1,356 research outputs found

    A Genetic Bayesian Approach for Texture-Aided Urban Land-Use/Land-Cover Classification

    Get PDF
    Urban land-use/land-cover classification is entering a new era with the increased availability of high-resolution satellite imagery and new methods such as texture analysis and artificial intelligence classifiers. Recent research demonstrated exciting improvements of using fractal dimension, lacunarity, and Moran’s I in classification but the integration of these spatial metrics has seldom been investigated. Also, previous research focuses more on developing new classifiers than improving the robust, simple, and fast maximum likelihood classifier. The goal of this dissertation research is to develop a new approach that utilizes a texture vector (fractal dimension, lacunarity, and Moran’s I), combined with a new genetic Bayesian classifier, to improve urban land-use/land-cover classification accuracy. Examples of different land-use/land-covers using post-Katrina IKONOS imagery of New Orleans were demonstrated. Because previous geometric-step and arithmetic-step implementations of the triangular prism algorithm can result in significant unutilized pixels when measuring local fractal dimension, the divisor-step method was developed and found to yield more accurate estimation. In addition, a new lacunarity estimator based on the triangular prism method and the gliding-box algorithm was developed and found better than existing gray-scale estimators for classifying land-use/land-cover from IKONOS imagery. The accuracy of fractal dimension-aided classification was less sensitive to window size than lacunarity and Moran’s I. In general, the optimal window size for the texture vector-aided approach is 27x27 to 37x37 pixels (i.e., 108x108 to 148x148 meters). As expected, a texture vector-aided approach yielded 2-16% better accuracy than individual textural index-aided approach. Compared to the per-pixel maximum likelihood classification, the proposed genetic Bayesian classifier yielded 12% accuracy improvement by optimizing prior probabilities with the genetic algorithm; whereas the integrated approach with a texture vector and the genetic Bayesian classifier significantly improved classification accuracy by 17-21%. Compared to the neural network classifier and genetic algorithm-support vector machines, the genetic Bayesian classifier was slightly less accurate but more computationally efficient and required less human supervision. This research not only develops a new approach of integrating texture analysis with artificial intelligence for classification, but also reveals a promising avenue of using advanced texture analysis and classification methods to associate socioeconomic statuses with remote sensing image textures

    Quantitative Mapping of Soil Property Based on Laboratory and Airborne Hyperspectral Data Using Machine Learning

    Get PDF
    Soil visible and near-infrared spectroscopy provides a non-destructive, rapid and low-cost approach to quantify various soil physical and chemical properties based on their reflectance in the spectral range of 400–2500 nm. With an increasing number of large-scale soil spectral libraries established across the world and new space-borne hyperspectral sensors, there is a need to explore methods to extract informative features from reflectance spectra and produce accurate soil spectroscopic models using machine learning. Features generated from regional or large-scale soil spectral data play a key role in the quantitative spectroscopic model for soil properties. The Land Use/Land Cover Area Frame Survey (LUCAS) soil library was used to explore PLS-derived components and fractal features generated from soil spectra in this study. The gradient-boosting method performed well when coupled with extracted features on the estimation of several soil properties. Transfer learning based on convolutional neural networks (CNNs) was proposed to make the model developed from laboratory data transferable for airborne hyperspectral data. The soil clay map was successfully derived using HyMap imagery and the fine-tuned CNN model developed from LUCAS mineral soils, as deep learning has the potential to learn transferable features that generalise from the source domain to target domain. The external environmental factors like the presence of vegetation restrain the application of imaging spectroscopy. The reflectance data can be transformed into a vegetation suppressed domain with a force invariance approach, the performance of which was evaluated in an agricultural area using CASI airborne hyperspectral data. However, the relationship between vegetation and acquired spectra is complicated, and more efforts should put on removing the effects of external factors to make the model transferable from one sensor to another.:Abstract I Kurzfassung III Table of Contents V List of Figures IX List of Tables XIII List of Abbreviations XV 1 Introduction 1 1.1 Motivation 1 1.2 Soil spectra from different platforms 2 1.3 Soil property quantification using spectral data 4 1.4 Feature representation of soil spectra 5 1.5 Objectives 6 1.6 Thesis structure 7 2 Combining Partial Least Squares and the Gradient-Boosting Method for Soil Property Retrieval Using Visible Near-Infrared Shortwave Infrared Spectra 9 2.1 Abstract 10 2.2 Introduction 10 2.3 Materials and methods 13 2.3.1 The LUCAS soil spectral library 13 2.3.2 Partial least squares algorithm 15 2.3.3 Gradient-Boosted Decision Trees 15 2.3.4 Calculation of relative variable importance 16 2.3.5 Assessment 17 2.4 Results 17 2.4.1 Overview of the spectral measurement 17 2.4.2 Results of PLS regression for the estimation of soil properties 19 2.4.3 Results of PLS-GBDT for the estimation of soil properties 21 2.4.4 Relative important variables derived from PLS regression and the gradient-boosting method 24 2.5 Discussion 28 2.5.1 Dimension reduction for high-dimensional soil spectra 28 2.5.2 GBDT for quantitative soil spectroscopic modelling 29 2.6 Conclusions 30 3 Quantitative Retrieval of Organic Soil Properties from Visible Near-Infrared Shortwave Infrared Spectroscopy Using Fractal-Based Feature Extraction 31 3.1 Abstract 32 3.2 Introduction 32 3.3 Materials and Methods 35 3.3.1 The LUCAS topsoil dataset 35 3.3.2 Fractal feature extraction method 37 3.3.3 Gradient-boosting regression model 37 3.3.4 Evaluation 41 3.4 Results 42 3.4.1 Fractal features for soil spectroscopy 42 3.4.2 Effects of different step and window size on extracted fractal features 45 3.4.3 Modelling soil properties with fractal features 47 3.4.3 Comparison with PLS regression 49 3.5 Discussion 51 3.5.1 The importance of fractal dimension for soil spectra 51 3.5.2 Modelling soil properties with fractal features 52 3.6 Conclusions 53 4 Transfer Learning for Soil Spectroscopy Based on Convolutional Neural Networks and Its Application in Soil Clay Content Mapping Using Hyperspectral Imagery 55 4.1 Abstract 55 4.2 Introduction 56 4.3 Materials and Methods 59 4.3.1 Datasets 59 4.3.2 Methods 62 4.3.3 Assessment 67 4.4 Results and Discussion 67 4.4.1 Interpretation of mineral and organic soils from LUCAS dataset 67 4.4.2 1D-CNN and spectral index for LUCAS soil clay content estimation 69 4.4.3 Application of transfer learning for soil clay content mapping using the pre-trained 1D-CNN model 72 4.4.4 Comparison between spectral index and transfer learning 74 4.4.5 Large-scale soil spectral library for digital soil mapping at the local scale using hyperspectral imagery 75 4.5 Conclusions 75 5 A Case Study of Forced Invariance Approach for Soil Salinity Estimation in Vegetation-Covered Terrain Using Airborne Hyperspectral Imagery 77 5.1 Abstract 78 5.2 Introduction 78 5.3 Materials and Methods 81 5.3.1 Study area of Zhangye Oasis 81 5.3.2 Data description 82 5.3.3 Methods 83 5.3.3 Model performance assessment 85 5.4 Results and Discussion 86 5.4.1 The correlation between NDVI and soil salinity 86 5.4.2 Vegetation suppression performance using the Forced Invariance Approach 86 5.4.3 Estimation of soil properties using airborne hyperspectral data 88 5.5 Conclusions 90 6 Conclusions and Outlook 93 Bibliography 97 Acknowledgements 11

    Automated design of robust discriminant analysis classifier for foot pressure lesions using kinematic data

    Get PDF
    In the recent years, the use of motion tracking systems for acquisition of functional biomechanical gait data, has received increasing interest due to the richness and accuracy of the measured kinematic information. However, costs frequently restrict the number of subjects employed, and this makes the dimensionality of the collected data far higher than the available samples. This paper applies discriminant analysis algorithms to the classification of patients with different types of foot lesions, in order to establish an association between foot motion and lesion formation. With primary attention to small sample size situations, we compare different types of Bayesian classifiers and evaluate their performance with various dimensionality reduction techniques for feature extraction, as well as search methods for selection of raw kinematic variables. Finally, we propose a novel integrated method which fine-tunes the classifier parameters and selects the most relevant kinematic variables simultaneously. Performance comparisons are using robust resampling techniques such as Bootstrap632+632+and k-fold cross-validation. Results from experimentations with lesion subjects suffering from pathological plantar hyperkeratosis, show that the proposed method can lead tosim96sim 96%correct classification rates with less than 10% of the original features

    Assessment of the state of health by the measurement of a set of biophysiological signals

    Get PDF
    The dissertation studies the estimation of the degree of self-similarity and entropy of Shannon of several real electrocardiography (ECG) signals for healthy and non-healthy humans. The goal of the dissertation is to create a starting point algorithm which allows distinguishing between healthy and non-healthy subjects and can be used as a basis for further study of a diagnosis algorithm, necessarily more complex. We used a novel Hurst parameter estimation algorithm based on the Embedded Branching Process, termed modified Embedded Branching Process algorithm. The algorithm for estimation of entropy was based on Shannon‟s entropy. Both algorithms were applied on the spatial distribution of ECG signals in a windowed manner. The studied signals were retrieved from the Physionet website, where they are diagnosed as normal or as having certain pathologies. The results presented for the Hurst parameter estimation allow us to confirm the results already published on the temporal self-similarity of ECG signals, this time for its spatial distribution. We also conclude that the non-self similar signals belong to non-healthy subjects. The results obtained for entropy estimation on the spatial distribution of ECG signals also allowed a comparison between healthy and non-healthy systems. We obtained high entropy estimates both for healthy and non-healthy subjects; nevertheless, non-healthy subjects show higher variability of Shannon‟s entropy than healthy ones.A dissertação estuda a estimativa do grau de auto-semelhança e da entropia de Shannon de vários sinais reais de electrocardiograma (ECG) obtidos em humanos saudáveis e não saudáveis. O objectivo da dissertação é criar um algoritmo inicial que permita distinguir entre indivíduos saudáveis e não saudáveis e que possa ser usado como base para o estudo de um posterior algoritmo de diagnóstico, necessariamente mais complexo. Utilizamos um algoritmo novo para estimativa do parâmetro de Hurst baseado no Embedded Branching Process, denominado algoritmo modified Embedded Branching Process. A entropia foi estimada através da entropia de Shannon. Ambos algoritmos foram aplicados sob a distribuição espacial dos sinais ECG numa forma de janela. Os sinais estudados foram retirados do website Physionet, onde estão diagnosticados como normais ou possuindo uma determinada patologia. Os resultados apresentados para a estimativa do parâmetro de Hurst permitem confirmar resultados já publicados sobre a auto-semelhança temporal dos sinais ECG, desta vez para a sua distribuição espacial. Também se concluí que os sinais não auto-semelhantes correspondem a indivíduos não saudáveis. Os resultados obtidos na estimativa da entropia para a distribuição espacial dos sinais de ECG também permitiram uma comparação entre sistemas saudáveis e não saudáveis. Obtiveram-se estimativas de entropia elevadas quer para indivíduos saudáveis quer para indivíduos não saudáveis; no entanto, os indivíduos não saudáveis mostram uma maior variabilidade da entropia de Shannon em relação aos saudáveis

    Theoretical and experimental models of the diffuse radar backscatter from Mars

    Get PDF
    The general objective for this work was to develop a theoretically and experimentally consistent explanation for the diffuse component of radar backscatter from Mars. The strength, variability, and wavelength independence of Mars' diffuse backscatter are unique among our Moon and the terrestrial planets. This diffuse backscatter is generally attributed to wavelength-scale surface roughness and to rock clasts within the Martian regolith. Through the combination of theory and experiment, the authors attempted to bound the range of surface characteristics that could produce the observed diffuse backscatter. Through these bounds they gained a limited capability for data inversion. Within this umbrella, specific objectives were: (1) To better define the statistical roughness parameters of Mars' surface so that they are consistent with observed radar backscatter data, and with the physical and chemical characteristics of Mars' surface as inferred from Mariner 9, the Viking probes, and Earth-based spectroscopy; (2) To better understand the partitioning between surface and volume scattering in the Mars regolith; (3) To develop computational models of Mars' radio emission that incorporate frequency dependent, surface and volume scattering

    Complexity Analysis of Surface Electromyography for Assessing the Myoelectric Manifestation of Muscle Fatigue: A Review

    Get PDF
    The surface electromyography (sEMG) records the electrical activity of muscle fibers during contraction: one of its uses is to assess changes taking place within muscles in the course of a fatiguing contraction to provide insights into our understanding of muscle fatigue in training protocols and rehabilitation medicine. Until recently, these myoelectric manifestations of muscle fatigue (MMF) have been assessed essentially by linear sEMG analyses. However, sEMG shows a complex behavior, due to many concurrent factors. Therefore, in the last years, complexity-based methods have been tentatively applied to the sEMG signal to better individuate the MMF onset during sustained contractions. In this review, after describing concisely the traditional linear methods employed to assess MMF we present the complexity methods used for sEMG analysis based on an extensive literature search. We show that some of these indices, like those derived from recurrence plots, from entropy or fractal analysis, can detect MMF efficiently. However, we also show that more work remains to be done to compare the complexity indices in terms of reliability and sensibility; to optimize the choice of embedding dimension, time delay and threshold distance in reconstructing the phase space; and to elucidate the relationship between complexity estimators and the physiologic phenomena underlying the onset of MMF in exercising muscles

    Complexity analysis of surface electromyography for assessing the myoelectric manifestation of muscle fatigue: A review

    Get PDF
    The surface electromyography (sEMG) records the electrical activity of muscle fibers during contraction: one of its uses is to assess changes taking place within muscles in the course of a fatiguing contraction to provide insights into our understanding of muscle fatigue in training protocols and rehabilitation medicine. Until recently, these myoelectric manifestations of muscle fatigue (MMF) have been assessed essentially by linear sEMG analyses. However, sEMG shows a complex behavior, due to many concurrent factors. Therefore, in the last years, complexity-based methods have been tentatively applied to the sEMG signal to better individuate the MMF onset during sustained contractions. In this review, after describing concisely the traditional linear methods employed to assess MMF we present the complexity methods used for sEMG analysis based on an extensive literature search. We show that some of these indices, like those derived from recurrence plots, from entropy or fractal analysis, can detect MMF efficiently. However, we also show that more work remains to be done to compare the complexity indices in terms of reliability and sensibility; to optimize the choice of embedding dimension, time delay and threshold distance in reconstructing the phase space; and to elucidate the relationship between complexity estimators and the physiologic phenomena underlying the onset of MMF in exercising muscles
    corecore