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This dissertation presents the development of numerical models based on lattice 

Boltzmann (LB) and cellular automaton (CA) methods for solving phase change and 

microstructural evolution problems. First, a new variation of the LB method is discussed 

for solving the heat conduction problem with phase change. In contrast to previous 

explicit algorithms, the latent heat source term is treated implicitly in the energy 

equation, avoiding iteration steps and improving the formulation stability and efficiency. 

The results showed that the model can deal with phase change problems more accurately 

and efficiently than explicit LB models. 

Furthermore, a new numerical technique is introduced for simulating dendrite 

growth in three dimensions. The LB method is used to calculate the transport phenomena 

and the CA is employed to capture the solid/liquid interface. It is assumed that the 

dendritic growth is driven by the difference between the local actual and local 

equilibrium composition of the liquid in the interface. The evolution of a three-

dimensional (3D) dendrite is discussed. In addition, the effect of undercooling and degree 

of anisotropy on the kinetics of dendrite growth is studied. 



 

 

Moreover, effect of melt convection on dendritic solidification is investigated 

using 3D simulations. It is shown that convection can change the kinetics of growth by 

affecting the solute distribution around the dendrite. The growth features of two-

dimensional (2D) and 3D dendrites are compared. Furthermore, the change in growth 

kinetics and morphology of Al-Cu dendrites is studied by altering melt undercooling, 

alloy composition and inlet flow velocity. 

The local-type nature of LB and CA methods enables efficient scaling of the 

model in petaflops supercomputers, allowing the simulation of large domains in 3D. The 

model capabilities with large scale simulations of dendritic solidification are discussed 

and the parallel performance of the algorithm is assessed. Excellent strong scaling up to 

thousands of computing cores is obtained across the nodes of a computer cluster, along 

with near-perfect weak scaling. Considering the advantages offered by the presented 

model, it can be used as a new tool for simulating 3D dendritic solidification under 

convection. 
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INTRODUCTION 

1.1 Research background 

Dendrites are common microstructures observed in most crystalline materials, 

especially metallic alloys. Studying the solidification process and investigating the 

kinetics of dendrite growth is of utmost importance, as the characteristics of the dendrites 

strongly affect the properties of metallic alloys. 

Numerical models have been undertaken by several researchers to simulate the 

microstructural evolution during solidification of alloys. The majority of models of 

dendritic growth at the microscopic scale can be categorized into three main types: those 

based on the Phase-Field (PF) method [1−5]; models based on the Level Set (LS) method 

[6−9], and models that perform a Direct Interface Tracking (DIT) [10−13]. Of these 

methods, the PF is probably the most powerful, because it can deal directly with any 

morphological complexity by introducing a field variable that eliminates the need to 

explicitly find the interface. However, it is very computationally taxing even when 

combined with adaptive meshing methods. The LS method also interchanges the interface 

with a field variable (the level set), but requires knowledge of the direction in which the 

solid front is advancing, its velocity, and the calculation of the vector normal to the 

interface; which makes it less effective than the PF method in complex three-dimensional 

geometries. DIT is the simplest and computationally the most efficient of the methods, 
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but it is also less powerful because it requires the calculation of the temperature gradients 

at the interface in addition to the normal velocity and curvature of the interface. 

Moreover, the complexity for handling interfaces in all possible solidification conditions 

limits the applicability of DIT methods. 

Despite the extensive work that has been done in two dimensions, fewer three-

dimensional calculations of dendritic solidification at the microscale have been reported 

[14−23]. Some of these works include convection effects, but only few recent 

publications [14, 19, 20, 23] consider binary alloys. Regardless of the method of choice, 

the computational effort is significantly larger than in two-dimensions, this is due in part 

to the fact that the growth velocities are higher in three-dimensions, and also to the 

presence of the capillary length scale, that cannot be fully resolved.  

For the reasons explained above, it is apparent that the above-mentioned methods 

are not very well suited for three-dimensional calculations of dendritic growth. On the 

other hand, methods based on the Cellular Automaton (CA) have been extensively 

developed and offer an alternative [24−32] with the potential to allow for reasonably 

accurate calculations in bigger domains. These techniques do not capture the same level 

of detail at the solid-liquid interface as methods based on PF or DIT. In particular, initial 

CA models could not account for the effect of undercooling on the growth velocity 

except ahead of the dendrite tips. However, in recent years they have been combined with 

finite element and/or finite difference/volume solutions of the energy and solute transport 

equations and developed to a point where solute concentration, undercooling, and latent 

heat dissipation can be properly modeled [28, 29]; crystal anisotropy effects have also 

been incorporated.  
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Cellular automata (CA) models are often characterized as being simple in their 

construction and yet able to produce very complicated behavior. This property of CA 

models has been exploited to produce computer simulations of various aspects of 

microstructural evolution occurring during solidification.  

One of the most elaborate early CA models for calculation of grain growth, 

combining stochastic nucleation, diffusional growth and macroscopic heat conduction 

was proposed by Gandin and Rappaz [24, 25] as an extension to the stand-alone CA 

model. Sanchez and Stefanescu [27] and Zhu and Stefanescu [31] proposed a model 

based on the cellular automaton technique for the simulation of dendritic growth 

controlled by solutal effects in the low Peclet number regime. One of the innovative 

aspects of this model is that it does not use an analytical solution to determine the 

velocity of the solid-liquid interface as is common in other models. 

The Lattice Boltzmann method (LBM) is a relatively new Computational Fluid 

Dynamics (CFD) technique for solving flow and thermal problems. While the traditional 

numerical methods are based on the discretization of conservation equations of 

continuum mechanics, LBM relies on the solution of a minimal form of Boltzmann 

kinetic equation for a group of fictive particles in a discretized domain.  The fictive 

particles stream across the lattice along the links connecting neighboring lattice sites, and 

then undergo collisions upon arrival at a lattice site. For simulating physical phenomena, 

the collisions among particles must obey suitable physical laws. The fundamental idea of 

the LBM is to construct kinetic models that incorporate the physics of microscopic 

processes so that the macroscopic averaged properties obey the desired laws. More 
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details about the LB method can be found in the reference books published on LBM [33-

36]. 

LBM is an excellent tool for simulation of mass and energy transport phenomena. 

Since the 1990s, LBM has been utilized for solving a wide variety of transport problems 

in science and engineering. The major advantages of LBM in comparison with traditional 

CFD methods consist of simple implementation, capability for simulating highly complex 

geometries and boundaries, computational efficiency and inherent parallel-processing 

structure. Considering these special capabilities, LBM has attracted the attention of many 

researchers and scientists. 

1.2 Research objectives 

The final objective of this work is to develop a parallel three-dimensional lattice-

Boltzmann model to simulate dendritic growth during alloy solidification under melt 

convection in macro-scale domains. An innovating aspect of this research is that the 

simulations will be done in a macroscopic domain, but with microscale resolution. As 

such, the computations will involve calculating fluid flow and solute transport in an 

evolving and highly irregular microstructure which may include hundreds or thousands of 

dendrites. In order to address the high computational demand expected in these 

simulations, a new numerical methodology based on the combination of the CA and the 

LB methods will be developed.  

The combined CA-LB technique allows the simulation of the solidification 

microstructure in a small macro-domain with modest computer resources. However, the 

development of the CA-LB technique would open the way for the direct numerical 

simulation of solidification microstructures in large macro-domains when the technique is 
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implemented in the coming generation of massively parallel supercomputers. It is 

important to emphasize that the proposed research is on fundamental solidification 

science and hence relevant to a wide spectrum of applications. 

1.3 Intellectual merit 

The outcome of this research is a first-time tool to numerically simulate the 

growth of a dendritic structure in a macroscale domain under the effect of strong fluid 

flow. The correct determination of the solidification microstructure is of critical 

importance to understand the subsequent solid phase transformations during cooling. The 

knowledge developed in this work advances the state of understanding of solidification 

phenomena in the microscale and contributes to improved numerical predictions of the 

solidification microstructure. The large computational requirements of the calculations 

expand the capabilities of cellular automata, lattice Boltzmann models, and 

parallelization algorithms, contributing to the advance and wider acceptance of these 

techniques. 

1.4 Broader impact 

The findings of this research directly impact the solidification research 

community, software developers and several technologies involving solidification 

processing. Currently, all major commercial codes simulating alloy solidification rely on 

continuum-type mushy zone models developed in the 80’s that use unrealistic 

microstructure approximations based on empirical correlations of permeability. The 

incorporation of new numerical developments is needed for more reliable predictions of 

defects during solidification. This research makes a significant contribution to this end. 
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1.5 Dissertation structure 

Chapter I presents a literature review and describes the motivation of this work. 

Chapter II discusses the development of a new variation of the LB method for 

solving the heat conduction problem with phase change. 

Chapter III describes a three-dimensional LB-CA model for solute-driven 

dendrite growth. 

Chapter IV explains three-dimensional simulation of dendrite growth under 

forced convection. The influence of different parameters on the dendritic morphologies 

and growth kinetics are discussed.  

Chapter V presents large scale simulations of dendrite growth and discusses the 

parallel performance of the model. 

Chapter VI contains a summary of the work and the recommendations for future 

research works in this area. 
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AN IMPLICIT LATTICE BOLTZMANN MODEL FOR HEAT CONDUCTION WITH 

PHASE CHANGE 

2.1 Introduction 

During the recent years the application of LBM has been extended to many areas 

of fluid and thermal sciences. Heat conduction with phase change is one of the 

challenging problems that has many applications in various fields of science and 

engineering, particularly in metallurgical processes associated with phase change like 

casting, solidification, solid-state phase transformations and many other material 

processes. 

Wolf-Gladrow [1] was one of the first to develop an LB formulation for diffusion. 

De Fabritiis et al. [2] developed a thermal model for solid-liquid phase change problems 

by considering different particles for solid and liquid phases. van der Sman et al. [3] 

developed a one-dimensional LB model for simulation of heat and mass transport in 

packed cut flowers. Miller et al. [4] developed a lattice Boltzmann model for anisotropic 

crystal growth from melt with enhanced computational capabilities. They used similar 

particles for different phases along with a phase field scheme. Semma et al. [5] adopted 

LBM to solve melting and solidification problems. They used two distribution functions for 

fluid flow and heat transfer simulations. The phase interface was traced by using partial or 

probabilistic bounce back approach. Jiaung et al. [6] were the first researchers who 
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introduced an extended lattice Boltzmann equation governed by the heat conduction 

equation in conjunction with enthalpy method. Chatterjee and Chakraborty [7-9] and 

Chatterjee [10, 11] published a series of papers on modeling solid-liquid phase transition 

problems using LBM with enthalpy approach. It should be noted that explicit approaches 

have been used in all studies that employed the enthalpy formulation for phase change 

calculations [6-11], in which iterations are needed in order to deal with the latent heat 

source term. 

In this chapter, an alternative approach of simulation of heat conduction problem 

with phase change by using the lattice Boltzmann method is introduced. While an explicit 

approach was used in previous studies, a novel implicit formulation was adopted for the 

latent heat source term. The Bhatnagar-Gross-Krook (BGK) [12] approximation with a 

D2Q9 lattice was applied and different boundary conditions including Dirichlet and 

Neumann boundary conditions were tested. The developed model was utilized to simulate 

the heat conduction during phase change in materials with constant transition temperature 

and materials with transition temperature range. The obtained results were compared with 

the results of analytical solutions and other numerical models and good consistency was 

observed.  

2.2 Numerical formulation 

2.2.1 Continuum formulation 

The Fourier heat conduction equation with phase change can be written as 

 
డ

డ௧
൫ܥߩ௣ܶ൯ ൌ .׏ ሺ݇ܶ׏ሻ ൅ డ

డ௧
ሺܪ∆ߩሻ (2.1) 
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where , Cp, and k are density, specific heat, and heat conductivity, respectively. 

H is the amount of heat released due to phase change. 

For constant thermo-physical properties, the equation can be simplified to 

 
డ்

డ௧
ൌ ଶܶ׏ߙ െ Φ (2.2) 

where α is the heat diffusivity and Ф is a source term calculated as 

 Φ ൌ డ௙೗
డ௧

௅

஼೛
 (2.3) 

where L is the phase change latent heat and fl is the volume fraction of liquid. 

2.2.2 Lattice Boltzmann model 

Lattice Boltzmann models are simpler than the original Boltzmann equation. The 

domain is discretized into a number of pseudo particles located on the nodes of the lattice 

and time is descritized into some distinct steps. There are a few possibilities for spatial 

position of the particles. One of the most well-known LBM lattices is D2Q9 which has 

two dimensions and nine velocities. Figure 2.1 shows the D2Q9 lattice structure which is 

used in this study. The discrete velocities of D2Q9 lattice in 2D Cartesian direction are 

determined as 

 ݁௜ ൌ ቐ
ሺ0,0ሻ																																																																																												݅ ൌ 0
ሺcosሾሺ݅ െ 1ሻ2/ߨሿ , sinሾሺ݅ െ 1ሻ/ߨ	2ሿሻܿ																								݅ ൌ 1 െ 4
ሺcosሾሺ2݅ െ 9ሻ4/ߨሿ , sinሾሺ2݅ െ 9ሻ4/ߨሿሻ√2ܿ															݅ ൌ 5 െ 8

 (2.4) 

where c=x/t is lattice speed, x is lattice spacing and t is time step. 
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Figure 2.1 Schematic diagram showing D2Q9 lattice and the unknown distribution 
functions at west wall and northwest corner. 

 

The distribution function, gi(x,t), is defined as the probability of finding a particle 

moving in direction i. Then, the macroscopic temperature, T(x,t), can be calculated as 

 ܶሺݔ, ሻݐ ൌ ∑ ݃௜ሺݔ, ሻݐ
଼
௜ୀ଴  (2.5) 

The kinetic equation for the distribution functions without an external source term 

can be written as 

 ߲௧݃௜ሺݔ, ሻݐ ൅ ݁௜. ,ݔ௜ሺ݃׏ ሻݐ ൌ Ω௜ሺ݃ሻ (2.6) 

where ei is the velocity in direction i and Ω௜ሺ݃ሻ represents the rate of local change 

in the distribution function due to collisions. According to BGK (Bhatnagar-Gross-

Krook) approximation, this term can be expressed as 

 Ω௜ሺ݃ሻ ൌ െ߱ሾ݃௜ሺݔ, ሻݐ െ ݃௜
௘௤ሺݔ,  ሻሿ (2.7)ݐ
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where  is a relaxation parameter and ݃௜
௘௤ሺݔ,  ሻ is the equilibrium distributionݐ

function which can be described as 

 ݃௜
௘௤ሺݔ, ሻݐ ൌ ,ݔ௜ܶሺݓ  ሻ (2.8)ݐ

where wi is the weight factor in direction i and for different directions of the 

D2Q9 lattice is given as follows 

௜ݓ  ൌ ൝
4/9																																					݅ ൌ 0
1/9																													݅ ൌ 1 െ 4
1/36																										݅ ൌ 5 െ 	8

 (2.9) 

After discretization, the Equation (2.6) can be summarized as 

 ݃௜ሺݔ ൅ ݁௜∆ݐ, ݐ ൅ ሻݐ∆ െ ݃௜ሺݔ, ሻݐ ൌ െ߱∆ݐሺ ௜݃ሺݔ, ሻݐ െ ݃௜
௘௤ሺݔ,  ሻሻ (2.10)ݐ

where the LHS can be considered as streaming term and the RHS can be 

considered as collision term. Collision in LBM terminology means relaxation towards the 

equilibrium. The collision term for a specific particle can be written as 

 ݃௜ሺݔ, ݐ ൅ ሻݐ∆ ൌ ሺ1 െ ,ݔሻ݃௜ሺݐ∆߱ ሻݐ ൅ ݐ∆߱ ௜݃
௘௤ሺݔ,  ሻ (2.11)ݐ

By analogy with the continuum formulation, a source term can be added to the 

equation 

 ݃௜ሺݔ, ݐ ൅ ሻݐ∆ െ ݃௜ሺݔ, ሻݐ ൌ െ߱∆ݐ ቀ ௜݃ሺݔ, ሻݐ െ ݃௜
௘௤ሺݔ, ሻቁݐ െ  ௜Φ (2.12)ݓݐ∆

It is proved that the Equation (2.12) can reproduce the continuum Equation (2.2) 

using the Chapman-Enskog expansion. For this to be true, the thermal diffusivity, α, in 

the D2Q9 lattice should be set as follows [6] 
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ߙ  ൌ ௖మ∆௧

଺
ሺଶ
ఠ
െ 1ሻ (2.13) 

In the discretized form, Ф is defined by the following equation 

 Φ ൌ ௅

஼೛

∆௙೗
∆௧

 (2.14) 

where fl is the change in volume fraction of liquid during the time step t. The 

volume fraction of liquid is calculated with the lever rule formula: 

 ௟݂ ൌ
்ି ೞ்

்೗ି ೞ்
 (2.15) 

where Tl and Ts are liquidus and solidus temperatures respectively. Considering 

the Equation (2.5), the change in the volume fraction of liquid, fl, can be written as 

 ∆ ௟݂ ൌ ௟݂ሺݔ, ݐ ൅ ሻݐ∆ െ ௟݂ሺݔ, ሻݐ ൌ
்ሺ௫,௧ା∆௧ሻି ೞ்

்೗ି ೞ்
െ ்ሺ௫,௧ሻି ೞ்

்೗ି ೞ்
ൌ ்ሺ௫,௧ା∆௧ሻି்ሺ௫,௧ሻ

்೗ି ೞ்
 

 							ൌ ଵ

்೗ି ೞ்
∑ ሾ݃௜ሺݔ, ݐ ൅ ሻݐ∆ െ ݃௜ሺݔ, ሻሿݐ
଼
௜ୀ଴  (2.16) 

By substituting Equation (2.16) into Equation (2.14) and then into Equation (2.12) 

and reordering the collision term for a specific particle, the resultant equation will be 

 ݃௜ሺݔ, ݐ ൅ ሻݐ∆ ൅ ௪೔௅

஼೛ሺ்೗ି ೞ்ሻ
∑ ݃௝ሺݔ, ݐ ൅ ሻ଼ݐ∆
௝ୀ଴ ൌ ሺ1 െ ,ݔሻ݃௜ሺݐ∆߱ ሻݐ ൅ ݐ∆߱ ௜݃

௘௤ሺݔ,  ሻݐ

 ൅ ௪೔௅

஼೛ሺ்೗ି ೞ்ሻ
∑ ݃௝ሺݔ, ሻݐ
଼
௝ୀ଴  (2.17) 

By substituting the temperature from Equation (2.5) the collision term can be 

defined as 

 ݃௜ሺݔ, ݐ ൅ ሻݐ∆ ൅ ௪೔௅

஼೛ሺ்೗ି ೞ்ሻ
∑ ݃௝ሺݔ, ݐ ൅ ሻ଼ݐ∆
௝ୀ଴ ൌ ሺ1 െ ,ݔሻ݃௜ሺݐ∆߱ ሻݐ ൅ ݐ∆߱ ௜݃

௘௤ሺݔ,  ሻݐ
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 ൅ ௪೔௅

஼೛ሺ்೗ି ೞ்ሻ
ܶሺݔ,  ሻ (2.18)ݐ

By solving for gi(x,t+t), the new distribution functions can be implicitly 

determined from data of the previous time step without iterations. 

Note that the formulation stated by Equation (2.18) is not equivalent to the 

classical modified capacitance method which would have resulted by directly substituting 

Equation (2.15) into Equations (2.2) and (2.3).  An LB discretization ofE (2.1) with the 

source term treated as an additional capacitance yields an inefficient and poorly accurate 

algorithm, something that was verified with several test simulations.  This is due to the 

introduction of dissimilar diffusivities between regular and interface cells and the fact 

that the latent heat is not properly weighted among the distribution functions, as is done 

in Equation (2.12). Observe also that although the implicit treatment of the latent heat 

term was facilitated by the simple form of Equation (2.15), a similar approach can be 

followed for more general dependencies of the fraction of liquid including the treatment 

of solute transport.  In these cases, it is possible to express at least part of the fraction of 

liquid relation in terms of the temperature by using the liquidus line of the phase diagram 

and the solute conservation equations, as was done for example in Reference [13] in the 

context of a mixture formulation. 

2.2.2.2 LBM boundary conditions 

Defining consistent boundary conditions is crucial in LBM and many studies have 

been done to find the appropriate ways to apply various types of boundary conditions in 

lattice Boltzmann simulations. Here two different types of thermal boundary conditions 

including Dirichlet and Neumann conditions will be discussed. 
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2.2.2.2.1  Dirichlet boundary conditions 

For boundaries aligned parallel to the coordinate axes, the distribution functions 

are not known in three directions. For example ଵ݃, ݃ହ and ଼݃ are unknown at the west 

wall as it is shown in Figure 2.1. The unknown distribution functions can be determined 

using the other known distribution functions and the known constant temperature 

boundary condition. It is assumed that the unknown distribution functions are of the form 

݃௜ ൌ  ௜݃′, where ݃′ is the residual temperature needed to satisfy the constantݓ

temperature at the boundary [14]. According to Equation (2.5), the prescribed 

temperature on the west wall can be written as: 

 ஻ܶ ൌ ∑ ݃௜
଼
௜ୀ଴ ൌ ݃0 ൅ ݃2 ൅ ݃3 ൅ ݃4 ൅ ݃6 ൅ ݃7 ൅ ݃′ሺ1ݓ ൅ 5ݓ ൅8ݓሻ (2.19) 

Then the residual temperature can be calculated as 

 ݃ᇱ ൌ ்ಳିሺ௚బା௚మା௚యା௚రା௚లା௚ళሻ

௪భା௪ఱା௪ఴ
ൌ 6ሾ ஻ܶ െ ሺ݃଴ ൅ ݃ଶ ൅ ݃ଷ ൅ ݃ସ ൅ ݃଺ ൅ ݃଻ሻሿ (2.20) 

Finally, the unknown distribution functions can be determined using the 

weighting factors 

 ଵ݃ ൌ ଵ݃ᇱݓ ൌ
ଵ

ଽ
݃ᇱ, ݃ହ ൌ ହ݃ᇱݓ ൌ

ଵ

ଷ଺
݃ᇱ, ଼݃ ൌ ᇱ଼݃ݓ ൌ

ଵ

ଷ଺
݃ᇱ (2.21) 

2.2.2.2.2 Neumann boundary condition 

The Neumann boundary condition requires prescribing the heat flux or applying a 

convective heat transfer coefficient. In one dimension, this can be written as 

 െ݇ డ்

డ௫
ൌ െݍሶ ൅ ݄ሺ ௦ܶ௨௥௙௔௖௘ െ ஶܶሻ (2.22) 
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where ݍሶ  is the prescribed heat flux, h is the heat transfer coefficient, Tsurface is the 

surface temperature, T∞ is the ambient temperature and 
డ்

డ௫
 is the temperature gradient. 

Considering the known temperature gradient at the surface, the temperature at the 

boundary can be determined using a three-point finite difference scheme [15] 

 ܶሺݔ଴ሻ ൌ
ଶ

ଷ

డ்

డ௫
|௫ୀ௫బ ൅

ସ

ଷ
ܶሺݔ଴ ൅ ሻݔ∆ െ ଵ

ଷ
ܶሺݔ଴ ൅  ሻ (2.23)ݔ∆2

where x0 corresponds to the location of the boundary. Then, the unknown 

distribution functions at the boundary can be calculated using the same scheme used to 

apply Dirichlet boundary condition. 

It should be noted that a similar procedure can be employed to impose the 

boundary conditions at the corners considering the fact that the distributions functions are 

unknown in five directions at the corners (see Figure 2.1). 

2.2.2.3 Numerical procedure 

The sequence in which the numerical calculations are done is very important. 

Typically, the geometry, physical properties, initial and boundary conditions and LBM 

parameters, including lattice spacing and relaxation time should be defined at first. The 

equilibrium distribution functions are initially obtained using the prescribed temperature 

according to Equation (2.8) and initial distribution functions, gi(x,0), are defined as 

 ݃௜ሺݔ, 0ሻ ൌ ݃௜
௘௤ሺݔ, 0ሻ (2.24) 

Then, the following steps are repeated in each time step. 

1. Apply boundary conditions 

2. Compute equilibrium distribution functions using Equation (2.8) 
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3. Collision: 

If T>Tl or T <Ts ; Calculate relaxation using Equation (2.11) 

If Ts<T <Tl ; Calculate relaxation using Equation (2.18) 

4. Calculate temperature using Equation (2.5) 

5. Streaming  

It should be noted that in contrast to previous explicit methods, the distribution 

functions in the collision step can be implicitly calculated by solving a small (9×9) 

system of linear equations at each node, and iterations and convergence criterion are not 

needed. Another important point is that except for the streaming step, all other steps are 

completely local and particles do not interact with the adjacent particles. During 

streaming step, the particles only interact with their nearest neighboring particles in the 

streaming step. This is the property which makes the method very appropriate for 

parallelization purposes. 

2.3 Verification and discussion 

In order to investigate the applicability and accuracy of the model, three different 

problems including one-dimensional melting of a pure metal, and one-dimensional and 

two-dimensional solidification of a binary alloy are solved and the obtained results are 

compared with analytical and FEM results. 

2.3.1 One-dimensional melting of a pure metal  

Melting of a semi-infinite slab of pure aluminum is simulated in one-dimension. 

The thermo-physical properties of pure aluminum are listed in Table 2.1 and the 

schematic of the problem is shown in Figure 2.2. The slab is initially assumed to be in the 
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uniform temperature of 600 C. Then, it is assumed that a constant temperature of 750 C 

is imposed to the left wall. The problem is considered one-dimensional since the side 

walls are insulated and heat transfer occurs only in one dimension. In order to compare 

the numerical results with the available analytical solutions, the length of the slab is 

considered 10 cm which is long enough to satisfy the semi-infinity assumption for the 

considered times and locations. The lattice spacing, x, and the relaxation parameter, ω, 

were respectively adopted as 0.1 mm and 1.0 for all simulations. 

Table 2.1  Thermo-physical properties of the studied materials. 

Material 
Density 
(kg/m3) 

Conductivity 
(W/m.C) 

Specific Heat 
(J/kg.C) 

Latent Heat 
(J/kg) 

Liquidus 
Temperature 

(C) 

Solidus 
Temperature 

(C) 

Pure Al 2698.9 210.0 900.0 386.9103 660.0 660.0 

Al-3%Cu 2475.0 30.0 500.0 271.2103 652.0 596.0 

 

 

Figure 2.2 Schematic of the one-dimensional melting of the pure material showing 
coordinates, initial and boundary conditions, liquid and solid zones, and the 
interface position. 
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For melting of a semi-infinite slab, initially at a uniform temperature T0≤Tm, by 

imposing a constant temperature TB>Tm on the face x=0, the analytical solution is given 

as follows [16]. The solid-liquid interface location has the form 

 ܺሺݐሻ ൌ  (2.25) ݐߙ√ߣ2

Temperature in the liquid region 0<x<X(t), t>0 is given by 

 ܶሺݔ, ሻݐ ൌ ஻ܶ െ ሺ ஻ܶ െ ௠ܶሻ
ୣ୰୤	ሺ ೣ

మ√ഀ೟
ሻ

ୣ୰୤ ఒ
 (2.26) 

and temperature in the solid region x>X(t), t>0 can be calculated as 

 ܶሺݔ, ሻݐ ൌ ଴ܶ ൅ ሺ ௠ܶ െ ଴ܶሻ
ୣ୰୤ୡሺ ೣ

మ√ഀ೟
ሻ

ୣ୰୤ୡሺ ఒሻ
 (2.27) 

Here λ is the solution to the transcendental equation 

 
ௌ௧೗

ୣ୶୮ሺఒమሻୣ୰୤ሺఒሻ
െ ௌ௧ೞ

ୣ୶୮ሺఒమሻୣ୰୤ୡሺఒሻ
ൌ  (2.28) ߨ√ߣ

where 

௟ݐܵ  ൌ
஼೛ሺ்ಳି ೘்ሻ

௅
 (2.29) 

and 

௦ݐܵ  ൌ
஼೛ሺ ೘்ି బ்ሻ

௅
 (2.30) 

Figure 2.3 shows the thermal histories of the points located at 1, 5, 10 and 20 

millimeters from the hot wall. The melting process at the points close to the hot wall 

begins shortly after the boundary conditions are imposed. It can be seen that the heating 
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rate becomes slower as the distance from the hot wall increases. A change in the slope of 

the curves can be seen at the melting temperature. The cause of this change is the latent 

heat released due to phase transformation. However, because of high heating rates at the 

points close to the hot wall, the slope change is not considerable at these points.  

 

Figure 2.3 Comparison between LBM and analytical thermal histories of the points 
located at 1, 5, 10, and 20 mm from the hot wall for the one-dimensional 
pure metal melting problem. 

 

The temperature profiles at different times are illustrated in Figure 2.4. Again, the 

slope change due to phase change is observed. A good consistency can be seen between 

LBM and analytical results in both thermal histories and temperature profiles which 

indicates the accuracy of the LBM model. It should be noted that since the model used 

for LBM simulations is not actually semi-infinite, the results gradually diverge from 

analytical solution as either time or distance from the hot wall increases. However, even 
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in this condition, the maximum relative error at long times and distances was less than 2 

percent.  

 

Figure 2.4 Comparison between LBM and analytical solutions for temperature profiles 
after 1, 5, 20, and 60 seconds for the one-dimensional pure metal melting 
problem. 

 

Figure 2.5 compares the LBM and analytical solutions for the interfacial position. 

Again, very good agreement is shown between LBM and analytical solutions which 

suggests that the current LB model can precisely solve the one-dimensional phase change 

problem. The relative difference between FEM and LBM results was less than 0.2 

percent. 
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Figure 2.5 LBM and analytical solutions of the interfacial position for the one-
dimensional pure metal melting problem. 

 

2.3.2 One-dimensional solidification of a binary alloy  

Solidification of a binary alloy in one dimension was simulated. It should be 

noted that this solution is not practically correct because solute transport which is a major 

mechanism in solidification of binary alloys has been neglected. However, since phase 

change occurs in a temperature range instead of a temperature point, which is similar to 

what happens in binary alloys, an Al-Cu binary alloy was considered for the study. Table 

2.1 shows the thermo-physical properties of the binary alloy considered in this study and 

Figure 2.6 illustrates the schematic of the problem. The slab is initially at the uniform 

temperature T0=700°C. Then a constant heat flux ݍሶ=−150000 W/m2 is imposed on the 

left wall. The length of the slab is 50 millimeters and the end wall is insulated. Here 

phase change occurs in a range of temperature instead of a single temperature. This 

means that there is a so called mushy zone which is neither completely solid nor 

completely liquid and contains a mixture of solid and liquid phases. 
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LBM results for this case are verified against FEM solutions. FEM simulations 

are carried out using the commercial software ANSYS 10.0. The quadrilateral bilinear 

elements PLANE55 were used for meshing the model. The mesh size was selected fine 

enough to yield converged stable results. An enthalpy formulation is used to simulate 

phase change phenomenon using FEM. 

 

Figure 2.6 Schematic of the one-dimensional solidification of an Al-3%Cu alloy 
showing coordinates, initial and boundary conditions, liquid, solid and 
mushy zones, and the interfacial positions. 

 

Solidification starts from the left cold wall and progresses through the slab. Figure 

2.7 shows the cooling history of different points located at 1, 10, and 25 millimeters from 

the hot wall. Unlike the previous problem in which the phase change latent heat was 

released in a single temperature, here it is released in a range of temperature. Hence a 

sharp change in the slope of the curve cannot be seen here, but a gradual slope change 

can still be observed. 
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Figure 2.7 Comparison between LBM and FEM cooling curves of the points located at 
1, 10, and 25 millimeters from the cold wall for the one-dimensional binary 
alloy solidification problem. 

 

Figure 2.8 shows the temperature profiles at different times after the boundary 

conditions are imposed. As the time increases, the temperature decreases throughout the 

slab and the solidified front progresses. Very good agreement can be observed between 

LBM and FEM results in cooling curves and temperature profiles. 
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Figure 2.8 Comparison between LBM and FEM solutions for temperature profiles 
after 1, 5, 20, and 60 seconds for the one-dimensional binary alloy 
solidification problem. 

 

LBM and FEM solutions for liquid/mushy zone (L/M) and mushy zone/solid 

(M/S) interfacial positions are compared in Figure 2.9. The L/M curve is sharper than 

M/S curve which implies that the speed of L/M interface is faster than M/S interface. 

Since the end wall is insulated, both interfaces are coincident after a time around 300 

seconds. The excellent consistency observed between LBM and FEM results indicates the 

accuracy of the model for predicting phase change behavior in one-dimensional 

solidification problems when phase change occurs in a range of temperature. 
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Figure 2.9 LBM and FEM solutions of the liquid/mushy zone (L/M) and mushy 
zone/solid (M/S) interfacial positions for the one-dimensional binary alloy 
solidification problem. 

 

2.3.3 Two-dimensional solidification of a binary alloy 

The material considered in this case is similar to the previous case but the 

boundary conditions are more complex and non-symmetric creating a two dimensional 

problem. Consider an infinite slab with a square cross section of 40×40 mm2. Since the 

slab is infinite, heat transfer can be neglected in the longitudinal (z) direction and the 

problem is assumed two-dimensional. The slab is initially at the uniform temperature 

T0=700°C. Then, constant heat fluxes equal to −120,000, −100,000 and −80,000 W/m2 

are imposed on east, south, and west walls respectively. A convective heat transfer 

condition with the coefficient h=100 W/m2°C and ambient temperature T∞=25°C is also 

considered for the north wall. Figure 2.10 shows the schematic of this problem. Again, 

the LBM solution is verified against an FEM solution obtained with ANSYS software. 
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Figure 2.10 Schematic of the two-dimensional solidification of the Al-3%Cu binary 
alloy showing coordinates, dimensions, initial and boundary conditions. 

 

Figure 2.11 shows the cooling history of a point located at the center of the slab. 

The slope change due to phase transformation in the mushy zone is well distinguishable 

in this case. As the temperature reaches the liquidus temperature, the cooling rate 

decreases owing to latent heat and once the phase change is completed at solidus 

temperature, the cooling rate increases. A very good agreement is shown between LBM 

and FEM solutions. The relative difference in this case was less than 0.15 percent. 
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Figure 2.11 Comparison between LBM and FEM cooling curve of the point located at 
the center of the model for the two-dimensional binary alloy solidification 
problem. 

 

The temperature profiles along x and y axes are depicted in Figure 2.12 at 

different times after the process begins. Even though the boundary conditions are non-

symmetric, the developed model has been able to precisely capture the temperature 

variations in the slab.  
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Figure 2.12 Comparison between LBM and FEM temperature profiles after 15, 45, 90, 
120 seconds for the two-dimensional solidification problem.  

The profiles are shown along (a) x axis, and (b) y axis. 

Figure 2.13 illustrates the color contours comparing LBM and FEM solutions for 

temperature distribution after 15, 45, 90 and 120 seconds. Cooling process starts from the 

cold boundary wall. The minimum temperature is observed at the southeastern corner 

where the highest heat transfer happens. The hottest spot is initially located at the center 
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of the slab, but it migrates to the northwestern corner where the mildest heat transfer 

happens.  

 

Figure 2.13 Color contours comparing LBM and FEM temperature distributions at 
different times for the two-dimensional solidification problem. 

 

Figure 2.14 shows the color contours for solidified fractions at different times. It 

can be seen that solidification starts from cold boundary walls and progresses through the 

center. After 15 seconds, there is still a completely liquid region at the center. At t=90 

seconds, some completely solidified regions are observed at the corners while all other 

regions are mushy. After 90 second most of the slab is solidified except for a small region 

at the hot spot which contains less than 40 percent liquid. The contours for at t=120 

seconds shows that the slab is entirely solid at this time. An excellent consistency is 

observed between LBM and FEM contours. The agreement between LBM and FEM 

contour lines at the corners is also noteworthy. Considering the complicated boundary 

conditions applied in this simulation, this consistency indicates the ability and reliability 
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of the current model for precisely solving heat conduction problem with phase change in 

two-dimensions.  

 

Figure 2.14 Color contours comparing LBM and FEM solid percentages at different 
times for the two-dimensional solidification problem. 

 

2.3.4 Comparison of computational performance in LBM and FEM 

In order to compare the computational efficiency of LBM and FEM, the problem 

described in the previous section (2.3.3) was solved for different domain sizes using both 

LBM and FEM. A lattice spacing of Δx=1 mm with relaxation parameter ω=1 was used 

for all simulations in this part. Identical time step, grid size, initial and boundary 

conditions were adopted for both LBM and FEM cases and all simulations were run for 

60 seconds on a laptop computer with a 2 GHz Core 2 Duo CPU and 1 GB of RAM.  

Bilinear quadrilateral elements and a fast iterative solver were used for the FEM 

calculations, in order to favor its performance. Four different square domains with 20, 50, 
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100, and 150 grids in each side were examined. Figure 2.15 compares the CPU times of 

LBM and FEM models with respect to the total number of cells/elements in the domain. 

The results indicate that the present LBM model offers much better computational 

performance than FEM. The efficiency of the LBM becomes more obvious as the domain 

size increases. The reason is that unlike FEM, LBM is a local method and does not 

require the assembly of a large global matrix and solution of system of equations that 

grows with domain size. 

It should be noted that the real advantages of LBM appear when convection 

effects are incorporated, something that is demonstrated in [17]. Another important 

computational advantage of LBM is that, due to locality, the needed communication and 

passage of information between processors reduces significantly and LBM can be 

parallelized and scaled much better than FEM.  This feature is being exploited in a work 

in progress by the authors. 

 

Figure 2.15 Running time of LBM and FEM models for different domain sizes. 



 

35 

2.4 Conclusions 

A new algorithm to solve the LB equation for the heat conduction problem with 

solid/liquid phase change was developed. While previous works used explicit schemes, 

the current model uses an implicit scheme to deal with the latent heat source term of the 

energy equation. The Bhatnagar-Gross-Krook (BGK) approximation with a D2Q9 lattice 

was applied and different boundary conditions including Dirichlet and Neumann 

boundary conditions were considered. Three validation examples including one-

dimensional melting of pure Al, and one-dimensional and two-dimensional solidification 

of Al-3%Cu were solved. A very good agreement between LBM, analytical, and FEM 

solutions was found for all examples when comparing thermal histories, temperature 

profiles and interfacial locations. Even for non-symmetric mixed boundary conditions, a 

very good accuracy was demonstrated. In addition, CPU time comparisons demonstrated 

that the current LBM model outperforms FEM in computational efficiency. It should be 

noted that while most previous works used fictitious physical properties, real material 

properties were employed in this study. Solving this problem with real material properties 

using an explicit approach is cause of convergence issues, requiring a finer mesh size, 

smaller time steps, more iterations and higher computational costs. From this point of 

view, the implicit scheme developed in this work is computationally more efficient than 

previous explicit schemes. On the other hand, implicit methods require an extra 

computation (solving the system of equation), which for this case is a small system of 

9×9 equations. Note also that using D2Q5 lattice is enough for energy and mass transport 

simulations which will make the presented model even more efficient, because a smaller 

system of 5×5 equations is needed to be solved. However, whether one should use an 
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explicit or implicit method depends upon the problem to be solved, as for some problems 

limitation in the time step and mesh size is not the main issue. Considering the special 

capabilities of LBM, like simplicity of implementation, stability, accuracy, local 

characteristic, and inherent parallel structure, the proposed model offers a great potential 

for simulating large scale heat and mass transfer phenomena incorporating phase 

transformations. 

The content of this chapter was published in International Journal of Heat and 

Mass Transfer [18] and also presented in the ASME Applied Mechanics and Materials 

Conference [19]. 
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THREE DIMENSIONAL SIMULATION OF SOLUTE-DRIVEN DENDRITE 

GROWTH USING LATTICE BOLTZMANN AND  

CELLULAR AUTOMATON METHODS 

3.1 Introduction 

Dendritic growth is the primary form of crystal growth observed in most metallic 

alloys. The material properties strongly depend on the shape, size, orientation and 

composition of the dendritic matrix formed during solidification. Therefore, 

understanding and controlling the dendritic growth is vital in order to predict and achieve 

the desired microstructure and properties. 

Despite the significant advances in numerical models and computational power, 

due to complexity and extreme memory demands, 3D simulation of dendritic growth is 

still challenging. Finite element (FE), finite difference (FD) and finite volume (FV) are 

the methods commonly used by most researchers in order to solve the transport 

equations. Nevertheless, the lattice Boltzmann method (LBM) is increasingly emerging 

as a powerful technique for simulating flows in complex geometries. Proponents of the 

LBM consider this method to have the potential to become a versatile platform that is 

superior over the existing continuum-based methods [1]. The LBM, is an ideal approach 

for scale-bridging simulations. Because of the microscopic origin, the LBM has many 

advantages over conventional methods, including simple local-type calculations, easy 
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handling of complex geometry and boundary conditions, good accuracy and numerical 

stability, constitutive versatility, and efficient parallelization. The assembly and solution 

of large system of equations, as needed in FE models, are avoided in LB and the model 

can be easily extended to calculate transport phenomena in the presence of fluid flow 

under complicated geometric boundary conditions. 

Since the basic structure of LB is very similar to CA, combination of these 

methods seems a natural approach. Given their local-type nature and their good 

scalability for many processors, a dendritic growth model based on these methods is an 

attractive choice for exploitation of large scale parallelization. There are a few 

publications on modeling dendrite growth using LB and CA. Sun et al. [2] introduced a 

two-dimensional (2D) LB-CA model for dendritic solidification. They used CA to 

capture the solid-liquid interface and LB to solve solute transport and fluid flow. Yin et 

al. [3] used a similar approach to simulate dendrite growth. They also solved the heat 

transfer using LB and compared their LB-CA model with an FE-CA model. However, 2D 

models are usually unable to capture all features of microstructures which are 

determinative in many materials properties. In this chapter, a first-time three-dimensional 

(3D) parallel LB-CA model is introduced for simulation of dendritic microstructures in 

binary alloys. 

3.2 Model description 

In order to simulate 3D dendrite growth, a cubic domain is considered and 

discretized using cubic cells. An identical mesh is employed for both LB and CA models. 

At the beginning of simulation, a solid seed with a predetermined crystallographic 

orientation is placed in a domain of undercooled molten alloy. Since the local equilibrium 
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composition is larger than the actual local liquid composition, solidification begins and 

solute is rejected to the interface to increase the liquid composition to the equilibrium 

composition. So, it can be said that the solidification is driven by the difference between 

the local equilibrium composition and the local actual liquid composition. 

The governing differential equation for solute transport in liquid phase can be 

described as 

 
డ஼೗
డ௧
ൌ .׏ ሺܦ௟ܥ׏௟ሻ (3.1) 

where Cl is the liquid composition, t is time, and Dl is solute diffusion coefficient 

in liquid. Since the solute diffusivity in the solid is several orders of magnitude smaller 

than in the liquid, the diffusion in the solid phase is neglected. 

In LBM, the domain is discretized into a number of pseudo particles located at the 

nodes of the lattice and time is discretized into some distinct steps. A 3D lattice with 

fifteen discrete velocities, D3Q15, is used in the simulations. Figure 3.1 shows the 

D3Q15 lattice. The entire domain is assumed to be uniformly undercooled and the 

kinetics of dendrite growth is controlled solely by solute transport. 

 

Figure 3.1 D3Q15 lattice. 
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The distribution function, gi(x,t), is defined as the probability of finding a particle 

moving in direction i. Then, the macroscopic solute concentration, C(x,t), can be 

calculated as 

,ݔሺܥ  ሻݐ ൌ ∑ ݃௜ሺݔ, ሻݐ
ଵସ
௜ୀ଴  (3.2) 

According to the BGK (Bhatnagar-Gross-Krook) approximation [4], the kinetic 

equation for the distribution function can be written as 

 ݃௜ሺݔ ൅ ݁௜∆ݐ, ݐ ൅ ሻݐ∆ െ ݃௜ሺݔ, ሻݐ ൌ െ߱∆ݐሺ ௜݃ሺݔ, ሻݐ െ ݃௜
௘௤ሺݔ,  ሻሻ (3.3)ݐ

where ݁௜, ∆ݐ, and ߱ are discrete velocity, time step, and relaxation parameter, 

respectively. ݃௜
௘௤ሺݔ,  ሻis the equilibrium distribution function which can be expressed asݐ

 ݃௜
௘௤ሺݔ, ሻݐ ൌ ,ݔሺܥ௜ݓ  ሻ (3.4)ݐ

wi is the weighting factor in the discrete directions and is defined as follows [5] 

௜ݓ  ൌ ൝
16/72																																				݅ ൌ 0
	8/72																													݅ ൌ 1 െ 6
	1/72																										݅ ൌ 7 െ 	14

 (3.5) 

In the present model, dendrite growth is controlled by the difference between 

local equilibrium solute concentration and local actual solute concentration in the liquid.  

According to the equilibrium condition at the interface, the change of the fraction of 

solid, ∆ ௦݂, in an interface cell is calculated by [6] 

 ∆ ௦݂ ൌ ሺܥ௟
௘௤ െ ௟ܥ௟ሻ/ሺܥ

௘௤ሺ1 െ ݇ሻሻ (3.6) 
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where k is the partition coefficient of the solute obtained from the phase diagram 

and ܥ௟ is the local actual concentration of solute in the liquid and is computed by LB. 

Moreover, ܥ௟
௘௤is the interface equilibrium concentration that can be calculated as [7] 

௟ܥ 
௘௤ ൌ ଴ܥ ൅

೗்
∗ି ೗்

೐೜ା୻	௪௠௖

௠
 (3.7) 

where ௟ܶ
∗ is the interface temperature, ௟ܶ

௘௤is the equilibrium liquidus temperature 

at the initial solute concentration (ܥ଴), ݉	is the slope of the liquidus line in the phase 

diagram, Γ	is the Gibbs-Thomson coefficient, and wmc	is the weighted mean curvature 

that includes the effect of anisotropic surface energy [8] and can be calculated as 

ܿ݉ݓ ൌ ሺ3ߝ െ 1ሻ൫߲௫݊௫ ൅ ߲௬݊௬ ൅ ௭߲݊௭൯ െ ൫݊௫ଶ߲௫݊௫ߝ48 ൅ ݊௬ଶ߲௬݊௬ ൅ ݊௭ଶ ௭߲݊௭൯ ൅ 

൫߲௫݊௫ܳߝ12  ൅ ߲௬݊௬ ൅ ௭߲݊௭൯ ൅ ሺ݊௫߲௫ܳߝ12 ൅ ݊௬߲௬ܳ ൅ ݊௭ ௭߲ܳሻ (3.8) 

where ߝ represents the degree of anisotropy of the surface energy. Considering ො݊ 

as the unit vector normal to the interface, its components can be evaluated as 

݊௫ ൌ ߲௫ ௦݂/|׏ ௦݂|, ݊௬ ൌ ߲௬ ௦݂/|׏ ௦݂|, and ݊௭ ൌ ௭߲ ௦݂/|׏ ௦݂|, where |׏ ௦݂| ൌ

ඥሺ߲௫ ௦݂ሻଶ ൅ ሺ߲௬ ௦݂ሻଶ ൅ ሺ ௭߲ ௦݂ሻଶ. The parameter ܳ is defined as ܳ ൌ ݊௫ସ ൅ ݊௬ସ ൅ ݊௭ସ[7]. 

The material considered in this study is Al–3wt%Cu alloy. The physical 

properties used in the simulations are listed in Table 3.1. 

Table 3.1 Physical properties of Al-Cu alloy used in the simulations. 
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3.3 Results and discussion 

3.3.1 Growth kinetics 

A cubic domain with a uniform mesh size Δx = 0.3 µm and a constant 

undercooling was used to simulate the dendrite growth. Figure 3.2 shows the morphology 

of the dendrite growing in a 120 µm ×120 µm ×120 µm domain at different time steps. 

 

Figure 3.2 Simulated dendrite morphologies for ΔT=4.5 °C and ε=0.04. From left to 
right, after 3, 7, 10, and15 ms. 

 

 The simulations are conducted using a 4.5 °C undercooled melt and the 

anisotropy parameter, ߝ, equal to 0.04. At the initial stages of solidification, the primary 

arms grow along their crystallographic orientation without any secondary arms. As 

solidification proceeds, the primary arms grow and coarsen, the secondary arms start to 

grow perpendicular to the primary arms and the tertiary arms form perpendicular to the 

secondary arms afterward. 
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3.3.2 Model validation 

For model validation, the growth features are compared with the Lipton-

Glicksman-Kurz (LGK) [9, 10] analytical model for different levels of undercooling. The 

LGK model predicts the tip velocity and radius as a function of a selection parameter, σ*.  

 

 

Figure 3.3 Comparison of the dendritic features simulated by the present model with 
the theoretical values over a range of undercoolings: (a) tip velocity, (b) tip 
radius, (c) Peclet number, and (d) σ*. 

 

According to 3D linearized solvability theory [11], the value of σ* for ε = 0.03 is 

calculated as 0.085. Using this value, the steady state tip velocity and radius were 

calculated by LGK model as a function of undercooling and compared with the 
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simulation results. Figure 3.3 (a) compares the tip velocity calculated from the simulation 

with the tip velocity predicted by LGK model. The simulated tip velocity was measured 

by averaging the interface velocity at the tips of six primary dendrite arms. As expected, 

the average interface velocity increases with increasing undercooling. While some small 

differences can be observed, the values calculated by the present simulations show a good 

agreement with the LGK analytical model. In order to measure the tip radius of the 

simulated dendrites, 3D isosurface plots were depicted for fs=0.5. Then, the 3D dendritic 

tips were sectioned by two different planes to provide 2D fin shapes. After fitting forth-

order polynomials, the curvature at the dendritic tip was calculated as 

K=d2y/dx2(1+(dy/dx)2)-3/2 [12] and the tip radius was determined as R=1/K. The above 

calculations were performed for six different branches at few different time steps when 

dendrite growth is in the steady-state. Figure 3.3 (b) compares the tip radius measured 

from present simulations with the theoretical values obtained from LGK model. A 

relatively large variation between LGK and simulated values can be seen in the tip radius 

especially at low undercoolings. However, simulated and theoretical values are in the 

same order of magnitude and show the same trend. The discrepancy in the tip radius is 

caused mainly by the discretization of the dendrite tip in the CA method, which produces 

an inaccurate representation of the tip and large error in calculating curvature and radius. 

As undercooling decreases, tip radius increases, and tip curvature becomes smaller and 

more erroneous. Also, at low undercoolings, the dendritic shape deviates from the 

parabolic shape assumed in the LGK model. It is worth noting that the same problem has 

been observed in other studies [7, 13]. 
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The solutal Peclet number was also calculated from the LGK theory and 

compared with the simulation results. The Peclet number can be calculated as 

Pc=VR/(2Dl), where V and R are tip velocity and radius, respectively. The predicted and 

theoretical Peclet numbers for a range of undercoolings are presented in Figure 3.3 (c) 

and a good agreement is observed.  

While a reasonable agreement can be found between the simulated and theoretical 

results, it should be noted that the LGK model is not exact and assumes a paraboloid 

needle tip which does not correspond with the actual dendrites. On the other hand, the 

selection parameter, σ*, which has a significant influence on the results, is not well 

established for aluminum alloys. By knowing the dendrite tip velocity and radius, it is 

possible to calculate the selection parameter for different levels of undercooling. Figure 

3.3 (d) compares the selection parameters calculated from the present simulations with 

σ*=0.085 obtained from 3D linearized solvability theory [11]. The values vary from 

0.126 at ΔT=2.0 °C to 0.087 at ΔT=4.5 °C. The higher difference at lower undercoolings 

mostly comes from the error associated with measuring tip radius at those undercoolings. 

However, as described above, a perfect match between simulation and LGK theory 

should not be expected. 

As another validation, the results of the present model were compared with 3D-

CA and 3D-PF simulations performed by Choudhury et al. [13].The simulation was done 

on an Al–4wt%Cu alloy and the values of undercooling and degree of anisotropy were 

selected to be 3.81 °C and 0.0097, respectively, to match the values employed by [13]. 

Table 3.2 lists the tip velocities obtained from different models. The closest tip velocities 

to theoretical LGK values for σ*=0.05, as suggested by [13] for this alloy, are obtained 
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respectively by: present LB-CA, CA and PF models. The better accuracy of CA models 

comes from the fact that the Moore neighborhood in 3D consists of 27 cells, in 

comparison with 9 cells in 2D. This results in better representation of the interface, and 

more accurate curvature calculation in 3D. A similar behavior was observed in the 3D 

FD-CA model presented in [7]. While it is expected that PF yields more accurate results 

compared to CA, a larger error is observed between PF and LGK theory. However, some 

considerations should be taken into account when quantitative results are sought in PF. In 

particular, grid spacing should be very small in order to capture the interface accurately, 

especially for higher undercoolings. Failure in satisfying the above condition may lead to 

inaccurate results. Nevertheless, as mentioned previously, the LGK model is approximate 

and should not be taken as an absolute benchmark solution. 

Table 3.2 Comparison of dendrite tip velocities for Al–4wt%Cu alloy obtained from 
present LB-CA , LGK (σ*=0.05), CA and PF models. 

 

 

 

 

3.3.3 Solute distribution 

Figure 3.4 depicts the solute distribution field around the dendrite after 15ms. As 

the solidification proceeds, the solute atoms are rejected from solid to liquid. Since the 

rate of solute rejection is more than the rate of diffusion, solute atoms accumulate at the 

interface front, as shown by higher solute concentration between the dendrite arms. At 

the later steps of solidification, the solute atoms may become trapped between solidified 

Method Tip Velocity (µm/s) 

Present LB-CA 1147 

LGK [13] 1393 

3D-CA [13] 857 

3D-PF [13] 400 
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regions and result in microsegregation. This phenomenon can be recognized in the 

regions close to the dendrite core in Figure 3.4. 

 

Figure 3.4 Solute concentration field around the dendrite for ΔT=4.5 °C and ε=0.04 
after 15 ms. 

 

3.3.4 Effect of anisotropy of the surface energy 

The effect of degree of anisotropy of the surface energy on growth kinetics and 

morphology of the dendrite is also studied as a means of qualitative validation of the 

model. Anisotropy is one of the most important physical phenomena that controls the 

kinetics of dendrite growth.  Seven different values of the anisotropy parameter ranging 

from 0.01 to 0.07 with 0.01 increments are tested. The undercooling is considered to be 

4.5 °C for all cases.  Figure 3.5 shows the effect of anisotropy coefficient on morphology 
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and tip velocity of the dendrite. The dendrite grows faster and the tip velocity increases as 

the degree of anisotropy increases. By increasing the degree of anisotropy, the part of 

total undercooling which is controlled by interfacial anisotropy increases and results in a 

higher solidification rate. For large degrees of anisotropy, the dendritic arms are more 

enforced to follow the crystallographic directions and a branchless needle-shape dendrite 

with very sharp edges is obtained. On the other hand, when small values are used for the 

anisotropy parameter, the instability at the interface increases and the dendrite grows with 

well-developed side branches and relatively round edges. While the dendrite growth 

mostly follows the <1 0 0> crystallographic directions, branches start to grow in <1 1 1> 

directions when very small anisotropy parameters, less than 0.01, are applied. Another 

interesting aspect is showing the possibility of changing dendrite morphologies (i.e. size, 

arm spacing, and orientation) by changing the anisotropy and interfacial energy 

parameters, which may be possible by altering chemical composition of alloys. However, 

this needs a more extensive study as suggested by [14]. 
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Figure 3.5 Variation of dendrite morphology and tip velocity with respect to 
anisotropy parameter. 

 

3.4 Conclusions 

In summary, a three dimensional LB-CA model is introduced for simulating 

solute-driven dendrite growth. The model successfully captures the morphology of 

dendritic microstructure in three dimensions. Comparing the growth features over a range 

of undercoolings shows a good agreement between the simulation results and the 

theoretical predictions. The results show that when larger anisotropy parameters are 

selected, a branchless dendrite with sharp edges grows with high tip velocity. On the 

other hand, when smaller anisotropy parameters are used, a dendrite with well-developed 

branches and low tip velocity is produced.  Exploiting the local characteristics of both LB 
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and CA methods, the presented model exhibits good computational efficiency and 

parallel scalability, with potential for large 3D simulations of microstructural evolution in 

domains approaching macroscopic size. 

The work of this chapter was published in Journal of Crystal Growth in 2012 [15] 

and was also pre-viewed and presented partially in the 2012 TMS Annual Meeting & 

Exhibition [16] and the International Conference on 3D Materials Science [17]. 
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THREE-DIMENSIONAL LATTICE BOLTZMANN MODELING OF DENDRITIC 

SOLIDIFICATION UNDER FORCED CONVECTION 

4.1 Introduction 

As mentioned in the previous chapter, there are few works on modeling dendritic 

solidification in two dimensions. However, 2D models are usually unable to capture all 

features of microstructures which are determinative in many materials properties. It is 

known that melt flow can significantly alter the growth kinetics by affecting solutal 

gradient around the dendrites. While melt convection is blocked by dendrite arms in two-

dimensional simulations, flow can go around the 3D arms which results in a different 

solute distribution and dendritic morphology. Studies [1-5] have shown that the growth of 

dendrites in 3D is considerably different from 2D. Therefore, in order to obtain correct 

physical results, it is necessary to perform the simulations in 3D. In the previous chapter, 

the development of a three dimensional LB–CA model for simulating solute-driven 

dendrite growth was discussed. The model successfully captures the morphology of 

dendritic microstructure in three dimensions, but it does not contain the fluid flow 

calculations [6]. 

This chapter aims to introduce a three-dimensional LB–CA model for simulation 

of dendritic growth under forced convection. The model is verified against the available 

analytical solutions for diffusion-advection, and fluid flow. The results of 3D and 2D 
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dendrite growth simulations are compared. In addition, the change in growth kinetics and 

morphology of Al-Cu dendrites is studied by altering melt undercooling, alloy 

composition and inlet flow velocity. 

4.2 Model description 

In the LB model developed in this work, the time domain is divided into equal 

time steps while the spatial domain is discretized with a uniform 3D cubic grid. There are 

a few possibilities for spatial position of the fictive particles. The well-known D3Q15 

lattice is employed in this work, which is a three dimensional lattice with 15 microscopic 

velocities; 1 residing at the center of the cube, 6 towards the cube’s faces, and 8 towards 

the cube’s corners.  The discrete velocities in the D3Q15 lattice are given as: 

௜ࢋ  ൌ ܿ ൈ ቐ
ሺ0, 0, 0ሻ																																																													݅ ൌ 0
ሺേ1,0,0ሻ, ሺ0, േ1,0ሻ, ሺ0,0, േ1ሻ													݅ ൌ 1 െ 6
ሺേ1,േ1,േ1ሻ																																								݅ ൌ 7 െ 14

 (4.1) 

where ܿ ൌ  is time step ݐ∆ is lattice spacing, and ݔ∆ ,is the lattice speed ݐ∆/ݔ∆

size. 

It is assumed that the temperature in the entire domain is uniform with a constant 

undercooling. So, heat transport is not solved and only solute diffusion and fluid flow 

models are included in this work. Also, solute transport in the solid phase is neglected.  

The motion of an incompressible Newtonian fluid is described by the Navier-

Stokes equations (NSE): 

ߩ  ቀడ࢛
డ௧
൅ ࢛. ቁ࢛׏ ൌ െ݌׏ ൅ .׏ ሺ࢛׏ߤሻ (4.2) 
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where ρ and u are density and velocity, respectively. According to the BGK 

(Bhatnagar-Gross-Krook) approximation [7], the LB equation for fluid flow can be 

written as: 

 ௜݂ሺ࢞ ൅ ,ݐ∆௜ࢋ ݐ ൅ ሻݐ∆ െ ௜݂ሺ࢞, ሻݐ ൌ െ ଵ

ఛೠ
ሺ ௜݂ሺ࢞, ሻݐ െ ௜݂

௘௤ሺ࢞,  ሻሻ (4.3)ݐ

where ࢋ௜, and ߬௨ are discrete velocity, and nondimensional relaxation time, 

respectively. 	 ௜݂ is the distribution function and is defined as the probability of finding a 

particle at position x moving in direction i. ௜݂
௘௤ is the equilibrium distribution function: 

 ௜݂
௘௤ ൌ ߩ௜ݓ ቀ1 ൅ 3 ࢛.೔ࢋ

௖మ
൅ ଽሺࢋ೔.࢛ሻమ

ଶ௖ర
െ ଷ࢛మ

ଶ௖మ
ቁ (4.4) 

 :௜ is the weight coefficient that for the D3Q15 lattice is given asݓ

௜ݓ  ൌ ൝
16/72																																				݅ ൌ 0
	8/72																													݅ ൌ 1 െ 6
	1/72																										݅ ൌ 7 െ 	14

 (4.5) 

Using the Chapman-Enskog expansion, it can be proved that the LB equation is 

equivalent to the NSE, if the following equation is satisfied. 

 ν ൌ ௖మ∆௧

଺
ሺ2߬௨ െ 1ሻ (4.6) 

Here, ν is the kinematic viscosity. 

Then, the macroscopic values of density and velocity can be obtained from LB 

distribution functions as follows: 

ߩ  ൌ ∑ ௜݂
ଵସ
௜ୀ଴  (4.7) 

 ࢛ ൌ ଵ

ఘ
∑ ௜݂
ଵସ
௜ୀ଴  ௜ (4.8)ࢋ
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The solute can be transported by both diffusion and advection in the liquid. The 

advection-diffusion equation describes the solute transport under the effect of melt flow 

and diffusion: 

 
డ஼೗
డ௧
ൌ .׏ ሺܦ௟ܥ׏௟ሻ െ  ௟ (4.9)ܥ׏࢛

where ܥ௟ is the solute concentration and ܦ௟ is the solute diffusivity in the melt. 

The equivalent LB equation for solute transport can be written as: 

 ݃௜ሺ࢞ ൅ ,ݐ∆௜ࢋ ݐ ൅ ሻݐ∆ െ ݃௜ሺ࢞, ሻݐ ൌ െ ଵ

ఛ೎
ሺ݃௜ሺ࢞, ሻݐ െ ݃௜

௘௤ሺ࢞,  ሻሻ (4.10)ݐ

 where ݃௜ is the solute distribution function and ߬௖ is the relaxation time for the solute 

transport model.  The equilibrium distribution function,	݃௜
௘௤, for this model is defined as: 

 ݃௜
௘௤ ൌ ௟ܥ௜ݓ ቀ1 ൅ 3 ࢛.೔ࢋ

௖మ
ቁ (4.11) 

Then, the macroscopic solute concentration, Cl(x,t), can be calculated as: 

௟ܥ  ൌ ∑ ݃௜
ଵସ
௜ୀ଴  (4.12) 

The LB Equation (4.10) reduces to the advection-diffusion Equation (4.9), if: 

௟ܦ  ൌ
௖మ∆௧

଺
ሺ2߬௖ െ 1ሻ (4.13) 

In the present model, dendrite growth is controlled by the difference between 

local equilibrium solute concentration and local actual solute concentration in the liquid, 

as described in the previous chapter. Also, a CA algorithm is used to capture new 

interface cells. For more details about the solid fraction calculations and capturing new 

interface cells, please look at Chapter III. 
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At the beginning of the simulation, a solid seed with a predetermined 

crystallographic orientation is placed in a domain of undercooled molten alloy. A 

uniform flow in the x-direction, with velocity magnitude U0, enters the domain from the 

west wall, as shown in Figure 4.1. The nonslip boundary condition at the solid/liquid 

interface is applied using the bounce-back rule for both fluid flow and solute diffusion 

calculations. Bounce back is one of the most interesting aspects of the LBM. Using 

bounce back, the incoming distribution functions at the solid particles are simply 

reflected back to the fluid. Using this simple method, the interaction of fluid with 

complex boundaries of the dendrite can be efficiently modeled. The side walls are 

assumed to be periodic and a zeroth extrapolation is used to simulate the open wall on the 

east side. Besides, all boundary walls are insulated against the solute transport. The 

buoyancy effect is ignored and it is assumed that the dendrite is stationary and does not 

move with the flow. 

The non-dimensional relaxation time is chosen to be one for both fluid flow and 

solute transport models and the mesh spacing is 0.3 μm for all dendrite growth 

simulations. 
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Figure 4.1 Schematic illustration of the simulation domain. 

 

4.3 Results and discussion 

4.3.1 Validation 

In order to validate the fluid flow and solute transport models, two benchmark 

problems are considered and LBM results are compared with the analytical solutions. The 

dendrite growth model was previously validated and compared with other simulation 

results. More details on the dendrite growth model validation can be found in Chapter III 

and Reference [6].  

4.3.1.1 Fluid flow 

For fluid flow validation, a benchmark problem of a steady state laminar flow 

over a circular cylinder that is asymmetrically placed inside a channel is considered. 

Schäfer and Turek [8] reported a set of results obtained from several different numerical 

methods for this case. They also presented the estimated intervals for the “exact” results 
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on the basis of the obtained solutions. An identical geometry with the same initial and 

boundary conditions is employed to reproduce the benchmark results reported by Schäfer 

and Turek [8]. 

Figure 4.2 shows the configuration and boundary conditions for flow around a 

circular cylinder. The inflow condition is ܷሺ0, ,ݕ ሻݖ ൌ 16ܷ௠	ݖݕሺܪ െ ܪሻሺݕ െ ,	ସܪ/ሻݖ

ܸ ൌ ܹ ൌ 0	with Um = 0.45 m/s. For no slip boundary condition on the walls and the 

cylinder, the bounce-back rule is used. The inflow condition is imposed by specifying the 

given velocity profile at the entrance, and a zeroth-order extrapolation for the distribution 

function is imposed at the exit.  Density and viscosity are assumed to be 1 kg/m3, and 

0.001 m2/s, respectively. The method suggested by Mei et al. [9] is used to calculate drag 

and lift forces, and consequently drag and lift coefficients, as well as pressure drop. Table 

4.1 shows the LBM results for three different meshes. The last two rows present the 

intervals of the exact solution as reported by Schäfer and Turek [8]. It is observed that the 

error in the drag and lift coefficients is larger for coarser grids. The reason is that the 

discretization of the nodes using a rectangular mesh cannot precisely reproduce the 

circular outline of the cylinder. However, the pressure drop across the cylinder is inside 

the bound for all three meshes used. It should be noted that the mesh size employed for 

dendrite growth simulations is much smaller than the finest mesh used for fluid flow 

validation.  
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Table 4.1 Fluid characteristic quantities for steady state laminar flow over a cylinder. 
Simulation results are listed for three different node spacings. Lower and 
upper bounds present the estimated interval for the exact results [8]. 

 
Node Spacing (m) cd cl ΔP 

0.005 6.6315 0.0225 0.1730 

0.0025 6.3503 0.0148 0.1702 

0.00166 6.2550 0.0082 0.1681 

Lower Bound 6.0500 0.0080 0.1650 

Upper Bound 6.2500 0.0100 0.1750 

 

 

Figure 4.2 Configuration and boundary conditions for the benchmark problem of 
steady state laminar flow over a cylinder [8]. 

 

4.3.1.2 Solute transport 

For the one-dimensional case of an instantaneous volume source of mass over the 

range −∞<x< 0 with concentration Ci, and for a steady velocity field u = (U0, 0, 0), the 

solution of the diffusion-advection equation is given by [10]: 
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஼ሺ௫,௧ሻ

େ౟
ൌ ଵ

ଶ
ቀ1 െ erf ቀ௫ି୙బ௧

√ସୈ௧
ቁቁ (4.14) 

This case is examined for a 3D channel with a square cross section. A one-

dimensional flow of U0=10 mm/s, enters the domain from the left wall and exits through 

the right wall. Periodic boundary conditions are applied to the side walls. The 

concentration of the source is considered to be Ci = 4 wt%. Figure 4.3 shows the 

concentration profile in the x-direction after 2 ms. The channel is long enough and the 

considered time is short enough, so that the concentration remains unchanged at regions 

close to right and left boundaries and the infinity assumption is correct. A good 

agreement is found between LB and analytical solutions. 

 

Figure 4.3 Comparison between the solute distribution calculated using LB and 
analytical models for diffusion-advection under U0=10 mm/s after 2 ms. 
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4.3.2 Dendrite growth under melt convection 

In this section, the simulation results for dendritic growth under melt convection 

are discussed. The growth features are compared for 2D and 3D simulations. In addition, 

the impact of altering melt undercooling, inlet flow velocity, and alloy composition on 

the kinetics of 3D dendrite growth is explored. 

4.3.2.1 Kinetics of growth under forced convection 

Figure 4.4 depicts the evolution of dendritic morphologies after 2, 4, 6, and 8 ms 

under the effect of melt convection. A uniform flow with inlet velocity U0=7 mm/s enters 

the domain from the left face. The fluid convection affects the solute distribution around 

the dendrites and consequently alters the kinetics of dendritic growth. The cubic 

simulation domain contains 2883 cubic cells with ∆x=0.3 μm. The domain is uniformly 

cooled down up to 4.5 ˚C below the melting point (∆T=4.5 ˚C). The streams lines show 

how flow travels around the growing dendrite. Moreover, the morphology of the dendrite 

in 2D sections perpendicular to z-direction and passing through the dendrite center is 

shown in Figure 5.5. The wireframes show the morphologies, from inside to outside, 

respectively after 0.75, 2.00, 3.25, 4.50, 5.75, 7.00, 8.25, and 9.00 ms. At the initial 

stages of solidification, the primary arms grow along their crystallographic orientation 

without any secondary arms. As solidification proceeds, the primary arms grow and 

coarsen, and then, the secondary arms start to grow perpendicular to the primary arms. 

Melt convection washes the solute from upstream primary and secondary arms and 

transports it downstream. This leads to a lower concentration in the upstream area and a 

higher concentration downstream and consequently, a higher growth rate upstream and a 

lower growth rate downstream. This matches the findings of previous studies [1, 4, 5, 11, 
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12, 13]. Although the transverse arms (the ones in the y and z directions) are not 

significantly affected by convection, the secondary branches grow faster on the upstream 

side of the transverse arms. 

Figure 4.6 shows the melt flow around the dendrite. Velocity values are higher in 

the areas far from the dendrite and lower in the dendrite’s vicinity. The bottom part of 

Figure 4.6 shows the solute concentration in two perpendicular planes passing through 

the center of the dendrite. As solidification advances, since the solubility of solute in 

solid is less than its solubility in liquid, the extra solute is rejected to the interface. At 

later times, when solidification is close to completion, there are liquid regions 

encompassed by the solid phase, holding a high concentration. Those regions may end up 

causing micro-segregation or forming eutectic phases. 
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Figure 4.4 Evolution of dendritic structures under melt convection after (a) 2, (b) 4, 
(c) 6, and (d) 8 ms. 
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Figure 4.5 2D sections showing the morphological changes of the 3D dendrite 
growing under melt convection.  

From the innermost frame to the outermost frame, after 0.75, 2.00, 3.25, 4.50, 5.75, 7.00, 
8.25, and 9.00 ms, respectively.    
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Figure 4.6 Snapshot of a 3D solutal dendrite growing under melt convection.  

The top part depicts the 3D dendrite morphology with the streamlines showing the melt 
velocity around it. The bottom part shows the solute distribution in two perpendicular 
cross sections. 

4.3.2.2 Comparison of 2D and 3D simulations 

As mentioned before, studies have shown that the kinetics of dendrite growth is 

considerably different in two and three dimensions. Even when convection is not present, 

diffusion is more effective in 3D compared to 2D. Therefore, solute concentration and its 

gradient are higher around 2D dendrites, causing a slower growth. Figure 4.7 compares 

the solute distributions in 2D and 3D domains. The results are captured after an identical 

time of 7.5 ms for both cases. 2D simulations are performed with a similar methodology 

as 3D, but using the D2Q9 lattice. Interested reader is referred to Reference [13] for more 

details on the 2D model. Fluid convection affects the solute distribution around the 

dendrites and consequently alters the kinetics of dendritic growth. Melt flow results in a 

thinner solute layer around the 3D dendrite in comparison with the 2D dendrite and thus a 
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higher tip velocity, something that is also confirmed by other studies [5]. This effect 

restrains the side branches to form in 2D, but promotes their growth in 3D, especially 

upstream. Comparison of 2D and 3D sections reveals that the center of the 3D dendrite is 

somewhat displaced towards the upstream direction under the effect of convection, 

something that is not detected in 2D results, as 2D flow cannot sweep the solute 

downstream as effectively as in 3D. This displacement can also be observed in the results 

obtained from phase field simulations [1, 14].  

Figure 4.8 depicts the x-component of velocity around 2D and 3D dendrites. Note 

that the color legends are different for 2D and 3D cases. While melt can flow around the 

dendrites in 3D simulations, melt flow is blocked by the 2D dendrite and cannot go 

around the arms. As a result, the maximum velocity is much higher in the 2D domain 

compared to 3D. It can be seen that the downstream side of the 2D dendrite faces much 

less convection than the 3D one, hence more solute accumulation and less growth.  There 

is no apparent recirculation downstream the 3D dendrite because liquid can flow more 

freely around the dendrite while recirculation past the dendrite is very likely in 2D. These 

effects altogether cause a more significant difference between the arms growing in 

upstream and downstream directions in a 2D domain. The length ratio of the upstream 

arm to the downstream arm in Figure 4.8 is 2.75 for the 2D case, while it is 1.43 for the 

3D case. The results of the simulations indicate that the length ratio increases with time 

for both cases.  
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Figure 4.7 Solute distribution around 2D and 3D dendrites. 

 

Figure 4.8 Contours showing the x-component of velocity around 2D and 3D 
dendrites. 
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4.3.2.3 Effect of melt undercooling 

Figure 4.9 shows the variation of tip velocity with undercooling.  All simulations 

are performed for Al-3wt%Cu alloy with an identical inlet velocity, U0=7 mm/s, as in the 

previous section. The growth rate and tip velocity increase with undercooling for all 

branches. Upstream tip velocity is the highest whereas downstream tip velocity is the 

lowest and the tip velocity of the transverse arms is in between. The melt flow washes the 

solute atoms from the upstream tip, reducing the local concentration in front of the tip. 

Thus, the difference between the local and equilibrium solute concentrations increases 

and leads to a faster growth. On the other hand, melt convection causes an increase in the 

solute concentration in front of the downstream tip and consequently decreases the 

growth rate. Fluid flow has no substantial impact on the solute concentration at the tip of 

the transverse arms, because the fluid flow does not produce a solutal gradient in the 

transverse tip growth direction as done with the upstream arm tip. It can be seen that the 

average tip velocity of the transverse arms is almost same as the tip velocity for the case 

without fluid flow.   

Figure 4.10 shows 2D sections of the 3D dendrite growing in melts with different 

undercoolings. The bottom and top halves present morphologies of the dendrite growing  

in the melt with 3 and 4 ˚C of undercooling, respectively. Different colors represent 

different times. As expected, the dendrite growing in the melt with ∆T= 4 ˚C grows faster 

compared to the dendrite growing in the melt with ∆T= 3 ˚C. However, the impact of 

melt convection is more significant for the dendrite with smaller undercooling, because 

convection has more time to accumulate solute downstream. The difference between the 

lengths of upstream and downstream branches is bigger for the smaller undercooling. The 
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difference increases with time, as the downstream arm grows very slowly for ∆T= 3 ˚C. 

As a result of faster growth, secondary branches also form sooner in the melt with larger 

undercooling. 

 

Figure 4.9 Variation of average tip velocity with undercooling for upstream, 
downstream, and transverse branches of a dendrite growing under inlet 
velocity of U0=7 mm/s and the case without melt convection. 
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Figure 4.10 Comparison of dendritic morphologies growing in melts with different 
degrees of undercooling: top: ∆T= 4 ˚C, and bottom: ∆T=3 ˚C.  

Different colors represent different times. 

4.3.2.4 Effect of inlet velocity 

Variation of tip velocities with inlet flow velocity is shown in Figure 4.11. The 

solute concentration and undercooling are considered to be 3 wt% and 4.5 ˚C, 

respectively. Increasing flow velocity slightly increases the growth velocity of the 

upstream arm. As mentioned before, fluid flow does not seem to have a significant effect 

on the transverse arms. Even for high inlet velocities, the transverse arms don’t seem to 

be much affected. Increasing flow velocity shows a more significant effect on the tip 

velocity of the downstream arm. By increasing the flow velocity, more solute is 

accumulated around the downstream arm, increasing the local liquid composition. The 

change in the fraction of solid is reduced as the local liquid composition increases, which 

results in a lower growth rate. A tip splitting phenomenon is observed for inlet velocities 
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higher than 10 mm/s, leading to inaccurate and unstable measurement of the tip 

velocities. 

 

Figure 4.11 Variation of average tip velocity with inlet melt velocity for Al-3wt%Cu 
alloy with ∆T=4.5 ˚C. 

 

Figure 4.12 illustrates the morphologies of the dendrites growing under different 

flow velocities. As the inlet velocity increases, the dendrite grows faster in the direction 

opposite to the flow direction. Increasing flow velocity does not show a significant 

impact on the length of the upstream arm. Interestingly, the flow washing away the solute 

layer at the interface causes enhanced growth on all the upstream faces of the dendrite, 

producing a net displacement of the dendrite center towards the upstream direction. This 

displacement increases with the magnitude of the inlet velocity. It can be seen that the 

distance from the center of the simulation domain to the dendrite’s tip is slightly longer, 

but there is not much difference between the distance from the center of dendrite to the 
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upstream tip for dendrites growing under different flow velocities. As mentioned above, 

increasing the flow velocity has a more significant influence on the downstream arm. 

Flow velocity slightly decreases the tip velocity of the transverse arms, but the effect is 

not considerable. However, as inlet velocity increases, growth of secondary arms on the 

transverse arms is promoted in the upstream direction. 

 

Figure 4.12 Effect of inlet velocity on the morphology of Al-3wt%Cu dendrites. 
Different colors represent different inlet velocities: 0, 4, and 8 mm/s. 

 

4.3.2.5 Effect of alloy composition 

Effect of alloy composition on the growth kinetics is displayed in Figure 4.13. 

The undercooling and inlet velocity are identical for all cases and considered to be 4.5 ˚C 

and 7 mm/s, respectively. In general, the growth rate decelerates with increasing 
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concentration of the solute. As the alloy’s solute content increases, all upstream, 

downstream, and transverse tip velocities decrease with a comparable rate. This is an 

expected trend due to the constant partition coefficient and liquidus slope used in the 

simulations. 

Figure 4.14 depicts 2D wireframes of the 3D dendrites growing in melts with 

different compositions. The bottom and top sections represent Al-3wt%Cu and Al-

9wt%Cu alloys, respectively and the colors indicate different times. Note that since the 

growth rates are significantly different, showing the outlines at identical times for both 

compositions may not illustrate the detail of dendritic morphologies. The only time at 

which the morphology is displayed for both compositions is t = 3.5 ms that is presented 

by red in Figure 4.14. As can be seen, the growth speed is considerably faster in the alloy 

with lower solute concentration. In addition, the size ratio of the upstream arm to the 

downstream arm is significantly bigger in the alloy with higher solute concentration. 

Because the dendrite grows very slowly in Al-9wt%Cu alloy, convection can effectively 

wash the solute from upstream and accumulate it downstream. Hence, the local liquid 

concentration stays always high in front of the downstream arm, hindering the arm’s 

advancement and increasing the length ratio between upstream and downstream arms. 
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Figure 4.13 Variation of average tip velocity with initial alloy composition under U0=7 
mm/s, and ∆T=4.5 ˚C. 

 

Figure 4.14 Effect of alloy composition on the dendritic morphology under inlet 
velocity of U0=7 mm/s, and ∆T=4.5 ˚C.   

Top: Al-9wt%Cu, and bottom: Al-3wt%Cu. Different colors represent different times. 
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4.4 Conclusions 

A three-dimensional lattice Boltzmann model is introduced for simulating 

dendritic growth under forced convection. The results show that growth kinetics and 

dendritic morphology are significantly affected by the presence of fluid flow. The 

primary and secondary arms grow faster in the upstream direction, and significantly 

slower in the downstream direction. The fluid flow does not show a noticeable impact on 

the transverse arms and the tip velocity in those directions is similar to the case without 

convection. A comparison with 2D results revealed that 3D dendrites grow faster in 

general, but the difference between the velocity of upstream and downstream arms is 

more significant in 2D simulations. Moreover, 3D dendrites seem to be more likely to 

form side branches. It was found that the center of the 3D dendrite is slightly displaced 

upstream under the influence of melt convection. The displacement increases with inlet 

velocity. Increasing the degree of undercooling accelerates the growth rate in all 

directions. By increasing the magnitude of flow velocity, the convection effects are 

intensified. The influence on the downstream arm seems more significant in comparison 

with the upstream arm. The growth rate slows down in all branches when the alloy 

contains a higher solute concentration. The size ratio of the upstream arm to the 

downstream arm grows by increasing inlet velocity and solute content, and decreasing 

undercooling. Considering the special capabilities of the lattice Boltzmann method, e.g. 

simple implementation, computational efficiency, local calculations, and inherent parallel 

structure; the model offers a great potential for simulating the solidification of 3D 

dendritic structures under convection. 



 

79 

The results of this chapter are partially presented in the 2013 TMS Annual 

Meeting & Exhibition. In addition, a journal manuscript was prepared from the content of 

this chapter and is under review for publication. 
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LARGE-SCALE SIMULATION OF DENDRITIC SOLIDIFICATION 

5.1 Introduction 

Despite the current advances in the large scale parallel supercomputing, only a 

handful of studies of large-size solidification domains have been performed. Parallel 

simulations of 3D dendrite growth have been performed utilizing the phase field method 

[1]. Improved, multigrid phase field schemes presented by Guo et al. [2] allow parallel 

simulations of tens of complex shape 2D dendrites in a simulation domain of up to 25 μm 

× 25 μm size. Shimokawabe et al. [3] deployed a modern heterogeneous GPU/CPU 

architecture to perform the first peta-scale 3D solidification simulations. However, none 

of these models included convection. 

In this chapter, large scale simulations of dendrite growth using a parallel LB-CA 

model are presented. The parallel implementation and performance of the model is also 

discussed. 

5.2 Parallelization 

The algorithm is parallelized using MPI technique with spatial domain 

decomposition. The global rectangular grid is split into equally sized subregions, and 

each computational core allocates the data and performs computation in only one 
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subregion. Given the convenient locality of the LB-CA model, only the values on the 

subdomain boundaries need to be exchanged between subdomains. 

The LBM performs a sequence of streaming and collision steps. Collision 

calculates new value of the distribution function. The collision step is completely local 

and does not require values from the surrounding cells. Each execution core has the data 

it needs available, and no data exchange with neighboring subdomains is required. The 

other step, assignment operation in the equation, is referred to as streaming. Streaming 

step involves propagation of each distribution function to the neighboring cells. Except 

for the stationary f0, each distribution function fi is propagated in the direction of the 

corresponding lattice velocity ei (i = 1… 15, for D3Q15 lattice). For the neighboring cells 

belonging to the computational subdomain of another execution core, the distribution 

functions are transferred to the neighboring subdomains using MPI communication 

routines. During the streaming step, permanent storage is allocated only for values from 

the local subdomain. When the streaming step is due, temporary buffers are allocated to 

store the data to be sent to (or received from) other execution cores. 

When calculation in a particular lattice cell needs values from the neighboring 

cells, the neighboring cells may belong to the computational subdomains of other 

execution cores. Therefore, the values needed may not be readily available to the current 

execution. To provide access to the data from other executions, an extra layer of lattice 

sites is introduced at the boundary with each neighboring subdomain. Values from these 

extra boundary layers, referred to as ghost layers, are populated from the neighboring 

subdomains. Population of the ghost sites is a common operation in parallel stencil codes. 
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Figure 5.1 shows the communications involved in a 2D slice when the ghost sites are 

populated for the execution core 5. 

 

Figure 5.1 Populating the ghost values (green area in part (a)) on the execution core 5 
Each subdomain permanently stores an extra “ghost” layer of values to be 
received from (or to be sent to) the neighboring subdomains. 
Synchronously with receiving the data, the execution core 5 sends the data 
in the direction opposite to where the data is received from. 

 

Throughout the solidification process, the solute is rejected from the interface and 

redistributed from the solidifying cells to the neighboring cells. In this case, the ghost 
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layers are used to store the amount of solute to be distributed to the neighboring 

subdomains. 

As the size of the simulation domain increases, the storage, processing, and 

visualization of results requires more resources. The parallel writing of simulation 

variables is implemented in a binary HDF5 format [4]. Publicly available HDF5 library 

eliminates the need to implement low level MPI I/O routines. Data stored in the standard 

HDF5 format is straightforward to visualize using common visualization tools. In the 

binary format, the data is stored without a loss in accuracy.  

5.3 Parallel performance 

As previously mentioned, locality and intrinsic parallel structure are among the 

most important features of LB and CA methods. Kraken, located at the Oak Ridge 

National Laboratory, was used to perform the parallel performance tests. Kraken is a 

Cray XT5 system with 9,408 total computing nodes, each with 16 GB of memory and 

two six-core AMD Opteron “Istanbul” processors (2.6 GHz), connected by Cray 

SeaStar2+ router. 

5.3.1 Strong scaling 

To characterize the gain from parallelization, one can compare the calculation 

time of the task of a certain size on one execution core with the calculation time on 

multiple cores, referred to as the strong scaling. Ideally, when running on n cores, the 

computation is expected to be n times faster which means 100% parallel efficiency. 

Intuitively, the speed up is defined as the ratio of the computation time on a single core to 

the computational time using n cores. 
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Figure 5.2 shows the speed-up performance of the code. For the speed up tests, 

the domain was equally divided and the computational load was equally distributed 

among the computational cores. Nearly excellent speed up is demonstrated, with only 

slight degradation in parallel performance when more than 1000 computation cores are 

deployed. The smallest number of cores was 16 for the simulations. Ideal performance is 

expected when the tasks solved by individual cores are independent. When the tasks to be 

solved by individual cores depend on each other, the efficiency usually decreases with the 

number of cores. As the communication cost becomes comparable with computation cost, 

the efficiency goes down. Due to the high memory bandwidth requirement of the 

algorithm, an increase in the utilized number of cores in one node causes parallel 

performance loss. On the contrary, when two cores per node are used, the parallel 

efficiency remains close to the ideal performance for high number of cores. 

5.3.2 Weak scaling 

Increasing the number of the execution cores and the associated memory allows 

solving problems in larger domains. If the number of cores is multiplied by n, and the 

simulation domain also increases by the factor of n, the simulation time should not 

change. This, so called weak scaling of the algorithm, is characterized by the scale up 

efficiency. However, the scale-up performance degrades by increasing the number of 

processors/subdomains, due to the rise in the cost of communications. For scale up tests, 

the domain was periodically duplicated along three dimensions. The calculation time is 

shown in Figure 5.3. An excellent, virtually ideal scale up is observed. The code shows a 

slight degradation in the scale up performance when large number of cores is employed. 
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Figure 5.2 Speed up performance (increasing number of processors with a fixed 
domain size). 

 

5.4 Large scale columnar growth 

At the beginning of simulation, a number of solid seeds with random positions 

and crystallographic orientations are placed at the bottom of a domain of the undercooled 

molten alloy. This is similar to what is observed in many industrial applications, where 

alloys are directionally solidified in conditions that produce a complex array of columnar 

dendrites. 
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Figure 5.3 Scale up performance (fixed processor load by scaling the domain size). 
The calculation time at each point is relative to the calculation time when 
the smallest number of cores was deployed. 

 

Figure 5.4 displays the simulation results of the columnar dendritic growth in the 

melt of Al-3wt.%Cu alloy with 4.5 ˚C undercooling. The domain dimension is 720 × 720 

× 720 which is equivalent to 216 × 216 × 216 (µm)³. Two different views, parallel and 

perpendicular to the growth direction, are presented. Columnar dendrites growing in 

different orientations with well-developed side branches can be observed in the pictures, 

which are very similar to the morphologies observed in the experimental micrographs. 

Dendrites compete with each other and the ones with orientations other than 90 degrees 

are blocked by the perpendicular dendrites. So, the dendrites that survive to grow to the 

top are all parallel to each other. The flat tips or sides observed in some cases are due to 

the dendrites touching the domain boundaries.  
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Figure 5.4 Columnar dendrites growing in an undercooled melt of the Al-3wt.%Cu 
alloy. 

 

Figure 5.5 shows the solute distribution around the 3D columnar dendrites 

illustrated in Figure 5.4. The legend shows the weight percent of copper. During the 
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solidification, since the solubility of solute in solid is less than its solubility in liquid, the 

extra solute is rejected to the interface resulting in the higher solute copper concentration 

between the dendritic arms. At later stages of solidification, the high concentration 

regions may cause micro-segregation or form eutectic phases. 

 

Figure 5.5 Solute distribution around 3D columnar dendrites. 

 

The domain contains 600 × 600 × 480 3D cubic lattices that corresponds to a 

physical domain of 180×180×144 (µm)³. 

Figure 5.6 shows a 3D domain with the size of 3300 × 3300 × 3300 grid cells; 

around 36 billion grid points in total. With the mesh size of ∆x=0.3 μm, this domain 

represents a volume close to 1 mm3. To the author’s knowledge, such large domain has 

never been presented in any literature before and this is the largest dendrite growth 

simulation performed to date. Around 4000 seeds with random positions and 



 

91 

crystallographic orientations were initially distributed at the bottom of the domain. The 

dendrites grow in the undercooled melt and then develop side branches. Again, the tilted 

dendrites are blocked by the dendrites growing in perpendicular directions. 
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Figure 5.6 Large scale simulation of 3D columnar dendrite growth in a 1 mm3 domain 
with around 36 billion grid points and 4000 initial seeds.  
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5.5 Large scale columnar growth under forced convection 

Columnar dendrite growth was also simulated in presence of forced convection. 

At the beginning, arrays of seeds with crystallographic orientations all perpendicular to 

the bottom face were placed in the domain. This is to better show the effect of fluid flow 

on the dendrite morphologies. A uniform flow of 7 mm/s velocity enters from the left 

side, perpendicular to the growth direction. The melt convection washes the solute from 

the interface in the left face of the dendrites and accelerates the growth in that direction. 

Similar to what was discussed in the previous chapter, the dendrite arms grow faster in 

the upstream direction. Interestingly, even the secondary arms perpendicular to the flow 

direction grow faster, when convection is present. 

 

Figure 5.7 3D columnar dendrites growing in an undercooled melt of Al-3wt%Cu. 
The domain contains around 173 million 3D lattice points that corresponds 
to a 180×180×144 (µm)³ physical domain. 

Velocity (m/s) 
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5.6 Conclusions 

A parallel LB-CA model was developed for simulating dendritic solidification in 

3D. The model successfully captures the morphology of dendritic microstructure and 

solute distribution in three dimensions. Exploiting the local characteristics of both LB 

and CA methods, the presented model enables large scale simulations in macroscopic 

size domains. The model exhibited a good computational efficiency and parallel 

scalability. An excellent speed-up performance to thousands of computing cores across 

the nodes of a computer cluster was demonstrated, along with a near-perfect scale-up 

performance. Large domain simulations with and without convection were discussed. The 

special characteristics offered by the presented model, makes it a great tool for simulating 

large domain solidification problems with good computational efficiency and parallel 

scalability.  

The results of this chapter are partially presented in the proceedings of the 2013 

TMS Annual Meeting [5, 6] and the 8th Pacific Rim International Conference on 

Advanced Materials and Processing [7]. In addition, a manuscript is under preparation 

based on the results presented in this chapter, to be submitted for journal publication.  
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SUMMARY AND FUTURE WORKS 

6.1 Summary 

In summary, this dissertation described the numerical models based on LB and 

CA methods for modeling phase change and dendritic solidification.  

Development of a new LB model for solving heat conduction problems with 

phase change was discussed. Despite the previous explicit schemes, the model uses an 

implicit algorithm to deal with the latent heat source term of the energy equation. Several 

validation cases were presented, demonstrating the capabilities of the model. In addition, 

results showed that the proposed LB model outperforms FE models in computational 

efficiency. The model offers a great potential for solving heat and mass transfer problems 

incorporating phase transformations. 

Understanding the kinetics of dendritic solidification is very crucial in order to 

design materials with enhanced properties. A three dimensional LB-CA model was 

introduced for simulating solute-driven dendrite growth. The model successfully captured 

the morphology of dendritic microstructure in three dimensions. Comparing the growth 

features over a range of undercoolings showed a good agreement between the simulation 

results and the theoretical predictions. Effect of the anisotropy of surface energy on the 

dendritic morphologies was studied. When larger anisotropy parameters were selected, a 

branchless dendrite with sharp edges grew with high tip velocity. On the other hand, 
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when smaller anisotropy parameters were used, a dendrite with well-developed branches 

and low tip velocity was produced.  

Furthermore, kinetics of dendrite growth under forced melt convection was 

studied using a three-dimensional LB model. The results showed that growth kinetics and 

dendritic morphology are significantly affected by the presence of fluid flow. The 

primary and secondary arms grew faster in the upstream direction, and significantly 

slower in the downstream direction. The fluid flow did not show a noticeable impact on 

the transverse arms and the tip velocity in those directions was similar to the case without 

convection. A comparison with 2D results revealed that 3D dendrites grow faster in 

general, but the difference between the velocity of upstream and downstream arms was 

more significant in 2D simulations. Moreover, 3D dendrites seemed to be more likely to 

form side branches. It was found that the center of the 3D dendrite was slightly displaced 

upstream under the influence of melt convection. The displacement increased with inlet 

velocity. Increasing the degree of undercooling accelerated the growth rate in all 

directions. By increasing the magnitude of flow velocity, the convection effects were 

intensified. The influence on the downstream arm seemed more significant in comparison 

with the upstream arm. The growth rate slowed down in all branches when the alloy 

contained a higher solute concentration. The size ratio of the upstream arm to the 

downstream arm grew by increasing inlet velocity and solute content, and decreasing 

undercooling.  

Exploiting the local characteristics of both LB and CA methods, the model was 

parallelized using MPI technique with spatial domain decomposition. Large scale 

simulation of dendritic solidification in macroscopic domains of 1 mm3 size were 
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presented, which is the largest dendrite growth simulation to the date. In addition, growth 

of columnar dendrites under melt convection was discussed. The parallel efficiency of the 

model was also assessed. The model showed a very good speed up performance on up to 

thousands of processors and an almost perfect scale up performance.  

Considering the special capabilities of the model, e.g. simple implementation, 

computational efficiency, and excellent parallel performance, it can be employed as a 

great tool for simulating solidification phenomena in 3D macroscopic domains. 

6.2 Awards and recognition 

The achievements of this dissertation were recognized by several awards. In 2011, 

I was awarded the NSF fellowship to attend the European-US Summer School on High 

Performance Computing Challenges in Computational Sciences. I was one of 35 people 

who were selected from more than 140 US applicants. The goal of the program, which 

covers all expenses for a one-week training course at Lake Tahoe, CA, was to expand the 

knowledge of the attendees in high performance computing and its applications in 

multiple fields of science and engineering. I was also selected to receive the NSF 

Summer Institute Fellowship to attend the Materials Genome Short Course in 2013. In 

addition, I received support from the Bagley College of Engineering (BCoE) through a 

BCoE Graduate Fellowship for the 2011-2012 and 2012-2013 academic years. Recently, 

I was selected as the 2013 Outstanding Graduate Student Researcher for the Bagley 

College of Engineering. I was also selected by the Graduate School to receive Travel 

Assistant Grant for Graduate Students (TAGGS) award to present my work at the 8th 

Pacific Rim International Conference on Advanced Materials and Processing. 
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The research presented in this dissertation was reflected in the public reports as 

well. The dendrite growth modeling was featured in the 2011-2012 Annual Report of the 

Center for Advanced Vehicular Systems [1]. Moreover, the work on dendritic 

solidification also made the cover and was featured in the 2012 Research Windows 

Magazine, Mississippi State University [2]. 

In order to provide computational resources for this research, a proposal was 

submitted to the Extreme Science and Engineering Discovery Environment (XSEDE) [3]. 

XSEDE is a powerful and robust collection of advanced computing resources that is 

funded by National Science Foundation and shares computing resources, and data with 

the researchers. The proposal, “Large scale modeling of microstructural evolution during 

alloy solidification”, was awarded a Research Allocation by XSEDE in 2012. Through 

this research allocation, we received 500,000 CPU-hours on Gordon at the San Diego 

Supercomputer Center, 150,000 CPU-hours on Kraken at the National Institute for 

Computational Sciences, 10,000 CPU-hours on Nautilus at the National Institute for 

Computational Sciences for visualization, and 5 storage units on Albedo at the Pittsburgh 

Supercomputing Center. 

6.3 Future works 

6.3.1 Employ the presented model to simulate various casting and solidification 
processes 

The developed model can be adapted with minimum effort to study solidification 

in many casting processes. By proper adjustment of the boundary conditions and 

geometric features, the solidification model can be particularized to different casting, 

welding, and deposition processes which share similar solidification phenomena. The 
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direct numerical simulation of the dendritic network will provide a relation between 

macroscopically observable variables like cooling rate or temperature gradient and 

difficult-to-measure dynamic microscopic features like solute redistribution, and dendrite 

arm spacing. Although much observation has been done in pictures of static 

microstructures at different stages of solidification, it has never been possible to capture 

the dynamic response of these features in an evolving mushy zone. In addition to 

providing information to better understand the process, it helps to assess, validate and 

improve macroscale mushy zone numerical tools. 

6.3.2  Simulation of freckle formation during alloy solidification 

The channel-like macrosegregation defects, also known as freckles, are often 

observed during directional solidification of metallic alloys. The channels form in the 

mushy zone between the dendritic arms, declining the mechanical properties and causing 

subsequent rejection of the casting products. Therefore, understanding the mechanism of 

freckle formation has always been of great importance. Different phenomena including 

solute diffusion and redistribution, heat transfer, melt convection and kinetics of dendritic 

growth contribute in development of freckle defects. While most of previous studies have 

been focused on two dimensional simulations in macroscale, a three dimensional (3D) 

simulation in microscale can provide a better insight about the kinetics of freckle 

formation. Given the local-type nature and the good scalability for many processors, the 

3D model presented in this work can be used to efficiently simulate the formation of 

plume-type flow between columnar dendrites, interdendritic segregation and eventual 

formation of freckles in large 3D domains.  



 

101 

6.3.3 Calculation of the interdendritic permeability 

Most of the macroscopic models used for modeling solidification processes 

consider a porous media to simulate the mushy zone in the solidifying alloys. In such 

macroscale simulations, permeability is a determining factor that has an important role in 

accurate simulation of thermo-solutal natural convection and the eventual segregation in 

the solidified material. There has been a lot of experimental and modeling effort to 

calculate the permeability in the mushy zone of the solidifying alloys. Most of the 

numerical models that consider the complicated geometry of dendritic structures in their 

calculations are focused in 2D. However, it is known that flow regimes are totally 

different in 3D, which is what happens in reality. The main reason preventing the 3D 

simulations is the very expensive computational cost that cannot be afforded by the 

conventional computational fluid dynamics methods. Considering the computational 

advantages offered by the LB method, the model presented in this dissertation can be 

used to calculate the permeability of dendritic structures using 3D microscale 

simulations. The model can be considered as a great tool for calculation of permeability 

in various metallic alloys in different conditions that can be further used for macroscopic 

simulation of casting and solidification processes. 

6.3.4 A pure lattice Boltzmann model for dendrite growth 

When complex boundary conditions or high cooling rates are applied, the CA 

model used in this work may suffer from mesh-induced anisotropy problems leading to 

artificial effects in the simulation results. The implicit scheme described in Chapter II can 

be used to develop a pure LB model for dendritic solidification. The model is expected to 

be more accurate without having the anisotropy problems of the CA algorithm, even 
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when a larger mesh size is employed. The model can be used to simulate dendrite growth 

under large temperature gradients and severe cooling conditions with more accuracy. 

6.3.5  A multi-grid lattice Boltzmann model with superior computational 
performance 

In order to improve the efficiency of the model, especially when fluid flow is 

included, a multiple grid LB model can be developed. Different lattice spacing is used for 

each transported quantity, determined by time step and relaxation time. Embedded-type 

grids facilitate the transfer of information between lattices. The multiple grid scheme 

ensures stability and convergence while allowing larger time steps. Considering the fact 

that LB simulations are very memory-demanding, especially in 3D, this scheme can 

significantly reduce the memory requirements. In addition, by reducing the number of 

mesh points, the cost of communications for parallel processing purposes decreases 

considerably. 
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