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Abstract

The purpose of the research on artificial intelligence (AI) is to comprehend the intel-

ligence entity. Research the AI on the one hand is to better understand ourselves,

on the other hand is to construct the intelligent entities, and will be of great use in

our life also. With the development of AI continuously, people have already made

many products has important effect to the human. Although no one can predict the

future development of AI, but the computer is as intelligent as humans will give us a

significant impact to our daily life.

Swarm intelligence refers to a way to solve the problem in the process of interacting

with the simple information processing unit. The concept of swarm indicate that it

has diversity, randomness and chaos, intelligent shows that it is one way to solve the

problem successfully, Information processing unit group can be a bunch of insects, a

flock of birds or a group of human, may also be a set of elements, a group of robots

or independent workstation, it can be true, can also is abstract. Their coupling can

be established in a generalized characteristic, but between unit must be interacting.

Swarm intelligence algorithm is in recent years to the rise of the optimization al-

gorithm, since the 80s of the last century, caused the attention of multi disciplinary

domain experts, And it has become a hotspot in the field of optimization technolo-

gy, AI and economic, social, biological and other cross disciplinary research hotspot.

Some classical swarm optimization algorithm with genetic algorithm, ant colony al-

gorithm, particle swarm algorithm, quantum behaved particle swarm algorithm.

In last few years, various swarm intelligent algorithm inspired by nature phenome-

na were proposed. There are show by numerous experiments that these algorithms are

good tool to solve complex single and multiple object optimization problems. To op-
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timization problems in high-dimensional space, the all traditional class optimization

algorithms cannot provide suitable solve solution, continuing to study optimization

algorithm still has its essential value. Gravitational Search Algorithm (GSA) is a new

optimization algorithm for the same purpose, due to its simple principle and its high

efficiency in solving various nonlinear functions in recent years has become a search

hot spot, and has been applied in some fields. Search of the algorithm has two main

aspects: on the hand, how to improve the search accuracy, one the other hand, how

to accelerate its speed of convergence rate. The article is from the two aspects to im-

prove GSA. GSA based on Newton Law of Gravity and mass interactions is proposed

and a new optimization algorithm. This paper is mainly about the law of gravitation

formula in the corresponding transformation to improve the GSA for improving the

search accurate and accelerate speed of convergence.

On the other hand, in Newton Law of Gravity, the gravitational force between two

particles is proportional to the product of their masses, and inversely proportional to

the square of the distance. To improve the search accurate of GSA, we assign a weight

value to every agent in each iteration process. Large inertial mass particle inertness is

bigger, smaller inertial mass particle inertness is smaller. The moving distance of large

inertial mass is smaller in each iteration process, the moving distance of small inertial

mass is larger in each iteration process. Therefore all of the agents will rapidly move

to the optimal position. improving the search accurate at the same time, accelerating

convergence.

We use of the ergodicity and stochasticity of chaotic search, is combined into

GSA, embedded 12 kinds of chaos and 3 kinds of chaotic search algorithm. The

experimental results show that incorporated chaotic search can effectively improve

the solution quality.

Recently, more neuroscience researches focus on the role of dendritic structure dur-

ing the neural computation. Inspired by the specified topologies of numerous dendritic

trees, we proposed a single neural model with a particular dendritic structure. The

dendrites are composed of several branches, and these branches correspond to three

distributions in coordinate, which are used to classify the training data as required.
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Genetic algorithm is used as the training algorithm. Experimental results based on t-

wo benchmark classification problems verify the effectiveness of the proposed method,

and the distributions of trained dendritic structures are also presented.
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Chapter 1

Introduction

1.1 Meta-heuristic Optimization

The two basic goals of computer science is to find out the algorithm that can prove

its efficiency and can get the best or second best solution. The heuristic algorithm

tries to provide one or all of the goals at a time. For example, it can often find a good

solution, but there is no way to prove that it will not get worse solution. It is usually

obtained from the answer in a reasonable time, but there is no way to know whether

it can solve such speed every time. Sometimes, people will find that in some special

cases, the heuristic algorithm will get a very bad answer or the efficiency is very poor,

however, resulting in the special circumstances of the data combination, may never

appear in the real world. Therefore, heuristic algorithms commonly used to solve the

problem in the real world A heuristic algorithm for handling many practical problems

usually get a good answer in reasonable time.

Comparison with Iterative Reconstruction Methods and optimization algorithms

(OAs), meta-heuristics do not assure that a globally optimal solution can be upon

some classify problems [1]. Many algorithms are implemented in the form of stochas-

tic optimization, which depends on the generation of random variables in order to find

the solution. In combinatorial optimization problems, by a heuristic search in a set

of feasible solutions, the solution can be found with less computational amount than

the iterative method and the simple heuristic algorithm. Therefore, they are useful

methods for optimization problems. Most of the heuristic literature is experimental
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in nature, and it is generally described the experimental results based on the algorith-

m. Through the convergence of the algorithm and the global optimal can be found,

some of the results obtained are very available. Many heuristic algorithms have been

recognized for his practicality and novelty. Research on the heuristic algorithm in

the optimization problem The optimization is starting from the nature, such as en-

gineering design, economic construction, vacation planning, network routing Because

we have limited resources, time and money, so these available resources can get the

best use for us is very important [2].

Most of the optimization in the real world is nonlinear and multi dimension, and

in many complex conditions, the goals may be contradictory. Even if it is a goal,

there may be no optimal solution at all. Usually, to find an optimal solution, or even

to find a suboptimal solution is not an easy task. The following describes the history

of the heuristic algorithm, algorithm principles and characteristics.

1.1.1 A Brief History

In human history, many problems tend to heuristic, however, as the scientific research

method of heuristic optimization is a common phenomenon in modern From 1940s

to 1960s, the heuristic method has already been used in a variety of applications,

until the emergence of the evolutionary algorithm, which was the first to have mile-

post sense symbol, In 1963 Ingo Rechenberg and Hans Paul Schwefel was the first

development of evolutionary algorithm, in 1966 L. J. Fogel began to develop the evo-

lutionary algorithm. The genetic algorithm (GA) was by J. Holland developed in

1960s to 1970s, he also published a book about the GA in 1975s [3].

In 1980s and 1990s was the most exciting moment of the meta-heuristic algorithms.

The simulated annealing (SA) algorithm was developed in 1983 [4], which makes the

research of heuristic algorithm was a big step forward, it is a kind of optimization

method, pioneered by S. Kirkpatrick et al., inspired by the metal annealing process, is

the inspiration, to create the SA algorithm. In 1986, another important development

is from the Farmer et al. development of the artificial immune system.
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Marco Dorigo completed natural OA doctoral dissertation in 1992, thesis describes

his innovative research of ant colony optimization (ACO) [5]. This search technology

was inspired by the swarm intelligence activities of ants, which use pheromone as a

chemical messenger. Then, John R. Koza published a book on genetic programming

in 1992, which was to lay the foundation for a new field of machine learning, this was

a revolutionary programming of the computer.

In 1995 Kennedy Russell and C. Eberhart James proposed particle swarm opti-

mization (PSO) algorithm [6], Storn R. and Price K. proposed vector based calculation

of the evolutionary algorithm in1997 , it was differential evolution (DE) [7], Which is

proved to be more effective than the GA in many applications.

At the beginning of 21 Century, Zong Woo Geem et al. proposed the harmony

search algorithm (HSA) [8], which was inspired by music in 2001. Passino et al.

proposed a bacterial foraging algorithm, which was inspired by the bacterial colony

foraging around 2002.

In 2004 S. Nakrani and C. Tovey et al. proposed the application of honey bee

algorithm and network center, in 2005 D. T. Pham and D. Karaboga et al. to optimize

the bee colony algorithm, and put forward the artificial bee colony (ABC) algorithm

[9]. The firefly algorithm (FA) was proposed by Krishnanand et al. in 2008 [10]. In

2009 Xin-She Yang and Suash Deb et al. presents an efficient cuckoo search (CS)

algorithm [11], it has been proved that cuckoo search algorithm than most of the

meta-heuristic algorithms more effective including the PSO algorithm [12].

1.1.2 Optimization Algorithms

Search capability and efficient OA is necessary to solving optimization problems, OAs

can be classified according to the emphasis and characteristics in many aspects.

If we focus on the gradient or derivative of a function, the optimization problems

can be divided into a gradient based algorithm and a gradient derivative free algo-

rithm. Gradient based algorithms using derivative information as mountain climbing,

they are generally very effective. Derivative free algorithms do not use any derivative
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information, but with the value of the function itself. Some functions are discontin-

uous and computational expense is high, so the derivative free algorithm is simplex

and practical.

From different point of view, the OA can be divided into trajectory based algo-

rithm and population based algorithm. Trajectory based algorithms generally use

a single agent or only one solution, based on a path of continuous iteration. SA

algorithm is a typical trajectory based heuristic algorithm. On the other hand, the

population based algorithms, such as PSO algorithm, ant colony algorithm, artificial

bee colony algorithm, which use multiple agents to find the optimal solutions.

OA can also be classified according to certainty and randomness, if in the im-

plementation of a deterministic mechanical algorithm, without any randomness and

contingency, it is called a deterministic OA. This kind of algorithms if we set the same

initial point, it will find the same solution finally On the other hand, if the algorithm

has certain randomness, so even if set the same initial point, the algorithm usually

gets a different solution after each execution. For example, GA and particle swarm

algorithm is a typical stochastic algorithm.

According to the search capability, the OA can be classified, and it is generally

divided into the global search algorithm and the local search algorithm. Local search

algorithms generally converge to a local optimal solution, this solution is often not

the global optimal solution, this class of algorithms is usually has not ability to go

out of the local optimal. However, for a global optimization problem, the local search

algorithm cannot meet the requirements obviously, it should use the global search

algorithm. Now the meta-heuristic algorithm can carry out generally be a global

optimization, but it is not necessarily effective or successful. In essence, the random

selection is an important component of the global search algorithm.

Obviously, between the algorithm and another algorithm can be combined with

the association, so we can design high capacity and effective algorithm.
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1.1.3 Characteristics of Meta-heuristics

Previously, we put the stochastic components algorithm called heuristic, actually

simple says, the heuristic means to find out the unknown field to explore through the

trial. Heuristic was firstly put forward in the paper by Fred Glover, where the meta

is to represent the implementation or beyond a higher level, and its ability to execute

are usually better than the simple heuristic.

In addition, almost all of the meta-heuristic algorithms are used in random selec-

tion and local search. In a reasonable period of time, to solve the complex optimiza-

tion problems, looking for a high quality solution, but cannot guarantee that the best

solution can be achieved. Almost all of the meta-heuristic algorithms are suitable for

global optimization problems.

All heuristic algorithms are composed of intensification and diversification, they

have the ability of exploration and exploitation Diversity represents a lot of different

solutions in the global scope of exploration. Intensification is represents concentrated

in a local scale to search out the current best solution.

In order to improve the solution quality and convergence speed of the algorithm,

it is needed to well balance the intensification and diversification. The best solution is

to guarantee the convergence to the global optimal, by random search in local optimal

solution space to the diversity of the solution. If we can achieve a good combination

of these two components, it is usually able to get the global optimal solution.

1.2 Evolutionary algorithm

Evolutionary algorithms (EA) is a cluster algorithm, although there was a lot of

change, with different genetic expression patterns, different crossover and mutation

operator, reference to a special operator, different regeneration and selection method,

but their inspiration from nature of biological evolution. The traditional compared

with a calculus method and enumerative method based on OA , evolutionary compu-

tation is a mature with high robustness and applicability of the global optimization
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method, with self-organizing, adaptive, self-learning characteristics to limit is not af-

fected by the nature of the problem and effectively deal with the traditional OAs to

solve complex problems.

Evolutionary computation is a kind of search algorithm based on natural selection

and natural genetic mechanism. As the same with the ordinary search method, evo-

lutionary computation is a kind of iterative algorithm, the different is evolutionary

computation in the optimal solution search process, usually from a set of the orig-

inal problem solution of improvement to another group of good solution, from the

improved solution of further improvement.

And in the evolution of the problem, when the optimization model of the original

problem is established, the solution of the original problem must be coded. Evolution-

ary computation in the search process using structured and random information, so

that the most satisfied with the goal of the decision to obtain the maximum survival

possible, is a probabilistic algorithm.

Evolutionary computation includes 4 typical methods of GA, genetic programming

(GP), evolutionary strategy (ES) and evolutionary programming (EP). The first kind

of method is more mature, and has been widely used. The application of evolutionary

strategy and evolutionary programming in scientific research and practical problems

is more and more widely.

The main genetic operation of GA are selection, crossover and mutation, and in

the evolution rule and strategy, the evolution mechanism of source on selection and

mutation.

In terms of fitness, GAs are used to select good parent generation (excellent off-

spring generation), and evolutionary rules and evolutionary strategies are used to

select offspring.

Evolutionary rules and evolutionary strategies are generally not used to encode,

eliminating the process of encoding and decoding procedures are more suitable for

continuous optimization problems, but it cannot be non-numerical optimization. Evo-

lutionary strategies can be used to determine the mechanisms that produce the parent

generation for reproduction, and the GA and evolutionary rules emphasize the de-
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pendence of individual fitness and probability.

In addition, evolutionary rules are abstracted to the similarity between population-

s, and the evolutionary strategy is the similarity between individuals. Evolutionary

strategies and evolutionary rules have been applied to many fields of continuous func-

tion optimization, pattern recognition, machine learning, neural network training,

system identification and intelligent control.

The EA is based on Darwin’s theory of evolution, through the simulation of bio-

logical evolution process and mechanism of the problem of self-organizing, adaptive

artificial intelligence technology. Biological evolution is realized through reproduction,

variation, competition and selection, and the EA is mainly to solve the optimization

problem by selecting, recombination and mutation of these three kinds of operations.

Evolutionary algorithms, including GAs, genetic programming, evolutionary pro-

gramming and evolutionary strategies, etc.. The basic framework of the EA is a

simple GA described in the framework, but there is a big difference in the way of evo-

lution, selection, crossover, mutation, population control, there are many changes.As

with GA. The convergence of EAs have some results and literature proved in preserv-

ing the best individual general evolutionary computation is convergence, but much of

EAs results from GA to calculated.

GA is more important to crossover operation, which is considered that the mu-

tation operation is an auxiliary operation of the algorithm. However, Evolutionary

programming and evolutionary strategies are considered that the crossover is not

superior to variation in the general sense, even may not cross operation.

Evolutionary computation is a kind of robust method, which can be adapted to

different environments, and the effective solution can be obtained in most cases. It

gives a coding scheme for the whole parameter space of the problem, but there is not

directly on the specific parameters of the problem, and it is not from a single initial

point to start the search, rather than from a set of initial point search. Search in the

use in value of the objective function for information, we cannot use the objective

function of the derivative information or specific issues related to the special knowl-

edge. EAs have a widely range for applications, highly nonlinear, easy to modify and
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parallelism.

In addition, the algorithm can use dynamic adaptive technology also by itself, in

the evolutionary process of automatic adjustment algorithm control parameters and

coding precision, such as the use of fuzzy adaptive method.

1.3 Computational Intelligence

Since the introduction of computer artificial intelligence (AI) has been the goal of the

pursuit of computer scientists. As an important field of AI, computational intelli-

gence (CI) because of its intelligence, parallel and robust, with good adaptive ability

and strong global search ability, get the wide attention of many researchers, has in

algorithm theory and performance made breakthrough progress, and has been widely

used in various fields, plays an important role in the scientific research and production

practice.

Computing intelligence research in the optimization calculation, pattern recogni-

tion, image processing, automatic control, economic management, mechanical engi-

neering, electrical engineering, communication networks and biomedical etc. Multiple

has been made in the field of successful application, the application relates to all as-

pects of national defense, science and technology, economy, industry and agriculture.

Computational intelligence is based on the idea of biological evolution. According

to this view, intelligence is produced in the biological genetic, variation, growth and

the natural selection of the external environment. In the process of using the waste

back, the survival of the fittest, the high degree of adaptation (mind) structure is

preserved, the intelligent level is also improved. So CI is based on the structure of

the evolution of intelligence.

The main methods of CI are ANNs, GAs, GP, EP, local search, SA and so on.

These methods have the following common elements: adaptive structure, randomly

generated or specified initial state, adapt to evaluation function, modify the struc-

ture of the operation, system state memory, termination condition are calculated,

indicating the method and control process parameters. These methods have the ad-
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vantages of self-learning, self-organization, self adaptation, simple, general, robust,

and suitable for parallel processing. It is widely used in the aspects of parallel search,

associative memory, pattern recognition, knowledge acquisition and so on.

Typical such as GA, immune algorithm, SA algorithm, ant colony algorithm,

PSO is a kind of bionic algorithm based on ”from nature get the concept of wis-

dom”, through the people’s cognition of nature unique rules extracted for acquiring

knowledge of a set of computational tools. In general, through the characteristics of

adaptive learning, these algorithms achieve the goal of global optimization.
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Chapter 2

Artificial Neural Network

2.1 Introduction

Artificial Neural Network (ANN) is a research hotspot in the field of artificial intel-

ligence since the 1980s. It abstracts the neural network of human brain from the

information processing point of view, builds a simple model and composes different

networks according to different connection modes. In engineering and academia also

often referred to directly as neural network or neural network. Neural network is a

computing model, by a large number of nodes (or neurons) constitute a link between

each other. Each node represents a specific output function, called the activation

function. The connection between every two nodes represents a weighted value of

the signal passing through the connection, called the weight, which is equivalent to

the memory of the ANN. The output of the network depends on how the network

is connected, the weights, and the incentive functions. The network itself is usually

a natural algorithm or function approximation, it may be the expression of a logical

strategy.The basic structure of neural network shown in Fig 2.1. In the past ten

years, the research of ANN has made great progress. It has successfully solved many

problems in the field of pattern recognition, intelligent robot, automatic control, pre-

diction and estimation, biology, medicine and economy. Modern computer is difficult

to solve the practical problems, showing a good intelligent characteristics. The basic

model of artificial neural network as shown in Fig 2.2.
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Figure 2.1: Evolution of Artificial Neural Networks

2.1.1 Basic characteristics

In an ANN, a neuron processing unit may represent a different object, such as a

feature, a letter, a concept, or some meaningful abstract pattern. Types of processing

units in the network are divided into three categories: input unit, output unit and

hidden unit. The input unit accepts the signals and data from the outside world;

the output unit realizes the output of the system processing result; the hidden unit

is the unit between the input and output units, which cannot be observed from

the outside of the system. The connection weight between the neurons reflects the

connection strength between the cells. The representation and processing of the

information are reflected in the connection relation of the network processing unit.

ANN is a non-procedural, adaptive, brain-style information processing, its essence is

through the network transformation and dynamic behavior of a parallel distributed

information processing functions, and at different levels and levels to imitate people

The information processing function of the cranial nervous system. It is involved

in neuroscience, thinking science, artificial intelligence, computer science and other

fields of interdisciplinary. ANN is a parallel distributed system. It adopts a completely
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Figure 2.2: Artificial Neural Network Model

different mechanism from traditional artificial intelligence and information processing

technology. It overcomes the shortcomings of traditional artificial intelligence based

on logical symbols in dealing with intuitionistic and unstructured information, Self-

organization and real-time learning. ANN is a nonlinear and adaptive information

processing system composed of a large number of processing units interconnected.

It is based on the results of modern neuroscience research, and attempts to process

information by simulating neural network processing and memory information. ANN

has four basic characteristics:

1. Nonlinearity: Non-linear relationship is the universal nature of nature. The

wisdom of the brain is a non-linear phenomenon. Artificial neurons in the activation

or inhibition of two different states, this behavior in the mathematical performance of

a nonlinear relationship. Networks with threshold neurons have better performance

and can improve fault tolerance and storage capacity.

2. Non-limiting: A neural network is usually connected by multiple neurons.

The overall behavior of a system depends not only on the characteristics of a single

neuron, but also on the interplay between the units. Simulating the non-limitation of

the brain through a large number of connections between cells. Associative memory

is a typical example of non-limitation.
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3. Non-qualitative: ANN with adaptive, self-organizing, self-learning ability.

Neural networks not only deal with the information can have a variety of changes, but

also in dealing with information at the same time, nonlinear dynamic system itself is

constantly changing. The iterative process is often used to describe the evolution of

dynamical systems.

4. Non-convexity: The direction of evolution of a system, under certain con-

ditions, will depend on a particular state function. Such as the energy function,

its extreme value corresponds to the system is relatively stable state. Nonconvex is

that this function has multiple extremes, so the system has a number of more stable

equilibrium state, which will lead to the evolution of the diversity of the system.

2.1.2 Types of learning

Learning is an important part of neural network research, and its adaptability is

achieved through learning. According to changes in the environment to adjust the

weights to improve the system behavior. The Hebb learning rules proposed by Hebb

laid the foundation for the learning algorithm of neural networks [13]. Hebb rule

that the learning process occurs in the neurons between the synaptic sites, synap-

tic contact strength with the activities of the neurons before and after the synaptic

changes. On this basis, a variety of learning rules and algorithms are proposed to

meet the needs of different network models. The learning algorithm can make the

neural network construct the internal representation of the objective world by adjust-

ing the weight of the connection, and form the characteristic information processing

method. The information storage and processing are embodied in the network con-

nection. According to the different learning environment, neural network learning

can be divided into supervised learning and unsupervised learning. In the supervised

learning, the training sample data is added to the network input terminal, and the

corresponding expected output is compared with the network output to obtain the

error signal, thereby controlling the adjustment of the weight connection strength,

and after repeated training converges to one determined weights. When the sample
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situation changes, by learning to modify the weights to adapt to the new environment.

The use of supervised learning neural network model has anti-transmission network,

sensor and so on. Unsupervised learning, not given a standard sample in advance,

the network directly into the environment, the learning stage and working stage into

one. At this time, the change of learning rule follows the evolution equation of con-

nection weight. The simplest example of unsupervised learning is the Hebb learning

rule. Competitive learning rules are a more complex example of unsupervised learn-

ing, which is based on established clustering for weight adjustment. Self-organizing

map, adaptive resonance theory network and so on are the typical models related to

competitive learning.

2.1.3 Superiority of ANN

The characteristics and superiority of ANN are mainly manifested in three aspects:

1. Self-learning ability: For example, when image recognition is implemented,

only a number of different image templates and the corresponding recognition results

are input into the ANN, and the network learns to recognize similar images by self-

learning function. The self-learning function is of particular importance for prediction.

Expected future ANN computer will provide human economic forecasting, market

forecasting, prediction efficiency, its application prospects are very ambitious.

2. associative storage capacity: This association can be achieved with a

feedback network of ANNs.

3. High-speed look for the ability to have solutions: In order to find the

optimal solution of a complex problem, we often need a large amount of computation.

Using a feedback ANN designed to solve the problem, we can find the optimal solution

quickly by using the high-speed computing capability of the computer.

2.1.4 Application analysis

Neural network has been applied in many fields, but it needs to be studied in many

aspects. The combination of neural networks with other techniques, such as distribut-
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ed memory, parallel processing, self-learning, self-organization, non-linear mapping,

and the hybrid method and system have become a hotspot. Because other methods

have their own merits, neural network and other methods are combined to learn from

each other, and then can get better application effect. At present, this work has

the integration of neural network and fuzzy logic, expert system, genetic algorithm,

wavelet analysis, chaos, rough set theory, fractal theory, evidence theory and gray

system. After decades of development, neural network theory in pattern recogni-

tion, automatic control, signal processing, decision support, artificial intelligence and

many other research fields have achieved broad success. The following describes the

application status of neural networks in some areas.

2.1.4.1 Application of ANN in Information Field

1. Information processing: The problem of modern information processing is

very complex. ANN has the function of imitating or replacing with the thinking

of human being. It can realize automatic diagnosis, solve the problem and solve

the problem that traditional method can not or difficult to solve. ANNs have high

fault tolerance, robustness and self-organization. Even if the connection lines are

damaged to a great extent, it is still in the state of optimization, which is widely

used in the military system electronic equipment application. The existing intelligent

information systems are intelligent instruments, automatic tracking and monitoring

instrument system, automatic control guidance system, automatic fault diagnosis and

alarm systems.

2. Pattern recognition: Pattern recognition is the process of describing and

identifying, classifying, and interpreting things or phenomena by processing and an-

alyzing the various forms of information that characterize things or phenomena. The

technology is based on the theory of Bayesian probability theory and Shennong’s

information theory. The process of information processing is closer to the logical

thinking process of the human brain. There are two basic pattern recognition meth-

ods, namely statistical pattern recognition method and structure pattern recognition

method. ANN is a common method in pattern recognition. The recognition method of
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ANN, which is developed in recent years, gradually replaces the traditional pattern

recognition method. After years of research and development, pattern recognition

has become a more advanced technology, is widely used in text recognition, speech

recognition, fingerprint recognition, remote sensing image recognition, face recogni-

tion, handwritten character recognition, industrial fault detection, precision guidance

aspect.

2.1.4.2 Application of ANN in Economic Field

1. Market price forecast: Analysis of changes in commodity prices can be attribut-

ed to the impact of market supply and demand of the many factors of comprehensive

analysis. The traditional statistical economics method is difficult to make the scien-

tific forecast to the price fluctuation because of its inherent limitation, and the ANN

is easy to deal with the incomplete, fuzzy uncertain or the regularity not obvious

data, therefore uses the artificial nerve network to carry on price forecasting is a tra-

ditional method can not be compared to the advantage. Based on the market price

determination mechanism, a more accurate and reliable model is established based on

the factors such as the number of households, the disposable income per capita, the

loan interest rate and the urbanization level, which influence the commodity price.

The model can predict the trend of commodity price and get accurate and objective

evaluation results.

2. Risk assessment: Risks refer to the possibility of economic or financial

loss, natural destruction or damage arising from the uncertainties in the conduct of

a particular activity. The best way to prevent the risk is to make a scientific risk

forecast and assessment. The forecasting idea of ANN is to construct the structure

and algorithm of credit risk model according to the realistic risk source, get the risk

evaluation coefficient, and then determine the solution to the practical problem. The

empirical analysis of the model can make up for the lack of subjective assessment,

and can achieve satisfactory results.
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2.1.4.3 Application of ANN in Medicine

Because of the complexity and unpredictability of the human body and the disease,

the detection and signal expression of biological signal and information manifestation,

change rule (self-change and medical intervention), data and information analysis,

Decision-making and many other aspects of the existence of a very complex non-

linear relationship, suitable for the application of ANNs [14]. The current research

involves almost everything from basic medicine to clinical medicine, mainly used in

biological signal detection and automatic analysis, medical expert system and so on.

Although the ANN has made some progress, but there are still many shortcomings,

such as: the application of the surface is not wide enough, the result is not accurate

enough, the existing model algorithm training speed is not high enough, and the

algorithm integration is not high enough. At the same time, we hope to find a new

breakthrough in theory, the establishment of new generic models and algorithms.

We need to further study the biological neuron system, and constantly enrich the

understanding of the human brain.

2.2 Conclusion

ANN has a preliminary adaptive and self-organizing ability. The synaptic weights

are changed during the learning or training process to suit the requirements of the

surrounding environment. The same network can have different functions because of

different learning methods and contents. ANN is a learning ability of the system, can

develop knowledge, so that more than the designer’s original level of knowledge. In

general, its learning and training methods can be divided into two kinds, one is to

monitor the learning, then use the given sample criteria for classification or imitation.

Another one is unsupervised learning, only provides the learning mode or some rules,

the specific learning content with the system environment (the input signal situation),

the system can automatically find the environmental characteristics and regularity,

with more similar to the function of the human brain.
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ANN is like a love of learning children, you teach her knowledge she will not forget

and will apply their knowledge. We add each input in the learning set to the ANN

and tell what the neural network output should be. After all the learning sets have

been run, the ANN sums up her own ideas based on these examples. Then we can

put the test set in the test case using a ANN for testing respectively, if testing (such

as 80% or 90% of the correct rate), then the neural network is constructed success.

After this we can use ANNs to determine the classification of the transaction.

The ANN is the human brain through the base unit (neurons) and coupled model-

ing, simulation model to explore the human brain system functions, and to develop a

kind of learning, associative memory and pattern recognition intelligent information

processing systems. An important characteristic of neural networks is that it can

learn from the environment, and store the distribution of the learning results in the

network’s synaptic connections. ANN learning is a process, in which the environment

under the excitation, the network need to some input samples, and in accordance

with certain rules (learning algorithm) adjust the weight matrix of the network layer

until the network layer weights are convergent to a certain value, the learning process

is over. Then we can use the generated ANN to classify the real data.
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Chapter 3

Chaos

3.1 Introduction

Chaos is to determine the initial state of the long-term behavior of power system,

or system parameters are very sensitive, but not divergence and cannot be precisely

repeated phenomenon, it is nonlinear systems generally have a complex dynamic

behavior [15, 16]. Chaotic variables seem to be chaotic change process, in fact, it

contains the inherent regularity. By using the random, ergodic and regularity of

chaotic variables can optimize the search. The basic idea is to put the chaotic variables

mapping to the value of the optimization variable, then using chaotic variables to

search. However, the algorithm has a long computation time and cannot search the

optimal solution in the large space and multi variable optimization search. Therefore,

we can use a class of chaotic maps with infinite number of folds to generate chaotic

variables, and select the search space of the optimization variables, and constantly

improve the search accuracy and other methods to solve such problems.

Chaos is one of the important branches of nonlinear science. It is a kind of

singular steady-state behavior of nonlinear dynamical systems. It represents the

essential feature of a complex phenomenon in nature and human society. Therefore,

chaotic science advocates Shlesinger and famous physicist Ford and a large number of

chaotic scholars that chaos is the third biggest physics revolution in the 20th century,

the first two is the theories of quantum mechanics and relativity, chaos optimization

is chaotic discipline in the face of engineering application in the field of an important
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research direction. Its application specific is the use of chaotic motion characteristics,

to overcome the defect of traditional optimization methods, so that the optimization

results to achieve better.

Chaos also is nonlinear dynamical systems with special form of a motion, it widely

exists in the nature, such as physics, chemistry, biology, geology, technology science,

social science and other fields of science. Due to the chaotic characteristic: determinis-

tic, boundedness, extreme sensitivity to initial conditions, long-term unpredictability

and so on, it is becoming more and more widely applied, at present mainly used in-

clude: image data encryption, secure communications, computer graphics processing,

signal processing and communications, control system and optimization and direction

in the field of more and more. Among them, the chaos application in information

security is the last ten years has aroused great concern of scholars, and has been

widely used in the field of information security, and has achieved some good results.

3.2 Lyapunov exponent

Lyapunov exponent(LE), the basic characteristics of chaos system is the system ex-

treme sensitivity to the initial value, the two produced trajectory by the same initial

value, with the passage of time according to exponential mode separation, LE is the

quantitative description of this phenomenon [17]. LE is an important quantitative

indicator of a measure of the system dynamic characteristics, which represents the

average index of convergence or divergence between adjacent orbits in phase space.

For whether there is a system dynamic chaos, whether from the maximum LE greater

than 0 is intuitive judgment: a positive LE, which means in system phase space, no

matter how small the spacing of the two initial trajectory, the difference will in an

index increase with time evolution so that to achieve the impossible to predict, which

is the chaotic phenomenon. The sum of LE represents the spheroid volume growth

or decreases rate, on the Hamiltonian system, which sum is zero; on the dissipative

system, which sum as negative. If the dissipative systems attractor is a fixed point,

then whole LE is generally negative. If it is a simple m dimensional manifold (m=1
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or m=2, for a curve or surface respectively), then the first m LE is 0, and the rest of

the LE is negative. Regardless of the system is dissipative, if LE greater than 0 there

will be a chaos. When the LE is less than 0, which means that the adjacent points

to be moved merging into one point finally. If the LE is greater than 0, which means

that the adjacent points will be separated finally. The LE increases, that chaos is

more obvious, the higher the degree of chaos.

3.3 Chaotic characteristics

From the view of phenomena, the chaotic motion seemingly random process, but in

fact, there are essential differences between the chaotic motion and random process.

Chaos is a deterministic algorithm similar stochastic process, it is different from

general randomness, which refers to the nonlinear algorithm without the influence of

external random factors, An intrinsic random generated by the sensitive algorithm of

initial value.

Chaos phenomenon is a deterministic pseudo random process in the algorithm of

nonlinear dynamics. This process is not periodic, the overall stability and expansion-

ary in local. Chaos is the inherent randomness of the determined nonlinear algorithm.

Namely, chaos is the inherent algorithm, which is shown by the complexity of the al-

gorithm itself for inherent factors, and not generated in the external disturbance.

Chaotic motion is caused by the inherent characteristics of the physical law of cer-

tainty, which is derived from the external performance of the intrinsic characteristic,

therefore, it is also called the deterministic chaos, and the random process is caused

by the noise of the external characteristic.

3.3.1 Intrinsic randomness

Under the concept of the steady state of chaos is not usually determine the move-

ment of the three states: static, periodic motion and quasi periodic motion, which

is complex situation motion and always limited to finite area and tracks will never
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repeat. First, chaos is inherent, the system is shown by the complexity of the sys-

tem itself in the internal factors, and not in the external disturbance, which is the

system’s internal random performance. Second, the randomness of chaos is determin-

istic. Chaotic deterministic is divided into two aspects, firstly, the chaotic system is

determined system; secondly, chaotic performance is seemingly random, and not the

real randomized, system state of each moment are affected by the previous state is

to determine, not as casual as stochastic system, the state of chaotic system can be

completely recreate and stochastic systems are different. Third, the performance of

chaotic system is complex, which is not a periodic motion, nor is it a quasi periodic

motion, but has a good self correlation and low frequency broadband characteristics.

3.3.2 Long-term unpredictability

Due to the initial conditions are limited to a finite precision, and the tiny difference of

the initial conditions can have a great influence on the later time evolution, therefore

cannot be long-term forecast dynamic characteristics at some point in the future.

Long-term evolution behavior of chaotic system is unpredictable.

3.3.3 Sensitive dependence on initial value

As time goes on, all initial conditions will show their independent time evolution,

which is sensitive to the initial conditions. Even if the initial data is very small

deviation, after several iterations, the gap will be great.

3.3.4 Universal applicability

When the system is tend to more chaotic and characteristics exhibited by the universal

applicability, the system does not change because of the differences in the concrete

system different and the motion equation of the system, even different chaotic map,

the chaotic state in appearance is similar.
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3.3.5 Fractal character

Fractal is a new word which is used by B.B.Mandelbrot in 70s to create fractal ge-

ometry. So-called Fractal refers to the n dimensional space a geometric properties

of a set of points, they have unlimited fine structure, under any scale there are self

similar and integral similar properties, which are non integer dimension less than the

space dimension n. this point set is called fractal objects. Fractal dimension is a

non-integer dimension, which to quantitatively describe the basic characteristics of

the fractal.

3.3.6 Ergodic property

Ergodic property is also known as mixture. Because chaos is a kind of sexual complex

movement which is always confined to a limited area and the orbit is never repeated.

Therefore, with the passage of time, the trajectory of the chaotic motion will never

stay in a certain state but traverse every point in the regional space, in other words,

as long as the time is sufficiently long, chaos will not be repeated to walk through

every point.

3.3.7 Boundedness

Its movement trajectory has always been confined to a certain region, the region

known as the chaotic domain of attraction. So in general, the chaotic system is

stable.

3.3.8 Fractal dimension

The running state of chaotic system has a multi leaf and multi layer structure, and

the leaf layer is divided into more and more detailed, showing an infinite level of self

similar structure.
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3.3.9 Statistical property

For the chaotic system, positive Lyapunov exponents show that trajectories in each

locality are unstable and adjacent to the track according to the exponential separation.

However, due to the boundedness of the attractor, the orbit can be folded repeatedly

in a confined region, but never intersect, forming a special structure of the chaotic

attractor.

3.4 The application of chaos theory

Chaos theory has been widely used in both natural science and social science, and its

potential application can be summarized as follows:

1. Optimization: Using the randomness, ergodicity and regularity of chaotic

motion to find the most advantages, can be used in many aspects such as system

identification, optimal parameter design and so on [18,19].

2. Neural network: Put the chaos and neural network integration, so that the

neural network by the initial chaotic state gradually degenerated into a general neural

network, using the dynamics of chaotic state intermediate process neural network

escape from local minimum, so as to guarantee the global optimum, it can be used

for associative memory, robot path planning, etc. [20].

3. Image data compression: The complex image data with a group can produce

a simple dynamic equations of the chaotic attractor, so only memory to store a set of

parameters of dynamics equations, the amount of data than the original image data

is greatly reduced, in order to achieve the image data compression.

4. High-speed search: Using the ergodicity of chaos can be retrieved, namely

change initial value at the same time, The data to be retrieved is compared with

the values that have just entered the chaotic state, Retrieves the state of the data

which is close to the stay retrieved data, this method has higher retrieval speed than

random search or genetic algorithm.

5. Nonlinear time series prediction: Any time series can be as a determined
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by a nonlinear mechanism of input and output system, if the irregular movement

phenomenon is a kind of chaotic phenomena, nonlinear technology can forecasting

accurately for short-term.

6. Pattern recognition: Using chaotic trajectory sensitivity to initial conditions,

it is possible to identify the different modes of the system with only a tiny difference.

7. Qualitative prediction of economic chaos and quantitative prediction

of economic system: Using chaos theory to study the economic and management

issues, especially on stock market price index, exchange rate change.

3.5 Conclusion

The theory of relativity eliminates the illusion of absolute space and time, which is

the Newtonian form of illusion. Quantum mechanics is eliminated the dream about

controllable Newton type of measurement process [21]. The chaos is the elimination

of Laplasse’s theory of determinism in the predictability of fantasy. Chaos theory

helps us to break the inherent thinking, and once again deep understanding of the

world all the paradox between both opposite and unified dialectical relationship. It

will guide us in the field of natural science and social science for further studies. At

the same time, we should also take the initiative to combine the chaos theory with

their own professional field, in order to have a new discovery and a new breakthrough.
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Chapter 4

Multiple Chaos Embedded
Gravitational Search Algorithm

4.1 Introduction

Meta-heuristics have been successfully and widely used for solving various optimiza-

tion problems in the past decades [22]. A considerable number of meta-heuristics have

been proposed based on metaphors of natural evolution, swarm mechanisms or man-

made processes [23]. These meta-heuristics include evolutionary computation [24],

particle swarm optimizations [25], ant colony algorithms [26], artificial immune sys-

tems [27], etc. Among them, gravitational search algorithm (GSA) which is inspired

from the Newton’s law of gravity and motion [28] has demonstrated to be a pow-

erful optimization tool when applied to function optimization problems and many

real-world problems [28–31].

Like other nature-inspired meta-heuristic algorithms, GSA is a population-based

adaptive search technique. In GSA, a population of candidate solutions are modeled

as a swarm of objects. At each iteration, the objects update their position by moving

stochastically towards regions previously visited by the other objects. The object with

heavier mass has a larger effective attraction radius and hence a greater intensity of

attraction. By lapse of time, the objects tend to move towards the heaviest object.

In comparison with other well-known optimization algorithms, such as the particle

swarm optimization, GSA has been confirmed higher performance in searching ability
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[28]. However, GSA still has some inherent disadvantages, such as it usually sticks

on local optimal solutions, which indicates that it is unable to improve the solutions’

quality in the latter search phases [32, 33].

Many attempts have been made to alleviate the inherent local minima trapping

problem and further improve the search performance of GSA [33]. Li and Zhou [34]

modified the velocity updating rule by utilizing the memory and social information of

agents, aiming to accelerate GSA’s convergence speed. An opposition-based learning

rule was proposed for population initialization and generation jumping in GSA [35].

A niching GSA was proposed by dividing the main swarm of masses into several

small sub-swarms to maintain the diversity of population [36], thus improving the

performance of GSA for multimodel optimization problems.

Considerable effort has been devoted to incorporating chaos into meta-heuristics

in recent years. Chaos is a universal phenomenon of nonlinear dynamic systems

and it is apparently an irregular motion, seemingly unpredictable random behavior

exhibited by a deterministic nonlinear system under deterministic conditions. Due

to the ergodicity and dynamic properties of chaos, chaotic maps can help meta-

heuristic optimization algorithms to enhance the diversity among individuals and

avoid premature convergence. In the literature, chaotic maps have been incorporated

into evolutionary algorithms [37], particle swarm optimization [38], biogeography-

based optimisation [39], water cycle algorithm [40], fruit fly optimization [41], krill

herd algorithm [42], bat algorithm [43], differential evolution algorithm [44], harmony

search algorithm [45], firefly algorithm [46], ant swarm optimization [47], imperialist

competitive algorithm [48], and others.

In our previous work [49], we proposed two kinds of chaos-based GSAs. One

used chaotic sequences to substitute random numbers for different parameters, and

the other used chaotic variables to perform a chaotic local search. Both embedding

strategies of chaos were found to be benefit for improving GSA’s search ability, and

the latter seemed to be more efficient. The work [49] has been extended by consider-

ing five different chaotic maps. Preliminary experimental results in [50] empirically

showed that all introduced five chaotic maps generally exhibited effectiveness of im-
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proving the performance of GSA. Nevertheless, there is no specific chaotic maps can

enable GSA to achieve the best solution for all optimization problems, suggesting

that the performance of chaotic GSAs are related not only to the search capacity of

the algorithm, but also to the landscape of the solved problems.

In this paper, we investigate the capability of chaotic local search using different

chaotic maps and different incorporation strategies for improving the search perfor-

mance of GSA. The motivation of this study comes from the following aspects. First,

the effectiveness of the incorporation of chaos into GSA needs to be verified via ex-

tensive experiments. Second, as a number of chaotic maps is available, it is required

to find out which one is the most appropriate for GSA. Third, a well-established

embedding strategy which can fully utilize the search dynamics of chaos needs to

be designed. Based on these considerations, we propose a multiple chaos embedded

gravitational search algorithm (MCGSA) in this paper.

In all prior chaotic meta-heuristics [37–50], only a single certain chaotic map

is embedded into the meta-heuristic algorithm to perform the chaotic search. Few

research studies the integration of multiple chaotic systems which simultaneously

perform the search. The prior chaotic GSA in [49] only utilized the well-known

Logistic maps to realize the chaotic search, and the extended one [50] compared the

performance difference during five chaotic maps. Obviously, the search capacity of

such single chaos embedded GSA is limited. Multiple chaos can be expected to provide

more dynamic properties for alleviating the local problem trapping problem of GSA.

To realize these, we first construct twelve variants of single chaos embedded GSA

using twelve different chaotic maps. Then, three novel multiple chaos embedded GSAs

(MCGSA) are proposed, i.e., the twelve chaotic maps are (1) randomly, (2) parallelly,

and (3) memory-selectively incorporated into GSA. The resultant chaotic GSAs are

called CGSA-R, CGSA-P, and CGSA-M, respectively. Extensive experiments are

conducted based on 48 widely used benchmark numerical optimization functions.

Experimental results and statistical analysis verified that MCGSA can perform better

than the traditional GSA and those single chaos embedded GSAs.

The remainder of this paper is organized as follows. Section 2 gives a brief de-
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Figure 4.1: Gravitational force:each interaction force between every mass(agent)

scription of the traditional GSA. Section 3 summarizes the twelve chaotic maps used

in this study. In Section 4, we first introduce the single chaos embedded GSA. Then

three kinds of MCGSA are presented in details. Section 5 provides experimental

results. Section 6 concludes the paper.

4.2 Brief Description of Traditional GSA

GSA is a population based meta-heuristic algorithm inspired by the law of gravity

among objects. Each agent in the population of GSA is considered as objects and its

performance is measured by its mass. The position of agent corresponds to a solution

of the optimization problem needed to be solved. Moving the position of agent can

result in an improvement of the solution’s quality. The gravitational force between

the two particles is proportional to the mass of the inertia of the two particles, and is

inversely proportional to the square of the distance between the two particles.In Fig.

4.1 figure out the gravitational force between two particles.

Formally, every agent Xi = (x1
i , ..., x

d
i , ..., x

D
i ), (i = 1, 2, ..., N) attracts each other

by gravitational forces in a D-dimensional search space, where xd
i represents the

position of i-th agent in the d-th dimension. The corresponding velocity of agent Xi
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is expressed by Vi = (v1i , ..., v
d
i , ..., v

D
i ). The mass of each agent in iteration t, denoted

by Mi(t), is calculated via the map of its fitness as follows:

Mi(t) =
fit(Xi(t))− worst(t)

best(t)− worst(t)
(4.1)

where fit(Xi(t)) represents the fitness of agent Xi by calculating the objective func-

tion. For a minimization problem, best(t) and worst(t) are defined as

best(t) = min
j=1,2,...,N

fit(Xj(t)) (4.2)

worst(t) = max
j=1,2,...,N

fit(Xj(t)) (4.3)

The force acting on the i-th agent from the j-th agent is defined as:

F d
ij(t) = G(t)

Mi(t)×Mj(t)

Rij(t) + ε
(xd

j (t)− xd
i (t)) (4.4)

where Rij(t) = ||xi(t), xj(t)||2 is the Euclidean distance between two agents, and ε

is a small constant, preventing the denominator in Eq. (4.4) from being zero. In

addition, G(t) is the gravitational constant at time t, defined by

G(t) = G0 exp(−α
t

tmax

) (4.5)

where G0 is the initial value, α is a shrinking constant, tmax is the maximum number of

iterations. For the i-th agent, the overall force that acts on it is a randomly weighted

sum of the forces exerted from the surrounding agents.

F d
i (t) =

∑
j∈Kbest,j ̸=i

randjF
d
ij(t) (4.6)

where Kbest is the set of first K agents with the best fitness and biggest mass, randj

is a random number uniformly generated in the interval [0, 1]. Furthermore,

K = ⌊(β + (1− t

tmax

)(1− β))N⌋ (4.7)
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It is clear that K is initially set to N and is decreased linearly, which is controlled by

a constant β. The operation ⌊·⌋ is the floor function. Based on the law of motion,

the acceleration of the i-th agent is calculated by:

adi (t) =
F d
i (t)

Mi(t)
(4.8)

Then, the next velocity of an agent is considered as a fraction of its current velocity

added to its acceleration. Therefore, its position and its velocity could be updated as

follows:

vdi (t+ 1) = randiv
d
i (t) + adi (t) (4.9)

xd
i (t+ 1) = xd

i (t) + vdi (t+ 1) (4.10)

where randi is a random variable in [0, 1]. It should be noted that both randi and

randj are uniformly generated random numbers, and they generally differ from each

other. In fact they are an attempt of giving randomized characteristics to the search.

The general principle of GSA flow chart is shown in Fig.4.2
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Figure 4.2: GSA general principle flow chart
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4.3 Chaotic Maps

One dimensional non-invertible maps are the simplest systems with the capability of

generating chaotic motion. In this study, twelve well-known one-dimensional chaotic

maps widely used in related researches [37–48] are considered.

(1) Logistic map: this classic logistic map appears in nonlinear dynamics of bio-

logical population evidencing chaotic behavior, and can be written as in the following.

zk+1 = µzk(1− zk) (4.11)

where zk is the kth chaotic number. Obviously, zk ∈ (0, 1) under the conditions that

the initial z0 ∈ (0, 1) and that z0 ̸∈ {0.0, 0.025, 0.5, 0.75, 1.0}. In our experiment, we

set µ = 4 and the initial number z0 = 0.152.

3.45 3.5 3.55 3.6 3.65 3.7 3.75 3.8 3.85 3.9 3.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z

3.45 3.5 3.55 3.6 3.65 3.7 3.75 3.8 3.85 3.9 3.95
−1. 5

−1

−0. 5

0

0.5

1

µ

ly
a
p
u
n
o
v 

e
xp

o
n
e
n
t
λ

µ

logistic map 

Figure 4.3: Lyapunov exponent of logistic map
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Figure 4.5: Chaotic 2-Dpoint distribution of logistic map
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(2) Piecewise linear chaotic map (PWLCM): it has been known as ergodic and

has uniform invariant density function on their definition intervals. The simplest

PWLCM is governed by the following equation.

zk+1 =

 zk/p, zk ∈ (0, p)

(1− zk)(1− p), zk ∈ [p, 1)
(4.12)

In the experiment, p is set to be 0.7 and z0 = 0.002.
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Figure 4.6: Lyapunov exponent of Piecewise linear chaotic map (PWLCM)
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Figure 4.8: Chaotic 2-Dpoint distribution of Piecewise linear map
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(3) Singer map: it is a one-dimensional system as given in the following.

zk+1 = µ(7.86zk − 23.31z2k + 28.75z3k − 13.302875z4k) (4.13)

Singer map exhibits chaotic behaviors when the parameter µ is set as a value between

0.9 and 1.08. In this study, we set µ = 1.073 and z0 = 0.152.
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Figure 4.9: Lyapunov exponent of Singer map
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Figure 4.10: Chaotic PDF graph of Singer map
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Figure 4.11: Chaotic 2-Dpoint distribution of Singer map
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(4) Sine map: it belongs to a unimodal map which is similar to the Logistic map,

can it is written as the following equation.

zk+1 =
a

4
sin(πzk) (4.14)

where the parameter a ∈ (0, 4], and thus z ∈ (0, 1). We set a = 4 and z0 = 0.152 in

the experiment.
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Figure 4.12: Lyapunov exponent of Sine map
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Figure 4.13: Chaotic PDF graph of Sine map
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Figure 4.14: Chaotic 2-Dpoint distribution of Sine map
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(5) Sinusoidal map: this iterator can be defined as

zk+1 = az2ksin(πzk) (4.15)

where a = 2.3 and we set the initial number of this chaotic system as z0 = 0.74.
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Figure 4.15: Lyapunov exponent of Sinusoidal map
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Figure 4.16: Chaotic PDF graph of Sinusoidal map
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(6) Tent map: this map is similar to the well-known Logistic map, and displays

some specific chaotic effects. These two maps can be converted to each other, and

there is a relationship of topological conjugacy between them. Tent map can be

defined by the following equation.

zk+1 =

 zk/β, 0 < zk ≤ β

(1− zk)/(1− β), β < zk ≤ 1
(4.16)

We set β = 0.4 and z0 = 0.152.
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Figure 4.18: Lyapunov exponent of Tent map
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Figure 4.19: Chaotic PDF graph of Tent map
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Figure 4.20: Chaotic 2-Dpoint distribution of Tent map
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(7) Bernoulli shift map: this map belongs to the class of piecewise linear maps

similar to the Tent map. It is formulated as follows

zk+1 =

 zk/(1− λ), 0 < zk ≤ 1− λ

(zk − 1 + λ)/λ, 1− λ < zk < 1
(4.17)

We set λ = 0.4 and z0 = 0.152.
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Figure 4.21: Lyapunov exponent of Bernoulli shift map
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Figure 4.22: Chaotic PDF graph of Bernoulli shift map
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Figure 4.23: Chaotic 2-Dpoint distribution of Bernoulli shift map



47

(8) Chebyshev map: it is a common chaotic map, and has wide application in the

neural network, digital communication and security. Its equation is expressed as

zk+1 = cos(ϕ cos−1 zk) (4.18)

where the parameter ϕ is set to be 5 and the initial chaotic number z0 = 0.152.
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Figure 4.24: Lyapunov exponent of Chebyshev map
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Figure 4.25: Chaotic PDF graph of Chebyshev map
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Figure 4.26: Chaotic 2-Dpoint distribution of Chebyshev map
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(9) Circle map: this map is a simplified model for both driven mechanical rotors

and the phase locked loop in electronics. It is a one-dimensional map which maps a

circle onto itself. It is represented by the following equation.

zk+1 = zk + a− b

2π
sin(2πzk) mod (1) (4.19)

For a = 0.5 and b = 2.2, it can generate chaotic sequence in (0, 1). Also, we set

z0 = 0.152 in the experiment.
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Figure 4.27: Lyapunov exponent of Circle map
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Figure 4.28: Chaotic PDF graph of Circle map
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Figure 4.29: Chaotic 2-Dpoint distribution of Circle map
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(10) Cubic map: it is one of the most commonly used maps in generating chaotic

sequence in various applications like cryptography. It can be formally defined by

zk+1 = ρzk(1− z2k) (4.20)

We set ρ = 2.59 and z0 = 0.242.
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Figure 4.30: Lyapunov exponent of Cubic map
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Figure 4.31: Chaotic PDF graph of Cubic map
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Figure 4.32: Chaotic 2-Dpoint distribution of Cubic map
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(11) Gaussian map: it is represented using the following equation

zk+1 =

 0, zk = 0

(µ/zk) mod (1) zk ̸= 0
(4.21)

We set µ = 1 and z0 = 0.152.
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Figure 4.33: Lyapunov exponent of Gaussian map
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Figure 4.34: Chaotic PDF graph of Gaussian map
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Figure 4.35: Chaotic 2-Dpoint distribution of Gaussian map
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(12) Iterative chaotic map with infinite collapses (ICMIC): this map has infinite

fixed points, and can be defined using

zk+1 = sin(a/zk) (4.22)

where a ∈ (0,+∞) is an adjustable parameter, and we set a = 70 in our experiment.

It is clear that ICMIC generates chaotic sequence z ∈ [−1, 0) ∪ (0, 1].

69.55 69.6 69.65 69.7 69.75 69.8 69.85 69.9 69.95 70
−1

−0.5

0

0.5

1

69.55 69.6 69.65 69.7 69.75 69.8 69.85 69.9 69.95 70
0

2

4

6

Z

a

a

ly
a
p
u
n
o
v
 e

xp
o
n
e
n
t
λ

Iterative chaotic map with infinite collapses(ICMIC)

Figure 4.36: Lyapunov exponent of Iterative chaotic map with infinite collaps-
es(ICMIC)



56

−1 −0.5 0 0.5 1
0

3

6

9

12

15

Figure 4.37: Chaotic PDF graph of Iterative chaotic map with infinite collapses
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4.4 Chaotic Gravitational Search Algorithm (CGSA)

Chaos is a kind of a characteristic of nonlinear dynamic system which exhibits bound-

ed dynamic unstable, pseudo random, ergodic, non-period behavior depended on ini-

tial value and control parameters [51]. Due to its ergodicity and randomicity, a chaotic

system changes randomly, but eventually goes through every state if the time duration

is long enough. This characteristic of chaotic systems can be utilized to build up a

search operator for optimizing objective functions. Nevertheless, chaos optimization

works well in a small search space but generates unacceptable optimization time in

a large search space [52]. The main idea of chaotic local search in 2 dimensions is

shown in Fig. 4.39. Therefore, chaotic search is often incorporated into other global

optimizers such as evolutionary algorithms to enhance their search ability [37–48].

Figure 4.39: The main idea of chaotic local search in 2 dimensions

Compared with the methodology which uses chaotic sequences to substitute ran-

dom values of the controlling parameters in GSA, chaotic local search has been demon-

strated to be more effective for improving the performance of GSA [49]. As a matter

of fact, chaotic local search is often adopted in related researches [38–48]. Thus, we

employ the chaotic local search in this study.

The framework of CGSA is illustrated in Algorithm and each variant of CGSA

differs from each other by specifying the chaotic local search procedure.
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Algorithm:
01: for all agent i (i = 1, 2, ..., N) do
02: initialize position Xi randomly in search space [L,U ]
03: end-for
04: while termination criteria not satisfied do
05: for all agent i do
06: compute overall force F d

i (t) according to Eqs. (4.1)-(4.7)
07: compute acceleration adi (t) according to Eq. (4.8)
08: update velocity according to Eq. (4.9)
09: update position according to Eq. (4.10)
10: end-for
11: find out the global best agent Xg

12: implement the chaotic local search approach
13: decrease the chaotic search radius
14: end-while
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4.4.1 Single chaos embedded CGSA

The chaotic local search that utilizes only a single chaotic map is defined as follows.

Xg′(t) = Xg(t) + r(t)(U − L)(z(t)− 0.5) (4.23)

where Xg(t) denotes the position of the current global best agent in the population

at the t-th iteration number. Xg′(t) is indicated as the new agent generated by the

chaotic local search. U and L are the upper bound and lower bound of the search

space, respectively. z(t) is a chaotic variable generated from one of the considered

chaotic maps. r(t) ∈ (0, 1) is a chaotic search radius which is used to control the

exploitation range of the search. It is worth pointing out that Eq. (4.23) actually

denotes a batch local search manner. In a generation, the same chaotic variable

z(t) is used to update all components of the vector Xg (i.e., for all D dimensions).

Without the loss of generality, we suppose the optimization problem is a minimization

one. After the local search is performed, an agent updating procedure is carried out

according to the following equations.

Xg(t+ 1) =

 Xg′(t) If fit(Xg′(t)) ≤ fit(Xg(t))

Xg(t) Otherwise
(4.24)

Xi(t+ 1) = Xi(t) For i = 1, 2, ..., N And i ̸= g (4.25)

The newly generated solution Xg′ will replace the current global best agent if the

fitness is improved, while the others survive to enter into the next iteration.

Regarding the single chaos embedded CGSA, some remarks are given in the fol-

lowing.

1. The local search is performed on the global best agent, not only aiming to im-

prove the search performance of GSA, but also being able to save computational

time when compared to the scheme that applies the local search to all agents;

2. Once the acquired values of Xg′ in Eq. (4.23) locate out of the search bound,
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these values will be reset to the closest boundary value;

3. Considering the fact that chaotic search is efficient in small range, a shrinking

scheme is used to narrow the search neighborhood by lapse of iteration using

r(t+ 1) = 0.988× r(t).

The variants of single chaos embedded CGSA using the chaotic map in Eqs. (4.11)

∼ (4.22) are called CGSA-1 ∼ CGSA-12, respectively.

4.4.2 Multiple chaos embedded CGSA

Different chaotic maps exhibit different and distinct dynamic properties [53,54]. Mul-

tiple chaos are supposed to provide more opportunities for a meta-heuristic to help

it jump out of the local minima via the ergodicity and randomicity of chaos. The

method of incorporating multiple chaos into meta-heuristics remains challenging and

fascinating. In the prior researches no sophisticated scheme has been proposed. Thus,

we innovatively propose three novel multiple chaos embedding schemes in this paper.

The twelve chaotic maps in Eqs. (4.11) ∼ (4.22) are (1) randomly, (2) parallelly, and

(3) memory-selectively incorporated into GSA, respectively.

4.4.2.1 CGSA-R

The chaotic local search that randomly makes use of multiple chaos is defined in the

following.

Xg′(t) = Xg(t) + r(t)(U − L)(zj(t)− 0.5) (4.26)

where zj(t) is a chaotic variable generated from the j-th chaotic map, and j is an

uniformly distributed number generated from the set {1, 2, ..., 12}. In each iteration,

only a single selected chaotic map is used. All twelve chaotic maps are used during

the whole iterations and each one is implemented for approximately tmax/12 times.

Thereafter, the updating procedure shown in Eqs. (4.24)(4.25) is performed.
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4.4.2.2 CGSA-P

The chaotic local search that parallelly uses multiple chaos can be defined as follows.

Xj
g′(t) = Xg(t) + r(t)(U − L)(zj(t)− 0.5) (4.27)

where Xj
g′ , j = 1, 2, ..., 12 presents a candidate solution temporarily generated by the

chaotic local search and it indicates that twelve candidate solutions are simultaneously

generated using twelve different chaotic maps. Thereafter, the best one among the

twelve candidate solutions is taken to compare with the current global best solution

Xg(t). If the fitness can be improved, then replace the original one; otherwise remain

the same. The updating rule can be formally expressed as:

Xg(t+ 1) =

 Xjmin

g′ (t) If fit(Xjmin

g′ (t)) ≤ fit(Xg(t))

Xg(t) Otherwise
(4.28)

jmin = j ∈ {1, 2, ..., 12} s.t. min
j=1,2,...,12

fit(Xj
g′(t)) (4.29)

4.4.2.3 CGSA-M

The basic idea of CGSA-M is derived from the adaptive trail vector generation s-

trategy for differential evolution [55]. Similarly, we use this memory-based strategy

for adaptively selecting different chaotic maps, and hereby named memory-selectively

incorporation scheme. The implementation of the memory-selectively incorporation

scheme can be described in the following.

In CGSA-M, with respect to each current global best agent Xg, one chaotic map

is selected from twelve chaotic maps according to the probability learned from the

success rate and failure rate in generating improved solutions within a certain number

(i.e. LP ) of previous iterations. The selected strategy is applied to the current global

best agent Xg, to generate a new agent X ′
g for comparing the fitness after utilizing the

j-th chaotic map with X ′
g to decide whether Xg would be replaced by X ′

g, as shown

in Eq. (4.23).
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Initially, the probability of selecting each chaotic map is set to be 1/12, suggesting

that all chaotic maps have the equal probability to be selected. With the lapse of

iteration, the selection probabilities are updated according to the following rules.

pj,t =
Sj,t∑12
j=1 Sj,t

(4.30)

Sj,t =

∑t−1
g=t−LP nsj,g∑t−1

g=t−LP nsj,g +
∑t−1

g=t−LP nfj,g
+ ϕ,

(j = 1, 2, ..., 12; t > LP )

(4.31)

where pj,t denotes the probability of selecting the j-th chaotic map at the t-th itera-

tion. nsj,t indicates the number of new individuals generated by the j-th chaotic map

and successfully entering the next iteration within the previous LP iterations with

respect to generation t, and nfj,t denotes the number of these new individuals which

failed to enter into the next iteration. Sj,t represents the success rate, and ϕ = 0.01

is set to avoid the null success rate. It is apparent that the larger the success rate

for the j-th chaotic map, the higher the probability of applying it to generate new

individual at the current iteration.

4.5 Experimental Results

To evaluate the performance of the proposed multiple chaos embedded gravitational

search algorithms, i.e., CGSA-R, CGSA-P, CGSA-M, we make a comparison with

the original gravitational search algorithm [28] and twelve single chaos embedded

gravitational search algorithms using different chaotic maps (i.e., CGSA-1 ∼ CGSA-

12). The experiment is conducted using Matlab on a personal PC.
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Figure 4.40: The 2-dimensional sketch (a) and the contour (b) for the unimodal
function F5 and the shifted rotated Griewank’s function F30, respectively.

In order to make a statistical analysis, all compared algorithms are implement-

ed 30 times based on a total number of 48 benchmark functions. These benchmark

functions are taken from [56,57]. F1 ∼ F23 are the most commonly used benchmark

numerical functions [56], where F1 and F5 are unimodal functions; F6 is a step func-

tion which has only one minimum and is discontinuous; F7 is a noisy quartic function;

F8 ∼ F13 are multimodal functions with plenty of local minima and the number of

the local minima in these functions increase exponentially with the dimension of the

function; F14 ∼ F23 are low dimensional functions which only have a few local min-

ima. These functions can successfully test the searching capacity of algorithms in

terms of convergence speed and global exploration ability. In other words, unimodal

functions are able to reflect the convergence speed of the algorithm in a direct man-
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ner, and multimodal ones are likely to estimate the algorithms’ ability of escaping

from local minima. Nevertheless, these traditional 23 benchmark functions suffer

from two problems: (1) global minima lie at the center of the search range (usually

at
−→
0 D), which might be easily utilized as a prior knowledge; (2) local minima lie

along the coordinate axes or no linkage among the variables exists [55]. Shifted or

rotated functions proposed in CEC’05 [57] can solve these problems in traditional 23

benchmarks functions. F24 ∼ F48 are CEC’05 functions, where F24 ∼ F28 are shift-

ed unimodal functions; F29 ∼ F37 are shifted multimodal functions; F38 ∼ F48 are

rotated hybrid composition functions. Fig. 4.40 illustrates the characteristics of the

unimodal function F5 and the shifted rotated Griewank’s function F30 respectively,

in terms of the two-dimensional sketch and the contour. The user-defined parameters

in GSA and CGSAs are set as follows. The population size N is 50. The maximum

iteration number tmax is 1000. ε in Eq. (4.4) is set to be 1.0E-100 to make sure that

it exerts little influence on the gravitational force. The shrinking constant α in Eq.

(4.5) controls the decrease speed of G(t) and is set to be 0.02tmax. The initial value

of the gravitational parameter G0 = 100. The attraction scope parameter β in Eq.

(4.7) is set to be 2%. As suggested in [55], we adopt LP = 50 for CGSA-M.

Tables 1 ∼ 8 summarize the experimental results of GSA, CGSA with 12 different

chaos, CGSA-R, CGSA-P and CGSA-M for 48 tested benchmark functions. The

recorded results are shown in the form of Ave.±Dev., where Ave. denotes the average

of the optimization error (final best-so-far solution) of 30 independent runs for each

algorithm, and Dev. represents its standard deviation. The best result among the

compared 16 algorithms is shown in bold. From Tables 1 ∼ 8, we can find that

1. The best results are always obtained by one of the variants of chaotic GSA rather

than GSA, which suggests that the chaotic local search definitely improves the

search performance of GSA.

2. The proposed MCGSA (including CGSA-R, CGSA-P and CGSA-M) can ac-

quire the best solutions for 31 out of 48 benchmark functions.

3. On the other hand, all twelve variants of single chaos embedded GSA can per-
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form the best for only 18 benchmark functions.

4. Thus, it can be stated that the multiple chaos incorporation scheme is generally

better than the single one for improving the performance of GSA.

To give some insights into the search performance of compared algorithms, Figs.

4.41 and 4.42 depict the convergence graphs and distributions of the final solutions

for functions F5 and F30 respectively. Two kinds of convergence graphs are utilized:

one is the average best-so-far solutions versus the iteration number, and the other is

the ratio of the best-so-far solution versus the iteration number. In Figs. 4.41(a) and

4.42(a), the horizontal axis in a linear scale indicates the generation (i.e., iteration

number) of the algorithm, while the vertical axis in a logarithmic scale represents the

average fitness of the best-so-far solutions generated by the algorithm. From these

two sub-figures, it can be found that all algorithms converge quickly in early phases

of the iteration, and trapped into local minima at the later phases. The best final

solutions are obtained by CGSA-P for both F5 and F30.

On the other hand, the ratio of the best-so-far solutions found by chaotic GSAs

to those found by GSA is depicted in Figs. 4.41(b) and 4.42(b), aiming to verify the

effects of chaotic local search on the GSA. From Fig. 4.41(b), we observe that all

chaotic GSAs can find better solutions than GSA in earlier phases, suggesting that

the chaotic local search is able to improve GSA in an exploitation manner. However,

some of chaotic GSAs generate worse solutions than GSA in the latter search phase

and cannot improve solutions’ qualities any further. It reveals that the chaotic local

search cannot always improve the performance of GSA for all the time. Its effects

strongly depend on the used chaotic map, which is usually the common case in chaotic

meta-heuristics. In this figure, it is clear that the proposed MCGSA (including CGSA-

R, CGSA-P and CGSA-M) can generate better solutions than the other compared

algorithms. A same phenomenon that MCGSA performs better than the others can

also be observed in Fig. 4.42(b).

Due to the stochastic feature of all compared 16 algorithms, a box-and-whisker di-

agram is used to depict the distribution of final obtained best-so-far solutions in Figs.
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4.41(c) and 4.42(c). In these figures, five characteristic values including the smallest

observation, lower quartile, median, upper quartile, and the largest observation are

illustrated. Symbol + indicates outliers. From these sub-figures, it is quite clear that

MCGSA outperforms its competitive algorithms. Especially, CGSA-P performs the

best among all compared algorithms.

To further demonstrate the effectiveness and robustness of the proposed MCGSA,

the average rankings of the algorithms obtained by the Friedman test [58, 59] on all

tested 48 benchmark optimization functions are summarized in Tables 4.9∼ 4.11. The

Friedman test is a nonparametric statistical test which applies the post hoc method

of Iman-Davenport [59]. It can rank the algorithms for each problem separately.

The best performing algorithm among all compared algorithms should have rank 1,

the second best rank 2, and so on. From these results, it can be found that the best

performing algorithm usually changes for a certain optimization function. It is difficult

to find such an algorithm which can perform the best for all tested problems (also

known as the No Fee Lunch Theorem [60]). Thus, we confirm that the performance of

an algorithm not only depends on its searching capacity, but also relies on the fitness

structure (shown as in Fig. 4.40) of the solved function.

Furthermore, the values in the last column of Table 4.11 record the average ranking

of 48 functions for all compared 16 algorithms. CGSA-P gets the smallest value of

7.47, which means that it averagely performs the best for all functions. The second

smallest value 7.58 is acquired by CGSA-R, while CGSA-M gets the third one. It

is worth pointing out that GSA gets the largest ranking value, indicating that all

chaotic GSAs performs better than GSA. In addition, it is mostly desired that a

general well-performing algorithm should be designed. From this practical problem-

solving perspective, we can conclude that the proposed multiple chaos incorporation

scheme is effective for improving the performance of GSA.
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4.6 Discussions

As discussed in detail in Section 5, our proposed multiple chaotic embedded CGSA

(MCGSA) can perform better than traditional GSA and 12 single chaos embedded

CGSAs under the condition of the same maximum number of iterations. That is to

say, under this condition MCGSA outperforms its competitive algorithms in terms

of solution accuracy and the capacity of jumping out of local optima. However, as

the computational cost in each iteration for the compared algorithms is different, it

is necessary to compare these algorithms under the same computational cost. To

realize this, we set the termination criteria to be the maximum number of function

evaluations (i.e., D*10000) for all algorithms. We select all functions to be the test

suit.

On the other hand, to further verify the effect of the usage of chaos, we perform

a contrast analysis to answer the following question: why the chaos is effective for

perturbation force of the local search. We conduct two variants of CGSA by replacing

the z(t) in Eq. (4.23) to be random numbers with a uniform distribution or normal

distribution. We designate the newly conducted algorithms to be GSA-UD (i.e.,

the GSA using a uniform distribution random sequence embedded local search) and

GSA-ND (i.e., the GSA using a normal distribution random sequence embedded local

search), respectively.

Table 4.12 summarizes the results for GSA, CGSA-R, CGSA-P, CGSA-M, GSA-

UD, and GSA-ND for the all benchmark functions over 30 independent runs. Figs.

4.43 and 4.44 depict the convergence graphs (average best-so-far versus number of

function evaluation) for two typical functions: F5 and F30. It is clear that MCGSA

generally outperforms the compared algorithms in terms of solution accuracy under

almost the same computational burden. For F13, CGSA-P and CGSA-R perform

significantly better than the others. For F30, although almost the same average value

(4.86E+03) are obtained by CGSA-P and GSA-UD, CGSA-P possesses a smaller de-

viation, which suggests that CGSA-P is more robust to generate promising solutions.

However, there are still two (F28,F43) of the 48 functions cannot got the solution
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Figure 4.43: Convergence graph of F5: solution along with the number of function
evaluation.

better than that by random or normal distribution. In addition, it should be pointed

out that the solutions in Table 4.12 are generally better than those in Tables 1 ∼ 8

because more iteration numbers are implemented in this complementary experiment

(e.g. 6000 iterations are carried out for GSA). All in all, we can conclude that: (1)

the local search induced by chaos is more efficient than that by random or normal

distribution numbers; (2) multiple chaos embedded local search generally performs

better than single chaos embedded one; and (3) the parallelly embedding strategy is

the most effective for improving the performance of GSA.

4.7 Conclusions

In this paper, taking into account the abundant searching dynamics of different chaos

we innovatively propose a multiple chaos embedded gravitational search algorithm

(MCGSA). To further improve the searching performance of GSA, three kinds of

incorporation schemes are investigated. Multiple chaotic maps are randomly, paral-
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Figure 4.44: Convergence graph of F30: solution along with the number of function
evaluation.

lelly, or memory-selectively incorporated into GSA, respectively. Experimental results

based on a set of 48 benchmark optimization functions verify the effectiveness and

robustness of the proposed MCGSA. Especially, the parallelly embedding scheme for

GSA is demonstrated to be the most effective based on the Friedman test. This study

opens the door to the following future researches:

1. MCGSA should be verified on other practical problems, especially engineering

optimization problems.

2. The effectiveness of the proposed multiple chaos incorporation scheme should

be applied on other meta-heuristics to further reveal its effects.

3. Through our experimental results, we find that a certain chaotic map is effective

for some specific optimization functions. The influence of the distinct chaotic

search dynamics on the algorithm should be further studied.

4. As each chaotic map has an inherent Lyapunov exponent which reflects its
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chaotic degree, a Lyapunov exponent based adaptive multiple chaos incorpora-

tion scheme should also be designed.
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Chapter 5

Training A Dendritic Neural
Model with Genetic Algorithm for
Classification Problems

5.1 Introduction

In 1943, McCulloch and Pitts proposed the first mathematical model of a neural

cell to simulate the computational mechanism of biological neurons [61], and it has

been widely used as a basic unit of multilayer neural network (MLP). The MLP has

been successfully applied to numerous fields, such as function approximation, pattern

recognition, design optimization and associative memories [62–64]. High performance

and low computation cost make MLP becoming a remarkably popular computational

tool over the last few decades. The structure with multiple hidden layers makes it

become capable to solve the non-linear problems. On the other hand, the Error Back

Propagation (BP) training algorithm for MLP usually suffers from the problems of

easily trapping into local minimum, and becomes an obstacle hindering its further

development [65].

With in-depth research in the study of biological neurons’ computational organi-

zation, a fierce debate has been drawn that a single neuron can solve linearly non-

separable problems, for which single-layer perceptron of McCulloch and Pitts’ model

is unable to realize such a complex computation capacity [66]. Scientists focus on

the roles of dendritic structure during the neural computation. It is well-known that
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105 dendritic trees have been reconstructed in different cephalic regions, which are

highly specialized for brain functions [67]. Inspired by these preliminary studies in

neuroscience, several single neural models operated by considering dendrite struc-

tures have been proposed and applied into intelligent computing [68–71]. Compared

to these subjectively constructed neural model, Legenstein and Maass [72] introduced

a novel experimentally based on phenomenological model, which just used spike tim-

ing dependent plasticity and branch strength potentiation to solve a binding problem

successfully, whereas Legenstein and Maass’s model is still proved to be disabled to

solve the linearly non-separated problems [73].

In this paper, we have innovatively proposed a dendritic neural model focusing

on the computational capabilities of single branch of dendrites. Our model is com-

posed of three layers, namely, synaptic layer, dendritic layer, and soma body. The

synaptic layer is the intermediary connecting to other neurons, and it is regarded as

an input layer in our model. The dendritic layer is constituted by several branches.

Each branch has its specified branch threshold. The signals of synaptic layer on that

branch will multiply each other, and the results are then undergone to be compared

with its branch threshold. The multiplication operation is inspired by the fact of the

actual existence in biological neural models, such as visual systems [74] and auditory

process [75]. Such calculation mechanism makes each branch of the dendrites corre-

spond to a specified distribution in coordinates, while the number of distributions is

determined by the input dimensionality, and the distributions could classify training

data effectively.

Since the equation of the dendritic layer is not differential, the standard BP algo-

rithm behaves unsatisfiedly to train our model. Alternatively, we turn our attention

to heuristic optimization algorithm, such as Differential Evolution (DE), Genetic Al-

gorithm (GA), Particle Swarm Optimization (PSO), and Ant Colony Optimization

(ACO). Based on the well-known No Free Lunch theorem (NFL) [76], no heuristic

algorithm is capable of suiting for all the optimization problems. After comparing the

performance of each algorithm, we finally choose the GA. The effectiveness of GA in

training our proposed model are verified in two benchmark classification experiments.
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The remaining of the paper is organized as follows. Section II introduces the

proposed dendritic neuron model in details. The GA training algorithm is described

in Section III. Section IV presents experimental results and discussions. Finally,

conclusions and remarks for the future are presented in Section V.

5.2 Architecture and properties

The morphological structure is illustrated in Fig. 5.1, which show that it consists of

three layers, namely the synaptic layer, the dendritic layer and the soma body. The

synapses are able to receive signals from axons of the other neurons, and each input

signal connects to two synapses on one branch of the dendrites with different weights

and thresholds. The non-linear calculation in synaptic layer can be formulated as

follow:

Y j
im =

1

1 + e−wim(xi−θim)
(j = 1, 2) (5.1)

where xi indicates the i-th input signal, wi,m and θi,m correspond to the weights and

threshold values of the synapses on m-th branch of the dendrites. It is notable that

since all the inputs xi are normalized to [0, 1] to eliminate the influence of different

measure unites in various problems. On every independent branch of the dendrites,

the outputs of synaptic layers would multiply each other and compare the result with

the branch threshold θbranch, which is set to be 0.52∗I in our simulation. Then the

outcomes are transferred to the soma body as the final classification category. The

corresponding equation is expressed below.

Zm =


0,

∏m
i=1(

∏2
j=1 Y

j
im) < θbranch

1,
∏m

i=1(
∏2

j=1 Y
j
im) ≥ θbranch

(5.2)

The soma body collects the branch signals, then compares the summation of

signals with its threshold (usually set to be 0.5 in our experiment), which can be
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Soma

X2 X3 X4X1

Figure 5.1: The architecture of the proposed dendritic neuron model.

formulated as follows:

O =
1

1 + e−5∗(
∑M

m=1 Zm−0.5)
(5.3)

Corresponding to different values of weights and thresholds, one branch of the

dendrites will correspond to one of these three distribution states, which are shown

in Fig. 5.2.

The positive and negative properties of weights determine the shapes of the distri-

bution. The sizes of the absolute values of weights determine the curvature of the arc,

while the thresholds determine the position on the axis. Through the observation,

these arcs divide the plane into two parts. Hence, based on such distinct property,

the model is able to mapping the training data to different classifications.

In Fig. 5.2(a), the first distribution is a closed plane area, which has upper and

lower bounds on both axes. It is concluded from the fact that the weights of each input
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on this branch have the different positive and negative values. Fig. 5.2(b) depicts

that one axis of the second distribution has no boundary. Fig. 5.2(c) illustrates that

both axes of the third distribution have no boundary. For n-dimensional training

inputs, the number of distribution conditions will be n+1.

It is worth emphasizing that since we use a summation operation in soma com-

putation, training dots are allocated into the same classification, which makes it only

need to satisfy the distribution of one branch of dendrites. Then we need a learning

algorithm to train our model to figure out the appropriate parameters, which will be

elaborated in the next section.

5.3 Training algorithm

The weights and threshold values of synapses are the specific parameters which need

to be trained in our model. Once the parameters are set, the morphological topol-

ogy would be determined. Genetic Algorithm (GA) is applied to train our model.

Before introducing the GA, we firstly present the definition solution encoding and

fitness function. One candidate solution is constituted of all the parameters of the

model corresponding to a dendritic model. Before training, initialized solution will

be encoded as binary string sequences. For a candidate solution, the fitness function

is defined as Mean Square Error between the estimated output O and the teacher

signal T , which are shown in the following equation.

MSE =
J∑

j=1

(Oj − Tj)
2 (5.4)

where J is the number of training samples. The procedure for training our dendritic

model could be viewed as a process flow which is shown in Fig. 5.3. First, the

evolution starts from a randomly initial population, then three genetic operator are

utilized, say selection, crossover and mutation, to generate a new population. The

process will continue until a termination condition is fulfilled.
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Figure 5.2: The distributions of dendritic structures.
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Figure 5.3: The procedure of genetic algorithm for training the dendritic model.

5.4 Simulation

The classification performance of our proposed model has been investigated by two

nontrivial benchmark problems: the famous Exclusive OR (XOR) problem and two

intertwined spirals problems [77]. Both classification problems are based on two-

dimensional synthetic datasets, aiming to demonstrate our model properties visually.

The initial values of genetic algorithm for these benchmark problem are shown in

Table 2.

5.4.1 Classic XOR problem

The classic XOR problem is a famous non-linear benchmark problem. The training

data with two inputs are shown in Table 1.
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Table 5.1: Initial parameter of genetic algorithm

Type Binary Representation
Selection Roulette wheel
Crossover Single point
Mutation Uniform (probability=0.02)

Population size 50(XOR) 100(Spiral)
Maximum number of generations 1000(XOR) 3000(Spiral)

Table 5.2: Exclusive OR problem.

HHHHHHX2

X1 0 1

0 0 1
1 1 0

5.4.2 Two intertwined spirals problem

The spirals dataset is generated by the following expressions:

xc(θ) =
2(−1)1−c

π
θ cos(θ) (5.5)

yc(θ) =
8(−1)1−c

3π
θ sin(θ) (5.6)

where [xc, yc] denotes the position in the planar reference frame, c ∈ [0, 1] represents

the spiral classifications, and θ is the angle in radians. Fig. 5.4 shows the spiral

dataset which is trained in our experiment.

The performance of the proposed model is summarized in Table 3, where branch

number records the number of the branch of dendrites left in the trained models.

MSE is the final fitness function of our training algorithm. Accuracy represents

the correct classification rates of the two benchmark problems. The distributions

in co-ordinate corresponding to dendritic structures are shown in Fig. 5.5 and Fig.

5.6respectively. After the evolutionary process, there are only one distribution left in

the XOR problem, which classifies the four training dots successfully. The dendritic
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Figure 5.4: Spiral dataset trained in our experiment

Table 5.3: Results of two benchmark problems

Result XOR Spiral
Branch number 1 13

MSE 0.0034 0.0436
Accuracy 100% 97%

structure of spiral problem has three kinds of distributions. Most of them are the

first distribution, and the accuracy of the spiral problem is 97%. The three missing

mistaken points can also be found in Fig. 5.6. Based on these results, we can

draw a conclusion that our model is a competitive classifier to solve these benchmark

problems.

5.5 Conclusion

In this paper, a novel model with dendritic structure is proposed, which is inspired

by the biological neuron model. We choose the genetic algorithm as the training

algorithm. Branches of dendrites will correspond to three kinds of distributions in
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Figure 5.6: The distribution of the trained dendritic structure for spiral problem.

coordinates. This property makes our model solve two benchmark problems effective-

ly, which has been verified in our experiment. More comparative trial, statistical test

and theoretical analysis will be investigated in our future research.
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Chapter 6

Conclusions

This paper in order to improve the search ability of GSA, we are supplying the

GSA with 12 kinds of single chaotic search and 3 kinds of multiple chaotic search,

the results show that, whether embedded single chaotic search, or multiple chaotic

search are effectively improved the GSA’s search ability and get the higher quality

solutions. Secondly, the classification problem can be solved more effectively by the

fission algorithm, which makes the classification problem more intuitive and quickly.

Evolutionary computation is a kind of robust method, which can be adapted to

different environments, and the effective solution can be obtained in most cases. It

gives a coding scheme for the whole parameter space of the problem, rather than

directly on the specific parameters of the problem, not from a single initial point to

start the search, but from a set of initial point to search. Search is used in the objective

function value of the information, which cannot use the derivative information of

the objective function or specific issues related to the special knowledge. Therefore

evolutionary algorithm have widely extensive applicability, highly nonlinear, easy to

modify and parallelism.

First chapter in this paper, we introduced the concept of meta-heuristic opti-

mization, from its history of development, birth of the optimization algorithm to the

characteristics of heuristic algorithms, we can see reasonable improvement and con-

solidation of evolutionary algorithm, can effectively improve the ability to solve the

problem of optimization algorithm.

Computational intelligence algorithms have a common characteristic is the imita-
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tion of certain aspects of human intelligence to simulate the human intelligence, the

design optimization algorithm is to achieve biological wisdom, computer program-

ming. However, the computational intelligence of these different research areas have

different characteristics, although they have to imitate human and other biological

intelligence in common, but there are some differences on the concrete methods.

However at the present stage, the development of computational intelligence is also

facing serious challenges, one of the important reasons is computational intelligence is

still a lack of solid mathematical foundation, also cannot be subjects such as physics,

chemistry, astronomy, and so that freely using mathematical tools to solve the calcu-

lation problem. Although the neural network has more perfect theoretical basis, but

such as evolutionary computation and other important computational intelligence

technology has not been improved mathematical basis. The analysis and proof of

the stability and convergence of computational intelligence algorithms are still in the

research stage. Through numerical experiment method and the concrete application

method testing computational intelligence algorithm is effective and efficiency is the

important method of computational intelligence algorithms.

In the third chapter, we introduce the concept of chaos. Chaos is the general term

of the system stochastic behavior, and its root lies in the nonlinear interaction. Chaos

is not clutter, it is different from the equilibrium state, but a sequence. Movement of

the most common form in the nature, is not completely determined, also is not com-

pletely random, but somewhere between in two, which is the study of the important

significance of the system in the stochastic behavior. To clearly define chaos, it is

necessary to discuss the dependence of the system on the minor changes of the initial

value.

From the experimental results and data, embedded the chaotic, the ability of

the GSA have been improved, especially parallel chaotic CGSA-P in which other

algorithms are stuck in a local minimum, it can still to find better solutions, and

under the precondition of not consume time cost.
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