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a b s t r a c t

Bidirectional inductive power transfer (BIPT) system facilitates contactless power transfer be-

tween two sides and across an air-gap, through weak magnetic coupling. Typically, this system

is nonlinear high order system which includes nonlinear switch components and resonant

networks, developing of accurate model is a challenging task. In this paper, a novel technique

for parameter identification of a BIPT system is presented by using chaotic-enhanced fruit

fly optimization algorithm (CFOA). The fruit fly optimization algorithm (FOA) is a new meta-

heuristic technique based on the swarm behavior of the fruit fly. This paper proposes a novel

CFOA, which employs chaotic sequence to enhance the global optimization capacity of origi-

nal FOA. The parameter identification of the BIPT system is formalized as a multi-dimensional

optimization problem, and an objective function is established minimizing the errors between

the estimated and measured values. All the 11 parameters of this system (Lpi, LT, Lsi, Lso, CT, Cs,

M, Rpi, RT, Rsi and Rso) can be identified simultaneously using measured input–output data.

Simulations show that the proposed parameter identification technique is robust to measure-

ments noise and variation of operation condition and thus it is suitable for practical applica-

tion.
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1. Introduction

Inductive power transfer (IPT) is a kind of new technology that has obtained global acceptance and popularity as a technique,

which is suitable for supplying power to variety of applications without physical contacts [1,2]. This technology transfers power

from one system to another across an air-gap through weak magnetic coupling. IPT system has the potential advantages of high

efficiency, high reliability and robustness even when it is in hostile environments [3]. In the past years, many uni-directional IPT

systems, with various circuit topologies or compensation strategies and levels of sophistication in control, have been developed

in different applications, which range from very low power bio-medical implants to high power battery charging system [1–3].

Recently, bidirectional IPT (BIPT) system has also been proposed and implemented for applications such as V2G system [4,5].

Generally, power handling capability of BIPT system is improved through either series or parallel compensations and, therefore,

this kind of system usually operates as high order resonant circuit and at high frequency. Consequently, BIPT system is complex

and difficult to design. For the effective analysis of BIPT system, accurate parameter model is essentially required. As the BIPT
✩ This work was supported in part by the National Natural Science Foundation of China (No. 61104088).
∗ Corresponding author. Tel.: +86 13873195923.

E-mail address: yuanxiaofang126@126.com, yuanxiaofang@hnu.edu.cn (X. Yuan).

http://dx.doi.org/10.1016/j.amc.2015.07.030

0096-3003/© 2015 Elsevier Inc. All rights reserved.

https://core.ac.uk/display/30709902?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.amc.2015.07.030
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2015.07.030&domain=pdf
http://dx.doi.org/10.13039/501100001809
mailto:yuanxiaofang126@126.com
mailto:yuanxiaofang@hnu.edu.cn
http://dx.doi.org/10.1016/j.amc.2015.07.030


1268 X. Yuan et al. / Applied Mathematics and Computation 268 (2015) 1267–1281

( )pii t
piR

piL

( )ptV t

TL

TR

( )Ti t

( )rV t
TC

( )sii t

siR siL

sC

( )soi t

soL soR
( )stV t

( )soV t( )piV t
( )siV tDCV

Primary

controller

switching

signals

DCV

Pick-up

controller

switching

signals

Fig. 1. A typical BIPT system.
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Fig. 2. Equivalent circuit representation of BIPT system.
system also is nonlinear high order system which includes nonlinear switch components and resonant networks, developing of

accurate model of this system is a challenging task.

In the last few decades, more and more researches suggest that nature is a great source for inspirations to meta-heuristic

techniques [6]. Biologically-inspired meta-heuristic techniques are covering terms for different computational methods that

are based on principles or models of biological systems, some examples include but not limited to ant colony optimization

(ACO) [7,8], artificial bee colony algorithm (ABC) [9,10], genetic algorithm (GA) [11,12], Firefly algorithm (FA) [13], bacterial gene

recombination algorithm (BGRA) [14], bumble bees mating optimization (BBMO) algorithm [15], social spider algorithm [16] etc.

More recently, a new kind of Drosophila (fruit fly) inspired swarm intelligence technique has been developed, called fruit fly

optimization algorithm (FOA) [17]. The main inspiration of FOA is that the fruit fly itself is superior to other species in sensing

and perception, especially in osphresis and vision [18,19]. Since FOA is simple and elegant in concept, easy to implement and has

few parameters, it has been applied in many areas [20–24]. In order to improve the exploration and exploitation ability, several

kinds of improved FOA were proposed in [24–27]. However, FOA or improved FOA usually performs local optimum or premature

in solving multi-dimensional optimization problem. Considering this weakness of FOA, in this paper, a novel chaotic-enhanced

fruit fly optimization algorithm (CFOA) is proposed, which uses ergodic property of chaotic sequences to enhance the global

optimization capacity of original FOA.

In this paper, the parameter identification problem is formalized as a multi-dimensional optimization problem, which is

solved using the proposed CFOA technique. For the parameter identification of the BIPT system, an objective function is estab-

lished minimizing the errors between the estimated and measured values. All the 11 parameters of this system (Lpi, LT, Lsi, Lso,

CT, Cs, M, Rpi, RT, Rsi and Rso) can be identified simultaneously using measured input–output data. The proposed CFOA is used to

search the optimal parameters values of this system using measured input–output data. The implementation of the CFOA based

parameter identification technique is analyzed in detail, and different chaotic sequences for CFOA have also been tested in the

simulation.

The remaining of this paper is organized as follows. Model of a typical BIPT system is described in Section 2. Review of original

FOA is summarized in Section 3. Section 4 describes the motivation and implementation of the CFOA technique. In Section 5,

CFOA based parameter identification of BIPT system is described. The testing of the proposed parameter identification technique

is carried out and the simulation results are shown in Section 6. Finally, Section 7 concludes the paper.

2. Model of typical BIPT system

The schematic of a BIPT system presented in [4] is shown in Fig. 1. The output of the pick-up circuit is connected to the load,

which is denoted as a DC supply to either deliver or absorb power. Analogous to a BIPT system, a primary supply generates

a constant track current iT(t) in LT, which is magnetically coupled with the pick-up coil. The primary and pick-up circuits are

implemented with virtually identical electronics, which include a reversible rectifier and a tuned inductor–capacitor–inductor

(LCL) circuit, to facilitate bidirectional power flow between the track and the pick-up. The primary and pick-up system can thus

be represented by the circuit model in [5] illustrated in Fig. 2.

The dynamic model of this system is developed by introducing the state variables as [3]:

x = [x1 x2 x3 x4 x5 x6 ]T

= [ipi iT Vpt isi iso Vst ] (1)

where x1 = ipi is the current through the primary side inductor Lpi, x2 = iT is the current through track inductor LT, x3 = Vpt is the

voltage across the primary side capacitor CT, x4 = isi is the current through the secondary side inductor Lsi, x5 = iso is the current

through the pick-up side inductor Lso, x = Vst is the voltage across the pick-up side capacitor Cs.
6
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Let the input vector u be u = [u1 u2]T as:

u = [u1 u2]T = [Vpi Vso]T (2)

where u1 = Vpi is the input voltage applied at the primary side. Note that this voltage is essentially the output voltage of the

primary side converter and u2 = Vso is the voltage at the pick-up side. Consider the track current x2 = iT and pickup current

x5 = iso as outputs. The output equation can be given by:

y = [y1 y2]T = [iT iso]T (3)

Following the basic principle of circuit theory, the dynamic model of this system is expressed by the following eighth order

differential equations [3]:

ẋ1 = −Rpi

Lpi

x1 − 1

Lpi

x3 + 1

Lpi

u1

ẋ2 = γ
[
−RT
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]

ẋ5 = −Rso

Lso
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Lso
x6 − 1

Lso
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ẋ6 = 1

Cs
x4 − 1

Cs
x5

(4)

where β = M
LsiLT

, γ = 1
1−Mβ

, and M represents the magnetic coupling between the track inductance and pick-up coil inductance.

The parameter vector appears nonlinearly in these equations, and it can be seen from Eq. (4) that in this system, there are totally

11 variables which need to be identified: Lpi, LT, Lsi, Lso, CT, Cs, M, Rpi, RT, Rsi and Rso.

3. Original FOA technique

The FOA is a new population based heuristic algorithm discovered through simulation of the intelligent foraging behavior of

fruit fly. The group iterative food searching of fruit flies in two-dimension according to FOA has been graphically shown in Fig. 3.

Based upon the Drosophila’s biological behavior, the main motivation of FOA technique is as follows [17]: (1) The fly flies

with Lévy flight motion; (2) it smells the potential location (attractiveness); (3) it would then taste. If it is not to its liking

(fitness/profitability), it rejects and goes to another location. To the fly, attractiveness is not necessarily profitable; (4) while

foraging or mating, the fly also sends and receives messages with its friends about its food and their mates. The original FOA in

[17,20–23] can be divided into several necessary steps and the main steps are described as follows:

tep 1. Random initial fruit fly swarm location. Init X−axis; Init Y−axis.

tep 2. Give the random direction and distance for the search of food using osphresis by an individual fruit fly

Xi = X−axis + RandomValue (5)
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Yi = Y−axis + RandomValue (6)

where i is the population size of fruit flies.

tep 3. Since the food location cannot be known, the distance to the origin is thus estimated first (Disti), then the smell concen-

tration judgment value (Si) is calculated, and this value is the reciprocal of distance

Disti =
√

X2
i

+ Y 2
i

(7)

Si = 1

Disti

(8)

tep 4. Substitute smell concentration judgment value (Si) into smell concentration judgment function (or called objective func-

tion) in order to find the smell concentration (Smelli) of the individual location of the fruit fly.

Smelli = Function(Si) (9)

tep 5. Find out the fruit fly with maximal smell concentration(finding the maximal value) among the fruit fly swarm.

[bestSmell bestIndex] = max(Smell) (10)

tep 6. Keep the best smell concentration value and x, y coordinate,and at this moment, the fruit fly swarm will use vision to fly

toward that location.

Smellbest = bestSmell (11)

X−axis = X(bestIndex) (12)

Y−axis = Y(bestIndex) (13)

tep 7. Enter iterative optimization to repeat the implementation of Steps 2–5, then judge whether the smell concentration is

superior to the previous iterative smell concentration. If yes, go to Step 6.

4. Proposed CFOA technique

4.1. Chaotic sequence

The ergodicity of chaos implies that chaotic sequence can traverse all the state of strange attractor and search a whole range

of design space. This basic property is utilized to search for a global optimum in chaos optimization algorithm [28,29]. Mathe-

matically, chaos is randomness of a simple deterministic dynamical system and chaotic sequence may be considered as sources

of randomness [30]. One-dimensional chaotic sequence is the simplest system with the capability of generating chaotic motion.

In this study, the following six kinds of different chaotic sequences are used [31]:

(1) Logistic sequence:

xn+1 = 4xn(1 − xn), xn ∈ (0, 1) (14)

(2) Tent sequence:

xn+1 = xn/0.7, xn < 0.7

xn+1 =
(

10

3

)
xn(1 − xn), xn ≥ 0.7 (15)

(3) Chebyshev sequence:

xn+1 = cos (5 cos−1 xn), xn ∈ [−1, 1] (16)

(4) Cubic sequence:

xn+1 = 2.59xn

(
1 − x2

n

)
, xn ∈ (0, 1) (17)

(5) ICMIC sequence:

xn+1 = sin

(
70

xn

)
, xn ∈ ( − 1, 1) (18)

(6) Sinusodial sequence:

xn+1 = sin (πxn), xn ∈ (0, 1) (19)

4.2. Motivations

Based on simulations and analysis, the original FOA usually performs local optimum or premature in solving multi-model

problem [25]. In this paper, a novel CFOA is proposed, which uses ergodic property of chaos to enhance global optimization

capacity of FOA. In this section, several improvements to FOA using chaos theory are pointed out as follows:
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4.2.1. Chaos based population initialization

Population initialization is a crucial task in evolutionary algorithm because it may affect the convergence speed and the qual-

ity of the final solution. If no any information about the solutions is available, then random initialization is the most commonly

used way. To ensure good starting points, the flies in CFOA are distributed and dispatched based on chaotic sequence as:

X−axisi = Li + M( · )(Ui − Li) (20)

Y−axisi = Li + M( · )(Ui − Li) (21)

where Ui and Li are the upper and lower limits of variables, and M( · ) is the chaotic sequence in Eqs. (14)–(19). Benefiting from

the properties of ergodicity and pseudo-randomness, chaotic sequence based initialization can increase the population diversity.

4.2.2. Chaos search technique based exploring

In the FOA, the foraging behavior of fruit flies pulls many flies to swarm together toward the previous best region (X−axisi,

−axisi) as in Step 2. Then, the swarm converges to that position. This aggregation effect brings a fast FOA convergence speed.

However, it results in local optimum or premature for multi-model problem. In other words, the previous best position (X−axis,

−axis) may guide fruit flies into the local minima. To emphasize this concerning issue, chaos search technique is applied to

improve the exploration and to jump out of the local minima quickly. In this study, chaos based random direction and distance

for the flies swarm using osphresis is given by:

Xi = X−axisi + M( · ) · R(k) (22)

Yi = Y−axisi + M( · ) · R(k) (23)

where R(k) is exploring radius using osphresis. The previous best position X−axisi, Y−axisi is used as the starting point to execute

the chaos search technique based exploring, which can easily promote exploration ability.

4.2.3. Mutative-scale of exploring radius

In this paper, multi-scale exploring radius R(k), that is:

R(k) = Ui − Li

2
∗
(

kmax − k

kmax

)φ

(24)

where φ take value between 2 and 6. A suitable R(k) usually provides a balance between exploration and exploitation. Here R(k)

is set as a multi-scale factor according to the iterations number k. It will decrease with the increase of iterations number k. In

early iteration, bigger R(k) can increase the diversity of solutions for global exploration, while smaller R(k) in final iteration can

increase the fine-tuning of solutions by exploitation.

4.2.4. Modified distance Disti and smell concentration judgment value (Si)

In fact, on the basis of analysis and computations of Disti and si in Eqs. (7) and (8), it is obvious that numerical values of

Disti are distributed randomly in large-scale scope. However, the large scope of Disti by using Si = 1/Disti in Eq. (8), causing that

the scope of Si becomes very small. When Si is substituted into fitness function in Eq. (9), this may cause the possibility of the

premature or local optimal [23]. In this paper, modified Disti and Si are given by:

Disti = X2
i − Y 2

i (25)

Si = Disti (26)

Using the modified Eqs. (25) and (26), it is useful for real practical application since decision variable has a large scale

searching space. The Si has the same value of Disti with a large scale search space.

4.3. Implementation of CFOA

The implementation procedure of the CFOA is illustrated in Fig. 4. It is summarized as follows (Minimization of objective

function is the pursuit).

tep 1. Initialization. Set the max iterations number kmax, let k = 1. Initialize fruit fly swarm location based on chaotic sequence

M( · ) as:

X−axisi = Li + M( · )(Ui − Li) (27)

Y−axisi = Li + M( · )(Ui − Li) (28)

tep 2. Give the random direction and distance for the search of food using osphresis by an individual fruit fly as:

Xi = X−axisi + R(k) ∗ M( · ) (29)

Yi = Y−axisi + R(k) ∗ M( · ) (30)

with R(k) = Ui−Li
2 ∗ ( kmax−k

kmax
)φ .
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Fig. 4. The implement procedure of the proposed CFOA.
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tep 3. The distance Disti is then estimated, and the fitness judgment value Si is calculated by:

Disti = X2
i − Y 2

i (31)

Si = Disti (32)

tep 4. Substitute fitness judgment value (Si) into fitness function so as to find the fitness function value (Smelli) of the individual

location of the fruit fly.

Smelli = Function(Si) (33)

tep 5. Find out the fruit fly with the minimum value or the best fitness value among the fruit fly swarm.

[bestSmell bestIndex] = min(Smell) (34)

tep 6. Judge if the fitness is superior to the previous iterative fitness, if so, update the best fitness value and at this moment, the

fruit fly swarm will use vision to fly towards that location.

Smellbest = bestSmell (35)

X−axis = X(bestIndex) (36)

Y−axis = Y(bestIndex) (37)

tep 7. If k ≥ kmax , stop the CFOA search; otherwise, go to Step 2.

5. CFOA based parameter identification of a BIPT system

5.1. Parameter identification problem

The dynamic equation of a system for which the parameter value to be identified is assumed to be in the following form:

ẋ = f (p, x, u)

y = g(p, x) (33)
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Fig. 5. General identification procedure using CFOA technique.
where u is control input vector, y is system output vector, x is state vector, and p is a column vector containing the parameters

to be identified. The system is assumed to be nonlinear, and the parameters may also appear nonlinearly in Eq. (33). To identify

parameter vector p, an estimated model of this system is usually introduced as follows:

˙̂x = f (p̂, x̂, u)

ŷ = g(p̂, x̂) (34)

where x̂, ŷ, and p̂ are the estimated values for vector x, y, and p, respectively.

According to Eq. (34), the same control input u is fed into the system model, and the model has the same structure as in

Eq. (33), i.e. the same functions f(.) and g(.). The identified parameter vector for unknown p is denoted by p̂. For a system with

known model structure but unknown parameter value, a popular method for parameter identification is to formulate the problem

as an optimization process [32]. Commonly, system output vector y can be measured, and model parameter vector p̂ is iteratively

varied until the model output ŷ well matches the measured output y. The discrepancy between the measured system output y

and the estimated model output ŷ is minimized with an objective function.

To identify the parameter vector, the following objective function is proposed by minimizing the integral of the absolute

difference between the measured system output and estimated system output as:

minimize C(p̂) =
∫ T

0

(y(t) − ŷ(t))2dt (35)

The goal is to identify the parameter values in the mathematical model such that the outputs of the model closely match the

measured data. The identification error will result in a nonzero C(p̂), which is used to guide the search for better model parameter

p̂. Now, it is straight-forward to see that the parameter identification problem for system in Eq. (33) has been transformed into

an optimization problem.

5.2. Identification procedure for the BIPT system

The objective now is to discuss how the CFOA technique can be applied to the parameter identification of the BIPT system.

From a pure mathematical point-of-view, parameter identification can be formalized as a multi-dimensional optimization prob-

lem, typically over real bounded domains. From Eqs. (1)–(4), it follows that a BIPT system usually has known model structure

but unknown parameter values. In this paper, the parameter identification of this system is described as a multi-dimensional

optimization problem which makes the difference minimum between the model outputs and the measured outputs as shown in

Fig. 5.

The parameter identification of the BIPT system is formulated as a multi-dimensional optimization problem given by:

minimize C(p̂) =
Ns∑
j=1

(y1( j) − ŷ1( j))2 + (y2( j) − ŷ2( j))2

subjected to Ln ≤ pn ≤ Un, n = 1, 2, . . . , 11 (36)

where Ns is the number of sample data, p = {Lpi, LT , Lsi, Lso,CT ,Cs, M, Rpi, RT , Rsi, Rso}, Ln and Un are lower and upper limits of

variable pn.

The procedure of the proposed parameter identification technique for the BIPT system is illustrated in Fig. 5. First, the sequent

control input u with the number of Ns, is fed into both the actual system and the identified system model. Then, the sequent

measured output y and the sequent calculated output ŷ with the same number of Ns are input to the performance evaluator,

where the fitness function C(p̂) will be calculated. If calculated fitness C(p̂) is poor, the parameter vector p̂ is renewed using

CFOA technique and sent to the identified model again. This iterative procedure for improving the parameter vector p̂ is stopped

if the fitness C(p̂) is good enough or it has reached the maximum iterations number of CFOA.
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Fig. 6. Sample dataset for CFOA based parameter identification procedure.

Fig. 7. Typical optimization process of parameter identification using CFOA and FOA.
6. Simulation

In this section, simulations are conducted to evaluate the performance of the proposed parameter identification technique of

BIPT system. Prototype parameters of the BIPT system as follows: Lpi = 14.01 μH, LT = 13.7 μH, Lsi = 27.3 μH, Lso = 27.1 μH,

CT = 4.7 μF, Cs = 2.43 μF, M = 8 μH, Rpi = 0.0152 �, RT = 0.0158 �, Rsi = 0.0179 �, Rso = 0.0122 �, frequency = 20 kHz,

VDC,1 = 100 V, VDC,2 = 100 V.

Before the parameter identification, there are several important things which need to be considered.

(1) Sample dataset is necessary for CFOA based parameter identification procedure. Periodic control input vectors u1 and u2

with the number of 100 are considered in the sample data. In the same time, totally 100 corresponding output vectors y1 and y2

of this system are collected as the measured outputs. The input and output vectors of the sample dataset are illustrated in Fig. 6,

where sample period Tsample = 0.5 μs. In Fig. 6, various operation points of this system are included in order to reflect the true

state of the system.

(2) Choose the lower and upper limits for variables p to be identified. Choose lower and upper limits of parameters Lpi, LT, Lsi,

Lso as 0 and 50 μH, respectively; choose lower and upper limits of parameters CT and Cs as 0 and 10 μF, respectively; choose

lower and upper limits of parameter M as 0 and 20 μH, respectively; choose lower and upper limits of parameters Rpi, RT, Rsi, Rso

as 0 and 0.1�, respectively.

(3) The CFOA technique is used to search the optimal parameter values to minimize the objective function C(p̂) in Eq. (36).

The adjustable parameters of the CFOA, obtained by trial, are as follows: kmax = 1000, population size i = 100, φ = 4.

The typical optimization process of parameter identification technique using CFOA is illustrated in Fig. 7, where the FOA based

optimization process is also shown for comparison purpose.
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Table 1

Comparison among actual p and optimal identified values p∗ by CFOA technique.

Item Lpi LT Lsi Lso CT Cs M Rpi RT Rsi Rso

Unit μH μH μH μH μF μF μH � � � �

Actual p 14.01 13.7 27.3 27.1 4.7 2.43 8.0 0.0152 0.0158 0.0179 0.0122

Identified p∗ 13.66 13.73 27.80 27.52 4.72 2.40 7.96 0.0161 0.0149 0.0187 0.0129

IAE 0.35 0.03 0.50 0.42 0.02 0.03 0.04 0.0009 0.0009 0.0008 0.0007

RE (%) 2.50 0.22 1.83 1.55 0.43 1.23 0.50 5.92 5.69 4.47 5.73

Table 2

Parameter identification simulation results using different chaotic sequences for CFOA technique.

Chaotic RE (%) Fitness

sequence Lpi LT Lsi Lso CT Cs M Rpi RT Rsi Rso C(p̂)

Logistic 2.11 1.93 1.77 2.61 1.82 1.95 2.22 5.12 5.49 5.36 5.27 16.21

Tent 2.08 2.24 1.95 1.75 2.18 1.86 2.03 4.79 5.38 4.69 5.62 15.92

Chebyshev 1.62 2.04 2.07 1.98 2.25 1.92 2.12 5.28 4.84 4.73 5.80 16.47

Cubic 1.84 1.38 1.69 1.92 2.04 2.53 2.30 5.33 6.05 5.87 5.97 15.88

ICMIC 1.77 1.93 2.15 1.88 2.23 1.81 2.27 5.64 5.38 4.94 5.25 16.25

Sinusodial 1.86 2.17 1.96 1.90 2.28 1.87 2.09 5.14 4.85 5.53 5.74 16.13

Table 3

Parameter identification simulation results using different optimization techniques.

Optimization RE (%) Fitness

technique Lpi LT Lsi Lso CT Cs M Rpi RT Rsi Rso C(p̂)

FOA 3.51 3.67 3.26 3.85 3.94 4.81 3.29 9.12 10.46 8.57 8.62 36.65

CFOA 1.84 1.38 1.69 1.92 2.04 2.53 2.30 5.33 6.05 5.87 5.97 15.88

ACO 2.57 2.69 2.48 2.75 3.19 3.26 3.43 6.62 6.73 7.30 6.89 26.37

ABC 2.59 2.64 2.05 2.60 2.45 3.17 3.26 5.93 6.43 6.28 6.62 24.69

GA 2.38 2.55 2.16 2.14 1.89 3.03 2.74 5.48 6.54 5.82 6.11 22.36

FA 2.27 2.53 2.68 2.75 2.61 2.96 3.17 5.70 6.25 6.33 6.18 25.76

PSO 1.99 2.05 1.98 2.40 2.36 2.74 2.62 5.53 5.84 6.27 5.94 18.40
6.1. Case 1: Performance analysis of parameter identification

Two indexes are used to show the parameter identification performance as: individual absolute error IAE = |xactual −
xidentified|, relative error RE(%) = | xactual−xidentified

xactual
| × 100%.

After the optimization procedure, the optimal identified values p∗ by CFOA technique using Tent chaotic sequence have been

reported in Table 1, where comparison among actual p and optimal identified values p∗ of this system has been reported. Mean-

while, IAE and RE for each variable have also been presented. It can be seen from Table 1 that the unknown parameter values are

correctly identified by the proposed CFOA technique. Both IAE and RE are very small, which means that the difference between

the actual values and identified ones is very small.

Now, we will compare the simulation results of CFOA technique using six kinds of different chaotic sequences as in Eqs. (14)–

(19). All these simulations results have the same iterations number kmax = 1000 and population size i = 100. Due to stochastic

nature, optimization techniques may arrive at better or worse solutions than previously reached solutions during their search

for new solutions. For this reason, it is beneficial to run these techniques for many times. The average results of CFOA technique

using different chaotic sequences for 20 runs are reported in Table 2, which shows the RE of each variable and fitness value C(p̂)
as defined in Eq. (36). The results in Table 2 have also verified that CFOA technique using different chaotic sequences can reach

good result, therefore, different chaotic sequences can be applied in the CFOA technique.

In addition, we will compare the simulation results of CFOA with other optimization techniques: original FOA, ACO [7],

ABC [10], GA [11], FA [13] and particle swarm optimization (PSO). All these techniques have the same iterations number

kmax = 1000 and population size i = 100. The average results of these optimization techniques for 20 runs are reported in Table 3,

which shows the RE of each variable and fitness value C(p̂). The results in Table 3 have also verified that the CFOA outperforms

the other optimization techniques as CFOA has the lowest fitness C(p̂). Average RE of each variable using these techniques shown

in Table 3 also confirm the best performance of proposed CFOA technique among these optimization techniques.

Now, the identified system model will be established using the optimal identified values p∗ by CFOA technique in Table 1.

Figs. 8 and 9 show the measured outputs (y1 and y2) and the corresponding model outputs using p∗. The output errors between

the measured outputs and the corresponding model outputs are also shown. It can be seen from Figs. 8 and 9 that the model

outputs using p∗ reflects the actual outputs well. This indicates that the CFOA based identification technique has reached good

results compared with the actual system outputs.
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Fig. 8. Measured and identified result of y1.

Fig. 9. Measured and identified result of y2.
In addition to the output vectors, the state vectors have also been tested. Fig. 10 has illustrated the actual state vector and

the model state vector using the optimal identified values p∗ for this sample data. The comparison performance for these state

vectors also shows that the difference between the actual and identified model values is very small.

6.2. Case 2: Performance analysis of parameter identification with measurement noise

To examine the robustness of the proposed identification technique, measurement noise are considered in this case. 5% ran-

dom noise is applied to the output vectors y1 and y2, as illustrated in Fig. 11. Then output vectors y1 and y2 with 5% random noise

are used in the parameter identification problem as in Eq. (36). Other system parameters and CFOA parameters take the same

value as in Case 1.

The optimal identified values p∗ with 5% random measurement noise by CFOA technique using Tent chaotic sequence are

summarized in Table 4. In Table 4, comparison among actual p and optimal identified values p∗ of this system has been reported.

Meanwhile, IAE and RE for each variable have also been reported. It can be seen from Table 4 that the unknown parameters are

correctly identified by the proposed CFOA technique, and the difference between the actual values and the identified ones is very

small even when the measurement noise exists.

Now, the simulation results of CFOA technique using different chaotic sequences are also tested with measurement noise. The

average results of the CFOA technique using different chaotic sequences for 20 runs are reported in Table 5, which shows the

RE of each variable and fitness value C(p̂). The results in Table 5 have also verified that CFOA technique using different chaotic

sequences can reach a good result, the difference between different chaotic sequences is very little.



X. Yuan et al. / Applied Mathematics and Computation 268 (2015) 1267–1281 1277

Fig. 10. Measured and identified result of state vectors.

Fig. 11. 5% random measurement noise added to y1 and y2 for sample dataset.

Table 4

Comparison among actual p and optimal identified values p∗ with measurement noise by CFOA technique.

Item Lpi LT Lsi Lso CT Cs M Rpi RT Rsi Rso

Unit μH μH μH μH μF μF μH � � � �

Actual p 14.01 13.7 27.3 27.1 4.7 2.43 8.0 0.0152 0.0158 0.0179 0.0122

Identified p∗ 13.81 13.64 27.59 26.44 4.72 2.41 8.19 0.0162 0.0145 0.0192 0.0131

IAE 0.20 0.06 0.29 0.66 0.02 0.02 0.19 0.0010 0.0013 0.0013 0.0009

RE (%) 1.43 0.44 1.06 2.44 0.43 0.82 2.38 6.57 8.23 7.26 7.37

Table 5

Parameter identification simulation results using different chaotic sequences for CFOA technique.

Chaotic RE (%) Fitness

sequence Lpi LT Lsi Lso CT Cs M Rpi RT Rsi Rso C(p̂)

Logistic 1.78 2.27 1.92 2.49 2.76 2.17 2.09 5.72 5.90 5.86 6.14 17.35

Tent 1.57 1.73 1.88 2.23 2.41 2.30 2.15 5.63 5.47 5.21 5.52 17.13

Chebyshev 2.13 1.94 2.25 2.07 2.81 2.05 2.59 5.58 5.83 5.49 6.03 17.29

Cubic 1.86 2.02 2.07 1.78 2.55 1.92 2.07 5.18 6.33 5.40 5.36 17.65

ICMIC 1.75 1.92 2.18 2.14 2.25 2.09 2.15 5.60 5.80 5.72 6.09 17.12

Sinusodial 1.96 2.17 2.11 1.90 2.49 2.35 1.94 5.76 6.02 6.08 5.86 17.36
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Table 6

Parameter identification simulation results using different optimization techniques.

Optimization RE (%) Fitness

technique Lpi LT Lsi Lso CT Cs M Rpi RT Rsi Rso C(p̂)

FOA 3.54 3.60 3.38 4.11 4.07 4.36 3.47 9.15 10.21 8.44 8.30 38.27

CFOA 1.57 1.73 1.88 2.23 2.41 2.30 2.15 5.63 5.47 5.21 5.52 17.13

ACO 2.52 3.35 2.96 3.35 3.53 3.49 3.08 6.61 7.18 7.29 7.45 27.48

ABC 2.79 2.93 3.14 3.07 3.42 3.28 3.29 6.39 7.16 6.80 7.32 26.03

GA 2.44 2.56 2.58 3.22 2.94 3.07 2.77 6.31 6.08 6.20 6.39 22.94

FA 2.68 3.01 2.87 3.19 3.50 3.31 3.48 6.24 6.53 6.52 7.27 26.59

PSO 2.03 2.26 2.19 2.67 2.33 2.73 2.25 5.50 5.59 5.72 6.11 19.22

Fig. 12. Measured and identified result of y1.

Fig. 13. Measured and identified result of y2.
Here the simulation results with measurement noise using different optimization techniques are also compared. The average

results of these optimization techniques for 20 runs are reported in Table 6, which also shows that the CFOA technique outper-

forms other optimization techniques as CFOA has the lowest fitness C(p̂). Average RE of each variable using these optimization

techniques shown in Table 6 also confirms the good performance of proposed CFOA technique.

Now, the identified model of this system is established using the optimal identified values p∗ by CFOA technique in Table 4.

Figs. 12 and 13 show the measured outputs and the corresponding model outputs using the optimal identified values p∗. The

output errors between the measured and the corresponding model outputs are also shown. Although the identified system model



X. Yuan et al. / Applied Mathematics and Computation 268 (2015) 1267–1281 1279

Fig. 14. Varied input and output vectors for generalization ability test.

Fig. 15. Measured and identified result of y1.
is derived from the sample dataset with measurement noise, the model outputs using p∗ reflects the actual outputs well. This

indicates that the CFOA based identification technique has good robustness against the measurement noise.

6.3. Case 3: Performance in varied operation condition

To examine the generalization ability of the proposed CFOA technique, the identified results of this system are tested in varied

operation condition. Here, varied input vectors u1 and u2 with the number of 100 samples are applied, which are illustrated in

Fig. 14(a). In this operation condition, the output vector y1 and y2 of BIPT system are measured as in Fig. 14(b). It can seen from

Fig. 14 that the input and output vectors are different from that in Cases 1 and 2. We will test whether the optimal identified

values p∗ in Cases 1 and 2 are valid in this condition.

In this operation condition, the system model outputs using p∗ in Cases 1 and 2 are compared with the measured outputs,

which are illustrated in Figs. 15 and 16. Here two identified models are compared, the ‘identified model 1’ denotes the system

model constructed based on p∗ by CFOA technique in Case 1, and the ‘identified model 2’ denotes the system model constructed

based on p∗ with measurement noise by CFOA technique in Case 2. It can be seen from Figs. 15 and 16 that the two identified

models’ outputs are close to the actual outputs. This also means that the identified models have good generalization ability in

other operation condition.

Here, output errors of y1 and y2 of the optimal identified values using different optimization techniques are also compared,

and the root-mean-square error (RMSE) is used to quantify the error. The compared simulation results of the optimal identified

values using different optimization techniques have been reported in Table 7. From Table 7, it is straight-forward to see that the
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Fig. 16. Measured and identified result of y2.

Table 7

Compared output errors of y1 and y2 using different optimization techniques.

Identified model 1 Identified model 2

Item FOA CFOA ACO ABC GA FA PSO FOA CFOA ACO ABC GA FA PSO

RMSE of y1 0.45 0.21 0.31 0.27 0.23 0.30 0.22 0.47 0.22 0.33 0.28 0.25 0.31 0.23

RMSE of y2 0.38 0.17 0.25 0.22 0.19 0.25 0.19 0.39 0.18 0.27 0.23 0.21 0.27 0.19
CFOA technique has the lowest RMSE value for both y1 and y2 among these seven optimization techniques. This also means that

the proposed CFOA technique has the best generalization ability for this problem. In Table 7, the RMSEs of CFOA are much less

than RMSEs of FOA, this has verified the good performance of the proposed CFOA.

From the simulation results in Cases 1–3, it follows that the CFOA based identification technique has the best identification

results among these seven optimization techniques (FOA, CFOA, ACO, ABC, GA, FA, PSO). As the CFOA is the improvement to

original FOA, we also find that CFOA has improved the exploration and exploitation ability of FOA. For the CFOA, six kinds of

different chaotic sequences are compared and the results show that different chaotic sequences can be applied in the proposed

CFOA technique.

7. Conclusions

The main contribution of this paper is establishing a novel CFOA technique, and it is applied to parameter identification in BIPT

system. The simulation results shows that the unknown parameter values are correctly identified and the difference between the

estimated values and measured ones is very small. Compared with other optimization techniques, the proposed CFOA has less

identification error. Six kinds of different chaotic sequences are compared, and there is little difference between different chaotic

sequences. The simulation results also show that the proposed CFOA technique is robust to measurements noise and variation of

operation condition and thus it is suitable for practical application.
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