CDF (Target IncidFreqCDF.csv) – defined a reference for incidence

frequency cumulative distribution function (CDF) for early objective function tests.

• Target Age Incidence (Target ageIncidence.csv) – defined a reference for age incidence distribu-

tion for early objective function tests.

• Age Incidence Probability Weights (ageIncidProbWeights.csv) – defined a set of weights used

for early objective function tests.

• Target Increase in Relative Risk (Target incrRR.csv) – defined a reference for increase in relative

risk for early objective function tests.

• School Contact Prior Distribution (prior schoolContact.csv) – defined a prior distribution for

school contacts for computation of log-likelihood in early objective function tests.

• Household Contact Prior Distribution (prior householdContact.csv) – defined a prior distri-

bution for household contacts for computation of the log-likelihood in early objective function tests.

• Exogenous Infection Prior Distribution (prior exogenousInfection.csv) – defined a prior dis-

tribution for exogenous infections for computation of the log-likelihood in early objective function tests.

3.2.4 Scenarios

Scenarios represent runs of the model with particular parameters, inputs, outputs and goals. In AnyLogic,

the Experiment is where the model is set up for a particular run or series of runs, i.e., a scenario. The design

of the experiment in the study is discussed below in Section 3.4. A number of scenarios were included in the

model, and are summarized in this section.

• Simulation represented a basic Graphical User Interface (GUI) run of the model used for testing.

Parameters must be set within the AnyLogic editor.

• Simulation SimpleGUI provided a simple setup GUI to select a parameter set file, and then would run

the model in GUI mode.

• TreeTest was for testing the k-d Tree and Grid data structures, discussed in Chapter 4.

• Calibration was for calibration runs with or without a GUI. There are multiple calibration scenarios

(using the Optimization experiment type in AnyLogic) because selection of which parameters are to

be varied, their ranges, and the objective function is specified in the design-time editor associated with

the AnyLogic Experiment.

32

• NoGUI represented a single run of the model, launched from the command-line without a GUI. Param-

eters were loaded from a specified file.

• NoGUI Calibration Gen would run a calibration from the command-line with no GUI. The Experiment

was specified on the command line, which determined the calibrated parameters and objective function,

and fixed parameters are loaded from a file.

3.2.5 Ancillary Structures

GUI Elements

The model could display icons for individual agents and tiles coloured to represent a chosen measure—with

population density representing the default measure. In later stages of development, these features were

disabled, however, to reduce computational and memory burden when running with large populations.

When running with a GUI, a number of dynamic plots would appear, summarizing select aspects of model

state dynamically. As well, the visualizations of the Epi Curves agent are accessible interactively. Figures

3.5 and 3.6 show screen shots of dynamic graphs in the model GUI.

Figure 3.5: Dynamic Graphs in Model GUI

To improve performance, the GUI could be suppressed. This was done for the main experiments and

automated calibrations; see NoGUI in Section 3.2.4.

33

Figure 3.6: Dynamic Graphs in Model GUI

34

File Outputs

Output describing model results was saved in a CSV format for post-processing in any data analysis package.

This could be disabled, if desired, with appropriate parameter settings. Outputs were changed mid-project

to reduce memory use by writing more data to disk without retaining it in memory. The following files

represent the “preferred” output set in the current version of the model:

• E * parameterset.csv – replicated the actual parameter values used in the model run. This file could

be fed back into the model as an input parameter set file.

• E * Log Exposures.csv – contained a record of every exposure occurring in the model with the fol-

lowing data:

– Network through which the person was exposed, i.e., Exogenous, Household, School, or Back-

ground

– Force of Infection associated with the exposure

– Unique ID of the exposed person

– Age of the exposed person

– Mother’s Age at Birth of the exposed person

– Mother had Intervention (TRUE / FALSE) for the exposed person

– Household Size of the exposed person

– School Size of the exposed person

– Protection Level of the exposed person

– Pregnancy Status of the exposed person

– Unique ID of the exposing person

• E * Log TimeseriesAnnual.csv – contains an annual timeseries including the following data:

– Population stratified in one-year age intervals

– Population stratified into age bins specified by the incidenceAgeGroups in the model

– Fraction Infected stratified into one-year age intervals between minAgeWaningStats and max-

AgeWaningStats

• E * Log TimeseriesMonthly.csv – contains a monthly timeseries including the following data:

– Vaccine Coverage for each of the 7 vaccine doses

– Population stratified in one-year age intervals

35

– Population stratified into age bins specified by the incidenceAgeGroups in the model

• E * Log Memory.csv – contains diagnostic run time and memory information

• E * Log ObjectiveValues.csv – contains objective function values, even if the run was not a calibra-

tion

• E * immunitydistribution.csv – immunity distribution of the population at the end of the model

run; this is a raw table output of the immunityDistribution table in the model, a HistogramData

object

Additional output files could be obtained from the model by setting the isSuppressingLargeDatasets

parameter to FALSE. These can be considered deprecated as well as being redundant to the outputs already

mentioned, but are retained for testing purposes. The files are:

• E * agedistribution.csv – age distribution of the population in one-year age intervals over the last

30 years of the model run in one-year time intervals, representing raw output from a Histogram2DData

object.

• E * ageofinfectiondistribution.csv – distribution of age of infection in one-year age intervals

over the last 30 years of the model run in one-year time intervals, representing raw output from a

Histogram2DData object.

• E * CasesByAge.csv – count of cases in one-year age intervals cumulative over the entire model run

excluding the burn-in period, representing raw output from a HistogramData object.

• E * casesByAgeDistribution.csv – distribution of cases in one-year age intervals over the last 30

years of the model run in one-year time intervals, representing raw output from a Histogram2DData

object.

• E * CasesByMotherAndChildAge.csv – distribution of cases in one-year age intervals of mother- and

child-age cumulative cases over the entire model run excluding the burn-in period, representing raw

output from a Histogram2DData object.

• E * contactmatrix houshold.csv – count of pertussis-spreading contacts in the household venue only

in one-year age intervals of exposed person and exposing person cumulative over the entire model run,

excluding the burn-in period. This represents raw output from a Histogram2DData object.

• E * contactmatrix.csv – count of pertussis-spreading contacts in one-year age intervals of exposed

person and exposing person cumulative over the entire model run, excluding the burn-in period. This

represents raw output from a Histogram2DData object.

36

• E * contactRateMatrix houshold unmediated.csv – rate of all contacts in the household venue only

in one-year age intervals of exposed person and exposing person cumulative over the entire model run,

excluding the burn-in period. This represents modified output from a Histogram2DData object.

• E * contactRateMatrix houshold.csv – rate of pertussis-spreading contacts in the household venue

only in one-year age intervals of exposed person and exposing person cumulative over the entire model

run, excluding the burn-in period. This represents modified output from a Histogram2DData object.

• E * contactRateMatrix unmediated.csv – rate of all contacts in one-year age intervals of exposed

person and exposing person cumulative over the entire model run, excluding the burn-in period. This

represents modified output from a Histogram2DData object.

• E * contactRateMatrix.csv – rate of pertussis-spreading contacts in one-year age intervals of exposed

person and exposing person cumulative over the entire model run, excluding the burn-in period. This

represents modified output from a Histogram2DData object.

• E * contactsByAgeDistribution.csv – distribution of contacts in one-year age intervals over the last

30 years of the model run, excluding the burn-in period, in one-year time intervals. This represents

raw output from a Histogram2DData object.

• E * cumulativeAllAgesIncidence.csv – annual timeseries of cumulative incidence of pertussis across

all ages.

• E * epiCurveTimeInterval1.csv – incidence timeseries at an interval specified by the timeInterval1

parameter of the EpiCurves agent, stratified by age and reporting status.

• E * epiCurveTimeInterval2.csv – incidence timeseries at an interval specified by the timeInterval2

parameter of the EpiCurves agent, stratified by age and reporting status.

• E * InterventionCases.csv – annual timeseries of cases stratified by age and intervention status.

• E * lifeyearsbyage.csv – sum of life-years lived in one-year age intervals cumulative over the entire

model run, excluding the burn-in period. This represents raw output from a HistogramData object.

• E * memoryusage.csv – weekly (model time) timeseries of actual memory usage by the model exe-

cutable.

• E * transmissionByAgeDistribution.csv – distribution of pertussis transmissions in one-year age

intervals over the last 30 years of the model run, excluding the burn-in period, in one-year time intervals.

This represents raw output from a Histogram2DData object.

• E * vaccinecoverage.csv – annual timeseries of vaccine coverage, stratified by dose.

• E * waningstats.csv – annual timeseries of fraction infected stratified into one-year age intervals

between minAgeWaningStats and maxAgeWaningStats.

37

3.3 Calibration

The model was initially calibrated “manually” by selecting parameters, running the model, and observing

outcomes. Once candidate parameter ranges were identified, two methods of automated calibration were

employed, discussed in this section.

3.3.1 Manual Calibration

Calibration of the model was initially undertaken “manually” by iteratively selecting parameter values,

running the model, and assessing the model outcomes. In particular, Dr. Doroshenko was able to draw

on his experience as a Medical Officer of Health to identify which patterns in Epi Curves were representative

of pertussis in Alberta or not.

3.3.2 Automatic Calibration

Vaccine Coverage

Vaccine coverage was calibrated using an AnyLogic Optimization experiment type. Parameters were varied

in continuous ranges, as follows, for 500 realizations. The objective function was the sum square difference

between the mean vaccine coverage over the model run and the reference value, across doses. Reference

values were for Alberta, as obtained from the Interactive Health Data Application (IHDA) [15].

• schoolVaccineAcceptance p from 1 × 10−6 to 3.0

• schoolVaccineAcceptance q from 1 × 10−6 to 3.0

• probOfMissingDose5and6 from 0.1 to 0.9

This calibration was undertaken separately because vaccine coverage was deemed to be independent of

the disease dynamics.

Disease Behaviour

Automatic calibration of disease incidence was performed by taking a Latin Hypercube sample, discussed in

Section 2.4, of the varied parameters over ranges that were informed by the manual calibration. Parameter

set files were generated for each of the 1, 000 runs in the ensemble, and these were used to initialize the model

in NoGUI mode. The following parameters were varied:

• exogenousInfectionRate from 0 to 0.3

• backgroundContactRate from 0 to 0.2

• householdContactRate from 0 to 1.0

38

• schoolContactRate from 0 to 2.0

Outputs were processed to generate likelihood profiles, which were used to estimate parameter values,

shown in Figure 3.7. A likelihood profile plots the log-likelihood of the model over a range of a given

parameter, allowing selection of the parameter value giving the maximum likelihood [57]. The likelihood

value for a given parameter value was obtained by examining the likelihood for each run within a window

around a given value of the focal parameter, taking the highest likelihood value, and repeating while sliding

that window along the range of values for the focal parameter. Cubic spline smoothing was then applied to

the likelihood profile. The overall log-likelihood for the model for a given run was a weighted sum of the

individual likelihood measures for each output. Because of the way model outputs were done, the likelihood

could be analyzed in post-processing without a need to re-run the model. The likelihood measure was based

on comparing the following model outputs to reference data for Alberta [15].

• Mean all-ages incidence per year

• Cumulative Density Function (CDF) of the yearly all-ages incidence distribution

• Auto-correlation function of all-ages incidence

• Distribution of total cases by age

In examining the likelihood profiles in Figure 3.7, we can see clear maxima, within the tested ranges.

The spike at 0 for householdContactRate and backgroundContactRate can be explained as an artifact of

the cubic spline smoothing. It is proposed now to run a second ensemble of 100 simulations while fixing the

exogenousInfectionRate and schoolContactRate at the peak values from Figure 3.7 and analyzing in the

same manner; see Section 3.5.

3.4 Experiment Design

3.4.1 Focus

Infants, particularly those under 6 months of age, are the main risk group for pertussis [9]. Current vaccination

strategies are known to be insufficient to establish herd immunity [13], and increasing vaccine coverage in

older age groups appears to yield only marginal improvements in outcomes for infants [34]. It therefore

becomes attractive to examine novel strategies that focus on the primary risk group.

The focus of this study was to examine the potential of administering pertussis vaccine to mothers in

the third trimester of pregnancy as a potential means to increase protection for infants in the first 6 months

after birth. This is motivated by the hypothesis that such vaccination will result in increased transfer of

maternal antibodies to the infant, improving protection. A counter-hypothesis suggests that the additional

antibodies may have a “blunting” effect on early doses of the vaccine administered to the child, by destroying

39

0.00 0.10 0.20 0.30

−18

−16

−14

−12

−10

−8

−6

exogenousInfectionRate

lo
g−

lik

0.00 0.05 0.10 0.15 0.20

−20

−18

−16

−14

−12

−10

−8

−6

backgroundContactRate

lo
g−

lik

0.0 0.2 0.4 0.6 0.8 1.0

−20

−15

−10

−5

householdContactRate

lo
g−

lik

0.0 0.5 1.0 1.5 2.0

−20

−15

−10

schoolContactRate

lo
g−

lik

Figure 3.7: Likelihood Profiles

40

the vaccine antigens before the child’s immune system can mount a response and establish its own immune

memory [58].

3.4.2 Population

Size

A population size of 500, 000 was selected, as it was deemed to be representative of the health regions

in Alberta, excepting Edmonton and Calgary, and was also known to be tractable in an ABM built with

AnyLogic based on previous investigations undertaken in CEPHIL employing agent-based modeling. This

represents a nominal population size, as the model implements an “open population” having birth and death

rates informed by demographics, and thus the exact population within the model fluctuates over time.

Density Distribution

The population density distribution is loaded from a file, as mentioned under Inputs in Section 3.2.3. For

initial work, the model used a series of files with uniform distributions having total populations ranging from

10, 000 to 1, 000, 000. File-based input was undertaken to allow for testing of arbitrary population density

distributions, so as to explore sensitivity to spatial effects, or to approximate the population distribution in

a real-world region.

This particular feature was requested early in the group modeling process by Dr. Doroshenko, prompted

by discussions that occurred during the peer review process for the Doroshenko et al. 2016 paper [5]. It was

deemed that the ability to specify the population density distribution without altering model programming

would open up possibilities for for sensitivity analyses and experiment variations that may help alleviate

reviewer concerns that were raised in regards to the previous model.

The main experiment employed a uniform population distribution, however, leaving examination of dif-

fering population distributions for future work.

3.4.3 Setup

Two scenarios were considered as interventions in the main experiment: Mothers receiving Tdap vaccination

during the third trimester of pregnancy at vaccine coverage (VC) levels of 50% and 75%. In the preliminary

main experiment, a series of 10 simulations were run for each scenario and the scenarios were evaluated

according to the preventable fraction in the population (PFP) and the vaccine effectiveness (VE). The full

main experiment was proposed to consist of 100 simulations and will be run once calibration has been

completed.

Vaccine effectiveness is a measure of how a vaccine actually reduces disease in a population. VE of 90%

would indicate a 90% reduction of the number of cases of the disease in the vaccinated population as compared

to the unvaccinated population [59]. VE is calculated as 1 − OR, where OR represents “the odds ratio for

41

developing the disease despite vaccination” [60]. Vaccine effectiveness refers to a measure undertaken in

“field” conditions, i.e., non-ideal conditions. In contrast, vaccine efficacy represents a measure undertaken

under ideal conditions such as a clinical trial. Both are calculated in the same manner [59] given these

contexts.

An odds ratio (OR) “represents the odds of [an] outcome occurring given a particular exposure compared

to the odds of [the same] outcome occurring in absence of that exposure” [61]. In this case, the exposure

is the vaccination and the outcome is pertussis disease. An OR of less than 1 indicates that the exposure

(vaccination) is associated with lower odds of the outcome (disease) [61].

The PFP estimates what proportion of cases could be prevented by applying the intervention to the entire

population. PFP is calculated as in Equation 3.1, where Ip represents disease incidence in the population

and Ie represents incidence in those “exposed” to the vaccination [62]. Letting Iu represent the disease

incidence in the unvaccinated population, Iv represent the disease incidence in the vaccinated population,

and vc represent the vaccine coverage we obtain the form shown in Equation 3.2, used in the analysis.

PFP =
Ip − Ie

Ip
(3.1)

PFP = 1 −
(
Iu + Iv

Iu

)(
1

1 − vc

)
(3.2)

3.5 Results

As of this writing, the final main experiment has not been run as the calibration has not been completed.

Table 3.5 show the results for the preliminary main experiment assuming 50% vaccine coverage for the

maternal immunization, Table 3.6 shows the results assuming 75% coverage for the intervention. Results

suggest that the intervention can reduce the number of infant cases of pertussis, and that this reduction is

greatest in the 0 − 2 month age group. Higher maternal vaccine coverage results in greater reductions.

Table 3.5: Preliminary Results for Main Experiment with Vaccine Coverage of 50%

Age Group VC PFP VE

0 − 2 months 0.50 0.5 1

2 − 4 months 0.50 0.39 0.78

4 − 6 months 0.50 0.45 0.91

6 − 12 months 0.50 0.38 0.76

Overall 0.50 0.42 0.85

42

Table 3.6: Preliminary Results for Main Experiment with Vaccine Coverage of 75%

Age Group VC PFP VE

0 − 2 months 0.75 0.74 0.99

2 − 4 months 0.75 0.64 0.85

4 − 6 months 0.75 0.67 0.89

6 − 12 months 0.75 0.64 0.86

Overall 0.75 0.67 0.89

3.6 Sensitivity Analyses

As of this writing, the final sensitivity analysis has not been run, pending calibration, preliminary results are

presented here. One-way sensitivity analyses were conducted to examine the influence on model outcomes of

the rate at which immunity wanes and immunological blunting. Results of these analyses are shown in Table

3.7. This suggests that model outputs are sensitive to values of these parameters.

Table 3.7: Preliminary Results for Sensitivity Analyses

Scenario PFP VE

75% Coverage 0.67 0.89

75% Coverage, 50% passive immunity waning 0.67 0.89

75% Coverage, 25% passive immunity waning 0.73 0.98

75% Coverage, 10% immune blunting 0.62 0.83

75% Coverage, 50% immune blunting 0.55 0.74

3.7 Discussion

Preliminary results suggest that, given model assumptions, an intervention providing vaccination to mothers

during pregnancy would result in a reduction in pertussis incidence in infants, with the greatest benefit being

conferred to the 0− 2 month age group. Results are sensitive to assumptions about waning of immunity and

immunological blunting. Whether the Government of Alberta, or other jurisdictions, would be recommended

to proceed with such an intervention would be the subject of further analysis. While many of the consider-

ations to be weighed in such a decision lie outside the scope of this thesis, this model, with modifications,

could be a valuable tool in informing such decisions.

43

3.8 Division of Work

This section will outline the share of work on this model between Dr. Karsten Hempel (KH) and Mr. Wade

McDonald (WM). It can be understood that Drs. Doroshenko and Osgood acted in both supervisory and

expert capacity across the entirety of this project.

WM was fully responsible for implementation of basic model structure, data structures, modular disease

mechanic interface, model GUI, EpiCurve agent, NoGUI setup, file output, and batch runs. WM and KH

shared responsibility for file input implementation, model initialization, Person agent, post-processing of

outputs, and vaccine coverage calibration. KH was fully responsible for pre-processing of inputs, disease

modules, disease behaviour calibration, main experiment design, and sensitivity analyses.

44

4 Data Structures

To supplement AnyLogic’s built-in range search function, which has been found to be problematic when

scaling to large numbers of agents, a Grid structure discussed in Section 2.3.2, and k-d Tree discussed in

Section 2.3.3 were implemented in Java as means to improve range-search performance.

4.1 k-d Tree

4.1.1 Existing Libraries

The k-d Tree, outlined in Section 2.3.3, is an established data structure. In such a situation, one would

typically look to established and robust libraries for an implementation. The first avenue of investigation

led to the Computational Geometry Algorithms Library (CGAL) [63]. This library, developed in C++, is

well-established and implements many geometric algorithms and supporting data structures, including a k-d

Tree.

The pertussis model outlined in Chapter 3 is built using AnyLogic software, which is Java-based. In order

to make use of CGAL from within AnyLogic, use of the Java Native Interface (JNI) [64] was considered. JNI

allows Java programs to call native libraries, including those written in C++.

Two major disadvantages are associated with use of JNI. Native libraries are platform-specific, so must

be compiled for the platform being used. Further, those libraries typically have dependencies, which are also

platform-specific. This opens up a situation where it may be reasonably straightforward to get a program

incorporating JNI running on a specific machine, but unforeseen problems may crop up when moving to

another machine.

In developing the pertussis model, machines running all major operating systems were in use, which is no

issue when working in pure Java. Adding JNI to the project would require native libraries (i.e., CGAL) and

all of their dependencies be compiled and bundled for all operating systems. It was decided to search for a

Java implementation of a k-d Tree, instead.

Searching online revealed that there are no established libraries in Java implementing a k-d Tree. There

exist some unverified implementations online, however. It was decided that implementing a k-d Tree in Java

would be a valuable learning experience and produce a beneficial asset for use in future projects within

CEPHIL.

45

4.1.2 Implementation

A 2-dimensional k-d Tree data structure was implemented in Java. Additionally, the Grid structure, described

in Section 2.3.2, was re-implemented in a way that it could easily be used interchangeably with the k-d Tree.

A number of support classes and interfaces were also implemented, described below.

KDPoint and DoublePoint

A Java interface, KDPoint, is defined to represent a k-dimensional coordinate key of a node in the k-d Tree.

For generality, the coordinates can be represented by any Comparable type. The DoublePoint class is then

defined, implementing the KDPoint interface for coordinates of type Double. Refer to code listings A.1 and

A.2 in Appendix A.

HasDoublePointCoordinate

A Java interface, HasDoublePointCoordinate, is defined that specifies an object to have a method, get-

Coordinates(), that returns the object’s coordinates as a DoublePoint.

RangeSearchGrid2D

A Java interface, RangeSearchGrid2D, is defined that specifies add and remove operations and several itera-

tors. rangeSearchIterator represents a rectangular, axis-aligned range search and radiusSearchIterator

represents a circular range search specified by a centre point and radius. Specifying this interface allows the

SimpleRangeSearchTree2D and SimpleRangeSearchGrid2D, outlined below, to operate interchangeably.

The search space is divided into square bins, mainly for the benefit of the Grid structure. binIterator

iterates through the records associated with a single bin within the space.

SimpleRangeSearchTree2D

SimpleRangeSearchTree2D is an implementation of the RangeSearchGrid2D interface using a 2-dimensional

k-d Tree.

A Simple2DNode is defined that stores the discriminator, coordinates, a list of values, and references to

child nodes. The traditional k-d Tree, as described by Samet [40], stores a single value in each node and, on

insertion of a new value with coordinates that already exist in the tree, replaces the old value with the new.

In this application, however, there exist multiple records with identical coordinates. To accommodate this,

each node can store multiple values, in a list, all sharing the same coordinates.

The SimpleRangeSearchTree2D provides an init() method to initialize the tree in balance from a

collection of records. Since the structure of a k-d Tree depends on the order of insertion of records, it is

possible, if random insertion is used [41], for the tree to be initialized out-of-balance, in which case access

will approach the worst case of O(n). Initialization is done, as described by Bentley [41], by sorting the data

46

at each level of the tree and inserting the median element (according to the appropriate discriminator) at

the current node. All points below the median are recursively inserted in the same manner at the low child

and all points above the median are recursively inserted at the high child. This method could also be used

to re-create the tree, should it become unbalanced.

Individual values may be added or removed. Removal of the last item in a node does not remove the node

itself; deletion of nodes is expensive [40] and, in this particular application, it is likely that new records will

be inserted at the same coordinates.

In this implementation, the tree does not monitor the degree to which it is balanced or automatically

re-balance itself; it is up to the programmer to re-balance the tree by calling init(). It should further be

pointed out that the “OPTIMIZE” algorithm, as Bentley [41] named it, does not modify the tree in-place to

restore balance, it simply generates a new optimal tree.

A RangeSearchIterator is defined to perform a rectangular, axis-aligned range search and a Radius-

SearchIterator performs a circular range search. See code listing A.5 in Appendix A.

4.2 Grid Structure

4.2.1 Implementation

The Java class SimpleRangeSearchGrid2D implements the Grid structure described in Section 2.3.2 in

compliance with the RangeSearchGrid2D interface. This allows it to be used interchangeably with the

SimpleRangeSearchTree2D. See code listing A.6 in Appendix A.

4.3 Library

The implementations were bundled as a JAR file, which can be included as a dependency in an AnyLogic

model or added to the classpath of a general-purpose Java application. Any object that is to be stored in the

SimpleRangeSearchGrid2D or SimpleRangeSearchTree2D must implement the HasDoublePointCoordinate

interface.

4.4 Parallelism and Concurrency Considerations

Since the emergence of diverse commercial microprocessors in the 1970s, exponential growth in the number

of transistors per chip, dubbed “Moore’s Law,” has allowed rapid growth in computing power. These gains

came mainly as a result of increased clock-speeds until shortly after the turn of the millennium, when

heat dissipation challenges put an end to this line of development. Clock-speeds have since stagnated, and

performance increases have subsequently come primarily through adding multiple cores to microprocessors.

This change addresses a problem at the level of hardware design, but creates new challenges for software

47

programmers [65]. In light of this reality, this section will discuss parallelism and concurrency as they relate

to this work.

4.4.1 Definitions

Parallelism and concurrency are distinct problems but often occur together, and both have become greater

concerns in programming with the near-ubiquity of multi-core processors.

Parallelism

Parallelism is achieved by “delegating different parts of [a] computation to different processors that execute at

the same time” [66]. Some tasks are more amenable to parallelization than others; Amdahl [67] argued that

there is a maximum possible speedup based on the fraction of the task that could be broken into subtasks.

Gustafson [68] suggested that Amdahl was needlessly pessimistic and proposed an alternative formula. These

formulations came to be known as Amdahl’s Law and Gustafson’s Law, respectively. Regardless, overhead

in setting up parallel subtasks and the fact that some subtasks must be performed serially combine to place

limits on performance gains from arbitrary degrees of parallelization. Purely parallel applications can often

be straightforward to specify and debug, when compared to those involving concurrency.

Concurrency

Concurrency, on the other hand, can be difficult to define formally in a way that is also easy to understand.

Raynal [69] describes a concurrent program as being “made up of several entities (processes, peers, sensors,

nodes, etc.) that cooperate to a common goal. This cooperation is made possible thanks to objects shared by

the entities. These objects are called concurrent objects.” Alternatively, Marlow [66] describes a concurrent

program as having “multiple threads of control” that “execute ‘at the same time’; that is, the user sees their

effects interleaved.” Marlow goes on to state that “concurrent programming is concerned with structuring a

program that needs to interact with multiple independent external agents (for example, the user, a database

server, and some external clients).”

Concurrency can be considered a problem of coordinating access to shared resources. If multiple threads

are allowed to access an object, often a data structure, without restriction, it eventually leads to data

corruption [70], possibly due to race conditions. This type of problem can be eliminated through mutual

exclusion. A number of programming methods have been developed over the years to mitigate this pitfall

[71]; major techniques available in Java are discussed in Section 4.4.2, but misapplication of these methods

can lead to other difficult-to-diagnose problems, including deadlocks, and resource starvation. These terms

are defined as:

• Race Condition – occurs when “multiple threads are accessing a shared resource and the results

depend on thread scheduling” [72]. Results of a program suffering from a race condition “may vary

48

from run to run” [72].

• Mutual Exclusion – controls access to a shared object by allowing one thread exclusive access to that

object and waiting until that thread completes its operations before allowing the next thread access

[72].

• Deadlock – “occurs when a group of two or more threads cannot make any progress, since each is

waiting for a resource held by one of the others” [72]. This is a result of incorrect implementation of

mutual exclusion.

• Resource Starvation – refers to situations where a thread cannot gain sufficient access to a shared

resource in order to complete its job [70, 73]. This could mean that the starved thread is shut out

completely, or that it gets some access but not enough and ends up taking “too long” to complete its

work. Starvation may either occur consistently or only when the system is under heavy load.

Debugging concurrency problems is difficult because the symptoms can be as vague as the program

seeming to take too long to run or appearing to hang. Furthermore, symptoms may occur spuriously and be

difficult to reproduce.

4.4.2 Java

Parallelism

The basic Java programming language and its standard library feature a number of parallel computing

Application Programming Interfaces (APIs). Threading has been available since version 1.0 [74]. The Thread

class provides the necessary functionality but can require the programmer to concern themselves with low-

level management of the threads. The Executor interface was introduced in Java version 1.5 [75] and the

ForkJoinPool was introduced in Java 7 (version 1.7) [76]. The ForkJoinPool implements the Executor

interface. ForkJoinPool reduces the amount of low-level thread management that needs to be done on the

part of the programmer. Tasks must still, however, be set up as a ForkJoinTask [77, 78]. Parallel streams

were introduced in Java 8 (version 1.8). Parallel streams operate in parallel without the programmer having

to do any low-level management of threads, and with syntax identical to that of sequential streams [79].

Concurrency

Java provides a number of facilities for managing concurrency issues [70]:

• Synchronized Methods – applying the synchronized keyword to a method definition establishes

the restriction that only one synchronized method within the enclosing object can be active at a time.

• Synchronized Statements – define a block of code for which a lock must be acquired before pro-

ceeding and released after completion. The object providing the intrinsic lock is specified.

49

• Atomic Access – using the volatile keyword for variable declaration enforces atomic access for that

variable. This is more efficient than synchronization but may still allow some errors due to concurrency

issues.

• Guarded Blocks – allow threads to coordinate their activity around particular conditions by employing

the wait() and notifyAll() methods.

• Immutable Objects – immutable objects cannot be changed after construction and therefore “cannot

be corrupted by thread interference or observed in an inconsistent state” [70].

• High Level Concurrency Objects – Java also provides a number of high-level objects support-

ing concurrency, including Executor and ForkJoinPool, discussed under Parallelism, above, and

Concurrent Collections, which implement data structures supporting concurrent access.

4.4.3 AnyLogic

Built-In Features

This work is implemented using AnyLogic 8.4.0, which is based on Java 9. AnyLogic is parallel between

realizations but does not support concurrency at the level of a single realization. Model logic in a single-run

Experiment runs in a single thread. A multi-run Experiment, such as an Optimization, can distribute the

realizations to be run across multiple threads. In this case, each thread runs a separate instance of the model,

and there are no resources shared between these instances. The basic unit of parallelization is one realization

(instance) of the model and, at this level, it would qualify as “embarassingly parallel”.

For multi-run experiments, AnyLogic has a setting to “Allow parallel evaluations”. If enabled—the

default—the experiment will run in a number of threads equal to Runtime.availableProcessors(); if the

setting is disabled, it will run in a single thread. Runtime.availableProcessors() returns the number

of logical processors available to the Java Virtual Machine (JVM); normally, this is equal to the number of

virtual cores on the system, so a 4-core processor with hyperthreading enabled would have 8 logical processors.

This number can be reduced at runtime by setting processor affinity in the OS, if supported. On Windows,

processor affinity can be set on the command-line using the start command with the /affinity switch [80].

On GNU/Linux, the taskset command sets processor affinity [81]. macOS exposes affinity settings to the

user neither through the command-line nor GUI [82].

Possible User Additions

AnyLogic allows arbitrary Java code within models, so one could conceivably add additional parallelism to a

model through use of the features discussed in Section 4.4.2. Parallel streams seem particularly amenable to

such an endeavour, as many AnyLogic objects, e.g., populations of agents, can be operated on as a stream.

50

This may benefit single-run experiments, but if the model is to be further parallelized using a multi-run

experiment the performance gains may be moot.

Another potential application of parallel programming lies in developing a Custom Experiment. The

Custom Experiment feature in AnyLogic allows the programmer to create their own experiment type using

free-form Java code. The example shown in Listing 4.1 demonstrates use of a ForkJoinPool to create a multi-

run Custom Experiment in AnyLogic [83]. While this may seem redundant to existing features accessible in

the AnyLogic editor, it would allow additional control, such as specifying a number of threads to be used

other than 1 or Runtime.availableProcessors().

1 ForkJoinPool pool = new ForkJoinPool ();

2
3 List <Callable <ParameterSet >> tasks = new ArrayList <>();

4 tasks.add(() -> new CalibrationPable(this).simulate (1D, 2D, 0.0, 0.5, "opt1"));

5 tasks.add(() -> new CalibrationPable(this).simulate (2D, 3D, 0.0, 0.5, "opt2"));

6 tasks.add(() -> new CalibrationPable(this).simulate (3D, 4D, 0.0, 0.5, "opt3"));

7
8 List <Future <ParameterSet >> futureResults = pool.invokeAll(tasks);

9
10 List <ParameterSet > res = futureResults.stream ().parallel ().map(

11 f -> {

12 try {

13 return f.get();

14 } catch (InterruptedException e) {

15 e.printStackTrace ();

16 } catch (ExecutionException e) {

17 e.printStackTrace ();

18 }

19 return null;

20 }).collect(Collectors.toList ());

21
22
23 System.out.println("----- Best Parameter Sets in each Subspace -------");

24
25 res.forEach(

26 r -> {

27 System.out.println(r);

28 }

29);

30
31 System.out.println("----- Parallel Optimization Finished -------");

Listing 4.1: Use of ForkJoinPool in an AnyLogic Custom Experiment [83]

4.4.4 Implementations in this Work

As-Submitted

The AnyLogic model developed for this work uses only built-in parallelism. The data structures implemented

for this work do not include any parallel or concurrent features; this was a design decision, given that the

immediate intended use of these data structures was to enhance an AnyLogic model.

51

Potential Additions

Notwithstanding the previous statement, the data structures implemented here are not bound to AnyLogic

by any dependencies and could potentially be used in general-purpose Java programs. If this is to be done,

it may be advantageous to implement some of the features discussed in Section 4.4.2. Following are some

comments in that vein.

Performing a range search of both the SimpleRangeSearchGrid2D and SimpleRangeSearchTree2D require

making many pair-wise distance computations, the results of which are independent. No modifications are

made to the data structures in this operation. This process could reasonably be parallelized, possibly using

parallel streams, without introducing concurrency issues. Additionally, the basic search of the binary tree

structure underpinning the SimpleRangeSearchTree2D is recursive and is amenable to parallelization using

a ForkJoinPool, again without introducing concurrency issues.

Implementing concurrency support, or thread safety, as it is often called, in the SimpleRangeSearchGrid-

2D and SimpleRangeSearchTree2D would allow them to be utilized in multithreaded Java programs. This

could be accomplished, broadly, in one of two ways: Immutability or applying the other basic tools discussed

in Section 4.4.2 to implement appropriate mutual exclusion that would allow concurrent access to a mutable

data structure.

Use of immutable objects is a strategy that is well-known to ensure thread safety without the need to rely

on potentially difficult-to-implement mutual exclusion techniques. There are performance tradeoffs involved,

since some operations on the object may create a duplicate that reflects the requested change, leaving the

original unmodified, but Oracle suggests that, in Java, these are less severe than many programmers tend

to think [70]. The second alternative, implementing thread-safe, mutable versions of the data structures, is

more daunting in terms of its scope. It would be worthwhile, if pursuing this route, to fully implement the

interfaces necessary to make these data structures peers of the Concurrent Collections data structures that

form part of the Java standard library [84].

52

5 Performance Evaluation

5.1 Objectives

The default AnyLogic method for storing a network involves storing an adjacency list for each agent in

the network. In general, O(e), where e is the number of edges in the network graph, is the best one can

achieve for storing a network. For the current modeling project, however, a particular network structure is

being employed—a distance-based network. In a distance-based network, each node is connected to every

other node within a specified radius of itself. Furthermore, the timing of the built-in AnyLogic method for

initializing a distance-based network is an always-worst-case O(n), where n is the number of agents in the

network. As part of this project, data structures were developed with a goal of improving performance of

AnyLogic models with large populations using distance-based networks. This chapter discusses performance

testing applied to new and existing data structures.

It was desired that one instance of the pertussis model with 500,000 agents be operable on a 16 GB system

and that run-time be minimized subject to that constraint. Ideally, a run-time less than 8 hours in duration

would allow for overnight runs.

5.2 Testing

5.2.1 Test Harness

A simple SEIRS ABM was created in AnyLogic to serve as the test bed for evaluating the computational

burden for network implementions that were considered. The model implemented a distance-based network

within a space that scaled with population size to maintain a specified population density. The network

implementations were as follows:

• BUILTIN DISTANCE BASED - AnyLogic’s built-in distance-based network

• SIMPLE GRID - the Grid structure described in Sections 2.3.2 and 4.2.1

• ON DEMAND BUILTIN - AnyLogic’s built-in distance-based network but only computing connections as

needed

• ON DEMAND SIMPLE GRID - Using AnyLogic’s built-in connections object, but indexing agents using

the Grid; connections are populated as needed

53

• KD TREE - Using the k-d Tree to compute range searches

AnyLogic Parameter Variation Experiments were set up to compare run time and memory usage for the

model while varying population size, connection range, and the range search algorithm used. NoGUI versions

of the experiments were created to run remotely.

Deliberately omitted were many features of the main pertussis model, including multiple contact venues,

complex disease logic, GUI elements, and data logging. The purpose was to establish an application bench-

mark for the testing of range search algorithms within an ABM while minimizing model structures that may

impact run time and memory usage orthogonally to the choice of algorithm.

5.2.2 Test Systems

The following systems were used in testing:

• Dell-Desk

– Dell XPS 8930

– 3.2 GHz Intel Core i7 (6-core / 12-thread)

– 32 GB RAM

– Intel UHD Graphics 630

• Homebuild

– Home-Built PC

– 3.7 GHz Intel Core i7 (6-core / 12-thread)

– 16 GB RAM

– NVIDIA GeForce GTX 1080 Graphics

5.2.3 Grid Bin Width

Since the bin width of the Grid structure needs to be optimized for best performance, an AnyLogic Opti-

mization Experiment was created to determine the optimum bin width. The objective function was set to

minimize total run time of the model. Figure 5.1 shows run times for varying bin widths with a connection

range r = 50 units. Local minima can be seen at bin width b = r = 50, b = 1
2r = 25, b = 1

3r ≈ 16.7, and

b = 1
4r ≈ 12.5.

Figure 5.1 suggests an optimal bin width, b, of 25 units given a connection range, r, of 50 units. It makes

sense that the optimal bin width would be an integer fraction of the connection range if we consider an agent,

A, with r << b and gradually grow r. Initially, a range search will only need to consider the bin containing

A. As r becomes larger and approaches b, additional bins will be added to the search but most of their agents

54

●

●

●

●

●

●

●

●

●●

●

●
●

●
●●

●●

●

●●
●

●●
●

●

●

●●●●●●
●

●

●
●

●●●
●
●●

●
●
●
●●●

●

●●
●●●●●

●●
●●●

●
●●
●●

●

●●
●

●

●

●
●
●●
●●●●

●

●

●●●

●

●

●●
●
●●●●●●

●

●
●
●●●
●
●
●●●●●
●
●●●

●●
●
●
●●●●●●●●●●●●
●
●●●
●●●●
●
●●●●
●
●

●●
●●●●
●●
●
●●●
●
●
●
●
●
●
●
●
●

●
●●

●
●●
●

●
●●●

●
●●
●●●
●
●
●
●
●●●

●
●●●●●
●

●
●
●●●

●
●●
●
●●●
●
●●
●

●

●
●
●●●
●
●
●
●●

●●●●●●
●

●

●●
●●

●
●
●
●
●
●

●
●

●

●
●
●
●●
●
●
●
●

●
●
●

●●●
●●●●

●

●●
●
●●

●●●

●

●

●
●

●

●

●

●●

●
●●

●
●●

●
●

●●●●

●
●
●●

●
●
●●●

●

●
●●

●

●
●●

●

●

●●
●

●

●
●
●

●●
●
●●

●

●

●

●●●●
●
●●●

●●●●●

●

●
●

●●
●

●●●
●●●●●

●
●●
●
●●

●

●

●●●●
●●

●

●

●

●
●
●
●●●

●●
●
●
●

●

●
●●●●

●
●

●●●●●
●●

●

●
●●●●●

●

●
●
●●

●

●
●●●

●

●●

●
●
●●

●

●
●
●●●

●

●●●

●
●
●
●●●

●
●●

●●

●
●
●

●
●
●

●

●
●

●

●●

●
●
●
●

●

●

●
●

●

●

●

●
●
●

●●

●
●
●

●

●

●
●

●
●

●

●●
●
●●

●●●●●

●
●

●

●

●

●

●

●

●

0

25

50

75

100

0 25 50 75 100
Bin Width

R
un

 T
im

e
(m

in
ut

es
)

Dell−Desk

Run Time with Grid Structure Bin Width

Figure 5.1: Optimization of Bin Width for Grid Structure

will not initially be search hits. As r continues to grow, more of the agents in the newly added bins will be

positive search results until r approaches 2b and another step change occurs. So, with the caveats mentioned

in Section 5.3, a bin width of b = 1
2r will be employed for the remainder of this discussion.

5.2.4 Testing Procedure

The model serving as the test harness, described in Section 5.2.1 above, was run with varying parameters

in single-threaded mode. Elapsed real time and memory usage, as obtained from the Java runtime with

Runtime.totalMemory() - Runtime.freeMemory(), were logged from within the model. Competing user

processes were closed, where possible.

5.3 Results

It must be emphasized that the results discussed in this section are empirical and cannot be construed as

proofs of correctness or extrapolated beyond the ranges of parameters tested. Nevertheless, they can be

viewed as representing the relative performance scaling of the tested data structures in a typical use case.

55

5.3.1 Run Time Scaling with Agent Count

Figure 5.2 shows, on a linear scale, the run time scaling of the test model with agent count for the range

search algorithm implementations outlined in Section 5.2.1. Figure 5.3 shows the same on a log-log scale.

Here, the run time represents the time to run the actual simulation, minus any initialization time for the

model executable. From Figure 5.2, we can see that the ON DEMAND BUILTIN has the worst absolute time

for large populations as well as the worst scaling of the methods tested. Using a log-log scale, however, in

Figure 5.3, we can see that all methods except ON DEMAND BUILTIN exhibit similar scaling with the BUILTIN-

DISTANCE BASED and KD TREE having worse absolute times for all agent counts tested. ON DEMAND BUILTIN

has the worst scaling of all methods tested.

0

100

200

300

400

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05
Agent Count

R
un

 T
im

e
(m

in
ut

es
) rangeSearchAlgorithm

BUILTIN_DISTANCE_BASED

KD_TREE

ON_DEMAND_BUILTIN

ON_DEMAND_SIMPLE_GRID

SIMPLE_GRID

Homebuild (10 Replications)

Run Time Scaling with Agent Count

Figure 5.2: Run Time Scaling with Agent Count

Considering Figure 5.4, on a log-log scale, we can see that the BUILTIN DISTANCE BASED stands out from

the other methods in having a substantial initialization time that scales super-linearly. Theoretically, this

is O(n2), as it must compute the distance from each agent to each other agent, as discussed in Section

2.3. The initialization time is nearly 200 minutes for the case of 500,000 agents. In addition to being time-

consuming, this poses a user experience issue, as the model appears to do nothing during the initialization,

so a person monitoring the model may be confused as to whether the model is operating, or has crashed or

hung. This is one of the issues that initially prompted exploration of alternative range search algorithms and

data structures.

56

1e−02

1e+00

1e+02

1e+02 1e+03 1e+04 1e+05
Agent Count

R
un

 T
im

e
(m

in
ut

es
) rangeSearchAlgorithm

BUILTIN_DISTANCE_BASED

KD_TREE

ON_DEMAND_BUILTIN

ON_DEMAND_SIMPLE_GRID

SIMPLE_GRID

Homebuild (10 Replications)

Run Time Scaling with Agent Count

Figure 5.3: Run Time Scaling with Agent Count (Log-Log Scale)

Adding the timings from Figures 5.2 and 5.4 gives us the total model execution time, as is shown in

Figure 5.5 on a linear scale and in Figure 5.6 on a log-log scale. This exposes the true time cost of BUILTIN-

DISTANCE BASED, which appeared competitive in Figure 5.2. Although the ON DEMAND BUILTIN avoids the

large initialization time of the BUILTIN DISTANCE BASED method, it ends up with a visibly worse total time.

ON DEMAND BUILTIN and BUILTIN DISTANCE BASED, the methods making use of the built-in range search,

exhibit the worst total time and scaling.

5.3.2 Run Time Scaling with Connection Range

Figure 5.7 shows scaling of total time with connection range for a population of 500, 000. Given the other

settings, connection ranges less that 25 units result in a mostly disconnected (i.e., extremely low-density)

network. Above 25, the SIMPLE GRID appears to scale linearly and the KD TREE slightly sub-linearly. The

methods making use of the built-in range search have significantly worse total time but appear to have

competitive scaling above a connection range of 50 units.

5.3.3 Memory Scaling with Agent Count

Figure 5.8 shows scaling of memory use with agent count, on a log-log scale. The SIMPLE GRID and KD TREE

have a large memory overhead but then appear to scale more slowly than the other methods. All tests

57

1e−03

1e−01

1e+01

1e+04 3e+04 1e+05 3e+05
Agent Count

In
iti

al
iz

at
io

n
T

im
e

(m
in

ut
es

)

rangeSearchAlgorithm

BUILTIN_DISTANCE_BASED

KD_TREE

ON_DEMAND_BUILTIN

ON_DEMAND_SIMPLE_GRID

SIMPLE_GRID

Homebuild (10 Replications)

Initialization Time Scaling with Agent Count

Figure 5.4: Initialization Time Scaling with Agent Count (Log-Log Scale)

remained well within the 16 GB physical RAM of the test system, suggesting that there is no issue with

excessive paging to disk. The jagged shape of the curves suggests that perhaps more replications were in

order for the test.

5.3.4 Memory Scaling with Connection Range

Figure 5.9 shows scaling of memory use with connection range for a population of 500, 000. Patterns are

inconsistent below a range of 25 units, after which all methods appear to scale linearly. It is unclear why the

SIMPLE GRID and ON DEMAND SIMPLE GRID have such large usage at low connection ranges.

5.3.5 Use with Full Model

Figure 5.10 shows the total time scaling and Figure 5.11 shows memory scaling with population size when

used with the full pertussis model. The SIMPLE GRID appears to scale linearly for both total time and

memory use. The KD TREE, on the other hand, exhibits super-linear scaling for total time, which constitutes

a worsening, rather than an improvement, in performance. The reason for this is that the pertussis model

calculates population counts and densities for bins in its operation; with the SIMPLE GRID this can be done

with an access by index and traversal of a relatively small list, while with the KD TREE this requires a range

search. In other words, more range searches are performed when using the KD TREE than when using the

SIMPLE GRID.

The memory use of the KD TREE shows a larger overhead but sub-linear scaling as compared with the

SIMPLE GRID. This is as expected and could represent a reasonable tradeoff if the timing gains had materi-

alized.

5.4 Discussion

In a simplified setting, the KD TREE implementation shows improved timing performance over the SIMPLE GRID

at the expense of increased memory use. This benefit does not hold when applying the KD TREE to the full

58

0

100

200

300

400

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05
Agent Count

To
ta

l T
im

e
(m

in
ut

es
) rangeSearchAlgorithm

BUILTIN_DISTANCE_BASED

KD_TREE

ON_DEMAND_BUILTIN

ON_DEMAND_SIMPLE_GRID

SIMPLE_GRID

Homebuild (10 Replications)

Total Time Scaling with Agent Count

Figure 5.5: Total Time Scaling with Agent Count

pertussis model, however, as this model ends up performing more range searches in place of simpler direct

access allowed by the SIMPLE GRID.

Of the configurations tested, however, the stand-out performer is the ON DEMAND SIMPLE GRID. This

method maintains a Grid data structure for range search purposes and populates the built-in Connections

object only if required by the agent.

Stochastics can interfere with these empirical tests in the sense that, if there is little disease spread in the

test model, there will be fewer messages sent through the contact network, and thus lower computational and

memory demands. In retrospect, it may have been better to create a test harness that accessed the network

in a more deterministic way. Calculating network centralities may be one way to achieve this. For example,

if we were to calculate degree centrality for each of n agents, we could be confident that n range searches

had been performed.

59

1e−02

1e+00

1e+02

1e+02 1e+03 1e+04 1e+05
Agent Count

To
ta

l T
im

e
(m

in
ut

es
) rangeSearchAlgorithm

BUILTIN_DISTANCE_BASED

KD_TREE

ON_DEMAND_BUILTIN

ON_DEMAND_SIMPLE_GRID

SIMPLE_GRID

Homebuild (10 Replications)

Total Time Scaling with Agent Count

Figure 5.6: Total Time Scaling with Agent Count (Log-Log Scale)

0

100

200

300

400

25 50 75 100
Connection Range

To
ta

l T
im

e
(m

in
ut

es
) rangeSearchAlgorithm

BUILTIN_DISTANCE_BASED

KD_TREE

ON_DEMAND_BUILTIN

ON_DEMAND_SIMPLE_GRID

SIMPLE_GRID

Homebuild (10 Replications)

Total Time Scaling with Connection Range

Figure 5.7: Total Time Scaling with Connection Range

60

10

100

1000

1e+02 1e+03 1e+04 1e+05
Agent Count

M
em

or
y

U
sa

ge
 (

M
B

) rangeSearchAlgorithm

BUILTIN_DISTANCE_BASED

KD_TREE

ON_DEMAND_BUILTIN

ON_DEMAND_SIMPLE_GRID

SIMPLE_GRID

Homebuild (10 Replications)

Memory Usage Scaling with Agent Count

Figure 5.8: Memory Usage Scaling with Agent Count

2000

4000

6000

8000

25 50 75 100
Connection Range

M
em

or
y

U
sa

ge
 (

M
B

) rangeSearchAlgorithm

BUILTIN_DISTANCE_BASED

KD_TREE

ON_DEMAND_BUILTIN

ON_DEMAND_SIMPLE_GRID

SIMPLE_GRID

Homebuild (10 Replications)

Memory Usage Scaling with Connection Range

Figure 5.9: Memory Scaling with Connection Range

61

●

●

●

●

●

●

●

0

25

50

75

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05
Agent Count

To
ta

l T
im

e
(m

in
ut

es
)

rangeSearchAlgorithm

●

●

KD_TREE

SIMPLE_GRID

Homebuild

Total Time Scaling with Agent Count

Figure 5.10: Total Time Scaling in Full model

●

●

●

●

●

●

●

0

2500

5000

7500

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05
Agent Count

M
em

or
y

U
sa

ge
 (

M
B

)

rangeSearchAlgorithm

●

●

KD_TREE

SIMPLE_GRID

Homebuild

Memory Scaling with Agent Count

Figure 5.11: Memory Scaling in Full model

62

6 Conclusion

6.1 Deliverables

There are two main deliverables for this project. The first is an ABM built with AnyLogic that represents

pertussis transmission in Alberta and is set up for evaluating the degree to which immunization of mothers

during pregnancy reduces pertussis incidence in infants. The second is a Java library implementing a k-d

Tree data structure intended to improve range search performance within AnyLogic models.

6.2 Contributions and Findings

6.2.1 Pertussis Model

An agent-based model of pertussis in Alberta was created through an interdisciplinary group model building

process. This model met the key requirements of having a population of 500, 000 agents, representing vacci-

nation, disease history, maternal immunity transfer, waning of immunity, and variations in vaccine coverage.

A continuous representation of immunity was developed for this model in the “De Novo” disease module.

This representation was capable of representing pertussis behaviour but whether this level of fidelity was

required or is a benefit to the health findings is left for future work.

Preliminary results from the pertussis model suggest that providing vaccination during the third trimester

of pregnancy with coverage of 50% or 75% could result in reduction of pertussis incidence in infants, especially

in the 0 − 2 month age group. These results are sensitive to parameter assumptions for waning of immunity

and immunological blunting.

6.2.2 Data Structures

A k-d Tree data structure was implemented in Java for use with AnyLogic models. In a simplified setting,

this data structure showed improved timing and memory scaling compared with the Grid data structure

developed by Doroshenko et al. [5] in 2016. These savings did not hold when combining the k-d Tree

implementation with the full pertussis model. This was due to an increased number of range searches

being performed as compared with the use of the Grid data structure. Combining the Grid structure with

the built-in Connections object in AnyLogic appears to be the most performant method of maintaining a

distance-based network where agents change position infrequently.

63

6.3 Limitations

6.3.1 Pertussis Model

Some limitations of the pertussis ABM are:

• A particular intervention, immunization during pregnancy, is programmed into the model, so testing

of new interventions will require additional programming.

• Tdap was assumed to be the vaccine used for the intervention. With appropriate data to inform

parameters, differences between different vaccine formulations could be examined.

• The model implements an abstracted representation of immune response that does not include cellular-

or molecular-level interactions between the pathogen and human body. As such, conclusions cannot be

drawn from this work regarding immunogenicity or transfer of immunity at those levels.

• Model studies such as this work can help identify whether proposed strategies are worthy of further

investigation without incurring a high cost or putting human health at risk. Additional questions,

however, must be answered before such an intervention can be deployed as public health policy. One

key question among these that is not amenable to a simulation model study is whether it is safe for

mother and child to administer a vaccine during pregnancy.

• Scaling results to larger population centres could be problematic as some effects represented in the

model, such as density and network effects, may not scale as expected. Some other methods of analysis

may allow us to consider a certain population size as “good enough” but that is not the case in a model

such as this one without further work.

• The model is parameterized for Alberta specifically. Although attention was paid during development

to ensure that the model could be adapted to other jurisdictions by changing input files and parameters,

this would nonetheless require significant time, data inputs, and re-calibration.

• GUI elements in the model impose substantial computation and memory burden, such that it is not

feasible to run the model at population sizes approaching those used in the main experiment with all

GUI elements enabled.

• Pertussis was modelled explicitly, and significant changes would be required to adapt this work to other

pathogens.

• Contact networks within the model impose specific mixing assumptions. Altering these assumptions

or adding additional contact venues requires modifications to the model structure and subsequent re-

calibration.

64

• Population size is limited to 1, 000, 000 agents, nominally. This is an improvement over previous ABMs

developed in AnyLogic in CEPHIL, but is not sufficient to allow simulation of the urban Edmonton or

Calgary health zones with current populations of approximately 1.3 million each.

6.3.2 Data Structures

Some limitations of the implemented data structures are:

• The SimpleRangeSearchTree2D is specifically two-dimensional despite the fact that the k-d Tree can

handle an arbitrary number of dimensions. This was a simplifying consideration specifically because

the sphere of intended application of this implementation lay within AnyLogic population models.

• The data structures contributed are not parallelized and do not support concurrent access; see Section

4.4.4. This, again, was a simplifying consideration specifically because the intended application was

within AnyLogic.

• The data structures are not in feature-parity with implementations of other data structures in the Java

Collections Framework [85].

• Use of the SimpleRangeSearchTree2D with the full pertussis model resulted in worsened performance.

This was due to more range searches being performed when compared with the SimpleRangeSearch-

Grid2D. An alternative data structure, such as a QuadTree, may improve performance while simulta-

neously allowing direct access to bins.

• The data structures cannot accommodate mobile agents. An agent’s position in the SimpleRange-

SearchTree2D and SimpleRangeSearchGrid2D data structures depends on its position in 2D space.

Changing the position of an agent therefore requires modification of the data structure, which can be

computationally expensive.

6.4 Future Work

In the immediate future, the goal will be to complete calibration and proceed with the main experiment and

sensitivity analyses for the pertussis model.

The present work has inspired or elucidated the need for the following improvements going forward:

• Generalization of EpiCurves implementation to allow it to be incorporated into other epidemiological

models in AnyLogic with minimal programming.

• Application of the model to test additional research questions regarding pertussis in Alberta. One such

question is whether cocooning—that is, vaccinating people in the same household as a newborn—would

be a viable strategy. While the model does not implement cocooning as an intervention, it could be

65

added with a small amount of work: During the birth event, vaccination messages could be sent to the

other Person agents within the newborn’s household.

• A health economic analysis of the cost effectiveness of this intervention could be readily conducted with

a modified version of this model.

• Comparison of pertussis model outcomes with the different disease module implementations. This

could help elucidate differences between a continuous representation of immunity and a discrete one

and whether they affect model outcomes.

• Enhancement of the k-d Tree implementation to address concurrency and parallelization concerns; see

Section 4.4.4.

• Further exploration of memory demands of the k-d Tree implementation under various JVM configu-

rations.

• Consideration should be given to the degree to which the k-d Tree remains in balance throughout a

model run and how that affects overall timing. While a uniform population density distribution was

used in the main experiment, a non-uniform distribution has the potential to move the tree out of

balance as the population grows. If tree balance has the potential to be problematic, a self-balancing

tree-based structure may be worth considering.

• Investigation of the performance efficiency that may be obtained through use of a QuadTree range-

search data structure as opposed to the k-d Tree implementation used in the present work.

• Consideration should be given to combining the k-d Tree with the built-in Connections object as was

done with the Grid structure in the ON DEMAND SIMPLE GRID configuration to compare performance.

• Establishment of guidelines and design patterns for use with large models built in AnyLogic, so to

minimize computation and memory burden.

• Consideration should be given to caching as a means to improve performance in a model such as the

one developed for this work. Since queries are frequent, and only issue from infectious agents, but the

population changes infrequently this could be an ideal situation for caching.

66

References

[1] Government of Canada. (2019) Pertussis (whooping cough). [Online]. Avail-
able: https://www.canada.ca/en/public-health/services/immunization/vaccine-preventable-diseases/
pertussis-whooping-cough.html

[2] World Health Organization. (2019) Pertussis. [Online]. Available: https://www.who.int/immunization/
diseases/pertussis/en/

[3] T. Tan, T. Dalby, K. Forsyth, S. A. Halperin, U. Heininger, D. Hozbor, S. Plotkin, R. Ulloa-Gutierrez,
and C. H. W. Von König, “Pertussis across the globe: recent epidemiologic trends from 2000 to 2013,”
The Pediatric Infectious Disease Journal, vol. 34, no. 9, pp. e222–e232, 2015.

[4] X. C. Liu, C. A. Bell, K. A. Simmonds, L. W. Svenson, S. Fathima, S. J. Drews, D. P. Schopflocher, and
M. L. Russell, “Epidemiology of pertussis in Alberta, Canada 2004–2015,” BMC public health, vol. 17,
no. 1, p. 539, 2017.

[5] A. Doroshenko, W. Qian, and N. D. Osgood, “Evaluation of outbreak response immunization in the
control of pertussis using agent-based modeling,” PeerJ, vol. 4, p. e2337, 2016.

[6] E. Bonabeau, “Agent-based modeling: Methods and techniques for simulating human systems,” Pro-
ceedings of the National Academy of Sciences, vol. 99, no. suppl 3, pp. 7280–7287, 2002.

[7] S. F. Railsback and V. Grimm, Agent-Based and Individual-Based Modeling: A Practical introduction.
Princeton University Press, 2012.

[8] The AnyLogic Company. AnyLogic software. [Online]. Available: https://www.anylogic.com

[9] Centers for Disease Control and Prevention, Epidemiology and Prevention of Vaccine-Preventable Dis-
eases, 13th ed., J. Hamborsky, A. Kroger, and S. Wolfe, Eds. Washington, D.C.: Public Health
Foundation, 2015.

[10] T. Smith, J. Rotondo, S. Desai, and H. Deehan, “Pertussis: Pertussis surveillance in canada: Trends to
2012,” Canada Communicable Disease Report, vol. 40, no. 3, p. 21, 2014.

[11] Centers for Disease Control and Prevention. (2019) Pertussis frequently asked questions. [Online].
Available: https://www.cdc.gov/pertussis/about/faqs.html

[12] P. Varughese, “Incidence of pertussis in Canada.” Canadian Medical Association Journal, vol. 132, no. 9,
pp. 1041–1042, 1985.

[13] B. T. Grenfell and R. M. Anderson, “Pertussis in England and Wales: an investigation of transmission
dynamics and control by mass vaccination,” Proceedings of the Royal Society of London. B. Biological
Sciences, vol. 236, no. 1284, pp. 213–252, 1989.

[14] M. Domenech de Cellès, F. M. Magpantay, A. A. King, and P. Rohani, “The pertussis enigma: reconciling
epidemiology, immunology and evolution,” Proceedings of the Royal Society B: Biological Sciences, vol.
283, no. 1822, p. 20152309, 2016.

[15] Government of Alberta. Interactive Health Data Application. [Online]. Available: http://www.ahw.
gov.ab.ca/IHDA Retrieval/

[16] R. Frigg and S. Hartmann, “Models in science,” in The Stanford Encyclopedia of Philosophy, E. N. Zalta,
Ed. Metaphysics Research Lab, Stanford University, 2018.

67

https://www.canada.ca/en/public-health/services/immunization/vaccine-preventable-diseases/pertussis-whooping-cough.html
https://www.canada.ca/en/public-health/services/immunization/vaccine-preventable-diseases/pertussis-whooping-cough.html
https://www.who.int/immunization/diseases/pertussis/en/
https://www.who.int/immunization/diseases/pertussis/en/
https://www.anylogic.com
https://www.cdc.gov/pertussis/about/faqs.html
http://www.ahw.gov.ab.ca/IHDA_Retrieval/
http://www.ahw.gov.ab.ca/IHDA_Retrieval/

[17] J. Sokolowski and C. Banks, Eds., Modeling and Simulation in the Medical and Health Sciences. Hobo-
ken: Wiley, 2011.

[18] A. M. Starfield, “Qualitative, rule-based modeling,” BioScience, vol. 40, no. 8, pp. 601–604, 1990.

[19] A. M. Law, Simulation Modeling and Analysis, 2nd ed., ser. McGraw-Hill series in industrial engineering
and management science. New york: McGraw-Hill, 1991.

[20] R. Ross, The Prevention of Malaria, 2nd ed. London: John Murray, 1911.

[21] W. O. Kermack and A. G. McKendrick, “A contribution to the mathematical theory of epidemics,”
Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical
Character, vol. 115, no. 772, pp. 700–721, 1927.

[22] J. D. Sterman, “System dynamics modeling: Tools for learning in a complex world,” California Man-
agement Review, vol. 43, no. 4, pp. 8–25, 2001.

[23] N. Osgood, “Using traditional and agent based toolsets for system dynamics: present tradeoffs and
future evolution,” System Dynamics, 2007.

[24] ——, “Representing progression and interactions of comorbidities in aggregate and individual-based
systems models,” in Proceedings of the 27th International Conference of the System Dynamics Society.
Albuquerque, New Mexico, 2009.

[25] P. S. Hovmand, Community-Based System Dynamics. Springer, 2014.

[26] A. Maltz and G. Fabricius, “SIR model with local and global infective contacts: A deterministic approach
and applications,” Theoretical Population Biology, vol. 112, pp. 70–79, 2016.

[27] J. Badham, E. Chattoe-Brown, N. Gilbert, Z. Chalabi, F. Kee, and R. F. Hunter, “Developing agent-
based models of complex health behaviour,” Health & Place, vol. 54, pp. 170–177, 2018.

[28] A. H. Auchincloss and A. V. Diez Roux, “A new tool for epidemiology: the usefulness of dynamic-agent
models in understanding place effects on health,” American Journal of Epidemiology, vol. 168, no. 1,
pp. 1–8, 2008.

[29] Z. Chalabi and T. Lorenc, “Using agent-based models to inform evaluation of complex interventions:
examples from the built environment,” Preventive Medicine, vol. 5, no. 57, pp. 434–435, 2013.

[30] A. M. El-Sayed, P. Scarborough, L. Seemann, and S. Galea, “Social network analysis and agent-based
modeling in social epidemiology,” Epidemiologic Perspectives & Innovations, vol. 9, no. 1, p. 1, 2012.

[31] H. W. Hethcote, “An age-structured model for pertussis transmission,” Mathematical Biosciences, vol.
145, no. 2, pp. 89–136, 1997.

[32] A. Van Rie and H. W. Hethcote, “Adolescent and adult pertussis vaccination: computer simulations of
five new strategies,” Vaccine, vol. 22, no. 23-24, pp. 3154–3165, 2004.

[33] H. W. Hethcote, P. Horby, and P. McIntyre, “Using computer simulations to compare pertussis vacci-
nation strategies in Australia,” Vaccine, vol. 22, no. 17-18, pp. 2181–2191, 2004.

[34] G. Fabricius, P. E. Bergero, M. E. Ormazabal, A. Maltz, and D. F. Hozbor, “Modelling pertussis trans-
mission to evaluate the effectiveness of an adolescent booster in argentina,” Epidemiology & Infection,
vol. 141, no. 4, pp. 718–734, 2013.

[35] P. Pesco, P. Bergero, G. Fabricius, and D. Hozbor, “Modelling the effect of changes in vaccine effective-
ness and transmission contact rates on pertussis epidemiology,” Epidemics, vol. 7, pp. 13–21, 2014.

[36] ——, “Mathematical modeling of delayed pertussis vaccination in infants,” Vaccine, vol. 33, no. 41, pp.
5475–5480, 2015.

68

[37] M. Gambhir, T. A. Clark, S. Cauchemez, S. Y. Tartof, D. L. Swerdlow, and N. M. Ferguson, “A change
in vaccine efficacy and duration of protection explains recent rises in pertussis incidence in the united
states,” PLoS Computational Biology, vol. 11, no. 4, p. e1004138, 2015.

[38] E. Sanstead, C. Kenyon, S. Rowley, E. Enns, C. Miller, K. Ehresmann, and S. Kulasingam, “Under-
standing trends in pertussis incidence: an agent-based model approach,” American Journal of Public
Health, vol. 105, no. 9, pp. e42–e47, 2015.

[39] P. K. Agarwal, Handbook of Discrete and Computational Geometry, 3rd ed. Chapman and Hall/CRC,
2017, ch. 40, pp. 1057–1092.

[40] H. Samet, Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann, 2006.

[41] J. L. Bentley, “Multidimensional binary search trees used for associative searching,” Communications of
the ACM, vol. 18, no. 9, pp. 509–517, 1975.

[42] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding best matches in logarithmic
expected time,” in ACM Transactions on Mathematical Software, 1977.

[43] M. D. Mckay, R. J. Beckman, and W. J. Conover, “Comparison of three methods for selecting values of
input variables in the analysis of output from a computer code,” Technometrics, vol. 21, no. 2, pp. 239–
245, 1979. [Online]. Available: http://www.tandfonline.com/doi/abs/10.1080/00401706.1979.10489755

[44] D. Raghavarao, Repeated Measurements and Cross-Over Designs. Wiley Online Library, 2013.

[45] The AnyLogic Company. (2020) AnyLogic help. [Online]. Available: https://help.anylogic.com/index.
jsp?topic=%2Fcom.anylogic.help%2Fhtml%2Fstatecharts%2FStatecharts.html

[46] L. K. Kreuger, “Data and design: Advancing theory for complex adaptive systems,” PhD dissertation,
University of Saskatchewan, 2018.

[47] L. Fumanelli, M. Ajelli, P. Manfredi, A. Vespignani, and S. Merler, “Inferring the structure of social
contacts from demographic data in the analysis of infectious diseases spread,” PLoS Computational
Biology, vol. 8, no. 9, p. e1002673, 2012.

[48] A. McGirr and D. N. Fisman, “Duration of pertussis immunity after DTaP immunization: a meta-
analysis,” Pediatrics, vol. 135, no. 2, p. 331, 2015.

[49] N. S. Crowcroft, C. Johnson, C. Chen, Y. Li, A. Marchand-Austin, S. Bolotin, K. Schwartz, S. L. Deeks,
F. Jamieson, S. Drews, M. L. Russell, L. W. Svenson, K. Simmonds, S. M. Mahmud, and J. C. Kwong,
“Under-reporting of pertussis in Ontario: A Canadian Immunization Research Network (CIRN) study
using capture-recapture.” PLoS ONE, vol. 13, no. 5, p. e0195984, 2018.

[50] K. L. Schwartz, J. C. Kwong, S. L. Deeks, M. A. Campitelli, F. B. Jamieson, A. Marchand-Austin, T. A.
Stukel, L. Rosella, N. Daneman, S. Bolotin, S. J. Drews, H. Rilkoff, and N. S. Crowcroft, “Effectiveness
of pertussis vaccination and duration of immunity,” CMAJ : Canadian Medical Association Journal =
Journal de l’Association Medicale Canadienne, vol. 188, no. 16, p. E399, 2016.

[51] M. Domenech de Cellès, F. M. Magpantay, A. A. King, and P. Rohani, “The impact of past vaccination
coverage and immunity on pertussis resurgence,” Science Translational Medicine, vol. 10, no. 434, p.
eaaj1748, 2018.

[52] S. A. Halperin, J. M. Langley, L. Ye, D. MacKinnon-Cameron, M. Elsherif, V. M. Allen, B. Smith,
B. A. Halperin, S. A. McNeil, O. G. Vanderkooi, S. Dwinnell, R. D. Wilson, B. Tapiero, M. Boucher,
N. Le Saux, A. Gruslin, W. Vaudry, S. Chandra, S. Dobson, and D. Money, “A randomized controlled
trial of the safety and immunogenicity of tetanus, diphtheria, and acellular pertussis vaccine immuniza-
tion during pregnancy and subsequent infant immune response,” Clinical Infectious Diseases, vol. 67,
no. 7, pp. 1063–1071, 2018.

69

http://www.tandfonline.com/doi/abs/10.1080/00401706.1979.10489755
https://help.anylogic.com/index.jsp?topic=%2Fcom.anylogic.help%2Fhtml%2Fstatecharts%2FStatecharts.html
https://help.anylogic.com/index.jsp?topic=%2Fcom.anylogic.help%2Fhtml%2Fstatecharts%2FStatecharts.html

[53] Government of Alberta. (2019) Student population statistics. [Online]. Available: https:
//www.alberta.ca/student-population-statistics.aspx

[54] J. Mossong, N. Hens, M. Jit, P. Beutels, K. Auranen, R. Mikolajczyk, M. Massari, S. Salmaso, G. S.
Tomba, J. Wallinga et al., “Social contacts and mixing patterns relevant to the spread of infectious
diseases,” PLoS Medicine, vol. 5, no. 3, p. e74, 2008.

[55] Government of Alberta. (2019) Open government program. [Online]. Available: https://open.alberta.
ca/opendata

[56] Statistics Canada. (2016) Data products, 2016 census. [Online]. Available: https://www12.statcan.gc.
ca/census-recensement/2016/dp-pd/index-eng.cfm

[57] S. R. Cole, H. Chu, and S. Greenland, “Maximum likelihood, profile likelihood, and penalized likelihood:
a primer,” American Journal of Epidemiology, vol. 179, no. 2, pp. 252–260, 2013.

[58] P. Zimmermann, K. Perrett, N. Messina, S. Donath, N. Ritz, F. van der Klis, and N. Curtis, “The effect
of maternal immunisation during pregnancy on infant vaccine responses,” EClinicalMedicine, vol. 13,
pp. 21–30, 2019.

[59] Principles of Epidemiology in Public Health Practice – An Introduction to Applied Epidemiology and
Biostatistics, 3rd ed. Atlanta, Georgia, USA: US Department of Health and Human Services, 2013,
vol. 8. [Online]. Available: http://www.cdc.gov/ophss/csels/dsepd/SS197

[60] G. A. Weinberg and P. G. Szilagyi, “Vaccine epidemiology: efficacy, effectiveness, and the translational
research roadmap.(editorial commentary)(editorial),” Journal of Infectious Diseases, vol. 201, no. 11, p.
1607, 2010.

[61] M. Szumilas, “Explaining odds ratios,” Journal of the Canadian Academy of Child and Adolescent
Psychiatry, vol. 19, no. 3, p. 227, 2010.

[62] J. M. Last, Ed., A Dictionary of Epidemiology. Oxford University Press, 1983.

[63] The CGAL Project, CGAL User and Reference Manual. CGAL Editorial Board, 2019. [Online].
Available: https://doc.cgal.org/4.14/Manual/packages.html

[64] Oracle, Java Native Interface Specification, 8th ed., 2014. [Online]. Available: https://docs.oracle.com/
javase/8/docs/technotes/guides/jni/spec/jniTOC.html

[65] S. Furber, “Microprocessors: The engines of the digital age,” Proceedings. Mathematical, Physical, and
Engineering Sciences, vol. 473, no. 2199, p. 20160893, 2017.

[66] S. Marlow, Parallel and Concurrent Programming in Haskell, 1st ed. O’Reilly, 2013.

[67] G. M. Amdahl, “Validity of the single processor approach to achieving large scale computing capabil-
ities,” in Proceedings of the April 18-20, 1967, Spring Joint Computer Conference. ACM, 1967, pp.
483–485.

[68] J. L. Gustafson, “Reevaluating Amdahl’s law,” Communications of the ACM, vol. 31, no. 5, pp. 532–533,
1988.

[69] M. M. Raynal, Concurrent Programming : Algorithms, Principles, and Foundations. Springer, 2013.

[70] Oracle. (2014) Concurrency - The Java Tutorials. [Online]. Available: https://docs.oracle.com/javase/
tutorial/essential/concurrency/index.html

[71] M. Ben-Ari, Principles of Concurrent and Distributed Programming. Prentice Hall, 1990.

[72] D. Eager, “CMPT 332 course notes,” October 2015, unpublished.

[73] A. Downey, The Little Book of Semaphores. Green Tea Press, 2008.

70

https://www.alberta.ca/student-population-statistics.aspx
https://www.alberta.ca/student-population-statistics.aspx
https://open.alberta.ca/opendata
https://open.alberta.ca/opendata
https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/index-eng.cfm
https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/index-eng.cfm
http://www. cdc. gov/ophss/csels/dsepd/SS197
https://doc.cgal.org/4.14/Manual/packages.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/index.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

[74] Oracle. (2017) Class Thread - Java SE 9 & JDK 9. [Online]. Available: https://docs.oracle.com/javase/
9/docs/api/java/lang/Thread.html

[75] ——. (2017) Interface Executor - Java SE 9 & JDK 9. [Online]. Available: https://docs.oracle.com/
javase/9/docs/api/java/util/concurrent/Executor.html

[76] ——. (2017) Class ForkJoinPool - Java SE 9 & JDK 9. [Online]. Available: https:
//docs.oracle.com/javase/9/docs/api/java/util/concurrent/ForkJoinPool.html

[77] E. Herrera. (2019) Introduction to the fork/join framework. [Online]. Available: https:
//www.pluralsight.com/guides/introduction-to-the-fork-join-framework

[78] Oracle. (2017) Class ForkJoinTask - Java SE 9 & JDK 9. [Online]. Available: https:
//docs.oracle.com/javase/9/docs/api/java/util/concurrent/ForkJoinTask.html

[79] ——. (2017) Package java.util.stream - Java SE 9 & JDK 9. [Online]. Available: https:
//docs.oracle.com/javase/9/docs/api/java/util/stream/package-summary.html

[80] Microsoft. (2011) How to launch a process with CPU affinity set. [Online]. Available: https://docs.
microsoft.com/en-ca/archive/blogs/santhoshonline/how-to-launch-a-process-with-cpu-affinity-set

[81] Canonical. (2004) Man page for taskset (1). [Online]. Available: http://manpages.ubuntu.com/
manpages/trusty/man1/taskset.1.html

[82] Apple. (2007) Thread affinity API release notes. [Online]. Available: https://developer.apple.com/
library/archive/releasenotes/Performance/RN-AffinityAPI/

[83] W. Qian, “An example of parallel calibration in AnyLogic,” August 2018, personal correspondence.

[84] Oracle. (2017) Package java.util.concurrent - Java SE 9 & JDK 9. [Online]. Available:
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html

[85] ——. (2017) Interface Collection - Java SE 9 & JDK 9. [Online]. Available: https:
//docs.oracle.com/javase/9/docs/api/java/util/Collection.html

71

https://docs.oracle.com/javase/9/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/9/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/Executor.html
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/Executor.html
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/ForkJoinPool.html
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/ForkJoinPool.html
https://www.pluralsight.com/guides/introduction-to-the-fork-join-framework
https://www.pluralsight.com/guides/introduction-to-the-fork-join-framework
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/ForkJoinTask.html
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/ForkJoinTask.html
https://docs.oracle.com/javase/9/docs/api/java/util/stream/package-summary.html
https://docs.oracle.com/javase/9/docs/api/java/util/stream/package-summary.html
https://docs.microsoft.com/en-ca/archive/blogs/santhoshonline/how-to-launch-a-process-with-cpu-affinity-set
https://docs.microsoft.com/en-ca/archive/blogs/santhoshonline/how-to-launch-a-process-with-cpu-affinity-set
http://manpages.ubuntu.com/manpages/trusty/man1/taskset.1.html
http://manpages.ubuntu.com/manpages/trusty/man1/taskset.1.html
https://developer.apple.com/library/archive/releasenotes/Performance/RN-AffinityAPI/
https://developer.apple.com/library/archive/releasenotes/Performance/RN-AffinityAPI/
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html
https://docs.oracle.com/javase/9/docs/api/java/util/Collection.html
https://docs.oracle.com/javase/9/docs/api/java/util/Collection.html

Appendix A

Code Listings

A.1 KDPoint

1 package ca.usask.gwm762.kdtree;

2
3 /**

4 * The KDPoint interface defines a general n- dimensional point to be used as the

5 * coordinate for a KDTree.

6 *

7 * @param <T> the type of the dimension (e.g., Double , but could be any

8 * Comparable type)

9 *

10 * @author G. Wade McDonald

11 * @version 1.0

12 * @since 2018

13 */

14 public interface KDPoint <T extends Comparable <T>> {

15 /**

16 *

17 * @param dimension the given dimension (0- indexed).

18 * @return the value of the coordinate at the given dimension .

19 * @exception ArrayIndexOutOfBoundsException if the point doesn ’t contain

20 * the dimension .

21 */

22 T get(int dimension);

23
24 /**

25 *

26 * @return the number of dimensions in the Point.

27 */

28 int getDimensions ();

29
30 /**

31 * Compares this point to another on the basis of the given dimension

32 *

33 * @param otherPoint the point to compare to

34 * @param dimension the dimension to compare on

35 * @return {@code this.get(dimension).compareTo (otherPoint .get(dimension))}

36 * if the points are compatible

37 * @exception ArrayIndexOutOfBoundsException if dimension is out of bounds

38 * @exception IllegalArgumentException if the points have different dimensions

39 */

40 int compareOnDimension(KDPoint <?> otherPoint , int dimension);

41
42 /**

43 *

44 * @param other the point to compute the distance to.

45 * @return the squared distance between this point and other.

46 * @exception IllegalArgumentException if the points have different dimensions

47 */

48 T distanceSquared(KDPoint <T> other);

49
50 /**

51 * Checks if the point resides within the rectangular range bounded by two

52 * given points

53 * Allows {@code null} for upper or lower to indicate no bound

54 *

55 * @param upper the upper bounding point of the range

56 * @param lower the lower bounding point of the range

57 * @return true if the point is in the range bounded by upper and lower

72

58 * @exception IllegalArgumentException if the points have different dimensions

59 */

60 boolean isInRange(KDPoint <?> upper , KDPoint <?> lower);

61
62 /**

63 * Checks if the point resides within the specified Euclidean radius of the

64 * specified point

65 *

66 * @param center the center point of the range

67 * @param radius the radius of the range

68 * @return true if the point is within radius of center

69 * @exception IllegalArgumentException if the points have different dimensions

70 */

71 boolean isInEuclideanRange(KDPoint <T> center , T radius);

72 }

73

A.2 DoublePoint

1 package ca.usask.gwm762.kdtree;

2
3 import static java.lang.Math.pow;

4
5 /**

6 * Implements the KDPoint interface for type Double for use with the KDTree

7 */

8 public class DoublePoint implements KDPoint <Double >, Cloneable {

9 private Double [] coordinates;

10
11 /**

12 * Instantiates a DoublePoint with given dimensions and all coordinates set

13 * to 0.0

14 *

15 * @param dimensions the number of dimensions for the point

16 */

17 public DoublePoint(int dimensions) {

18 if(dimensions < 1) throw new IllegalArgumentException("Dimensions must be strictly

positive.");

19
20 this.coordinates = new Double[dimensions];

21
22 for(int i = 0; i < coordinates.length; i++) {

23 this.set(i, 0.0);

24 }

25 }

26
27 /**

28 * Instantiates a DoublePoint with coordinates specified as Double []

29 *

30 * @param coordinates the coordinates of the point

31 */

32 public DoublePoint(Double [] coordinates) {

33 this(coordinates.length);

34 this.coordinates = coordinates;

35 }

36
37 /**

38 * Instantiates a DoublePoint with coordinates specified as double []

39 *

40 * @param coordinates the coordinates of the point

41 */

42 public DoublePoint(double [] coordinates) {

43 this(coordinates.length);

44
45 for(int i = 0; i < coordinates.length; i++) {

46 this.set(i, coordinates[i]);

47 }

48 }

49
50 /**

51 * Sets the specified coordinate of the DoublePoint to the specified value

52 *

53 * @param dimension the coordinate to set

54 * @param value the new value of the coordinate

55 */

56 public void set(int dimension , double value) {

57 this.set(dimension , Double.valueOf(value));

58 }

59
60 /**

61 * Sets the specified coordinate of the DoublePoint to the specified value

62 *

63 * @param dimension the coordinate to set

64 * @param value the new value of the coordinate

74

65 */

66 public void set(int dimension , Double value) {

67 checkDimension(dimension);

68
69 this.coordinates[dimension] = value;

70 }

71
72 /**

73 * gets the values of the specified coordinate of the point

74 *

75 * @param dimension the given dimension (0- indexed).

76 * @return the value of the coordinate at the given dimension

77 */

78 @Override

79 public Double get(int dimension) {

80 checkDimension(dimension);

81
82 return coordinates[dimension];

83 }

84
85 /**

86 * Gets the number of dimensions

87 *

88 * @return the number of dimensions

89 */

90 @Override

91 public int getDimensions () {

92 return coordinates.length;

93 }

94
95 /**

96 * Compares to another DoublePoint based on the given dimension

97 *

98 * @param otherPoint the point to compare to

99 * @param dimension the dimension to compare on

100 * @return {@code this.get(dimension). compareTo (otherPoint .get(dimension))}

101 * if the points are compatible

102 * @exception ArrayIndexOutOfBoundsException if dimension is out of bounds

103 * @exception IllegalArgumentException if the points have different dimensions

104 */

105 @Override

106 public int compareOnDimension(KDPoint <?> otherPoint , int dimension) {

107 if(this.getDimensions () != otherPoint.getDimensions ())

108 throw new IllegalArgumentException("Dimensions of points must be equal.");

109
110 checkDimension(dimension);

111
112 return this.get(dimension).compareTo ((Double)otherPoint.get(dimension));

113 }

114
115 /**

116 * Returns the squared distance between this point and another DoublePoint

117 *

118 * @param other the point to compute the distance to.

119 * @return the squared distance between the points

120 * @exception IllegalArgumentException if the points have different dimensions

121 */

122 @Override

123 public Double distanceSquared(KDPoint <Double > other) {

124 double sumSq = 0.0;

125
126 if(this.getDimensions () != other.getDimensions ())

127 throw new IllegalArgumentException("Dimensions of points must be equal.");

128
129 for(int i = 0; i < this.getDimensions (); i++) {

130 Double x1 = this.get(i);

131 Double x2 = other.get(i);

132 sumSq += pow((x1 - x2), 2.0);

75

133 }

134
135 return sumSq;

136 }

137
138 /**

139 * Checks if the point resides within the rectangular , axis -aligned range

140 * bounded by two given points

141 *

142 * Allows {@code null} for upper or lower to indicate no bound

143 * @param upper the upper bounding point of the range

144 * @param lower the lower bounding point of the range

145 * @return true if the point is in the range bounded by upper and lower

146 */

147 @Override

148 public boolean isInRange(KDPoint <?> upper , KDPoint <?> lower) {

149 if (lower != null && this.getDimensions () != lower.getDimensions ())

150 throw new IllegalArgumentException("Dimensions of points must be equal.");

151 if (upper != null && this.getDimensions () != upper.getDimensions ())

152 throw new IllegalArgumentException("Dimensions of points must be equal.");

153
154 if(lower != null || upper != null) {

155
156 for(int i = 0; i < this.getDimensions (); i++) {

157 if((lower != null) && (this.compareOnDimension(lower , i) < 0)) {

158 return false;

159 }

160 if((upper != null) && (this.compareOnDimension(upper , i) > 0)) {

161 return false;

162 }

163 }

164
165 }

166
167 return true;

168 }

169
170 /**

171 * Checks if the point resides within the specified Euclidean radius of the

172 * specified point

173 *

174 * @param center the center point of the range

175 * @param radius the radius of the range

176 * @return true if the point is within radius of center

177 */

178 @Override

179 public boolean isInEuclideanRange(KDPoint <Double > center , Double radius) {

180 if (center == null || this.getDimensions () != center.getDimensions ())

181 throw new IllegalArgumentException("Dimensions of points must be equal.");

182
183 Double radiusSquared = pow(radius , 2.0);

184
185 return (this.distanceSquared(center) <= radiusSquared);

186 }

187
188 /**

189 * Checks for dimensional compatibility

190 *

191 * @param dimension the required dimension

192 * @throws ArrayIndexOutOfBoundsException if the dimension of this point is

193 * not equal to the given dimension

194 */

195 private void checkDimension(int dimension) throws ArrayIndexOutOfBoundsException {

196 int dim = this.coordinates.length;

197 if(dimension < 0 || dimension > dim - 1)

198 throw new ArrayIndexOutOfBoundsException("Dimension out of bounds: " + dimension

+ " for " + dim);

199 }

76

200
201 /**

202 * Checks for equality

203 *

204 * @param obj the Object to compare to

205 * @return true of obj is a DoublePoint with identical coordinates

206 */

207 @Override

208 public boolean equals(Object obj) {

209 if(obj == null) return false;

210
211 if(!(obj instanceof DoublePoint)) return false;

212
213 DoublePoint other = (DoublePoint)obj;

214
215 if(other == this) return true;

216
217 if(this.getDimensions () != other.getDimensions ()) return false;

218
219 for(int i = 0; i < this.coordinates.length; i++) {

220 if(!this.get(i).equals(other.get(i)))

221 return false;

222 }

223
224 return true;

225 }

226
227 /**

228 * Computes a hascode for this object

229 *

230 * @return the hashcode

231 */

232 @Override

233 public int hashCode () {

234 // TODO: Consider a more advanced hashing algorithm here?

235 //A simple way to hash a multi - dimensional coordinate and ensure that

236 // equal coordinates get the same hash.

237 return this.toString ().hashCode ();

238 }

239
240 /**

241 * Clones this Object

242 *

243 * @return the clone

244 * @throws CloneNotSupportedException if clone is not supported

245 */

246 @Override

247 public Object clone() throws CloneNotSupportedException {

248 DoublePoint newClone = (DoublePoint)super.clone();

249
250 for(int i = 0; i < this.coordinates.length; i++) {

251 newClone.set(i, this.coordinates[i]. doubleValue ());

252 }

253
254 return newClone;

255 }

256
257 /**

258 * Returns a string representation of the point

259 *

260 * @return the string representation

261 */

262 @Override

263 public String toString () {

264 StringBuilder s = new StringBuilder ();

265 s.append("(");

266
267 for(int i = 0; i < this.coordinates.length; i++) {

77

268 if(i > 0) s.append(", ");

269 s.append(this.coordinates[i]. toString ());

270 }

271
272 s.append(")");

273
274 return s.toString ();

275 }

276 }

78

A.3 HasDoublePointCoordinate

1 package ca.usask.gwm762.rangesearch2d;

2
3 import ca.usask.gwm762.kdtree.DoublePoint;

4
5 public interface HasDoublePointCoordinate {

6 /**

7 * Returns the 2D coordinates of the object as a DoublePoint

8 *

9 * @return the 2D coordinates of the object

10 */

11 DoublePoint getCoordinates ();

12 }

79

A.4 RangeSearchGrid2D

1 package ca.usask.gwm762.rangesearch2d;

2
3 import ca.usask.gwm762.kdtree.DoublePoint;

4
5 import java.util.Iterator;

6
7 public interface RangeSearchGrid2D <T extends HasDoublePointCoordinate > {

8
9 int getBinDimX ();

10 int getBinDimY ();

11
12 void add(T item);

13
14 boolean remove(T item);

15
16 Iterator <T> rangeSearchIterator(DoublePoint upper , DoublePoint lower);

17
18 Iterator <T> binIterator(int grid_x , int grid_y);

19
20 Iterator <T> radiusSearchIterator(DoublePoint center , Double radius);

21
22 }

80

A.5 SimpleRangeSearchTree2D

1 package ca.usask.gwm762.rangesearch2d;

2
3 import ca.usask.gwm762.kdtree .*;

4
5 import java.util.ArrayList;

6 import java.util.Collection;

7 import java.util.Comparator;

8 import java.util.Iterator;

9 import java.util.LinkedHashMap;

10 import java.util.LinkedList;

11 import java.util.List;

12 import java.util.function.Consumer;

13
14 public class SimpleRangeSearchTree2D <V extends HasDoublePointCoordinate > implements

RangeSearchGrid2D <V> {

15
16 private static class Simple2DNode <V>{

17 int discriminator;

18 DoublePoint location;

19 List <V> values;

20 Simple2DNode <V> low , high;

21
22 Simple2DNode(int discriminator , double x, double y, V value) {

23 this.discriminator = discriminator;

24 this.location = new DoublePoint(new double [] {x, y});

25 this.values = new LinkedList <>();

26 this.values.add(value);

27 this.low = null;

28 this.high = null;

29 }

30
31 double getX() {

32 return this.location.get(0);

33 }

34
35 double getY() {

36 return this.location.get(1);

37 }

38
39 DoublePoint getKey () {

40 return this.location;

41 }

42
43 List <V> getValues () {

44 return this.values;

45 }

46
47 void addValue(V item) {

48 this.values.add(item);

49 }

50
51 boolean removeValue(V item) {

52 return this.values.remove(item);

53 }

54
55 int getDiscriminator () {

56 return this.discriminator;

57 }

58
59 int nextDiscriminator () {

60 return (this.discriminator + 1) % 2;

61 }

62
63 int depthFromHere () {

64 int lowDepth = low == null ? 0 : low.depthFromHere ();

81

65 int highDepth = high == null ? 0 : high.depthFromHere ();

66
67 return 1 + Math.max(lowDepth , highDepth);

68 }

69 }

70
71 private Simple2DNode <V> root;

72 private double spaceWidth;

73 private double spaceHeight;

74 private double binWidth;

75 private DoublePoint spaceLowerBound = new DoublePoint(new Double [] {0.0, 0.0});

76 private DoublePoint spaceUpperBound;

77 private int binDimX;

78 private int binDimY;

79 private int size = 0;

80
81 public SimpleRangeSearchTree2D(double spaceWidth , double spaceHeight , double binWidth) {

82 this.root = null;

83
84 this.spaceWidth = spaceWidth;

85 this.spaceHeight = spaceHeight;

86 this.spaceUpperBound = new DoublePoint(new Double [] {spaceWidth , spaceHeight });

87 this.binWidth = binWidth;

88
89 this.binDimX = ((int) Math.ceil(spaceWidth / binWidth));

90 this.binDimY = ((int) Math.ceil(spaceHeight / binWidth));

91 }

92
93 public boolean isEmpty () {

94 return root == null;

95 }

96
97 public void init(Collection <V> data) {

98 if(!this.isEmpty ()) throw new RuntimeException("Tree has already been initialized.")

;

99
100 LinkedHashMap <DoublePoint , LinkedList <V>> tempHashMap = new LinkedHashMap <>(data.

size() / 2);

101
102 data.forEach(p -> {

103 DoublePoint coord = p.getCoordinates ();

104
105 LinkedList <V> entry = tempHashMap.computeIfAbsent(coord , k -> new LinkedList <>()

);

106
107 entry.add(p);

108 });

109
110 ArrayList <DoublePoint > tempIndex = new ArrayList <>(tempHashMap.keySet ());

111
112 init(tempHashMap , tempIndex , 0, 0, tempIndex.size() - 1);

113 }

114
115 private void init(LinkedHashMap <DoublePoint , LinkedList <V>> data , ArrayList <DoublePoint >

index ,

116 int depth , int beginIdx , int endIdx) {

117 int discriminator = depth % 2;

118 int size = endIdx - beginIdx + 1;

119
120 if(size > 1) {

121 int cur = beginIdx + size / 2;

122 int prev = cur - 1;

123
124 index.subList(beginIdx , endIdx).sort(Comparator.comparingDouble(o -> o.get(

discriminator)));

125
126 while(cur > beginIdx && index.get(cur).compareOnDimension(index.get(prev),

discriminator) == 0){

82

127 cur --;

128 prev --;

129 }

130
131 data.get(index.get(cur)).forEach(this::add);

132
133 init(data , index ,depth + 1, beginIdx , cur - 1);

134
135 init(data , index ,depth + 1, cur + 1, endIdx);

136
137 } else if(size == 1) {

138 data.get(index.get(beginIdx)).forEach(this::add);

139 }

140 }

141
142 @Override

143 public int getBinDimX () {

144 return binDimX;

145 }

146
147 @Override

148 public int getBinDimY () {

149 return binDimY;

150 }

151
152 @Override

153 public void add(V item) {

154 DoublePoint location = item.getCoordinates ();

155
156 if(! location.isInRange(spaceUpperBound , spaceLowerBound))

157 throw new IllegalArgumentException(item + " out of bounds: " + location);

158
159 double itemX = location.get(0);

160 double itemY = location.get(1);

161
162 if(root == null) {

163 // tree is empty , new root node

164 this.root = new Simple2DNode <>(0, itemX , itemY , item);

165 this.size ++;

166 return;

167 }

168
169 Simple2DNode <V> cur;

170 Simple2DNode <V> next = root;

171
172 // TODO: Review This

173 // TODO: Check that size is incremented and decremented correctly

174 while(next != null) {

175 cur = next;

176
177 //if (cur.getX () == itemX && cur.getY () == itemY) {

178 if (cur.getKey ().equals(location)) {

179 // Coordinates are equal put the new value here and return

180 cur.addValue(item);

181 return;

182 }

183
184 if(cur.getDiscriminator () == 0 ? (itemX < cur.getX()) : (itemY < cur.getY())) {

185 // point is less than current coordinate , move to low child

186 next = cur.low;

187
188 // this is a leaf node , new child with new value

189 if(next == null) {

190 cur.low = new Simple2DNode <>(cur.nextDiscriminator (), itemX , itemY , item

);

191 return;

192 }

193 } else {

83

194 // move to high child

195 next = cur.high;

196
197 // this is a leaf node , new child with new value

198 if(next == null) {

199 cur.high = new Simple2DNode <>(cur.nextDiscriminator (), itemX , itemY ,

item);

200 return;

201 }

202 }

203 }

204 }

205
206 @Override

207 public boolean remove(V item) {

208 DoublePoint location = item.getCoordinates ();

209
210 if(! location.isInRange(spaceUpperBound , spaceLowerBound))

211 throw new IllegalArgumentException(item + " out of bounds: " + location);

212
213 if(root == null) {

214 // tree is empty

215 return false;

216 }

217
218 double itemX = location.get(0);

219 double itemY = location.get(1);

220
221 Simple2DNode <V> cur;

222 Simple2DNode <V> next = root;

223
224 while(next != null) {

225 cur = next;

226
227 if ((cur.getX() == itemX) && (cur.getY() == itemY)) {

228 // Coordinates are equal attempt removal here

229 boolean check = cur.removeValue(item);

230 if(check) this.size --;

231 return check;

232 }

233
234 if(cur.getDiscriminator () == 0 ? (itemX < cur.getX()) : (itemY < cur.getY())) {

235 // point is less than current coordinate , move to low child

236 next = cur.low;

237 } else {

238 // move to high child

239 next = cur.high;

240 }

241 }

242 return false;

243 }

244
245 final class RangeSearchIterator implements Iterator <V> {

246 DoublePoint upperBound;

247 DoublePoint lowerBound;

248 LinkedList <Simple2DNode <V>> nodeStack = new LinkedList <>();

249 LinkedList <V> valueStack = new LinkedList <>();

250 V next;

251
252 RangeSearchIterator(DoublePoint upperBound , DoublePoint lowerBound) {

253 this.upperBound = upperBound;

254 this.lowerBound = lowerBound;

255
256 if(root != null) {

257 nodeStack.push(root);

258 }

259
260 next = nextInRange ();

84

261 }

262
263 private V nextInRange () {

264 while(valueStack.isEmpty () && !nodeStack.isEmpty ()) {

265 Simple2DNode <V> node = nodeStack.pop();

266
267 int disc = node.getDiscriminator ();

268
269 if(upperBound == null || node.getKey ().compareOnDimension(upperBound , disc)

<= 0) {

270 if(node.high != null)

271 nodeStack.push(node.high);

272 }

273
274 if(lowerBound == null || node.getKey ().compareOnDimension(lowerBound , disc)

> 0) {

275 if(node.low != null)

276 nodeStack.push(node.low);

277 }

278
279 if(node.getKey ().isInRange(upperBound , lowerBound)) {

280 node.getValues ().forEach(v -> valueStack.push(v));

281 }

282 }

283
284 if(! valueStack.isEmpty ()) {

285 return(valueStack.pop());

286 } else {

287 return null;

288 }

289 }

290
291 @Override

292 public boolean hasNext () {

293 return next != null;

294 }

295
296 @Override

297 public V next() {

298 V last = next;

299 next = nextInRange ();

300 return last;

301 }

302
303 @Override

304 public void remove () {

305 // TODO: possibly implement this

306 throw new UnsupportedOperationException ();

307 }

308
309 @Override

310 public void forEachRemaining(Consumer <? super V> action) {

311 // TODO: implement this

312 }

313 }

314
315 @Override

316 public Iterator <V> rangeSearchIterator(DoublePoint upper , DoublePoint lower) {

317 return new RangeSearchIterator(upper , lower);

318 }

319
320 @Override

321 public Iterator <V> binIterator(int grid_x , int grid_y) {

322 if (grid_x < 0 || grid_x >= binDimX || grid_y < 0 || grid_y >= binDimY)

323 throw new IndexOutOfBoundsException("Coordinates specified are outside of grid

bounds.");

324
325 double maxX = binWidth * (grid_x + 1.0);

85

326 double maxY = binWidth * (grid_y + 1.0);

327 double minX = binWidth * grid_x;

328 double minY = binWidth * grid_y;

329
330 DoublePoint lowerBound = new DoublePoint(new Double [] {minX , minY});

331 DoublePoint upperBound = new DoublePoint(new Double [] {maxX , maxY});

332
333 return rangeSearchIterator(upperBound , lowerBound);

334 }

335
336 final class RadiusSearchIterator implements Iterator <V> {

337 DoublePoint upperBound;

338 DoublePoint lowerBound;

339 DoublePoint center;

340 Double radius;

341 LinkedList <Simple2DNode <V>> nodeStack = new LinkedList <>();

342 LinkedList <V> valueStack = new LinkedList <>();

343 V next;

344
345 RadiusSearchIterator(DoublePoint center , Double radius) {

346 this.center = center;

347 this.radius = radius;

348
349 // Determine bounds for square search from center and radius

350 this.upperBound = new DoublePoint(new double [] {center.get (0) + radius , center.

get (1) + radius });

351 this.lowerBound = new DoublePoint(new double [] {center.get (0) - radius , center.

get (1) - radius });

352
353 if(root != null) {

354 nodeStack.push(root);

355 }

356
357 next = nextInRange ();

358 }

359
360 private V nextInRange () {

361 while(valueStack.isEmpty () && !nodeStack.isEmpty ()) {

362 Simple2DNode <V> node = nodeStack.pop();

363
364 int disc = node.getDiscriminator ();

365
366 if(upperBound == null || node.getKey ().compareOnDimension(upperBound , disc)

<= 0) {

367 if(node.high != null)

368 nodeStack.push(node.high);

369 }

370
371 if(lowerBound == null || node.getKey ().compareOnDimension(lowerBound , disc)

> 0) {

372 if(node.low != null)

373 nodeStack.push(node.low);

374 }

375
376 if(node.getKey ().isInEuclideanRange(center , radius)) {

377 node.getValues ().forEach(v -> valueStack.push(v));

378 }

379 }

380
381 if(! valueStack.isEmpty ()) {

382 return(valueStack.pop());

383 } else {

384 return null;

385 }

386 }

387
388 @Override

389 public boolean hasNext () {

86

390 return next != null;

391 }

392
393 @Override

394 public V next() {

395 V last = next;

396 next = nextInRange ();

397 return last;

398 }

399
400 @Override

401 public void remove () {

402 // TODO: possibly implement this

403 throw new UnsupportedOperationException ();

404 }

405
406 @Override

407 public void forEachRemaining(Consumer <? super V> action) {

408 // TODO: implement this

409 }

410 }

411
412 @Override

413 public Iterator <V> radiusSearchIterator(DoublePoint center , Double radius) {

414 return new RadiusSearchIterator(center , radius);

415 }

416
417 public int size() {

418 return this.size;

419 }

420
421 public int depth () {

422 return this.root == null ? 0 : root.depthFromHere ();

423 }

424 }

87

A.6 SimpleRangeSearchGrid2D

1 package ca.usask.gwm762.rangesearch2d;

2
3 import java.util.Iterator;

4 import java.util.function.Consumer;

5 import java.util.List;

6 import java.util.LinkedList;

7 import java.util.ArrayList;

8 import java.io.Serializable;

9 import ca.usask.gwm762.kdtree .*;

10
11 public class SimpleRangeSearchGrid2D <T extends HasDoublePointCoordinate > implements

RangeSearchGrid2D <T>, Serializable {

12
13 private double spaceWidth;

14 private double spaceHeight;

15 private double binWidth;

16 private int binDimX;

17 private int binDimY;

18 private int cellSizeFactor;

19 private double cellWidth;

20 private int cellDimX;

21 private int cellDimY;

22 private ArrayList <ArrayList <Cell <T>>> grid;

23
24 /**

25 * Default constructor

26 */

27 public SimpleRangeSearchGrid2D(double spaceWidth , double spaceHeight , double binWidth ,

int cellSizeFactor) {

28 this.spaceHeight = spaceHeight;

29 this.spaceWidth = spaceWidth;

30 this.binWidth = binWidth;

31
32 this.binDimX = ((int) Math.ceil(spaceWidth / binWidth));

33 this.binDimY = ((int) Math.ceil(spaceHeight / binWidth));

34
35 this.cellSizeFactor = cellSizeFactor;

36 this.cellDimX = this.binDimX * this.cellSizeFactor;

37 this.cellDimY = this.binDimY * this.cellSizeFactor;

38 this.cellWidth = this.binWidth / (double)this.cellSizeFactor;

39
40 this.grid = new ArrayList <>(cellDimX);

41
42 for (int i = 0; i < cellDimX; i++) {

43 ArrayList <Cell <T>> gridCol = new ArrayList <>(cellDimY);

44 for (int j = 0; j < cellDimY; j++) {

45 gridCol.add(j, new Cell <>());

46 }

47 grid.add(i, gridCol);

48 }

49 }

50
51 @Override

52 public int getBinDimX () {

53 return binDimX;

54 }

55
56 @Override

57 public int getBinDimY () {

58 return binDimY;

59 }

60
61 @Override

62 public void add(T item) {

63 DoublePoint pos = item.getCoordinates ();

88

64
65 Cell <T> cell = getGridCellForPos(pos.get(0), pos.get(1));

66 cell.items.add(item);

67 }

68
69 public boolean remove(T item) {

70 DoublePoint pos = item.getCoordinates ();

71
72 Cell <T> cell = getGridCellForPos(pos.get(0), pos.get(1));

73 return cell.items.remove(item);

74 }

75
76 public List <T> binSearch(int grid_x , int grid_y) {

77 List <T> foundItems = new ArrayList <>();

78
79 int base_cell_grid_x = grid_x * cellSizeFactor;

80 int base_cell_grid_y = grid_y * cellSizeFactor;

81
82 for(int i = base_cell_grid_x; i < base_cell_grid_x + cellSizeFactor; i++) {

83 for(int j = base_cell_grid_y; j < base_cell_grid_y + cellSizeFactor; j++) {

84 Cell <T> cell = getGridCellForIndex(i, j);

85 foundItems.addAll(cell.items);

86 }

87 }

88
89 return foundItems;

90 }

91
92 /*

93 public List <T> rangeSearch (T agent , double radius) {

94 List <T> foundAgents = new ArrayList <>();

95
96 Double radiusSquared = Math.pow(radius , 2.0);

97
98 int offsetOfNumOfBinsToChk = (int) Math.ceil(radius / binWidth);

99
100 DoublePoint pos = agent. getCoordinates ();

101 int grid_x = (int) Math.floor(pos.get (0) / binWidth);

102 int grid_y = (int) Math.floor(pos.get (1) / binWidth);

103
104 for (int i = grid_x - offsetOfNumOfBinsToChk ; i <= grid_x + offsetOfNumOfBinsToChk ;

i++) {

105 for (int j = grid_y - offsetOfNumOfBinsToChk ; j <= grid_y +

offsetOfNumOfBinsToChk ; j++) {

106 if (i >= 0 && i < binDimX && j >= 0 && j < binDimY) {

107 Cell <T> cell = getGridCellForIndex (i, j);

108
109 for (T other: cell.items) {

110 if (agent != other && pos. distanceSquared (other. getCoordinates ()) <=

radiusSquared)

111 foundAgents .add(other);

112 }

113 }

114 }

115 }

116
117 return foundAgents ;

118 }

119 */

120
121 public int getBinPopulation(int grid_x , int grid_y) {

122 int size = 0;

123
124 int base_cell_grid_x = grid_x * cellSizeFactor;

125 int base_cell_grid_y = grid_y * cellSizeFactor;

126
127 for(int i = base_cell_grid_x; i < base_cell_grid_x + cellSizeFactor; i++) {

128 for(int j = base_cell_grid_y; j < base_cell_grid_y + cellSizeFactor; j++) {

89

129 Cell <T> cell = getGridCellForIndex(i, j);

130 size += cell.items.size();

131 }

132 }

133
134 return size;

135 }

136
137 private Cell <T> getGridCellForIndex(int grid_x , int grid_y) {

138 if (grid_x < 0 || grid_x >= this.cellDimX || grid_y < 0 || grid_y >= this.cellDimY)

139 throw new IndexOutOfBoundsException("Coordinates specified are outside of grid

bounds.");

140
141 return grid.get(grid_x).get(grid_y);

142 }

143
144 private Cell <T> getGridCellForPos(double x, double y) {

145 if (x < 0.0 || x >= this.spaceWidth || y < 0 || y >= this.spaceHeight)

146 throw new IllegalArgumentException("Coordinates specified are outside of grid

bounds.");

147
148 int grid_x = (int) Math.floor(x / cellWidth);

149 int grid_y = (int) Math.floor(y / cellWidth);

150
151 return grid.get(grid_x).get(grid_y);

152 }

153
154 @Override

155 public Iterator <T> binIterator(int grid_x , int grid_y) {

156 List <T> results = binSearch(grid_x , grid_y);

157 return results.iterator ();

158 }

159
160 @Override

161 public Iterator <T> rangeSearchIterator(DoublePoint upper , DoublePoint lower) {

162 return null;

163 }

164
165 final class RadiusSearchIterator implements Iterator <T> {

166 LinkedList <Cell <T>> cellStack = new LinkedList <>();

167 LinkedList <T> agentStack = new LinkedList <>();

168 T next;

169 DoublePoint center;

170 Double radiusSquared;

171 int offsetOfNumOfBinsToChk;

172 int grid_x;

173 int grid_y;

174
175 RadiusSearchIterator(DoublePoint center , Double radius) {

176 this.center = center;

177 this.radiusSquared = Math.pow(radius , 2.0);

178 this.offsetOfNumOfBinsToChk = (int) Math.ceil(radius / binWidth);

179 this.grid_x = (int) Math.floor(center.get(0) / binWidth);

180 this.grid_y = (int) Math.floor(center.get(1) / binWidth);

181
182 for (int i = grid_x - offsetOfNumOfBinsToChk; i <= grid_x +

offsetOfNumOfBinsToChk; i++) {

183 for (int j = grid_y - offsetOfNumOfBinsToChk; j <= grid_y +

offsetOfNumOfBinsToChk; j++) {

184 if (i >= 0 && i < binDimX && j >= 0 && j < binDimY) {

185 cellStack.push(getGridCellForIndex(i, j));

186 }

187 }

188 }

189
190 next = nextInRange ();

191 }

192

90

193 private T nextInRange () {

194 while(agentStack.isEmpty ()) {

195 if(cellStack.isEmpty ()) {

196 return null;

197 } else {

198 Cell <T> cell = cellStack.pop();

199
200 for (T other: cell.items) {

201 if (center.distanceSquared(other.getCoordinates ()) <= radiusSquared)

202 agentStack.push(other);

203 }

204 }

205 }

206
207 return agentStack.pop();

208 }

209
210 @Override

211 public boolean hasNext () {

212 return next != null;

213 }

214
215 @Override

216 public T next() {

217 T last = next;

218 next = nextInRange ();

219 return last;

220 }

221
222 @Override

223 public void remove () {

224 // TODO: possibly implement this

225 throw new UnsupportedOperationException ();

226 }

227
228 @Override

229 public void forEachRemaining(Consumer <? super T> action) {

230 // TODO: implement this

231 }

232 }

233
234 @Override

235 public Iterator <T> radiusSearchIterator(DoublePoint center , Double radius) {

236 return new RadiusSearchIterator(center , radius);

237 }

238
239 @Override

240 public String toString () {

241 return super.toString ();

242 }

243
244 private static class Cell <S> implements Serializable {

245 ArrayList <S> items;

246
247 Cell() {

248 this.items = new ArrayList <>();

249 }

250
251 @Override

252 public String toString () {

253 return super.toString ();

254 }

255
256 /**

257 * This number is here for model snapshot storing purpose

258 * It needs to be changed when this class gets changed

259 */

260 private static final long serialVersionUID = 2L;

91

261 }

262
263 /**

264 * This number is here for model snapshot storing purpose

265 * It needs to be changed when this class gets changed

266 */

267 private static final long serialVersionUID = 2L;

268
269 }

92

A.7 Logger

1 /**

2 * Logger

3 */

4
5 import java.io.File;

6 import java.io.FileWriter;

7 import java.io.PrintWriter;

8 import java.io.IOException;

9
10 public class Logger implements Serializable {

11 private PrintWriter printWriter;

12
13 /**

14 * Default constructors

15 */

16 public Logger(String fileName) {

17 this(new File(fileName));

18 }

19
20 public Logger(File file) {

21 try {

22 printWriter = new PrintWriter(new FileWriter(file), true);

23 } catch(IOException e) {

24 System.err.println("Logger: Could not create PrintWriter: " + e);

25 System.exit (1);

26 }

27 }

28
29 public void log(String text) {

30 printWriter.println(text);

31 }

32
33 public void close() {

34 printWriter.close();

35 }

36
37 @Override

38 public String toString () {

39 return super.toString ();

40 }

41
42 /**

43 * This number is here for model snapshot storing purpose

44 * It needs to be changed when this class gets changed

45 */

46 private static final long serialVersionUID = 2L;

47
48 }

93

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Pertussis
	Agent-Based Modeling
	Goal

	Background
	Pertussis
	Disease Progression
	Pre-Vaccination Era
	Vaccines
	Epidemiological Trends
	Pertussis in Alberta

	Modeling
	Overview of Simulation Modeling
	Agent-Based Modeling in Health
	Dynamic Modeling of Pertussis

	Data Structures
	Range Search
	Grid Structure
	k-d Tree

	Latin Hypercube Sampling

	Pertussis Model
	Group Model Building
	Team Composition
	Advisory Panel
	Modeling Process

	Model Structure
	Agents
	Networks
	Parametrization
	Scenarios
	Ancillary Structures

	Calibration
	Manual Calibration
	Automatic Calibration

	Experiment Design
	Focus
	Population
	Setup

	Results
	Sensitivity Analyses
	Discussion
	Division of Work

	Data Structures
	k-d Tree
	Existing Libraries
	Implementation

	Grid Structure
	Implementation

	Library
	Parallelism and Concurrency Considerations
	Definitions
	Java
	AnyLogic
	Implementations in this Work

	Performance Evaluation
	Objectives
	Testing
	Test Harness
	Test Systems
	Grid Bin Width
	Testing Procedure

	Results
	Run Time Scaling with Agent Count
	Run Time Scaling with Connection Range
	Memory Scaling with Agent Count
	Memory Scaling with Connection Range
	Use with Full Model

	Discussion

	Conclusion
	Deliverables
	Contributions and Findings
	Pertussis Model
	Data Structures

	Limitations
	Pertussis Model
	Data Structures

	Future Work

	References
	Appendix Code Listings
	KDPoint
	DoublePoint
	HasDoublePointCoordinate
	RangeSearchGrid2D
	SimpleRangeSearchTree2D
	SimpleRangeSearchGrid2D
	Logger

