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Abstract 

Soil visible and near-infrared spectroscopy provides a non-destructive, rapid and low-

cost approach to quantify various soil physical and chemical properties based on their 

reflectance in the spectral range of 400–2500 nm. With an increasing number of large-scale soil 

spectral libraries established across the world and new space-borne hyperspectral sensors, 

there is a need to explore methods to extract informative features from reflectance spectra and 

produce accurate soil spectroscopic models using machine learning.  

Features generated from regional or large-scale soil spectral data play a key role in the 

quantitative spectroscopic model for soil properties. The Land Use/Land Cover Area Frame 

Survey (LUCAS) soil library was used to explore PLS-derived components and fractal features 

generated from soil spectra in this study. The gradient-boosting method performed well when 

coupled with extracted features on the estimation of several soil properties. Transfer learning 

based on convolutional neural networks (CNNs) was proposed to make the model developed 

from laboratory data transferable for airborne hyperspectral data. The soil clay map was 

successfully derived using HyMap imagery and the fine-tuned CNN model developed from 

LUCAS mineral soils, as deep learning has the potential to learn transferable features that 

generalise from the source domain to target domain. The external environmental factors like 

the presence of vegetation restrain the application of imaging spectroscopy. The reflectance 

data can be transformed into a vegetation suppressed domain with a force invariance 

approach, the performance of which was evaluated in an agricultural area using CASI 

airborne hyperspectral data. However, the relationship between vegetation and acquired 

spectra is complicated, and more efforts should put on removing the effects of external factors 

to make the model transferable from one sensor to another. 
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Kurzfassung 

VIS- und NIR-Spektroskopie liefern einen zerstörungsfreien, schnellen und 

kostengünstigen Ansatz zur Quantifizierung verschiedener bodenphysikalischer und 

chemischer Eigenschaften auf der Grundlage ihrer Reflexion im Spektralbereich von 400-2500 

nm. Mit einer weltweit zunehmenden Zahl großskaliger Bodenspektralbibliotheken und 

neuen weltraumgestützten Hyperspektralsensoren müssen Methoden erforscht werden, um 

mithilfe maschineller Lernverfahren informative Merkmale aus Reflexionsspektren zu 

extrahieren und genaue bodenspektroskopische Modelle zu erstellen. 

Merkmale, die aus regionalen oder großräumigen Bodenspektraldaten erzeugt werden, 

spielen eine Schlüsselrolle im quantitativen spektroskopischen Modell für 

Bodeneigenschaften. Die Flächenstichprobenerhebung zur Bodennutzung und 

Bodenbedeckung (LUCAS) wurde verwendet, um PLS-abgeleitete Komponenten und fraktale 

Merkmale zu erforschen, die aus Bodenspektren in dieser Studie erzeugt wurden. Die 

Gradientenverstärkungsmethode zeigte gute Ergebnisse, wenn sie mit extrahierten 

Merkmalen bei der Schätzung mehrerer Bodeneigenschaften kombiniert wurde. Damit das 

aus den Labordaten entwickelte Modell auf die luftgestützten hyperspektralen Daten 

übertragbar ist, wurde vorgeschlagen, basierend auf Convolutional Neural Networks (CNNs), 

ein Transfer Learning zu entwickeln. Die Boden-Ton-Karte wurde mithilfe von HyMap-

Bildern und dem aus den LUCAS-Mineralböden verfeinderten CNN-Modell erfolgreich 

abgeleitet, da Deep Learning das Potenzial hat, übertragbare Merkmale zu lernen, die von der 

Quelldomäne zur Zieldomäne verallgemeinern. Die äußeren Umweltfaktoren, wie das 

Vorhandensein von Vegetation, schränken jedoch die Anwendung der 

Hyperspektralspektroskopie ein. Die Reflexionsdaten können in einen 

vegetationsunterdrückten Bereich mit einem Force-Invarianz-Ansatz transformiert werden, 

dessen Leistung in einem Landwirtschaftsgebiet mittels CASI-Luft-Hyperspektraldaten 

ausgewertet wurde. Allerdings ist die Beziehung zwischen Vegetation und erfassten Spektren 

sehr kompliziert, und es sollten mehr Anstrengungen unternommen werden, um die 
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Auswirkungen externer Faktoren, einschließlich der Vegetation auf Bodenspektren, die unter 

natürlichen Bedingungen gemessen werden, zu beseitigen. 
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Chapter 1 

Introduction 

1.1 Motivation 

Soil is an essential part of the natural environment. It provides a habitat for a wide range 

of organisms and is responsible for plant growth, decomposition and microbial biomass 

recycling. It also plays an important role in addressing climate change. However, there are 

unprecedented pressures on soil from degradation to pollution. To gain a better 

understanding of soil, effective methods are in need not only to measure and monitor soil 

physical and chemical properties but also to characterise their variations at spatial and 

temporal scales. Traditional laboratory technologies are often time-consuming and expensive, 

and these soil analyses are usually limited to a few samples and lack information on the spatial 

variability of soil [1]. Soil spectroscopy, as a fast, cost-effective and environmental-friendly 

technique, has successfully been utilised to retrieve soil properties.  

Soil spectroscopy has been established as an analytical technique for decades as a result 

of the work by K.H. Norris and co-workers [2]. The measured spectra encode information on 

the inherent composition of soil, which comprises minerals, organic compounds and water. 

The encoded information is often represented in the spectra as absorptions at specific 

wavelengths of electromagnetic radiation, which can be used to describe soil both 

qualitatively and quantitatively. Soil organic carbon, for example, has absorption features 

near 600, 1700 and 2300 nm. Water has a strong influence on spectra around 1400 and 1900 
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nm. Absorption features near 2200-2300 nm characterise clay minerals. To produce general 

and robust calibration models, soil spectral libraries are established at regional, continental 

and even global scales. Also, there are several satellite hyperspectral sensors that will be 

launched in the coming years, which have the potential to acquire soil properties covering a 

large spatial region [3]. Large-area coverage spectral libraries have been exploited in synergy 

with remotely sensed hyperspectral imagery to map soil organic carbon and clay content [4–

6]. 

However, the information encoded in the spectra is confounded as absorption bands are 

weak and often overlapping. The complexity of reflectance spectra in the region of Vis-NIR-

SWIR (400-2500 nm) makes it difficult to predict properties by physical theories or models [7]. 

Therefore, multivariate statistical methods like PLS regression are more suitable to link soil 

spectra with properties measured in the laboratory. Efforts have been put to develop 

calibration models that are accurate to infer samples having similar soil composition and 

spectral characteristics as training data. However, there are still few studies related to 

extracting effective features from reflectance spectra that are crucial to correlating with soil 

properties.  

1.2 Soil spectra from different platforms 

Soil Vis-NIR-SWIR spectra can be acquired at points or by imaging mainly from three 

different platforms [8], as shown in Figure 1.1. Point spectrometers have demonstrated their 

capability to accurately determine soil properties in the laboratory, where soil samples are 

well prepared (seized and dried) and measured under a controlled environment. Thus, 

laboratory spectroscopy yields the most stable model calibrations. Soil proximal sensing 

provides a way for rapid in-situ monitoring of soils. It can use either portable point 

spectrometers or imaging spectrometers. When dedicated to precision agriculture, the sensor 

is often mounted on a tractor [9]. Although the estimation accuracy is lower due to 

uncontrollable environmental factors in the field, in situ proximal sensing improves the 

efficiency of soil data collection by avoiding tedious sampling and preparation procedures 

[10].  
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In remote sensing domain, imaging spectrometers can be mounted on aircrafts or 

satellites, which provide a new perspective for adding spatial details to spectral information 

[11–13]. Hyperspectral remote sensing has a promising future in the field of soil science and 

has been adopted to quantify soil properties and study soil degradation [16]. With upcoming 

new generation space-borne hyperspectral sensors, like the Environmental Mapping and 

Analysis Program (EnMAP) from Germany, the Hyperspectral Infrared Imager (HyspIRI) 

from the USA, PRecursore IperSpettrale della Missione Applicativa (PRISMA) from Italy and 

Space-borne Hyperspectral Applicative Land and Ocean Mission (SHALOM) from the 

cooperation between Italy and Israel, imaging spectroscopy provides the opportunity to map 

soil properties at regional and global scales at comparatively low costs. However, the 

application of hyperspectral remote sensing to the field of soil analysis is restricted by external 

environmental factors, including the low signal-to-noise ratio, vegetation coverage, 

atmosphere and BRDF effects. 

 

Figure 1.1 Soil spectra measured from different platforms [8] 

The soil spectral library can be used as a reference for predicting soil properties by 

reflectance spectroscopy. Calibrations are not reliable for soil samples not represented in the 

soil spectral library. Hence there is a need for building libraries representative of the soil 

diversity [17,18] and an increasing number of large-area coverage soil spectral libraries 

established at national, continental and even global scales. The ICRAF-ISRIC world soil 
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spectral library is composed of 4438 samples from 785 soil profiles distributed in 58 countries 

from Africa, Asia, Europe, North America, and South America selected from the Soil 

Information System (ISIS) of the International Soil Reference and Information Centre (ISRIC) 

archives. Samples were scanned in the spectral range of 350-2500 nm. A voluntary 

collaborative project was started in 2008 to develop a global library of soil spectra, and 23,631 

soil spectra have been contributed to the global database by around 45 soil scientists and 

researchers from 35 institutions [8]. A European spectral library is established within the 

LUCAS program, which is an extensive and regular topsoil survey that carried out across the 

EU to derive policy-relevant statistics on the effect of land management on soil characteristics. 

There will be a new LUCAS sampling campaign undertaken in 2018 [19]. In addition, a 

number of national and regional soil spectral libraries have been constructed, such as the ones 

for Australia [20], Czech Republic [21], Brazil [22] and China [10].  

1.3 Soil property quantification using spectral data 

The complexity of soil prevents a straightforward prediction of reflectance properties by 

physical theories or models [7]. Therefore, empirical statistical methods are often adopted to 

relate various properties with soil spectra. Methods including partial least squares (PLS) 

regression, support vector machine (SVM), extreme learning machine (ELM) and random 

forest (RF) have been used to derive chemical/physical information from the soil spectra [23–

25]. For large-area coverage soil spectral data, soil properties associated to spectrally active 

constituents cannot be expected to be globally stable [26]. Therefore, it is suggested that local 

models or memory-based learner (MBL) approaches are suitable for large-scale spectral data 

instead of global models. The key aim in MBL is not to directly achieve a general or global 

target function. Instead, when an explanation for a new problem is required, experience in the 

form of a set of similar related samples is regained from memory. Then, those samples are 

merged to build the solution to the new problem [27]. A spectrum-based learner (SBL) is 

further developed based on MBL [24], which selects nearest neighbours from a soil spectral 

library using distance metrics calculated in the principal component space and optimising the 

number of components used to identify the nearest neighbours in the selection. Deep learning 

(DL), as a new area of machine learning research, has also attracted attention from soil 
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community. Several different deep learning approaches including Restricted Boltzmann 

Machines (RBM) and one-dimensional convolutional neural networks (1D-CNNs) have been 

explored for soil property prediction, and 1D-CNN demonstrated to be an effective model for 

deriving soil properties from high-dimensional spectra [28].  

1.4 Feature extraction for soil spectra 

Extracting informative and discriminating features is a key component of machine 

learning and a crucial step for effective soil spectroscopic algorithms. Spectral indices can be 

viewed as common simple spectral features. It has been widely used for vegetation studies, 

and more than 100 vegetation indices have been developed such as Ratio Vegetation Index 

(RVI), Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) 

and Soil-Adjusted Vegetation Index (SAVI) [29]. Spectral indices are also proposed to study 

soil properties. SOC indices based on the summed reflectance and slope in several spectral 

regions in the Vis-NIR-SWIR were evaluated in [30]. The index developed using the slope of 

400-600 nm showed the best performance. For soil clay content, a SWIR Fine particles Index 

(SWIR FI) was developed based on visual colour indices and absorption peak and shoulders 

of the absorption feature near 2200-2300 nm [31]. Furthermore, there are several soil indices 

algorithms implemented in the software of ENSOMAP, which is an open source tool for 

quantitative soil properties mapping. 

Soil Vis-NIR-SWIR spectra are high-dimensional data containing several hundred or 

thousand bands. Feature extraction is to map the original data to a lower dimensional space 

without losing significant information to avoid the curse of dimensionality or Hughes 

phenomenon [32–34]. PCA is commonly used to project raw reflectance spectra to fewer 

components that describe a large proportion of the variance [30,31]. It is a linear method and 

reduced dimension representation is generated by linear projections. Several nonlinear PCA, 

such as kernel PCA and probabilistic PCA, have been proposed to extend the capability of 

PCA. Manifold learning attempts to model the manifold on which the data lies [34,35]. Local 

linear embedding (LLE) has been exploited for soil spectral distance and similarity [39]. It can 

identify the underlying structure of a manifold, while PCA maps faraway data points to 

nearby points in the plane.  
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Autoencoder (AE) is an unsupervised learning algorithm and its performance on learning 

latent representations of soil spectra has been few studied. It is proposed based on neural 

networks and a basic architecture is shown in Figure 1.2. The AE’s codings often reveal useful 

features from unsupervised data and are useful as dimensionality reduction or feature 

extraction [40]. AE trains a neural network by constraining the outputs to be equal to the 

inputs. Thus, the training data do not need to be labelled. By reducing the size of the adjacent 

layer, the AE is forced to learn a compact representation of the data, in which means that the 

AE maps the input through an encoder function to generate a latent representation. Ideally, 

features learned by AE can well represent the input data [41]. There are several approaches 

proposed to learn features based on AE, like Denoising Autoencoder (DAE), Sparse 

Autoencoder (SAE), and Variational Autoencoder (VAE). 

 

Figure 1.2 The architecture of AE [42] 

1.5 Objectives 

The main objective of this thesis is to explore feature representation of large-scale soil Vis-

NIR-SWIR spectra and its contribution to quantitative soil spectroscopic models. Furthermore, 

it is intended to use deep learning for quantitative mapping of soil properties by taking 

advantage of models developed by existing large-scale soil spectral libraries. 

The specific objectives are: 

1) to assess PLS as a feature extraction tool for soil spectra and the performance by 

integrating with GBDT on the estimation of soil properties. 
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2) to develop a new approach to extraction informative features from soil spectra based 

on fractal geometry using variation estimators with different power indices. 

3) to explore the potential of deep learning using 1D-CNN for large-scale soil spectral 

data modelling.  

4) to contribute to soil property mapping using hyperspectral imagery and a large-scale 

spectral library via transferable features. 

1.6 Thesis structure 

The main parts of the thesis were prepared as stand-alone manuscripts and published or 

ready to be submitted to international peer-reviewed journals. The stand-alone manuscripts 

were written originally by the author of this thesis and subsequently revised by the co-authors. 

Data collections were carried out by third parties and were identified within the thesis at the 

appropriate locations. As each of the manuscripts follows the standard structure for a 

scientific publication, some limited materials are repeated throughout the thesis. The contents 

of the three published articles have remained unchanged in this thesis and are listed as follows: 

Liu, L.; Ji, M.; Buchroithner, M. Combining partial least squares and the gradient-boosting 

method for soil property retrieval using visible near-infrared shortwave infrared spectra. 

Remote Sensing. 2017, 9, 1299. 

Liu, L.; Ji, M.; Dong, Y.; Zhang, R.; Buchroithner, M. Quantitative retrieval of organic soil 

properties from visible near-infrared shortwave infrared (Vis-NIR-SWIR) spectroscopy using 

fractal-based feature extraction. Remote Sensing. 2016, 8, 1035. 

Liu, L.; Ji, M.; Buchroithner, M. A case study of Forced Invariance Approach for soil 

salinity estimation in vegetation-covered terrain using airborne hyperspectral imagery. ISPRS 

International Journal of Geo-Information. 2018, 7(2), 48. 

Thus, the present thesis is divided into the following chapters. 

Chapter 1 provides the motivation, objectives and structure of the thesis and related work 

in soil spectroscopy, including the use of soil Vis-NIR-SWIR spectra for quantifying soil 

properties and a brief survey of feature extraction or feature representation methods for soil 

spectra. 
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Chapter 2 explores PLS components retained from high-dimensional spectral for soil 

property quantification with the GBDT method. The relative important variables for soil 

property estimation are also evaluated. 

Chapter 3 proposes a novel methodology for soil spectral feature extraction based on 

fractal geometry. Three variation estimators (rodogram, madogram and variogram) are 

compared and the effect of step–window sizes on generated fractal features is studied using 

a grid-search approach. Generated features are compared to PCA-transformed components, 

and finally these two kinds of features are combined to quantify soil properties using a 

gradient-boosting regression method. 

Chapter 4 presents the potential of transfer learning for soil spectroscopy and its 

performance on soil clay mapping using hyperspectral data. A 1D-CNN model is developed 

using LUCAS mineral soils. Its transferability is compared with a clay spectral index using 

LUCAS organic soils. Then, the 1D-CNN model is fine-tuned and applied to the hyperspectral 

imagery obtained in the study area. 

Chapter 5 demonstrates the Forced Invariance approach for vegetation suppression using 

hyperspectral data. The performance on improving soil salinity estimation is evaluated. 

Finally, Chapter 6 summarises the contributions of the thesis and also discusses the future 

work as how to further improve the proposed approaches and beyond. 

 

 

  



 
 

 

 

 

Chapter 2 

Combining Partial Least Squares and the Gradient-

Boosting Method for Soil Property Retrieval Using 

Visible Near-Infrared Shortwave Infrared Spectra 

Lanfa Liu, Min Ji and Manfred Buchroithner  

 

 

 

Contributions: 

Lanfa Liu conceived and performed the research and wrote the manuscript.  

Min Ji contributed to the design of the research and data analysis.  

Manfred Buchroithner reviewed the manuscript and supervised the study at all stages. 

 

 

 

 

 

Citation: 

Liu, L.; Ji, M.; Buchroithner, M. Combining Partial Least Squares and the Gradient-Boosting 

Method for Soil Property Retrieval Using Visible Near-Infrared Shortwave Infrared 

Spectra. Remote Sens. 2017, 9, 1299. 



 

10 
 

2.1 Abstract 

 Soil spectroscopy has experienced a tremendous increase in soil property 

characterisation and can be used not only in the laboratory but also from the space (imaging 

spectroscopy). Partial least squares (PLS) regression is one of the most common approaches 

for the calibration of soil properties using soil spectra. Besides functioning as a calibration 

method, PLS can also be used as a dimension reduction tool, which has scarcely been studied 

in soil spectroscopy. In this study, PLS components retained from high-dimensional spectral 

data were further explored with the gradient-boosted decision tree (GBDT) method. Three 

soil sample categories were extracted from the Land Use/Land Cover Area Frame Survey 

(LUCAS) soil library according to the type of land cover (woodland, grassland, and cropland). 

First, PLS regression and GBDT were separately applied to build the spectroscopic models for 

soil organic carbon (SOC), total nitrogen content (N) and clay for each soil category. Then, 

PLS-derived components were used as input variables for the GBDT model. The results 

demonstrate that the combined PLS-GBDT approach has better performance than PLS or 

GBDT alone. The relative important variables for soil property estimation revealed by the 

proposed method demonstrated that the PLS method is a useful dimension reduction tool for 

soil spectra to retain target-related information. 

2.2 Introduction 

Monitoring the status of soil is very important for tackling many challenges including 

food security, climate change, land degradation, and biodiversity [3]. Traditional laboratory 

technologies to analyse soil are often time-consuming and expensive and these soil analyses 

are usually limited to a few samples and lack information on the spatial variability of soil [1]. 

Soil spectroscopy, as a fast, cost-effective, and environmental-friendly analytical technique, 

has successfully been utilised to retrieve soil properties and has experienced a tremendous 

increase in the past years. It has been shown that soil spectra across the Visible Near-Infrared 

Shortwave Infrared (VIS–NIR–SWIR; 400–2500 nm) spectral region are characterised by 

significant spectral signals [8,16,43,44], which makes it possible for quantitative analysis of 

soil properties. Furthermore, the widespread use of visible and infrared spectroscopy can 
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resolve the trade-off between the growing need for large-scale soil information and its high 

cost [17]. Using spectral measurements and corresponding soil properties measured by soil 

analyses, soil spectroscopy can be adopted to quantitatively estimate many soil properties, 

such as organic matter, heavy metals, clay content, exchangeable potassium, and electrical 

conductivity [45–47].  

The multivariate analysis technique is vital for quantitative analysis of soils. Partial least 

squares (PLS) regression is frequently used for spectroscopic data and demonstrates the good 

capability for the estimation of soil properties. The PLS regression method can relate the 

response variable with relevant information from the spectra while keeping fewer PLS 

components or factors. It has been successfully demonstrated that the use of soil spectroscopy 

and PLS regression can quantify soil properties, and an automatic modelling engine 

PARACUDA®, including PLS, was developed to predict various soil properties using 

reflectance data [48,49]. PARACUDA® was proposed based on the all-possibilities-approach 

(APA) concept and a covariate optimisation routine was adopted to select the best pre-

processing steps (1st and 2nd derivatives, continuum removal (CR), standard normal variate 

(SNV), etc.) [50]. Besides PARACUDA®, various calibration methods were also developed 

based on PLS. The autoPLSR method was proposed to save the need for manual fine-tuning 

and provided a non-expert, automatic, feature, and latent variable selection, and it was 

successfully applied for soil clay and iron quantitative mapping using airborne hyperspectral 

data [15]. The focus of PLS regression is to find the relevant linear subspace of the latent 

variables, and it has not implemented of variable selection, which could be done based on the 

selectivity ratio or variable importance in the projection (VIP) before developing PLS models 

[51–53]. Another option is to use interval PLS (iPLS), which selects only the important variable 

intervals for PLS regression [54]. Besides, a genetic algorithm was combined with PLS 

regression (GA-PLSR) to select the most informative spectral variables and thus to improve 

the prediction accuracies compared with support vector machine regression (SVMR) [46,55]. 

A memory-based learning (MBL) method called locally weighted partial least squares 

regression (LWR) was also developed and compared with multiple linear regression (MLR), 

multiple regression after principal components compression (MLRPC), and PLS. The highest 

prediction accuracies for most of the soil attributes evaluated were produced by LWR [56]. 

PLS regression often performs better on a local scale. Therefore, several different local PLS 
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modelling approaches were proposed and evaluated for predicting soil attributes using a 

large soil spectral library across the French territory [57]. MBL is a data-driven approach. It is 

very flexible and can be easily combined with other approaches. MBL describes the target 

function as a collection of less complex local stable approximations [24,27]. However, it is 

pointed out that memory-based methods have drawbacks such as high computational costs, 

and the similarity measure used for recovering samples from the nearest neighbours fails to 

fit a global function. A spectrum-based learner (SBL) was proposed based on MBL, which can 

be described as a local linear Gaussian processing modelling approach combining local 

distance matrices and spectral features as a source of input variables. SBL is able to produce 

reliable models using regional and global soil spectral libraries [24]. 

PLS can also be utilised as a dimension reduction (DR) tool [58–61], which has scarcely 

been explored in soil spectroscopy. The underlying assumption of PLS is that the observed 

data is generated by a process that is driven by a small number of latent (not directly observed 

or measured) variables [62]. The reason why PLS regression can perform better than other 

well-known regression techniques, such as multiple linear regression and ridge regression, is 

the stability of components derived from the PLS method [63]. The new components can be 

viewed as retained variables and act as inputs for many other regression approaches. 

Gradient-boosted decision trees (GBDT), also known as gradient-boosting machine (GBM) or 

multiple additive regression trees (MART), is one of the most widely used machine learning 

algorithms and can be viewed as a gradient-boosting algorithm using the decision tree as the 

weak learner [64,65]. The GBDT method is an additive classification or regression model 

consisting of an ensemble of trees. It is highly adaptable and many different loss functions can 

be used during boosting. However, building an accurate GBDT model is time-consuming and 

often requires extensive parameter tuning. Hence, A GPU-based approach was proposed to 

accelerate the speed [66]. 

The relationship between soil properties and soil spectra is very complicated and has an 

inherently non-linear nature. The objective of the study is to explore the potential of PLS as a 

dimension reduction tool for soil spectra and the performance of GBDT on the estimation of 

soil properties. A European-scale soil spectral library has been developed in the framework 

of Land Use/Land Cover Area Frame Survey (LUCAS) and contains ~20,000 geo-referenced 

topsoil samples, which is an ideal dataset to evaluate the performance of the proposed PLS-
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GBDT method. Three categories of soil samples were extracted from the LUCAS soil spectral 

library according to the type of land cover (woodland, cropland, and grassland). For each 

category, SOC, clay, and N were modelled with the proposed method. The evaluation of 

variable importance was performed and compared with results obtained from PLS and GBDT 

models. 

2.3 Materials and Methods 

2.3.1 The LUCAS soil spectral library 

As part of the LUCAS project, approximately 20,000 geo-referenced topsoil samples were 

collected and analysed in the 25 European Union Member States [67,68]. This is the first 

attempt to build a consistent soil database, which provides an excellent basis to assess topsoil 

characteristics across the European Union. A standardised sampling procedure was used to 

collect around 0.5 kg of topsoil (0–20 cm). The collected soils were sampled from different 

land covers and can be classified as mineral and organic soils. In this paper, the proposed 

method was applied to mineral soil samples from woodland, cropland, and grassland, the 

distribution of which can be seen in Figure 2.1. 

The soil spectra were measured using a FOSS XDS Rapid Content Analyser (FOSS 

NIRSystems Inc., Hilleroed, Denmark), operating in the 400–2500 nm wavelength range with 

0.5 nm spectral resolution. Pre-processing included removal of the data at wavelengths of 400–

500 nm that showed instrumental artefacts, transformation of absorbance (A) spectra into 

reflectance (1/10A) spectra, continuum removal, Savitzky-Golay Filter with a window size of 

51 and 2nd order polynomial, and resampling to contain 200 bands. 13 soil properties were 

analysed in a central laboratory. Three key soil properties, SOC, N, and clay, were selected as 

our studied properties. A brief statistical summary of soil properties is listed in Table 2.1. 

Table 2.1 Summary statistics of soil properties (SOC, N, and clay) for the three soil categories. 

Category Property N Mean SD Min Q25 Q50 Q75 Max 

Woodland SOC (g/kg) 4182 37.3 24.1 0.0 18.8 31.4 50.8 125.8 

N (g/kg) 4182 2.0 1.3 0.0 1.0 1.7 2.6 9.1 

Clay (%) 4182 11.3 10.4 0.0 4.0 7.0 16.0 65.0 
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Category Property N Mean SD Min Q25 Q50 Q75 Max 

Cropland SOC (g/kg) 8341 17.1 10.9 0.0 10.4 14.4 20.5 160.3 

N (g/kg) 8341 1.6 0.79 0.0 1.1 1.5 1.9 9.5 

Clay (%) 8341 22.1 12.7 1.0 13.0 21.0 30.0 79.0 

Grassland SOC (g/kg) 3957 30.2 19.0 0.0 15.7 25.9 39.2 165.7 

N (g/kg) 3957 2.7 1.5 0.0 1.5 2.3 3.4 13.6 

Clay (%) 3957 19.9 12.4 0.0 11.0 18.0 27.0 79.0 

SD: Standard Deviation; Q25: lower quartile; Q50: median; Q75: upper quartile. 

  

Figure 2.1 Location of selected soil samples from the LUCAS soil spectral library. The colour 

indicates the corresponding land cover type. 
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2.3.2 Partial least squares algorithm 

PLS regression has proven to be a very successful method for multivariate data analysis. 

It is a standard tool in chemometrics and has received a great amount of attention in the field 

of soil spectroscopy. It is similar to principal component regression (PCR), as both can 

overcome the problems of high dimensionality and multi-collinearity. In its classical form, the 

PLS method is based on the nonlinear iterative partial least squares (NIPALS) algorithm. To 

calibrate a PLS regression model for each soil property, the optimal number of latent variables 

was identified by performing a 10-fold cross-validation, and the root-mean-square error 

(RMSE) in the cross-validation was used as a decision criterion. Besides directly applying PLS 

regression to soil spectra, the transformed PLS components were also used as inputs for the 

following gradient-boosting model. 

2.3.3 Gradient-boosted decision trees (GBDT) 

Gradient-boosting is a machine learning technique for regression and classification 

problems, which was developed by Jerome Friedman [69,70]. One of the widely used 

gradient-boosting methods is GBDT, which is highly adaptable and able to model feature 

interactions and inherently perform feature selection [71]. These features have made GBDT 

one of the most widely used machine learning algorithms. Gradient-boosting develops an 

ensemble of tree-based models by training each of the trees in a sequential manner. Each 

iteration fits a decision to the residuals left by the previous one, and then the prediction is 

accomplished by combining the trees. It can produce robust and interpretable procedures for 

both regression and classification. Mathematically, the model can be viewed as: 

��� = � ��(��),    �� ∈ �

�

���

  (2.1) 

where � is the number of trees, � is a function in the functional space �, and � is the set of all 

possible regression trees.  

There are several open-source projects that have implemented GBDT, like scikit-learn, 

XGBoost, and LightGBM [30,38,39]. LightGBM [74] is used in this study, and it is developed 

by Microsoft. It takes advantage of histogram-based algorithms to accelerate training process 

and reduce memory consumption by aggregating continuous features into discrete bins [75]. 

Most decision tree learning algorithms grow trees by the level-wise or depth-wise approach, 
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as shown in Figure 2.2; LightGBM grows trees by the leaf-wise or best-first approach. It will 

choose the leaf with max delta loss to grow. When growing the same number of leaves, the 

leaf-wise algorithm can reduce more loss than a level-wise algorithm. LightGBM also 

supports parallel and GPU learning, and it is capable of handling large-scale data. 

 

Figure 2.2 Illustration of level-wise and leaf-wise tree growth approaches for gradient-

boosted decision trees [74]. 

Soil spectra quantitatively correlate with soil properties. By fitting a regression model, it 

is supposed to achieve a good predictive accuracy for the estimation of soil property. There 

are many parameters that need to be tuned in GBDT, like learning rate or shrinkage, max 

depth, number of trees, etc. Reducing the learning rate parameter helps prevent overfitting 

and has a smoothing effect but increases the learning time [65]. The learning rate was set to 

0.05. Parameters of max depth and number of trees can also determine whether the model is 

over-fitted or not, and these two parameters were explored using a grid search strategy. 

2.3.4 Calculation of relative variable importance 

PLS regression and the gradient-boosting method both can estimate the relative 

contribution of each input variable or feature. The resultant variable importance measure is 

useful for understanding the relevance of contributing wavelengths. Ranking based on 

relative contribution values can help to identify the reflectance bands that are most important 

for developing soil spectroscopic models. In general, the top few bands contribute most to the 

model development. For PLS algorithm, the calculation of important input variables is based 

on weighted sums of the absolute PLS-regression coefficients. A large loading also indicates 
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the importance of a variable. Here, we use the VIP score derived from coefficients to assess 

the importance of input variables. It calculates the contribution of independent variables to 

the contribution of the dependent variable. For the gradient-boosting method, the importance 

of input variable can be calculated based on metric of “split” or “gain”. “Split” is the number 

of times a variable is used in a model and “gain” is the total gain of splits that use the variable. 

We use split as the descriptor of relative variable importance in this study. The more a variable 

is used to make key decisions with decision trees, the higher its relative importance. 

2.3.5 Assessment 

For each soil property, the soil spectral quantitative model was developed on a random 

sample of two-thirds of the selected soil samples using PLS regression or the gradient-

boosting regression method. The calibrations were tested by predicting the soil properties on 

validation dataset composed of the remaining one-third samples for each soil category. The 

model accuracies were evaluated on estimated and measured SOC, N, and clay values using 

the coefficient of determination (R2), RMSE, and the ratio of performance to deviation (RPD) 

[76]. 

�� =
∑ (��� − �)��

���

∑ (�� − �)��
���

 (2.2) 

���� = �
1

�
� (��� − ��)�

�

���
 (2.3) 

��� =  
��

����
 (2.4) 

where n is the number of validation samples, � is the measured value, � is the mean of the 

measured value, and �� is the estimated value. 

2.4 Results 

2.4.1 Overview of the spectral measurement 

The mean soil reflectance spectra and standard deviations for soil samples from 

woodland, cropland, and grassland were plotted in Figure 2.3. The mean spectra of three soil 

categories have a similar curve shape whose reflectance values increase with increasing 
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wavelength in the range of 500–1300 nm. Absorption features can be identified near 1400 and 

1900 nm, which are assigned to soil hygroscopic water in clay minerals [77]. The mean soil CR 

spectra and standard deviations for samples from woodland, cropland, and grassland are also 

shown. CR spectra can be used to isolate and identify characteristic absorptions of minerals, 

organic compounds, and water in soils [8]. The main spectral difference is that the mean 

reflectance spectrum for cropland soils demonstrates a higher albedo than spectra for 

woodland and cropland soils, as cropland soils have a lower mean value of SOC content (17.1 

g/kg) than woodland soils (37.3 g/kg) and grassland soils (30.2 g/kg). From the CR spectra, it 

can be seen that the absorption features are stronger for cropland soils than the other two soil 

categories, and woodland soils have the weakest absorption features, which can also be 

explained by the variation of SOC contents. Soil samples with high organic matter content 

tend to show weak absorption features [24]. Besides, cropland soils have the highest mean 

value of clay content. 

 

Figure 2.3 (A–C) are mean soil reflectance spectra (black lines) and standard deviations (blue 

lines, lower and upper boundaries) for soil samples from woodland, cropland, and grassland; 

(D–F) are mean soil continuum-removal spectra (black lines) and standard deviations (blue 

lines, lower and upper boundaries) for soil samples from woodland, cropland, and grassland. 

Values are given in reflectance (A–C) and normalized continuum-removal values (D–F). 
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2.4.2 Results of PLS regression for the estimation of soil properties 

To make a comparison with the following results obtained from PLS-GBDT, soil 

spectroscopic models for SOC, N, and clay were developed using PLS regression with the 

same dataset (Figure 2.4). For each model, the PLS component number was optimised and 

kept the same as retained by PLS-GBDT (Table 2.2). The accuracies were assessed by R2, RMSE, 

and RPD. Spectroscopic models developed for SOC estimation achieved R2 values ranging 

from 0.537 to 0.569 and RPD values from 1.51 to 1.57. For N, the highest accuracy (R2 = 0.652, 

RMSE = 0.78 g/kg, RPD = 1.66) was obtained from woodland soils. Models developed for clay 

estimation achieved comparable good results, and R2 values vary from 0.656 to 0.732. From 

RPD values, it can be seen that PLS regression can develop fair models for soil spectroscopic 

analysis that may be used for assessment and correlation. 

 

Figure 2.4 Results of soil property estimation accuracies using the partial least squares (PLS) 

regression method. (A–C) are organic carbon accuracies for samples from woodland, 

cropland, and grassland soils, and (D–F) are N accuracies, and (G–I) are clay accuracies. 
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Table 2.2 Optimised parameters for the spectroscopic model using the PLS-gradient-booted 

decision tree (GBDT) method. 

Category  Property  PLS Components Number of Trees Maximum Depth 

Woodland SOC (g/kg) 42 300 3 

N (g/kg) 78 1100 4 

Clay (%) 50 500 4 

Cropland SOC (g/kg) 64 1950 4 

N (g/kg) 86 2000 4 

Clay (%) 82 2000 3 

Grassland SOC (g/kg) 60 700 3 

N (g/kg) 72 900 3 

Clay (%) 60 1450 3 

Variable selection can be done with PLS. We use VIP scores to rank the relative variable 

importance. The top 60% variables were kept and further modelled with PLS regression. The 

results for all three soil categories were shown in Figure 2.5. After variable selection, the 

accuracy for clay estimation from woodland soils improved with retained variables (R2 = 

0.715, RMSE = 5.6 g/kg, RPD = 1.86) compared with using full spectrum (R2 = 0.674, RMSE = 

5.99 g/kg, RPD = 1.74). Variable selection can also increase the SOC estimation accuracy for 

woodland soils. However, the estimation accuracies for clay from cropland soils and N from 

woodland soils decreased after variable selection. The R2 values declined from 0.732 to 0.714 

for clay (cropland soils) and 0.652 to 0.636 for N (woodland soils). Soil spectra are complex, 

especially for large-scale soil spectral data. Soil properties associated with spectrally active 

constituents cannot be expected to be globally stable [24]. Thus, directly dropping some bands 

via variable selection may result in a loss of information that is important for some soil 

samples. 
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Figure 2.5 Results of soil property estimation accuracies using PLS regression with variable 

selection using VIP scores. (A–C) are organic carbon accuracies for samples from woodland, 

cropland, and grassland soils, and (D–F) are N accuracies, and (G–I) are clay accuracies. 

2.4.3 Results of PLS-GBDT for the estimation of soil properties 

In this study, we propose to transfer soil reflectance spectra data into PLS components to 

reduce the dimensionality and also decrease the computational complexity. Then, for each 

category (woodland, cropland, and grassland), soil properties of SOC, N, and clay were 

modelled using the GBDT method while the input variables were PLS components instead of 

reflectance spectra. A grid search method was adopted to tune the optimised PLS components 
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for the first step and also the number of boosted trees and the maximum tree depth for GBDT 

(Table 2.2). 

For SOC, the model built using cropland soil samples achieved the best result (R2 = 

0.679, RMSE = 6.0 g/kg, RPD = 1.84) compared with soil samples from woodland (R2 = 0.658, 

RMSE = 13.81 g/kg, RPD = 1.76) and grassland (R2 = 0.671, RMSE = 10.92 g/kg, RPD = 1.76), 

which is the same case for the other two soil properties. The spectroscopic model developed 

from cropland soils has an RPD value of 1.94 for N and 2.34 for clay, and both are higher than 

models developed for woodland soils and grassland soils. This might be due to the complexity 

of the soil sampling matrix and soil sampling density. From Figure 2.1, it can be seen that 

cropland soils have the largest proportion of samples because of their ease of access and thus 

distribute more homogenously compared with woodland soils and grassland soils. The 

accuracy of clay obtained from the developed PLS-GBDT model has the highest value 

compared with the other two properties, R2 values ranging from 0.736 to 0.812 and RPD from 

1.94 to 2.34. 

Compared with Figures 2.4 and 2.6, it can be seen that the results achieved by PLS 

regression with or without variable selection are worse than by PLS-GBDT. For woodland 

soils, the R2 value for SOC reduced from 0.679 to 0.537 and the RPD value from 1.84 to 1.53, 

the R2 value for N dropped from 0.687 to 0.55, the RPD value from 1.94 to 1.61, and the 

estimation of clay also has the same trend. Therefore, the model developed by non-linear 

regression method such as PLS-GBDT is suitable for quantitative retrieval of soil properties 

as reported by [8,78]. 
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Figure 2.6 Results of soil property estimation accuracies using the PLS gradient-boosting 

regression method. (A–C) are organic carbon accuracies for samples from woodland, 

cropland, and grassland soils, and (D–F) are N accuracies, and (G–I) are clay accuracies. 

To further evaluate the performance of the PLS-GBDT method, we also directly applied 

GBDT to soil reflectance spectra. We take samples from woodland soils as an example and 

use the mean square error (MSE) as the evaluation metric. From Figure 2.7, it can be seen that 

GBDT model did not perform well, and it is not easy for it to be convergent with the increase 

of epochs in the training step, as the model tends to be complex when the data dimensionality 

is too high. PLS-GBDT models achieved much lower MSE values compared with GBDT 

models, both in the training and validation steps. 
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Figure 2.7 Training and validation curves of soil spectroscopic models developed by PLS-

GDBT (A–C) and GBDT (D–F) in 500 epochs for woodland soil samples. 

2.4.4 Relative important variables derived from PLS regression and the gradient-boosting 

method 

A benefit of PLS regression and GBDT is that they can provide the estimation of variable 

importance from the trained calibration model. As it is time-consuming to tune 

hyperparameters for GBDT models with very high dimensional data, soil spectra were 

resampled to 200 bands. The top 13 relative important variables derived from PLS regression 

models can be seen from Figure 2.8. For SOC, the most important bands for these three soil 

categories are at 1920, 2170, and 2050 nm. The top-ranked bands for N are similar to SOC (2160, 

1940, and 2000 nm). For clay, the derived important variables are at 2070, 1950, and 2230 nm. 

In previous study [79], the bands near 800, 1000, 1400, and 1900–2450 nm were confirmed to 

be important for SOC estimation, and the bands around 1100, 1600, 1700 to 1800, 2000, and 

2200 to 2400 nm were also identified as key bands for SOC and N estimation [26]. The results 

are basically in agreement with previous research. 

For all of these three soil properties, the top-ranked variables derived from GBDT model 

were basically at the beginning and the end of the spectrum (Figure 2.9). It can be seen that 

the GBDT method failed to select meaningful bands for quantitative estimation of SOC, N, 

and clay when directly using the full spectrum as input variables, which also explained why 

the accuracy of the GBDT model is worse than the results obtained from PLS and PLS-GBDT 
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models. Conversely, relative important variables derived from PLS regression are more 

reasonable.  

 

Figure 2.8 Top 13 relative important variables derived from PLS regression models. (A–C) 

are relative important variables derived from SOC models for woodland, cropland, and 

grassland soils, and (D–F) are relative important variables derived from N models, and 

(G–I) are relative important variables derived from clay models. 
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Figure 2.9 Top 13 relative important variables derived from GBDT models. (A–C) are relative 

important variables derived from SOC models for woodland, cropland, and grassland 

soils, and (D–F) are relative important variables derived from N models, and (G–I) are 

relative important variables derived from clay models. 

Although the GBDT method failed to derive the relative important variables when using 

full spectrum, it does not mean that this method is not suitable for soil spectroscopic analysis. 

The obtained relative important variables were demonstrated (Figure 2.10) when the model 

was combined with retained PLS components. For PLS-GBDT, the first PLS component is 

supposed to be the most important variable for the estimation of corresponding soil properties, 

as PLS retains target-related information. The results demonstrate that the most important 
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variables are the first PLS component for SOC and N, while the second PLS component is 

ranked first for clay. In general, the top-ranked PLS components are also important to the 

gradient-boosting model, as revealed by Figure 2.10. This also means that PLS performs well 

on the extraction of target-related information. 

 

Figure 2.10 The top 13 relative important variables (PLS components) derived from PLS-

GBDT. (A–C) are relative important variables derived from SOC models for woodland, 

cropland, and grassland soils, and (D–F) are relative important variables derived from N 

models, and (G–I) are relative important variables derived from clay models. 
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2.5 Discussion 

2.5.1 Dimension reduction for high-dimensional soil spectra 

High-dimensional data like soil spectra often contain redundant information and will 

increase computation complexity, which is known as the curse of dimensionality or Hughes 

phenomenon [32–34]. Variable selection can reduce the complexity and improve the 

robustness of the model. By selecting the most informative spectral bands instead of using the 

full spectrum, the calibration model is supposed to be more accurate [80]. Variable selection 

can be based on physical background by identifying key wavelengths for the target property. 

It is also possible to evaluate it using the statistics of the resulting calibration model, like the 

VIP score derived from the PLS regression model in this study.  

High-dimensional spectral data can be projected to a lower dimensional space without 

actually losing significant information using methods like principal component analysis 

(PCA). PCA reduces the dimensionality of the data to fewer components that describe a large 

proportion of the variance. The first principal component accounts for the largest variance, 

while subsequent components account for decreasingly smaller proportions [35]. Local linear 

embedding (LLE) is a nonlinear dimensionality reduction method, and it can identify the 

underlying structure of a manifold [38]. PCA and LLE have been exploited in a comparative 

way for soil spectral distance and similarity in projected space [39]. Autoencoder (AE) is an 

unsupervised learning algorithm and its performance on reducing the dimensionality of soil 

spectra has not been well studied. Several approaches were developed based on it, such as 

stacked autoencoder and sparse autoencoder [81,82]. AE trains a neural network by 

constraining the output values to be equal to the input values. The reconstruction error 

between the input and the output is used to adjust the weights of each layer. Ideally, features 

learned by AE can well represent the input data [41]. The difference between PLS and the 

above mentioned DR methods is that PLS is able to retain target-related information and can 

be viewed as a supervised DR method. It has the potential to explore the intrinsic structure of 

spectra, and it can not only reduce the data redundancy but also improve the estimation 

accuracy. Besides, it is worth making a comparison between PLS and other mentioned DR 

methods (PCA, LLE, AE, etc.) for soil spectral analysis in the following studies. 
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2.5.2 GBDT for quantitative soil spectroscopic modelling 

Modelling soil properties using large and diverse soil spectral libraries is still a 

challenging task. PLS regression, as a common approach in soil spectroscopy, has limitations 

in handling large-scale soil spectral data. With variable selection using VIP scores, the 

performance with regard to improving the estimation accuracies is still not satisfying in this 

study. GBDT has been used to win machine learning competitions on Kaggle and has gained 

a lot of attention. In this study, we proposed to take advantage of GBDT for the estimation of 

soil properties by using PLS components as the input variables instead of raw reflectance 

spectra. The result demonstrated that the combined PLS-GBDT approach performs better than 

PLS or GBDT alone. It also confirmed the experiments in [83], in which the boosted decision 

trees method performed exceptionally well when dimensionality was low. The model is prone 

to being complex when the dimension is too high, and it tends to need more trees and a high 

degree of tree depth, which could be a serious problem in high dimensions [84]. Therefore, it 

is suggested to reduce the number of input features via dimension reduction or feature 

selection when facing high-dimensional data. There are several studies related to soil 

spectroscopic modelling using large-scale soil spectral libraries. Local or MBL approaches are 

reported to have better performance on large-scale soil data. PLS, SVM, LWR, and SBL were 

comparatively studied on a regional soil spectral library in Brazil and a global soil spectral 

library [24]. SBL algorithm achieved the best performance for SOC estimation in the regional 

(R2 = 0.59) and the global data (R2 = 0.68). MBL approaches are very flexible and can be easily 

integrated with PLS-GBDT. Besides, additional soil information like texture (sand, clay, and 

silt) can contribute to soil spectroscopic model. By only using spectral bands as the input 

variables in [85], SVM obtained a similar result for SOC estimation of cropland soils as 

achieved by PLS-GBDT. However, the R2 value improved from 0.67 to 0.71 with variable 

selection and clay content as an auxiliary variable. A higher accuracy of the SOC estimation 

model was also obtained by [86] when considering sand content. Therefore, additional soil 

information is very important to calibration models for large-scale soil spectral data. 
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2.6 Conclusions 

Soil spectra measured in the laboratory typical have several hundred or even thousand 

bands, which would be a problem for the gradient-boosting model when directly using such 

high-dimensional data as inputs. This study presents a PLS-GBDT method to retrieve soil 

properties from reflectance spectra. The LUCAS soil spectral library was used to evaluate its 

performance. For three soil categories (woodland, grassland, and cropland), R2 achieved values 

of 0.658–0.679 for SOC, 0.687–0.719 for N, and 0.739–0.812 for clay. Both PLS and GBDT can 

estimate the relative contributions of input variables. However, GBDT failed in this task when 

directly using high-dimensional soil spectra as input data. The GBDT method is a well-known 

machine learning algorithm that uses the decision tree as the weak learner, and it has 

successfully been applied in numerous areas. By using PLS components as input variables, 

which are retained with target variable-related information, GBDT is able to perform well on 

soil quantitative analysis. Although the PLS-GBDT method is directly used to develop a global 

model to fit the whole soil spectral library in this study, it is possible to combine it with MBL 

if it functions as a basic or local model. 

Acknowledgments 

We acknowledge support by the German Research Foundation and the Open Access 

Publication Funds of the TU Dresden. The first author wants to acknowledge the China 

Scholarship Council (CSC) for providing financial support to study at TU Dresden. The 

LUCAS topsoil dataset in this work was made available by the European Commission 

through the European Soil Data Centre and managed by the Joint Research Centre (JRC) 

http://esdac.jrc.europa.edu/.  

  



 
 

 

 

 

Chapter 3 

Quantitative Retrieval of Organic Soil Properties from 

Visible Near-Infrared Shortwave Infrared Spectroscopy 

Using Fractal-Based Feature Extraction 

Lanfa Liu, Min Ji, Yunyun Dong, Rongchung Zhang and Manfred Buchroithner  

 

 

 

Contributions: 

Lanfa Liu conceived, designed and performed the research.  

Min Ji, Yunyun Dong, Rongchung Zhang contributed to the analysis of the data.  

Lanfa Liu wrote the draft, and Manfred Buchroithner reviewed and edited it.  

 

 

 

 

 

Citation: 

Liu, L.; Ji, M.; Dong, Y.; Zhang, R.; Buchroithner, M. Quantitative Retrieval of Organic Soil 

Properties from Visible Near-Infrared Shortwave Infrared (Vis-NIR-SWIR) Spectroscopy 

Using Fractal-Based Feature Extraction. Remote Sens. 2016, 8, 1035.  



 

32 
 

3.1 Abstract 

 Visible and near-infrared diffuse reflectance spectroscopy has been demonstrated to be 

a fast and cheap tool for estimating a large number of chemical and physical soil properties, 

and effective features extracted from spectra are crucial to correlating with these properties. 

We adopt a novel methodology for feature extraction of soil spectroscopy based on fractal 

geometry. The spectrum can be divided into multiple segments with different step–window 

pairs. For each segmented spectral curve, the fractal dimension value was calculated using 

variation estimators with power indices 0.5, 1.0 and 2.0. Thus, the fractal feature can be 

generated by multiplying the fractal dimension value with spectral energy. To assess and 

compare the performance of new generated features, we took advantage of organic soil 

samples from the large-scale European Land Use/Land Cover Area Frame Survey (LUCAS). 

Gradient-boosting regression models built using XGBoost library with soil spectral library 

were developed to estimate N, pH and soil organic carbon (SOC) contents. Features generated 

by a variogram estimator performed better than the other two estimators and the principal 

component analysis (PCA). The estimation results for SOC were coefficient of determination 

(R2) = 0.85, root mean square error (RMSE) = 56.7 g/kg, the ratio of percent deviation (RPD) = 

2.59; for pH: R2 = 0.82, RMSE = 0.49 g/kg, RPD = 2.31; and for N: R2 = 0.77, RMSE = 3.01 g/kg, 

RPD = 2.09. Even better results could be achieved when fractal features were combined with 

PCA components. Fractal features generated by the proposed method can improve estimation 

accuracies of soil properties and simultaneously maintain the original spectral curve shape. 

3.2 Introduction 

Quantitative assessment of soil properties using visible near-infrared shortwave infrared  

(Vis-NIR-SWIR) spectroscopy has been demonstrated as a fast and non-destructive method 

[3,8,26,77,85,87]. Over the past 30 years, numerous soil physical and chemical properties, such 

as soil texture, soil organic carbon (SOC), cationic exchange capacity (CEC), total nitrogen (N) 

and exchangeable potassium (K), have been investigated using the spectroscopic approach 

based on various multivariate statistics and machine learning approaches [1,24,88–90], and 

outcomes were applied in soil contamination, soil degradation, environmental monitoring 
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and precision agriculture [77,91–93]. As one of the attractive advantages, soil spectra can be 

recorded at points or by imaging from different platforms [8,78]. The technique is mainly used 

in the laboratory, where soil samples are prepared and measured under controlled conditions, 

and it can be considered as an alternative to traditional analytical techniques. Portable Vis-

NIR-SWIR spectrometers allow measurements operated directly in situ. Although the 

estimation accuracy is lower when compared to results achieved in the laboratory due to 

uncontrollable environmental factors in the field, in situ proximal sensing improves the 

efficiency of soil data collection by avoiding tedious sampling and preparation procedures 

[10]. Sensors can also operate from high above, termed as air- or space-borne imaging 

spectroscopy [11–13]. However, there are still some limitations with respect to the application 

of imaging spectroscopy to the field of soil analysis, especially when vegetation is present. 

They have already shown the potential to map and quantify soil properties [20,21]. With 

upcoming space-borne sensors, like the Environmental Mapping and Analysis Program 

(EnMAP) from Germany and the Hyperspectral Infrared Imager (HyspIRI) from the USA, 

imaging spectroscopy provides the opportunity to map soil properties at regional and global 

scales at comparatively low costs. 

Reflectance spectra of soil can be viewed as cumulative properties that reflect the inherent 

spectral behaviour of soil components and can be used to quantify these components 

simultaneously [3]. However, due to the complexity of scattering effects caused by soil 

structure and specific constituents, the absorption wavelengths are largely overlapping and 

result in complex absorption patterns [26]. Besides, soil spectra often tend to have a very high 

dimensionality. For example, each spectrum in the Land Use/Land Cover Area Frame Survey 

(LUCAS) [67] soil spectral library has 4,200 Vis-NIR-SWIR absorbance measurements, while 

the Africa Soil Information Service (AfSIS) [94] soil spectra has more than 3000 mid-infrared 

absorbance measurements. The LUCAS Project aims to sample and analyse the main 

properties of topsoil across Europe, and the AfSIS Project aims to narrow the sub-Saharan soil 

information gap and to provide a consistent baseline for monitoring soil ecosystem services. 

Laboratory spectroscopy was used in both projects. High-dimensional data often contain 

redundant information and increase computation complexity. It has been proven that most of 

the data are concentrated in the corners of high dimensional space and the model’s accuracy 

tends to firstly improve and then decline with an increase of features, which is also known as 
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the curse of dimensionality or Hughes phenomenon [32,33,95]. Therefore, simply relying on 

different multivariate statistics in raw feature space is not enough, and methods to reduce the 

dimensionality and extract information from the spectra that can be better correlated with soil 

properties of interest should be investigated.  

Feature extraction has been proved to be successful in imaging-spectroscopy 

classification [32,41,96–98]. The high-dimensional spectral data can be projected to a lower 

dimensional space with feature extraction methods, without actually losing significant 

information. Reduced features may increase the separation between spectrally similar classes 

and the classification model can perform well with a reduced number of features. In soil 

spectroscopy, a common approach is principal component analysis (PCA). In [36], PCA was 

used to reduce the Vis-NIR-SWIR data with more than 2,000 wavelengths to a few 

components, the first component of which accounting for the largest variance. Also, soil 

information contents of the spectra consisted of PCA components, and a predictive spatial 

model was developed across Australia. Effective information can also be extracted with 

wavelet analysis [99]. It can substantially reduce the factors outside the parameters of the 

spectrum directly or indirectly. PCA and local linear embedding (LLE) have, in a comparative 

way, been exploited for soil spectral distance and similarity in projected space [39]. LLE is a 

nonlinear dimensionality reduction method [34,35]. It can identify the underlying structure of 

a manifold, while PCA maps faraway data points to nearby points in the plane. The results 

indicate that the distances computed in the raw space have comparatively lower performance 

than the ones computed in low reduced spaces. Methods using PCA and LLE with 

Mahalanobis distance outperformed other approaches. It can be seen that an effective feature 

extraction method has the potential to explore the intrinsic structure of spectra, and does not 

only reduce the data redundancy but also improves the estimation accuracy [100]. 

Knowing how to effectively extract features from the spectra is crucial for a successful 

soil-spectral quantitative model. Studies focused on feature extraction from soil Vis-NIR-

SWIR spectra are still limited. In this paper, we adopt a novel approach of fractal features 

based on fractal geometry using variation estimators with the different power indices 0.5, 1.0 

and 2.0, which can be termed as rodogram, madogram and variogram respectively. The 

concept of fractal dimension was introduced by [37,38] to reduce the dimensionality of 

imaging spectroscopy data. Kriti Mukherjee [32,102] proposed a method to generate multiple 
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fractal-based features from imaging spectroscopy data and then further compared the 

performance of fractal-based dimensionality reduction using Sevcik’s, power spectrum and 

variogram methods with conventional methods like PCA, minimum noise fraction (MNF), 

independent component analysis (ICA) and decision boundary feature extraction (DBFE) 

methods. They concluded that the classification accuracy is similar but the computational 

complexity is reduced. The aims of the present study are to explore fractal-based feature 

extraction from soil spectra and to examine its performance on the estimation of SOC, N and 

pH contents with soil Vis-NIR-SWIR diffuse reflectance spectra. Features generated by the 

fractal method were compared to PCA-transformed components, and then these two kinds of 

features were combined to quantify soil properties using a gradient-boosting regression 

method. The proposed method is further compared to partial least squares (PLS) regression, 

which is a frequently adopted method for the quantification of soil properties. 

3.3 Materials and Methods  

3.3.1 The LUCAS topsoil database 

As part of Land Use/Land Cover Area Frame Survey, approximately 20,000 geo-

referenced topsoil samples were collected and analysed for the 25 European Union member 

states [67,68]. Stratified random sampling was applied to collect around 0.5 kg of topsoil (0–

20 cm) [103]. The LUCAS topsoil dataset is obtained from the Joint Research Centre (JRC) and 

can be used for non-commercial purposes [67]. The collected samples can be classified as 

mineral and organic soils. In this paper, the proposed feature extraction method was tested 

using the LUCAS organic soil samples, the distribution of which was explored in ArcGIS 10.4 

and can be seen in Figure 3.1.  
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Figure 3.1 Distribution of organic soil samples in the LUCAS topsoil database. Colours 

indicate amounts of soil organic carbon (SOC) content. 

The Vis-NIR-SWIR soil spectra were measured using a FOSS XDS Rapid Content 

Analyser (FOSS NIRSystems Inc., Denmark) [67], operating in the 400–2500 nm wavelength 

range, with 0.5 nm spectral resolution. Organic soil spectra were pre-processed by removing 

the data at wavelengths of 400–500 nm that showed instrumental artefacts, transformation of 

absorbance (A) spectra into reflectance (1/10A) spectra, continuum removal, Savitzky-Golay 

filter with a window size of 50, second-order polynomial and first derivative. Thirteen soil 

properties have been analysed in a central laboratory [67], including the percentage of coarse 

fragments, particle size distribution (% clay, silt and sand content), pH (in CaCl2 and H2O), 

soil organic carbon (g/kg), carbonate content (g/kg), phosphorous content (mg/kg), total 
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nitrogen content (g/kg), extractable potassium content (mg/kg), and cation exchange capacity 

(cmol(+)/kg). Three key soil fertility properties, soil organic carbon (SOC), total nitrogen 

content (N) and pH in CaCl2 (pH), were selected as our studied properties. 

3.3.2 Fractal feature extraction method  

3.3.2.1 Concept of fractal dimension 

Fractal dimension is a robust method for describing natural or man-made fractals having 

the fundamental feature known and referred to as self-similarity [104]. Within the fractal lies 

another copy of the same fractal, smaller but complete. If we have a strictly self-similar fractal 

which can be decomposed into N pieces, each of which is a copy of the original fractal scaled 

by a factor of �, then, 

�� = N (3.1) 

where � is the Hausdorff Dimension. � is a non-integer number, describing how the irregular 

structure of objects and/or phenomena is replicated in an iterative way from small to large 

scales. Anything that appears random and irregular can be a fractal, strictly or statistically, 

including the soil Vis-NIR-SWIR spectrum, which cannot be defined by any mathematical 

equation and is therefore considered as an irregular curve. There are numerous methods 

which have been developed for fractal dimension estimation, including box-count [105], 

variogram [106], power spectrum [32] and spectral [107] methods. 

3.3.2.2 Variation method for fractal dimension 

The variogram estimator is widely used in the determination of the fractal dimension and 

it is known for its ease of use [108]. By sampling a large number of pairs of points along the 

spectral curve and computing the differences in their reflectance values, the fractal dimension 

is easily derived from the log-log plot of variogram and lags. Xu and Xt+u are two reflectance 

values located at points u and t+u, and these two points are separated by the lag of t. The 

variogram can be calculated as the mean sum of squares of all differences between pairs of 

values with a given distance divided by two. 

γ(�) =
1

2
�(�� − ����)� (3.2)
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The variogram estimator is a stochastic process with stationary increments as half times 

the expectation of the square of an increment at lag t, and a generalisation of the variation 

estimator can be obtained with different order p of a stochastic process [109]:  

γ�(�) =
1

2
�|�� − ����|� (3.3)

where p = 1.0, it represents the madogram, which instead of calculating squares of the 

differences takes the absolute values. Where p = 1/2, the rodogram is derived by calculating 

the square root of absolute differences. Fractal dimension is estimated using the slope (�) of 

the corresponding log–log regression plot of γ�(�) and t, as shown in Figure 3.2.  

� = 2 −
�

2
 (3.4)

 

Figure 3.2 Illustration of fractal dimension calculation. (A) is the spectral curve and 

(B) is the corresponding log-log plot of variogram and lags and the fitted regression 

line. 

3.3.2.3 Fractal feature generation 

Fractal features are generated by multiplying spectral energy with the corresponding 

fractal dimension. As the fractal dimension can be calculated using the whole curve or only 

part of the curve, the spectrum can be segmented into several parts and each part corresponds 

to a new fractal feature. For a soil spectral curve, a common approach is to evenly divide the 

whole curve into the desired number of segments [110], which means the step and window 
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size are the same. In this study, we explored the effect of different combinations of step and 

window sizes on generated fractal features. The final feature number Nf can be calculated as: 

�� =
�� − �

�
+ 1 (3.5)

�� is the number of raw spectral measurements, � is the value of step size and W is the value 

of moving window size. The window size is often defined as larger than the step size, which 

means segments of the same spectral curve are overlapping. Step size is defined as 100.0 nm 

and moving window size as 200.0 nm, as shown in Figure 3.3, which means � = 200 and w = 

400 (the spectral resolution is 0.5 nm in our case). New fractal features can be generated when 

the wavelength window moves along the spectral curve at step 100.0 nm. With the increase of 

the step size, the final fractal feature number (Nf) correspondingly decreases, which can be 

used as a means of dimension reduction.  

Nf numbers of fractal dimension values can be obtained by moving along the spectral 

curve at step size p. For each segment, the number of points are marked as n and can be 

calculated by Equation (3.5). The reflectance value as Zj (j = 1, 2…, n) and the corresponding 

fractal dimension value can be calculated according to Equation (3.4) as Dm (m = 1, 2…, Nf), 

and fractal features by: 

 �� = D�  ×  E�  (3.6)

where E� is the spectral energy and can be derived from the following equation: 

E� = � ��,�
�

�

���

 (3.7)
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Figure 3.3 Illustration of the meaning of step and window size for multiple fractal feature 

generation. (step size = 100.0 nm, window size = 200.0 nm). 

3.3.3 Gradient-boosting regression model 

Soil spectroscopy quantitatively correlates with soil properties, which supposes that 

fitting a regression model with features extracted from spectra will have good predictive 

accuracies with respect to continuous soil properties. Gradient-boosting is a highly effective 

and widely used machine-learning approach [69]. Gradient-boosting develops an ensemble 

of tree-based models by training each of the trees in the ensemble on different labels and then 

combining the trees. It can produce robust and interpretable procedures for both regression 

and classification. For a regression problem where the objective is to maximize the coefficient 

of determination (R2) or to minimize the root mean square error (RMSE), each successive tree 

is trained on the errors left over by the collection of earlier trees. XGBoost is a scalable and 

flexible gradient-boosting library [64,111,112], which is adopted to build the soil spectral 

quantitative model in our study. XGBoost uses more regularised model formalisation to 

control over-fitting, which gives it better performance. Mathematically, the model can be 

viewed as: 
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��� = � ��(��),    �� ∈ �

�

���

 (3.8)

where � is the number of trees, f is a function in the functional space �, and � is the set of all 

possible regression trees. Therefore, the objective of optimization can be written as: 

���(�) = � �(��, ���

�

�

) + � Ω(��)

�

���

 (3.9)

where �(��, ���) is the training loss function, and Ω(��) is the regularization term. The goal of 

XGBoost model is to minimize ���(�). 

3.3.4 Evaluation 

For each soil property, the soil spectral quantitative model was developed on a random 

sample of two-thirds of the selected soil samples using the gradient-boosting regression 

method. The calibrations were tested by predicting the soil properties on validation data sets 

composed of the remaining one-third of the organic soil samples. No samples were omitted 

from the analysis, nor the calibration or validation data sets. The model accuracies were 

evaluated on estimated and measured soil SOC, N and pH values using RMSE, R2 and the 

ratio of percent deviation (RPD). 

�� =
∑ (��� − �)��

���

∑ (�� − �)��
���

 (3.10)

���� = �
1

�
� (��� − ��)�

�

���
 (3.11)

��� =  
��

����
 (3.12)

where n is the number of validation samples, y is the measured values, � is the mean of the 

measured values, and �� is the estimated values. RPD is the ratio of the standard deviation (SD) 

of the calibration data to the RMSE of the validation data [76]. An RPD <1.0 indicates a very 

poor model and its use is not recommended; an RPD between 1.0 and 1.4 indicates a poor 

model where only high and low values are distinguishable; an RPD between 1.4 and 1.8 

indicates a fair model which may be used for assessment and correlation; RPD values between 

1.8 and 2.0 indicate a good model where quantitative predictions are possible; an RPD 
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between 2.0 and 2.5 indicates a very good, quantitative model, and an RPD >2.5 indicates an 

excellent model. 

3.4 Results 

3.4.1 Fractal features for soil spectroscopy 

For a single soil Vis-NIR-SWIR spectrum, the fractal dimension can be calculated by 

Equation (3.4). Before extracting fractal features from soil spectra, we first examined the 

relationship between soil properties and the corresponding fractal dimension. Spectral values 

of soil are relatively low and the curve appears smoother compared with other objects like 

vegetation. Thus, the resulting fractal dimension values are comparatively low. Since the 

fractal dimension is derived from the slope of the regression line obtained from the log-log 

plot of γp(t) and lag t, one problem is how many lag increments are necessary to produce 

reliable results. Theoretically only a minimum of two points is necessary to make such a plot 

[108]. However, the results of such an analysis tend not to be reliable or representative. In this 

study, the value of lag increments was set as 5, and the Pearson correlations of soil properties 

and fractal dimensions are shown in Table 3.1. The Pearson is a standardised covariance and 

ranges from −1 to +1, which indicates a perfect negative (−1) or positive (+1) linear relationship 

respectively. A value of zero is not related to the independence between the two variables, 

and it only suggests no linear association. It can be seen that SOC, N and pH have negative 

relationships with fractal dimension. SOC and N have similar correlations with fractal 

dimension. Among these three estimators, the variogram-based fractal dimension calculation 

method achieved the best correlation between fractal dimension values and soil properties 

SOC (correlation coefficient (r) = −0.54), N (r = −0.50) and pH (r = −0.12). 

Table 3.1 Pearson correlation coefficients between soil properties and fractal dimensions 

calculated by rodogram, madogram and variogram estimators. 

 Rodogram Madogram Variogram 

SOC −0.40 −0.47 −0.54 

N −0.38 −0.43 −0.50 

pH −0.12 −0.13 −0.12 
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An intact spectrum can be divided into multiple segments, overlapping or non-

overlapping. Each segment is corresponding to a fractal feature. When step size and window 

size are respectively set to 2.5 nm and 50.0 nm, a total number of 791 fractal features can be 

derived by rodogram, madogram or variogram methods, resulting in the original spectral 

dimension reduced from 4000 to 791. In order to make a proper comparison between the 

generated fractal feature-based curve and the raw spectral curve, the centre wavelength value 

of the spectral segment is assigned to the fractal feature as the corresponding “wavelength 

number”.  

A great advantage of fractal-based feature extraction is that the curve shape of fractal 

features is similar to the shape of the raw spectrum, which makes it possible to apply methods 

like continuum removal (CR) not only to the raw spectrum but also to the fractal-based 

“spectrum”. The organic soil samples can be divided into four groups according to the content 

of SOC. Average spectral reflectance and continuum removal reflectance of LUCAS organic 

soil samples were computed by SOC classes (Figure 3.4A). For fractal features, average fractal 

energy and continuum removal responses of organic soil samples were also computed and 

shown in Figure 3.4B–D. The highest SOC class that was above 480 g/kg showed the highest 

mean reflectance in the wavelength range from 1000.0 nm to 2000.0 nm, which is consistent 

with observations in the literature [26]. The continuum removal reflectance showed a strong 

correlation with SOC content at a wavelength of near 600.0 nm. The difference between the 

raw spectral curve and fractal feature curve was not obvious from the view of shape. Fractal 

features showed shallow absorption peak in proportion for SOC classes at a wavelength of 

600.0 nm. The fractal energy values were larger than reflectance values, as the former were 

multiplied by spectral energy and fractal dimension, which was supposed to be larger than 

1.0. 
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Figure 3.4 (A) Average spectral reflectance and continuum removal reflectance of LUCAS 

organic soil samples computed by SOC classes; (B–D) Average fractal energy and continuum 

removal responses of organic soil samples computed by SOC classes using rodogram, 

madogram and variogram estimators respectively. The central wavelength number of the 

corresponding spectral segment is assigned to the fractal feature.  

To demonstrate the effects of step and window size on extracted fractal features, the 

combinations of the two parameters were tested. When the step size was fixed at 2.5 nm, a 

series of fractal feature curves were derived by defining window sizes as 15.0 nm, 35.0 nm, 

55.0 nm, 75.0 nm and 95.0 nm. With the increase of window size, fractal energies 

correspondingly increased and the shapes of fractal features were also gradually exaggerated, 

as shown in Figure 3.5A. The number of fractal features derived at different window sizes was 

equal but less than raw spectral features. When the window size was fixed at 50.0 nm and step 

size increased from 10.0 to 50.0 nm at an interval of 2.5 nm, the number of fractal features was 

non-linearly decreased from 196 to 40 as shown in Figure 3.5B. 
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Figure 3.5 The effect of step and window size on generated fractal features. (A) are fractal 

feature curves when window sizes were at 15.0–95.0 nm (step size fixed at 2.5 nm); (B) is the 

number of fractal features when step sizes were increased from 10.0 to 50.0 nm (window size 

fixed at 50.0 nm). 

3.4.2 Effects of different step and window size on extracted fractal features 

For further analysis about effects of step and window size on the relationship between 

fractal features and soil properties, a matrix of step–window pairs was generated by defining 

step size ranging from 2.5 nm to 50.0 nm at an interval of 2.5 nm and window size ranging 

from 10.0 nm to 100.0 nm at an interval of 5.0 nm. For each pair of these two parameters, fractal 

features were derived according to Equation (3.6). A gradient-boosting regression model 

using the XGBoost tool was built on a random sample of two-thirds of organic soil samples, 

and then applied to the estimation of each sample from the validation dataset. Pre-processing 

methods for soil spectra could also be applied to new fractal features because of the shape 

similarity between fractal features and the raw spectral curve. For example, fractal features 

were smoothed by use of Savitzky-Golay filter. R2 derived by step–window pairs for SOC 

using rodogram, madogram and variogram methods are shown in Figure 3.6A2–A4 

respectively, as is the case for N and pH in Figure 3.6B-C. For a comparable study, the 

regression model was also applied to raw spectral values and PCA-transformed data. 

Taking advantage of fractal features, models developed for SOC estimation achieved 

comparably good results, R2 varies from 0.64 to 0.83 (rodogram), 0.70 to 0.84 (madogram) and 

0.72 to 0.84 (variogram). For pH, R2 varies from 0.61 to 0.80 (rodogram), 0.63 to 0.80 

(madogram) and 0.63 to 0.82 (variogram. However, the accuracies are comparatively lower 
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for N. R2 varies from 0.52 to 0.74 (rodogram), 0.53 to 0.75 (madogram) and 0.55 to 0.76 

(variogram). Models with raw spectra were developed by evenly selecting the desired number 

of spectral measurements. The Hughes phenomenon can be seen well in models built with 

raw spectra. R2 increased first and then declined with the increase of feature numbers. It can 

be seen that models with raw spectra had the poorest performance. For SOC and N, fractal 

features outperformed PCA-transformed features and raw spectra. Fractal features for pH 

achieved similar accuracies compared to PCA-transformed features. 

 

Figure 3.6 Gradient-boosting regression modelling accuracies for SOC, N and pH. (A1), (B1) 

and (C1) were with principal component analysis (PCA)-transformed features and raw 

spectra; (A2), (B2) and (C2) were with fractal features derived by the rodogram method with 

various step-window pairs. (A3), (B3) and (C3) were with fractal features derived by the 

madogram method with various step-window pairs. (A4), (B4) and (C4) were with fractal 

features derived by the variogram method with various step-window pairs. 
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3.4.3 Modelling soil properties with fractal features 

Window sizes and step sizes adopted to optimise the gradient-boosting regression model 

can be seen in Section 3.2. Fractal feature numbers approximately ranged from 40 to 800. The 

optimal pairs of step–window sizes for SOC, N and pH can be seen in Table 3.2. For each 

gradient-boosting regression model built with XGBoost library, the maximum tree depth was 

4 and a maximum number of trees was 100. R2 was used as the evaluation metric for validation 

data.  

The best trade-off between step and window size for SOC (R2 = 0.851, RMSE = 56.7 g/kg, RPD 

= 2.59) was 2.5 nm for the former and 105.0 nm for the latter with variogram estimator. The 

best performance step–window sizes for N (R2 = 0.776, RMSE = 3.01 g/kg, RPD = 2.09) were 

step size at 2.5 nm and window size at 65.0 nm with the variogram estimator. The best 

performance step–window size for N (R2 = 0.822, RMSE = 0.49, RPD = 2.31) were step size at 

7.5 nm and window size at 45.0 nm with the variogram estimator. From Table 3.2, it can be 

seen that fractal-based feature extraction methods tend to keep a much larger number of 

features compared to PCA. To achieve similar performance of PCA, fractal-based approaches 

need to retain ~200 features, such as 190 for SOC (R2 = 0.819, RMSE = 62.49 g/kg, RPD = 2.34) 

where step size and window size were respectively 10.0 nm and 105.0 nm, 128 features for N 

(R2 = 0.736, RMSE = 3.26 g/kg, RPD = 1.92) where step size and window size were respectively 

15.0 nm and 135.0 nm, and 131 features for pH (R2 = 0.807, RMSE = 0.50, RPD = 2.22) where 

step size and window size were respectively 15.0 nm and 50.0 nm. 

In real-world examples, there are many ways to extract features from a dataset. Often it 

is beneficial to combine several methods to obtain good performance. To assess whether 

predictive accuracy could be enhanced by integrating multiple features, the first 30 PCA 

components were combined with fractal features and then ingested into the gradient-boosting 

regression model. Combined features showed better performance when applied for the 

estimation of all three soil properties, SOC (R2 = 0.86, RMSE = 55.16 g/kg, RPD = 2.7), N (R2 = 

0.78, RMSE = 2.96 g/kg, RPD = 2.19) and pH (R2 = 0.85, RMSE = 0.44, RPD = 2.59), as shown in 

Figure 3.7. 
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Figure 3.7 Best performance of gradient-boosting regression modelling accuracies for SOC, N 

and pH. (A1), (A2) and (A3) were with PCA-transformed features. (B1), (B2) and (B3) were 

with fractal features. (C1), (C2) and (C3) were with features combined by PCA-transformed 

features and fractal features. R2: coefficient of determination; RMSE: root mean square error; 

RPD: the ratio of percent deviation. 

Table 3.2 Best Performance step–window pairs for soil properties estimation using fractal-

based feature extraction and comparison with PCA. 

 Method Step Size/nm Window Size/nm Dimension R2 

SOC PCA - - 28 0.813 

Rodogram 2.5 80 769 0.847 
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 Method Step Size/nm Window Size/nm Dimension R2 

Madogram 2.5 90 765 0.847 

Variogram 2.5 105 759 0.851 

N PCA - - 34 0.735 

Rodogram 2.5 50 781 0.756 

Madogram 2.5 90 765 0.767 

Variogram 2.5 65 775 0.776 

pH PCA - - 34 0.814 

Rodogram 5 55 390 0.806 

Madogram 2.5 100 761 0.818 

Variogram 7.5 45 261 0.821 

3.4.4 Comparison with PLS regression 

PLS regression is frequently used to calibrate soil properties with soil spectra, and it can 

maximise the covariance between the spectra and a measured soil property [7]. To make a 

comparison, PLS regression, named as method A for the sake of convenience, was applied to 

the raw spectra of the LUCAS organic soil to estimate organic carbon (SOC) contents, and the 

best performance (R2 = 0.834) was achieved when the number of components was 60 (Figure 

3.8). 

 

Figure 3.8 The change of R2 with the increase of the partial least squares (PLS) component 

number (A) and the PLS regression model when the component number was 60 (B). 
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PLS regression integrates the compression and regression steps, and it can be viewed as a 

combination of PLS components and linear regression [54]. Therefore, it is also possible to 

transform the raw spectra into PLS components and then ingest them into the gradient-boosting 

regression model (method B). The same gradient-boosting model parameters were adopted. 

When the number of retained PLS components was 60, the achieved R2 for the estimation of SOC 

contents was 0.846 (Figure 3.9). 

 

Figure 3.9 The gradient-boosting regression model with PLS components for the estimation 

of SOC contents. 

The quantitative method proposed in the paper can be viewed as a combination of fractal 

features and gradient-boosting regression (method C), and it achieved the best performance 

(R2 = 0.851) for the estimation of SOC contents of these three methods. We also applied 

methods A and B to the estimation of N and pH contents. For N, the same case applied; 

method C showed the highest R2. Although method A (PLS regression) achieved the best 

performance for the estimation of pH contents, when focusing on extracted features, fractal 

features had similar performance compared with PLS components, the R2 for method C being 

0.821 and for method B, 0.823. The only difference between these two methods was the 
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ingested features. The results are summarised in Table 3.3, and it can be seen that fractal 

features can achieve similar or even better results compared with PLS components. 

Table 3.3 Comparison of three methods for the quantitative retrieval of soil properties. 

 Features Modelling SOC (R2) N (R2) pH (R2) 

Method A PLS components Linear regression 0.834 0.743 0.87 

Method B PLS components Gradient-boosting regression 0.846 0.759 0.823 

Method C Fractal features Gradient-boosting regression 0.851 0.776 0.821 

3.5 Discussion 

3.5.1 The importance of fractal dimension for soil spectra 

The correlations between fractal dimension and soil properties were assessed by means 

of Pearson correlation analysis when the fractal dimension calculation was applied to the 

whole spectrum. Significant negative correlations for SOC (r = −0.54) and N (r = −0.50) with 

the fractal dimension were found, which means that values of SOC and N could have effects 

on the shape of soil spectra and therefore diagnostic wavelengths exist for SOC and N. In [86] 

an absorption peak centred at 600 nm was observed, which seems to be related to SOC content. 

At 2100 nm, there was an absorption determined by N content. In [26] the authors also 

highlighted that wavelengths of around 1100, 1600, 1700–1800, 2000, and 2200–2400 nm have 

been identified as being particularly important for SOC and N estimation. 

The pH showed a very weak correlation with the fractal dimension (r = −0.12), which 

could be caused by a lower direct spectral response to soil pH [26]. It has to be pointed out 

that the weak correlation between pH and fractal dimension does not mean that soil spectra 

cannot be used to quantify soil pH values. The variation of soil pH values does not 

significantly contribute to the smoothness or roughness of the spectral curve. Soil pH value 

can still be well estimated in the laboratory or the field [55,56] using raw spectral data, which 

might be due to the mutual effects of spectrally active soil constituents such as organic matter 

and clay [43]. It also can be seen that the Pearson correlation between fractal dimension and 

soil properties has a positive relationship with the performance of fractal features. 
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3.5.2 Modelling soil properties with fractal features 

Three methods for the fractal dimension calculation and further feature extraction were 

studied in this paper. The results demonstrated that the variogram estimator had slightly 

better performance than the madogram estimator when applied to fractal feature generation 

for soil property estimation, and methods using these two estimators achieved better R2 than 

the method using the rodogram estimator. In [114] the classification achieved better results 

with texture layers derived from the madogram. Since the madogram estimator calculates the 

sum of the absolute value of the semivariance for all observed lags, it yields a softer effect on 

the presence of outliers compared to the variogram estimator. However, in our study, soil 

spectra were well pre-processed by the Savitzky–Golay filter and generated fractal features. 

Fractal features generated by these three estimators have a similar curve shape and achieved 

very close estimation accuracies for tested soil properties.  

Step–window pairs have a significant impact on estimation accuracies of soil properties. 

When the window size is fixed, accuracies are decreased with the increase of step size. 

However, when the step size is fixed, accuracies are prone to ascend slightly and then clearly 

descend. A higher R2 was found to be located at the bottom of the step–window matrix. 

However, there is no guarantee as to which step–window pair is the best parameter for soil 

property estimation. Therefore, a hyper-parameter optimisation method should be adopted 

for each of the soil properties. 

In general, fractal features achieved better results compared to PCA-transformed features 

and raw spectra. This demonstrates that by taking advantage of fractal information encoded 

in the soil spectral shape, soil properties can be estimated in a better way. Besides, when raw 

data are transformed or projected via PCA, measurement units and shape are lost. However, 

fractal-based feature extraction is prone to retaining a much larger number of features 

compared to PCA. To achieve similar performance, the fractal-based approach needs ~200 

feature numbers while PCA only needs ~30. When compared with PLS components, fractal 

features also had better performance for the estimation of OC and N contents. However, there 

is no conflict between common feature extraction practices with the proposed fractal method. 

When integrating different kinds of features, like PCA-transformed features and fractal 

features, the performance is expected to be improved for the retrieval of soil properties. 
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3.6 Conclusions 

Data acquisition with Vis-NIR-SWIR spectroscopy is relatively easy, and a wide range of 

soil properties can be analysed within a comparatively short time with relatively little effort 

for sample preparation. Soil spectroscopy has recently been identified as a method that has 

the potential to rapidly estimate soil properties. Many soil-spectral libraries are already built 

at regional, continental or even global scales. Various multivariate statistical methods have 

been successfully adopted to explore the relationship between soil spectra and soil 

physical/chemical properties. However, few studies are focused on feature extraction from 

measured soil spectra, which is also crucial to correlating spectra with soil properties.  

This study presents a novel methodology for feature extraction based on fractal geometry. 

Each Vis-NIR-SWIR spectrum can be divided into multiple segments by defining the moving 

window size and the step size. For each segmented spectral curve, the fractal dimension value 

was calculated using variation estimators. Fractal features, generated by multiplying the 

fractal dimension value with spectral energy, were further combined with PCA-transformed 

features, and the gradient-boosting regression model achieved good performance with 

respect to the retrieval of SOC (R2 = 0.86, RMSE = 55.16 g/kg, RPD = 2.7), N (R2 = 0.78, RMSE = 

2.96 g/kg, RPD = 2.19) and pH (R2 = 0.85, RMSE = 0.44, RPD = 2.59). Fractal analysis can be 

functionalised as an approach to examine the relationship between soil spectra and soil 

properties, which can characterise statistical self-similarity and further quantify the 

irregularity of soil spectra [109]. Fractal features, by taking advantage of fractal information 

encoded in the shape of soil spectral curve, can reflect the impact of various properties on soil 

spectra except when the properties have a less direct spectral response. In this case, fractal 

features can still be functioned to quantify the corresponding soil property. Fractal features 

performed well when ingested into quantitative soil spectroscopic models, and the proposed 

fractal method can not only reduce the dimensionality in the original space, but also 

simultaneously maintain the spectral shape, which means that methods for raw spectra can 

also be applied to extracted fractal features, for example, calibrating soil properties using PLS 

regression with fractal features. 
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Chapter 4 

Transfer Learning for Soil Spectroscopy Based on 

Convolutional Neural Networks and Its Application in Soil 

Clay Mapping Using Hyperspectral Imagery 

4.1 Abstract 

Soil spectra are often measured in the laboratory, and there is an increasing number of 

large-scale soil spectral libraries establishing across the world. However, calibration models 

developed from soil libraries are difficult to apply to spectral data acquired from the field or 

space. Transfer learning has the potential to bridge the gap and make the calibration model 

transferrable from one sensor to another. The objective of this study is to explore the potential 

of transfer learning for soil spectroscopy and its performance on soil clay content estimation 

using hyperspectral data. First, a one-dimensional convolutional neural network (1D-CNN) 

is used on Land Use/Land Cover Area Frame Survey (LUCAS) mineral soils. To evaluate 

whether the pre-trained 1D-CNN model was transferrable, LUCAS organic soils were used to 

fine-tune and validate the model. The fine-tuned model achieved a good accuracy (coefficient 

of determination (R2) = 0.756, root-mean-square error (RMSE) = 7.07 and ratio of percent 

deviation (RPD) = 2.26) for the estimation of clay content. Spectral index, as suggested as a 

simple transferrable feature, was also explored on LUCAS data, but did not performed well 

on the estimation of clay content. Then, the pre-trained 1D-CNN model was further fine-tuned 

by field samples collect in the study area with spectra extracted from HyMap imagery, 
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achieved an accuracy of R2 = 0.601, RMSE = 8.62 and RPD = 1.54. Finally, the soil clay map was 

generated with the fine-tuned 1D-CNN model and hyperspectral data. 

4.2 Introduction 

Soil spectroscopy has the capability to rapidly and non-destructively analyse soil 

properties by taking advantage of visible near-infrared shortwave infrared (Vis–NIR–SWIR) 

spectral information [3,26,77,87,115]. There are numeral studies related to the reliable 

estimation of soil properties using prepared soil samples and measured spectral data 

[7,8,34,116]. Although the relationship between soil properties and the corresponding spectra 

is complex and soil spectroscopy is less accurate than wet chemistry, it still achieved great 

success in laboratory studies, which naturally leads to the exploration of imaging 

spectroscopy (IS) for characterising soil properties at large scales. It not only has the capability 

of obtaining spectral information at several hundred spectral bands as laboratory 

spectroscopy does, but also provides a spatial view, which cannot be achieved by laboratory 

techniques [117]. IS technology provides the opportunity to map various soil properties at 

regional and global scales at comparatively low costs. 

The spectral features and quantitative estimation of clay content in soil have been 

explored in previous studies [118–121]. In Reference [45], the clay content was demonstrated 

to be strongly correlated with the clay minerals in soil and the principal characteristic bands 

were related to the lattice hydroxyl groups. Clay minerals have characteristic absorptions near 

1400 nm and 2200 nm [26]. The absorption feature near 1400 nm is due to overtones of the O-

H stretch vibration, while the absorption near 2200 nm is due to Al-OH bend plus O-H stretch 

combinations. A clay spectral index was further proposed using the absorption feature near 

2200–2300 nm in Reference [31]. The performance of spectra measured in the well-controlled 

laboratory and acquired from IS sensors has been assessed by many case studies for soil 

property estimation [122–126]. The accuracy using imaging spectroscopy is comparatively 

lower than the result obtained from laboratory spectroscopy, as the application of imaging 

spectroscopy in the assessment of topsoil properties is constrained by many factors, such as 

the low signal-to-noise ratio, atmosphere attenuation, revisiting time, sensor radiometric and 

spatial resolutions, vegetation coverage and Bidirectional Reflectance Distribution Functional 
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(BRDF) [16,127]. The distance from the sensor to soil samples is often between 1 and 140 cm 

in the laboratory [22] while the IS has a much far distance, like the satellite-borne Hyperion 

hyperspectral flying at 705 km altitude [128]. The calibration and performance of different 

sensors are also determinants of the quality of measured spectra. Soil samples are often 

illuminated with 1-6 light sources [22] in the laboratory while air- or satellite-borne 

hyperspectral imagery is obtained under solar illumination. Besides, laboratory soil samples 

are dried, crushed and sieved while imaging targets in the field are natural surfaces with 

heterogeneous surface temperatures, moisture levels and roughness [6]. Moisture effects on 

the soil spectral reflectance have been studied extensively [115,129]. The overall reflectance 

generally decreased, with an increasing amount of moisture. Furthermore, the absorption by 

water in the SWIR region impacted clay-associated absorption features [130]. These factors 

lead to spectral differences between laboratory and remotely sensed data. 

Soil spectral libraries can be used as a reference for retrieving soil attributes by reflectance 

spectroscopy. Calibrations are not reliable for soils not represented in the soil spectral library, 

hence there is a need for building libraries representative of the soil diversity [17,18] and an 

increasing number of large-scale soil spectral libraries established at national, continental and 

even global levels. As a key innovation, near and mid-infrared spectroscopy are used for soil 

analysis in the collaborative Africa Soil Information Service (AfSIS) project, which covers an 

area, including about 17.5 million km2 of continental sub-Saharan Africa (SSA) and almost 0.6 

million km2 of Madagascar [94]. In the first period (2009–2012) of Land Use/Land Cover Area 

Frame Survey (LUCAS), which is an extensive topsoil survey that is carried out across the 

European Union to derive policy-relevant statistics on the effect of land management on soil 

characteristics, soil spectra of about 20,000 topsoil samples were acquired in the range of 400–

2500 nm and extensively studied [24,34,85,86,103,131]. A new LUCAS sampling campaign will 

be undertaken in 2018 [19]. A voluntary collaborative project was started in 2008 to develop a 

global library of soil spectra, and 23,631 soil spectra have been contributed to the global 

database by around 45 soil scientists and researchers from 35 institutions [8]. In addition, there 

are a number of national and regional soil spectral libraries have been established, such as the 

ones for Australia [20], Czech Republic [21], Brazil [22] and China [10]. A soil library typically 

contains soil attributes as done by wet chemistry standard methods and reflectance spectra 

acquired under a routine protocol and spectrometer. However, there is still lack of protocols 
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for soil spectral measurements. The internal soil standard (ISS) concept is proposed to make 

soil spectra from different libraries sharable by minimising the systematic effects [132,133]. 

Large soil spectral libraries should help to reduce or even save the need to collect and 

analyse new samples for site-specific calibrations to estimate soil properties, and it could be a 

strong base for hyperspectral remote sensing of soils from space [3]. The laboratory soil 

spectra may enable appropriate validation of the reflectance information acquired from IS 

sensors. However, there are still few studies integrating IS with laboratory studies [4–

6,134,135]. In Reference [127], it is pointed out that calibration models developed from 

laboratory processed samples cannot be utilised for field spectroscopy, due to the influence of 

external environmental factors (such as soil moisture, soil roughness, atmospheric effect and 

vegetation coverage). Furthermore, spectroscopic models achieved by common calibration 

methods are usually not transferrable. An important drawback of Partial least squares (PLS) 

regression is the complexity of the transfer of spectroscopic models from one sensor to another 

[5,136]. When samples to be predicted are far away from the spectral library, the regression 

algorithm is prone to fail in producing reliable model soil predictions [24]. 

It is suggested that spectral indices may provide an alternative method to PLS regression 

for quantifying soil contents in situations where calibration models should be transferred 

between different spectrophotometers [137]. The soil organic carbon (SOC) estimation was 

carried out using simple and multiple linear regression techniques based on image reflectance 

values and spectral indices, which confirmed that spectral indices have potential to be 

transferred among airborne and satellite hyperspectral sensors [138]. Spectral indices can be 

viewed as simple transferable features developed by combining surface reflectance at two or 

more wavelengths that indicate relative abundance of features of interest. A number of soil 

spectral indices have been proposed for the estimation of SOC, soil salinity, soil clay and iron 

[30,31,137,139]. Transfer learning aims to propagate the knowledge from a source domain to 

a target domain [140]. Therefore, it has the potential to make calibration models transferable 

from one sensor to another. Transfer learning with the pre-trained convolutional neural 

network (CNN) model has been proposed for remote sensing. CNNs can learn representative 

and discriminative features in a hierarchical manner from the data [81], and have recently 

been widely used in various remote sensing data analysis tasks, such as classification, 

segmentation, object detection, image registration, and change detection [141–145]. A 
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comprehensive review and list of resources using CNNs for remotely sensed data can be 

found in Reference [146]. The transferability of the natural image features from the pre-trained 

CNN models has been explored to the limited amount of high-resolution remote sensing scene 

datasets with the feature coding methods [147]. The advantage of adopting pre-trained CNN 

models is the effective extensible properties for dealing with the high-resolution remote 

sensing imagery scenes with limited labelling. A transfer learning method with fully pre-

trained CNNs (CNN-FT-Full) was proposed to overcome the separation of asynchrony of 

different parts of the transferred CNNs during the learning process, and it performed well on 

land-use classification with high-resolution remote sensing images [148]. In Reference [149], 

transfer learning was proposed to transfer knowledge learned from a large amount of 

unlabelled SAR scene data (50,000 image patches extracted from TerraSAR-X scene images) 

to SAR target recognition tasks. However, there are still few studies using pre-trained CNN 

models in soil spectroscopy. 

The objective of this study is to explore the potential of transfer learning for soil clay 

mapping using hyperspectral imagery and a pre-trained CNN model developed from a large 

number of spectra measured in the laboratory. Descriptions of laboratory and airborne 

spectral data are given in Section 2.1. The proposed workflow and model performance metrics 

are presented in Section 2.2. The results of the calibration and validation for soil clay content 

retrieval using laboratory-derived spectral library and the transferability for airborne spectral 

data are presented and subsequently discussed in Section 3. Conclusions are given in Section 

4. 

4.3 Materials and Methods 

4.3.1 Datasets 

4.3.1.1 The LUCAS Soil Spectral Library 

The first dataset utilised for developing and evaluating the pre-trained one-dimensional 

convolutional neural network (1D-CNN) model is LUCAS soil spectral library, which contains 

approximately 20,000 geo-referenced soil samples that collected and analysed across Europe 

[67,68]. A standardised sampling procedure was adopted to collect around 0.5 kg of topsoil 
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(0–20 cm) in the field. The distribution of LUCAS soil samples can be seen in Figure 4.1. Soil 

samples can be divided into mineral and organic soils according to [86]. Soil spectra were 

measured using a FOSS XDS Rapid Content Analyser, operating in the 400–2500 nm 

wavelength range, with 0.5 nm spectral resolution. Pre-processed included transformation of 

absorbance (A) spectra into reflectance (1/10A) spectra and Savitzky-Golay Filter with a 

window size of 50, second order polynomial. The laboratory spectral data were resampled to 

be in consistent with bands of the HyMap imagery, so that the model developed using LUCAS 

data can also accept HyMap data as inputs. 

.  

Figure 4.1 Distribution of mineral and organic soils from the LUCAS soil spectral library. 

4.3.1.2 Cabo de Gata-Nijar hyperspectral imagery  

The second dataset is the hyperspectral imagery acquired in the Natural Park Cabo de 

Gata-Níjar in the Almeria province of southeastern Spain. Our study focuses on a small area 

at Cortijo del Fraile, which is an agricultural area in the middle of the park with mostly bare 
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fields at the time of the overflight. In June 2005, airborne hyperspectral data were obtained 

over the small area with the HyMap sensor (Baulkham Hills, NSW, Australia) [150]. It 

provided spectral images after processing to geocoded reflectance covering the spectral range 

of 400 to 2450 nm with a spectral resolution of 12 to 17 nm [43]. The average flight altitude of 

2645 m above sea level resulted in a spatial resolution of 5 m. The raw HyMap data were 

corrected to at-sensor-radiance based on calibration coefficients obtained during laboratory 

calibration by HyVista. The atmospheric correction was performed with ATCOR4 software. 

A mask was applied to the airborne data to keep pixels of bare soil surface only. The soil mask 

(Figure 2B)was created following the approach provided by ENSOMAP software, which is an 

open source tool for quantitative soil properties mapping based on hyperspectral imagery 

[151]. 

32 soil samples were randomly taken from the upper soil surface (0–2 cm) in the study 

area and the corresponding locations can be seen in Figure 4.2A. Samples were air dried and 

passed through a 2 mm sieve before laboratory analysis. The particle size distribution was 

determined by wet sieving the sand fraction and using the pipette method for silt and clay 

fractions after the removal of organic matter with H2O2 and dispersion with Na-

hexametaphosphate. The clay content values of field samples vary between 8.4% and 63.4%. 

Collected soil samples were randomly divided into two subsets with a ratio of 1:1 to calibrate 

and validate the fine-tuned model. A brief statistical summary can be seen in Table 4.1. 

Table 4.1. Statistics of soil clay content for the calibration and validation dataset. 

Dataset Number Mean (%) 
Standard 

Deviation (%) 
Min (%) Max (%) 

Calibration 16 30.2 14.1 10.8 63.4 

Validation 16 27.7 13.6 8.4 50.2 
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Figure 4.2 HyMap imagery (A) and the soil mask (B) in the study area Cabo de Gata-Nijar. 

The locations of field samples were shown in green squares. 

4.3.2 Methods 

The proposed workflow was shown in Figure 4.3. Spectral measurements of soil samples 

were acquired in the well-controlled laboratory and the corresponding soil properties were 

also retrieved by conventional chemical/physical analysis. A 1D-CNN model as mentioned 

before was developed based on the soil spectral library and will be used as the base model for 

further analysis. Sixteen field samples collected in the study area were used to fine-tune the 

pre-trained 1D-CNN model and the others 16 were for the independent validation. It is 

pointed out that normalized spectral indices have the potential to be transferred between 

sensors. Therefore, a spectral index for soil clay is also explored on the large-scale soil spectral 

library. 
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Figure 4.3 Schematic diagram of proposed workflow on transfer learning for soil property 

mapping. 

4.3.2.1 Convolutional neural networks  

The CNN is composed of multiple feature generation stages, each of which includes a 

convolutional layer, a nonlinearity layer and a pooling layer. After several feature generation 

stages, the CNN is often followed by one or more fully-connected layers and a final classifier 

layer for classification tasks. In this study, we adopt the CNN for the estimation of soil clay 

content, which is continuous data instead of categorical data. For example, the clay content 

values for LUCAS mineral soils range from 0.0 to 79.0%. Therefore, we use a regression layer 

to replace the final classifier layer. The architecture can be seen in Figure 4.4. 

A soil spectrum can be regarded as a 2D image whose height is equal to 1 [152]. Therefore, 

the size of input layer can be viewed as n × 1 , and n is the number of bands. Each 

convolutional layer contains a number of 1D filter kernels with the size of k × 1 , which 

generate feature maps when applied to the input spectral data. The number of layers, the 

kernel size and the number of kernels in the convolutional layers are hyperparameters that 

set manually. In this study, we use four convolutional layers and the number of filter kernel 
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was set to (32,32,64,64). The size of filter kernel is 3. The weights in the kernels are learnt using 

the back propagation (BP) algorithm with labelled training dataset. The main benefit is that 

feature maps used in the classification or regression are learnt from data without any manual 

feature extraction [153]. 

 

Figure 4.4 The architecture of the CNN for hyperspectral data classification (modified from 

[154]). 
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4.3.2.2 Transfer learning based on the pre-trained 1D-CNN model 

It is pointed out that there are two ways to apply transfer learning with deep networks 

[155]. One possibility is to utilize the pre-trained network with the learned weights to obtain 

features that would be subsequently used in the new problem as shown in Figure 4.6. Feature 

generation layers, prior to the last fully-connected layer, are frozen and the outputs of the 

CNN constitute learnt features. Another option is to fine-tune the pre-trained network 

weights by training the network with the new dataset. As we are trying to make model 

transferrable between different sensors, the second method was adopted to fine-tune the 

whole pre-trained CNN model. 

The LUCAS data is classified into two categories: mineral and organic soils. We first use 

mineral soils to build a CNN model as described before and the CNNs typically have a large 

number of parameters and require a significant amount of training data. We use the spectra 

extracted from hyperspectral data at the location of field samples and the corresponding soil 

clay content values to fine-tune the pre-trained CNN model. Finally, the fine-tuned model is 

applied to the whole hyperspectral image so as to obtain the soil clay content map in the study 

area.  

4.3.2.3 Spectral index for soil clay content 

Clay minerals are characterised by absorption features near 2200-2300 nm. The location 

of the clay absorption peak was identified at 2209 nm with the following two bands 

representing the shoulders of the absorption peak: 2133 nm and 2225 nm. Using these bands, 

a short-wave infrared fine particle index (SWIR FI), as shown in Equation (4.3), was proposed 

by [31] and implemented in ENSOMAP software. 

SWIR FI =  
(�2133 ��)�

�2225 �� × (�2209 ��)�
 (4.1)

4.3.3 Assessment 

The performance of calibration models for soil clay content was assessed by RMSE, R2 

and the ratio of percent deviation (RPD), which were calculated by the following equations: 

�� =
∑ (��� − �)��

���

∑ (�� − �)��
���

 (4.2)
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��� =  
��

����
 (4.4)

where, n is the number of validation samples, y is the measured value, � is the mean of the 

measured value, and �� is the estimated value. RPD is the ratio of the standard deviation (SD) 

of the calibration data to the RMSE of the validation data. It is commonly used to investigate 

the prediction error with variation in the data. 

4.4 Results and Discussion 

4.4.1 Interpretation of mineral and organic soils from LUCAS dataset 

The LUCAS dataset contains about 16,000 soil samples classified as mineral soils that 

were used to train the one-dimensional CNN model. About 660 organic soil samples 

containing clay information were used to test if CNN model developed by mineral soils is 

transferrable for organic soils. The histograms of soil clay content distributions of mineral and 

organic soils were shown in Figure 4.5A,B. Clay contents for mineral and organic soils were 

skewed forming long tails with only a few samples having values higher than 60%. The 

average clay content value for organic soils is 15% while for mineral soils is 17%. Organic soils 

have generally lower clay content as pointed out in Reference [86]. 

The mean soil reflectance spectra and standard deviations for mineral and organic soils 

were plotted in Figure 4.5C,D. The mean spectra of both mineral and organic soils have a 

similar curve shape whose reflectance values increase with increasing wavelength in the range 

of 500–1300 nm. The main spectral difference is that the mean reflectance spectrum for mineral 

soils demonstrates a higher albedo than spectra for organic soils as mineral soils have a lower 

level of SOC content. It is well known that higher levels of organic material lead to darker 

soils, and soil reflectance decreases with increasing SOC content especially in the spectral 

range of 600–750 nm as observed in References [30,156]. 

The mean soil continuum-removal (CR) spectra and standard deviations for mineral and 

organic soils were also shown in Figure 4.5E,F. CR spectra can be used to isolate and identify 
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characteristic absorptions of minerals, organic compounds, and water in soils [8]. Both 

mineral and organic soils showed absorption peaks near 600, 1400, 1900 and 2300 nm. The 

absorption depths near 600 and 2300 nm for organic soils are much deeper than mineral soils. 

The highest correlation between double square-root of the SOC content (SOC1/4) and 

reflectance is found in the visible region, with a maximum around 600 nm [30]. Around 2300 

nm (2309 and 2347 nm) are combinations and overtones of the C-H group, which is 

characteristic of different organic substances [157]. Mineral soils also have an absorption peak 

near 2200 nm, which is correlated with clay content [158]. Organic soils have absorption peaks 

near 1720 nm, which correlated with SOC. 

 

Figure 4.5 (A-B) are histograms of soil clay content distribution of mineral and organic soils; 

(C-D) are mean soil reflectance spectra (black lines) and standard deviations (blue lines, lower 

and upper boundaries) for mineral and organic soils; (E-F) are mean soil continuum-removal 

spectra (black lines) and standard deviations (blue lines, lower and upper boundaries) for 

mineral and organic soils. Values are given in reflectance (C-D) and normalised continuum-

removal values (E-F). 
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4.4.2 1D-CNN and spectral index for LUCAS soil clay content estimation 

In the architecture of 1D-CNN, four convolutional layers were adopted with weights 

initialised by a uniform distribution. The optimiser is adamax [159] and loss function is mean 

squared error (MSE) to train the model. (R2 = 0.834, RMSE = 5.31 and RPD = 2.42). 

Before fine-tuning the pre-trained 1D-CNN model using organic soils, the number of 

neurons in the fully-connected layer was reduced from 32 to 16 so as to reduce the training 

parameters. The result is (R2 = 0.756, RMSE = 7.07 and RPD = 2.26). We also tried to directly 

apply the pre-trained 1D-CNN model without fine-tuning and achieved a comparatively poor 

accuracy (R2 = 0.378, RMSE = 11.29 and RPD = 1.42), as shown in Figure 4.6B.  

 

Figure 4.6 Results of soil clay content estimation for LUCAS mineral and organic soils using 

1D-CNN and transfer learning. (A) is the scatter plot of measured and estimated clay content 

for mineral soils obtained by 1D-CNN model. (B) is for organic soils using the pre-trained 1D-

CNN model developed by mineral soils without fine-tuning. (C) is for organic soils by fine-

tuning the pre-trained 1D-CNN model. 
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The absorption feature near 2200 nm for the mean spectrum of mineral soils was shown 

in Figure 4.7A. For mineral, the absorption peak is at 2207 nm which is very close to 2209 nm 

as adopted in the spectral index of SWIR FI. The depth is 0.971 and the full-width at half-

maximum (FWHM) is 30 nm. However, there is no observed absorption feature near 2200 nm 

for organic soils. Spectral index failed on both mineral and organic test dataset as shown by 

the scatter plots between SWIR FI and soil clay content values in Figure 4.7B,C, especially for 

soil samples having clay content values greater than 20%. We also tried to adopt the equation 

for SWIR FI with bands at 2207, 2140 and 2225 nm for mineral soils but didn’t achieve much 

improvement. Therefore, we only consider transfer learning based on 1D-CNN for the 

following application with hyperspectral imagery. 

 

Figure 4.7. Absorption feature near 2200 nm for the mean spectrum of mineral soils (A) and 

scatter plots between soil clay contents and the corresponding SWIR FI values for mineral (B) 

and organic soils (C) 
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4.4.3 Application of transfer learning for soil clay content mapping using the pre-trained 1D-

CNN model 

The clay content values of field samples vary between 8.4% and 63.4%. The mean soil 

reflectance spectrum (black line) and standard deviation for spectra extracted from 

hyperspectral imagery at the locations of field samples were shown in Figure 4.8B. The overall 

albedo is lower compared to LUCAS mineral or organic soil spectra measured in the 

laboratory. The mean soil reflectance spectrum (black line) and standard deviation for spectra 

for CR spectra were shown in Figure 4.8C. The absorption depth near 1400 nm is much deeper 

than LUCAS soil spectra measured in the laboratory, which is caused by water absorption. 

 

Figure 4.8 (A) histogram of soil clay content distribution of soil samples collected from study 

area Cabo de Gata-Nijar; (B) mean soil reflectance spectrum (black line) and standard 

deviation (blue lines, lower and upper boundaries) derived from the hyperspectral image; (C) 

mean soil continuum-removal spectrum (black line) and standard deviation (blue lines, lower 

and upper boundaries). 
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The pre-trained CNN model was fine-tuned by field samples collected in the study area. 

The accuracy (R2=0.601, RMSE=8.62 and RPD=1.54) is lower than the result obtained from 

LUCAS organic soils. The fine-tuned model was applied to the whole hyperspectral image 

except for the non-bared soil pixels. From the histogram of clay content (Figure 4.9B), it can 

be seen the distribution of soil clay content was also skewed forming long tails and the 

majority of soil clay values fallen in the range from 10% to 40%. For clay content map (Figure 

4.9C), non-bared soil pixel values were set to 0 and clay content values greater than 50% were 

set to 50%. 

 

Figure 4.9 Results of transfer learning for soil clay mapping using hyperspectral imagery and 

the pre-trained CNN model. (A) is the scatter plot between measured and estimated clay 

contents for testing data; (B) is the histogram of soil clay content distribution of derived soil 

clay map without considering masked non-bared soil pixels; (C) is the soil clay map in the 

study area with masked non-bared soil pixel values set to 0. 
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4.4.4 Comparison between spectral index and transfer learning 

Spectral index is a simple and easy implemented algorithm that often only use few bands 

rather than the full visible near-infrared spectral range. It is particularly efficient in deriving 

information that relies on the specific spectral response of the targeted object [160]. Although 

it is suggested spectral index is transferable from one sensor to another, SWIR FI proposed by 

[31] showed little correlation with the clay content of LUCAS soils, especially for soil samples 

having clay content higher than 20%. The absorption peak around 2200 nm for mineral soils 

is slightly different from what observed by [31]. It is pointed out that indices obtained using 

one instrument could be significantly different from the same indices obtained using other 

instruments [161]. For organic soils, there is no absorption peak around 2200 nm because of 

extremely spectral diverse compared with mineral soils. Therefore, it is still difficult to directly 

use the spectral index for the transferable study of soil properties, especially for different soil 

categories. 

Transfer learning is proposed based on deep learning (DL). With LUCAS mineral soils, 

the 1D-CNN obtained an accuracy (R2) of 0.834. Organic and mineral soils from LUCAS data 

were measured by the same instrument and in well-controlled laboratory. The main difference 

is the diversity of spectra. For the CNN model, it means the input domain is different. When 

trying to use the pre-trained 1D-CNN model developed from mineral soils, fine-tuning is 

required to make the model transferrable from source domain to target domain. By doing that, 

the R2 value improved from 0.378 to 0.756. DL provides an end-to-end learning approach with 

no need for feature engineering. Unlike many prior regression approaches, DL models can be 

trained on additional data without restarting from scratch, making them viable for continuous 

learning. Therefore, it is possible to reuse a DL model trained from the large-scale spectral 

library for local-scale soil property quantification, which makes DL applicable to fairly small 

datasets. The transferred calibration model obtained an accuracy of 0.601 for soil clay content 

mapping, which was comparatively lower than achieved by the spectral library. It is pointed 

out that surface spectral data are generally affected by the confounding effects of soil moisture 

and soil roughness [162]. Water absorption contributed to the spectral difference between 

laboratory and airborne hyperspectral data, as shown in Figure 4.8. Soil moisture has a strong 

influence on the amount and composition of reflected and emitted energy from the soil surface. 

Most importantly, water absorption features near 1400 and 1950 nm will mask important 
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spectral information associated with soil variables, including clay [130,163]. A direct 

standardization (DS) method was proposed to correct the difference between instruments [164] 

and successfully utilised to reduce the effects of soil moisture and other environmental factors 

on field Vis–NIR–SWIR spectra [10,165]. For the CNN model, choosing the optimal 

architecture and training it optimally are still open questions. It is hard to comprehend what 

is going on under the hood of DL algorithms [40], which could be a problem for non-experts 

to develop effective DL algorithms or adopt it to different study areas. Besides, it is difficult 

for CNN to directly incorporate spectral information with other soil properties and location 

information like support vector machine, random forest and spectrum-based learner, which 

are very important to improve the estimation accuracies of soil properties. It should be 

pointed out that the proposed method for soil clay content mapping was only validated on 

very few samples, because of the limited available dataset, which constrains the 

generalizability and thus should be further explored by incorporating more soil samples. 

4.4.5 Large-scale soil spectral library for digital soil mapping at the local scale using 

hyperspectral imagery 

There are some studies relate to the retrieval of soil properties by taking advantage of 

large-scale spectral data. The potential of the LUCAS database for the SOC estimation in 

Belgium and Luxembourg was investigated in Reference [134]. The LUCAS dataset was 

divided into several classed using a cluster analysis. PLS regression models were calibrated 

for each class and then adopted to estimate the SOC content on the soil spectra of the 

calibration datasets of the same class. Soil samples were scanned by the same instrument that 

used for the LUCAS dataset. The achieved RPD values for the proposed methods were 

between 1.41 to 2.24. A bottom-up approach was further developed to estimate SOC using 

hyperspectral imagery [4] and achieved RPD values of 1.7 for Luxembourg data and 1.4 for 

Belgium data. The PLS regression models developed using the LUCAS dataset were applied 

to field soil spectra measured in the laboratory instead of hyperspectral imagery. Besides, this 

approach requires that the large-scale spectral library should contain spectra that closely 

match those of the local soil samples. For transfer learning, it does not have such a limitation, 

but it requires a few soil samples to fine-tune the pre-trained model, as demonstrated in the 

study of transferring the classification model developed using ImageNet to remotely sensed 
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images [147]. The soil clay content map was generated from airborne hyperspectral data by 

transferring laboratory regression models with methods of model updating, Repfile, Transfer 

by Orthogonal Projection (TOP) and Piecewise Direct Standardization (PDS) [6]. Transferred 

models showed better performance than the laboratory model calibrated without transfer. 

These methods are used to address factors that cause spectral distortions resulting from the 

different measurement conditions, while transfer learning is a more general approach to 

develop a transferrable model instead of aiming to solve the spectra standardization problem. 

However, the above-mentioned methods, including transfer learning are limited to bare fields 

as the presence of the vegetation may contribute to the spectral confusion with soil reflectance 

[166]. Spectral mixture analysis was adopted in Reference [5], to extend the mapping 

capability up to a vegetation coverage of 40% using a feature-based multiple linear regression 

model. 

Soil property model is often calibrated using field samples collected in the same area, 

which generally yields the best prediction accuracy. This is because the samples used for 

calibration are geographically close to the target site and thus are expected to have soil 

properties and spectral responses that are similar to the target samples [19]. However, it often 

requires large amounts of field work and many hours or days processing the data. It would 

be great if the model can take advantage of available existing soil libraries. However, it is 

pointed out that there are still few studies combing the use of laboratory, proximal, and 

remote spectroscopic sensing research. One reason might be that there are significant 

challenges posed by the inherent differences between the standardised laboratory 

measurements and those made under natural conditions [8]. The signal-to-noise ratio of air- 

or space-borne hyperspectral data is relatively low compared to laboratory data, due to a low 

integration time over the target area [158]. The application of imaging spectroscopy is also 

restricted by atmosphere attenuation, revisiting time, sensor radiometric and spatial 

resolutions, and BRDF effects. While the effort is putting on reducing the effect of water and 

other environmental factors, the soil community should also be aware of advancements like 

DL. Although the model for airborne hyperspectral data was less accurate than the laboratory 

model, it demonstrated the potential of utilising laboratory spectra and hyperspectral imagery 

for soil property mapping, and it will continuously benefit from the advancement of DL 

research.  
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4.5 Conclusions 

In this paper, we investigated the potential of using a pre-trained CNN model for the 

estimation of soil clay content. The success of DL provides a promising approach to mapping 

soil properties using hyperspectral data with large-scale soil spectral libraries. A 1D-CNN 

approach was proposed to the estimation of soil clay content and achieved an accuracy (R2) of 

0.834 with LUCAS mineral soil dataset. The 1D-CNN model was further fine-tuned by soil 

samples collected in the field with spectra extracted from the hyperspectral imagery. The 

transferred model obtained an accuracy (R2) of 0.601 for regional soil clay content mapping. 

To the best of our knowledge, this is the first case study adopting CNN-based transfer learning 

for soil spectroscopy. However, the proposed approach was tested only on a limited area, and 

its application to practice is still open, especially to areas with different soil conditions. Besides, 

the proposed method is limited to bare soils, and the influence of external factors, including 

vegetation coverage and soil moisture should be further studied. Although the result obtained 

by the hyperspectral imagery is still not compatible to laboratory spectroscopy, the CNN-

based transfer learning provides a new way to make use of both large-scale spectral libraries 

and hyperspectral data to map soil properties. 
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5.1 Abstract 

Soil spectroscopy is a promising technique for soil analysis, and has been successfully 

utilised in the laboratory. When it comes to space, the presence of vegetation significantly 

affects the performance of imaging spectroscopy or hyperspectral imaging on the retrieval of 

topsoil properties. The Forced Invariance Approach has been proven able to effectively 

suppress the vegetation contribution to the mixed image pixel. It takes advantage of scene 

statistics and requires no specific a priori knowledge of the referenced spectra. However, the 

approach is still mainly limited to lithological mapping. In this case study, the objective was 

to test the performance of the Forced Invariance Approach to improve the estimation accuracy 

of soil salinity for an agricultural area located in the semi-arid region of Northwest China 

using airborne hyperspectral data. The ground truth data has been obtained from an eco-

hydrological wireless sensing network. The relationship between Normalized Difference 

Vegetation Index (NDVI) and soil salinity is discussed. The results demonstrate that the 

Forced Invariance Approach is able to improve the retrieval accuracy of soil salinity at a depth 

of 10 cm, as indicated by a higher value for the coefficient of determination (R2). Consequently, 

the vegetation suppression method has the potential to improve quantitative estimation of 

soil properties with multivariate statistical methods. 

5.2 Introduction 

In arid and semi-arid areas, soil salinization is one of the major threats to agricultural 

production, which could be caused by incorrect or careless irrigation [167]. The significant 

impacts of soil salinity on the soil-water-plant system can reduce the nutrient absorption and 

lead to a considerable decrease of crop productivity [168,169]. Remote sensing has been shown 

to be a particularly valuable tool for monitoring soil conditions frequently and spatially 

[3,170,171]. The presence of salts can be detected directly on bare soils with salt crust via the 

variation of spectral reflectance, and the spectral behaviour of salt has been studied in detail 

[172,173]. However, the ability to map soil salinity using the direct approach is limited, 

especially in agricultural areas [174,175]. The biophysical characteristics of vegetation can 

serve as an indirect sign of soil salinity, as plants subjected to salinity stress typically have 
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lower photosynthetic activity, causing increased visible reflectance and reduced near-infrared 

reflectance from the vegetation. Therefore, various indices have been proposed for assessing 

and mapping soil salinity, such as the Soil Adjusted Vegetation Index (SAVI), Normalized 

Difference Salinity Index (NDSI) and Salinity Index (SI) [176–178]. Al-Khaier [179] achieved 

an accurate detection of soil salinity by a normalized salinity index in bare agricultural soils 

using ASTER bands 4 (near-infrared) and 5 (short-wave infrared). Additionally, Khan [180] 

successfully used NDSI with the near-infrared and red bands of the Indian Remote Sensing 

LISS-II sensor to map soil salinity. 

Soil salinity indices usually only take advantage of a few bands, and are suitable for 

multispectral remote sensing images. A lot of success has been achieved in mapping severely 

saline areas or differentiating between saline and non-saline soils, but it is still difficult to 

quantitatively retrieve soil salinity [181]. Hyperspectral remote sensing or imaging 

spectroscopy provides high-resolution data that contains detailed spectral information of soils, 

and makes it possible to establish models for quantitative estimation of soil salinity. Imaging 

spectroscopy can not only be used for geology, water and vegetation applications, but also 

provide a promising method for obtaining soil properties at the large scale, especially with 

the new hyperspectral sensors, such as EnMAP, HSUI, and HyspIRI [3,11,34,131,182].  

Many factors are constraining the application of imaging spectroscopy in the field or from 

space, such as low signal-to-noise ratio, atmosphere attenuation, sensor resolution and 

Bidirectional Reflectance Distribution Functional (BRDF) effects, especially for the thin upper 

soil layer. Thus, optical remote sensing of soils from large distances is a significant challenge 

[16,77]. In the agricultural area, one of the main problems is spectral mixing. The vegetation 

coverage and remains might be presented in the image pixel and contribute to creating 

spectral confusion with soil reflectance [183,184]. Additionally, spectral absorption and 

reflection vary according to the type of vegetation. Therefore, removing the effects of 

vegetation on the soil reflectance spectra is an important research topic. 

Spectral Mixture Analysis (SMA) is one of the most common techniques used to reduce 

the contribution of vegetation and to derive quantitative endmember abundance from 

hyperspectral data [14]. The HyMap hyperspectral imagery was utilised to characterise and 

map irrigation-induced soil salinization, and a mixture-tuned matched filter (MTMF) 

approach was assessed to extract and map spectral endmembers from HyMap imagery [185]. 
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The spectral capabilities of upcoming EnMAP were also evaluated to extract quality 

endmember classes that contain spectral features related to active photosynthetic vegetation 

(PV), non-photosynthetic active vegetation (NPV) and bare soil (BS). The estimated spectral 

cover can be integrated into soil erosion models using the linear unmixing method [186]. 

Franceschini [14] assessed pixel-fractional cover corresponding to bare soil using the linear 

unmixing method, and applied it to the prediction of soil properties. The model without 

taking into account the bare soil fractional cover showed a lower accuracy. SMA approaches 

often assume that endmember cover fractions contained in image pixels are linearly summed. 

The sub-pixel cover fraction of each land-cover endmember may be plants, bare soil or other 

constituents. Therefore, it is required that the observations contain enough information to 

solve a set of linear equations. These endmembers are usually selected either from the image 

data or existing spectral libraries [187]. The problem is that referenced spectra for soils are 

often considered to be stable or unique, and the effects of soil properties on the spectra are not 

included in the models because they are unknown [188]. The Forced Invariance Approach 

was proposed by [189] to overcome the effects of vegetation on spectral discrimination of the 

underlying lithological substrate. It utilises scene statistics and requires no detailed 

knowledge of the reference spectra of endmembers nor any complex mixing models, and has 

been successfully applied in archaeology and geological mapping using multispectral and 

hyperspectral data [189–191]. However, to date, there exist few studies that have analysed 

whether the Forced Invariance Approach is suitable for soil spectroscopy. The accuracies of 

soil property estimation in the agricultural area are expected to be improved by vegetation-

suppressed spectra without requiring extra field work. 

The Forced Invariance Approach is focused on the production of contrast-enhanced 

colour composite images, which are generally used for further visual analysis and 

identification of lithological or urban features. Its performance on soil analysis has not been 

tested yet. The objective of this paper is to explore its feasibility to improve soil salinity 

estimation in the agricultural area. The data source was limited to airborne hyperspectral 

images. For the first time, the Forced Invariance Approach was adopted to improve the 

quantitative estimation of soil salinity at a depth of 4 cm and 10 cm by integrating eco-

hydrological wireless sensor network data in an experimental agricultural area [192,193]. The 

possibility and the performance of vegetation suppression using the Forced Invariance 
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Approach were discussed, and the results demonstrated that the accuracy of the 

determination of soil salinity at a depth of 10 cm had been improved. The vegetation 

suppression method is not only suitable for qualitative analysis, as used in lithological 

mapping, but also has the potential to improve quantitative estimation of soil properties. 

5.3 Material and methods 

5.3.1 Study area of Zhangye Oasis 

The study area is located in Zhangye Oasis in the middle stream of the Chinese Heihe 

River Basin (100°04′ E, 39°15′ N). The oasis is located in the Gobi Desert, situated in the arid 

and semi-arid region of Northwest China (Figure 5.1) [194]. The mean annual precipitation 

and temperature are 121.5 mm and 6 °C, respectively. Most of the precipitation occurs 

between July and September. The average annual precipitation varies from 100 to 250 mm, 

whereas potential annual evaporation ranges from 1200 to 1800 mm, which is ten times higher 

than the average annual precipitation [195]. Land cover types include wetland, grassland, and 

farmland. Corn is the main plant in the study area. Irrigation water in the study area is mainly 

supplied from the middle reaches of the Heihe River. Soil properties (bulk density, texture, 

and organic content) vary in the study area, and soil samples have been determined to be silt-

loam with sand (9–36%), silt (56–81%), and clay (5–19%) [196]. 

 

Figure 5.1 Location of study area and the distribution of wireless sensor network nodes. 
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5.3.2 Data description 

5.3.2.1 Eco-Hydrological wireless sensor network data 

As part of the eco-hydrological wireless sensor network (WSN), in 2012 48 nodes were 

installed in the middle stream of the Heihe River Basin, covering both the Yingke and Daman 

irrigation districts of Zhangye Oasis (Figure 5.2). Data was recorded from the Hydro Probe II 

sensors [193] every 10 min at two different depths: 4 cm and 10 cm. Recorded information 

included date and time of reading, soil temperature, soil moisture, electrical conductivity (EC, 

soil salinity) and soil conductivity. Salinity can be viewed as the total concentration of all 

dissolved salts in water. Salinity can be measured by a complete chemical analysis called total 

dissolved solids (TDS), which is difficult and time-consuming. More often, salinity is not 

measured directly, but is instead derived from the conductivity measurement. There is a high 

correlation between electrical conductivity (EC) and total dissolved solids (TDS). In this study, 

we mainly use the EC values from the eco-hydrological wireless network database. The data 

corresponding to the date of the flight campaign was used to test the performance of the 

forced invariance method for the estimation of soil salinity in the agricultural area.  

 

Figure 5.2 Sensor node and router of the wireless sensor network. 

5.3.2.2 CASI Airborne hyperspectral data 

The flight across the Heihe River Basin was conducted on 29 June 2012 at an altitude of 

2000 m above, as part of the Heihe Watershed Allied Telemetry Experimental Research 

(HiWATER). The Compact Airborne Spectrographic Imager (CASI) 1500 developed by Itres 

Research Ltd. [197] was used to collect electromagnetic reflectance data. CASI 1500 is a visible 
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and near-infrared push-broom hyperspectral sensor with 48 spectral bands covering the 

spectral range from 380 nm to 1050 nm. It has a field of view (FOV) of 40° with 1500 across-

track imaging pixels, and the ground spatial resolution is 1.0 m. The radiometric parameter 

was calibrated in the calibration laboratory of the Institute of Remote Sensing and Digital 

Earth, Chinese Academy of Sciences, using an integrating sphere as the light source, which 

was developed by the Labsphere Corporation [198]. The raw data was converted from digital 

numbers after spectral and radiance calibration and geometrically corrected to a standard 

earth-centred coordinate system.  

5.3.3 Methods 

5.3.3.1 Vegetation suppression using the Forced Invariance Method 

When transferring soil spectroscopy from laboratory to nature, one of the most significant 

issues affecting the imaging capability of space-borne and airborne instruments is the 

presence of vegetation. It can obscure or even completely mask the spectral signatures of the 

underlying soil information. The Forced Invariance Method was originally developed by 

Robert Crippen and Ronald Blom (2001) [189]. It is supposed to de-correlate the vegetative 

component of the total signal on a pixel-by-pixel basis for each band by calculating the 

relationship of each input band with the vegetation index to overcome the effects of vegetation 

on spectral discrimination of the underlying lithological substrate. It takes advantage of 

information from red and near-infrared bands without requiring any specific priori 

knowledge of the scene. It has been successfully used in many fields using multispectral and 

hyperspectral data.  

In general, the idea is to fit a smooth curve to represent the relationship between the 

vegetation index and each band’s pixel value. By flattening these curves to a target value (such 

as the mean digital number value of each band), one can expect to remove the correlation with 

vegetation. The method can be implemented in the following sequential steps [190]: (1) dark 

pixel correction; (2) vegetation index calculation; (3) estimation of statistical relationship 

between vegetation index (VI) and digital number (DN) values for each band (Figure 5.3A); 

(4) calculation of a smooth best-fit curve for the above relationships (Figure 5.3B); and finally, 

(5) selection of a target average DN value ������� and scaling all pixels at each vegetation index 
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level by an amount that shifts the curve to the target DN. After curve flattening, the new value 

will be defined by the following equation [199]: 

���� = ��������� ×
�������

�����
  (5.1) 

where ���� is the vegetation-suppressed value, ���������  is the original pixel value and 

����� is the NDVI corresponding value. By suppressing the vegetation component, it has the 

potential to reveal not only the underlying geological and archaeological features, but also 

soil characteristics. 

 

Figure 5.3 Scatter plot (A) and best-fit curve (B) of Normalized Difference Vegetation Index 

(NDVI) and digital number (DN) values. 

The Forced Invariance Approach is based on the assumptions that 1) the distribution of 

vegetation across the terrain is independent of rock type and 2) rock albedo is not substantially 

correlated with the vegetation amount. In our case, this means that soil properties should have 

no or little correlation with the vegetation index, and that is why this approach has the 

potential to separate the contribution of vegetation from the target pixels. NDVI was chosen 

as the vegetation index in the Forced Invariance Approach because it varies much more with 

vegetation vitality than with variations in lithological variables. Therefore, to check if the 

approach can be applied to soil analysis, the correlation between NDVI and soil salinity 

should be examined. Soil moisture is also a major concern for agriculture. Engstrom (2008) 

[200] already pointed out that the correlation between soil moisture and NDVI was not 

significant in areas with little to no relief. 
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5.3.3.2 Spectral modelling of soil properties 

The relationship between spectra extracted from the hyperspectral image and soil 

properties was analysed using the Generalized Linear Model (GLM). The GLM is a flexible 

generalisation of ordinary linear regression that allows for response variables that have error 

distribution models other than a normal distribution. The study results from Yuan Huang 

[201] show that soil moisture, EC and clay content were log-normally distributed, while 

organic carbon, sand and silt content were normally distributed. Therefore, the Logit Link 

Function was chosen to model the correlation between spectral data and soil salinity in this 

study.  

Each pixel spectrum of the hyperspectral image comprehends a total of 48 bands, which 

would cause redundancy of information. Minimum Noise Fraction (MNF) is one of the most 

common methods to extract features from hyperspectral data, and can effectively reduce a 

large dataset into a smaller number of components that contain the majority of information. 

Therefore, MNF transform was performed to the mosaicked and subtracted airborne 

hyperspectral data using the ENvironment for Visualizing Images (ENVI) software. The data 

acquired by the vegetation suppression method was also transformed by MNF. The first 14 

MNF components were retained as the input variables. 

5.3.4 Model performance assessment 

For each soil property, the soil spectral quantitative model was developed on a random 

sample of two-thirds of the data using the GLM. The calibrations were tested by predicting 

the soil salinity (EC) on validation data sets composed of the remaining one-third of samples. 

The model accuracies were evaluated on estimated and measured soil salinity using RMSE 

and R2. 

�� =
∑ (��� − �)��

���

∑ (�� − �)��
���

 (5.2)

���� = �
1

�
� (��� − ��)�

�

���
 (5.3)

where n is the number of validation samples, y represents the measured values, � is the 

mean of the measured values, and �� is the estimated values.  
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5.4. Results and Discussion 

5.4.1 Correlation between NDVI and soil salinity 

The terrain in Zhangye Oasis is relatively flat. The correlation between NDVI and soil 

salinity at the depths of 4 cm and 10 cm are shown in Figure 5.4. The deviation from the fitted 

line demonstrated that NDVI basically has little correlation with soil salinity either at the 

depth of 10 cm or 4 cm. The Pearson values between NDVI and soil salinity were also 

calculated. The correlation at the depth of 4 cm has a slightly higher value (r=0.042) than at 

the depth of 10 cm (r=0.032). 

 

Figure 5.4 Correlation between NDVI and soil salinity (EC) at the depths of 4 cm (A) and 10 

cm (B). 

5.4.2 Vegetation suppression performance using the Forced Invariance Approach 

The vegetation cover, which is mainly corn in the study area, could hinder the acquisition 

of spectral signatures of the underlying soil information. The Forced Invariance Method is 

assumed to be applicable to the suppression of vegetation. From Section 3.1, we know that it 

is possible to take advantage of this method to enhance the soil information from the mixed 

spectra. To check the performance of the vegetation suppression method, the easiest way is to 

check the true colour image (false colour image is an alternative way) with the naked eye. It 

can be seen that, while the original image (Figure 5.5A) is dominated by vegetation, the green 

hue is not so obvious in the processed image (Figure 5.5B), and the latter one also shows some 

bare soil spots. Another approach is to take advantage of the NDVI which is one of the most 
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useful vegetation indexes. By comparing Figure 5.6A and Figure 5.6B it can be seen that the 

NDVI values are also significantly reduced. 

Figure 5.5 Comparison of airborne hyperspectral true colour images (R: 640.5 nm, G: 554.7 

nm B: 468.7 nm) before (A) and after vegetation suppression (B).  

Figure 5.6 Comparison of NDVI values of hyperspectral data before (A) and after vegetation 

suppression (B). 

As the dataset used in this study represents airborne hyperspectral imagery, we can 

further examine the effect of the Forced Invariance Approach using spectral lines. The corn 

and bare soil spectra measured by ASD Field Spec3 (obtained from Heihe Plan Science Data 

Centre) were taken as pure endmembers. The acquired spectra were compared to the spectra 

extracted from hyperspectral images at the pixel corresponding to sensor node 06 before and 

after vegetation suppression. The spectra comparison is shown in Figure 5.7. The soil 



 

88 
 

spectrum has no obvious absorption features. Although the spectrum from hyperspectral 

imagery at the specified pixel after vegetation suppression still has a similar shape with corn 

spectrum, the slop of “red edge” was reduced in height.  

 

Figure 5.7 Comparison between measured corn and bare soil spectra and the spectra at the 

location of the specified sensor node from hyperspectral images before and after vegetation 

suppression. 

5.4.3 Estimation of soil properties using airborne hyperspectral data 

To quantitatively evaluate the performance of the Forced Invariance Approach using 

airborne hyperspectral data for agriculture, the relationship between soil spectra and soil 

salinity were modelled using the GLM. The accuracy for soil salinity at the depth of 10 cm 

(R2=0.458) is slightly higher than at the depth of 4 cm (R2=0.445) using hyperspectral data 

without vegetation suppression (Figure 5.8), which is more obvious for results obtained from 

data with vegetation suppression (Figure 5.9). The reason is that surface soil is significantly 

influenced by exterior factors like irrigation and wind, and landscape fragmentation and 

complicated cultivation structure also contribute to the high spatial heterogeneity of the soil 

properties. Therefore, it is less stable and more heterogeneous at the depth of 4 cm than soil 

at 10 cm. 
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Figure 5.8 Regression plots between measured target values and estimated values before 

vegetation suppression for soil salinity at the depth of 4 cm (A) and 10 cm (B). 

By comparing Figure 5.8 and Figure 5.9, it can be seen that the accuracies for the 

estimation of soil salinity at the depth of 10 cm (R2=0.538) improved significantly after 

applying the Forced Invariance Approach, but not like at the depth of 4 cm (R2=0.43). Apart 

from the high spatial heterogeneity of surface soil properties, it might also be caused by the 

correlation to the NDVI. Although the correlation of soil salinity to NDVI was not significant, 

as revealed by Figure 5.4, soil properties at a depth of 4 cm still show a higher correlation 

value than at a depth of 10 cm. The modelling results showed that this approach performed 

better for soil salinity at the depth of 10 cm, which is in agreement with the assumption that 

the target property should have no or little correlation with the vegetation index. However, it 

does not guarantee that the model’s accuracy will be improved with the increase of soil depth 

due to the limited effective penetration depth of optical sensors.  
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Figure 5.9 Regression plots between measured target values and estimated values after 

vegetation suppression for soil salinity at the depth of 4 cm (A) and 10 cm (B). 

5.5. Conclusion 

The spatial distribution of soil salinity has important implications for soil and water 

resource management in arid and semi-arid agricultural regions. The present study examines 

the possibility to improve the estimation accuracy of soil salinity at different soil depths using 

imaging spectroscopy and vegetation suppression based on the Forced Invariance Approach 

which calculates images that are invariant relative to a specific spectral index, and where 

features represented by that spectral index will not appear in the resulting images because 

those features will not contribute to the variance. 

The relationship between NDVI and soil salinity in the study area indicates that there 

exists no significant correlation. The GLM developed using wireless network data and 

airborne hyperspectral data shows a better performance for soil salinity estimation at the 

depth of 10 cm than at 4 cm, and to the estimation accuracy (R2=0.538) for soils at the depth of 

10 cm after vegetation suppression improved when compared to the result (R2=0.458) obtained 

from the model built using hyperspectral data without vegetation suppression. However, the 

approach failed for soils at the depth of 4 cm. Hence, one should check carefully before 

applying the Forced Invariance Approach to improve quantitative soil analysis. Besides, the 

main drawback of the vegetation suppression algorithm is a severe distortion of the spectral 



Chapter 5 

91 
 

values in non-vegetated areas. The masking technique should be considered in the mapping 

procedure to keep pixel values from bare soil or sparse vegetation unchanged. The presence 

of vegetation restrains the application of hyperspectral imagery in retrieving underlying soil 

properties. The Forced Invariance Approach cannot only produce contrast-enhanced colour 

composite images for lithological mapping but also has the potential to contribute to the 

retrieval of soil properties with multivariate statistical methods. 
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Chapter 6 

Conclusions and Outlook 

 

Recently significant advances have been made in the application of visible and near-

infrared shortwave infrared spectroscopy applied to soil analysis. It has been demonstrated 

to be a fast and cheap tool for estimating various soil chemical and physical properties. Many 

efforts have been put on the development of regional, continental and even global soil spectral 

libraries and memory-based approaches were studied for large-scale data along with common 

approaches. In this thesis, several methods for extracting features from reflectance spectra 

were presented and transfer learning was proposed to make laboratory data useful for soil 

clay content mapping using the hyperspectral imagery collected under natural conditions by 

fine-tuning a pre-trained 1D-CNN model. 

Previous studies by various authors showed that PLS regression is a valid statistical 

approach for the soil spectral analysis. However, its role in soil spectral feature extraction has 

long been ignored. In this study, PLS-derived components performed well with three soil 

categories of LUCAS data (woodland, grassland, and cropland). The combined PLS-GBDT 

approach yielded a better performance than PLS or GBDT alone. GBDT is a well-known 

machine learning algorithm that uses the decision tree as the weak learner. However, its 

capability to handle high-dimensional data is limited. Both PLS and GBDT have the capability 

to estimate the contributions of input variables. The determination of the varying importance 

of spectral bands as demonstrated by the PLS method turned out to be a useful tool to retain 
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target-related information to quantitatively retrieve soil properties like SOC, N and clay in 

this study.  

A new fractal-based feature extraction method was proposed and performed well with 

LUCAS organic soils. The variogram estimator showed a slightly better performance than the 

other two estimators (madogram and rodogram) when applied to fractal feature generation 

for soil property estimation. Step–window pairs had a significant impact on estimation 

accuracies of soil properties and a hyper-parameter optimisation method was suggested to 

tune the parameters. Fractal analysis can be used as an approach to characterise statistical self-

similarity and further quantify the irregularity of soil spectra. Fractal features, by taking 

advantage of fractal information encoded in the form of soil spectral curves, can reflect the 

impact of various properties on soil spectra except when the properties have less direct 

spectral response. Besides, the proposed fractal method cannot only reduce the 

dimensionality in the original space but also simultaneously maintain the spectral shape. 

Deep learning provides a promising approach to map soil properties using hyperspectral 

data with existing large-scale soil spectral libraries. A 1D-CNN model for soil clay content 

estimation was developed using LUCAS mineral soils with an accuracy of R2=0.834, 

RMSE=5.31 and RPD=2.42, which demonstrated that 1D-CNN is an effective method for soil 

property estimation. The pre-trained model was fine-tuned by field samples collected in the 

study area with spectra extracted from HyMap imagery, which achieved an accuracy of 

R2=0.601, RMSE=8.62 and RPD=1.54. The fine-tuned model was then applied to bare soil pixels 

of the imagery resulting in a soil clay map. Although the results are still not yet comparable 

with laboratory spectroscopy, it provides a way to make use of both large-scale spectral 

libraries and hyperspectral data.  

With feature extraction, the models directly using the whole large-scale dataset achieved 

good performance on the quantification of multiple soil properties. However, it should be 

mentioned that memory-based methods are comparatively better suitable for such large-scale 

soil spectral libraries than global approaches as pointed out by L. Ramirez-Lopez etc. [24]. For 

each unknown soil spectrum, it is possible to sample a desired number of spectra from the 

library to build a local model. Furthermore, the sampled small dataset can be used to fine-

tune the pre-trained CNN model built using the whole dataset, in which way, the CNN is able 
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to be combined with MBL so as to take advantage of the information contained within not 

only local but also global data. 

The re-use of existing laboratory soil spectral databases in model development would 

certainly save time and money. However, there are still limited studies using models built 

from laboratory spectra to estimate soil properties on hyperspectral imagery. Many factors 

including instrument properties, experimental conditions and target characteristics restrict 

laboratory spectroscopic models to be adaptive to air- or space-borne spectral data. Vegetation 

is also a significant issue in non-bare soil regions. With the rapid development of deep 

learning, it is possible to transfer models from laboratory data to hyperspectral imagery with 

transfer learning. Only few studies have so far focused on deep learning applications in soil 

spectroscopy. Besides, efforts should also be put on reducing the spectral differences between 

image and laboratory data so that the model can be easily transferred from one sensor to 

another. 
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