379 research outputs found

    Providing Bi-Directional, Analog, and Differential Signal Transmission Capability to an Electronic Prototyping Platform

    Get PDF
    RÉSUMÉ Les rĂ©seaux d’interconnexions programmables (FPIN) se retrouvent largement utilisĂ©s dans plusieurs structures bien connues telles que les FPGA, les plateformes de prototypages ainsi que dans plusieurs architectures de rĂ©seaux intĂ©grĂ©s. Le but de la prĂ©sente thĂšse est d’amĂ©liorer la structure actuelle des FPIN ainsi que les plateformes de prototypages se basant sur cette technologie afin d’y intĂ©grer d’autres fonctionnalitĂ©s telles que des interfaces pour les signaux bidirectionnels de type drain-ouvert, les signaux analogiques ou bien les signaux diïŹ€Ă©rentiels. Cette thĂšse prĂ©sente trois diïŹ€Ă©rents circuits qui ont Ă©tĂ© implĂ©mentĂ©s dans cette optique. Les interconnexions de ces trois circuits peuvent ĂȘtre reconfigurĂ©es pour supporter une interface de type bidirectionnelle drain-ouvert, de type analogique ou diïŹ€Ă©rentielle, le tout au travers un rĂ©seau d’interconnexions configurable numĂ©rique unidirectionnel, ou FPIN. Le besoin d’une telle interface fut tout d’abord envisagĂ© dans le contexte du WaferBoard, qui consiste en une plateforme reconfigurable de prototypage pour les systĂšmes Ă©lectroniques. Le cƓur de ce WaferBoard consiste en un circuit intĂ©grĂ© Ă  l’échelle d’une tranche entiĂšre de silicium, qui est constituĂ© d’une matrice bidimensionnelle de cellules. Une large partie de la surface disponible s’en retrouve dĂ©jĂ  utilisĂ©e par des plots configurables (CIO), l’aiguillage des multiplexeurs du FPIN, des registres dĂ©diĂ©s Ă  la chaine JTAG et d’autres circuiteries de contrĂŽle. De ce fait, il en devient primordial que les interfaces bidirectionnelle drain-ouvert, analogique et diïŹ€Ă©rentielle soit les plus compactes possibles. Puisque ces circuits d’interfaces seront dĂ©diĂ©s pour une plateforme utilisant une tranche de silicium (wafer-scale), l’architecture de ces derniers doit ĂȘtre robuste en regard des variations de procĂ©dĂ©, de la tempĂ©rature ainsi que de l’alimentation. La premiĂšre contribution de cette thĂšse est l’élaboration et la conception d’une interface de type drain-ouvert ainsi que de son support d’interconnexion bidirectionnel utilisant un rĂ©seau numĂ©rique unidirectionnel Ă  signalisation asymĂ©trique (Ă  l’opposĂ© de la signalisation diïŹ€Ă©rentielle) FPIN. L’interface proposĂ©e peut interconnecter plusieurs nƓuds d’un FPIN. À l’aide de cette interface, le rĂ©seau d’interconnexions peut imiter le comportement et le fonctionnement d’un bus de type drain-ouvert (ou collecteur-ouvert) (tel qu’utilisĂ© par le protocole I2C). De ce fait, plusieurs plots de type drain-ouvert provenant d’une multitude de circuits-intĂ©grĂ©s (ICs) diïŹ€Ă©rents peuvent y ĂȘtre connectĂ©s au travers le FPIN Ă  l’aide de l’interface proposĂ©e.----------ABSTRACT Field programmable interconnection networks (FPINs) are ubiquitously found embedded in field-programmable gate arrays (FPGAs), in prototyping platforms, and in many Network-on-Chip architectures. The aim of this research was to augment the application domains of current FPIN-based prototyping and emulation platforms by supporting open-drain bi-directional signals, analog signals or diïŹ€erential signals. Three interface circuits have been elaborated and developed to that end in this thesis. These three interface circuits can support reconfigurable routing of open-drain bi-directional, analog and diïŹ€erential signals through an uni-directional digital FPIN. The need for such interface circuits were originally conceived in the context of the WaferBoard, a system prototyping platform. The core of the WaferBoard is a wafer-scale IC that is composed of a two dimensional array of unit cells. Available area was already over-utilized by the configurable I/O (CIO) buïŹ€ers, crossbar multiplexers of the FPIN, registers of the JTAG chain, and other control circuits. Thus, the interface circuits for open-drain bi-directional, analog and diïŹ€erential signaling had to be made very compact. As the implementation of these interface circuits target “wafer-scale” integration, these interface circuits had to be very robust to parametric variations (process, temperature, power supply). The first contribution of this thesis is the elaboration and development of an open-drain interface circuit and a corresponding interconnect topology to support bi-directional communication through the uni-directional digital FPIN of prototyping platforms. The proposed interface can interconnect multiple nodes in a FPIN. With that interface, the interconnection network imitates the behavior of open-drain (or open-collector) buses (e.g., those following the I2C protocol). Thus, multiple open-drain I/Os from external integrated circuits (ICs) can be connected together through the FPIN by the proposed interface circuit. The interface that has been fabricated in a 0.13 ”m CMOS technology takes 65 ”m × 22 ”m per pin. Test results show that several instances of this interface can be interconnected through the proposed interconnect topology

    Principles, fundamentals, and applications of programmable integrated photonics

    Full text link
    [EN] Programmable integrated photonics is an emerging new paradigm that aims at designing common integrated optical hardware resource configurations, capable of implementing an unconstrained variety of functionalities by suitable programming, following a parallel but not identical path to that of integrated electronics in the past two decades of the last century. Programmable integrated photonics is raising considerable interest, as it is driven by the surge of a considerable number of new applications in the fields of telecommunications, quantum information processing, sensing, and neurophotonics, calling for flexible, reconfigurable, low-cost, compact, and low-power-consuming devices that can cooperate with integrated electronic devices to overcome the limitation expected by the demise of MooreÂżs Law. Integrated photonic devices exploiting full programmability are expected to scale from application-specific photonic chips (featuring a relatively low number of functionalities) up to very complex application-agnostic complex subsystems much in the same way as field programmable gate arrays and microprocessors operate in electronics. Two main differences need to be considered. First, as opposed to integrated electronics, programmable integrated photonics will carry analog operations over the signals to be processed. Second, the scale of integration density will be several orders of magnitude smaller due to the physical limitations imposed by the wavelength ratio of electrons and light wave photons. The success of programmable integrated photonics will depend on leveraging the properties of integrated photonic devices and, in particular, on research into suitable interconnection hardware architectures that can offer a very high spatial regularity as well as the possibility of independently setting (with a very low power consumption) the interconnection state of each connecting element. Integrated multiport interferometers and waveguide meshes provide regular and periodic geometries, formed by replicating unit elements and cells, respectively. In the case of waveguide meshes, the cells can take the form of a square, hexagon, or triangle, among other configurations. Each side of the cell is formed by two integrated waveguides connected by means of a MachÂżZehnder interferometer or a tunable directional coupler that can be operated by means of an output control signal as a crossbar switch or as a variable coupler with independent power division ratio and phase shift. In this paper, we provide the basic foundations and principles behind the construction of these complex programmable circuits. We also review some practical aspects that limit the programming and scalability of programmable integrated photonics and provide an overview of some of the most salient applications demonstrated so far.European Research Council; Conselleria d'EducaciĂł, InvestigaciĂł, Cultura i Esport; Ministerio de Ciencia, InnovaciĂłn y Universidades; European Cooperation in Science and Technology; Horizon 2020 Framework Programme.PĂ©rez-LĂłpez, D.; Gasulla Mestre, I.; Dasmahapatra, P.; Capmany Francoy, J. (2020). Principles, fundamentals, and applications of programmable integrated photonics. Advances in Optics and Photonics. 12(3):709-786. https://doi.org/10.1364/AOP.387155709786123Lyke, J. C., Christodoulou, C. G., Vera, G. A., & Edwards, A. H. (2015). An Introduction to Reconfigurable Systems. Proceedings of the IEEE, 103(3), 291-317. doi:10.1109/jproc.2015.2397832Kaeslin, H. (2008). Digital Integrated Circuit Design. doi:10.1017/cbo9780511805172Trimberger, S. M. (2015). Three Ages of FPGAs: A Retrospective on the First Thirty Years of FPGA Technology. Proceedings of the IEEE, 103(3), 318-331. doi:10.1109/jproc.2015.2392104Mitola, J. (1995). The software radio architecture. IEEE Communications Magazine, 33(5), 26-38. doi:10.1109/35.393001Nunes, B. A. A., Mendonca, M., Nguyen, X.-N., Obraczka, K., & Turletti, T. (2014). A Survey of Software-Defined Networking: Past, Present, and Future of Programmable Networks. IEEE Communications Surveys & Tutorials, 16(3), 1617-1634. doi:10.1109/surv.2014.012214.00180Papagianni, C., Leivadeas, A., Papavassiliou, S., Maglaris, V., Cervello-Pastor, C., & Monje, A. (2013). On the optimal allocation of virtual resources in cloud computing networks. IEEE Transactions on Computers, 62(6), 1060-1071. doi:10.1109/tc.2013.31Peruzzo, A., Laing, A., Politi, A., Rudolph, T., & O’Brien, J. L. (2011). Multimode quantum interference of photons in multiport integrated devices. Nature Communications, 2(1). doi:10.1038/ncomms1228Metcalf, B. J., Thomas-Peter, N., Spring, J. B., Kundys, D., Broome, M. A., Humphreys, P. C., 
 Walmsley, I. A. (2013). Multiphoton quantum interference in a multiport integrated photonic device. Nature Communications, 4(1). doi:10.1038/ncomms2349Miller, D. A. B. (2013). Self-aligning universal beam coupler. Optics Express, 21(5), 6360. doi:10.1364/oe.21.006360Miller, D. A. B. (2013). Self-configuring universal linear optical component [Invited]. Photonics Research, 1(1), 1. doi:10.1364/prj.1.000001Carolan, J., Harrold, C., Sparrow, C., MartĂ­n-LĂłpez, E., Russell, N. J., Silverstone, J. W., 
 Laing, A. (2015). Universal linear optics. Science, 349(6249), 711-716. doi:10.1126/science.aab3642Harris, N. C., Steinbrecher, G. R., Prabhu, M., Lahini, Y., Mower, J., Bunandar, D., 
 Englund, D. (2017). Quantum transport simulations in a programmable nanophotonic processor. Nature Photonics, 11(7), 447-452. doi:10.1038/nphoton.2017.95Birth of the programmable optical chip. (2015). Nature Photonics, 10(1), 1-1. doi:10.1038/nphoton.2015.265Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J., & Lowery, A. J. (2015). Programmable photonic signal processor chip for radiofrequency applications. Optica, 2(10), 854. doi:10.1364/optica.2.000854PĂ©rez, D., Gasulla, I., Capmany, J., & Soref, R. A. (2016). Reconfigurable lattice mesh designs for programmable photonic processors. Optics Express, 24(11), 12093. doi:10.1364/oe.24.012093Capmany, J., Gasulla, I., & PĂ©rez, D. (2015). The programmable processor. Nature Photonics, 10(1), 6-8. doi:10.1038/nphoton.2015.254PĂ©rez, D., Gasulla, I., Crudgington, L., Thomson, D. J., Khokhar, A. Z., Li, K., 
 Capmany, J. (2017). Multipurpose silicon photonics signal processor core. Nature Communications, 8(1). doi:10.1038/s41467-017-00714-1Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S., & Walsmley, I. A. (2016). Optimal design for universal multiport interferometers. Optica, 3(12), 1460. doi:10.1364/optica.3.001460Perez, D., Gasulla, I., Fraile, F. J., Crudgington, L., Thomson, D. J., Khokhar, A. Z., 
 Capmany, J. (2017). Silicon Photonics Rectangular Universal Interferometer. Laser & Photonics Reviews, 11(6), 1700219. doi:10.1002/lpor.201700219Shen, Y., Harris, N. C., Skirlo, S., Prabhu, M., Baehr-Jones, T., Hochberg, M., 
 Soljačić, M. (2017). Deep learning with coherent nanophotonic circuits. Nature Photonics, 11(7), 441-446. doi:10.1038/nphoton.2017.93Ribeiro, A., Ruocco, A., Vanacker, L., & Bogaerts, W. (2016). Demonstration of a 4 × 4-port universal linear circuit. Optica, 3(12), 1348. doi:10.1364/optica.3.001348Annoni, A., Guglielmi, E., Carminati, M., Ferrari, G., Sampietro, M., Miller, D. A., 
 Morichetti, F. (2017). Unscrambling light—automatically undoing strong mixing between modes. Light: Science & Applications, 6(12), e17110-e17110. doi:10.1038/lsa.2017.110Perez, D., Gasulla, I., & Capmany, J. (2018). Toward Programmable Microwave Photonics Processors. Journal of Lightwave Technology, 36(2), 519-532. doi:10.1109/jlt.2017.2778741Chen, L., Hall, E., Theogarajan, L., & Bowers, J. (2011). Photonic Switching for Data Center Applications. IEEE Photonics Journal, 3(5), 834-844. doi:10.1109/jphot.2011.2166994Miller, D. A. B. (2017). Meshing optics with applications. Nature Photonics, 11(7), 403-404. doi:10.1038/nphoton.2017.104Thomas-Peter, N., Langford, N. K., Datta, A., Zhang, L., Smith, B. J., Spring, J. B., 
 Walmsley, I. A. (2011). Integrated photonic sensing. New Journal of Physics, 13(5), 055024. doi:10.1088/1367-2630/13/5/055024Smit, M., Leijtens, X., Ambrosius, H., Bente, E., van der Tol, J., Smalbrugge, B., 
 van Veldhoven, R. (2014). An introduction to InP-based generic integration technology. Semiconductor Science and Technology, 29(8), 083001. doi:10.1088/0268-1242/29/8/083001Coldren, L. A., Nicholes, S. C., Johansson, L., Ristic, S., Guzzon, R. S., Norberg, E. J., & Krishnamachari, U. (2011). High Performance InP-Based Photonic ICs—A Tutorial. Journal of Lightwave Technology, 29(4), 554-570. doi:10.1109/jlt.2010.2100807Kish, F., Nagarajan, R., Welch, D., Evans, P., Rossi, J., Pleumeekers, J., 
 Joyner, C. (2013). From Visible Light-Emitting Diodes to Large-Scale III–V Photonic Integrated Circuits. Proceedings of the IEEE, 101(10), 2255-2270. doi:10.1109/jproc.2013.2275018Hochberg, M., & Baehr-Jones, T. (2010). Towards fabless silicon photonics. Nature Photonics, 4(8), 492-494. doi:10.1038/nphoton.2010.172Bogaerts, W., Fiers, M., & Dumon, P. (2014). Design Challenges in Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 20(4), 1-8. doi:10.1109/jstqe.2013.2295882Soref, R. (2006). The Past, Present, and Future of Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1678-1687. doi:10.1109/jstqe.2006.883151Chrostowski, L., & Hochberg, M. (2015). Silicon Photonics Design. doi:10.1017/cbo9781316084168Heck, M. J. R., Bauters, J. F., Davenport, M. L., Doylend, J. K., Jain, S., Kurczveil, G., 
 Bowers, J. E. (2013). Hybrid Silicon Photonic Integrated Circuit Technology. IEEE Journal of Selected Topics in Quantum Electronics, 19(4), 6100117-6100117. doi:10.1109/jstqe.2012.2235413Keyvaninia, S., Muneeb, M., Stanković, S., Van Veldhoven, P. J., Van Thourhout, D., & Roelkens, G. (2012). Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Optical Materials Express, 3(1), 35. doi:10.1364/ome.3.000035Heideman, R., Hoekman, M., & Schreuder, E. (2012). TriPleX-Based Integrated Optical Ring Resonators for Lab-on-a-Chip and Environmental Detection. IEEE Journal of Selected Topics in Quantum Electronics, 18(5), 1583-1596. doi:10.1109/jstqe.2012.2188382Roeloffzen, C. G. H., Zhuang, L., Taddei, C., Leinse, A., Heideman, R. G., van Dijk, P. W. L., 
 Boller, K.-J. (2013). Silicon nitride microwave photonic circuits. Optics Express, 21(19), 22937. doi:10.1364/oe.21.022937Corbett, B., Loi, R., Zhou, W., Liu, D., & Ma, Z. (2017). Transfer print techniques for heterogeneous integration of photonic components. Progress in Quantum Electronics, 52, 1-17. doi:10.1016/j.pquantelec.2017.01.001Van der Tol, J. J. G. M., Jiao, Y., Shen, L., Millan-Mejia, A., Pogoretskii, V., van Engelen, J. P., & Smit, M. K. (2018). Indium Phosphide Integrated Photonics in Membranes. IEEE Journal of Selected Topics in Quantum Electronics, 24(1), 1-9. doi:10.1109/jstqe.2017.2772786Bachmann, M., Besse, P. A., & Melchior, H. (1994). General self-imaging properties in N × N multimode interference couplers including phase relations. Applied Optics, 33(18), 3905. doi:10.1364/ao.33.003905Soldano, L. B., & Pennings, E. C. M. (1995). Optical multi-mode interference devices based on self-imaging: principles and applications. Journal of Lightwave Technology, 13(4), 615-627. doi:10.1109/50.372474Madsen, C. K., & Zhao, J. H. (1999). Optical Filter Design and Analysis. Wiley Series in Microwave and Optical Engineering. doi:10.1002/0471213756Desurvire, E. (2009). Classical and Quantum Information Theory. doi:10.1017/cbo9780511803758Knill, E., Laflamme, R., & Milburn, G. J. (2001). A scheme for efficient quantum computation with linear optics. Nature, 409(6816), 46-52. doi:10.1038/35051009Capmany, J., & PĂ©rez, D. (2020). Programmable Integrated Photonics. doi:10.1093/oso/9780198844402.001.0001Spagnolo, N., Vitelli, C., Bentivegna, M., Brod, D. J., Crespi, A., Flamini, F., 
 Sciarrino, F. (2014). Experimental validation of photonic boson sampling. Nature Photonics, 8(8), 615-620. doi:10.1038/nphoton.2014.135Mennea, P. L., Clements, W. R., Smith, D. H., Gates, J. C., Metcalf, B. J., Bannerman, R. H. S., 
 Smith, P. G. R. (2018). Modular linear optical circuits. Optica, 5(9), 1087. doi:10.1364/optica.5.001087Perez-Lopez, D., Sanchez, E., & Capmany, J. (2018). Programmable True Time Delay Lines Using Integrated Waveguide Meshes. Journal of Lightwave Technology, 36(19), 4591-4601. doi:10.1109/jlt.2018.2831008PĂ©rez-LĂłpez, D., Gutierrez, A. M., SĂĄnchez, E., DasMahapatra, P., & Capmany, J. (2019). Integrated photonic tunable basic units using dual-drive directional couplers. Optics Express, 27(26), 38071. doi:10.1364/oe.27.038071Jinguji, K., & Kawachi, M. (1995). Synthesis of coherent two-port lattice-form optical delay-line circuit. Journal of Lightwave Technology, 13(1), 73-82. doi:10.1109/50.350643Mookherjea, S., & Yariv, A. (2002). Coupled resonator optical waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 8(3), 448-456. doi:10.1109/jstqe.2002.1016347Heebner, J. E., Chak, P., Pereira, S., Sipe, J. E., & Boyd, R. W. (2004). Distributed and localized feedback in microresonator sequences for linear and nonlinear optics. Journal of the Optical Society of America B, 21(10), 1818. doi:10.1364/josab.21.001818Fandiño, J. S., Muñoz, P., DomĂ©nech, D., & Capmany, J. (2016). A monolithic integrated photonic microwave filter. Nature Photonics, 11(2), 124-129. doi:10.1038/nphoton.2016.233Miller, D. A. B. (2012). All linear optical devices are mode converters. Optics Express, 20(21), 23985. doi:10.1364/oe.20.023985Brown, S. D., Francis, R. J., Rose, J., & Vranesic, Z. G. (1992). Field-Programmable Gate Arrays. doi:10.1007/978-1-4615-3572-0Lee, E. K. F., & Gulak, P. G. (1992). Field programmable analogue array based on MOSFET transconductors. Electronics Letters, 28(1), 28-29. doi:10.1049/el:19920017Lee, E. K. F., & Gulak, P. G. (s. f.). A transconductor-based field-programmable analog array. Proceedings ISSCC ’95 - International Solid-State Circuits Conference. doi:10.1109/isscc.1995.535521PĂ©rez, D., Gasulla, I., & Capmany, J. (2018). Field-programmable photonic arrays. Optics Express, 26(21), 27265. doi:10.1364/oe.26.027265Zheng, D., DomĂ©nech, J. D., Pan, W., Zou, X., Yan, L., & PĂ©rez, D. (2019). Low-loss broadband 5  ×  5 non-blocking Si3N4 optical switch matrix. Optics Letters, 44(11), 2629. doi:10.1364/ol.44.002629Densmore, A., Janz, S., Ma, R., Schmid, J. H., Xu, D.-X., DelĂąge, A., 
 Cheben, P. (2009). Compact and low power thermo-optic switch using folded silicon waveguides. Optics Express, 17(13), 10457. doi:10.1364/oe.17.010457Song, M., Long, C. M., Wu, R., Seo, D., Leaird, D. E., & Weiner, A. M. (2011). Reconfigurable and Tunable Flat-Top Microwave Photonic Filters Utilizing Optical Frequency Combs. IEEE Photonics Technology Letters, 23(21), 1618-1620. doi:10.1109/lpt.2011.2165209RudĂ©, M., Pello, J., Simpson, R. E., Osmond, J., Roelkens, G., van der Tol, J. J. G. M., & Pruneri, V. (2013). Optical switching at 1.55 Όm in silicon racetrack resonators using phase change materials. Applied Physics Letters, 103(14), 141119. doi:10.1063/1.4824714Zheng, J., Khanolkar, A., Xu, P., Colburn, S., Deshmukh, S., Myers, J., 
 Majumdar, A. (2018). GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform. Optical Materials Express, 8(6), 1551. doi:10.1364/ome.8.001551Edinger, P., Errando-Herranz, C., & Gylfason, K. B. (2019). Low-Loss MEMS Phase Shifter for Large Scale Reconfigurable Silicon Photonics. 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS). doi:10.1109/memsys.2019.8870616Carroll, L., Lee, J.-S., Scarcella, C., Gradkowski, K., Duperron, M., Lu, H., 
 O’Brien, P. (2016). Photonic Packaging: Transforming Silicon Photonic Integrated Circuits into Photonic Devices. Applied Sciences, 6(12), 426. doi:10.3390/app6120426Bahadori, M., Gazman, A., Janosik, N., Rumley, S., Zhu, Z., Polster, R., 
 Bergman, K. (2018). Thermal Rectification of Integrated Microheaters for Microring Resonators in Silicon Photonics Platform. Journal of Lightwave Technology, 36(3), 773-788. doi:10.1109/jlt.2017.2781131Cocorullo, G., Della Corte, F. G., Rendina, I., & Sarro, P. M. (1998). Thermo-optic effect exploitation in silicon microstructures. Sensors and Actuators A: Physical, 71(1-2), 19-26. doi:10.1016/s0924-4247(98)00168-xZecevic, N., Hofbauer, M., & Zimmermann, H. (2015). Integrated Pulsewidth Modulation Control for a Scalable Optical Switch Matrix. IEEE Photonics Journal, 7(6), 1-7. doi:10.1109/jphot.2015.2506153Seok, T. J., Quack, N., Han, S., & Wu, M. C. (2015). 50×50 Digital Silicon Photonic Switches with MEMS-Actuated Adiabatic Couplers. Optical Fiber Communication Conference. doi:10.1364/ofc.2015.m2b.4Zortman, W. A., Trotter, D. C., & Watts, M. R. (2010). Silicon photonics manufacturing. Optics Express, 18(23), 23598. doi:10.1364/oe.18.023598Mower, J., Harris, N. C., Steinbrecher, G. R., Lahini, Y., & Englund, D. (2015). High-fidelity quantum state evolution in imperfect photonic integrated circuits. Physical Review A, 92(3). doi:10.1103/physreva.92.032322PĂ©rez, D., & Capmany, J. (2019). Scalable analysis for arbitrary photonic integrated waveguide meshes. Optica, 6(1), 19. doi:10.1364/optica.6.000019Oton, C. J., Manganelli, C., Bontempi, F., Fournier, M., Fowler, D., & Kopp, C. (2016). Silicon photonic waveguide metrology using Mach-Zehnder interferometers. Optics Express, 24(6), 6265. doi:10.1364/oe.24.006265Chen, X., & Bogaerts, W. (2019). A Graph-based Design and Programming Strategy for Reconfigurable Photonic Circuits. 2019 IEEE Photonics Society Summer Topical Meeting Series (SUM). doi:10.1109/phosst.2019.8795068Zibar, D., Wymeersch, H., & Lyubomirsky, I. (2017). Machine learning under the spotlight. Nature Photonics, 11(12), 749-751. doi:10.1038/s41566-017-0058-3Lopez, D. P. (2020). Programmable Integrated Silicon Photonics Waveguide Meshes: Optimized Designs and Control Algorithms. IEEE Journal of Selected Topics in Quantum Electronics, 26(2), 1-12. doi:10.1109/jstqe.2019.2948048Harris, N. C., Bunandar, D., Pant, M., Steinbrecher, G. R., Mower, J., Prabhu, M., 
 Englund, D. (2016). Large-scale quantum photonic circuits in silicon. Nanophotonics, 5(3), 456-468. doi:10.1515/nanoph-2015-0146Spring, J. B., Metcalf, B. J., Humphreys, P. C., Kolthammer, W. S., Jin, X.-M., Barbieri, M., 
 Walmsley, I. A. (2012). Boson Sampling on a Photonic Chip. Science, 339(6121), 798-801. doi:10.1126/science.1231692O’Brien, J. L., Furusawa, A., & Vučković, J. (2009). Photonic quantum technologies. Nature Photonics, 3(12), 687-695. doi:10.1038/nphoton.2009.229Kok, P., Munro, W. J., Nemoto, K., Ralph, T. C., Dowling, J. P., & Milburn, G. J. (2007). Linear optical quantum computing with photonic qubits. Reviews of Modern Physics, 79(1), 135-174. doi:10.1103/revmodphys.79.135Politi, A., Cryan, M. J., Rarity, J. G., Yu, S., & O’Brien, J. L. (2008). Silica-on-Silicon Waveguide Quantum Circuits. Science, 320(5876), 646-649. doi:10.1126/science.1155441Politi, A., Matthews, J., Thompson, M. G., & O’Brien, J. L. (2009). Integrated Quantum Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 15(6), 1673-1684. doi:10.1109/jstqe.2009.2026060Thompson, M. G., Politi, A., Matthews, J. C. F., & O’Brien, J. L. (2011). Integrated waveguide circuits for optical quantum computing. IET Circuits, Devices & Systems, 5(2), 94. doi:10.1049/iet-cds.2010.0108Silverstone, J. W., Bonneau, D., O’Brien, J. L., & Thompson, M. G. (2016). Silicon Quantum Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 22(6), 390-402. doi:10.1109/jstqe.2016.2573218Poot, M., Schuck, C., Ma, X., Guo, X., & Tang, H. X. (2016). Design and characterization of integrated components for SiN photonic quantum circuits. Optics Express, 24(7), 6843. doi:10.1364/oe.24.006843Saleh, M. F., Di Giuseppe, G., Saleh, B. E. A., & Teich, M. C. (2010). Modal and polarization qubits in Ti:LiNbO_3 photonic circuits for a universal quantum logic gate. Optics Express, 18(19), 20475. doi:10.1364/oe.18.020475Harris, N. C., Carolan, J., Bunandar, D., Prabhu, M., Hochberg, M., Baehr-Jones, T., 
 Englund, D. (2018). Linear programmable nanophotonic processors. Optica, 5(12), 1623. doi:10.1364/optica.5.001623Qiang, X., Zhou, X., Wang, J., Wilkes, C. M., Loke, T., O’Gara, S., 
 Matthews, J. C. F. (2018). Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nature Photonics, 12(9), 534-539. doi:10.1038/s41566-018-0236-yLee, B. G., & Dupuis, N. (2019). Silicon Photonic Switch Fabrics: Technology and Architecture. Journal of Lightwave Technology, 37(1), 6-20. doi:10.1109/jlt.2018.2876828Cheng, Q., Rumley, S., Bahadori, M., & Bergman, K. (2018). Photonic switching in high performance datacenters [Invited]. Optics Express, 26(12), 16022. doi:10.1364/oe.26.016022Wonfor, A., Wang, H., Penty, R. V., & White, I. H. (2011). Large Port Count High-Speed Optical Switch Fabric for Use Within Datacenters [Invited]. Journal of Optical Communications and Networking, 3(8), A32. doi:10.1364/jocn.3.000a32Hamamoto, K., Anan, T., Komatsu, K., Sugimoto, M., & Mito, I. (1992). First 8×8 semiconductor optical matrix switches using GaAs/AlGaAs electro-optic guided-wave directional couplers. Electronics Letters, 28(5), 441. doi:10.1049/el:19920278Van Campenhout, J., Green, W. M., Assefa, S., & Vlasov, Y. A. (2009). Low-power, 2×2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks. Optics Express, 17(26), 24020. doi:10.1364/oe.17.024020Dupuis, N., Lee, B. G., Rylyakov, A. V., Kuchta, D. M., Baks, C. W., Orcutt, J. S., 
 Schow, C. L. (2015). D

    Reconfigurable Instruction Cell Architecture Reconfiguration and Interconnects

    Get PDF

    Reconfigurable microarchitectures at the programmable logic interface

    Get PDF

    Can my chip behave like my brain?

    Get PDF
    Many decades ago, Carver Mead established the foundations of neuromorphic systems. Neuromorphic systems are analog circuits that emulate biology. These circuits utilize subthreshold dynamics of CMOS transistors to mimic the behavior of neurons. The objective is to not only simulate the human brain, but also to build useful applications using these bio-inspired circuits for ultra low power speech processing, image processing, and robotics. This can be achieved using reconfigurable hardware, like field programmable analog arrays (FPAAs), which enable configuring different applications on a cross platform system. As digital systems saturate in terms of power efficiency, this alternate approach has the potential to improve computational efficiency by approximately eight orders of magnitude. These systems, which include analog, digital, and neuromorphic elements combine to result in a very powerful reconfigurable processing machine.Ph.D

    Software-based and regionally-oriented traffic management in Networks-on-Chip

    Get PDF
    Since the introduction of chip-multiprocessor systems, the number of integrated cores has been steady growing and workload applications have been adapted to exploit the increasing parallelism. This changed the importance of efficient on-chip communication significantly and the infrastructure has to keep step with these new requirements. The work at hand makes significant contributions to the state-of-the-art of the latest generation of such solutions, called Networks-on-Chip, to improve the performance, reliability, and flexible management of these on-chip infrastructures

    Dynamically reconfigurable bio-inspired hardware

    Get PDF
    During the last several years, reconfigurable computing devices have experienced an impressive development in their resource availability, speed, and configurability. Currently, commercial FPGAs offer the possibility of self-reconfiguring by partially modifying their configuration bitstream, providing high architectural flexibility, while guaranteeing high performance. These configurability features have received special interest from computer architects: one can find several reconfigurable coprocessor architectures for cryptographic algorithms, image processing, automotive applications, and different general purpose functions. On the other hand we have bio-inspired hardware, a large research field taking inspiration from living beings in order to design hardware systems, which includes diverse topics: evolvable hardware, neural hardware, cellular automata, and fuzzy hardware, among others. Living beings are well known for their high adaptability to environmental changes, featuring very flexible adaptations at several levels. Bio-inspired hardware systems require such flexibility to be provided by the hardware platform on which the system is implemented. In general, bio-inspired hardware has been implemented on both custom and commercial hardware platforms. These custom platforms are specifically designed for supporting bio-inspired hardware systems, typically featuring special cellular architectures and enhanced reconfigurability capabilities; an example is their partial and dynamic reconfigurability. These aspects are very well appreciated for providing the performance and the high architectural flexibility required by bio-inspired systems. However, the availability and the very high costs of such custom devices make them only accessible to a very few research groups. Even though some commercial FPGAs provide enhanced reconfigurability features such as partial and dynamic reconfiguration, their utilization is still in its early stages and they are not well supported by FPGA vendors, thus making their use difficult to include in existing bio-inspired systems. In this thesis, I present a set of architectures, techniques, and methodologies for benefiting from the configurability advantages of current commercial FPGAs in the design of bio-inspired hardware systems. Among the presented architectures there are neural networks, spiking neuron models, fuzzy systems, cellular automata and random boolean networks. For these architectures, I propose several adaptation techniques for parametric and topological adaptation, such as hebbian learning, evolutionary and co-evolutionary algorithms, and particle swarm optimization. Finally, as case study I consider the implementation of bio-inspired hardware systems in two platforms: YaMoR (Yet another Modular Robot) and ROPES (Reconfigurable Object for Pervasive Systems); the development of both platforms having been co-supervised in the framework of this thesis

    Towards the Design of Robust High-Speed and Power Efficient Short Reach Photonic Links

    Get PDF
    In 2014, approximately eight trillion transistors were fabricated every second thanks to improvements in integration density and fabrication processes. This increase in integration and functionality has also brought about the possibility of system on chip (SoC) and high-performance computing (HPC). Electrical interconnects presently dominate the very-short reach interconnect landscape (< 5 cm) in these applications. This, however, is expected to change. These interconnects' downfall will be caused by their need for impedance matching, limited pin-density and frequency dependent loss leading to intersymbol interference. In an attempt to solve this, researchers have increasingly explored integrated silicon photonics as it is compatible with current CMOS processes and creates many possibilities for short-reach applications. Many see optical interconnects as the high-speed link solution for applications ranging from intra-data center (~200 m) down to module or even chip scales (< 2 cm). The attractive properties of optical interconnects, such as low loss and multiplexing abilities, will enable such things as Exascale high-performance computers of the future (equal to 10^18 calculations per second). In fact, forecasts predict that by 2025 photonics at the smallest levels of the interconnect hierarchy will be a reality. This thesis presents three novel research projects, which all work towards increasing robustness and cost-efficiency in short-reach optical links. It discusses three parts of the optical link: the interconnect, the receiver and the photodiode. The first topic of this thesis is exploratory work on the use of an optical multiplexing technique, mode-division multiplexing (MDM), to carry multiple data lanes along with a forwarded clock for very short-reach applications. The second topic discussed is a novel reconfigurable CMOS receiver proposed as a method to map a clock signal to an interconnect lane in an MDM source-synchronous link with the lowest optical crosstalk. The receiver is designed as a method to make electronic chips that suit the needs of optical ones. By leveraging the more robust electronic integrated circuit, link solutions can be tuned to meet the needs of photonic chips on a die by die basis. The third topic of this thesis proposes a novel photodetector which uses photonic grating couplers to redirect vertical incident light to the horizontal direction. With this technique, the light is applied along the entire length of a p-n junction to improve the responsivity and speed of the device. Experimental results for this photodetector at 35 Gb/s are published, showing it to be the fastest all-silicon based photodetector reported in the literature at the time of publication

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware

    Rapport annuel 2016

    Get PDF
    • 

    corecore