34 research outputs found

    Modeling Dendritic Solidification using Lattice Boltzmann and Cellular Automaton Methods

    Get PDF
    This dissertation presents the development of numerical models based on lattice Boltzmann (LB) and cellular automaton (CA) methods for solving phase change and microstructural evolution problems. First, a new variation of the LB method is discussed for solving the heat conduction problem with phase change. In contrast to previous explicit algorithms, the latent heat source term is treated implicitly in the energy equation, avoiding iteration steps and improving the formulation stability and efficiency. The results showed that the model can deal with phase change problems more accurately and efficiently than explicit LB models. Furthermore, a new numerical technique is introduced for simulating dendrite growth in three dimensions. The LB method is used to calculate the transport phenomena and the CA is employed to capture the solid/liquid interface. It is assumed that the dendritic growth is driven by the difference between the local actual and local equilibrium composition of the liquid in the interface. The evolution of a threedimensional (3D) dendrite is discussed. In addition, the effect of undercooling and degree of anisotropy on the kinetics of dendrite growth is studied. Moreover, effect of melt convection on dendritic solidification is investigated using 3D simulations. It is shown that convection can change the kinetics of growth by affecting the solute distribution around the dendrite. The growth features of twodimensional (2D) and 3D dendrites are compared. Furthermore, the change in growth kinetics and morphology of Al-Cu dendrites is studied by altering melt undercooling, alloy composition and inlet flow velocity. The local-type nature of LB and CA methods enables efficient scaling of the model in petaflops supercomputers, allowing the simulation of large domains in 3D. The model capabilities with large scale simulations of dendritic solidification are discussed and the parallel performance of the algorithm is assessed. Excellent strong scaling up to thousands of computing cores is obtained across the nodes of a computer cluster, along with near-perfect weak scaling. Considering the advantages offered by the presented model, it can be used as a new tool for simulating 3D dendritic solidification under convection

    Numerično modeliranje dendritskega strjevanja na podlagi formulacije faznega polja in prilagodljivega brezmrežnega rešitvenega postopka

    Get PDF
    The main aim of the dissertation is to develop a novel numerical approach for an accurate and computationally efficient modelling of dendritic solidification, which is one of the most commonly observed phenomena in the industrial casting of the metallic alloys. The size and the morphology of dendritic structures as well as the distribution of the solute within them critically effect the mechanical and the electro-chemical properties of the solidified material. The numerical modelling of dendritic solidification can be applied for an in-depth understanding and optimisation of the casting process under various solidification conditions and chemical compositions of the alloy under consideration. The dendritic solidification of pure materials and dilute multi-component alloys is considered in the dissertation. The phase field formulation is applied for the modelling of dendritic solidification. The formulation is based on the introduction of the continuous phase field variable that is constant in the bulk of the solid and liquid phases. The phase field variable has a smooth transition from the value denoting the solid phase to the value denoting the liquid phase at the solid-liquid interface over the characteristic interface thickness. A phase field model yields a system of coupled non-linear parabolic partial differential equations that govern the evolution of the phase field and other thermodynamic variables. The meshless radial basis function-generated finite-differences (RBF-FD) method is used for the spatial discretisation of the system of partial differential equations. The forward Euler scheme is applied for the temporal discretisation. Fifth-degree polyharmonic splines are used as the shape functions in the RBF-FD method. A second-order accurate RBF-FD method is achieved by augmenting the shape functions with monomials up to the second degree. The adaptive solution procedure is developed in order to speed-up the calculations. The procedure is based on the quadtree domain decomposition of a rectangular computational domain into rectangular computational sub-domains of different sizes. Each quadtree sub-domain has its own regular or scattered distribution of computational nodes in which the RBF-FD method and the forward Euler scheme apply for the discretisation of the system of partial differential equations. The adaptive solution procedure dynamically ensures the prescribed highest density of the computational nodes at the solid-liquid interface and the lowest-possible density in the bulk of the solid and liquid phases. The adaptive time-stepping is employed to further speed-up the calculations. The stable time step in the forward Euler scheme depends on the density of the computational nodeshence, different time steps can be used in quadtree sub-domains with different node densities. The main originality of the present work is the use of the RBF-FD method for the thorough analysis of the impact of the type of the node distribution and the size of a local sub-domain to the accuracy when the phase field modelling of dendritic solidification for arbitrary preferential growth directions is considered. It is shown how the use of the scattered node distribution reduces the undesirable mesh-induced anisotropy effects, present when the partial differential equations are discretisied on a regular node distribution. The main advantage of the RBF-FD method for the phase field modelling of dendritic growth is the simple discretisation of the partial differential equations on the scattered node distributions. The RBF-FD method is, for the first time, used in combination with the spatial-temporal adaptive solution procedure based on the quadtree domain decomposition. The adaptive solution procedure successfully speeds-up the calculationshowever, the advantages of the use of the scattered node distribution are partly compromised due to the impact of regularity in the quadtree domain decomposition.Glavni cilj disertacije je razvoj novega numeričnega pristopa za natančno in računsko učinkovito modeliranje dendritskega strjevanja. Dendritsko strjevanje je eden najpogosteje opaženih pojavov pri industrijskem ulivanju kovinskih zlitin. Velikost in morfologija dendritskih struktur ter porazdelitev topljencev v njih ključno vplivajo na mehanske in elektro-kemijske lastnosti strjenega materiala. Numerično modeliranje dendritskega strjevanja se lahko uporablja za poglobljeno razumevanje in optimizacijo procesa ulivanja pri različnih pogojih strjevanja in pri različnih kemijskih sestavah obravnavane zlitine. V disertaciji obravnavamo dendritsko strjevanje čistih snovi in razredčenih več-sestavinskih zlitin. Za modeliranje dendritskega strjevanja uporabimo formulacija faznega polja. Formulacija temelji na uvedbi zvezne spremenljivke faznega polja, ki je konstantna v trdni in kapljeviti fazi. Spremenljivka faznega polja ima na medfaznem robu zvezen prehod preko značilne debeline medfaznega roba od vrednosti, ki označuje trdno fazo, do vrednosti, ki označuje kapljevito fazo. Model faznega polja poda sistem sklopljenih nelinearnih paraboličnih parcialnih diferencialnih enačb, ki opisujejo časovni razvoj faznega polja in ostalih termodinamskih spremenljivk. Za krajevno diskretizacijo sistema parcialnih diferencialnih enačb uporabimo brezmrežno metodo z radialnimi baznimi funkcijami generiranih končnih razlik (RBF-KR). Za časovno diskretizacijo uporabimo eksplicitno Eulerjevo shemo. Poliharmonične zlepke petega reda uporabimo kot oblikovne funkcije v metodi RBF-KR. Natančnost drugega reda metode RBF-KR dosežemo z dodajanjem monomov do vključno drugega reda k oblikovnim funkcijam. Za pospešitev izračunov razvijemo prilagodljiv rešitveni postopek. Postopek temelji na razdelitvi pravokotne računske domene na pravokotne računske pod-domene različnih velikosti z uporabo štiriškega drevesa. Vsaka pod-domena na štiriškem drevesu vsebuje svojo lastno regularno ali razmetano porazdelitev računskih točk, v katerih z uporabo metode RBF-KR in eksplicitne Eulerjeve sheme diskretiziramo sistem parcialnih diferencialnih enačb. Prilagodljiv rešitveni postopek dinamično zagotavlja predpisano najvišjo gostoto računskih točk na trdno-kapljevitem medfaznem robu in najmanjšo možno gostoto v notranjosti trdne in kapljevite faze. Za dodatno pohitritev izračunov uporabimo prilagodljivo časovno korakanje. Stabilen časovni korak v eksplicitni Eulerjevi shemi je odvisen od gostote računskih točk, zaradi česar lahko uporabimo različne časovne korake v pod-domenah štiriškega drevesa z različnimi gostotami točk. Glavna novost predstavljenega dela je v uporabi metode RBF-KR za temeljito analizo vpliva tipa porazdelitve računskih točk in velikosti lokalnih pod-domen na natančnost pri modeliranju dendritskega strjevanja pri poljubnih preferenčnih smereh rasti z uporabo metode faznega polja. Pokažemo, kako uporaba razmetanih računskih točk zmanjša neželjen vpliv mrežne anizotropije, ki je prisotna, kadar parcialne diferencialne enačbe diskretiziramo na regularni porazdelitvi računskih točk. Glavna prednost metode RBF-KR za modeliranje dendritskega strjevanja je preprosta diskretizacija parcialnih diferencialnih enačb na razmetanih porazdelitvah računskih točk. Metoda RBF-KR je prvič uporabljena v kombinaciji s krajevno-časovnim prilagodljivim rešitvenim postopkom, ki temelji na razdelitvi računske domene s štiriškim drevesom. Prilagodljiv rešitveni postopek uspešno pohitri izračune, vendar se prednosti uporabe razmetane porazdelitve računskih točk delno zmanjšajo zaradi vpliva regularnosti pri razdelitvi računske domene s štiriškim drevesom

    Multiscale modelling of the influence of convection on dendrite formation and freckle initiation during vacuum arc remelting

    No full text
    Vacuum Arc Remelting (VAR) is employed to produce homogeneous ingots with a controlled, fine, microstructure. It is applied to reactive and segregation prone alloys where convection can influence microstructure and defect formation. In this study, a microscopic solidification model was extended to incorporate both forced and natural convection. The Navier-Stokes equations were solved for liquid and mushy zones using a modified projection method. The energy conservation and solute diffusion equations were solved via a combined stochastic nucleation approach along with a finite difference solution to simulate dendritic growth. This microscopic model was coupled to a 3D transient VAR model which was developed by using a multi-physics modelling software package, PHYSICA. The multiscale model enables simulations covering the range from dendrites (in microns) to the complete process (in meters). These numerical models were used to investigate: (i) the formation of dendritic microstructures under natural and forced convections; (ii) initiation of solute channels (freckles) in directional solidification in terms of interdendritic thermosolutal convection; and (iii) the macroscopic physical dynamics in VAR and their influence on freckle formation. 2D and 3D dendritic microstructure were simulated by taking into account both solutal and thermal diffusion for both constrained and unconstrained growth using the solidification model. For unconstrained equiaxed dendritic growth, forced convection was found to enhance dendritic growth in the upstream region while retarding downstream growth. In terms of dimensionality, dendritic growth in 3D is faster than 2D and convection promotes the coarsening of perpendicular arms and side branching in 3D. For constrained columnar dendritic growth, downward interdendritic convection is stopped by primary dendritic arms in 2D; this was not the case in 3D. Consequently, 3D simulations must be used when studying thermosolutal convection during solidification, since 2D simulations lead to inappropriate results. The microscopic model was also used to study the initiation of freckles for Pb-Sn alloys, predicting solute channel formation during directional solidification at a microstructural level for the first time. These simulations show that the local remelting due to high solute concentrations and continuous upward convection of segregated liquid result in the formation of sustained open solute channels. High initial Sn compositions, low casting speeds and low temperature gradients, all promote the initiation of these solute channels and hence freckles. to study the initiation of freckles for Pb-Sn alloys, predicting solute channel formation during directional solidification at a microstructural level for the first time. These simulations show that the local remelting due to high solute concentrations and continuous upward convection of segregated liquid result in the formation of sustained open solute channels. High initial Sn compositions, low casting speeds and low temperature gradients, all promote the initiation of these solute channels and hence freckles

    In-situ Observation and Mathematical Modelling of the Nucleation and Growth of Intermetallics and Micropores During the Solidification of Aluminium Alloys

    No full text
    The performance of aluminium alloy castings is limited by the level of two major defects: porosity and iron intermetallics, because both phases can lead to the initiation and propagation of cracks of casting components at high cyclic regime. To improve the fatigue life and thus increase usage of these energy-saving light metals, the mechanisms by which such microstructure features form and possible approaches to control them were investigated via a mathematical model which was validated by synchrotron x-ray radiography and tomography experiments. A multicomponent and multiphase model was developed to incorporate both nucleation and growth of Fe intermetallics using different techniques including Monte Carlo, phase field, and pseudo front-tracking. The classic heterogeneous nucleation was simulated by solving stochastic functions which were related to the local Gibbs free energy or total undercooling. The non-equilibrium growth of intermetallic phases was calculated by two separate methods: control volume and phase-field. Using realistic Gibbs free energy functions, the advancing S/L interface was simulated either by calculating kinetic velocity or by solving phase field equations. Anisotropy of S/L interfacial energy was implemented via a decentred needle/plate technique and phase field method. In addition, the probability of atomic attachment entered the propagation of cells by Monte Carlo method. Coupling this model with a pseudo front-tracking model, the evolution of microstructure features, including primary Al, gas and shrinkage porosity, and Fe-rich intermetallics, was simulated. To predict the formation of these microstructures in casting components, e.g. an engine block, this micromodel was directly implemented as a subroutine into a macroscale heat transfer and fluid flow model. Numerical investigations were compared between control volume technique and phase field method, showing better efficiency and reasonable accuracy using the former. To correct the empirical parameters in the model, the kinetic data was successfully obtained from in-situ observations of micropores and Fe-rich intermetallics during solidification using the state-of-the-art x-ray imaging and quantification techniques. Three dimensional predictions of micropores from the multiscale model were then validated by x-ray tomography experiments on Al-Cu, Al- Si, and Al-Si-Cu alloys in different casting conditions. Synchrotron x-ray tomography experiments were used to validate the distribution of size and morphology of Fe-rich intermetallics in multicomponent Al-7.5wt.%Si-3.5wt.%Cu alloys with varying levels of Fe content. Good agreement between predictions and experiments was successfully obtained qualitatively and quantitatively. Applying this multiscale model to industrial castings, both microporosity and Fe-rich intermetallics were predicted in various casting conditions. Decreasing initial concentration of Fe and/or increasing cooling rates, smaller intermetallic phases formed during solidification, matching the experimental observation well. Complex interactions between pores and Fe intermetallic phases were simulated by preferentially segregating hydrogen and reducing G/S interfacial energy. Satisfactory results were obtained to reflect the influence of Fe-rich intermetallics on the nucleation and growth of pores. Therefore, practical measures to control microstructures and thus increase fatigue life of casting components can be summarized from the model predictions, which may significantly improve the efficiency of alloy design and process optimization

    Solidification and Gravity VII

    Get PDF
    International audienc

    Grain growth behavior and efficient large scale simulations of recrystallization with the phase-field method

    Get PDF
    This book summarizes the found insights of grain growth behavior, of multidimensional decomposition for regular grids to efficiently parallelize computing and how to simulate recrystallization by coupling the finite element method with the phase-field method for microstructure texture analysis. The frame of the book is created by the phase-field method, which is the tool used in this work, to investigate microstructure phenomena

    Grain growth behavior and efficient large scale simulations of recrystallization with the phase-field method

    Get PDF
    This book summarizes the found insights of grain growth behavior, of multidimensional decomposition for regular grids to efficiently parallelize computing and how to simulate recrystallization by coupling the finite element method with the phase-field method for microstructure texture analysis. The frame of the book is created by the phase-field method, which is the tool used in this work, to investigate microstructure phenomena
    corecore