492 research outputs found

    A Self-Adaptive Chaos Particle Swarm Optimization Algorithm

    Get PDF
    As a new evolutionary algorithm, particle swarm optimization (PSO) achieves integrated evolution through the information between the individuals. All the particles have the ability to adjust their own speed and remember the optimal positions they have experienced. This algorithm has solved many practical engineering problems and achieved better optimization effect. However, PSO can easily get trapped in local extremum, making it fail to get the global optimal solution and reducing its convergence speed. To settle these deficiencies, this paper has proposed an adaptive chaos particle swarm optimization (ACPSO) based on the idea of chaos optimization after analyzing the basic principles of PSO. This algorithm can improve the population diversity and the ergodicity of particle search through the property of chaos; adjust the inertia weight according to the premature convergence of the population and the individual fitness; consider the global optimization and local optimization; effectively avoid premature convergence and improve algorithm efficiency. The experimental simulation has verified its effectiveness and superiority

    Parameter identification of BIPT system using chaotic-enhanced fruit fly optimization algorithm

    Get PDF
    Bidirectional inductive power transfer (BIPT) system facilitates contactless power transfer between two sides and across an air-gap, through weak magnetic coupling. Typically, this system is nonlinear high order system which includes nonlinear switch components and resonant networks, developing of accurate model is a challenging task. In this paper, a novel technique for parameter identification of a BIPT system is presented by using chaotic-enhanced fruit fly optimization algorithm (CFOA). The fruit fly optimization algorithm (FOA) is a new meta-heuristic technique based on the swarm behavior of the fruit fly. This paper proposes a novel CFOA, which employs chaotic sequence to enhance the global optimization capacity of original FOA. The parameter identification of the BIPT system is formalized as a multi-dimensional optimization problem, and an objective function is established minimizing the errors between the estimated and measured values. All the 11 parameters of this system (Lpi, LT, Lsi, Lso, CT, Cs, M, Rpi, RT, Rsi and Rso) can be identified simultaneously using measured input–output data. Simulations show that the proposed parameter identification technique is robust to measurements noise and variation of operation condition and thus it is suitable for practical application

    The Effects of Using Chaotic Map on Improving the Performance of Multiobjective Evolutionary Algorithms

    Get PDF
    Chaotic maps play an important role in improving evolutionary algorithms (EAs) for avoiding the local optima and speeding up the convergence. However, different chaotic maps in different phases have different effects on EAs. This paper focuses on exploring the effects of chaotic maps and giving comprehensive guidance for improving multiobjective evolutionary algorithms (MOEAs) by series of experiments. NSGA-II algorithm, a representative of MOEAs using the nondominated sorting and elitist strategy, is taken as the framework to study the effect of chaotic maps. Ten chaotic maps are applied in MOEAs in three phases, that is, initial population, crossover, and mutation operator. Multiobjective problems (MOPs) adopted are ZDT series problems to show the generality. Since the scale of some sequences generated by chaotic maps is changed to fit for MOPs, the correctness of scaling transformation of chaotic sequences is proved by measuring the largest Lyapunov exponent. The convergence metric γ and diversity metric Δ are chosen to evaluate the performance of new algorithms with chaos. The results of experiments demonstrate that chaotic maps can improve the performance of MOEAs, especially in solving problems with convex and piecewise Pareto front. In addition, cat map has the best performance in solving problems with local optima

    Virtual Machine Deployment Strategy Based on Improved PSO in Cloud Computing

    Get PDF
    Energy consumption is an important cost driven by growth of computing power, thereby energy conservation has become one of the major problems faced by cloud system. How to maximize the utilization of physical machines, reduce the number of virtual machine migrations, and maintain load balance under the constraints of physical machine resource thresholds that is the effective way to implement energy saving in data center. In the paper, we propose a multi-objective physical model for virtual machine deployment. Then the improved multi-objective particle swarm optimization (TPSO) is applied to virtual machine deployment. Compared to other algorithms, the algorithm has better ergodicity into the initial stage, improves the optimization precision and optimization efficiency of the particle swarm. The experimental results based on CloudSim simulation platform show that the algorithm is effective at improving physical machine resource utilization, reducing resource waste, and improving system load balance

    GPS-ABC: Gaussian Process Surrogate Approximate Bayesian Computation

    Full text link
    Scientists often express their understanding of the world through a computationally demanding simulation program. Analyzing the posterior distribution of the parameters given observations (the inverse problem) can be extremely challenging. The Approximate Bayesian Computation (ABC) framework is the standard statistical tool to handle these likelihood free problems, but they require a very large number of simulations. In this work we develop two new ABC sampling algorithms that significantly reduce the number of simulations necessary for posterior inference. Both algorithms use confidence estimates for the accept probability in the Metropolis Hastings step to adaptively choose the number of necessary simulations. Our GPS-ABC algorithm stores the information obtained from every simulation in a Gaussian process which acts as a surrogate function for the simulated statistics. Experiments on a challenging realistic biological problem illustrate the potential of these algorithms

    進化的及び樹状突起のメカニズムを考慮したソフトコンピューティング技術の提案

    Get PDF
    富山大学・富理工博甲第117号・宋振宇・2017/03/23富山大学201

    An Improved Chaotic Grey Wolf Optimization Algorithm (CGWO)

    Get PDF
    Grey Wolf Optimization (GWO) is a new type of swarm-based technique for dealing with realistic engineering design constraints and unconstrained problems in the field of metaheuristic research. Swarm-based techniques are a type of population-based algorithm inspired by nature that can produce low-cost, quick, and dependable solutions to a wider variety of complications. It is the best choice when it can achieve faster convergence by avoiding local optima trapping. This work incorporates chaos theory with the standard GWO to improve the algorithm's performance due to the ergodicity of chaos. The proposed methodology is referred to as Chaos-GWO (CGWO). The CGWO improves the search space's exploration and exploitation abilities while avoiding local optima trapping. Using different benchmark functions, five distinct chaotic map functions are examined, and the best chaotic map is considered to have great mobility and ergodicity characteristics. The results demonstrated that the best performance comes from using the suitable chaotic map function, and that CGWO can clearly outperform standard GWO

    Metaheuristics and Chaos Theory

    Get PDF
    Chaos theory is a novelty approach that has been widely used into various applications. One of the famous applications is the introduction of chaos theory into optimization. Note that chaos theory is highly sensitive to initial condition and has the feature of randomness. As chaos theory has the feature of randomness and dynamical properties, it is easy to accelerate the optimization algorithm convergence and enhance the capability of diversity. In this work, we integrated 10 chaotic maps into several metaheuristic algorithms in order to extensively investigate the effectiveness of chaos theory for improving the search capability. Extensive experiments have been carried out and the results have shown that chaotic optimization can be a very promising tool for solving optimization algorithms
    corecore