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Numerical modelling of dendritic solidification based

on phase field formulation and adaptive meshless so-

lution procedure

Abstract

The main aim of the dissertation is to develop a novel numerical approach
for an accurate and computationally efficient modelling of dendritic solidifica-
tion, which is one of the most commonly observed phenomena in the industrial
casting of the metallic alloys. The size and the morphology of dendritic struc-
tures as well as the distribution of the solute within them critically effect the
mechanical and the electro-chemical properties of the solidified material. The
numerical modelling of dendritic solidification can be applied for an in-depth
understanding and optimisation of the casting process under various solidifi-
cation conditions and chemical compositions of the alloy under consideration.

The dendritic solidification of pure materials and dilute multi-component
alloys with negligible attachment-kinetics effects is considered in the disserta-
tion. The externally imposed temperature approximation is applied in mod-
elling the solidification of dilute multi-component alloys. The approximation
is valid when the diffusion of heat is a few orders of magnitude faster than the
diffusion of the solutes – a typical situation in metallic alloys.

The phase field formulation is applied for the modelling of dendritic so-
lidification. The formulation is based on the introduction of the continuous
phase field variable that is constant in the bulk of the solid and liquid phases.
The phase field variable has a smooth transition from the value denoting the
solid phase to the value denoting the liquid phase at the solid-liquid inter-
face over the characteristic interface thickness. A phase field model yields a
system of coupled non-linear parabolic partial differential equations that gov-
ern the evolution of the phase field and other thermodynamic variables. The
thin-interface limit is applied to determine the parameters of the phase field
model. The characteristic interface thickness is the only free parameter of the
phase field model in the thin-interface limit. The phase field model correctly
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captures the underlying physics of solidification when the interface thickness
is much smaller than the smallest (or only) diffusion length of the system.

The meshless radial basis function-generated finite-differences (RBF-FD)
method is used for the spatial discretisation of the system of partial differen-
tial equations. The forward Euler scheme is applied for the temporal discreti-
sation. Fifth-degree polyharmonic splines are used as the shape functions in
the RBF-FD method. A second-order accurate RBF-FD method is achieved by
augmenting the shape functions with monomials up to the second degree.

The adaptive solution procedure is developed in order to speed-up the cal-
culations. The procedure is based on the quadtree domain decomposition
of a rectangular computational domain into rectangular computational sub-
domains of different sizes. Each quadtree sub-domain is extended to ensure
overlap communication between the neighbouring sub-domains. Each ex-
tended quadtree sub-domain has its own regular or scattered distribution of
computational nodes in which the RBF-FD method and the forward Euler
scheme apply for the discretisation of the system of partial differential equa-
tions. The h-adaptivity is ensured by the constant product between the den-
sity of the computational nodes and the area of the rectangular quadtree sub-
domain. The adaptive solution procedure dynamically ensures the prescribed
highest density of the computational nodes at the solid-liquid interface and
the lowest-possible density in the bulk of the solid and liquid phases while
sustaining a balanced quadtree. The adaptive time-stepping is employed to
further speed-up the calculations. The stable time step in the forward Euler
scheme depends on the density of the computational nodes; hence, different
time steps can be used in quadtree sub-domains with different node densities.

The accuracy and the computational efficiency of the developed adaptive
numerical approach is tested for the modelling of the dendritic solidification of
undercooled pure melts for arbitrary preferential growth directions. The den-
dritic growth into an infinite domain is considered. The steady-state growth
velocity is compared with the velocity obtained by the microscopic solvability
theory. The phase field model is solved first by the basic solution procedure
with the uniform node density in the whole computational domain in order to
obtain reference numerical data for the assessment of the accuracy and com-
putational efficiency of the adaptive solution procedure. The impact of the
size of the local sub-domains in the RBF-FD method by using the regular and
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the scattered node distributions is analysed. It turns out that the solution is
much more sensitive to the size of a local sub-domain in the case of regular
node distribution. The use of the regular node distribution in comparison to
the use of the scattered node distribution is much more prone to mesh-induced
anisotropy when the growth for arbitrary preferential growth directions is con-
sidered. The solution of an identical physical problem is repeated by using the
adaptive solution procedure. The accuracy of the solution obtained by the
regular node distribution remains almost unchanged. The accuracy of the so-
lution obtained by the scattered node distribution is, however, compromised
due to rectangular quadtree domain decomposition. An increase of the ratio
between the side length of a quadtree sub-domain and the characteristic spac-
ing between the scattered nodes mitigates the undesirable effect of regularity
due to the rectangular domain decomposition. The adaptive solution proce-
dure speeds up the considered calculations by approximately ten times. The
speed-up is generally an increasing function of the size of the computational
domain and a decreasing function of the length of the solid-liquid interface.

The adaptive numerical approach is further analysed for the modelling of
the isothermal dendritic solidification of a supersaturated binary alloy for ar-
bitrary preferential growth directions. The dendritic growth into an infinite
domain is considered. The steady-state growth velocity and the concentration
in the solid phase are compared to the reference solution from the paper in
which the phase field model for solidification in binary alloys was originally
developed. It turns out that the solution is even more sensitive to the size of
a local sub-domain in the case of a regular node distribution in comparison to
the modelling of the solidification of pure materials. The use of the scattered
node distribution provides higher accuracy, except for the configuration with
thirteen nodes in a local sub-domain by using the regular node distribution
where the highest accuracy is observed. An increase of the ratio between the
side length of a quadtree sub-domain and the characteristic spacing between
the scattered nodes proves once again to be beneficial for the mitigation of the
effect of regularity due to rectangular domain decomposition.

The solidification of an Al-1wt.%Cu alloy with a constant cooling rate is
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simulated. The growth velocity as a function of time is compared to the refer-
ence solution, based on the finite-difference method. The size of a local sub-
domain and the regular- or scattered-type of node distribution critically de-
termine the morphology of a dendrite. A quantitative discrepancy between
our results and the reference results is observed. The discrepancy is attributed
to the difference between the considered partial differential equations, which
otherwise describe the same physical problem, and to the use of different nu-
merical methods.

The main originality of the present work is the use of the RBF-FD method
for the thorough analysis of the impact of the type of the node distribution
and the size of a local sub-domain to the accuracy when the phase field mod-
elling of dendritic solidification for arbitrary preferential growth directions is
considered. It is shown how the use of the scattered node distribution reduces
the undesirable mesh-induced anisotropy effects, present when the partial dif-
ferential equations are discretisied on a regular node distribution. The main
advantage of the RBF-FD method for the phase field modelling of dendritic
growth is the simple discretisation of the partial differential equations on the
scattered node distributions. The RBF-FD method is, for the first time, used
in combination with the spatial-temporal adaptive solution procedure based
on the quadtree domain decomposition. The adaptive solution procedure suc-
cessfully speeds-up the calculations; however, the advantages of the use of the
scattered node distribution are compromised due to the impact of regularity in
the quadtree domain decomposition. An increase of the ratio between the side
length of a quadtree sub-domain and the characteristic spacing between the
scattered nodes mitigates the undesirable effect of the regularity; however, the
increase of the ratio reduces the speed-up of the adaptive solution procedure.
This turns out to be one of the most serious limitations of the newly developed
adaptive numerical approach.

Keywords dendritic solidification, phase field method, meshless methods,
RBF-FD, adaptive solution procedure
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Numerično modeliranje dendritskega strjevanja na

podlagi formulacije faznega polja in prilagodljivega

brezmrežnega rešitvenega postopka

Povzetek

Glavni cilj disertacije je razvoj novega numeričnega pristopa za natančno
in računsko učinkovito modeliranje dendritskega strjevanja. Dendritsko
strjevanje je eden najpogosteje opaženih pojavov pri industrijskem ulivanju
kovinskih zlitin. Velikost in morfologija dendritskih struktur ter porazdelitev
topljencev v njih ključno vplivajo na mehanske in elektro-kemijske lastnosti
strjenega materiala. Numerično modeliranje dendritskega strjevanja se lahko
uporablja za poglobljeno razumevanje in optimizacijo procesa ulivanja pri
različnih pogojih strjevanja in pri različnih kemijskih sestavah obravnavane
zlitine.

V disertaciji obravnavamo dendritsko strjevanje čistih snovi in razredčenih
več-sestavinskih zlitin z zanemarljivim učinkom kinetike pripenjanja. Str-
jevanje razredčenih več-sestavinskih zlitin modeliramo v približku zunanje
privzete temperature. Približek velja, kadar je difuzija toplote za nekaj ve-
likostnih razredov hitrejša od difuzije topljencev – tipična situacija v primeru
kovinskih zlitin.

Za modeliranje dendritskega strjevanja uporabimo formulacija faznega
polja. Formulacija temelji na uvedbi zvezne spremenljivke faznega polja, ki
je konstantna v trdni in kapljeviti fazi. Spremenljivka faznega polja ima na
medfaznem robu zvezen prehod preko značilne debeline medfaznega roba od
vrednosti, ki označuje trdno fazo, do vrednosti, ki označuje kapljevito fazo.
Model faznega polja poda sistem sklopljenih nelinearnih paraboličnih parcial-
nih diferencialnih enačb, ki opisujejo časovni razvoj faznega polja in ostalih
termodinamskih spremenljivk. Za določitev parametrov modela faznega polja
uporabimo limito tankega medfaznega roba. V limiti tankega medfaznega
roba je karakteristična debelina medfaznega roba edini prosti parameter
modela faznega polja. Model faznega polja pravilno opiše obravnavano fiziko
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strjevanja, kadar je karakteristična debelina medfaznega roba veliko manjša
od najmanjše (oziroma edine) difuzijske dolžine v sistemu.

Za krajevno diskretizacijo sistema parcialnih diferencialnih enačb upora-
bimo brezmrežno metodo z radialnimi baznimi funkcijami generiranih
končnih razlik (RBF-KR). Za časovno diskretizacijo uporabimo eksplicitno
Eulerjevo shemo. Poliharmonične zlepke petega reda uporabimo kot ob-
likovne funkcije v metodi RBF-KR. Natančnost drugega reda metode RBF-KR
dosežemo z dodajanjem monomov do vključno drugega reda k oblikovnim
funkcijam.

Za pospešitev izračunov razvijemo prilagodljiv rešitveni postopek.
Postopek temelji na razdelitvi pravokotne računske domene na pravokotne
računske pod-domene različnih velikosti z uporabo štiriškega drevesa.
Vsaka pod-domena štiriškega drevesa je razširjena, s čimer je zagotovl-
jena komunikacija na podlagi prekrivanja med sosednjimi pod-domenami.
Vsaka pod-domena na štiriškem drevesu vsebuje svojo lastno regularno ali
razmetano porazdelitev računskih točk, v katerih z uporabo metode RBF-KR
in eksplicitne Eulerjeve sheme diskretiziramo sistem parcialnih diferencialnih
enačb. h-prilagodljivost je zagotovljena s konstantnim produktom med gos-
toto računskih točk in površino pravokotne pod-domene štiriškega drevesa.
Prilagodljiv rešitveni postopek dinamično zagotavlja predpisano najvišjo
gostoto računskih točk na trdno-kapljevitem medfaznem robu in najmanjšo
možno gostoto v notranjosti trdne in kapljevite faze, obenem pa vzdržuje
uravnoteženo štiriško drevo. Za dodatno pohitritev izračunov uporabimo
prilagodljivo časovno korakanje. Stabilen časovni korak v eksplicitni Eulerjevi
shemi je odvisen od gostote računskih točk, zaradi česar lahko uporabimo
različne časovne korake v pod-domenah štiriškega drevesa z različnimi
gostotami točk.

Natančnost in računska učinkovitost razvitega prilagodljivega numer-
ičnega pristopa je najprej preizkušena za modeliranje dendritskega strjevanja
podhlajenih čistih talin pri poljubnih preferenčnih smereh rasti. Obravnavamo
dendritsko rast v neskončno veliko domeno. Hitrost rasti v ustaljenem stanju
primerjamo s hitrostjo pridobljeno v mikroskopski teoriji rešljivosti. Model
faznega polja najprej rešimo z osnovnim rešitvenim postopkom z enakomerno
gostoto računskih točk v celotni računski domeni z namenom zagotovitve
referenčnih numeričnih podatkov, ki jih uporabimo za oceno natančnosti
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in računske učinkovitosti prilagodljivega rešitvenega postopka. Preučimo
vpliv velikosti lokalnih pod-domen v metodi RBF-KR pri uporabi regu-
larne ali razmetane porazdelitve računskih točk. Izkaže se, da je rešitev v
primeru regularne razporeditve računskih točk mnogo bolj občutljiva na
izbiro velikosti lokalne pod-domene kot v primeru razmetane porazdelitve.
Uporaba regularne porazdelitve računskih točk je v primerjavi z uporabo
razmetane porazdelitve računskih točk veliko bolj nagnjena k mrežni ani-
zotropiji pri obravnavi rasti v poljubnih preferenčnih smereh. Analizo
identičnega fizikalnega problema ponovimo z uporabo prilagodljivega
rešitvenega postopka. Natančnost rešitve, pridobljene z uporabo regularne
porazdelitve računskih točk, ostane skorajda nespremenjena. Natančnost
rešitve, pridobljene z uporabo razmetane porazdelitve računskih točk, se
zmanjša zaradi pravokotne razdelitve računske domene s štiriškim drevesom.
Povečava razmerja med dolžino stranice pod-domene štiriškega drevesa in
karakteristično razdaljo med razmetanimi računskimi točkami ublaži neželjen
vpliv regularnosti, kot posledice pravokotne razdelitve računske domene.
Prilagodljiv rešitveni postopek za približno desetkrat pohitri obravnavane
izračune. Pohitritev je v splošnem naraščajoča funkcija velikosti računske
domene in padajoča funkcija dolžine trdno-kapljevitega medfaznega roba.

Numerična metoda je nadalje analizirana za modeliranje izotermnega den-
dritskega strjevanja prenasičenih dvo-sestavinskih zlitin pri poljubno usmer-
jenih preferenčnih smereh rasti. Obravnavamo dendritsko rast v neskončno
veliko domeno. Hitrost rasti v ustaljenem stanju in koncentracijo v trdni fazi
primerjamo z referenčno rešitvijo iz članka, v katerem je bil prvotno razvit
model faznega polja za strjevanje v dvo-sestavinskih zlitinah. Izkaže se, da
je rešitev pri uporabi regularne razporeditve računskih točk še bolj občutljiva
na velikost računske pod-domene v primerjavi z modeliranjem strjevanja čis-
tih snovi. Uporaba razmetane razporeditve računskih točk zagotavlja višjo
natančnost, razen v primeru s trinajstimi točkami v lokalni pod-domeni pri
uporabi regularne razporeditve računskih točk, pri katerem je opažena najvišja
natančnost. Povečava razmerja med dolžino stranice pod-domene štiriškega
drevesa in karakteristično razdaljo med razmetanimi računskimi točkami se
ponovno izkaže za dober način blaženja neželjenega vpliva regularnosti, kot
posledice pravokotne razdelitve računske domene.

Simuliramo tudi strjevanje zlitine Al-1wt.%Cu pri konstantni hitrosti
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ohlajanja. Hitrost rasti kot funkcijo časa primerjamo z referenčno rešitvijo, pri-
dobljeno z metodo končnih razlik. Velikost lokalnih pod-domen in regularni
ali razmetani tip porazdelitve računskih točk kritično vplivata na morfologijo
dendrita. Opazimo neskladje med našo in referenčno rešitvijo. Razlog za
neskladje je razlika v obravnavanih parcialnih diferencialnih enačbah, ki
opisujejo drugače identičen fizikalni problem, in uporaba različnih numer-
ičnih metod.

Glavna novost predstavljenega dela je v uporabi metode RBF-KR za
temeljito analizo vpliva tipa porazdelitve računskih točk in velikosti lokalnih
pod-domen na natančnost pri modeliranju dendritskega strjevanja pri poljub-
nih preferenčnih smereh rasti z uporabo metode faznega polja. Pokažemo,
kako uporaba razmetanih računskih točk zmanjša neželjen vpliv mrežne ani-
zotropije, ki je prisotna, kadar parcialne diferencialne enačbe diskretiziramo
na regularni porazdelitvi računskih točk. Glavna prednost metode RBF-KR
za modeliranje dendritskega strjevanja je preprosta diskretizacija parcialnih
diferencialnih enačb na razmetanih porazdelitvah računskih točk. Metoda
RBF-KR je prvič uporabljena v kombinaciji s krajevno-časovnim prilagodljivim
rešitvenim postopkom, ki temelji na razdelitvi računske domene s štiriškim
drevesom. Prilagodljiv rešitveni postopek uspešno pohitri izračune, vendar
se prednosti uporabe razmetane porazdelitve računskih točk zmanjšajo zaradi
vpliva regularnosti pri razdelitvi računske domene s štiriškim drevesom.
Povečava razmerja med dolžino stranice pod-domene štiriškega drevesa
in karakteristično razdaljo med razmetanimi računskimi točkami ublaži
neželjen vpliv regularnosti, vendar povečava razmerja zmanjša pohitritev
prilagodljivega rešitvenega postopka. Izkaže se, da je to ena izmed na-
jbolj pomembnih omejitev na novo razvitega prilagodljivega numeričnega
pristopa.

Ključne besede dendritsko strjevanje, metoda faznega polja, brezmrežne
metode, RBF-KR, prilagodljiv rešitveni postopek
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1 Introduction

1.1 Dendritic solidification

Dendritic solidification is one of the most common and consequently most
studied phenomenon in the solidification of metallic alloys (Dantzig and Rap-
paz, 2017; Glicksman, 2011). It attracts the attention of both scientists and engi-
neers due to its interesting pattern selection and useful industrial applications.
The term dendrite originates from the Greek word dendron, which means tree.
Like a tree, a dendrite consists of a primary trunk and side branches, as seen
in Fig. 1.1.

FIGURE 1.1: An image of the 3-D structure of dendrites in a
cobalt-samarium-copper alloy, taken with a scanning electron mi-
croscope. Author: Prof. Dr. W. Kurz, EPFL, Lausanne, Switzer-
land. URL: www.doitpoms.ac.uk/miclib/micrograph_

record.php?id=617.
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Chapter 1. Introduction

The microstructure evolution during the casting of metallic alloys has a sig-
nificant effect on the mechanical, physical, and chemical properties of the so-
lidified material (Campbell, 2003). In the case of dendritic solidification, grain
size, interdendritic spacing, and distribution of the solute, for example, criti-
cally effect the hardness (Ruan et al., 2016) and corrosion resistance (Goulart
et al., 2007) of the material. The prediction of the microstructure’s evolution
under various casting conditions is therefore crucial for the design and pro-
duction of high-quality castings for scientific and industrial use.

Dendritic solidification occurs at a thermodynamically metastable state
when the material remains in the liquid phase, even below the solid-liquid
equilibrium temperature. Such a state is usually achieved in the industrial
casting of metallic alloys, which explains why dendritic solidification is so
commonly observed. Solidification below the solid-liquid equilibrium temper-
ature is initialized by homogeneous or heterogeneous nucleation (Dantzig and
Rappaz, 2017). In the former case, the first solid phase forms spontaneously
from a homogeneous melt, while in the latter case, the solidification starts on
the domain boundaries or on the particles already present in the melt. The
latter type of nucleation usually takes place during the casting of metals.

The stability of the solid-liquid interface during solidification can be anal-
ysed by performing a linear stability analysis (Dantzig and Rappaz, 2017). The
morphological stability of a particle growing by diffusion or heat flow (Mullins
and Sekerka, 1963) and stability of a planar interface during solidification of a
dilute binary alloy (Mullins and Sekerka, 1964) were originally analysed by
Mullins and Sekerka in the 1960s. Comprehensive overview of the linear sta-
bility of a solidifying spherical particle and planar front according to the origi-
nal articles is given in (Dantzig and Rappaz, 2017). In the case of the solidifica-
tion of a spherical particle growing into a supercooled or supersaturated melt,
the stability shows, that the spherical geometry becomes unstable to small per-
turbations at a certain particle threshold size and that the selected length scale
is proportional to the geometric mean of the length scales associated with dif-
fusion and capillarity. In the case of the solidification of a planar interface in a
dilute binary alloy, characterised by the constant growth velocity and thermal
gradient, three regimes are observed. Firstly, the planar interface is stable if the
growth velocity is so low that constitutional supercooling does not occur, i.e.,
a thermodynamically metastable state is not achieved. Secondly, as the growth
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1.1. Dendritic solidification

velocity increases, the interface becomes unstable over a range of wavelengths
that depend on the growth velocity, and finally, the planar interface is stable
again if the growth velocity is above the critical velocity, dependent on the
solid-liquid interface energy.

In the case of dendritic solidification, the linear stability analysis only
applies during the initial stage of solidification and yields conditions for
which the solid-liquid interface becomes unstable. After that, the solid phase
starts to grow faster in the preferential growth directions, determined by the
crystal structure of the solid phase, due to the anisotropy of the solid-liquid
surface energy and the anisotropy of the attachment of atoms on different
crystallographic planes. For example, solidified aluminium or copper has a
face-centered cubic crystal structure, yielding six equivalent 〈100〉 preferential
growth directions, as seen in Fig. 1.1. Faster growth in the preferential growth
directions results in the evolution of the solid trunks and side branches,
represented in the mathematical analysis by the so-called needle crystal shape
(Dantzig and Rappaz, 2017), i.e., a nearly parabolic shape with a small but
important correction at the tip.

The heat-diffusion equation during the growth of a parabola in 2-D and the
paraboloid of revolution in 3-D into an infinite supercooled pure melt when
the solid-liquid interface is held at the melting temperature was first solved by
Ivantsov (Ivantsov, 1947) and later by Horvay and Cahn (Horvay and Cahn,
1961). The solution yields the result v∗Rtip = const., where v∗ and Rtip stand
for the growth velocity and the radius of curvature at the tip of a dendrite,
respectively. The result suggests an infinite number of pairs (v∗, Rtip) for a
given supercooling ∆T . This contradicts the experiments (Glicksman, 1984)
which show that a unique pair (v∗, Rtip) is always selected at a given ∆T and
that as ∆T increases, v∗ increases and Rtip decreases.

In contrast to the Ivantsov solution, which does not consider any curva-
ture effects, Temkin (Temkin, 1960) and later Nash and Glicksman (Nash and
Glicksman, 1974) also took into account the Gibbs-Thomson condition with
an isotropic surface energy at the solid-liquid interface; however, their results
for v∗ and Rtip were several orders of magnitude far from the experimental
results. Oldfield (Oldfield, 1973) performed the first numerical simulation of
the growth of a parabolic dendrite and found that a needle shape with the ap-
plied Gibbs-Thomson condition is unstable. He proposed a heuristic stability
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condition v∗R2
tip = const.; however, the selection of the constant in the rela-

tion remained an open question. Langer and Muller-Krumbhaar (Langer and
Müller-Krumbhaar, 1978) also showed that growing a needle crystal with a fi-
nite isotropic surface energy is unstable. They set the constant in the relation
v∗R2

tip = const. in such a way that Rtip was equal to the minimum wavelength
in the stability analysis of a planar front (Mullins and Sekerka, 1964). This se-
lection is known as the marginal stability criterion and produces results that are
actually very close to the experimental values observed by Glicksman.

After that approximate models for dendrite growth were developed inde-
pendently by two research groups (Ben-Jacob et al., 1983; Ben-Jacob et al., 1984;
Brower et al., 1984; Kessler and Levine, 1988). They both found stable solutions
only if the surface energy is anisotropic. The models yield a finite number of
pairs (v∗, Rtip) where only the solution with the highest v∗ is stable. The models
also yield the relation v∗R2

tip = const. similar to the one in the marginal stability
criterion. Kessler and Levine (Kessler and Levine, 1986) performed a numeri-
cal stability analysis of a model incorporating a full diffusion equation and an
anisotropic surface energy. In their solution, the calculated shape of a dendrite
can generally have a cusp at the tip. The requirement for the smoothness of
the solid-liquid interface at the tip of a dendrite is known as the microscopic
solvability condition. Using an iterative procedure, a unique solution (v∗, Rtip)

is found when the condition is fulfilled. Numerical experiments according to
the theory yield the result v∗R2

tip = C(ε), where ε stands for the measure of the
anisotropy of the surface energy. Saito et al. (Saito et al., 1988) and Barbieri and
Langer (Barbieri and Langer, 1989) showed thatC(ε) is roughly proportional to
ε in the framework of the microscopic solvability theory; however, this results
has not been yet validated experimentally.

An example of an approximate analytical model for the growth of a nee-
dle crystal in binary alloys, incorporating the heat and solute transport, is the
famous LGK model (Lipton et al., 1984; Lipton et al., 1987) proposed in the
1980s by Lipton, Glicksman and Kurz. The model is capable of predicting
a unique pair (v∗, Rtip) for a given supercooling ∆T and initial composition
C0. In the model, the Ivantsov solution (Ivantsov, 1947) is used for the tem-
perature and concentration profiles in the liquid phase. The supercooling of
the solid-liquid interface at the tip of a dendrite ∆T takes into account the
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thermal, constitutional, and curvature effects. The marginal stability selec-
tion criterion (Langer and Müller-Krumbhaar, 1978) is used for the estimation
of Rtip. The model yields a system of two coupled non-linear equations that
can be iteratively solved to obtain (v∗, Rtip) at a given (∆T,C0). A significant
simplification (Dantzig and Rappaz, 2017) can be made in the very common
case of negligible thermal and curvature effects, yielding v∗ ∝ ∆T 5/2/C

3/2
0 and

Rtip ∝ C
1/4
0 /∆T 5/4.

The literature overview from this sub-section only briefly describes the his-
tory of modelling of dendritic solidification. A comprehensive overview can
be found in the recently published articles on modelling of dendrite growth
from 1700 to 2000 (Kurz et al., 2019) and from 2001 to 2018 (Kurz et al., 2021).
Especially in the modelling of dendrite growth during rapid solidification with
and without the consideration of convective flow, a significant contribution has
been made by Peter Galenko and his co-workers (Galenko and Sobolev, 1997;
Galenko and Danilov, 1999; Galenko et al., 2017; Galenko et al., 2007).

1.2 Phase field modelling

In the 1980s the phase field method (PFM) was introduced in the field of mod-
elling free-boundary problems in materials science (Chen, 2002; Boettinger
et al., 2002). There are two main reasons why the PFM became the method
of choice for the modelling of this phenomenon. Firstly, it has fundamental
origins in thermodynamics, and secondly, it does not require explicit tracking
of the interfaces between the phases in contrast to the analytical approximate
models reviewed in the previous section. The main hallmark of the PFM is the
introduction of a phase field (PF) or order parameter, a continuous field rep-
resenting phases (Provatas and Elder, 2010). The PF is constant in the bulk of
each phase and varies across the thin boundary layer between the phases, as
schematically shown in Fig. 1.2.
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FIGURE 1.2: Representation of the solid-liquid interface by the
PFM.

From the point of view of condensed-matter physics, the PF can be seen
as a degree of crystallinity or atomic order in a phase, while the thin bound-
ary layer represents an atomically diffuse interface. From the point of view of
mathematical modelling, the PF represents a tool for describing the time evo-
lution of phases as the tracking of an exact position for the interfaces between
phases is no longer necessary. The link between the PF and other relevant ther-
modynamics variables, e.g., temperature, solute concentration, etc., is given by
the free-energy functional (Provatas and Elder, 2010). A minimisation of the
functional yields a set of partial differential equations (PDEs) describing the
movement of interfaces between the phases and the heat and mass transfer.

The name phase field model was introduced in the realm of modelling free-
boundary problems in material science in the 1980s, when scientists modelling
the solidification in a pure melt were trying to avoid the explicit tracking of
the solid-liquid interface by introducing a diffuse interface (Fix, 1982; Collins
and Levine, 1985; Langer, 1986). The idea was not new; nearly a century
ago, Van der Waals proposed a diffuse-interface description of a density field
in a liquid-gas system (Rowlinson, 1979). A similar approach was used in
the magnetic domain theory by Landau and Lifshitz in 1935 (Haar, 2013). In
1958, Cahn and Hilliard introduced the diffuse-interface theory (Cahn and
Hilliard, 1958), which was first used in two famous diffuse-interface models
of dynamics. In the first, the dynamics of the phases with a conserved order
parameter is considered in the work on spinodal decomposition by Cahn from
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1961 (Cahn, 1961). In the second, the dynamics of a non-conserved long-range
order parameter is studied in the work of Allen and Cahn from 1977 (Cahn and
Allen, 1977). Both models with added thermal noise were also studied in the
work of Hohenberg and Halperin on critical dynamics from 1977 (Hohenberg
and Halperin, 1977).

One of the most important issues in the modelling of microstructure evolu-
tion by the PFM is the appropriate selection of the free PF parameters and the
interpolation functions in order to correctly capture the underlying physics. In
the case of solidification in pure materials, the parameters have to be selected
in a way to properly describe the kinetics of the Stefan problem (Šarler, 1995).
This was first achieved by performing the so-called sharp-interface limit of the
PF equations (Caginalp, 1989), which assumes that the interface thickness is
small compared to the thermal capillary length. The limit experiences two
major drawbacks. The incapability of simulating the important physical limit
when kinetic supercooling in the Stefan Problem can be neglected and the re-
quirement for very small interface widths and, consequently, time-consuming
simulations on large computational domains. Both problems were overcome
by the derivation of the so-called thin-interface limit of the PF equations (Karma
and Rappel, 1998). The limit assumes that the interface thickness is small com-
pared to the diffusion length and the radius of curvature, but can be of the
same order as the thermal capillary length. This is a huge advantage as far as
numerical efficiency is concerned (Karma and Rappel, 1998).

The formalism of the thin-interface limit, originally developed for the PF
model describing solidification in pure materials (Karma and Rappel, 1998),
has been successfully applied in other PF models, e.g., in the PF models
describing the solidification in dilute binary alloys (Karma, 2001; Echebarria
et al., 2004), multi-component alloys with arbitrary kinetics (Kim, 2007), and
dilute multi-component alloys (Ohno, 2012). In the models, describing the
solidification in alloys, it is, however, impossible to correctly capture the
underlying physics solely by minimisation of the free-energy functional of the
system and the appropriate selection of the free parameters and interpolation
functions. The correct results are only obtained if so-called anti-trapping
current (Karma, 2001) is added to the diffusion equation, compensating for the
non-physical effects due to the artificially enlarged interface thickness at the
thin-interface limit.
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Besides the PF modelling of solidification (Dong et al., 2017), the PFM has
been successfully applied in other research areas, e.g., for modelling solid-state
phase transformations (Zhu et al., 2019; Duong et al., 2020; Kovačević and Šar-
ler, 2005), coarsening and grain growth (Bhaskar, 2018; Perumal et al., 2019),
crack propagation (Lu et al., 2019; Moshkelgosha and Mamivand, 2020), and
two-phase flow (Talat et al., 2018a; Talat et al., 2018b).

Quantitative PF simulations of experimentally relevant situations are to a
great extent possible due to rapid growth of computational capabilities (Karma
and Tourret, 2016; Dong et al., 2017). A large number of different compu-
tational approaches have been developed in the last 20 years, e.g., 1. adap-
tive mesh refinement (Provatas et al., 1998; Greenwood et al., 2018), 2. parallel
simulations using graphic processing units (Shimokawabe et al., 2011), 3. hy-
brid finite-difference and random-walk algorithms (Plapp and Karma, 2000),
4. implicit time-stepping and multi-grid approaches (Guo et al., 2012; Bollada
et al., 2015), and 5. up-scaling techniques (Berghoff et al., 2013). However, the
development of new techniques for an accurate and computationally effective
solution of PF models is always welcome and represents the focus of this dis-
sertation.

1.3 Meshless methods

A PF model yields a system of PDEs that have to be numerically solved in or-
der to predict a microstructure’s evolution. This is usually done with numeri-
cal models based on the finite difference method (FDM) (Trefethen, 1996), the
finite volume method (FVM) (Versteeg and Malalasekera, 2007), or the finite
element method (FEM) (Lewis et al., 1996). These methods are characterised
as mesh-based methods since they require a predefined mesh for the domain
discretisation. They represent a powerful tool for the solution of PDEs and
have been successfully used in the vast majority of scientific and engineering
applications. However, the mesh-based methods experience some drawbacks
(Liu and Gu, 2005), e.g., only a regular node distribution can be used in the
FDM and polygonisation of the computational domain is required in the case
of the FVM or the FEM.

Meshless methods (Atluri, 2004; Atluri and Shen, 2002; Liu, 2009; Li and
Liu, 2004; Liu and Gu, 2005; Li and Mulay, 2013; Fasshauer, 2007; Buhmann,
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2003; Wendland, 2010; Dyn et al., 2001; Chen et al., 2006; Chen et al., 2014; Be-
linha, 2014; Sladek and Sladek, 2006; Šarler and Atluri, 2010; Atluri and Sladek,
2009; Leitao et al., 2007; Griebel and Schweitzer, 2017) represent an alternative
to the mesh-based methods in a way that a predefined mesh is not a prereq-
uisite for the discretisation of the computational domain. The domain is rep-
resented solely by the computational nodes where the information regarding
the relationship between them is not required for the approximation of the field
variables. The difference between the representations of the computational do-
main by the mesh-based and meshless approaches is schematically shown in
Fig. 1.3. Some advantages of the meshless methods in comparison to the mesh-
based methods are (Nguyen et al., 2008) simpler development of h-adaptive
algorithms, easier treatment of free-boundary problems, no mesh-alignment
sensitivity, and higher accuracy. Also, the expensive creation of the mesh is
not necessary in the meshless methods. Naturally, the meshless methods also
experience some drawbacks in comparison to the mesh-based methods, e.g.,
the treatment of essential boundary conditions can be problematic and com-
putational efficiency is, in general, lower in comparison to mesh-based meth-
ods. The meshless methods can be classified (Liu and Gu, 2005) according
to the used formulation procedures, function approximation or interpolation
techniques, and the domain representation.

FIGURE 1.3: An example of mesh-based (left) and meshless
(right) representations of the computational domain. The bound-
ary of the computational domain is marked by a dotted line. Cir-
cles and triangles represent the inner and boundary computa-

tional nodes, respectively.

According to the used formulation procedure we distinguish the meshless
weak-form methods, the meshless strong-form methods, and the meshless
methods based on the combination of weak- and strong-form techniques.
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Examples of the meshless weak-form methods are the element-free Galerkin
method (Belytschko et al., 1994), the radial point-interpolation method (Liu
and Gu, 2001a), the reproducing kernel particle method (Liu et al., 1995),
the meshless local Petrov-Galerkin (Atluri, 2004), etc. In the group of
the meshless strong-form methods, also known as the meshless colloca-
tion methods, we find the general finite-difference method (Perrone and
Kao, 1975; Liszka and Orkisz, 1980), the meshless-collocation method
(Kansa, 1990a; Kansa, 1990b), the finite-point method (Oñate et al., 1996), the
diffusive-approximate method (Sadat and Prax, 1996; Hatić et al., 2018; Hatić
et al., 2019; Talat et al., 2018a; Reuther et al., 2012; Reuther and Retten-
mayr, 2014), the radial basis function-generated finite-differences (RBF-FD)
method (Flyer et al., 2016; Bayona et al., 2017; Dobravec et al., 2020) also
known as the local radial basis function collocation method (LRBFCM)
(Šarler and Vertnik, 2006; Kosec and Šarler, 2011; Vertnik et al., 2019; Mramor
et al., 2014; Hanoglu and Šarler, 2018; Mavrič and Šarler, 2015), etc. The
meshless methods based on the combination of weak- and strong-form
formulations are the meshless weak-strong method (Liu and Gu, 2003) and
the smoothed particle hydrodynamics methods (Liu and Liu, 2003).

According to the function approximation or interpolation techniques we
distinguish meshless methods based on the moving least squares approxima-
tion, integral representation method for approximation, and point interpolation
method. The moving least-squares approximation is used, for instance, in the
the element-free Galerkin method (Belytschko et al., 1994) and the meshless
local Petrov-Galerkin method (Atluri and Zhu, 1998). An example of meshless
methods based on the integral representation method for the function approx-
imation is the smoothed particle hydrodynamics method (Liu and Liu, 2003).
Examples of the methods based on the point-interpolation methods are the
point-interpolation method (Liu and Gu, 2001b) and the meshless-collocation
method (Kansa, 1990a; Kansa, 1990b).

The final classification of the meshless methods can be made according
to the domain representation. In this classification, we differ between the
domain-type and boundary-type meshless methods. All the previous para-
graphs mentioned methods that are the domain-type methods, since the whole
computational domain is represented by the computational nodes. In the case
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of the boundary-type methods, the computational nodes only have to be dis-
tributed on the boundary of the computational domain. The same distinction
can be made in the case of mesh-based methods between the FDM, FVM, and
FEM, on the one hand, and the boundary element method (BEM) (Wrobel and
Aliabadi, 2002), on the other. Examples of boundary-type meshless methods
are the boundary-node method (Mukherjee and Mukherjee, 1997), the local
boundary integral equation method (Zhu et al., 1998), the boundary point in-
terpolation method (Gu and Liu, 2002), the boundary radial point interpola-
tion method (Gu and Liu, 2003), non-singular method of fundamental solu-
tions (Liu and Šarler, 2018), method of regularized sources (Wang et al., 2016),
etc.

1.3.1 RBF-FD method

In the dissertation, the meshless RBF-FD method (Flyer et al., 2016; Bayona
et al., 2017; Dobravec et al., 2020) is applied for the solution of the PF mod-
els for dendritic solidification. In the literature, the RBF-FD is also known
as the LRBFCM method (Šarler and Vertnik, 2006). The method is based on
the strong-form meshless collocation method originally proposed by Kansa
(Kansa, 1990a; Kansa, 1990b). He used interpolation with radial basis func-
tions (RBFs) for the evaluation of differential operators for the first time and
successfully applied his approach for the solution of parabolic, hyperbolic
and elliptic PDEs. For some choices of RBFs, augmentation with monomials
(Fasshauer, 2007) is additionally required to ensure well-posed interpolation
matrices in the method. The interpolation with RBFs proved to be very accu-
rate, however, Kansa’s method uses all the computational nodes in the domain
to construct the interpolation, which results in dense and ill-conditioned inter-
polation matrices. Consequently, the method cannot be used to solve large-
scale physical problems.

Due to very good interpolation properties, RBFs were used for interpola-
tion in the meshless weak-form local radial point interpolation method (Liu
and Gu, 2001a). The idea of a local approach was shortly after that also ap-
plied in the strong-form meshless methods (Tolstykh and Shirobokov, 2003;
Lee et al., 2003; Liu et al., 2002; Šarler and Vertnik, 2006) since the construction
of a local interpolation effectively mitigates the problems with dense matrices
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and ill-conditioning in Kansa’s original method. The local LRBFCM/RBF-FD
approach has been successfully applied to many different scientific and en-
gineering problems, e.g., turbulent combined forced and natural convection
problems (Vertnik and Šarler, 2011), simulation of laminar backward facing
step flow under a magnetic field (Mramor et al., 2014), simulation of macro-
segregation (Kosec and Šarler, 2014), h-adaptive solution of partial differential
equations (Kosec and Šarler, 2011), r-adaptive solution of PF model for dis-
solution of primary particles in binary aluminium alloys (Kovačević and Šar-
ler, 2005), simulation of linear and transient thermo-elasticity (Mavrič and Šar-
ler, 2015; Mavrič and Šarler, 2017), multi-pass hot-rolling simulation (Hanoglu
and Šarler, 2018), the numerical simulation of the PF crystal models (Dehghan
and Mohammadi, 2016), solution of multi-dimensional Cahn-Hilliard, Swift-
Hohenberg and PF crystal equations (Dehghan and Abbaszadeh, 2017), and
PF modelling of dendritic solidification (Dobravec et al., 2020).

In the Kansa’s original method (Kansa, 1990a) and in many application of
the RBF-FD method to different physical problems (Kosec and Šarler, 2011;
Vertnik and Šarler, 2011; Mavrič and Šarler, 2015; Hanoglu and Šarler, 2018;
Mramor et al., 2014), multiquadrics (MQs) are used as RBFs. The use of MQs
produces very good results; however, a MQ introduces a free shape parameter,
which greatly influences the performance of the method. There are several
techniques for the optimal shape-parameter search (Rippa, 1999; Mavrič, 2017).
The search has to be performed for each computational node independently,
which can lead to long computational times, especially for large engineering
problems.

In recent years, shape parameter-free polyharmonic splines (PHS) have
gained popularity as RBFs (Flyer et al., 2016; Bayona et al., 2017) in the RBF-FD
methods. Flyer and co-workers (Flyer et al., 2016; Bayona et al., 2017) have re-
cently shown that not PHS or any other RBFs, but the highest-order monomial
controls the h-convergence of the RBF-FD method. Influenced by the results
of Flyer and co-workers, an interpolation with PHS as RBFs, augmented with
monomials up to the selected order of h-convergence, is also used in the RBF-
FD method in this dissertation.
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1.4 Adaptive solution procedure

The idea behind the adaptive solution procedure is to develop an algorithm
that dynamically changes the computational nodes during a simulation in
order to reduce the overall computational work and memory usage while
sustaining the accuracy of the solution. Several different adaptive techniques
have been developed in the last few decades for the speed-up of the solu-
tion of PDEs. One possibility is an r-adaptive algorithm (Kovačević and
Šarler, 2005) where the positions of the computational nodes in the domain
vary in order to fulfil the refinement criteria while the total number of nodes
remains unchanged. Another one is an h-adaptive algorithm (Kosec and
Šarler, 2011; Dobravec et al., 2017a), where the nodes are added or removed
from the computational domain. The pioneering work on the adaptive
mesh-refinement techniques is the algorithm by Berger and co-workers
(Berger and Oliger, 1984; Berger and Colella, 1989), which is in its original
form nowadays known as the block-structured adaptive mesh refinement
(Dubey et al., 2014) and is used for the solution of various physical problems
in astrophysics, cosmology, general relativity, combustion, climate science,
subsurface flow, turbulence, fluid–structure interactions, plasma physics, and
particle accelerators.

Many different adaptive techniques have been applied for the solution of
PF models (Provatas et al., 1999; Provatas et al., 1998; Guo and Xiong, 2015; Bol-
lada et al., 2015; Li and Kim, 2012; Greenwood et al., 2018). In the framework of
the present dissertation, a novel 2-D h-adaptive algorithm based on the work
by Greenwood et al. (Greenwood et al., 2018) is developed. The algorithm can
be seen as an adaptive domain decomposition (Mathew, 2008) where the com-
putational domain is dynamically decomposed into sub-domains of different
size. The constant product between the area and the node density of a sub-
domain yields an h-adaptivity. The algorithm dynamically ensures that the
evolving solid-liquid interface always lies in the sub-domains with the highest
node density. In contrast to the algorithm by Greenwood et al. (Greenwood
et al., 2018), the RBF-FD method is used instead of the FDM for the spatial dis-
cretisation of the PDEs. This selection provides enhanced flexibility regarding
the shape of a sub-domain and the type of the node distribution in it.
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1.5 Goals

The main goal of the dissertation is to apply and thoroughly analyse the RBF-
FD method for the spatial discretisation of PDEs arising from the PF mod-
els while using a simple forward Euler scheme for the temporal discretisation
(Dobravec et al., 2020). The method is applied for the solution of PF models
describing solidification in pure materials (Karma and Rappel, 1998), in dilute
binary alloys (Echebarria et al., 2004), and in an Al-1wt.%Cu alloy with a con-
stant cooling rate (Boukellal et al., 2018). Special emphasis is given to the issue
of mesh-induced anisotropy (Mullis, 2006), which is present in the solution of
the PF models using mesh-based methods. The RBF-FD method can be used
on regular and scattered node distributions and therefore provides the perfect
tool to assess the influence of the arrangement of the node distribution on the
anisotropy of the solution of PDEs.

The developed numerical model is 2-D, however, the extension to 3-D is
straightforward and planned for the continuation of the research, presented
herein. A thorough analysis and testing of the newly developed numerical
method in 2-D before moving onto the highly computationally challenging 3-
D cases is standard procedure for mesh-based and meshless methods. For the
same reason, simple regular domains are used for the testing of the method,
although the method can be, in principal, used for complex domains, at least
in 2-D. The use of regular computational domains for the PF simulations of
dendritic solidification also makes sense from the practical point of view. Even
with the use of the fastest supercomputers (Shimokawabe et al., 2011), it is
impossible to perform such simulations in the whole computational domain
with complex domain boundaries, e.g., during the direct-chill casting of alu-
minium alloys (Šarler et al., 2019). The PF models apply on much smaller
scales, for which the complexity of the domain boundary is not relevant. Al-
though straightforward coping with complex-shaped domains is one of the
main advantages and reasons for the use of meshless methods, we apply the
meshless RBF-FD method due to its high accuracy and freedom in the selection
of the type of the node distribution.

Another important goal of the dissertation is the development of an h-
adaptive solution procedure (Greenwood et al., 2018) in order to speed-up the
calculations and to reduce the memory usage. In the solution procedure, the
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computational domain is dynamically decomposed into sub-domains of dif-
ferent sizes where the product between the node density and the size is kept
constant to ensure h-adaptivity. Since regular domains are used in the model,
the decomposition can be easily performed by the quadtree (Dobravec et al.,
2017a), which can be in 3-D replaced by the octree (Greenwood et al., 2018)
algorithm.

The developed model can be incorporated into the simulation system for
the direct-chill casting of aluminium alloys (Šarler et al., 2019) or continuous
casting of steel (Vertnik et al., 2019) for the prediction of dendritic morphology
and micro-segregation. In our previous work (Dobravec et al., 2017b; Šarler
et al., 2019), the morphology of dendrites was predicted on the millimetre scale
using a Point Automata (PA) model (Lorbiecka and Šarler, 2010). The model,
developed in the framework of the doctoral dissertation, is able to resolve the
dendritic morphology on the micrometre scale, providing a useful numerical
tool for the precise prediction of the microstructure’s evolution. With such a
model, the impact of the process parameters on the quality of the solidified
alloys can be assessed. Also, the free parameters of the computationally more
effective PA model can be calibrated with the use of the newly developed PF
model.
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2 Physical model

Solidification is mathematically represented by the transport equations of the
relevant thermodynamic variables and the appropriate boundary conditions
at the solid-liquid interface. The basic balance is used to derive those equa-
tions, i.e., the change of any quantity in a volume is equal to the sum of the
flux of a quantity through the surface of a volume and the production of the
quantity in a volume. Consequently, the equations are known as balance equa-
tions. In the dissertation, only the diffusion of quantities is considered in the
balance equations. The balance equations for the energy and solute during
solidification are also known as Stefan problems (Šarler, 1995) in honour of the
Slovenian physicist Jožef Stefan who made several pioneering contributions in
solid-liquid phase-change research in the 19th century.

When the transport equations are solved, the exact position of the solid-
liquid interface, at which the boundary conditions apply, has to be known.
However, the position of the solid-liquid interface is determined by solving
the transport equations. This problem is known as the free-boundary problem
and can be analytically solved only for very simple cases (Dantzig and Rap-
paz, 2017), e.g., constant growth of a sphere, planar front or paraboloid. The di-
rect numerical solution of the balance equations in the case of realistic complex
shapes of the solid-liquid interface, e.g., during the growth of highly branched
dendrites, is very challenging, especially in 3-D. To overcome this problem,
a diffuse-interface PFM (Chen, 2002; Boettinger et al., 2002) was introduced
in the 1980s for the solution of the free-boundary problems. In the PFM, the
tracking of the exact position of the solid-liquid interface is avoided at the ex-
pense of an extra transport equation for the continuous PF variable, which is
coupled to the appropriately modified transport equations.

In the chapter, the balance equations for the energy and solute are first pre-
sented in Section 2.1. In Section 2.2, the origin and the basics of the PFM are
given. In section 2.3, the diffuse-interface PF versions of the balance equations
from Section 2.1 are presented. The diffuse-interface PF version of the energy
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balance equations is presented for the case of solidification from pure melts.
The diffuse-interface PF version of the solute balance equations is presented in
the case of solidification of dilute multi-component alloys in the frozen tem-
perature approximation, i.e., externally imposed temperature approximation.

In the PF models for modelling of solidification of dilute multi-component
alloys (Ohno, 2012; Sun et al., 2019), only the interaction between solvent and
solutes is considered while the interaction between solutes is neglected. Such
approximation is reasonable for dilute alloys with small amount of solutes
(Sun et al., 2019). The multi-component system is divided into several binary
system, hence, the model could be also called the multi-binary PF model. The
model for dilute multi-component alloys (Ohno, 2012) is constructed in the
same manner as the model for dilute binary alloys (Karma, 2001; Echebarria
et al., 2004) which is extensively used in the PF community (Tourret et al., 2017;
Greenwood et al., 2018; Bollada et al., 2015; Boukellal et al., 2018) for the mod-
elling of solidification of dilute binary alloys. In the dilute version of the free
energy of a phase, the contributions of different alloying elements are simply
summed (see Section 2.3). We are well aware that the PF model should be used
with caution only for dilute multi-component alloys since it only considers the
contributions of melting point depression of different alloying elements. Solid-
ification of general multi-component alloys should be considered with much
more complex PF models (Kim, 2007; Nestler and Choudhury, 2011; Nestler
et al., 2005) based on CALculation of PHAse Diagram (CALPHAD) thermody-
namic database.

In the frozen temperature approximation, the infinitely fast diffusivity of the
heat is assumed in relation to the species diffusion, hence, the temperature can
be considered as an input parameter. The approximation can be applied if the
diffusivity of the heat is few orders of magnitude faster than the diffusivity of
the solute, e.g., in steels and aluminium alloys, which is the foreseen applica-
tion of the present work.
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2.1 Balance equations

2.1.1 Energy balance

The heat diffusion equation takes into account the change of the energy in a
system due to the diffusion of heat into and out of a system

∂(ρh)

∂t
= −∇ · q, (2.1)

where ρ, h, and q stand for the density, the specific enthalpy, and the heat flux,
respectively. The convective effects are not taken into account in the whole
work. The heat flux is given by Fourier’s Law

q = −K · ∇T, (2.2)

where K and T are the thermal conductivity tensor and the temperature, re-
spectively. In the case of isotropic materials, whereK = kI and k and I are the
thermal conductivity and the identity matrix, respectively, the combination of
Eqs. (2.1) and (2.2) yields

∂(ρh)

∂t
= ∇ · (k∇T ). (2.3)

Conditions at the solid-liquid interface

The boundary condition for the heat flux at the solid-liquid interface is given
by Stefan condition

ρsLmv
∗ · n = ks∇Ts|∗ · n− k`∇T`|∗ · n, (2.4)

where Lm stands for the latent heat of melting, the asterisk ∗ denotes the value
at the solid-liquid interface, and subscripts s and ` denote the solid and liquid
phase, respectively. The normal to the solid-liquid interface in the direction of
the liquid phase and the growth velocity are denoted byn and v∗, respectively.

The boundary condition for the temperature at the solid-liquid interface
T ∗ = T ∗s = T ∗` takes into account the capillary and the attachment-kinetics
effects

T ∗ = Tm −∆Tc −∆Tk, (2.5)
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where Tm, ∆Tc, and ∆Tk stand for the melting temperature, the curvature un-
dercooling, and the attachment-kinetics undercooling, respectively. A scheme
of the boundary conditions for the heat flux and the temperature at the solid-
liquid interface is shown in Fig. 2.1. The attachment-kinetics undercooling is
given as

∆Tk = v∗ · n/µk(n), (2.6)

where µk stands for the attachment-kinetics coefficient. The curvature under-
cooling is given according to Herring’s relation (Dantzig and Rappaz, 2017).
In 2-D, the relation is given as

∆Tc = Γs`
(
a(n) + d2a(n)/dϕ2

)
κ, (2.7)

where Γs`, κ, and a stand for the Gibbs-Thomson coefficient, the curvature of
the solid-liquid interface, and the function accounting for the anisotropy of the
interfacial energy, respectively. The angle ϕ is defined as ϕ = arctan(ny/nx),
where n = (nx, ny). The expression for ∆Tc in 3-D is obtained in a similar way.

FIGURE 2.1: A scheme of the boundary conditions for the heat
flux and the temperature at the solid-liquid interface.

Dimensionless symmetric model

In a simplified case, especially relevant for the verification of different nu-
merical techniques for the simulation of solidification, the so-called symmetric
model, assuming the constant and equal values of the material properties in
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both phases, is used

ρs = ρ` = ρ, cps = cp` = cp, ks = k` = k, (2.8)

where cp is the specific heat at constant pressure. By introducing the dimen-
sionless temperature θ = (T − Tm)/(Lm/cp), Eqs. (2.3), (2.4), and (2.5) are
elegantly rewritten as

∂θ

∂t
= DT∇2θ, (2.9)

v∗ · n = DT (∇θs|∗ · n−∇θ`|∗ · n) , (2.10)

θ∗ = −d0

(
a(n) + d2a(n)/dϕ2

)
κ− βk(n)v∗ · n, (2.11)

where d0 = Γs`/(Lm/cp), βk(n) = 1/(µk(n)Lm/cp), and DT = k/(ρcp) are the
thermal capillary length, the re-scaled attachment-kinetics coefficient, and the
diffusivity of heat, respectively.

2.1.2 Solute balance

Similar to the diffusion of heat, the diffusion of the i-th component in a multi-
component alloy with Nc components is described as

∂(ρCi)

∂t
= −∇ · ji, (2.12)

where Ci and ji stand for the concentration and the diffusive mass flux of the
i-th component, respectively. The concentration Ci is defined as the mass frac-
tion of the i-th element, the quantity ρCi therefore represents the mass of the
i-th component per unit volume in a phase with density ρ. The diffusive mass
flux is given by Fick’s first law, which states that ji is proportional to the gra-
dient of the chemical potential of the i-th component. The flux can be written
as (Dantzig and Rappaz, 2017)

ji = −ρ
Nc∑

j=1

Dij∇Cj +
MiCiµi
T 2

∇T, (2.13)

where Mi and µi stand for the mobility and the chemical potential of the i-th
component, respectively. Dij is the element of the diffusivity tensor. In the case
of solidification (Dantzig and Rappaz, 2017), the most basic version of Fick’s
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law can be used where the off-diagonal elements in the diffusivity tensor and
a term proportional to∇T are neglected. The diffusion is therefore given as

∂(ρCi)

∂t
= ∇(ρDi∇Ci), (2.14)

where the notation Di = Dii can be applied due to the diagonal diffusivity
matrix. Only the diffusion of solute elements is usually considered, since the
concentration of the solvent can be calculated from

Nc∑

i=1

Ci = 1. (2.15)

Conditions at the solid-liquid interface

The boundary condition for the mass flux at the solid-liquid interface is given
as

ρsC
∗
`,i(1− k0,i)v

∗ · n = ρsDs,i∇Cs,i|∗ · n− ρ`D`,i∇C`,i|∗ · n, (2.16)

where k0,i is the partition coefficient of the i-th component, defined as C∗s,i =

k0,iC
∗
`,i. The values C∗`,i and k0,i at a given temperature are determined by the

phase diagram of the alloy. The temperature at the solid-liquid interface is
given as

T ∗ = Tliq({C∗`,i})−∆Tc −∆Tk, (2.17)

where Tliq stands for the liquidus temperature and ∆Tk and ∆Tc are given by
Eqs. (2.6) and (2.7), respectively.
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FIGURE 2.2: A scheme of the boundary conditions for the so-
lute flux and the concentration of the i-th component at the solid-

liquid interface.

Phase diagrams

The main aim of the dissertation is the simulation of the dendritic solidification
of the primary solid phase in dilute eutectic alloys. A schematic binary eutectic
phase diagram at constant pressure is shown in Fig. 2.3. The alloy consists of
solvent A and solute B with melting temperatures Tm,A and Tm,B, respectively.
The solid phases α and β are determined by the crystal structure of the pure
elements A and B, respectively. The solubility limit of the solid phases α and
β are Csol,A and Csol,B, respectively. In the regions α+ ` and β+ `, the solid and
liquid phase coexist. At the eutectic point (Ceut, Teut), two solid phases and
the liquid phase coexist. In the region α + β, both solid phases coexist. The
liquidus of the phase α is the line connecting the points (C = 0, T = Tm,A) and
(C = Ceut, T = Teut) (and similar for the phase β). The solidus of the phase α
is the line connecting the points (C = 0, T = Tm,A) and (C = Csol,A, T = Teut)

(and similar for the phase β). At Teut, the partition coefficient in the phase α is
equal to k0,α = Csol,A/Ceut.
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FIGURE 2.3: Scheme of a binary eutectic phase diagram at con-
stant pressure.

In the case of binary alloys, the concentrations C∗` and C∗s from Eq. (2.16) at
a given temperature are easily obtained using the phase diagram as intersec-
tions of the horizontal line T = const. with liquidus and solidus lines, respec-
tively. The index in the concentration has been dropped since there is only one
solute element. For a dilute binary alloy, the liquidus temperature from Eq.
(2.17) is simply given as

Tliq(C
∗
` ) = Tm +m`C

∗
` , (2.18)

where m` is the constant slope of the liquidus line.
For multi-component alloys with more than one solute element (Nc > 2),

the determination of the values C∗`,i and C∗s,i at a given temperature is
more complicated (Dantzig and Rappaz, 2017). In the case of dilute multi-
component alloys, however, Eq. (2.18) can be generalized to obtain the
liquidus temperature from Eq. (2.17)

Tliq({C∗`,i}) = Tm +
Nc−1∑

i=1

m`,iC
∗
`,i, (2.19)

wherem`,i is the constant slope of the liquidus line in the binary phase diagram
of the solvent and the i-th solute component.
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Dimensionless model for dilute alloys in a frozen temperature approxima-
tion

It is convenient for the verification of different numerical techniques for the
simulation of solidification to rewrite the balance equations in a dimensionless
form by introducing dimensionless supersaturations and the dimensionless
undercooling with respect to the equilibrium state. The constant and equal
values of density are used in both phases.

The equilibrium state is defined by the equilibrium temperature

T e = Tm +
Nc−1∑

i=1

m`,iC
e
`,i, (2.20)

where Ce
`,i is the equilibrium concentration in the liquid phase. The dimen-

sionless supersaturation of the i-th component is defined as

Ui =
Ci − Ce

ν,i

zν,i(1− k0,i)Ce
`,i

, (2.21)

where zs,i = k0,i and z`,i = 1. The freezing range ∆Ti, which is used to define
the dimensionless undercooling, is given as

∆Ti = −m`,i(1− k0,i)C
e
`,i. (2.22)

The dimensionless temperature is given as

θ =
T − T e
∆Tref

, (2.23)

where the selection of the reference freezing range ∆Tref among the values
∆Ti, i = 1, ..., Nc − 1 is arbitrary.

The dimensionless versions of Eqs. (2.14), (2.16), and (2.17) are given as

∂Ui
∂t

= ∇ · (Di∇Ui), (2.24)

(1 + (1− k0,i)U
∗
i ))v∗ · n = k0,iDs,i∇Us,i|∗ · n−D`,i∇U`,i|∗ · n, (2.25)

θ∗ +
Nc−1∑

i=1

MiU
∗
i = −dc,ref

(
a(n) + d2a(n)/dϕ2

)
κ− βk,ref (n)v∗ · n, (2.26)
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where Mi = ∆Ti/∆Tref , βk,ref (n) = 1/(µk(n)∆Tref ) and dc,ref = Γ/∆Tref

are the ratio between the freezing ranges, the reference re-scaled kinetics-
attachment coefficient, and the reference chemical capillary length, re-
spectively. The ratio Mi can be also written as Mi = dc,ref/dc,i where
dc,i = Γ/∆Tref .

2.2 Introduction to phase field modelling

The main aim of this sub-section is a presentation of the theoretical basics
of the PF modelling that are used in all PF models describing various free-
boundary problems in materials science and engineering, e.g., solidification,
solid-state phase transformations, crack propagation, etc. The theory behind
the PF methodology has its origins in the mean field theory of first- and
second-order phase transitions, especially in the Landau theory of phase
transformations presented in Section 2.2.1. The formalism from Section 2.2.1
considers only the bulk properties of the phases, while the equilibrium inter-
faces between the phases are studied in Section 2.2.2. The first two sections
deal with equilibrium systems, while the non-equilibrium kinetics of phase
transitions is presented in Section 2.2.3.

2.2.1 Landau’s theory

Landau’s phenomenological theory (Barrat and Hansen, 2003) represents a
unified framework for studying phase transitions, characterized by a macro-
scopic order parameter φ. The order parameter represents an average measure
of the global symmetry of a phase. The phases at high temperature are in the
most cases fully disordered (φ = 0) on the atomic scale and have a high degree
of translation symmetry (homogeneity) and rotation symmetry (isotropy) of
the macroscopic properties. The symmetry is said to be broken at low tempera-
tures as long-range translational or orientational order spontaneously appears
in the phases, i.e., φ takes non zero values, dependent on the thermodynamic
state variables. The example is the transition between the paramagnetic and
ferromagnetic phases at a critical (Curie) temperature Tc. The symmetry is
broken from fully rotational at T > Tc to cylindrical around the orientation of
spontaneous magnetization at T < Tc. In some cases, two phases in the system
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experience the same symmetry. In that case a thermodynamic order parame-
ter can be introduced, e.g., the difference in density between the two liquids
or the difference in concentration between two species in a binary alloy. The
vanishing of φ at a phase transition indicates the order of the phase transition.
A discontinuous change of φ indicates the first order, while the continuous
change of φ signals a second-order phase transition.

Simple example of Landau free-energy construction

In the framework of Landau’s theory, the Helmholtz free energy F is used to
describe a system

F = E − TS, (2.27)

where E and S stand for the internal energy and the entropy, respectively.
For example, the thermodynamics of spinodal decomposition in binary alloys
or the transition between the paramagnetic and ferromagnetic phases at Tc
(Ising model) can be, in the most simple case, described by Landau free-energy
density as (Provatas and Elder, 2010)

f(φ, T ) = F (φ, T )/V = a0(T ) +
a2(T )

2
φ2 +

a4(T )

4
φ4, (2.28)

where a0, a2, and a4 are the coefficients in the Taylor expansion of the free
energy and V is the volume of the system, while φ represents the concentra-
tion of the solute or the mean magnetisation. The free energy from Eq. (2.28)
considers systems that are invariant under the inversion φ ↔ −φ, hence, only
even powers of φ are non-zero. The expected values of the order parameter are
obtained by minimization

∂f

∂φ
= 0→ φ̄ =

(
0,±

√
−a2(T )

a4(T )

)
, (2.29)

where φ̄ denotes the value of φ at the minimum. The phases above the critical
temperature Tc are fully disordered, hence, φ̄ = 0 has to be the only real root
in Eq. (2.29) requiring a2(T ) > 0 and a4(T ) > 0. Below Tc, φ takes non-zero
values, hence, the second root in Eq. (2.29) has to be real, which is true if
a2(T ) < 0 and a4(T ) > 0. These requirements can be, near Tc , simply fulfilled
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by the following approximation

a2(T ) ≈ a0
2(T − Tc), a4(T ) ≈ a0

4, (2.30)

where a0
2 and a0

4 are the positive constants. Landau’s theory therefore predicts
two stable phases below (and near) Tc

φ̄ ≈ ±
√
a0

2

a0
4

(Tc − T ). (2.31)

Eq. (2.31) shows that the transition of the expected value of the order param-
eter from φ̄ 6= 0 to φ̄ = 0 at Tc is continuous, which indicates a second-order
phase transition. The Landau free-energy density as a function of the order
parameter at different values of the temperature is shown in Fig. 2.4. The
parameters in Eqs. (2.28) and (2.30) are simply selected as

a0(T ) = 0, a0
2 = a0

4 = 1. (2.32)

As the temperature is dropping, f is becoming flatter and flatter, till the sym-
metry is spontaneously broken below T = Tc, as the minimum at φ̄ = 0 breaks
into two minima φ̄± φ̄(T ) 6= 0.
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FIGURE 2.4: Landau free-energy density as a function of the or-
der parameter near the critical temperature.
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2.2.2 Spatial variations and interfaces

In the previous section, only the bulk properties of the phases are discussed.
By considering the interfaces between the phases, φ and T become space de-
pendent. In that case, the free energy of the system is given by the Ginzburg-
Landau or Cahn-Hilliard free energy (Provatas and Elder, 2010)

F [φ, T ] =

∫

V

(
1

2
|Wφ∇φ(r)|2 + f(φ(r), T (r))

)
dV, (2.33)

where the parameter Wφ accounts for the effects of the surface energy. The
thermodynamic equilibrium is assured by minimizing the thermodynamic po-
tential with respect to intensive thermodynamic variables, as seen in Section
2.2.1. Similarly, the thermodynamic equilibrium is assured by the function
φ0(r), which minimizes the Ginzburg-Landau free-energy functional from Eq.
(2.33). Minimization of Eq. (2.33) is achieved through the functional or varia-
tional derivative, which relates the change in the functional to the change in a
function, on which the functional depends on. By using the variational deriva-
tive notation, the equilibrium condition is given as

δF [φ]

δφ
= 0. (2.34)

The variational derivative of the functional F [φ] is defined as

δF

δφ
=
∂F̃

∂φ
−
∑

ξ=x,y,z

∂ξ

(
∂F̃

∂ξφ

)
, F [φ] =

∫

V

F̃ (φ, ∂xφ, ∂yφ, ∂zφ)dV. (2.35)

For example, the equilibrium function for a system described by the free-
energy density from Eq. (2.28) is calculated by combining Eqs. (2.33), (2.34)
and (2.35), which in 1-D yields

W 2
φ

d2φ0

dx2
− a2(T )φ0 − a4(T )φ3

0 = 0. (2.36)
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After applying some mathematical analysis (Provatas and Elder, 2010), the so-
lution of Eq. (2.36) is given as

φ0(x) =

√
|a2(T )|
a4(T )

tanh

(
x√
2W0

)
, (2.37)

where W0 = Wφ/
√
|a2(T )| stands for the interface thickness. The equilibrium

function φ0(x) at different values of temperature is shown in Fig. (2.5) where
approximations for a2(T ) and a4(T ) from Eqs. (2.30) and (2.32) have been used.
The interface thickness W0 is becoming narrower and narrower as the temper-
ature is dropping, while φ0(±∞) = ±

√
|a2(T )|/a4(T ). As T is approaching Tc,

W0 is approaching infinity and φ0(x) is approaching zero.

−10 −5 0 5 10
x

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

φ
0
(x

)

T1 < Tc
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T3 < T2

T4 < T3

T5 < T4

FIGURE 2.5: Equilibrium order parameter as a function of posi-
tion at different values of temperature below Tc.

Surface energy of equilibrium profile

The surface energy σ, also known as the surface tension, can be seen as the re-
sistance of the system to any increase of the surface area. The constant Wφ in
the (penalty) term |Wφ∇φ|2/2 and the parameters of the free-energy density
f(φ, T ) in the Ginzburg-Landau free energy from Eq. (2.33) should therefore
be somehow linked to the surface energy. σ can be defined as the excess of
the free energy in a system due to the presence of the interface (Provatas and
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Elder, 2010). For an equilibrium profile φ0(x) in 1-D, σ can be defined as

σ = F − Feq =

∫ ∞

−∞

[
1

2
W 2
φ

(
dφ0

dx

)2

+ f(φ0)

]
dx−

∫ ∞

−∞
f (φ0(−∞)) dx, (2.38)

where Feq represents the equilibrium bulk free energy. After applying some
mathematical analysis (Provatas and Elder, 2010), the surface energy is given
as

σ = W 2
φ

∫ ∞

−∞

(
dφ0

dx

)2

dx. (2.39)

Although Eq. (2.39) represents the surface energy in 1-D, the unit 1/m of the
integral is independent of the problem dimension, hence, it is clear that σ has
units of surface energy since [Wφ] =

√
J → [σ] = J/m in 2-D and [Wφ] =√

J/m→ [σ] = J/m2 in 3-D.

2.2.3 Non-equilibrium dynamics

Equilibrium systems with spatially dependent order parameter have been
studied in the previous section. The next important aspect in the PF mod-
elling of phase transitions is the examination of the temporal dependence
of the order parameter. In the framework of the mathematical modelling of
non-equilibrium dynamics, space can be seen as a set of volume cells, each
large enough to be assumed in the thermodynamic equilibrium, although
small enough to spatially resolve the microstructure evolution. Local thermo-
dynamic driving forces govern the system towards the global equilibrium.
Kinetic equations for the order parameter can be either conserved of non-
conserved. An example of the conserved order parameter is the concentration
in a binary alloy model, while the mean magnetisation in the Ising model
is an example of a non-conserved order parameter. The latter is govern by
Langevin-type equations, while the governing equations for the conserved
order parameter are diffusion-like.

Dynamics of conserved order parameter

We are considering the dynamics of a general conserved order parameter. An
example of such an order parameter is the solute concentration in a binary
alloy, represented by the free-energy curve from Eq. (2.28). The local chemical
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potential µ has to be derived from the Ginzburg-Landau free energy functional
from Eq. (2.33) in order to calculate the solute flux. Cahn and Hilliard (Cahn
and Hilliard, 1958) used the following definition

µ =
δF [φ]

δφ
. (2.40)

In the limit of the mean field theory where the spatial gradients are neglected,
Eq. (2.40) is reduced to the classic definition of the chemical potential. At
equilibrium, when the free energy depends on the spatial gradients, Eq. (2.40)
yields a differential equation for the equilibrium profile of φ. The order pa-
rameter φ, representing the solute concentration in binary alloys has to obey
the mass-conservation equation

∂φ

∂t
= −∇ · j, j = −M∇µ (2.41)

where j and M are the solute flux and the mobility of the solute, respectively.
The combination of Eqs. (2.40) and (2.41) yields the famous Cahn-Hilliard equa-
tion (Cahn and Hilliard, 1958) or Model B (Hohenberg and Halperin, 1977)

∂φ

∂t
= ∇ ·

(
M∇δF

δφ

)
. (2.42)

Eq. (2.42) can be used for the simulation of spinodal decomposition using Eq.
(2.28) for the free energy in the bulk. By combining Eq. (2.42), the definition of
the variational derivative from Eq. (2.35), and the definition of the Ginzburg-
Landau functional from Eq. (2.33) we obtain a PDE for the propagation of the
conserved order parameter

∂φ

∂t
= M∇2

(
−W 2

φ∇2φ+
∂f

∂φ

)

= M∇2
(
−W 2

φ∇2φ+ a2(T )φ+ a4(T )φ3
)
,

(2.43)

where the constant mobility M is assumed.
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Dynamics of the non-conserved order parameter

The order parameter can also represent the non-conserved variables, e.g., the
mean magnetisation in the Ising model or the atomic order during solidifica-
tion from a pure melt. A glass full of pure water will completely freeze below
the freezing temperature as the zero mean order parameter before freezing will
change to a non-zero value after the freezing is complete. Since φ does not need
to be conserved, the simplest dissipative dynamics is given by Langevin-type
kinetics

∂φ

∂t
= −MδF

δφ
= M

(
W 2
φ∇2φ− ∂f(φ, T )

∂φ

)
, (2.44)

where M is related to the attachment time of the particles from the phase with
φ = 0 to the phase φ 6= 0. Eq. (2.44) is also know as Allen-Cahn equation (Cahn
and Allen, 1977) or Model A (Hohenberg and Halperin, 1977). Eq. (2.44) can
be used to simulate the spontaneous formation of local domains with non-zero
magnetisation in the Ising model below the Curie temperature with PDE

∂φ

∂t
= M

(
W 2
φ∇2φ− a2(T )φ− a4(T )φ3

)
. (2.45)

Equilibrium fluctuations of the order parameter

Although a system is in equilibrium, the order parameter and all the other
quantities in a system continuously fluctuate in time and space due to thermal
fluctuations. Thermal fluctuations are taken into account by adding a stochas-
tic noise term η(r, t) to the Cahn-Hilliard and Allen-Cahn equations

∂φ

∂t
=
∂φ

∂t
+ η(r, t). (2.46)

The term η(r, t) describes the thermal fluctuations on length scales of the order
of Å, i.e., on scales much smaller than the interface thickness W0 over which
the phase change occurs, and on time scales of the order of ps. In the case
of the Allen-Cahn equation from Eq. (2.44), η(r, t) is chosen from statistical
distribution, obeying

〈η(r, t)η(r′, t′)〉 = Aδ(r − r′)δ(t− t′), (2.47)
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where δ is the Dirac delta function and A stands for a temperature-dependent
constant, equal to (Provatas and Elder, 2010)

A = 2MkbT, (2.48)

where kb is the Boltzmann constant. In the case of the Cahn-Hilliard equation
from Eq. (2.42), η(r, t) is chosen from a statistical distribution obeying

〈η(r, t)η(r′, t′)〉 = A∇2δ(r − r′)δ(t− t′), (2.49)

with the same constant A from Eq. (2.48).

2.3 Phase field modelling of solidification

In the previous section, two examples of the order parameter are discussed:
the mean magnetisation in the Ising model and the concentration of solute in
a binary alloy. In this section, the definition of the order parameter for solidi-
fication is first presented, followed by the PF models describing solidification
in pure materials and dilute multi-component alloys.

2.3.1 Definition of the order parameter

We are considering a crystal with Nat atoms. The instantaneous solid density
in a crystal is given as

ρ(r, t) =
Nat∑

n=1

δ(r − rn(t)), (2.50)

where rn(t) is the position of the n-th atom in a crystal. The temporal or en-
semble average of the density is calculated as (Provatas and Elder, 2010)

〈ρ(r, t)〉time = 〈ρ(r, t)〉ensemble =
ρ̄

Nat

∑

g

φg exp(−ig · r), (2.51)

where ρ̄ is the average atomic number density, g the reciprocal lattice vector,
and φg the order parameter of g. The order parameter is defined as (Provatas
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and Elder, 2010)

φg =

〈
Nat∑

n=1

exp(ig · rn(t))

〉
. (2.52)

In the 1-D case, g and rn become scalars g = 2πm/ā and rn(t) = (n + ξ(t))ā,
where ā and ξ represent the the lattice size and the Gaussian random number
accounting for the thermal fluctuations, respectively. It can be easily show, that
in the solid phase 〈

eigrn
〉

= 1, φg ∼ Nat, (2.53)

since sin(2πmn) = 0, cos(2πmn) = 1, and 〈sin(2πmξ)〉 = 0 and 〈cos(2πmξ)〉 = 1

due to 〈ξ〉 = 0. Positions rn(t) are, in the liquid phase, totally uncorrelated,
hence 〈

eigrn
〉

= 0, φg = 0. (2.54)

The order parameter is therefore equal to a non-zero constant in the solid phase
and zero in the liquid phase, with continuous change at the solid-liquid inter-
face.

The above considerations are only valid in the case when the order param-
eter varies over length scales much larger than the atomically diffuse solid-
liquid interface thickness and on time scales much larger than time scales of
the atomic vibrations.

Free energy functional for solidification

In the framework of classic density functional theory (Kalikmanov, 2001),
the free-energy functional can be derived in terms of 〈ρ(r, t)〉, i.e.,
F = F (〈ρ(r, t)〉, T ). This definition of functional can be "homogenized"
or "coarse-grained" into an effective free-energy functional, valid on the scales
much larger than a single atom, but small enough to resolve metallurgically
relevant length scales (Provatas and Elder, 2010). The homogenized version of
the functional can be written as

F [〈ρ(r, t)〉, T ]→ F [{φg}, T ], (2.55)

where F [{φg}, T ] can be seen as the Ginzburg-Landau free-energy functional,
dependent on the multiple complex order parameters {φg}. By using such a
functional, it is possible to describe how elasto-plastic phenomena effect the
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microstructure’s evolution. At higher temperatures, elasto-plastic effects can
often be neglected, leading to a description of the solidification with a single
real order parameter

F [{φg}, T ]→ F [φ, T ], (2.56)

represented by the Ginzburg-Landau free-energy functional from Eq. (2.33).

2.3.2 Pure materials

In this section, the diffuse-interface version of the dimensionless model from
Eqs. (2.9), (2.10), and (2.11), based on the energy balance, is presented. The
PF model (Karma and Rappel, 1998) can be derived from a single free-energy
functional in the variational formulation (VF) where the temperature and the
PF are considered as conserved and non-conserved order parameters, respec-
tively. Alternatively, the governing equations can be derived in the isothermal
variational formulation (IVF) where only the governing equation for the PF is
derived from a free-energy functional. The IVF is used to derive the PF model
in the dissertation.

In the IVF, the phenomenological free-energy functional is given as

F =

∫ (
1

2
|W∇φ|2 + fdw(φ) + λĝ(φ)θ

)
dV (2.57)

where W is the interface thickness, fdw the double-well potential, ĝ the tilting
function, and λ is the coupling parameter. The dimensionless temperature
θ = (T − Tm)/(Lm/cp) has been defined in Section 2.1.1. The functional F is
constructed in such a way that the integrand in Eq. (2.57) is dimensionless.
The standard choice of PF functions is

fdw(φ) = −1

2
φ2 +

1

4
φ4 ĝ(φ) = φ− 2

3
φ3 +

1

5
φ5. (2.58)

This selection keeps the minima of the free energy at values φ = ±1 as φ = 1

and φ = −1 determine the solid and liquid phase, respectively. The bulk free
energy with λ = 1 is shown in Fig. 2.6. At the melting temperature (θ = 0),
the free energy has two global minima at φ = ±1. The global minimum of the
free energy above (θ > 0) and below (θ < 0) the melting temperature is in the
liquid (φ = −1) and in the solid (φ = 1) phases, respectively.
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FIGURE 2.6: The dimensionless bulk free energy for three values
of the dimensionless temperature.

The governing equations for the PF and temperature are, in the IVF, ob-
tained as

τ
∂φ

∂t
= −δF

δφ
, (2.59)

∂θ

∂t
= DT∇2θ +

1

2
h′(φ)

∂φ

∂t
, (2.60)

where τ is the characteristic time of the attachment of atoms at the interface.
The function h(φ) = φ is used in the calculations which turns out to be the
most computationally effective (Karma and Rappel, 1998). By applying the
definition of the functional derivative, the governing equation for the PF is
given as

τ(n)
∂φ

∂t
= −f ′dw(φ)− λĝ′(φ)θ +∇ ·

(
W 2(n)∇φ

)

+
∑

ξ=x,y

∂ξ

(
|∇φ|2W (n)

∂W (n)

∂(∂ξφ)

)
,

(2.61)

where we have taken into account that W and τ can be anisotropic, which is
the case when the capillary length d and the attachment-kinetics coefficient βk
are anisotropic. The notation ∂ξ ≡ ∂/∂ξ is used through the dissertation in the
"anisotropy term" of the governing equations for PF, e.g., in the last term in
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Eq. (2.61). The "anisotropy term" vanishes from the governing equation if the
interface thickness is isotropic.

Determination of the free parameters

In order to find the free parameters W , τ , and λ, for which the model correctly
captures the physics described by the balance equations, the matched asymp-
totic analysis (Caginalp, 1989; Karma and Rappel, 1998; Echebarria et al., 2004;
Ohno, 2012) of the governing equations has to be performed. The analysis was
first performed in the framework of the sharp-interface limit (Caginalp, 1989)
which requires that the interface thickness is much smaller than the capillary
length, i.e., W � d. The limit yields the following relations

d = α1
W

λ
, (2.62)

βk = α1
τ

λW
, (2.63)

where α1 is the constant determined by the selection of the PF functions. The
requirement W � d makes the sharp-interface limit computationally ineffec-
tive since the spacing between the computational nodes has to be of the order
of W . Additionally, the very common case of negligible attachment kinetics
during solidification cannot be simulated in this limit since τ → 0 when βk → 0

according to Eq. (2.63).
The drawbacks of the sharp-interface limit have been successfully over-

come with the derivation of the thin-interface limit (Karma and Rappel, 1998).
The limit requires that the interface thickness is much smaller than the diffu-
sion length of solidification, i.e., W � DT/(v

∗ · n), while the ratio W/d can be
of the order of unity, which significantly enhances the computational efficiency
in comparison to the sharp-interface limit. In the limit, the relation from Eq.
(2.63) is modified as

βk = α1

(
τ

λW
− α2

W

DT

,

)
, (2.64)

while the relation from Eq. (2.62) remains the same. Similar to α1, the constant
α2 is determined by the selection of the PF functions. For the selection from
Eq. (2.58) and h(φ) = φ, the constants are determined as α1 = 0.8839 and
α2 = 0.6267 (Karma and Rappel, 1998).
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Dimensionless PF model

In the dissertation, the PF model with zero interface kinetics and an anisotropic
capillary length is considered. This case is especially relevant for solidification
of metallic alloys. Eqs. (2.62) and (2.64) yield the following relations if βk = 0

and d(n) = d0a(n)

W (n) = W0a(n), τ(n) = τ0a
2(n), λ =

DT τ0

α2W 2
0

. (2.65)

By rescaling time and Cartesian coordinates as

t→ t/τ0, x→ x/W0, y → y/W0, (2.66)

the dimensionless PF model for solidification in pure materials is given as

a2(n)
∂φ

∂t
= −f ′dw(φ)− λθĝ′(φ) +∇ ·

(
a2(n)∇φ

)

+
∑

ξ=x,y

∂ξ

(
|∇φ|2a(n)

∂a(n)

∂(∂ξφ)

)
,

(2.67)

∂θ

∂t
= D̄T∇2θ + h′(φ)

∂φ

∂t
, (2.68)

where D̄T = DT τ0/W
2
0 . The dimensionless PF model from Eqs. (2.67) and

(2.68) has only one free parameter since the dimensionless D̄T and λ are linked
as D̄T = λα2 according to Eq. (2.65). The free parameter has to be chosen
according to the validity condition of the thin-interface limit, i.e., the interface
thickness has to be much smaller than the diffusion length of solidification.

Incorporation of the thermal noise

It is possible to incorporate the thermal noise in the PF simulations by appro-
priately reformulating the PF model from Eqs. (2.67) and (2.68). In general, the
interface noise term, originating from the exchange of atoms between the two
phases, is added to Eq. (2.67) and the bulk noise, originating from the fluctua-
tions in the heat current, is added to Eq. (2.68). In the pioneering work on the
incorporation of thermal noise in the PF simulations (Karma and Rappel, 1999),
the calculations were performed with the both noises and with the bulk noise
only. Authors found out that the time-averaged morphology characteristics of
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a dendrite were identical, indicating that the fluctuations which become am-
plified to affect the morphology of a dendrite are on the length scales much
larger than the interface thickness. Hence, it is enough to include only bulk
noise by reformulating Eq. (2.68) as

∂θ

∂t
=
∂θ

∂t
−∇ · q̃(r, t), (2.69)

where q̃ = (q̃m, q̃n) stands for the dimensionless conserved noise with

〈q̃m(r, t)q̃n(r′, t′)〉 = 2D̄TFuδmnδ(r − r′)δ(t− t′), (2.70)

where Fu stands for the magnitude of the noise. The magnitude is calculated
as (Karma and Rappel, 1999)

Fu =
kbT

2
mcp

L2
mW

Ndim
0

, (2.71)

where kb and Ndim stand for the Boltzmann constant and the number of the
dimensions, respectively.

2.3.3 Dilute multi-component alloys

In this section the diffuse-interface version of the solute-balance-obtained di-
mensionless model from Eqs. (2.24), (2.25), and (2.26) is presented. The PF
model used in the dissertation (Ohno, 2012) is based on the PF model for solid-
ification in binary alloys (Kim et al., 1999). The model (Ohno, 2012) originally
describes the non-isothermal solidification where the diffusion of heat is also
considered. In the dissertation, the model has been recast in the framework of
the frozen temperature approximation where the temperature is considered as
an input parameter.

As in the PF model for solidification in pure materials, the PF values φ = 1

and φ = −1 determine the solid and liquid phases, respectively. In the model,
the concentration of the i-th element is given as Ci = [1 + g(φ)]Cs,i/2 + [1 −
g(φ)]C`,i/2 where the interpolation function g(φ) satisfies g(±1) = ±1 and
g′(±1) = 0. Function g(φ) = (15/8)(φ − (2/3)φ3 + φ5/5) is used in this study.
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The phenomenological free energy is given as

F =

∫ (
1

2
|W∇φ|2 + fdw(φ) +

1

ω
f(T, {Cs,i}, {C`,i})

)
dV, (2.72)

where ω is the constant. The bulk free-energy density is given as f = [1 +

g(φ)]fs(T, {Cs,i})/2 + [1 − g(φ)]f`(T, {C`,i})/2. In the PF model, the chemical
potentials of the solid and liquid are assumed to be the same at each local
point, i.e., ∂fs/∂Cs,i = ∂f`/∂C`,i = µi which yields

τ
∂φ

∂t
= −δF

δφ
= W 2∇2φ− f ′dw(φ)

− 1

2ω
g′(φ)

[
fs − f` −

Nc−1∑

i=1

µi (Cs,i − C`,i)
] (2.73)

where we have temporarily assumed the isotropic surface properties. In the
thermodynamic equilibrium, the last term on the right in Eq. (2.73) vanishes,
which makes the profile of φ determined solely by W and fdw. Consequently,
the profile of φ and the corresponding surface energy are independent of the
concentration fields (Kim et al., 1999; Ohno, 2012), which is the main advantage
of the PF model used.

Free energy density of a dilute alloy

The free-energy density of a phase ν is given as

fν(T, {Cν,i}) = fν,0(T ) +
Nc−1∑

i=1

[
Ων,i(T )Cν,i +

RT

νm
(Cν,i lnCν,i − Cν,i)

]
, (2.74)

where fν,0(T ), νm, and R stand for the free energy of a pure solvent, the molar
volume, and the gas constant, respectively. Ων,i(T ) = (RT/νm) ln γ̂ν,i, where
γ̂ν,i is a constant. The condition ∂fs/∂Cs,i = ∂f`/∂C`,i = µi yields Cs,i = k0,iC`,i

where k0,i = γ̂`,i/γ̂s,i is the partition coefficient. Substitution of Eq. (2.74) in Eq.
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(2.73) yields the following expression for the thermodynamic driving force

fs − f` −
Nc−1∑

i=1

µi (Cs,i − C`,i)

= fs,0(T )− f`,0(T ) + (RT/νm)
Nc−1∑

i=1

(1− k0,i)C`,i.

(2.75)

The approximation fs,0(T )−f`,0(T ) ≈ (Lm/Tm)(T−Tm) can be applied near the
melting temperature. Also, the temperature in the third term on the right in
Eq. (2.75) can be approximated by Tm. The expression from Eq. (2.75) should
vanish in the equilibrium when T = T e = Tm +

∑
m`,iC

e
`,i and C`,i = Ce

`,i,
which yields the definition of the liquidus slopem`,i = −RT 2

m(1−k0,i)/(Lmνm).
Finally, by using the definition of the equilibrium temperature, the driving
force of solidification can be written as

fs − f` −
Nc−1∑

i=1

µi (Cs,i − C`,i)

≈ Lm
Tm

(T − T e) + (RTm/νm)
Nc−1∑

i=1

(1− k0,i)
(
C`,i − Ce

`,i

)
.

(2.76)

Determination of the free parameters

As for pure materials, the focus of this study is the simulation of solidification
with negligible attachment kinetics. The thin-interface limit for dilute multi-
component alloys (Ohno, 2012) yields similar relations as in the case of pure
materials (Karma and Rappel, 1998). The thermal capillary length is replaced
by the reference chemical capillary length, which has been defined in Section
2.1.2

W (n) = W0a(n), W0 =
λ

α1

dc,ref . (2.77)

The attachment kinetics is negligible when

τ(n) = τ0Ξ({Ui})a2(n), τ0 =
α2λW

2
0

D`,ref

, (2.78)
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where the function Ξ({Ui}) is in the frozen temperature approximation (DT →
∞) given as

Ξ({Ui}) =
Nc−1∑

i=1

[1 + (1− k0,i)Ui]Miψi
D`,i/D`,ref

, (2.79)

where D`,ref is the reference diffusivity of the solute in the liquid phase and
the parameterMi = dc,ref/dc,i = ∆Ti/∆Tref has been defined in Section 2.1.2.
The parameter ψi controls the convergence of the model. The dimensionless
temperature and supersaturation are given as

θ =
T − T e
∆Tref

, Ui =
C`,i − Ce

`,i

(1− k0,i)Ce
`,i

. (2.80)

which have also been defined in Section 2.1.2. The constants α1 = 0.8839 and
α2 = 0.6267 (Ohno, 2012) are identical to the constants from the case of pure
materials (Karma and Rappel, 1998), since the same PF interpolation functions
are applied.

Anti-trapping current

The driving force of solidification is written in terms of C`,i, while the concen-
tration in the solid phase is determined as Cs,i = k0,iC`,i. The diffusion of the
i-th element is described as

∂Ci
∂t

= ∇ · (Di(φ)∇C`,i) , (2.81)

where the diffusivity should satisfy Di(+1) = k0,iDs,i and Di(−1) = D`,i. Dif-
fusivity Di(φ) = [k0,iDs,i +D`,i + (k0,iDs,i −D`,i)φ] /2 is used in the study. The
solution of the system of equations defined by Eq. (2.73) and (2.81) is prone
to many anomalous interface effects (Karma, 2001; Echebarria et al., 2004), e.g.,
solute trapping, interface stretching, surface diffusion, etc. These effects can be
eliminated if the so-called anti-trapping current (Karma, 2001) is added to Eq.
(2.81)

∂Ci
∂t

= ∇ ·
(
Di(φ)∇C`,i + ai(φ)W (C`,i − Cs,i)

∂φ

∂t

∇φ
|∇φ|

)
, (2.82)
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where the function ai(φ) is defined as

ai(φ) =
1

2
√

2

(
1− k0,iDs,i

D`,i

)
ψi. (2.83)

Dimensionless model

By re-scaling the time by τ0 and the Cartesian coordinates by W0 according to
Eq. (2.66), the dimensionless governing equation for the PF in terms of θ and
U is given as

Ξ({Ui})a2(n)
∂φ

∂t
= −f ′dw(φ)− ĝ′(φ)λ

(
θ +

Nc−1∑

i=1

MiUi

)

+∇ ·
(
a2(n)∇φ

)
+
∑

ξ=x,y

∂ξ

(
|∇φ|2a(n)

∂a(n)

∂(∂ξφ)

)
,

(2.84)

where the same functions f ′dw(φ) = −φ + φ3 and ĝ′(φ) = (1 − φ2)2 as for pure
materials from Eq. (2.58) are used. The governing equation for the supersatu-
ration is given as

1

2
(1 + k0,i − (1− k0,i)h(φ))

∂Ui
∂t

=
1

2
(1 + (1− k0,i)Ui)h

′(φ)
∂φ

∂t

+∇ ·
(
D̄i(φ)∇Ui + ai(φ)(1 + (1− k0,i)Ui)

∂φ

∂t

∇φ
|∇φ|

)
,

(2.85)

where D̄i(φ) = Di(φ)τ0/W
2
0 . The function h(φ) = φ is used instead of g(φ) in

the definition of the concentration Ci = [1 + h(φ)]Cs,i/2 + [1 − h(φ)]C`,i/2 in
the governing equation for Ui due to the better convergence properties of the
PF model (Karma and Rappel, 1998). This replacement is allowed since the
restrictions g(±1) = ±1 and g′(±1) = 0 have to be applied in the governing
equation for PF to ensure an equilibrium solution at φ = ±1, while only the
restriction g(±1) = ±1 applies in the governing equation for Ui (Echebarria
et al., 2004). The PF model correctly captures the physics of solidification of
dilute multi-component alloys if the interface thickness is much smaller than
the lowest characteristic diffusivity length. The PF model has only one free
parameter (D̄`,ref = α2λ), which has to be set according to this condition.
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3 Numerical method

The governing equations from Section 2.3 require temporal and spatial dis-
cretisations. The forward Euler scheme and the meshless RBF-FD method are
used for the temporal and spatial discretisation of PDEs. They are described in
Sections 3.1 and 3.2. Discretisation of the conserved thermal noise in the case
of solidification of pure materials is presented in Section 3.3. The adaptive
solution procedure is presented in Section 3.4.

3.1 Forward Euler scheme

The forward Euler scheme is used for the time-marching of governing equa-
tions. The time derivative of a general variable η at t0, a time at which the
solution of η is known, is approximated as

∂η

∂t

∣∣∣
t0
≈ ηt0+∆t − ηt0

∆t
, (3.1)

where ∆t is the time step. The formula from Eq. (3.1) results in a first-order
accurate scheme. The stable time step of the method has to be determined ac-
cording to the considered system of PDEs and the method for spatial discreti-
sation. If the PF model for solidification is spatially discretisied in 2-D by the
FVM with square volumes having side length ∆h, the forward Euler scheme
is stable when (Provatas and Elder, 2010)

∆t < ∆t0, ∆t0 =
1

4

∆h2

max(D̄, 1/a(n))
, (3.2)

where ∆t0 is the reference time step. D̄ and a(n) are the dimensionless diffu-
sivity of heat (pure materials) or solute (alloys) and the anisotropy function,
respectively. Such a condition is formally derived by using a linear stability
analysis (Provatas and Elder, 2010). The derivation of the stable time step as
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the RBF-FD is used for spatial discretisation of the considered PDEs is not the
focus of this dissertation. The stable time step is simply set as

∆t = α∆t∆t0, (3.3)

where the stability parameter α∆t < 1 is determined experimentally. The sta-
bility and convergence of the forward Euler scheme is analysed in the range
α∆t ∈ [10−2, 1].

3.2 RBF-FD method

The interpolation with RBFs represents the core of the RBF-FD method. The
interpolation procedure is presented first, followed by the presentation of the
procedure for the evaluation of spatial operators in the computational nodes.
For simplicity, the method is presented for the case of scalar fields; however,
the same procedure is also used for the case of vector and tensor fields.

3.2.1 Local interpolation with RBFs

We are considering a computational domain Ω with the boundary Γ. The
domain is represented by NΩ nodes lr ∈ Ω ∪ Γ, l = 1, ..., NΩ. A local sub-
domain lΩ consists of N nodes lri ∈ lΩ, i = 1, ..., N where lr1 = lr and

lri ∈ lΩ, i = 2, ..., N are the nearest nodes to lr. A local sub-domain is schemat-
ically shown in Fig. 3.1. The details of the construction of a local sub-domain
are presented in (Mavrič, 2017). The characteristic size of lΩ is defined as

lh =

√√√√
N∑

i=2

|lri − lr|2
N − 1

. (3.4)

An arbitrary scalar field η at r ∈ Ω ∪ Γ is approximated as

η(r) ≈
N∑

i=1

lαi lΦi(r), (3.5)

where lr is the computational node closest to r. Constants lαi, i = 1, ..., N are
the interpolation coefficients and the function lΦi is a RBF centered at lri. The
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3.2. RBF-FD method

FIGURE 3.1: Illustration of a computational domain Ω and
boundary Γ. The solid circles and the empty triangles represent
the interior and the boundary computational nodes, respectively.
The dashed line represents the boundary of a local sub-domain
lΩ containing six interior nodes. The boundary of a local sub-
domain containing five interior and a boundary node is repre-

sented by the dotted line.

application of Eq. (3.5) at each lri from lΩ yields a system of equations for
coefficients lαi




lΦ1(lr1) lΦ2(lr1) . . . lΦN(lr1)

lΦ1(lr2) lΦ2(lr2) . . . lΦN(lr2)
...

... . . . ...

lΦ1(lrN) lΦ2(lrN) . . . lΦN(lrN)







lα1

lα2

...

lαN




=




lη1

lη2

...

lηN



, (3.6)

where lηi = η(lri) are the known field values in the nodes from lΩ. The system
of equations from Eq. (3.6) is well-posed and therefore yields a unique solution
if the used RBFs are strictly positive definite functions (Fasshauer, 2007). If
conditionally positive or negative definite functions are used, RBFs have to be
augmented with monomials to ensure a well-posed interpolation problem

η(r) ≈
N∑

i=1

lαi lΦi(r) +

Naug∑

i=1

lαN+i lpi(r), (3.7)

where

lp1(r) = 1, lp2(r) =
x− lx

lh
, lp3(r) =

y − ly

lh
, ... . (3.8)
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The number Naug as a function of the highest degree of the augmentation
monomials P and the number of dimensions Ndim is given as

Naug =
(P +Ndim)!

P !Ndim!
. (3.9)

The system of equations constructed solely according to Eq. (3.7) is underde-
termined and therefore requires additional relations which are obtained from
the condition that the vector of RBF coefficients lαi is orthogonal to the poly-
nomials evaluated at the nodes from lΩ (Iserles, 2000)

N∑

i=1

lp1(lri)lαi = 0,
N∑

i=1

lp2(lri)lαi = 0, ...
N∑

i=1

lpNaug(lri)lαi = 0. (3.10)

It is mathematically proven (Fasshauer, 2007) that the interpolation with con-
ditionally positive definite RBFs of order m ≥ 2 is well-posed if the aug-
mentation with monomials at least up to the order m − 1 is used. While the
positions of the nodes in lΩ is totally arbitrary in the interpolation by RBFs
(Fasshauer, 2007), the nodes have to be unisolvent (Iserles, 2000) if the inter-
polation problem is augmented by monomials. If a node from lΩ lies on the
boundary Γ where the linear boundary condition B(r)η(r) = b(r) applies, B
is simply applied to Eq. (3.7) at that node in the construction of the system of
equations. The system of equations which accounts for the augmentation with
Naug monomials and the boundary condition applied at the node lri ∈ Γ reads
as

lAlα = lγ, (3.11)
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3.2. RBF-FD method

where

lA =




lΦ1(lr1) . . . lΦN(lr1) lp1(lr1) . . . lpNaug(lr1)

lΦ1(lr2) . . . lΦN(lr2) lp1(lr2) . . . lpNaug(lr2)
...

...
...

... . . . ...

lΦ1(lri−1) . . . lΦN(lri−1) lp1(lri−1) . . . lpNaug(lri−1)

B(lri)lΦ1(lri) . . . B(lri)lΦN(lri) B(lri)lp1(lri) . . . B(lri)lpNaug(lri)

lΦ1(lri+1) . . . lΦN(lri+1) lp1(lri+1) . . . lpNaug(lri+1)
...

...
...

... . . . ...

lΦ1(lrN) . . . lΦN(lrN) lp1(lrN) . . . lpNaug(lrN)

lp1(lr1) . . . lp1(lrN) 0 . . . 0
...

...
...

... . . . ...

lpNaug(lr1) . . . lpNaug(lrN) 0 . . . 0




,

(3.12)

lα =




lα1

...

lαN

lαN+1

...

lαN+Naug




, lγ =




lη1

...

lηi−1

b(lri)

lηi+1

...

lηN

0
...
0




, (3.13)

where lA is the interpolation matrix, lα is the interpolation coefficients vector,
and lγ stands for the vector of field values in the sub-domain lΩ.

3.2.2 Evaluation of differential operators

The approximation from Eq. (3.7) is used for the evaluation of any linear dif-
ferential operatorD applied to a scalar field η in lr ∈ Ω∪Γ, while the boundary
condition in lr ∈ Γ is analytically satisfied in the interpolation problem from
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Eqs. (3.11), (3.12) and (3.13). Applying D to Eq. (3.5) yields

Dη(r) ≈
N+Naug∑

i=1

lαiDΨi(r), (3.14)

since lαi are constants. lr is the computational node closest to r. The function

lΨi is either a RBF (i ≤ N ) or a monomial (i > N ). By calculating the inverse of
the matrix lA from Eq. (3.12), Eq. (3.14) applied at lr can be rewritten as

Dη(lr) ≈
N+Naug∑

k=1

lγk

N+Naug∑

i=1

lA
−1
ik DΨi(lr). (3.15)

Eq. (3.15) can now be written in a standard finite-difference-like manner as

Dη(lr) ≈
N∑

k=1

lwk lγk, (3.16)

where lwk are the finite-difference-like coefficients of the operator D, defined
as

lwk =

N+Naug∑

i=1

lA
−1
ik DΨi(lr). (3.17)

The summation in Eq. (3.16) goes from k = 1 to k = N , since lγk = 0 for k > N

according to Eq. (3.13). For inner local sub-domains, without nodes on the
boundary of the computational domain, Eq. (3.16) is reduced to

Dη(lr) ≈
N∑

k=1

lwk lηk. (3.18)

3.2.3 Polyharmonic splines (PHS)

In the dissertation, radial-powers-based PHS are used as RBFs in the interpo-
lation problem. PHS are defined as

lΦi(r) =

( |r − lri|
lh

)n
, n = 1, 3, 5, ..., (3.19)

where n is the (odd) PHS degree. The linear and cubic PHS are shown in Fig.
3.2.
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FIGURE 3.2: Linear (left) and cubic (right) PHS centered at the
origin lri = (lxi, lyi) ∈ R2.

There are several reasons why the use of PHS augmented by monomials
has gained popularity in recent years (Flyer et al., 2016; Bayona et al., 2017):

• the absence of the stagnation error (present if MQs or Gaussian functions
are used as RBFs),

• the accuracy of the method is very good,

• no need for a search of the optimal shape parameter (needed if MQs or
Gaussian functions are used as RBFs).

The PHS are conditionally positive definite RBFs with order m = dn/2e
(Fasshauer, 2007). For instance, PHS with n = 3 have order m = d3/2e = 2;
hence, the interpolation with such PHS is well-posed if augmentation with
monomials up to at least the first order is used. It has been shown (Flyer
et al., 2016) that the convergence rate of the method is determined by the
highest order of the augmentation monomials. It is therefore beneficial to
use augmentation with as many monomials as possible to achieve high
convergence rates; however, a large number of augmentation monomials
requires larger local sub-domains and correspondingly large simulation
times. One might rightfully wonder if the polynomial least-squares would
provide the same accuracy as the RBF-FD method since the monomials dictate
the convergence rate of the method. It has been shown in the same work
(Flyer et al., 2016) that the convergence rates are indeed the same if the same
polynomials as in polynomial least-squares are used as augmentation in the
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RBF-FD method; however, the accuracy of the RBF-FD method is much higher.
Additionally, the PHS play an important role in preventing singularities if
unusual node distributions are used. The PHS degree has little or no impact on
the accuracy of the interpolation. However, if the derivatives of a field value
are evaluated, the PHS degree has to be high enough to avoid singularities in
the PHS derivative in the collocation points.

In the solution of PDEs by the RBF-FD method, large errors can occur
near the boundaries of the computational domain due to one-sided local sub-
domains. The use of ghost nodes is one possibility to avoid large errors near
the computational boundary. Another possibility is to increase the number of
nodes in a local sub-domain. It has been shown (Bayona et al., 2017) that with-
out any special treatment of the boundary, the accuracy of the RBF-FD method
is not altered due to one-sided sub-domains if N & 2Naug.

Selection of the parameters of the RBF-FD method

The focus of the dissertation is not in a detailed study of all the parameters of
the RBF-FD method on the performance, since this has already been done in
other studies (Flyer et al., 2016; Bayona et al., 2017). We have decided to use
the second-order RBF-FD method, which is realised by augmentation with six
monomials according to Eq. (3.9). To avoid the problems near the boundaries
(Bayona et al., 2017), the best accuracy is expected for N & 12 in that case. The
first and second derivatives have to be evaluated to spatially discretise PDEs
from the PF models. In order to avoid the complications in the evaluation of
the second derivative at the center of PHS for degree n = 3, degree n = 5 is
used instead. As stated before (Flyer et al., 2016), the choice of the degree does
not alter the accuracy of the method. The well-posed interpolation problem for
n = 5 is already ensured by the second-order augmentation with monomials.

3.3 Discretisation of the conserved thermal noise

In the case of the RND (Karma and Rappel, 1999), the conserved noise is dis-
cretised by generating two independent numbers per computational node lr

at each discretizied time tj = j∆t. The numbers are chosen from a Gaussian

52



3.4. Adaptive algorithm

distribution with variance

〈ql,jql′,j′〉 =
2D̄TFu
∆t∆h2

δll′δjj′ . (3.20)

In the case of totally independent random numbers, each frequency in the
power spectrum S(k1, k2) of the random numbers has to have the same magni-
tude, where k1 and k2 represent indices of discrete frequencies in the (regular)
two dimensional frequency domain. In order to verify that the discretisation of
thermal noise for the RND (Karma and Rappel, 1999) can also be applied if the
SND is being used, we calculate S(k1, k2) of the random numbers on RND and
on SND by using Fourier transformation. The classical two dimensional fast
Fourier transformation (FFT) can only be used in the case of RND. In order to
calculate power spectrum in the case of SND, non-uniform FFT (NUFFT) (Lee
and Greengard, 2005; Greengard and Lee, 2004) has to be used.

In our test case, we construct a RND with Nall = 100 × 100 computational
nodes in the square computational domain [−π, π]× [−π, π]. In the same com-
putational domain, a SND with the same number of computational nodes is
constructed. For simplicity, we set Fu = ∆t∆h2/(2D̄T ) and generate Nreal re-
alisations of the noise according to Eq. (3.20). For each realisation, S(k1, k2)

is calculated by NUFFT (naturally, NUFFT also works for RND). Finally, we
perform averaging of S(k1, k2) at each pair (k1, k2) over Nreal realisations and
plot the minimum, the maximum and the mean value as a function of Nreal as
shown in Fig. 3.3. The expected magnitude in the spectrum is 1/Nall, hence,
we multiplied the spectrum values by Nall in order to have expected value at
Nall/Nreal

∑Nreal S(k1, k2) = 1. The average value of the spectrum is for both
realisations at 1, while the minimum and the maximum values converge to 1

with convergence rate 1/
√
Nreal. It is evident, that the procedure for discretisa-

tion of the conserved thermal noise on a RND (Karma and Rappel, 1999) can
also be used on uniform SND.

3.4 Adaptive algorithm

The PF modelling of dendritic growth is a computationally very expensive
task. The PF model correctly captures the underlying physics of solidifica-
tion when the spacing between the computational nodes ∆h is smaller than
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FIGURE 3.3: The mean, minimum, and maximum of averaged
power spectrum (over number of realisations) as a function of
number of realisations. The spectrum is multiplied by the num-
ber of the nodes in the computational domain in order to have

expected value at 1.0.

the interface thickness W (Karma and Rappel, 1998; Karma, 2001; Echebar-
ria et al., 2004; Ohno, 2012) although slightly larger values ∆h & W (Tourret
and Karma, 2015; Boukellal et al., 2018) can be used if the PF equations are
re-scaled by the preconditioned PF (Glasner, 2001). The length scale of the
final microstructure of interest is usually at least a few orders of magnitude
larger than W , which results in a large number of computational nodes and
consequently large computational times if fixed node distributions are used.
The requirement for small values of ∆h applies only in the areas at and near
the solid-liquid interface where the highest gradients of the variables are ob-
served. In the bulk of each phase, much larger values of ∆h can be used, which
in turn has given rise to the development of adaptive techniques (Provatas
et al., 1998; Greenwood et al., 2018; Bollada et al., 2015) that dynamically as-
sure a high density of computational nodes near the solid-liquid interface and
a low density in the bulk of phases.

In this section, the adaptive solution procedure, developed in the frame-
work of the dissertation, is presented. The procedure is based on the algorithm
from (Greenwood et al., 2018) with three major distinctions:
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• the RBF-FD method is used instead of the FD method for the spatial dis-
cretisation of the governing equations,

• along with the regular node distribution, the scattered node distribution
is applied,

• along with the spacing ∆h, the time step ∆t is also adaptive.

A scheme of the adaptive solution procedure is shown in Fig.3.4. The solution
procedure is based on the quadtree domain decomposition of the computa-
tional domain into quadtree sub-domain of different size. Node distribution
is generated in each quadtree sub-domain. The h-adaptivity is ensured by
keeping the ratio between the side length of a quadtree sub-domain and the
spacing between the computational nodes fixed. The adaptive time-stepping
is employed to further speed-up the calculations. The stable time step in the
forward Euler scheme depends on the density of the computational nodes,
hence, different time steps can be used in quadtree sub-domains with different
node densities.

The core of the adaptive algorithm is the quadtree data structure presented
in Section 3.4.1. The quadtree data structure is used for the dynamic domain
decomposition of the computational domain presented in Section 3.4.2. The
refinement and de-refinement procedures are formulated in Section 3.4.3
and 3.4.4, respectively. The refinement/de-refinement procedure for the
case of PF modelling of solidification is presented in Section 3.4.5. Adaptive
time-stepping is formulated in Section 3.4.6. The final solution procedure
and the numerical implementation are presented in Sections 3.4.7 and 3.4.8.
For the reasons of clarity, the adaptive procedure is presented for the case
of square computational domains, although the procedure for rectangular
computational domains is exactly the same. The procedure can be extended
to describe arbitrary shapes of the computational domain; however, this is not
the focus of dissertation.

3.4.1 Quadtree data structure

A tree is a data structure consisting of nodes and links without having any
cycles (Knuth, 1997). The nodes are hierarchically organized, so that every
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FIGURE 3.4: Scheme of the adaptive solution procedure. The
quadtree domain decomposition of computational domain (left).
Computational nodes in the quadtree sub-domains on two suc-
cessive levels of a quadtree are marked red and blue. Time step-
ping on different levels on a quadtree (right). Different time steps
can be applied in quadtree sub-domains since the stable time
step in the forward Euler scheme is a function of the node spac-
ing. Time stepping and synchronisation between neighbouring
quadtree sub-domains on different levels are marked by solid ar-

rows and the dotted two-way arrow, respectively.

node has at most one parent and an arbitrary number of children. There are
three possible types of nodes:

• root: a node without a parent,

• inner node: a node with a parent and children,

• leaf : a node without children.

The level (or depth) N of the node is defined as

N = Nparent + 1, Nroot = 0, (3.21)

where Nroot and Nparent stand for the root’s level and the level of the node’s
parent, respectively.

Quadtree is a tree data structure in which the root and inner nodes have
exactly four children (Finkel and Bentley, 1974). Each node represents a square
(or a rectangle), which is divided by the children into four equal sized squares
(rectangles) as seen in Fig. 3.5.
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FIGURE 3.5: Scheme of a quadtree data structure.

The quadtree data structure is especially appealing since it allows straight-
forward dynamical refinement and de-refinement of critical and non-critical
areas in the computational domain, i.e., refinement of the areas at the solid-
liquid interface and de-refinement of the areas in the bulk of phases. Another
appealing feature of the quadtree is the simple and computationally effective
search of the nearest neighbours (Samet, 1989).

3.4.2 Quadtree domain decomposition

The quadtree algorithm (Dobravec et al., 2017a) decomposes a square com-
putational domain Ω with side length L into Np computational sub-domains
Ωi, i = 1, . . . Np represented by the leaves on a tree. The side length Li of a
square Ωi is determined according to the level of a leaf as

Li = L/2N . (3.22)
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The neighbourhood of a Ωi is defined as a set of sub-domains {Ωj}, i 6= j which
have a common edge or vertex with Ωi. The neighbourhood is easily deter-
mined by the recursive nearest-neighbours search (Samet, 1989). The differ-
ence in levels between neighbouring sub-domains defines whether a quadtree
is balanced or non-balanced. In a balanced quadtree, this difference is at most
one, as shown in Fig. 3.6.

FIGURE 3.6: Examples of balanced and non-balanced quadtrees
for non-periodic boundary conditions.

Each Ωi is discretised by a uniform node distribution with the density of
the computational nodes

ρi = 1/∆h2
i , (3.23)

where ∆hi is the characteristic spacing between the neighbouring computa-
tional nodes in Ωi. The h-adaptivity is ensured by the constant product be-
tween the density and the area of Ωi

ρiL
2
i = const.→ Li/∆hi = const., (3.24)

as schematically shown in Fig. 3.7. In order to prevent excessive jumps of the
density of computational nodes, care is taken to keep the quadtree balanced.
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FIGURE 3.7: Scheme of computational nodes in quadtree sub-
domains.

Extension of a quadtree sub-domain

The actual computational sub-domain, where the governing equations are
solved, is obtained by extending Ωi to Ω∗i as shown in Fig 3.8 in order achieve
accurate interpolation of the communication field values. The communication
between neighbouring sub-domains can in principle be done without exten-
sion, however, the overlapping sub-domains make the method much more
robust and accurate. Ωi is extended as

Li × Li → [Li + (n∗west + n∗east)∆hi]× [Li + (n∗south + n∗north)∆hi] , (3.25)

where n∗side = n∗ or n∗side = 0 and n∗ is the overlapping parameter. The choice
of n∗side = 0 or n∗side = n∗ depends on the position of Ωi in Ω as shown in Fig.
3.8. An interior quadtree sub-domain (third case in Fig. 3.8) is extended in all
four sides. A boundary quadtree sub-domain (first two cases in Fig. 3.8) can
not be extended outside of Ω which makes n∗side = 0 for certain sides.

The governing equations are solved on each Ω∗i independently. The bound-
ary condition on Γ∗i ∩ Γ is given by the physical problem, while the condition
on Γ∗i ∩ Ω∗j , i 6= j is provided by the interpolation from Ω∗j to Γ∗i . That is how
communication between two neighbouring domains is achieved.
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FIGURE 3.8: Extension of a boundary sub-domain with two sides
(left) and one side (middle) on the boundary of the computational

domain. Extension of an interior sub-domain (right).

Computational node arrangement

The size of Ω∗i is according to Eq. (3.25) determined by the level N of Ωi (Li =

L/2N ), the position of Ωi in Ω, and the prescribed overlapping parameter n∗.
The density of computational nodes ρi = 1/∆h2

i in Ω∗i is set according to the
prescribed ratio

mΩ =
Li

∆hi
. (3.26)

Regular node distribution (RND) or scattered node distribution (SND) is gen-
erated in each Ω∗i . The node distributions are illustrated in Fig. 3.9.

FIGURE 3.9: Discretisation of Ω∗i and Γ∗i with regular and scat-
tered node distributions.
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While the construction of RND with the spacing ∆hi is straightforward, the
generation of SND (Mavrič, 2017; Hatić, 2019) is more complex:

1. Firstly, Nb computational nodes (marked red in Fig. 3.10) are positioned
on the boundary Γ∗i with the spacing ∆hi. The nodes are not positioned
at the corners of Ω∗i .

2. Secondly, Nib first inner nodes (marked blue in Fig. 3.10) are positioned
in Ω∗i . Each boundary node has one first inner node in the opposite direc-
tion to the outward-facing normal at the boundary node. The distance
between them is ∆hi.

3. Thirdly, Ni = Nall −Nb −Nib inner nodes (marked black in Fig. 3.10) are
randomly positioned into a polygon determined by the first inner nodes,
where Nall is the total number of computational nodes in Ω∗i determined
according to the density ρi and the area of Ω∗i .

4. Finally, the positions of randomly distributed inner nodes are adjusted
in a minimization process, similar to the one in the node repel algorithm
from (Fornberg and Flyer, 2015) in order to obtain locally isotropic node
distribution.

The nodes after each of four steps in the generation of uniform node distri-
bution in Ω∗i are shown in Fig. 3.10. A SND has two parameters: the node
density ρi and the seed S of pseudo-random numbers used for the generation
of randomly positioned nodes. The different seeds S yield different SNDs.

3.4.3 Refinement procedure

The refinement procedure ensures the prescribed minimum node spacing
∆hmin in all sub-domains Ωi in which the refinement condition is fulfilled
as presented in Algorithm 1. The refinement conditions in the case of PF
modelling of solidification are discussed in sub-section 3.4.5.

In the refinement algorithm, the refinement condition is checked in each Ω∗i

on the quadtree for which ∆hi > ∆hmin. The sub-domains in which the condi-
tion is fulfilled are flagged (Step 1 in Algorithm 1). A quadtree is checked again
multiple times in order to prevent potential non-balancing. A sub-domain
is flagged if a quadtree would become non-balanced after the refinement of
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FIGURE 3.10: Nodes after first (top-left), second (top-right), third
(bottom-left), and fourth (bottom-right) step in the generation
of a scattered node distribution with the uniform density of the

computational nodes.

Algorithm 1: Refinement algorithm.
Result: ∆hi = ∆hmin in those Ω∗i where the refinement condition is

fulfilled
Step 1: Flag each Ω∗i with ∆hi > ∆hmin in which the refinement
condition is fulfilled;

while #flags > 0 do
Step 2: Flag additional domains to ensure the balancing;
Step 3: Refinement of each flagged Ω∗i by four children sub-domains
{Ωj∗

i };
Repeat Step 1;

end

already flagged sub-domains (Step 2 in Algorithm 1) as shown in Fig. 3.11.
In the refinement (Step 3 in Algorithm 1), each flagged Ω∗i is divided by four
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child sub-domains {Ωj∗
i }. The whole procedure is repeated until the number

of flagged sub-domains due to the refinement condition in Step 1 in Algorithm
1 is equal to zero.

FIGURE 3.11: Refinement of a quadtree sub-domain (red) and an
additional refinement of the neighbouring sub-domains (blue) to

ensure a balanced quadtree.

When a flagged Ω∗i is refined by four forming child sub-domains {Ωj∗
i }, the

following steps are performed

1. the computational node distribution is generated in the child sub-
domains {Ωj∗

i },

2. the governing equations are discretisied in child sub-domains {Ωj∗
i } by

the RBF-FD method and the forward Euler scheme,

3. the field values in the child sub-domains {Ωj∗
i } are interpolated from Ω∗i

and its neighbours,

4. the stored data for the solution of governing equations and interpolation
in Ω∗i is freed.

3.4.4 De-refinement procedure

The de-refinement algorithm ensures the maximum allowed node spacing
∆hi ≤ ∆hmax in all sub-domains Ω∗i in which the de-refinement condition is
fulfilled as presented in Algorithm 2. The de-refinement conditions in the case
of PF modelling of solidification are discussed in sub-section 3.4.5.

In the de-refinement algorithm, the de-refinement condition is checked in
each Ω∗i on the quadtree for which ∆hi < ∆hmax. The sub-domains in which
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Algorithm 2: De-refinement algorithm.
Result: Maximum possible ∆hi in those Ω∗i where the de-refinement

condition is fulfilled
Step 1: Flag each Ω∗i with ∆hi < ∆hmax in which the de-refinement
condition is fulfilled if the balancing is sustained after the
de-refinement;

while #flags > 0 do
Step 2: De-refine flagged domains;
Repeat Step 1;

end

the condition is fulfilled are flagged only if the quadtree remains balanced after
the potential de-refinement (Step 1 in Algorithm 2) as shown in Fig. 3.12. In
the de-refinement (Step 2 in Algorithm 2), each flagged Ω∗i is removed from the
quadtree if its siblings are flagged for de-refinement too. The whole procedure
is repeated until the number of flagged sub-domains due to the de-refinement
condition from Step 1 in Algorithm 2 is equal to zero.

FIGURE 3.12: Sub-domains with allowed refinement (left) and a
case of sub-domains with prohibited de-refinement (right) by the

constraints imposed by a balanced quadtree.

When the flagged siblings {Ωj∗
i } are de-refined, the following steps are per-

formed
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1. the computational node distribution is generated in their parent Ω∗i ,

2. the governing equations are discretisied in their parent Ω∗i by the RBF-FD
method and the forward Euler scheme,

3. the field values in the parent Ω∗i are set by the interpolation from the
children {Ωj∗

i } and their neighbours.

4. the stored data for the solution of the governing equations and interpo-
lation in siblings {Ωj∗

i } is freed.

3.4.5 Refinement/de-refinement conditions

In the PF modelling of solidification, different strategies have been applied to
determine the refinement/de-refinement conditions. For instance, the adap-
tation is triggered when the gradients of the fields exceed a threshold value
(Greenwood et al., 2018). In this dissertation, very simple refinement and de-
refinement conditions are applied. The conditions were obtained from the pre-
liminary numerical experiments. The accuracy in comparison to the solution,
obtained on the uniform node distribution in the whole computational do-
main, has been analysed in the derivation of the conditions.

The refinement condition ensures the minimum node spacing ∆hmin in the
areas where the PF rapidly changes from φ = −1 to φ = 1. On the other hand,
the de-refinement condition ensures the maximum possible spacing (with the
upper limit ∆hmax) in the bulk of the solid and liquid phases. The refinement
and de-refinement conditions apply in each r∗i ∈ Ωi, where r∗i is a node from
the computational node distribution generated in the extended sub-domain
Ω∗i . We distinguish two types of refinement conditions. The first type ensures
the refinement in the vicinity of the evolving solid-liquid interface, while the
second type ensures the refinement according to the initial condition.

Refinement condition

A quadtree sub-domain Ωi is flagged for the refinement during the simulation
if

|φ(r∗i )| < 0.95, (3.27)
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for any r∗i ∈ Ωi. The condition from Eq. (3.27) ensures refinement in the vicin-
ity of the evolving solid-liquid interface.

Initial refinement condition

The initial condition for the PF is a solid nucleus with the origin rnuc and the
radius Rnuc. The condition from Eq. (3.27) is at the beginning of the simulation
applied to the computational nodes at the coarsest level with large spacings
between the computational nodes. The refinement condition from Eq. (3.27)
can fail in the refinement of the initial condition for the PF since all of the com-
putational nodes lie only in the bulk of the phases. An additional refinement
condition is therefore applied at the beginning of the simulation. A quadtree
sub-domain Ωi with node spacing hi is flagged for refinement if

∣∣∣|r∗i − rnuc| −Rnuc

∣∣∣ < 2hi, (3.28)

for any r∗i ∈ Ωi. The condition from Eq. (3.28) ensures refinement in the vicin-
ity of the initial solid-liquid interface.

De-refinement condition

A Ωi is flagged for de-refinement if

|φ(r∗i )| > 0.99, (3.29)

for all r∗i ∈ Ωi. The condition from Eq. (3.29) ensures de-refinement of the
areas in the liquid and solid phase where the PF is almost constant.

An example of the refinement/de-refinement algorithm

An example of the refinement/de-refinement during the solidification of a
spherical particle from a pure supercooled melt is shown in Fig. 3.13. The
red and blue colors represent the solid (φ = 1) and liquid (φ = −1) phases,
respectively, while the white color denotes the solid-liquid interface (φ = 0).
The boundaries of the quadtree sub-domains are denoted by a green colour.
The PF and the boundaries of the quadtree sub-domains {Ωi} are plotted for
the initial configuration and the next two changes in the quadtree.
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In the initial configuration, the algorithm adapts the area around the nu-
cleus according to Eq. (3.28). As the nucleus starts to grow, the condition from
Eq. (3.29) is fulfilled in the center of the solid particle which results in de-
refinement. When the solid circle is large enough, additional sub-domains in
the liquid phase are refined according to Eq. (3.27).

FIGURE 3.13: Initial condition for PF at t = 0 (top-left), ini-
tial refinement at t = 0 (top-right) according to Eq. (3.28), de-
refinement at t = t1 > 0 (bottom-left) according to Eq. (3.29), and
refinement at t = t2 > t1 (bottom-right) according to Eq. (3.27)

during the solidification of a circular particle.

The refinement and de-refinement conditions apply in the nodes r∗i ∈ Ωi

shown in Fig. 3.14. The conditions do not apply in the nodes r∗i /∈ Ωi, i.e., the
nodes from Ω∗i which lie in the neighbouring sub-domains. A RND or SND
with the constant ratio Li/∆hi = 10 is generated in each Ω∗i in the example
from Fig. 3.14.
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FIGURE 3.14: PF, the boundaries of sub-domains Γi (green), and
computational nodes r∗i ∈ Ωi (yellow) from the node distribution
generated in extended sub-domains Ω∗i in the case of RND (left)

and SND (right).

3.4.6 Adaptive time-stepping

Time step in the forward Euler scheme

Different time steps can be used in sub-domains with different node densi-
ties since the stable time step in the forward Euler scheme is a function of the
spacing ∆hi according to Eqs. (3.2) and (3.3). In theory, the maximum stable
time step can be used in each Ω∗i according to the value of ∆hi; however, this
is not feasible in practice. The ratio between two stable time steps in the sub-
domains with the level difference ∆N is 22∆N . For example, during one time
step in the sub-domains on the level N , 1024 time steps are performed in the
sub-domains on the level N + 5. Because the solution procedure is designed
in such a way that the time stepping on all the computational sub-domains is
performed first, followed by the refinement and de-refinement algorithms, the
solidification front may "escape" from the sub-domains with ∆hmin in 1024 it-
erations, which yields large errors and can even cause the collapse of the calcu-
lation. To overcome this problem, the maximum allowed time step is imposed
in Ω∗i as

∆ti = min [ ∆t(∆hi),∆t(2
m∆t∆hmin)] , (3.30)
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where the integer m∆t ≥ 0 stands for the time-step restriction parameter. The
same time step ∆ti = ∆t(∆hmin) is used in all the sub-domains if m∆t = 0. The
maximum allowed value ofm∆t depends on the physical problem. In the cases
which are considered in this dissertation, valuesm∆t = 1 andm∆t = 2 are used
to ensure the stability of the calculations. Preliminary numerical experiments
showed that the values m∆t > 2 can be problematic, especially at high growth
velocities. The introduction of parameter m∆t reduces the computational effi-
ciency of the solution procedure in order to ensure stability. Since only very
small values of m∆t are permitted in the examples considered in the disserta-
tion, the analysis of the impact of m∆t on the computational efficiency is not
specifically analysed.

Adaptive time-stepping and synchronisation between levels

The adaptive time-stepping is presented using an example with three levels of
refinement, as shown in Fig. 3.15. The time step on levelN is two times larger
than on level N + 1 in this example. The sequence of events for the case from
Fig. 3.15 is

1. A time step is evaluated on level N = 1.

2. A time step is evaluated on level N = 2.

3. Two time steps are evaluated on level N = 3.

4. Synchronisation of levels N = 2 and N = 3.

5. A time step is evaluated on level N = 2.

6. Two time steps are evaluated on level N = 3.

7. Synchronisation of levels N = 1 and N = 2 and N = 2 and N = 3.

During the synchronisation, the field values on the boundary Γ∗i of an extended
quadtree sub-domain Ω∗i on level N are interpolated from the neighbouring
extended sub-domains on level N + 1 and vice versa. The synchronisation
is also done between neighbouring sub-domains on the same level after each
time step as seen in the example from Fig. 3.16. The example considers three
neighbouring quadtree sub-domains, one on level N = 1 and two on level
N = 2.
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FIGURE 3.15: An example of adaptive time-stepping algorithm
for three levels when the time-step on the level N is two times
larger than the time step on the level N + 1. A solid arrow rep-
resents a time step on a level, while a dotted two-way arrow rep-
resents synchronisation between levels. Firstly, one time step on
levels N = 1 and N = 2 and two time steps on level N = 3 are
evaluated, followed by N = 2 ↔ N = 3 level synchronisation at
t = t1. Secondly, one time step on levelN = 2 and two time steps
on level N = 3 are evaluated, followed by N = 1 ↔ N = 2 and

N = 2↔ N = 3 level synchronisation at t = t2.

Adaptive time-stepping algorithm

The time-stepping with different time steps on different levels is implemented
by Algorithm 3. In the time-stepping procedure, the extended sub-domains
{Ω∗i } from a quadtree are segmented into sets {Ω∗i }N of NN sub-domains on
the level N . Evaluation of a time step in a quadtree sub-domain Ω∗i ∈ {Ω∗i }N
is independent of the evaluation of a time step in all the other sub-domains
from {Ω∗i }N . Time-stepping in domains {Ω∗i }N (Time step in Algorithm 3) is
therefore performed in parallel. OpenMP (Chapman et al., 2008) application
programming interface for shared-memory multiprocessing programming is
applied for the parallel evaluation of a single time step on level N .

The levels N and N + 1 are synchronised when the solutions on levels
N and N + 1 are at the same time. Recursion (Recursion in Algorithm 3) is
therefore applied to achieve synchronisation between levels N and N + 1.

During the communication, the interpolation of field values is done in Ω∗i

in each boundary node rk ∈ {Ω∗j}neighi which lies in Ω∗i . The neighbourhood
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FIGURE 3.16: An example of adaptive time-stepping for three
neighbouring quadtree sub-domains on levelsN = 1 andN = 2.
The solid arrow represents a time step in a sub-domain while the
dotted two-way arrow represents the synchronisation between
two sub-domains. The time-step on level N is two times larger
than the time step on N + 1 in this example. In the sequence
of tasks denoted by orange arrows, a time step in a sub-domain
on level N = 1 is evaluated first, followed by a time step in two
sub-domains on levelN = 2. Next, synchronisation between two
sub-domains on level N = 2 is performed, followed by another
time step evaluation in these two sub-domains. Finally, synchro-

nisation among all three sub-domains is performed.

{Ω∗j}neighi of each extended sub-domain Ω∗i is straightforwardly determined by
the nearest neighbours search (Samet, 1989) after each change on a quadtree.
The neighbouring quadtree sub-domains of a quadtree sub-domain on level
N can lie on levels {N − 1,N ,N + 1} since a balanced quadtree is used. In-
terpolation of the field values during the communication (Communication in
Algorithm 3) in a quadtree sub-domain Ω∗i ∈ {Ω∗i }N is also independent of the
interpolation of the field values during the communication in all the other sub-
domains from {Ω∗i }N and is therefore also performed in parallel by OpenMP.

3.4.7 Solution procedure

The RBF-FD method and the forward Euler scheme are used for the spatial
and the temporal discretisations of the governing equations in each Ω∗i . The
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Algorithm 3: Recursive time-stepping algorithm.
Result: Evaluate a time step on level N
Time step: Evaluate a time step in each Ω∗i ∈ {Ω∗i }N in parallel;
if N < Nmax then

while Levels N and N + 1 are not synchronised do
Recursion: Run Algorithm 3 on level N + 1;

end
else

do nothing;
end
Communication: Interpolate field values to each boundary node
rk ∈ {Ω∗j}neighi which lies in Ω∗i for each extended neighbouring
quadtree sub-domain Ω∗i ∈ {Ω∗i }N in parallel;

.

RBF-FD method is also used for the interpolation of the field values to the
boundary nodes in the communication between neighbouring sub-domains
and in the interpolation during the refinement/de-refinement procedure. The
solution procedure is presented in the Algorithm 4. Firstly, the parameters of
the numerical method are set. Next, the refinement according to the initial
condition is made. Finally, the iteration starts where each iteration consists of
three steps:

• adaptive time-stepping,

• refinement, and

• de-refinement.

3.4.8 Numerical implementation

The novel numerical approach is implemented in the programming language
Fortran and compiled with the Intel Visual Studio Compiler 19.0. The
Fortran libraries for the spatial discretisation of the PDEs by meshless
methods, for the temporal discretisation, and for the generation of scattered
node distribution were already developed in the framework of previous dis-
sertations (Mavrič, 2017; Hatić, 2019) at the Institute of Metals and Technology
in Ljubljana, Slovenia. In the framework of this dissertation, the adaptive
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Algorithm 4: Solution procedure.
Result: Solution of the governing equations in Ω in the time interval

t ∈ [tstart, tend]
Initialize RBF-FD method: N , n, P ;
Initialize forward Euler scheme: α∆t;
Initialize adaptive algorithm: ∆hmin, ∆hmax, mΩ, n∗, m∆t;
Initialize node distribution: S (for SND);
Initial refinement: execution of Algorithm 1 according to the initial
condition;
t = tstart;
while t ≤ tend do

Adaptive time-stepping: execution of Algorithm 3;
Refinement: execution of Algorithm 1;
De-refinement: execution of Algorithm 2;
t = t+ ∆tmax (∆tmax is the maximum current time step);

end

solution procedure has been developed. Previously developed Fortran

libraries have been applied for the

• generation of RND or SND in each Ω∗i , and

• spatial and temporal discretisation of the governing equations in each Ω∗i .

As already mentioned, the OpenMP interface has been used for the shared-
memory parallel computations.

Five new modules were developed in the framework of the dissertation:

1. Cloud: module for generation of Ω∗i (computational node distribution,
discretisation of PDEs, interpolation, ...).

2. Qtree: implementation of quadtree data structure.

3. QtreeCloud: extension of quadtree data structure for the use with
Cloud module.

4. Communicator: implementation of communication between Clouds.

5. CloudStructure: generation of sets {Ω∗i }N and implementation of
adaptive time-stepping.
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Programming language Python with the libraries Matplotlib and
Numpy was used for the processing and for the graphical presentation of the
numerical results.
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4 Numerical experiments

The performance of the developed numerical approach in terms of accuracy
and computational efficiency is thoroughly analysed by considering the fol-
lowing numerical experiments:

• solidification from an undercooled pure melt (Karma and Rappel, 1998),

• isothermal solidification from a dilute binary alloy (Karma, 2001), and

• solidification from a dilute Al-Cu alloy with constant cooling rate
(Boukellal et al., 2018).

The first two examples are quite standard in the verification of the numeri-
cal methods for the PF simulation of solidification. The third example is less
standard; however, it is very important and relevant for the PF modelling of
dendritic solidification in commercial aluminium alloys and steels.

All the cases consider the growth of a dendrite in 2-D with the cubic
anisotropy function

a(n) = (1− 3ε4)

(
1 +

4ε4
1− 3ε4

(
n′

4
x + n′

4
y

))
, (4.1)

where ε4 stands for the strength of the cubic anisotropy and n′ = (n′x, n
′
y) is

the normal n in the dendrite coordinate system

n′ = RT(θ0)n, (4.2)

where

R(θ0) =

[
cos θ0 − sin θ0

sin θ0 cos θ0

]
, (4.3)

is the rotation matrix. The dendrite coordinate system is determined according
to the preferential growth direction n0 = (cos θ0, sin θ0), where θ0 stands for the
angle between the x-axis of the computational coordinate system and n0.
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In the considered PF examples (Karma and Rappel, 1998; Karma, 2001;
Boukellal et al., 2018), the growth of a dendrite that is aligned with the compu-
tational coordinate system is considered, i.e.,R is the identity matrix (n′ = n).
The first two examples are extended to the growth for an arbitrary preferen-
tial growth direction in the present dissertation. More precisely, the growth
at values θ0 ∈ [0, π/4] is considered due to the cubic anisotropy function. The
accurate simulation of growth for arbitrary preferential directions is especially
important during the solidification of multiple, differently oriented dendrites,
which is the case in the industrial casting of aluminium alloys and steels.

The first example of dendritic solidification is used for the comprehensive
analysis of the accuracy and the computational efficiency of the numerical
model in Section 4.1. This example is solved by two solution procedures:

• basic solution procedure (BSP): uniform node distribution with constant
∆h and ∆t in the whole Ω„

• adaptive solution procedure (ASP): adaptive node distribution with dy-
namic ∆h and ∆t.

The four possible distributions of computational nodes in Ω are shown in Fig.
4.1. The BSP is used to test the temporal and spatial convergence properties
and the accuracy of the method for arbitrary preferential growth directions.
The results from the BSP are used to assess the accuracy and speed-up when
the ASP is used. The ASP only is used to consider the other two examples from
Sections 4.2 and 4.3.

4.1 Solidification of pure materials

In this section, the solidification of pure materials is considered. A 2-D exam-
ple with dimensionless undercooling ∆ = 0.65 and the strength of anisotropy
ε4 = 0.05, consistent with data from (Karma and Rappel, 1998), is chosen to
verify our newly developed numerical model. In the article, the thin-interface
limit of the PF model for the solidification of pure materials is originally for-
mulated. The PF model is numerically solved and successfully verified by the
results of the microscopic solvability theory for different values of ∆ and ε4.

The problem definition of the solidification of pure materials is given in Sec-
tion 4.1.1. The time step in the forward Euler scheme is determined in Section
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FIGURE 4.1: Four possible distributions of computational nodes
(marked yellow) for the PF modelling of dendritic solidification:
RND in the case of BSP (top-left), SND in the case of BSP (top-
right), RND in the case of ASP (bottom-left), and SND in the
case of ASP (bottom-right). Red and blue represent solid and liq-
uid phases, while white denotes the solid-liquid interface. The
boundaries of the quadtree sub-domains are marked in green.

Value mΩ = 5 is used in the ASP.

4.1.2. A typical simulation result is shown in Section 4.1.3. Characterisation
of the simulation results for the purpose of verification is presented in Section
4.1.4. In Section 4.1.5, the dendritic solidification of pure materials is simulated
by using BSP in order to test the accuracy of the forward Euler scheme and the
RBF-FD method. The solution obtained by BSP is used to assess the accuracy
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and the speed-up of the ASP in Section 4.1.6.

4.1.1 Problem definition

The computational domain Ω with the boundary Γ is a square with the south-
west vertex rsw and the side length L, as shown in Fig. 4.2. Solidification of
a dendrite from an undercooled pure melt is considered. The system of two
coupled governing equations for PF φ and the dimensionless temperature θ is
given by Eqs. (2.67) and (2.68)

a2(n)
∂φ

∂t
= −φ(φ2 − 1)− λθ(1− φ2)2 +∇ ·

(
a2(n)∇φ

)

+
∑

ξ=x,y

∂ξ

(
|∇φ|2a(n)

∂a(n)

∂(∂ξφ)

)
,

(4.4)

∂θ

∂t
= α2λ∇2θ +

∂φ

∂t
. (4.5)

The anisotropy function a(n) is given by Eq. (4.1). The parameter α2 is con-
stant, which leaves λ as the only free parameter of the PF model. According to
the thin-interface relations from Eqs. (2.62) and (2.64), the spatial and temporal
coordinates are measured in units of

W0 = d0
1

α1

λ, (4.6)

and
τ0 =

d2
0

DT

α2

α2
1

λ3. (4.7)

The initial condition for the dimensionless temperature assumes the con-
stant undercooling in the whole domain Ω

θ(t = 0) = −∆, (4.8)

where ∆ stands for the initial dimensionless undercooling. The initial condi-
tion for the PF is a circular nucleus with the origin rnuc and the radius Rnuc
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4.1. Solidification of pure materials

FIGURE 4.2: Illustration of a square computational domain Ω
with boundary Γ. A domain is defined by the south-west coor-
dinate rsw and the side length of a square L. Solidification from
an undercooled melt is initialized by a small nucleus with radius
Rnuc and center rnuc. Zero flux Neumann boundary conditions

are proposed for φ and θ.

(Provatas and Elder, 2010)

φ(t = 0) = − tanh

[ |r − rnuc|2 −R2
nuc√

2

]
. (4.9)

In the dissertation, the steady-state growth of a dendrite into an infinite under-
cooled melt is simulated. A pseudo-infinite undercooled melt is ensured by a
large enough Ω with zero flux Neumann boundary conditions for the PF

∇φ|Γ · nΓ = 0, (4.10)

and for the dimensionless temperature

∇θ|Γ · nΓ = 0, (4.11)

where nΓ stands for the normal to the boundary Γ. The zero-flux boundary
conditions also account for the symmetry if only one-quarter (or one-half) of a
dendrite is considered in order to reduce the computational cost of the simu-
lation.

In the dissertation, the example with the undercooling ∆ = 0.65 and the
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strength of anisotropy ε4 = 0.05 is considered. As already mentioned, this is
one of the examples from (Karma and Rappel, 1998) in which the PF model
from Eqs. (4.4) and (4.5) is derived. In the same study, the PF free parameter is
set to λ = 1/α2. In this way, the PF model correctly captures the physics of the
Stefan problem with negligible interface kinetics. The simulation parameters
used in the study are shown in Table 4.1.

TABLE 4.1: Simulation parameters.

Physical problem parameters
Strength of anisotropy (ε4) 0.05
Undercooling (∆) 0.65
Center of nucleus (rnuc) (0, 0)
Radius of nucleus (Rnuc) 10

PF parameters
Constant (α1) 0.8839
Constant (α2) 0.6267
Coupling parameter (λ) 1/α2

4.1.2 Stability criterion in the forward Euler scheme

In the case of pure materials, the time step is given as

∆t(∆h) = α∆t
1

4

∆h2

max(D̄T , 1/a(n))
(4.12)

The term 1/a(n) from Eq. (4.12) varies as a function of the normal n; hence,
the minimum of the anisotropy function is used in the stability criterion. The
anisotropy function from Eq. (4.1) has minimum 1−ε4 atn = (cosπ/4, sin π/4).
The time step is therefore given as

∆t(∆h) = α∆t
1

4

∆h2

max(D̄T , 1/(1− ε4))
(4.13)

The parameters from Table 4.1 yield

∆t(∆h) = α∆t(1− ε4)∆h2/4, (4.14)
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4.1. Solidification of pure materials

since D̄T = λα2 = 1 and therefore D̄T < 1/(1 − ε4). The actual time step in a
extended quadtree sub-domain Ω∗i with spacing ∆hi is according to Eq. (3.30)
from the sub-section 3.4.6 given as

∆ti(∆hi) = α∆t(1− ε4) min
(
∆h2

i , 2
2m∆t∆h2

min

)
/4, (4.15)

since the restriction parameter has to be additionally considered in the ASP.

4.1.3 Solution of PF model

The solution of the PF model with the simulation parameters from Table 4.2 is
shown in Figs. 4.3 and 4.4. Due to symmetry, only one quarter of a dendrite
is considered. The solid (φ = 1) and liquid (φ = −1) phases are marked red
and blue, respectively. The solid-liquid interface (φ = 0) is marked white. The
boundaries of the quadtree sub-domains are marked green.

At the beginning of the simulation, the whole Ω is undercooled below the
melting temperature (θ < 0). As the growth starts, the latent heat is released to
both the solid and liquid phases, as seen in Fig. 4.4 at t = 25. The temperature
in the solid phase quickly reaches the melting temperature (θ = 0). From then
on, the latent heat is released only in the liquid phase and away from the solid-
liquid interface.

4.1.4 Characterisation of simulation results

A very important issue in the verification of numerical models is the appro-
priate characterisation of the simulation results from Fig. 4.3 and 4.4. The
steady-state growth velocity vsteadytip of a dendrite growing into an undercooled,
infinitely large, domain turns out to be the most suitable observable (Jokisaari
et al., 2018) for the verification of different numerical methods. The numeri-
cally calculated vsteadytip can be directly compared to the vsteadytip obtained in the
framework of the microscopic solvability theory (Kessler and Levine, 1986) for
dendritic solidification.

In order to estimate the dimensionless growth velocity vtip(t) during a PF
simulation, the dimensionless distance ltip between the center and the tip of a
dendrite as a function of time has to be measured. The distance ltip at an arbi-
trary preferential growth direction is calculated with the following procedure:
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FIGURE 4.3: PF at t = 25 (top-left), t = 850 (top-right), t = 1675
(bottom-left), and t = 2500 (bottom-right). Red and blue repre-
sent the solid and liquid phases, respectively. White represents
the solid-liquid interface, while the boundaries of the quadtree

sub-domains are marked green.

• The preferential growth direction n0 is discretisied as

ri = rnuc + i∆hminn0 i = 1, 2, 3, . . . . (4.16)

• The phase field is interpolated to the points from Eq. (4.16) and the val-
ues are checked, until two sequential points for which φ(ri) > 0 and
φ(ri+1) < 0 are found.

• We take into account that the solution of the PF model in one dimen-
sion is the tanh function and estimate ltip as the solution to the following
system of two equations with two unknowns

φ(rk) = − tanh

( |rk − rnuc| − ltip√
2W0

)
, k = i, i+ 1. (4.17)
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FIGURE 4.4: Dimensionless temperature at t = 25 (top-left), t =
850 (top-right), t = 1675 (bottom-left), and t = 2500 (bottom-

right).

The distance ltip is measured at discrete times

tmeai = tmea0 + i∆tmea, i = 0, 1, 2, 3, . . . , (4.18)

where tmeai and ∆tmea stand for the i-th dimensionless measuring time and the
dimensionless time difference between the two measuring times, respectively.
In our case, the values tmea0 = 10 and ∆tmea = 10 are used. The growth velocity
is simply calculated as

vtip(t
mea
i ) =

ltip(t
mea
i+1 )− ltip(tmeai )

tmeai+1 − tmeai

. (4.19)

For the purpose of the verification of numerical methods, it is convenient to re-
scale the dimensional growth velocity ṽtip = vtipW0/τ0 in such a way that the
solution no longer depends on the capillary length d0 and the diffusivity DT ,
but solely on the undercooling ∆ and the strength of the anisotropy ε4 (Karma
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TABLE 4.2: Simulation parameters for the results from Figs. 4.3
and 4.4.

Preferential growth direction
Growth angle (θ0) 0◦

Computational domain parameters
Side length (L) 288
South-west coordinate (rsw) (0, 0)

Simulation time
Initial simulation time (tstart) 0
Final simulation time (tend) 2500

Forward Euler scheme
Stability parameter (α∆t) 0.3
Time step (∆t) α∆t(1− ε4)∆h2/4

RBF-FD method
Number of nodes in sub-domain (N ) 13
PHS power (n) 5
Highest monomial order (P ) 2

Adaptive algorithm
Type of node distribution RND
Sub-domain size/spacing ratio (mΩ) 15
Overlapping parameter (n∗) 1
Minimum spacing (∆hmin) 0.6
Maximum spacing (∆hmax) L/(2mΩ)
Time step-restriction parameter (m∆t) 2

and Rappel, 1998)
ṽtip → ṽtipd0/DT , (4.20)

The re-scaled dimensional velocity is according the definition ofW0 and τ0 (see
Eqs. (4.6) and (4.7)) calculated as

ṽtip = vtip
W0

τ0

d0

DT

= vtip
α1

α2

1

λ2
. (4.21)

The observables ltip and vtip are obtained by the post-processing of the sim-
ulation results. The post-processing itself introduces an error; however, the
post-processing error of ltip is much smaller than the post-processing error of
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4.1. Solidification of pure materials

the derivative vtip = dltip/dt. The distance ltip at different values of the numeri-
cal parameters is therefore considered when the convergence of the numerical
method is discussed. The velocity vtip at the converged solution is then com-
pared to the result of the microscopic solvability theory.

The distance ltip and velocity vtip as a function of time for the example from
Section 4.1.3 are shown in Fig. 4.5. At the beginning of the growth, a transient
with a rapid decrease of the velocity is observed, followed by the steady-state
growth. In the calculation of ltip, a small error is introduced, which is further
amplified in the calculation of vtip = dltip/dt. The averaging with five points
from the data set {tmeai , vtip(t

mea
i )} is therefore applied in the representation of

the velocity vtip(t), as shown in Fig. 4.5.
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FIGURE 4.5: Distance between the origin and the tip of a den-
drite (left) and the growth velocity as a function of time (right).
The growth velocity, calculated at discrete times according to Eq.
(4.19), is marked black. Averaging with five points of those val-

ues is marked red.

4.1.5 BSP

The numerical model is first tested on the BSP in order to later evaluate the
accuracy and computational efficiency of the ASP. The results from this sub-
section were published in (Dobravec et al., 2020).
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Convergence of the forward Euler scheme

The aim of this section is to determine the stable time step in the forward Euler
scheme, while the second-order accurate RBF-FD method with different val-
ues ofN is used for the spatial discretisation of the PDEs on RND and SND. To
achieve this goal, the cases with the simulation parameters from Table 4.3 are
considered. The values N represent symmetric stencils when using a RND.
The origin of the dendrite is set in the middle of the left side of the square,
since we want to have the interpolation points from Eq. (4.16) inside the com-
putational domain (not on the boundary). The interpolation to the boundary
is actually an extrapolation that can likely result in large errors.

TABLE 4.3: Simulation parameters for the analysis of the forward
Euler scheme.

Preferential growth direction
Growth angle (θ0) 0◦

Computational domain parameters
Side length (L) 240
South-west coordinate (rsw) (0,−L/2)

Time
Initial time (tstart) 0
Final time (tend) 1500

Forward Euler scheme
Stability parameter (α∆t) 0.3, 0.15, 0, 075, 0.0375, 0.01875
Time step (∆t) α∆t(1− ε4)∆h2/4

RBF-FD method
Number of nodes in sub-domain (N ) 9, 13, 21
PHS power (n) 5
Highest monomial order (P ) 2

Node distribution
Type of node distribution RND, SND (fixed S)
Spacing (∆h) 0.5

We are simulating the steady-state growth of a dendrite into an infinite
undercooled melt. In order to simulate the steady state, the final simulation
time has to be large enough in order to pass the initial transient regime. A
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4.1. Solidification of pure materials

pseudo-infinite undercooled melt is ensured by a large enough Ω, for which the
impact of Γ on ṽtip is negligible. The temperature field in Ω and the temperature
as a function of x at three positions of y at the end of the simulation are shown
in Fig. 4.6. The temperature at x = L is not affected by the growing dendrite;
hence, Γ does not alter the growing dendrite in the x-direction. The parameters
from Table 4.3 therefore ensure a pseudo-infinite domain. The same size of
domain Ω is also used in (Karma and Rappel, 1998).
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FIGURE 4.6: Temperature field (left) and temperature as a func-
tion of x at three positions of y (right) at the end of the simulation.

The model is tested for the values α∆t ≤ 0.3 from Table 4.3. We find that
the model is not stable for α∆t > 0.3 for each value of N . The relative error is
defined as

∆ltip
ltip

=
|lendtip (α∆t)− lendtip (α∆t = 0.01875)|

lendtip (α∆t = 0.01875)
, (4.22)

where lendtip = ltip(t = tend). The relative error as a function of α∆t for different
values of N on RND and SND is shown in Fig. 4.7. As expected, first-order
convergence is observed on both node distributions. The solution with α∆t =

0.3 and N = 21 on a RND is stable; however, inaccurate with a relative error
greater than 10 %. First-order convergence is observed for α∆t ≤ 0.15 in this
case.

The growth velocity at α∆t = 0.0375 is compared to the velocity obtained by
the microscopic solvability theory (MST). The steady-state growth velocities
for different values of ∆ and ε4, obtained by the MST (Kessler and Levine,
1986), are tabulated in (Karma and Rappel, 1998). The steady-state growth
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FIGURE 4.7: Relative error of ltip as a function of the forward
Euler scheme stability parameter α∆t by using RND (left) and

SND (right).

velocity for ∆ = 0.65 and ε4 = 0.05 is according to MST equal to ṽsteadytip =

0.0469.
The growth velocity as a function of time for three values ofN on RND and

SND is shown in Fig. 4.8. In the case of RND, the solution is converging with
the reduction of α∆t according to Fig. 4.7; however, not to the correct value
obtained by the solvability theory for N = 9, although a small value ∆h = 0.5

is used. In the case of SND, the solution is converging with the reduction of
α∆t to the correct value obtained by the solvability theory for all values of N .
This is an interesting observation, which is also observed in the next sections.

Convergence of the RBF-FD method

According to the study of (Bayona et al., 2017), the order of the RBF-FD method
is determined by the highest order of augmentation monomials. Authors also
showed that the one-sided local sub-domains near the domain boundary do
not alter the accuracy of the method when the number of nodes in a local
sub-domain N is approximately twice as large as the number of augmenta-
tion monomials Naug. In our study, we apply second-order (P = 2) augmenta-
tion, which yields Naug = 6 augmentation monomials. The convergence of the
RBF-FD method on RND and SND is tested for the case with N = 13. Again,
steady-state growth is simulated with the parameters from Table 4.4.
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FIGURE 4.8: Re-scaled growth velocity as a function of time using
RND (left) and SND (right) with α∆t = 0.15.

The distances lendtip = ltip(t = tend) are calculated on RND and SND for each
value of ∆h from Table 4.4. The Richardson extrapolation (RE) (Širca and Hor-
vat, 2018) is applied to determine the order of the method since the further
reduction of ∆h would be computationally too expensive. In the RE, the solu-
tion lendtip (∆h) is written as

lendtip (∆h) = lend,REtip + CRE∆hnRE , (4.23)

where lend,REtip , CRE , and nRE are the distance we wish to approximate,
a constant, and the order of RE, respectively. The values of lendtip for
∆h ∈ {0.2, 0.4, 0.6} are considered in the RE to obtain a system of three
non-linear equations for three unknowns (lend,REtip , CRE, nRE) according to Eq.
(4.23). The bisection method is used to solve the system. The results of the
numerical simulations along with the results of the RE are given in Table 4.5.

As expected, second-order convergence is observed on RND. Interestingly,
sixth-order convergence is observed on SND; however, this does not mean that
the order of the method is actually so high. The determination of ltip experi-
ences an error which is lower in the case of RND where the computational
nodes coincide with the points from Eq. (4.16) and higher in the case of SND.
The distance lend,RNDtip , lend,REtip obtained on RND, is therefore chosen as the value
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TABLE 4.4: Simulation parameters for the analysis of the RBF-FD
method.

Preferential growth direction
Growth angle (θ0) 0◦

Computational domain parameters
Side length (L) 240
South-west coordinate (rsw) (0,−L/2)

Time
Initial time (tstart) 0
Final time (tend) 1500

Forward Euler scheme
Stability parameter (α∆t) 0.1
Time step (∆t) α∆t(1− ε4)∆h2/4

RBF-FD method
Number of nodes in sub-domain (N ) 13
PHS power (n) 5
Highest monomial order (P ) 2

Node distribution
Type of node distribution RND, SND (fixed S)
Spacing (∆h) 0.8, 0.6, 0.4, 0.2

TABLE 4.5: Distance lendtip on RND and SND for different values of
∆h and the results of RE.

∆h RND SND
0.8 142.54 140.93
0.6 141.99 141.12
0.4 142.57 142.67
0.2 142.93 142.81

lend,REtip 143.06 142.81
nRE 1.94 6.14

to which the solutions on both node distributions should converge to. The rel-
ative error

∆ltip
ltip

=
|lendtip − lend,RNDtip |

lend,RNDtip

, (4.24)
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as a function of ∆h is shown in Fig. 4.9. A small deviation from the second-
order convergence is observed in the case of SND due to the previously dis-
cussed error in the determination of ltip.
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FIGURE 4.9: The relative error as a function of the spacing using
RND and SND.

Performance at arbitrary preferential growth directions

In the previous two sections, the growth along the x-axis of the coordinate sys-
tem is considered (θ0 = 0). In this section, the performance of the method for
arbitrary preferential growth directions is studied. The solid-liquid interface
at the end of the simulation for three different preferential growth directions is
shown in Fig. 4.10. The origin of the solid nucleus is put in the middle of Ω in
this case; hence, side L has to be twice as large. The method is tested for the
values of θ0 in the range θ0 ∈ [0◦, 45◦] with the orientation step of 5◦ , as shown
in Table 4.6.

The growth velocity at the end of the simulation as a function of θ0 for N =

13 and two values of ∆h on RND and SND is shown in Fig. 4.11. The re-scaled
growth velocity, obtained in the framework of the MST, is also plotted. In the
case of RND, ṽsteadytip departures from the MST growth velocity as θ0 increases.
The departure decreases as the spacing is lowered from ∆h = 0.8 to ∆h = 0.6.
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FIGURE 4.10: The solid-liquid interface at the end of the simula-
tion for three differently oriented dendrites.

We can also see that the velocity ṽsteadytip at θ0 = 0 is slightly lowered as ∆h

decreases on RND. This is also observed in (Karma and Rappel, 1998).
In the case of SND, the calculation has been performed on five different

SNDs defined by five different seeds S. The minimum, the maximum and
the median value of velocity ṽsteadytip at each θ0 is plotted. The median value of
velocity as a function of θ0 is almost a constant. As ∆h is decreased, the median
is shifted towards the MST growth velocity and depends less on θ0. Also, the
error bar decreases as ∆h is lowered.

The growth velocity at the end of the simulation as a function of θ0 for
∆h = 0.8 and three values of N on RND and SND is shown in Fig. 4.12. In
the case of RND, the best result is observed for N = 13. The cases with N = 9

and N = 21 are very prone to the rotation of a dendrite as N = 9 yields the
worst result. In the case of SND, the calculation was again performed on five
different SNDs defined by five different seeds S. For reasons of clarity, only
the median value of velocity ṽsteadytip at each θ0 is plotted. The growth velocity
is almost independent of the orientation angle for all three values of N . The
solution with N = 21 is closest to the solution obtained by the MST.
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TABLE 4.6: Simulation parameters for the analysis of the perfor-
mance for differently oriented dendrites

Preferential growth direction
Growth angle (θ0) 0◦, 5◦, 10◦, 15◦, 20◦, 25◦, 30◦, 35◦, 40◦, 45◦

Computational domain parameters
Side length (L) 480
South-west coordinate (rsw) (−L/2,−L/2)

Time
Initial time (tstart) 0
Final time (tend) 1500

Forward Euler scheme
Stability parameter (α∆t) 0.1
Time step (∆t) α∆t(1− ε4)∆h2/4

RBF-FD method
Number of nodes in sub-domain (N ) 9, 13, 21
PHS power (n) 5
Highest monomial order (P ) 2

Node distribution
Type of node distribution RND, SND (five different S)
Spacing (∆h) 0.8, 0.6

Simulations with thermal noise

In this sub-section, the influence of the thermal noise on the growth is anal-
ysed. We study the influence of the magnitude of the noise Fu on the steady-
state growth velocity by using RND and SND at N = 13 and ∆h = 0.8. In
the analysis, we repeat the analysis from Fig. 4.11. RND and a single SND are
used in the analysis. The analysis is performed at values Fu = 0, Fu = 10−5, and
Fu = 10−4, which are similar to the magnitudes in (Karma and Rappel, 1999).
For Fu > 0, simulations with five different sets of normally distributed ran-
dom numbers are performed. At each θ0, the median, the minimum, and the
maximum of the rescaled steady-state growth velocity are plotted as shown in
Fig. 4.13.

In the case of the RND, the median value of ṽtip for Fu > 0 is very close
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FIGURE 4.11: Steady-state growth velocity as a function of the
preferential growth direction for two different spacings ∆h and

N = 13 using RND (left) and SND (right).

to ṽtip at Fu = 0 while the difference between the minimum and the maxi-
mum velocity increases with Fu. In the case of the SND, the median value as
a function of θ0 becomes more scattered as Fu increases while the the differ-
ence between the minimum and the maximum velocity increases with Fu. The
difference between the maximum and the minimum is approximately twice
as larger by using SND in comparison to the use of RND. This indicates that
the thermal noise influences the solution obtained by using SND to a greater
extent in comparison to the use of RND, especially at larger magnitudes of the
thermal noise.

4.1.6 ASP

In this section the same numerical tests as in Section 4.1.5 are performed using
ASP. The accuracy and computational efficiency in comparison to the BSP is
assessed.
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FIGURE 4.12: Steady-state growth velocity as a function of the
preferential growth direction for three different sizes of local sub-

domain N and ∆h = 0.8 using RND (left) and SND (right).

Forward Euler scheme

The convergence of the forward Euler scheme is assessed for the same numer-
ical parameters from Table 4.3 in Section 4.1.5. The constant spacing ∆h = 0.5

from Table 4.3 is set as the minimum spacing in the ASP with the parameters
from Table 4.7.

The relative error ∆ltip/ltip from Eq. (4.22) as a function of α∆t on RND and
SND for mΩ = 15 is shown in Fig. 4.14. The same behaviour as with BSP
from Fig. 4.7 in Section 4.1.5 is observed for both node distributions. The re-
scaled growth velocity as a function of time is shown in Fig. 4.15. In the case
of RND, the same behaviour as for BSP from Fig. 4.8 is observed. In the case
of SND, the situation is a little different. The quadtree domain decomposition
introduces regularity in the solution on SND for mΩ = 15, which shifts the
velocity away from the solution obtained by BSP. The effect of the regularity
on the solution should decay with the increase of the sub-domain size/spacing
ratio. The re-scaled growth velocity as a function of time on SND for the ratios
mΩ = 30 and mΩ = 60 is shown in Fig. 4.16. The growth velocity for mΩ = 30

is still affected by the regularity, while the velocity for mΩ = 60 is closer to the
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FIGURE 4.13: Steady-state growth velocity as a function of the
preferential growth direction at three different magnitudes of

noise Fu and N = 13 using RND (left) and SND (right).

velocity obtained by BSP in Figure 4.8 in Section 4.1.5.

TABLE 4.7: Parameters for the analysis of the forward Euler
scheme in the adaptive algorithm.

Minimum spacing (∆hmin) 0.5
Sub-domain size/spacing ratio (mΩ) 15, 30, 60
Overlapping parameter (n∗) 1
Time step-restriction parameter (m∆t) 2

RBF-FD method

The convergence of the RBF-FD method is assessed for the same numerical
parameters from Table 4.4 in Section 4.1.5. Constant spacings ∆h from Table
4.4 are set as the minimum spacings in the ASP with the parameters from Table
4.8. The side length of square Ω is given as

L = 2NmaxmΩ∆hmin, (4.25)
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FIGURE 4.14: Relative error of ltip as a function of forward Euler
scheme stability parameter α∆t using RND (left) and SND (right)

in the case of ASP with mΩ = 15.
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FIGURE 4.15: Rescaled growth velocity as a function of time us-
ing RND (left) and SND (right) in the case of ASP with mΩ = 15

and α∆t = 0.15.

in the quadtree domain decomposition. The value L = 268.8 is therefore used
instead of L = 240 in the analysis of the convergence of the RBF-FD method
with the parameters from Table 4.8.

The results of the RE in the case of ASP are shown in Table 4.9. The ob-
served order of the convergence is very close to the expected second order for
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FIGURE 4.16: Rescaled growth velocity as a function of time for
mΩ = 30 (left) and mΩ = 60 (right) using SND and α∆t = 0.15.

TABLE 4.8: Parameters for the analysis of the RBF-FD method
in the adaptive algorithm. The configuration for each ∆hmin is

marked with the same colour.

Computational domain parameters
Side length (L) 268.8

Adaptive algorithm
Minimum spacing (∆hmin) 0.8 , 0.6 , 0.4 , 0.2

Sub-domain size/spacing ratio (mΩ) 21 , 28 , 21 , 21
Overlapping parameter (n∗) 2
Time step-restriction parameter (m∆t) 2

both node distributions. In contrast to the results obtained by BSP, very similar
results of RE are observed on RND and SND. The reason for this is the regular
quadtree domain decomposition, which introduces some regularity in a SND.
The effect of regular domain decomposition on the performance in the case of
SND is further studied in the next section.

Arbitrary preferential growth directions

The analysis of the method for differently oriented dendrites is studied for
the same numerical parameters from Table 4.6 in Section 4.1.5. The constant
spacings from Table 4.6 are set as the minimum spacings in the ASP with the
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TABLE 4.9: Distance lendtip on RND and SND for different values of
∆hmin and the results of RE.

∆hmin RND SND
0.8 141.32 139.73
0.6 142.05 140.80
0.4 142.45 141.86
0.2 142.70 142.58

lend,REtip 142.80 142.90
nRE 1.87 1.72

parameters from Table 4.10. For the same reason as in the analysis of the RBF-
FD method, the side length L = 537.6 is used instead of L = 480.

TABLE 4.10: Parameters for the analysis of the method in the
adaptive algorithm for differently oriented dendrites. The con-

figuration for each ∆hmin is marked with the same colour.

Computational domain parameters
Side length (L) 537.6

Adaptive algorithm
Minimum spacing (∆hmin) 0.8 , 0.6 , 0.8 , 0.6

Sub-domain size/spacing ratio (mΩ) 21 , 28 , 42 , 56
Overlapping parameter (n∗) 1
Time step-restriction parameter (m∆t) 2

The growth velocity at the end of the simulation as a function of θ0 for
N = 13 and two values of ∆hmin on RND and SND is shown in Fig. 4.17.
In the case of RND, a very similar behaviour as in Figure 4.11 from Section
4.1.5 for the BSP is observed. Interestingly, the growth velocity is slightly less
affected by the orientation in the case of ASP. In the case of SND, the behaviour
of the median is very similar to the behaviour in the case of BSP; however, the
error bars are larger.

The growth velocity at the end of the simulation as a function of θ0 for
∆hmin = 0.8, mΩ = 21 and three values of N on RND and SND is shown in Fig.
4.18. For both node distributions, similar behaviour to that in Figure 4.12 from
Section 4.1.5 for a BSP is observed. It is, however, evident that the solution on
SND with ASP is more prone to rotation in comparison to the solution with
BSP, especially for N = 9. The best result is again observed for N = 21.
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FIGURE 4.17: Steady-state growth velocity as a function of the
preferential growth direction using RND (left) and SND (right)

for N = 13 and two values of ∆hmin.

The simulations are also performed by using SND at mΩ = 42 for ∆hmin =

0.8 and mΩ = 56 for ∆hmin = 0.6 as seen in Fig. 4.19. The error bars are
reduced as mΩ is increased in the study for N = 13 and different values of
∆hmin in comparison to Fig. 4.17. The solution is less sensitive to the rotation
at different values of N as mΩ is increased; however, for N = 9 the solution is
still much more prone to rotation in comparison to the BSP.

4.1.7 Computational efficiency

In the previous two sub-sections, the accuracy of the developed numerical
model was studied. In this sub-section, the computational efficiency of the
numerical model is analysed. First, the speed-up of the ASP is analysed, fol-
lowed by an assessment of the speed-up due to OpenMP parallelisation. The
analysis of the speed-up is made on a HP ZBook laptop with the hexa-core
Intel Core i7-9750H 2.6-4.5GHz processor. The computational effi-
ciency is tested for the case with L = 256 and tend = 1500, which is similar
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FIGURE 4.18: Steady-state growth velocity as a function of the
preferential growth direction using RND (left) and SND (right)

for ∆hmin = 0.8 and mΩ = 21.

0 5 10 15 20 25 30 35 40 45

θ0 [◦]

0.045

0.050

∆hmin = 0.8, mΩ = 42

MST

0 5 10 15 20 25 30 35 40 45

0.045

0.050

∆hmin = 0.6, mΩ = 56

MST

ṽ
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FIGURE 4.19: Steady-state growth velocity at N = 13 (left) and at
∆hmin = 0.8, mΩ = 42, and three values of N (right) using SND.

101



Chapter 4. Numerical experiments

to the cases from previous sections (L = 240 and L = 268.8). The used simu-
lation parameters are given in Table 4.11. The choice of RND or SND does not
change the performance of the ASP, hence, a RND is used in the analysis.

TABLE 4.11: Simulation parameters for the analysis of the com-
putational efficiency of the numerical model.

Preferential growth direction
Growth angle (θ0) 0◦

Computational domain parameters
Side length (L) 256
South-west coordinate (rsw) (0, 0)

Time
Initial time (tstart) 0
Final time (tend) 1500

Forward Euler scheme
Stability parameter (α∆t) 0.3
Time step (∆t) α∆t(1− ε4)∆h2/4

RBF-FD method
Number of nodes in sub-domain (N ) 13
PHS power (n) 5
Highest monomial order (P ) 2

Node distribution
Type of node distribution RND

Adaptive algorithm
Sub-domain size/spacing ratio (mΩ) 5, 10, 20, 40, 80
Overlapping parameter (n∗) 1
Minimum spacing (∆hmin) 0.4, 0.8
Maximum spacing (∆hmax) L/(2mΩ)
Time step-restriction parameter (m∆t) 1

ASP speed-up

In order to assess the speed-up of the adaptive procedure only, the simulations
are performed on a single processor core. The speed-up of the ASP is defined
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as
ASP speed-up =

ERTBSP

ERTASP

, (4.26)

where ERTBSP and ERTASP stand for the elapsed real time (ERT) in the case
of the BSP and ASP, respectively. A simulation by BSP is made on a uniform
RND with ∆h = ∆hmin. ERTBSP and ERTASP for ∆hmin = 0.8 and mΩ = 5 are
shown in Fig. 4.20. The total ERT has three contributions in the case of ASP:

• Iteration ERT: time stepping with the forward Euler scheme while using
the RBF-FD method for the spatial discretisation.

• Communication ERT: interpolation of boundary values by the RBF-FD
method.

• Adaptation ERT: refinement/de-refinement algorithm.

Naturally, the iteration ERT represents the majority of the total ERT. The main
goal of the ASP is to reduce the iteration ERT in comparison to the BSP. How-
ever, some extra computational work is introduced due to the communication
and adaptation that reduce the total speed-up in comparison to the BSP.
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FIGURE 4.20: The ERT by using BSP (left) and ASP (right) for
∆h = 0.8. ASP with mΩ = 5 is used.
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The percentage of ERT for performing various tasks during simulation as a
function of time for mΩ = 5 and two values of ∆hmin is shown in Figure 4.21.
The iteration of the governing equations represents the majority of the whole
ERT. For ∆hmin = 0.8, adaptation takes relatively more time in comparison
to ∆hmin = 0.4 , while the percentage of communication is approximately the
same for both spacings.
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FIGURE 4.21: The percentage of ERT for performing various
tasks during simulation at ∆hmin = 0.8 (left) and ∆hmin = 0.4

(right) for mΩ = 5.

The percentage of ERT for performing various tasks during the simulation
as a function of time for ∆hmin = 0.4 and four values of mΩ is shown in Figure
4.22. Naturally, the ERT for the adaptation and communication decreases as
mΩ is increased. The largest percentage of ERT for adaptation at the begin-
ning of the simulation is observed for mΩ = 20. In the initial configuration for
mΩ = 20, the solid nucleus is refined by only four quadtree sub-domains with
∆hmin = 0.4 since the size of the nucleus is equal to Rnuc = 10 and the size of
the smallest quadtree sub-domain is equal to Li = ∆hmin ×mΩ = 8 as seen in
Fig. 4.23. As the solid phase starts to grow, a large number of quadtree sub-
domains have to be refined to ensure balancing, which explains the large per-
centage of the adaptation ERT. That behaviour is for the same reason observed
for ∆hmin = 0.8 and mΩ = 10. For mΩ = 40 and mΩ = 80, the adaptation does
not occur until the dendrite is large enough, since a large area around the solid
nucleus is refined in the initial refinement.
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FIGURE 4.22: The percentage of ERT for performing various
tasks during simulation for mΩ = 10 (top-left), mΩ = 20 (top-
right), mΩ = 40 (bottom-left), and mΩ = 80 (bottom-right) at

∆hmin = 0.4.

The speed-up as a function of time for different values of mΩ and the final
speed-up as a function of mΩ are shown in Fig. 4.24. The speed-up is a de-
creasing function of time with the exception of mΩ = 20 , where the maximum
speed-up is shifted a little away from t = 0. The reason for that is the previ-
ously explained increase of the adaptation ERT for mΩ = 20 and ∆hmin = 0.4

(and for mΩ = 10 and ∆hmin = 0.8). The maximum final speed-up is observed
for mΩ = 5 and mΩ = 10. A higher speed-up is observed for ∆hmin = 0.4.

In Fig.4.25, the speed-up is further analysed by plotting three speed-ups
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FIGURE 4.23: Initial configuration of a quadtree for mΩ = 5 (top-
left), mΩ = 10 (top-right), mΩ = 20 (bottom-left), and mΩ = 40

(bottom-right) at ∆hmin = 0.4.
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• ASP speed-up for iteration only (marked by Iter),

• ASP speed-up for iteration and communication (marked by +Comm),

• ASP speed-up for iteration, communication and adaptation (marked by
+Comm+Adapt).

It is evident that the speed-up is decreased primarily by communication. As
mΩ increases, the reduction of the speed-up due to communication and adap-
tation decreases.
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FIGURE 4.25: Contributions of communication (+Comm) and
adaptation (+Adapt) in the reduction of the speed-up due to iter-
ations (Iter) only for ∆hmin = 0.8 (left) and ∆hmin = 0.4 (right).

At the beginning of the simulation, the RBF-FD coefficients for each spatial
operator have to be calculated according to Eq. (3.17) from Section 3.2. Prepa-
ration time ERTPREP, the ERT for calculation of the RBF-FD coefficients before
the time-stepping begins, has not been analysed in this section yet. In the case
of BSP, the coefficients have to be calculated for each computational node in
Ω, which is a computationally expensive task, especially for large number of
computational nodes. In the case of ASP, the RBF-FD coefficients are calculated
at the beginning of the simulation for nine possible extended sub-domains Ω∗i
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• four corner Ω∗i (south-west, north-west, north-east, south-east) with two
sides on the boundary of Ω,

• four side Ω∗i (west, north, east, south) with one side on the boundary of
Ω, and

• inner Ω∗i without sides on the boundary of Ω.

When a new Ω∗i is created in the refinement or de-refinement procedure during
a simulation, the RBF-FD coefficients are re-scaled according to ∆hi and stored
for the calculations in Ω∗i . This hugely reduces ERTPREP and adaptation ERT.
In the case of ASP, ERTPREP also accounts for the ERT of the initial refinement.

The ERTPREP for the BSP and ASP are shown in Table 4.12. In the case of
ASP, ERTPREP increases withmΩ. ERTPREP for BSP is higher than ERTPREP for
ASP, especially for the smaller values of mΩ.

TABLE 4.12: The ERTPREP for BSP and ASP.

∆hmin/mΩ 5 10 20 40 80 BSP
0.8 4 s 5 s 15 s 44 s 126 s 154 s
0.4 5 s 8 s 16 s 43 s 135 s 648 s

Parallelisation speed-up

The parallelisation speed-up is defined as

OpenMP speed-up =
ERT(Ncores = 1)

ERT(Ncores)
, (4.27)

where Ncores stands for the number of cores in the processor used to run a
simulation. In the case of ASP, the parallelisation is performed over the sub-
domains {Ω∗i }N on each level N of a quadtree. In the case of BSP, the par-
allelisation is performed over the computational nodes from a computational
domain.

The speed-up of ASP and BSP for two values of ∆hmin is shown in Fig. 4.26.
For Ncores ≤ 4, the speed-up is quite close to the ideal speed-up for both values
of ∆hmin. For mΩ = 5 and ∆hmin = 0.8, the speed-up is further increased
at Ncores = 5 and decreased at Ncores = 6. For mΩ = 10 and mΩ = 40 with
∆hmin = 0.8, the speed-up slightly reduced at Ncores = 5 and slightly increased
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at Ncores = 6. For mΩ = 20 and mΩ = 80 with ∆hmin = 0.8, the speed-up is
slightly reduced for Ncores > 4. For ∆hmin = 0.4 and Ncores > 4, the speed-up
is further increasing as a function of Ncores for all values of mΩ; however, with
a lower rate for mΩ = 5 and mΩ = 80.

There are four main reasons for the observed reduction of the speed-up:

• not all the available cores are occupied when Ncores is higher than NN ,
which occurs at high values of mΩ as seen in Fig. 4.23 from the previous
sub-section,

• not all available cores are occupied when the remainder in the division
betweenNN andNcores is greater than zero (this drawback is more promi-
nent at low values of NN ),

• some parts of the code for adaptation cannot be performed in parallel,

• according to the analysis with the VTune Profiler tool from the
Intel Parallel Studio XE 2020 software development package,
the memory bandwidth represents a bottleneck of the program as the
computational tasks on the processor cores cannot be performed simul-
taneously due to data starvation as Ncores is increased. This is especially
limiting in our numerical model, which requires a large amount of data
to be transferred from the memory to the processor to perform a single
task, e.g., to evaluate a spatial operator in a computational node.

4.1.8 Discussion

In Section 4.1, the newly developed numerical approach is analysed for the PF
modelling of the dendritic solidification of pure materials for arbitrary pref-
erential growth directions. The growth velocity is compared to the reference
growth velocity obtained in the framework of the MST. The accuracy of the
BSP is analysed first, followed by the analysis of the accuracy of the ASP in
comparison to the BSP. The ASP speed-up and OpenMP speed-up are analysed.

The results obtained by the BSP show, that the use of the SND provides
equal or better accuracy in comparison to the use of the RND. The same accu-
racy is observed in the BSP and ASP by using the RND. The quadtree domain
decomposition in the ASP introduces regularity in the solution obtained by

109



Chapter 4. Numerical experiments

1 2 3 4 5 6
Ncores

1

2

3

4

5

6

O
p
e
n
M
P

sp
ee

d
-u

p

mΩ = 5

mΩ = 10

mΩ = 20

mΩ = 40

mΩ = 80

BSP

Ideal

1 2 3 4 5 6
Ncores

1

2

3

4

5

6

O
p
e
n
M
P

sp
ee

d
-u

p

mΩ = 5

mΩ = 10

mΩ = 20

mΩ = 40

mΩ = 80

BSP

Ideal

FIGURE 4.26: Parallelisation speed-up for ∆hmin = 0.8 (left) and
∆hmin = 0.4 (right).

using the SND. Large enough quadtree sub-domain size/spacing ratios have
to be used in the ASP in order to sustain the BSP’s accuracy if the SND is
in use. The ASP successfully speeds-up the calculations. Smaller values of
the quadtree sub-domain size/spacing ratio provide a higher ASP speed-up.
OpenMP can be successfully used for the speed-up of the ASP. The results are
further comprehensively summarized and concluded in Section 5.

4.2 Solidification of binary alloys

In this section, the isothermal solidification of binary alloys is considered. A
2-D example from (Karma, 2001) is chosen as the reference solution to which
the results of our newly developed numerical approach are compared. In the
article, the thin-interface limit of the PF model for the solidification of binary
alloys with the introduction of the anti-trapping current is originally formu-
lated.
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The problem definition of the solidification of binary alloys is given in Sec-
tion 4.2.1. The time step in the forward Euler scheme is determined in Section
4.2.2. A typical simulation result is shown in Section 4.2.3. Characterisation
of the simulation results for the purpose of verification is presented in Section
4.2.4. The numerical results and the comparison with the reference solution
are presented in Section 4.2.5.

4.2.1 Problem definition

The computational domain Ω with the boundary Γ is a square with the south-
west vertex rsw and the side length L as shown in Fig. 4.27. Isothermal solidifi-
cation (θ = 0) of a dendrite from a supersaturated (U < 0) binary alloy (Nc = 2)
with negligible diffusivity of solute in the solid phase (Ds = 0) is considered.
The system of two coupled governing equations for PF φ and dimensionless
supersaturation U is given by Eqs. (2.84) and (2.85)

(1 + (1− k0)U)a2(n)
∂φ

∂t
= φ− φ3 − (1− φ2)2λU

+∇ ·
(
a2(n)∇φ

)
+
∑

ξ=x,y

∂ξ

(
|∇φ|2a(n)

∂a(n)

∂(∂ξφ)

)
,

(4.28)

and

1

2
(1 + k0 − (1− k0)φ)

∂U

∂t
=

1

2
(1 + (1− k0)U)

∂φ

∂t

+∇ ·
(
α2λ

1− φ
2
∇U +

1

2
√

2
(1 + (1− k0)U)

∂φ

∂t

∇φ
|∇φ|

)
,

(4.29)

where the index of the i-th solute element has been dropped since the binary
alloy is considered. The parameter ψ is set to one. The cubic anisotropy func-
tion a(n) is given by Eq. (4.1). The parameter α2 is constant, which leaves λ
as the only free parameter of the PF model. According to the thin-interface
relations from Eqs. (2.77) and (2.78), the spatial and temporal coordinates are
measured in units of

W0 = dc
1

α1

λ, (4.30)

and
τ0 =

d2
c

D`

α2

α2
1

λ3. (4.31)
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FIGURE 4.27: Illustration of a square computational domain Ω
with boundary Γ. A domain is defined by the south-west coor-
dinate rsw and the side length of a square L. Solidification from
a supercooled binary alloy is initialized by a small nucleus with
radius Rnuc and center rnuc. Zero-flux Neumann boundary con-

ditions are proposed for φ and U .

The initial condition for the supersaturation assumes the constant super-
saturation in the whole Ω

U(t = 0) = −Υ, (4.32)

where Υ stands for the initial dimensionless supersaturation. The initial condi-
tion for the PF is a circular nucleus with the origin rnuc and the radius Rnuc, al-
ready defined in Eq. (4.9) from section 4.1. In the dissertation, the steady-state
growth of a dendrite into an infinite supersaturated binary alloy is simulated.
A pseudo-infinity is ensured by a large enough Ω with a zero-flux Neumann
boundary condition for the PF already defined in Eq. (4.10) from Section 4.1.
The same boundary condition is also used for the dimensionless supersatura-
tion

∇U |Γ · nΓ = 0. (4.33)

An example with the supersaturation Υ = 0.55, the strength of anisotropy
ε4 = 0.02, and the partition coefficient k0 = 0.15 is considered. The PF free
parameter is set to λ = 2/α2 (Karma, 2001) in order to obtain a PF model that
correctly captures the physics of the Stefan problem with negligible interface
kinetics. The simulation parameters used in the study are shown in Table 4.13.
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TABLE 4.13: Simulation parameters.

Physical problem parameters
Partition coefficient (k0) 0.15
Strength of anisotropy (ε4) 0.02
Initial supersaturation (Υ) 0.55
Center of nucleus (rnuc) (0, 0)
Radius of nucleus (Rnuc) 22α1/λ

PF parameters
Constant (α1) 0.8839
Constant (α2) 0.6267
Coupling parameter (λ) 2/α2

4.2.2 Stability criterion in the forward Euler scheme

The time step is in the case of binary alloys given as

∆t(∆h) = α∆t
1

4

∆h2

max(D̄`, 1/(1− ε4))
(4.34)

The parameters from Table 4.13 yield

∆t(∆h) = α∆t∆h
2/(4D̄`), (4.35)

since D̄` = λα2 = 2 and therefore D̄` > 1/(1 − ε4). The actual time step in a
extended quadtree sub-domain Ω∗i with spacing ∆hi is according to Eq. (3.30)
from sub-section 3.4.6 given as

∆ti(∆hi) = α∆t min
(
∆h2

i , 2
2m∆t∆h2

min

)
/(4D̄`), (4.36)

since the restriction parameter has to be additionally considered in the ASP.

4.2.3 Solution of PF model

The solution of the PF model for the concentration field with the simulation
parameters from Table 4.14 is shown in Fig. 4.28. The normalised concen-
tration as a function of U and φ is according to Eq. (2.80), the definition of
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concentration C = (1 + φ)Cs/2 + (1− φ)C`/2, and relation Cs = k0C` given as

C/Ce
` =

1

2
(1 + U(1− k0)) (1 + k0 − φ(1− k0)) . (4.37)

The concentration is the highest at the solid-liquid interface where C/Ce
` =

1. Due to Ds = 0, the concentration is constant and approximately equal to
C/Ce

` = k0 in the solid phase. Lower solubility of the alloying element in the
solid phase, i.e., k0 < 1, yields the rejection of the solute in the liquid phase.

TABLE 4.14: Simulation parameters for the results from Figs. 4.28
and 4.29.

Preferential growth direction
Growth angle (θ0) 0◦

Computational domain parameters
Side length (L) 768
South-west coordinate (rsw) (0, 0)

Time
Initial time (tstart) 0
Final time (tend) 4000

Forward Euler scheme
Stability parameter (α∆t) 0.3
Time step (∆t) α∆t∆h

2/(4D̄`)

RBF-FD method
Number of nodes in sub-domain (N ) 13
PHS power (n) 5
Highest monomial order (P ) 2

Adaptive algorithm
Type of node distribution RND
Sub-domain size/spacing ratio (mΩ) 10
Overlapping parameter (n∗) 1
Minimum spacing (∆hmin) 0.6
Maximum spacing (∆hmax) L/(2mΩ)
Time step-restriction parameter (m∆t) 2
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FIGURE 4.28: Normalised concentration field at t = 1000 (top-
left), t = 2000 (top-right), t = 3000 (bottom-left), and t = 4000

(bottom-right).

4.2.4 Characterisation of the simulation results

The simulation results in the case of binary alloys are characterized like in
the case of pure materials. Exactly the same procedure as in sub-section 4.1.4
with the parameters tmea0 = 1 and ∆tmea = 1 is applied for the determination
of the growth velocity. The averaging with fifteen points from the data set
{tmeai , vtip(t

mea
i )} is applied in the representation of the velocity vtip(t). In the

case of binary alloys, the dimensional growth velocity ṽtip = vtipW0/τ0 is re-
scaled as

ṽtip → ṽtipdc/D`. (4.38)

The re-scaled dimensional velocity is according the definition of W0 and τ0

from Eqs. (4.30) and (4.31), respectively, calculated as

ṽtip = vtip
W0

τ0

dc
D`

= vtip
α1

α2

1

λ2
. (4.39)
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Additionally to the growth velocity, the concentration in the solid phase Cs/Ce
`

along the x′-axis is verified, where x′-axis is the x-axis in the dendrite coordi-
nate system determined by the preferential growth direction angle θ0. In the
comparison of our results with the reference solution from (Karma, 2001), the
dimensional time t̃ = tτ0 and coordinate x̃′ = x′W0 are re-scaled as

t̃→ t̃D/d2
c , x̃′ → x̃′/dc. (4.40)

The re-scaled t̃ and x̃′ as a function of dimensionless t and x′ are given as

t̃ = t
α2

α2
1

λ3, x̃′ = x′
1

α1

λ. (4.41)

Velocity ṽtip as a function of time t̃ and the normalised concentration Cs/C
e
`

in the solid phase as a function of the coordinate x̃′ are shown in Fig. 4.29.
Like for pure materials, the steady-state growth is observed after the initial
transient. The normalised concentration in the solid phase is approximately
equal to Cs/Ce

` = k0 = 0.15.
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FIGURE 4.29: Growth velocity as a function of time (left) and
concentration in the solid phase as a function of x̃′ (right).

4.2.5 Verification of the numerical model

In (Karma, 2001), the growth velocity is plotted in the range t̃ ∈ [0, 10000] and
the concentration in the range x̃′ = [0, 400]. With the parameter λ = 2/α2, these
values approximately correspond to dimensionless coordinates t ∈ [0, 380] and
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4.2. Solidification of binary alloys

x′ ∈ [0, 112]. In order to compare the results, the final dimensionless coordi-
nates are set to tend = 850 and L = 268.8, as seen in Table 4.15. This choice
ensures a pseudo-infinite supercooled binary alloy, for which the impact of Γ

on the solidification at the end of the simulation is negligible, as seen in Fig.
4.30. The growth velocity and the re-scaled concentration in the solid phase
from (Karma, 2001) are set as the reference solutions with which we compare
our simulation results.

TABLE 4.15: Simulation parameters for the verification of the nu-
merical model in the case of binary alloy. The configuration for

each ∆hmin is marked with the same colour.

Preferential growth direction
Growth angle (θ0) 0◦

Computational domain parameters
Side length (L) 268.8
South-west coordinate (rsw) (0, 0)

Time
Initial time (tstart) 0
Final time (tend) 850

Forward Euler scheme
Stability parameter (α∆t) 0.3, 0.15, 0.075, 0.0375
Time step (∆t) α∆t∆h

2/(4D̄`)

RBF-FD method
Number of nodes in sub-domain (N ) 9, 13, 21
PHS power (n) 5
Highest monomial order (P ) 2

Adaptive algorithm
Type of node distribution RND, SND
Sub-domain size/spacing ratio (mΩ) 21 , 28 , 56
Overlapping parameter (n∗) 2

Minimum spacing (∆hmin) 0.4 , 0.6 , 0.6
Maximum spacing (∆hmax) L/(2mΩ)
Time step-restriction parameter (m∆t) 1
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FIGURE 4.30: Concentration field (left) and the concentration as
a function of x at three positions of y (right) at the end of the

simulation.

Determination of the stability parameter in the forward Euler scheme

The aim of this sub-section is to determine a stable time step in the forward
Euler scheme while using the second-order accurate RBF-FD method with dif-
ferent values of N for the spatial discretisation of the PDEs on RND and SND.
To achieve this goal, the case with ∆hmin = 0.6 and mΩ = 28 is analysed by
reducing the forward Euler scheme stability parameter α∆t.

The model is tested for values of α∆t ≤ 0.3 from Table 4.15. The relative
error is defined as

∆ltip
ltip

=
|lendtip (α∆t)− lendtip (α∆t = 0.0375)|

lendtip (α∆t = 0.0375)
, (4.42)

where lendtip = ltip(t = tend). The relative error as a function of α∆t for different
values of N on RND and SND is shown in Fig. 4.31. As in the case of pure
materials, we find that the model is stable with the first order of convergence
for α∆t ≤ 0.3 for each value of N . While the accuracy is approximately the
same for all three values of N , in the case of SND, the accuracy is reduced as
N is increased in the case of RND.
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FIGURE 4.31: Relative error of ltip as a function of forward Eu-
ler scheme stability parameter α∆t by using RND (left) and SND

(right) at ∆hmin = 0.6 and mΩ = 28.

Verification at θ0 = 0

Re-scaled growth velocity ṽtip as a function of re-scaled time t̃ and the nor-
malised concentration in the solid phaseCs/Ce

` as a function of the re-scaled co-
ordinate x̃′ are compared to the reference solutions for α∆t = 0.3, ∆hmin = 0.6,
and three values of N on RND and SND as shown in Figs. 4.32 and 4.33. The
behaviour of the growth velocity on RND and SND is very similar to the be-
haviour in the case of pure materials; however, the growth velocity converges
towards the steady-state growth velocity slower in comparison to the reference
velocity. This observation is addressed at the end of this sub-section. On both
node distributions, the best result is observed for the choiceN = 13. In the case
of RND, the valuesN = 9 andN = 21 yield too low and too high growth veloc-
ities, respectively. In the case of SND, the values N = 9 and N = 21 also yield
too low and too high growth velocities, respectively. However, the velocities
at different values of N are closer to each other in comparison to RND.

Concentration Cs/C
e
` as a function of the re-scaled coordinate x̃′ is much

less sensitive to the selection of N for both node distributions, as seen in Fig.
4.33. The concentration is slightly above the reference solution for both node

119



Chapter 4. Numerical experiments

distributions. In the case of RND, the concentration is approaching the refer-
ence solution as N is increased. In the case of SND, the concentration is almost
identical for all values of N .
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FIGURE 4.32: Re-scaled growth velocity as a function of time by
using RND (left) and SND (right) at α∆t = 0.3, ∆hmin = 0.6, and

mΩ = 28.
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FIGURE 4.33: Normalised concentration as a function of rescaled
coordinate by using RND (left) and SND (right) at α∆t = 0.3,

∆hmin = 0.6, and mΩ = 28.

The influence of the scattered computational nodes on the performance is
further analysed by increasing the size of a quadtree sub-domain mΩ as shown
in Fig. 4.34. As in the case of pure materials, the velocities atN = 9 andN = 21

are closer to velocity at N = 13 for mΩ = 56 in comparison to mΩ = 28.
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FIGURE 4.34: Rescaled growth velocity as a function of time for
mΩ = 28 (left) and mΩ = 56 (right) using SND for α∆t = 0.3 and

∆hmin = 0.6.

The reference velocity converges to the steady-state faster in comparison
to our results. The reason is the fact that the PF model from (Karma, 2001) is
not exactly identical to the PF model (Ohno, 2012) used in this dissertation.
The difference between the models is function Ξ({Ui}) from Eq. (2.79) which
multiplies the left-hand side of the governing equation for φ from Eq. (2.84). In
the case of binary alloys, the function is equal to Ξ({Ui}) = Ξ(U) = 1+(1−k0)U

as seen in Eq. (4.28). In (Karma, 2001), the dependence of function Ξ(U) on U
is not considered, i.e., Ξ(U) = 1. The growth velocity as a function of time
for the case with Ξ(U) = 1 is shown in Fig. 4.35. For both node distributions
with N = 13, the growth velocity is almost identical to the reference velocity
in the interval t̃ ∈ [0, 10000]. For t̃ > 10000, the velocity is slightly reduced.
For N = 9 and N = 13, the same behaviour in comparison to N = 13 as for
Ξ(U) = 1 + (1− k0)U is observed.

In (Karma, 2001), the finite-difference method with spacing ∆h = 0.4 and
forward Euler scheme with time step ∆t = 0.008 are used for spatial and tem-
poral discretisation of the governing equations. The configuration that resem-
bles the used finite-difference method the most is N = 13 on RND, as evi-
denced in Fig. 4.35. To compare the results with the same spacing, the analysis
with different values ofN on RND and SND is also performed for ∆hmin = 0.4,
as seen in Fig. 4.36. While the velocity at N = 13 for ∆hmin = 0.4 differs very
little from the velocity at ∆hmin = 0.6, a huge improvement is observed for
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FIGURE 4.35: Rescaled growth velocity as a function of time by
using RND (left) and SND (right) at α∆t = 0.3, ∆hmin = 0.6, and

mΩ = 28 for the case with Ξ(U) = 1.

N = 9 and N = 21 on both node distributions.
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FIGURE 4.36: Re-scaled growth velocity as a function of time by
using RND (left) and SND (right) at α∆t = 0.3, ∆hmin = 0.4, and

mΩ = 21.

Verification at θ0 ≥ 0

The numerical method is analysed at different preferential growth directions
with the simulation parameters from Table 4.16. The normalised concentration
in Ω at four different angles θ0 at the end of the simulation is shown in Fig.
4.37. A two-times larger computational domain is used in comparison to the

122



4.2. Solidification of binary alloys

analysis at θ0 = 0, while the final time remains the same. The performance for
only one SND is analysed, since the performance at multiple SNDs has already
been assessed in the previous sub-section in the example of pure materials.

TABLE 4.16: Simulation parameters for the analysis of the nu-
merical method at different growth angles in the solidification of

binary alloys.

Preferential growth direction
Growth angle (θ0) 0◦, 5◦, 10◦, 15◦, 20◦, 25◦, 30◦, 35◦, 40◦, 45◦

Computational domain parameters
Side length (L) 537.6
South-west coordinate (rsw) (−L/2,−L/2)

Time
Initial time (tstart) 0
Final time (tend) 850

Forward Euler scheme
Stability parameter (α∆t) 0.3
Time step (∆t) α∆t∆h

2/(4D̄`)

RBF-FD method
Number of nodes in sub-domain (N ) 9, 13, 21
PHS power (n) 5
Highest monomial order (P ) 2

Adaptive algorithm
Type of node distribution RND, SND
Sub-domain size/spacing ratio (mΩ) 28, 56
Overlapping parameter (n∗) 2
Minimum spacing (∆hmin) 0.6
Maximum spacing (∆hmax) L/(2mΩ)
Time step-restriction parameter (m∆t) 1

Steady-state growth velocity ṽsteadytip as a function of preferential angle θ0

is shown in Fig. 4.38. The behaviour of the method is very similar to the
behaviour in the case of pure materials. Again, the use of SND is much less
prone to the selection of N . The best result is again observed for N = 13 on
both node distributions.
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FIGURE 4.37: Normalised concentration at θ0 = 10◦ (top-left),
θ0 = 20◦ (top-right), θ0 = 30◦ (bottom-left), and θ0 = 40◦ (bottom-

right) for mΩ = 28 and N = 13 by using RND.

Normalised steady-state concentration in the solid-phase Csteady
s /Ce

` as a
function of θ0 is shown in Fig. 4.39. In the case of RND, the concentration is
independent of θ0 forN = 13. ForN 6= 13, the concentration is firstly increased
and then decreased as θ0 is increased with the maximum at θ0 = 25◦ and θ0 =

20◦ forN = 9 andN = 21, respectively. In the case of SND, the concentration is
almost independent of θ0 for all three values ofN . The concentration is slightly
increased at θ0 = 40◦ and θ0 = 45◦ for N = 9.

The influence of the scattered computational nodes on the performance for
different preferential growth directions is analysed by running simulations
with mΩ = 56, as shown in Fig. 4.40. The steady-state growth velocity and
the concentration are both less prone to rotation, especially for N 6= 13. The
increase of the concentration for θ0 = 40◦ and θ0 = 45◦ for N = 9 at mΩ = 28 is
no longer present at mΩ = 56.
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ṽ
st
ea
d
y

ti
p

N = 9

N = 13

N = 21

Karma, 2001

FIGURE 4.38: Steady-state growth velocity as a function of
growth angle for mΩ = 28 by using RND (left) and SND (right).
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FIGURE 4.39: Steady-state normalised concentration as a func-
tion of growth angle for mΩ = 28 by using RND (left) and SND

(right).
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FIGURE 4.40: Steady-state growth velocity (left) and steady-state
concentration in the solid phase (right) for mΩ = 56 by using

SND.

4.2.6 Discussion

In Section 4.2, the newly developed numerical approach is analysed for the PF
modelling of the isothermal dendritic solidification of binary alloys for arbi-
trary preferential growth directions. The growth velocity and the concentra-
tion in the solid phase are compared to the reference solution from (Karma,
2001). An almost identical observation as in the case of pure materials from
Section 4.1 can be made regarding the accuracy. The use of the SND provides
better accuracy in comparison to the use of the RND for N = 9 and N = 21.
The quadtree domain decomposition in the ASP introduces regularity in the
solution obtained by using the SND. A large enough quadtree sub-domain
size/spacing ratio has to be used therefore to increase the accuracy if the SND
is in use. The results are further comprehensively summarized and concluded
in Section 5.
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4.3 Solidification with a constant cooling rate for an

Al-Cu alloy

In this section, the solidification of Al-Cu alloy with a constant cooling rate is
considered. A 2-D example with the concentration C0 = 1 wt.%Cu and the
side length of square computational domain L = 1000 µm from (Boukellal
et al., 2018) is chosen as the reference solution to which the results of our newly
developed numerical model are compared. In the article, 2-D and 3-D PF sim-
ulations in dilute Al-Cu alloys are performed with the purpose of finding scal-
ing laws that govern the growth and interaction of equiaxed Al-Cu dendrites.
The interaction between the dendrites is simulated by the zero-flux Neumann
boundary conditions for PF and supersaturation.

The problem definition of the solidification with a constant cooling rate of
the Al-Cu alloy is given in Section 4.3.1. The simulation parameters are dis-
cussed in Section 4.3.2. The time step in the forward Euler scheme is deter-
mined in Section 4.3.3. The results of the verification are presented in Section
4.3.4.

4.3.1 Problem definition

The computational domain Ω with the boundary Γ is a square with the south-
west vertex rsw and the side length L, as shown in Fig. 4.41. Solidification
with the constant cooling rate of a dendrite from a binary alloy (Nc = 2) with
negligible diffusivity of solute in the solid phase (Ds = 0) is considered. In
this section, a dimensional version of the PF model is applied where the spa-
tial coordinates and time are measured in units of micrometers and seconds.
The system of two coupled governing equations for PF φ and dimensionless
supersaturation U is given by Eqs. (2.84) and (2.85)

(1 + (1− k0)U)a2(n)τ0
∂φ

∂t
= φ− φ3 − (1− φ2)2λ(θ + U)

+∇ ·
(
W 2

0 a
2(n)∇φ

)
+
∑

ξ=x,y

∂ξ

(
W 2

0 |∇φ|2a(n)
∂a(n)

∂(∂ξφ)

)
,

(4.43)
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and

1

2
(1 + k0 − (1− k0)φ)

∂U

∂t
=

1

2
(1 + (1− k0)U)

∂φ

∂t

+∇ ·
(
D`

1− φ
2
∇U +

1

2
√

2
W0(1 + (1− k0)U)

∂φ

∂t

∇φ
|∇φ|

)
,

(4.44)

The cubic anisotropy function a(n) is given by Eq. (4.1). The dimensionless
temperature as a function of time t is given as

θ(t) = Rct/∆Tref , (4.45)

where Rc is the constant cooling rate. The reference freezing range is given as
∆Tref = −m`(1− k0)C0.

FIGURE 4.41: Illustration of a square computational domain Ω
with boundary Γ. A domain is defined by the south-west co-
ordinate rsw = (−L/2,−L/2) and the side length of a square
L = 2000 µm. Solidification of small nucleus with radius Rnuc =
50 µm and center rnuc = (0, 0) with a constant cooling rate Rc
is considered. The equilibrium is achieved by properly selected
temperature field θ(t). Zero flux Neumann boundary conditions

are proposed for φ and U .

The constrained growth of a dendrite is simulated by a zero-flux boundary
condition for φ and U from Eqs. (4.10) and (4.33), respectively. The initial
condition for the PF is a circular nucleus with the origin rnuc and the radius
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4.3. Solidification with a constant cooling rate for an Al-Cu alloy

Rnuc, already defined in Eq. (4.9) from the previous sub-section. Special care
has to be given to the initial conditions for θ and U , since the nucleus starts
to melt till θ is large enough due to capillary effects if the initial condition is
simply set to U(0) = 0 and θ(0) = 0. In (Boukellal et al., 2018), the initial
conditions are set to U(0) = −dc/Rnuc and θ(0) = −U(0). Temperature θ is then
varied with decreasing amplitude in order to achieve a quasi-equilibrium state
with an interface velocity arbitrarily close to zero.

In the dissertation, a slightly different strategy is applied to achieve the
equilibrium state. The initial supersaturation is set to U(0) = 0 and the ini-
tial temperature is held at θ = −dc/Rnuc until the growth velocity is arbitrarily
close to zero. The dimensionless initial temperature θ = −dc/Rnuc corresponds
to the actual initial temperature T0 = Tliq − Γs`/Rnuc. The equilibrium solid-
liquid interface is given as T ∗ = Tliq−∆Tc = Tliq−Γs`(a(ϕ)−a′′(ϕ))/Rnuc accord-
ing to the conditions at the solid-liquid interface from Chapter 2. The kinetic
undercooling ∆Tk is negligible for Al alloys under the considered solidification
conditions. The initial and equilibrium temperatures for a(ϕ) = 1 + ε4 cos 4ϕ

are shown in Fig. 4.42. For ϕ < π/8 and ϕ > 3π/8, the initial temperature T0 is
below the equilibrium temperature T ∗, which results in solidification in those
ranges. For π/8 < ϕ < 3π/8, the initial temperature T0 is above the equilibrium
temperature T ∗, which results in the melting in this range.
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FIGURE 4.42: Equilibrium and initial temperatures as a function
of the angle ϕ for θ0 = 0 in the first quadrant.
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The solid-liquid interface at t = 0 s and t = 30 s and the growth veloc-
ity as a function of time with the simulation parameters from Table 4.17 for
θ(t) = −dc/Rnuc are shown in Fig. 4.43. For ϕ < π/8 and ϕ > 3π/8, the cur-
vature is slightly increased due to solidification that shifts T ∗ towards T0. For
π/8 < ϕ < 3π/8, curvature is slightly decreased due to the melting, which
also shifts T ∗ towards T0. In both cases, the growth velocity eventually ap-
proaches zero, which we consider as the quasi-equilibrium. To conclude, the
initial supersaturation is set to U(0) = 0, while the dimensionless temperature
as a function of time is given as

θ(t) =




−dc/Rnuc, t < teq

−dc/Rnuc −Rc(t− teq)/∆Tref , t ≥ teq
, (4.46)

where teq is the equilibrium time. It is set to teq = 30 s since the growth velocity
is almost zero for t > 30 s, as seen in Fig. 4.43.
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FIGURE 4.43: The solid-liquid interface at two times (left) and the
growth velocity as a function of time for θ(t) = −dc/Rnuc (right).

4.3.2 Simulation parameters

In the considered case, the initial concentration and the side length of a square
domain are set to C0 = 1 wt.%Cu and L = 1000 µm, respectively. A solid

130



4.3. Solidification with a constant cooling rate for an Al-Cu alloy

nucleus with radius Rnuc = 50 µm is put in the south-west corner of the com-
putational domain. A constant cooling rate Rc = 0.5 K/min is applied in the
computational domain. The ratio between the interface thickness and chemi-
cal capillary length is set to W0/dc = 24. The properties of the Al-Cu alloy and
the used PF parameters are shown in Table 4.17. The solid nucleus is in the
quasi-equilibrium at t = 0 s by setting tstart = −30 s and teq = 0 s. The interface
thickness and the attachment time are equal to

W0 = (W0/dc)dc = 2.53 µm, (4.47)

and
τ0 =

d2
c

D`

1

α2
1α

2
2

(W0/dc)
3 = 0.028 s, (4.48)

where dc = Γs`/(−m`(1− k0)C0) = 0.106 µm.

TABLE 4.17: Simulation parameters.

Al-Cu alloy physical properties
Partition coefficient (k0) 0.14
Strength of anisotropy (ε4) 0.01
Liquidus slope (m`) −2.6 K/wt.%Cu
Copper concentration (C0) 1 wt.%Cu
Copper diffusivity in the liquid phase (D`) 3000 µm2/s
Gibbs-Thomson coefficient (Γs`) 0.236 Kµm

Solidification parameters
Growth angle (θ0) 0◦

Center of nucleus (rnuc) (0 µm, 0 µm)
Radius of nucleus (Rnuc) 50 µm
Equilibrium time (teq) 0 s
Cooling rate (Rc) 0.5 K/min
Initial time (tstart) −30 s
Final time (tend) 200 s

PF parameters
Constant (α1) 0.8839
Constant (α2) 0.6267
Interface thickness/capillary length ratio (W0/dc) 24
Coupling parameter (λ) α1W0/dc
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The considered case is computationally much more demanding in compari-
son to the cases from previous two sub-sections due to the large computational
domain and long computational time. In (Boukellal et al., 2018), computa-
tional efficiency is increased by recasting the PF model with a pre-conditioned
PF (Glasner, 2001), which allows larger spacings ∆h and by applying the GPU
acceleration (Yamanaka et al., 2011).

In the preliminary simulations, we found that the simulations of only one-
quarter of the dendrite can be very inaccurate due to very small strength of
anisotropy since the dendrite tip is directly at the boundary of the computa-
tional domain, which leads to instabilities in the current implementation of
the RBF-FD method. Consequently, the nucleus is put in the middle of the
computational domain, which requires side length L that is twice as long. The
growth velocity as a function of time is compared to the reference solution from
(Boukellal et al., 2018). The algorithm from sub-section 4.1.4 with the parame-
ters tmea0 = 0.1 s and ∆tmea = 0.1 s is applied for the calculation of the growth
velocity. The averaging with thirty points from the data set {tmeai , vtip(t

mea
i )}

is applied in the representation of the velocity vtip(t). The concentration as a
function of x along the y = 0 line is also analysed.

4.3.3 Stability criterion in the forward Euler scheme

The time step in this case is given as

∆t(∆h) = α∆t
1

4

∆h2

max(D̄`, 1/(1− ε4))

τ0

W 2
0

(4.49)

The parameters from Table 4.17 yield

∆t(∆h) = α∆t∆h
2/(4D`), (4.50)

since D̄` = D`τ0/W
2
0 = 13.12 and therefore D̄` > 1/(1 − ε4). The actual time

step in a extended quadtree sub-domain Ω∗i with spacing ∆hi is according to
Eq. (3.30) from sub-section 3.4.6 given as

∆ti(∆hi) = α∆t min
(
∆h2

i , 2
2m∆t∆h2

min

)
/(4D`), (4.51)

since the restriction parameter has to be additionally considered in the ASP.
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4.3.4 Simulation results

The PF model is solved by the ASP with the numerical parameters from Table
4.18. We found that the minimum spacing has to be set to ∆hmin = 0.6W0 =

1.52 µm (or lower) in order to properly resolve the case with a very small
strength of anisotropy ε4 = 0.01.

TABLE 4.18: Numerical parameters for the simulation of solidifi-
cation of Al-Cu alloy at constant cooling rate.

Computational domain parameters
Side length of domain (L) 2040 µm

Forward Euler scheme
Stability parameter (α∆t) 0.3
Time step (∆t) α∆t∆h

2/(4D`)

RBF-FD method
Number of nodes in sub-domain (N ) 9, 13, 21
PHS power (n) 5
Highest monomial order (P ) 2

Adaptive algorithm
Type of node distribution RND, SND
Sub-domain size/spacing ratio (mΩ) 21
Overlapping parameter (n∗) 2
Minimum spacing (∆hmin) 1.52 µm
Maximum spacing (∆hmax) L/(2mΩ)
Time step-restriction parameter (m∆t) 2

The side length of the computational domain in the ASP is given as

L = 2NmaxmΩ∆hmin, (4.52)

due to quadtree domain decomposition. It is therefore impossible to simulate
the case where the distance between the center of the dendrite and the bound-
ary is exactly equal to 1000 µm. The closest configuration with ∆hmin = 0.6W0

is achieved by using parameters Nmax = 6 and mΩ = 21 , which yield the dis-
tance ≈ 1020 µm. As in the previous two sections, the PF model is solved for
three different values of N using RND and SND.
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Morphology and growth velocity

The evolution of the solid-liquid interface (evolution of φ = 0 contour) and the
growth velocity as a function of time by using RND is shown in Fig. 4.44. The
morphologies and the growth velocities are almost identical and very close to
the reference velocity for all values of N for t / 30 s. As θ is further decreased,
the configuration with N = 9 can no longer correctly resolve the solid-liquid
interface which yields the evolution of a seaweed-like structure. It is evident
that some directions are more favourable. This is the consequence of the mesh-
induced anisotropy (Mullis, 2006), which has also been observed in the PF
modelling of the solidification on the regular node distribution using other
numerical methods.

For N = 13 and N = 21, a dendrite with four primary trunks is developed.
At higher undercoolings, secondary dendrite arms are developed too. They,
however, do not disturb the growth velocity at the tip of the dendrite, which is
of main interest in this analysis. The maximum growth velocities vmaxtip and the
times tmaxtip at which the maximum occurs are tabulated in Table 4.19.

TABLE 4.19: Maximum velocity vmaxtip and time tmaxtip for BSP and
ASP.

Node distribution N vmaxtip [µm/s] tmaxtip [s]

9 7.67 156
RND 13 12.32 129

21 14.41 120
9 11.89 129

SND 13 12.08 129
21 13.21 126

Boukelall et al., 2018 - 11.25 119

Velocity vmaxtip at N = 9 is naturally far away from the velocities at N = 13

and N = 21. In the case of N = 13, vmaxtip is for ≈ 1 µm/s higher than reference
vmaxtip , while time tmaxtip is shifted for 10 s to the right. In the case of N = 21,
vmaxtip is for ≈ 3 µm/s higher than reference vmaxtip , while time tmaxtip is shifted for
1 s to the right. The reasons for these discrepancies are addressed later in this
section.

The evolution of the solid-liquid interface and the growth velocity as a
function of time by using SND are shown in Fig. 4.45. In this case, a den-
drite with four primary trunks is developed for all three values of N . There
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FIGURE 4.44: The evolution of the solid-liquid interface for N =
9 (top-left), N = 13 (top-right), and N = 21 (bottom-left) in the
case of RND. The solid-liquid interface is plotted every 20 sec-
onds. The growth velocity as a function of time (bottom-right)

for three values of N in the case of RND.

is not a large difference between the dynamics at the tip of a dendrite for dif-
ferent values of N ; however, the maximum velocity at N = 21 is again the
highest. In the case of N = 9 and N = 13, vmaxtip is for less than 1 µm/s higher
than reference vmaxtip , while time tmaxtip is shifted for 10 s to the right. In the case
of N = 21, vmaxtip is for ≈ 2 µm/s higher than reference vmaxtip while time tmaxtip is
shifted for 7 s to the right. Different values of N , however, affect the evolution
of secondary dendrite branches. In the case of RND, the secondary branches
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are totally symmetric, which is not the case for SND. Some quasi-symmetry is
observed using SND too, since only one SND is generated at the beginning of
the simulation and is during simulation re-scaled and saved for the calcula-
tion in a newly created quadtree sub-domain in the refinement/de-refinement
procedure. The regular quadtree decomposition additionally introduces some
symmetry. The quasi-symmetry can be observed between the north and west
trunk or between the east and south trunk for N = 9 and N = 13.
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FIGURE 4.45: The evolution of the solid-liquid interface for N =
9 (top-left), N = 13 (top-right), and N = 21 (bottom-left) in the
case of SND. The solid-liquid interface is plotted every 20 sec-
onds. The growth velocity as a function of time (bottom-right)

for three values of N in the case of SND.
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Cu concentration

The concentration profile and the concentration along the x-axis at different
times for N = 13 and RND are shown in Fig. 4.46. The quadtree sub-domains
are also shown in order to emphasize that a large area of the computational
domain is refined in the last stage of the simulation, which reduces the ASP
speed-up and makes the simulation computationally extremely demanding.
The concentration in the liquid and solid phases is an increasing function of
time due to the applied constant cooling rate. One can also see how the gra-
dient of the concentration in the liquid phase at the solid-liquid interface is
approximately zero at the beginning and at the end of the simulation, which
signals low growth velocities.
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FIGURE 4.46: The concentration field at t = 20 s (top-left), t = 120
s (top-right), and t = 200 s (bottom-left). The concentration as a
function of x at y = 0 µm at six sequential times (bottom-right).

Configuration with N = 13 on RND is used.

137



Chapter 4. Numerical experiments

The concentration profile and the concentration in the solid phase along
the x-axis at different values of N in the case of RND are shown in Fig. 4.47.
The concentration in the middle of the trunk at N = 9 is far away from the
concentration at N = 13 and N = 21. This is of course expected since the con-
centration profiles are directly determined by the growth velocity as a function
of time (or more precisely, the size of dendrite trunk as a function of time). This
is also the reason for the difference between the concentration at N = 13 and
N = 21.
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FIGURE 4.47: The concentration field at t = 200 s for N = 9 (top-
left), N = 13 (top-right), and N = 21 (bottom-left) in the case of
RND. The concentration in the solid phase as a function of x at
y = 0 µm for three values of N (bottom-right) in the case of RND.

The concentration profile and the concentration in the solid phase along the
x-axis at different values of N in the case of SND are shown in Fig. 4.48. For
N = 9 and N = 13, the concentrations as a function of x almost coincide. A
small deviation is observed for N = 21, which is again the consequence of a
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different growth velocity as a function of time in comparison to N = 9 and
N = 13.
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FIGURE 4.48: The concentration field at t = 200 s for N = 9 (top-
left), N = 13 (top-right), and N = 21 (bottom-left) in the case of
SND. The concentration in the solid phase as a function of x at
y = 0 µm for three values of N (bottom-right) in the case of SND.

Analysis of the discrepancy with the reference results

We managed to qualitatively reproduce the reference results for N = 13 and
N = 21 in the case of RND and for all three values of N in the case of SND.
There is, however, a quantitative discrepancy between the growth velocities as
seen in Table 4.19. The highest discrepancy of ≈ 28% is observed for the case
with N = 21 on RND. The lowest discrepancy of ≈ 5.6% is observed for N = 9

on SND. In general, the results with SND are closer to the reference results.
The discrepancy is attributed to
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• the side length of the computational domain is for ≈ 20 µm larger in our
case,

• the initial conditions are not precisely equal,

• in (Boukellal et al., 2018), the PF model from (Echebarria et al., 2004) is
applied, while in our case we apply the PF model from (Ohno, 2012). The
difference between the models is the term 1 + (1− k0)U on the left-hand
side of Eq. (4.43), which is in (Boukellal et al., 2018) set to 1− (1− k0)θ,

• the PF model in (Boukellal et al., 2018) is re-cast with a pre-conditioned
PF (Glasner, 2001),

• the PDEs are discretised by different numerical methods.

The analysis of the importance of each reason for the discrepancy is the aim of
the post-doctoral research.

4.3.5 Discussion

In Section 4.3, the newly developed numerical approach is analysed for the PF
modelling of dendritic solidification of an Al-Cu alloy with constant cooling
rate. The growth velocity is compared to the reference solution from (Boukellal
et al., 2018). It is once again shown that the use of the SND is superior to the use
of the RND. A quantitative discrepancy compared to the reference solution is
observed. The discrepancy is more prominent if the RND is in use. The results
are further comprehensively summarized and concluded in Section 5.

140



5 Summary and conclusions

The main aim of this dissertation was to develop a numerical approach for
the accurate and computationally efficient modelling of dendritic solidifica-
tion based on the PF formulation. In this chapter, the observations and conclu-
sions regarding the performance of the newly developed approach are given.
The main advantages and limitations of the approach along with the possible
future research directions are discussed.

5.1 Summary of the performed work

The following research was performed in the framework of the dissertation:

• The PF formulation is applied for the modelling of the dendritic solidifi-
cation of pure materials and dilute multi-component alloys. In the mod-
elling of the solidification of dilute multi-component alloys, an externally
imposed temperature approximation is applied where the temperature is
considered as an input parameter. The approximation is valid for mate-
rials where the diffusion of heat is a few orders of magnitude faster than
the diffusion of solutes.

• The meshless RBF-FD method and the forward Euler scheme are applied
for the spatial and temporal discretisation of the PDEs. The fifth-degree
PHS are used as shape functions in the RBF-FD method. The second-
degree monomial augmentation is applied to ensure a well-posed inter-
polation problem and a second-order spatial convergence.

• The spatio-temporal ASP, based on dynamic quadtree domain decom-
position, is developed in order to increase the computational efficiency
of the numerical approach. The ASP dynamically ensures the highest
density of computational nodes at the solid-liquid interface. A RND or
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SND is applied to generate computational nodes in each quadtree sub-
domain.

• The PF model for the solidification of pure materials is solved by the BSP.
The influence of

– time step stability parameter α∆t (=0.3, 0.15, 0, 075, 0.0375, 0.01875),

– node spacing ∆h (=0.8, 0.6, 0.4, 0.2),

– size of the local sub-domain N (=9, 13, 21), and

– the type of node distribution (=RND, SND),

on the accuracy and stability is analysed. The accuracy for different pref-
erential growth directions is assessed. The influence of the magnitude of
the thermal noise Fu (=0, 10−5, 10−4) to the steady-state growth velocity
at different preferential growth directions is analysed.

• The analysis is repeated by the ASP at ∆hmin = ∆h in order to test the
accuracy of the ASP in comparison to the BSP. The influence of the ratio
mΩ (=15, 21, 28, 30, 60) between the size of a quadtree sub-domain and the
node spacing on the accuracy is analysed.

• The speed-up of the ASP in comparison to the BSP is assessed for
different values of minimum node spacing ∆hmin (=0.4, 0.8) and mΩ

(=5, 10, 20, 40, 80). The OpenMP speed-up is analysed on a laptop with 6
processor cores.

• The PF model for the isothermal solidification of binary alloys is solved
by the ASP. The influence of the

– α∆t (=0.3, 0.15, 0, 075, 0.0375),

– ∆hmin (=0.6, 0.4),

– N (=9, 13, 21),

– type of node distribution (=RND, SND), and

– mΩ (=21, 28, 56),

on the accuracy is analysed. The accuracy for different preferential
growth directions is assessed.
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• The PF model for solidification of the Al-Cu alloys at a constant cooling
rate is solved by the ASP. The influence of N (=9, 13, 21) and the type of
node distribution (RND, SND) on the accuracy is analysed.

5.2 Findings

The main findings of the dissertation are overviewed in this section.

5.2.1 Modelling of solidification of pure materials

The findings of the 2-D modelling of the solidification of pure materials are
given in this sub-section. The analysis of the performance of a novel numer-
ical approach is based on the example from (Karma and Rappel, 1998). The
assessment of the accuracy and stability of the BSP gives:

• The forward Euler scheme is stable for α∆t ≤ 0.3 for all three considered
values of N using the RND and SND (∆t = α∆t(1 − ε4)∆h2/4). The first
order of convergence is observed for all configurations, except for con-
figuration with N = 21 using the RND. The first order of convergence
is observed for α∆t ≤ 0.15 in this case. This finding needs to be further
analysed.

• Re-scaled growth velocity ṽtip, obtained using the RND, converges to ṽtip,
obtained by the MST, for N = 13 and N = 21. ṽtip does not converge to
ṽtip, obtained by the MST, for N = 9.

• ṽtip converges to the velocity, obtained by the MST, for all three tested
values of N using the SND.

• The expected second order of convergence of the RBF-FD method is ob-
served for N = 13 using the RND. The algorithm for the determination
of the size of the dendrite trunk experiences a larger error in the case
of SND in comparison to the RND; hence, a small deviation from the
second-order convergence line is observed for N = 13 using the SND.

• The accuracy at different values of the preferential growth direction angle
θ0 using RND and SND is analysed. The analysis at five different node

143



Chapter 5. Summary and conclusions

distributions for each tested value of θ0 is performed in the case of SND.
We define the maximum relative deviation of a configuration as

∆ṽtip/ṽtip = ||ṽtip(θ0 = 0◦)− ṽtip(θ0)||∞/ṽtip(θ0 = 0◦), θ0 ∈ [0◦, 45◦]. (5.1)

The definition from Eq. (5.1) applies to the median of the growth velocity
at each θ0 in the case of SND.

• The case with N = 13 is analysed first. ∆ṽtip/ṽtip is equal to 6.1% and
3.6% at ∆h = 0.8 and ∆h = 0.6, respectively, using the RND. ∆ṽtip/ṽtip is
equal to 0.5% and 0.4% at ∆h = 0.8 and ∆h = 0.6, respectively, using the
SND.

• The analysis at different values of θ0 and ∆h = 0.8 is also performed for
N = 9 and N = 21. ∆ṽtip/ṽtip is equal to 45.9% and 16.1% for N = 9 and
N = 21, respectively, using the RND. ∆ṽtip/ṽtip is equal to 3.4% and 1.7%

for N = 9 and N = 21, respectively, using the SND.

• The analysis at different values of θ0 and Fu for ∆h = 0.8 and N = 13 is
performed by using RND and SND. The thermal noise introduces scatter
in the variables used for characterisation of dendrite growth. The abso-
lute scatter of ṽtip is approximately twice as larger when SND is in use in
comparison to the use of RND. The scatter of ṽtip increases with Fu.

The following findings can be made regarding the accuracy and stability of the
ASP:

• The same findings as for the BSP can be made regarding the stability and
convergence of the forward Euler method.

• The same findings as for the BSP can be made regarding the convergence
of the growth velocity to the velocity, obtained by the MST, using the
RND.

• The same findings as for the BSP can be made regarding the convergence
of the RBF-FD method.

• The analysis at different values of θ0 is first performed for N = 13 at
∆hmin = 0.8 and ∆hmin = 0.6. The values mΩ = 21 and mΩ = 28 are used
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for ∆hmin = 0.8 and ∆hmin = 0.6, respectively. ∆ṽtip/ṽtip is equal to 3.5%

and 1.9% at ∆hmin = 0.8 and ∆hmin = 0.6, respectively, using the RND.
∆ṽtip/ṽtip is equal to 2.6% and 1.2% at ∆hmin = 0.8 and ∆hmin = 0.6,
respectively, using the SND. The analysis in the case of SND is repeated
for twice as large values mΩ = 42 and mΩ = 56 for ∆hmin = 0.8 and
∆hmin = 0.6, respectively. ∆ṽtip/ṽtip is equal to 2.8% and 1.4% at ∆hmin =

0.8 and ∆hmin = 0.6, respectively.

• The analysis at different values of θ0 and ∆h = 0.8 is also performed for
N = 9 and N = 21 at mΩ = 21. ∆ṽtip/ṽtip is equal to 45.1% and 12.6%

for N = 9 and N = 21, respectively, using the RND. ∆ṽtip/ṽtip is equal
to 18.9% and 6.0% for N = 9 and N = 21, respectively, using the SND.
The analysis in the case of SND is repeated for the twice as large value
mΩ = 42. ∆ṽtip/ṽtip is equal to 11.0% and 4.8% for N = 9 and N = 21,
respectively.

The comparison between different configurations for the modelling of den-
dritic growth at arbitrary values of θ0 yields

• RND vs. SND using BSP: The configuration with the SND outperforms
the configuration with the RND for all three tested values of N .

• RND vs. SND using ASP: The configuration with the SND outperforms
the configuration with the RND. The difference is especially prominent
at N = 9 and N = 21.

• BSP vs. ASP using RND: The configuration with the ASP interestingly
outperforms the configuration with the BSP for N = 13. The behaviour
of the configurations for other two values of N is identical.

• BSP vs. ASP using SND: The configuration with the BSP outperforms
the configuration with the ASP. The increase of mΩ is beneficial for N = 9

and N = 21. For N = 13, the accuracy is interestingly slightly reduced as
mΩ is increased.

The following findings can be made regarding the computational efficiency of
the ASP:

• The ERT has three contributions: iteration time, communication time,
and adaptation time.
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• Iteration time represents the majority of the whole computational time.

• The percentage of the iteration time is an increasing function of mΩ.

• The ASP speed-up is a decreasing function of the time.

• The ASP speed-up is a decreasing function of ∆hmin.

• The highest ASP speed-up is equal to 7.3 and 10.5 at ∆hmin = 0.4 and
∆hmin = 0.8, respectively. The highest ASP speed-up for ∆hmin = 0.4

and ∆hmin = 0.8 is observed at mΩ = 10 and mΩ = 5, respectively.

• For mΩ > 10, the ASP speed-up is a decreasing function of mΩ.

• The ASP speed-up is primarily decreased due to communication
between the quadtree sub-domains.

• The OpenMP speed-up as a function of Ncores is very close to the ideal
speed-up for Ncores ≤ 4 using a personal laptop with total of 6 avail-
able cores on a processor. The deviation from the ideal speed-up is more
prominent for ∆hmin = 0.8 in comparison to ∆hmin = 0.4.

• The maximum OpenMP speed-up is equal to 3.9 and 4.8 at ∆hmin =

0.8 and ∆hmin = 0.4, respectively. The maximum OpenMP speed-up at
∆hmin = 0.8 is observed at mΩ = 5 and Ncores = 5. The maximum
OpenMP speed-up at ∆hmin = 0.4 is observed at mΩ = 20 and Ncores = 6.

5.2.2 Modelling of isothermal solidification of binary alloys

The findings of the 2-D modelling of solidification of binary alloys are given
in this sub-section. The analysis of the performance of a novel numerical ap-
proach is based on the example from (Karma, 2001). The assessment of the
accuracy and stability of the ASP gives:

• The forward Euler scheme is stable for α∆t ≤ 0.3 for all three considered
values of N using the RND and SND (∆t = α∆t∆h

2/(4D̄`)). First order
of convergence is observed for all configurations.

• Re-scaled growth velocity ṽtip for different configuration is compared to
the reference ṽtip from (Karma, 2001). The ASP with ∆hmin = 0.6 and
mΩ = 28 is used first.
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• ṽtip converges to the reference ṽtip for N = 13 using the RND. ṽtip is too
low and too high at N = 9 and N = 21, respectively.

• ṽtip converges to the reference ṽtip for N = 13 and N = 21 using the SND.
ṽtip is too low atN = 9. ṽtip converges to the reference ṽtip forN = 9 when
mΩ is increased from mΩ = 28 to mΩ = 56.

• ṽtip converges to the reference ṽtip for all three tested values of N using
the SND when ∆hmin is decreased from ∆hmin = 0.6 to ∆hmin = 0.4. The
deviation from the reference ṽtip at N = 9 and N = 21 using the RND is
decreased when ∆hmin is decreased from ∆hmin = 0.6 to ∆hmin = 0.4.

• Re-scaled concentration in the solid phase Cs/Ce
` is compared to the ref-

erence Cs/Ce
` from (Karma, 2001).

• Cs/C
e
` converges towards to the reference Cs/Ce

` with the increase of N .
The relative deviation from the reference Cs/Ce

` is forN = 9, N = 13, and
N = 21 equal to 2.07%, 1.04%, and 0.17%, respectively, using the RND.
The relative deviation from the reference Cs/Ce

` is at N = 9, N = 13, and
N = 21 equal to 1.40%, 1.36%, and 0.95%, respectively, using the SND.

• The analysis at different values of θ0 is first performed for ∆hmin = 0.6

and mΩ = 28. The behaviour of the growth velocity is very similar to the
behaviour in the case of pure materials. In this case, the accuracy of a
single SND is analysed. ∆ṽtip/ṽtip is equal to 76.3%, 3.8%, and 26.7% at
N = 9, N = 13, and N = 21, respectively, using the RND. ∆ṽtip/ṽtip is
equal to 18.9%, 8.1%, and 11.4% at N = 9, N = 13, and N = 21, respec-
tively, using the SND. The analysis using the SND is also performed for
twice as large mΩ, i.e., mΩ = 58. ∆ṽtip/ṽtip is in this case equal to 16.2%,
5.9%, and 5.9% at N = 9, N = 13, and N = 21, respectively.

• The behaviour of Cs/Ce
` as a function of θ0 is also analysed. The maxi-

mum deviation is in this case defined as

∆Cs/Cs = ||Cs(θ0 = 0◦)− Cs(θ0)||∞/Cs(θ0 = 0◦), θ0 ∈ [0◦, 45◦]. (5.2)

• ∆Cs/Cs is equal to 6.3%, 0.1%, and 5.8% at N = 9, N = 13, and N = 21,
respectively, using the RND and mΩ = 28. ∆Cs/Cs is equal to 2.0%, 0.6%,
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and 0.8% at N = 9, N = 13, and N = 21, respectively, using the SND and
mΩ = 28. ∆Cs/Cs is equal to 0.6%, 0.2%, and 0.3% at N = 9, N = 13, and
N = 21, respectively, using the SND and mΩ = 56.

Comparison between the use of RND and SND at different values of θ yields:

• The use of SND hugely outperforms the use of RND for N = 9 and N =

21. The use of RND outperforms the use of SND for N = 13.

5.2.3 Modelling of solidification with a constant cooling rate

of Al-Cu alloy

The findings of the 2-D modelling of solidification with a constant cooling rate
of an Al-Cu alloy are given in this sub-section. The analysis of the performance
of a novel numerical approach is based on the example from (Boukellal et al.,
2018). The assessment of the accuracy of the ASP gives:

• A seaweed-like morphology is developed instead of a dendrite at N = 9

using the RND. A dendrite is developed for N = 13 and N = 21. The
same trend of the growth velocity as a function of time as in the reference
solution is observed. The maximum growth velocity forN = 13 andN =

21 is ≈ 9% and ≈ 28% higher in comparison to the reference solution.

• A dendrite is developed for all three values of N when the SND is used.
The same trend of the growth velocity as a function of time as in the
reference solution is observed. The maximum growth velocity for N = 9

and N = 13 is ≈ 6% higher in comparison to the reference solution. The
maximum growth velocity is ≈ 17% higher for N = 21.

• The final morphology at N = 13 is very similar to the final morphology
at N = 21 using the RND. The final morphologies, obtained using the
RND, are very different to the final morphologies, obtained using the
SND. The secondary branches are developed to a greater extent when
SND is used. There is also a big difference between the morphologies of
secondary branches at different values of N in this case.

• The concentration in the solid phase is directly linked to the growth ve-
locity as a function time. Consequently, the concentration profiles at dif-
ferent values of N are very similar using the SND. The concentration
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profiles at different values of N do not follow the same trends using the
RND.

• The final morphology is not symmetric when the SND is used. At the
beginning of the simulation, the growing dendrite is symmetric for all
values of N . As the temperature is decreasing, the driving force of solid-
ification increases which in turn also amplifies the small local numerical
error determined by the non-symmetrically distributed computational
nodes in the local sub-domains in the RBF-FD method. This primarily
effects the evolution of secondary branches while the dynamics at the tip
of the primary trunk is still properly resolved. The final morphology of a
dendrite is symmetric when the RND is used which is the consequence of
the symmetrically distributed computational nodes in local sub-domains
and consequently symmetric local numerical error. A decrease of W0 or
∆h would decrease the local numerical error on both node distributions.

• Four non-physical diagonal secondary branches appear in all cases, ex-
cept at N = 9 by using RND where a dendrite morphology is not even
developed. The branches are developed in the last stage of solidification
when the solidification driving force is very large. The main reason for
the development of diagonal branches is probably very small strength of
anisotropy of surface energy. The numerical model evidently does not
capture the physics at the minimum surface energy correctly, hence, ad-
ditional simulations with lower values W0 and ∆h should be performed
in order to analyse this phenomenon.

• There is a quantitative discrepancy between our and reference results.
The solution of the considered physical problem is very sensitive to the
numerical parameters due to very small strength of anisotropy. The main
reason for the discrepancy is attributed to the difference between the con-
sidered PDEs, which describe otherwise the same physical problem, and
different numerical methods for the spatial discretisation of the PDEs.
This finding needs to be further analysed.
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5.3 Conclusions

The main conclusions are:

• The use of the SND in the BSP and ASP provides higher accuracy in com-
parison to the use of the RND for otherwise same numerical parameters
when the growth for an arbitrary preferential growth direction is con-
sidered. The use of the RND provides higher accuracy only when the
isothermal dendritic solidification of binary alloys is simulated with the
ASP at N = 13.

• The solution is much more sensitive to the number of computational
nodes in a local sub-domain N using the RND in comparison to the use
of the SND.

• The configurations with N = 9 and N = 21 using the RND are not suit-
able for the PF modelling of dendritic solidification at arbitrary values of
θ0. The configuration with N = 9 using the SND in the ASP is not suit-
able for the PF modelling of dendritic solidification at arbitrary values of
θ0. The assessment of these facts needs additional research.

• The solution is much more sensitive to θ0 using the RND.

• The RND or SND type of the node distribution and the size of the lo-
cal sub-domain N critically determine the morphology of the secondary
branches (if they are developed).

• The RBF-FD method proves to be very suitable for the PF modelling of
dendritic solidification since the consideration of the SND in the RBF-FD
method is simple and straightforward. In a lot of the PF studies of den-
dritic solidification (Karma and Rappel, 1998; Karma, 2001; Ohno, 2012;
Greenwood et al., 2018; Bollada et al., 2015; Yamanaka et al., 2011) etc.,
the mesh-based FDM is used for the spatial discretisation. The FDM is
used exclusively in combination with RND and is therefore much more
sensitive to the mesh-induced anisotropy effects.

• A straightforward application of the SND represents one of the distinc-
tive advantages of the present numerical approach.
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• The accuracy is an increasing function of mΩ when the SND is used in
the ASP since the quadtree domain decomposition introduces regularity
in the solution of the PF model.

• The number of the nodes in the BSP is proportional to L2/∆h2. The num-
ber of the nodes in the ASP is approximately proportional to Lint/∆h,
where Lint stands for the length of the solid-liquid interface. The ASP
speed-up (L2/∆h2)/(Lint/∆h) = L2/(Lint∆h) is therefore an increasing
function of the area of the computational domain and a decreasing func-
tion of the length of the solid-liquid interface and the spacing.

• The solid-liquid interface can be optimally resolved by decreasing mΩ,
which results in a small number of all computational nodes and therefore
short iteration times. Decrease of mΩ, however, increases the number of
quadtree sub-domains and therefore the communication and adaptation
times. The optimal value of mΩ with the highest speed-up is a conse-
quence of the interplay of these phenomena.

• The compromise has to be made in the selection of parameter mΩ in the
ASP since the accuracy and the computational efficiency are an increas-
ing and decreasing function of mΩ, respectively.

• The OpenMP can be successfully used for the speed-up of the ASP. The
break from the ideal speed-up is observed. One of the reasons for the
break is the load imbalance. The memory bandwidth represents a bot-
tleneck of the hardware. This is another important reason for the break,
since the computational tasks cannot be performed simultaneously on
multiple processor cores due to data starvation.

5.4 Further work

The present work demonstrates that the RBF-FD method is very suitable and
promising for the PF modelling of dendritic solidification of the pure materi-
als and dilute multi-component alloys. The plan for the use of the developed
model for the simulation of dendritic growth in industry and the possible fur-
ther research of this topic is presented in this section.
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5.4.1 The use in the industry

The PF model for the simulation of solidification of dilute multi-component
alloys will be built in the simulation system (Šarler et al., 2019) for the predic-
tion of solidification phenomena in the direct-chill casting of aluminium alloys.
The simulation system contains three coupled models

• thermofluid model,

• thermomechanics model,

• microstructure model.

The thermofluid model considers the macroscopic equations for the conser-
vation of mass, momentum, heat, and species. The thermomechanics model
obtains the temperature field, solid fraction and pressure field from the ther-
mofluid module and considers the elastic strain, viscoplastic strain and the
thermal strain. The microstructure module requires the thermal and the chem-
ical history of a small piece of solidified material from the thermofluid model
and considers nucleation and grain growth in that piece by the point-automata
method (Lorbiecka and Šarler, 2010). The output of the current microstructure
model is the average grain size and a rough estimation of the microsegrega-
tion.

The PF model will be built in the microstructure model in order to pro-
vide a more accurate estimation of the microsegregation and the morphology
of an average grain. The thermofluid model will provide the temperature as
a function of time in the PF model. The input parameters of the PF model
obtained by the point-automata model will be the average grain size and the
maximum growth velocity. The average grain size will be used to determine
the size of the computational domain where the effect of the neighbouring
grains will be simulated by the zero-flux Neumann boundary conditions. The
maximum growth velocity from the point-automata model will be used as v∗

in the validity condition for the PF model. To recall, interface thickness W is
the only free parameter of the PF model for the simulation of solidification
of dilute multi-component alloys. It has to be set according to the condition
W � min(D`,i)/v

∗.
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5.4.2 PF modelling of microstructure evolution

The first step in the PF modelling of the solidification is the re-casting of the
implemented PF models with the preconditioned PF (Glasner, 2001) in order
to increase the computational efficiency by larger allowed spacings ∆h. In
the industrial casting of commercial alloys, multiple differently oriented den-
drites are growing from the melt. The implementation of a PF model for
polycrystalline alloy solidification (Ofori-Opoku and Provatas, 2010; Granasy
et al., 2004) therefore represents an important next step in the modelling of
solidification phenomena for industrially relevant cases. Modelling of melt
convection during the dendritic solidification (Beckermann et al., 1999) is also
planned for the future research. PF modelling of other types of solidification
(Folch and Plapp, 2005; Gyoon Kim et al., 2004), e.g., eutectic and peritectic
solidification, is also relevant in the industrial casting processes. PF modelling
of other free-boundary problems like solid-state phase transformation (Zhu
et al., 2019; Duong et al., 2020; Kovačević and Šarler, 2005) is also an interest-
ing possible further step of research.

5.4.3 ASP

The first further step regarding the developed ASP is an upgrade to the 3-D
using an octree data structure (Greenwood et al., 2018) since the 2-D simula-
tions can only be used for the qualitative prediction (Boukellal et al., 2018) of
the dendritic solidification in the casting of commercial alloys. The GPU ac-
celeration (Yamanaka et al., 2011) is also an important next step, especially for
3-D PF modelling of solidification.

The ASP has been developed for the solution of the parabolic PDEs by ex-
plicit methods for the time stepping. The upgrade of the ASP for the solution
of other types of PDEs and the implementation of the implicit methods for the
time stepping are also interesting possibilities for further development. The
consideration of computational domains of arbitrary shapes is another possi-
bility for the upgrade of the developed ASP.
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5.5 Dissemination of the results

The journal papers, the conference papers, and the conference talks present-
ing the results of this dissertation are given in the list below. The results ob-
tained by the BSP from Section 4.1.5 are presented in (Dobravec et al., 2020).
The developed quadtree data structure used in the dissertation is presented in
(Dobravec et al., 2017a). In (Dobravec et al., 2017a), cellular automata mod-
elling of dendritic and eutectic solidification of binary alloys using adaptive
FVM is considered. Several other journal papers with the results from dis-
sertation are planned, in particular, a paper with the results obtained by the
ASP in the case of pure materials from Sections 4.1.6 and 4.1.7 and a paper
with the results obtained by the ASP in the case of binary alloys from Section
4.2. The developed numerical approach will be incorporated in the simulation
system for prediction of solidification phenomena in aluminium alloys (Šarler
et al., 2019) with the purpose of providing more accurate estimation of the final
microstructure.

Journal papers

• Dobravec, T., Mavrič, B., Šarler, B. (2020). Reduction of discretisation-
induced anisotropy in the phase-field modelling of dendritic growth by
meshless approach. Computational Materials Science, 172: 109166.

• Šarler, B., Dobravec, T., Glavan, G., Hatić, V., Mavrič, B., Vertnik, R.,
Cvahte, P., Gregor, F., Jelen, M., and Petrovič, M. (2019). Multi-physics
and multiscale meshless simulation system for direct-chill casting of alu-
minium alloys. Strojniški vestnik – Journal of Mechanical Engineering, 65:
658–670.

• Dobravec, T., Mavrič, B., Šarler, B. (2017). A cellular automaton – finite
volume method for the simulation of dendritic and eutectic growth in
binary alloys using an adaptive mesh refinement. Journal of Computational
Physics, 349: 351-375.
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5.5. Dissemination of the results

Conference papers

• Dobravec, T., Mavrič, B., Šarler, B. (2020). Phase field modelling of den-
dritic solidification by using an adaptive meshless solution procedure.
MCWASP XV : International Conference on Modelling of Casting, Welding
and Advanced Solidification Processes - Online, Djurönäset, Stockholm, Swe-
den, June 22-23, IOP conference series, Materials science and engineering, Bris-
tol: IOP Publishing, 861: 1-7.

• Dobravec, T., Mavrič, B., Šarler, B. (2018). Meshless phase field model-
ing of dendritic growth. VII International Conference on Solidification and
Gravity, Miskolc-Lillafüred, Hungary, September 3-6, 2018, Selected, peer re-
viewed papers from the 7th International Conference on Solidification and Grav-
ity, Miskolc: Hungarian Academy of Sciences - University of Miskolc, 52-58.

Conference talks

• Dobravec, T., Mavrič, B., Šarler, B. (2019). Development of meshless
method for an accurate phase-field modelling of dendrites with arbitrary
orientations. 27th International Conference on Materials and Technology, Por-
torož, Slovenia, October 16-18, 2019. (awarded as a best presentation of a
young researcher)

• Dobravec, T., Mavrič, B., Šarler, B. (2019). Meshless phase field modeling
of dendritic growth by using an h-adaptive computational node arrange-
ment. Joint 5th International Conference on Advances in Solidification Pro-
cesses (ICASP-5) and 5th International Symposium on Cutting Edge of Com-
puter Simulation of Solidification, Casting and Refining (CSSCR-5), Salzburg,
Austria, June 17-21, 2019.

• Dobravec, T., Mavrič, B., Šarler, B. (2018). Phase field modelling of den-
dritic growth based on local meshless solution procedure. 26th Interna-
tional Conference on Materials and Technology, Portorož, Slovenia, October 3-5,
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Mavrič, B. and Šarler, B. (2015). Local radial basis function collocation method
for linear thermoelasticity in two dimensions. International Journal of Nu-
merical Methods for Heat & Fluid Flow, 25: 1488–1510.

Mavrič, B. and Šarler, B. (2017). Application of the RBF collocation method
to transient coupled thermoelasticity. International Journal of Numerical
Methods for Heat & Fluid Flow, 27: 1064–1077.

Moshkelgosha, E. and Mamivand, M. (2020). Phase field modeling of crack
propagation in shape memory ceramics – Application to zirconia. Com-
putational Materials Science, 174: 109509.

167



BIBLIOGRAPHY

Mramor, K., Vertnik, R., and Šarler, B. (2014). Simulation of laminar back-
ward facing step flow under magnetic field with explicit local radial
basis function collocation method. Engineering Analysis with Boundary
Elements, 49: 37–47.

Mukherjee, Y. X. and Mukherjee, S. (1997). The boundary node method for
potential problems. International Journal for Numerical Methods in Engi-
neering, 40: 797–815.

Mullins, W. W. and Sekerka, R. F. (1963). Morphological stability of a particle
growing by diffusion or heat flow. Journal of Applied Physics, 34: 323–329.

Mullins, W. W. and Sekerka, R. F. (1964). Stability of a planar interface during
solidification of a dilute binary alloy. Journal of Applied Physics, 35: 444–
451.

Mullis, A. M. (2006). Quantification of mesh induced anisotropy effects in the
phase-field method. Computational Materials Science, 36: 345–353.

Nash, G. E. and Glicksman, M. E. (1974). Capillarity-limited steady-state den-
dritic growth—I. Theoretical development. Acta Metallurgica, 22: 1283–
1290.

Nestler, B. and Choudhury, A. (2011). Phase-field modeling of multi-
component systems. Current Opinion in Solid State and Materials Science,
15: 93–105.

Nestler, B., Garcke, H., and Stinner, B. (2005). Multicomponent alloy solidi-
fication: Phase-field modeling and simulations. Physical Review E, 71:
041609.

Nguyen, V. P., Rabczuk, T., Bordas, S., and Duflot, M. (2008). Meshless meth-
ods: A review and computer implementation aspects. Mathematics and
Computers in Simulation, 79: 763–813.

Oñate, E., Idelsohn, S., Zienkiewicz, O. C., and Taylor, R. L. (1996). A finite
point method in computational mechanics. applications to convective
transport and fluid flow. International Journal for Numerical Methods in
Engineering, 39: 3839–3866.

168



BIBLIOGRAPHY

Ofori-Opoku, N. and Provatas, N. (2010). A quantitative multi-phase field
model of polycrystalline alloy solidification. Acta Materialia, 58: 2155–
2164.

Ohno, M. (2012). Quantitative phase-field modeling of nonisothermal solidifi-
cation in dilute multicomponent alloys with arbitrary diffusivities. Phys-
ical Review E, 86: 051603.

Oldfield, W. (1973). Computer model studies of dendritic growth. Materials
Science and Engineering, 11: 211–218.

Perrone, N. and Kao, R. (1975). A general finite difference method for arbitrary
meshes. Computers & Structures, 5: 45–57.

Perumal, R., Selzer, M., and Nestler, B. (2019). Concurrent grain growth and
coarsening of two-phase microstructures; large scale phase-field study.
Computational Materials Science, 159: 160–176.

Plapp, M. and Karma, A. (2000). Multiscale random-walk algorithm for sim-
ulating interfacial pattern formation. Physical Review Letters, 84: 1740–
1743.

Provatas, N. and Elder, K. (2010). Phase-Field Methods in Materials Science and
Engineering. Wiley-VCH, Weinheim, Germany.

Provatas, N., Goldenfeld, N., and Dantzig, J. (1998). Efficient computation
of dendritic microstructures using adaptive mesh refinement. Physical
Review Letters, 80: 3308–3311.

Provatas, N., Goldenfeld, N., and Dantzig, J. (1999). Adaptive mesh refine-
ment computation of solidification microstructures using dynamic data
structures. Journal of Computational Physics, 148: 265–290.

Reuther, K. and Rettenmayr, M. (2014). Simulating dendritic solidification us-
ing an anisotropy-free meshless front-tracking method. Journal of Com-
putational Physics, 279: 63–66.

Reuther, K., Sarler, B., and Rettenmayr, M. (2012). Solving diffusion problems
on an unstructured, amorphous grid by a meshless method. International
Journal of Thermal Sciences, 51: 16–22.

169



BIBLIOGRAPHY

Rippa, S. (1999). An algorithm for selecting a good value for the parameter c
in radial basis function interpolation. Advances in Computational Mathe-
matics, 11: 193–210.

Rowlinson, J. S. (1979). Translation of J. D. van der Waals’ “The thermody-
namik theory of capillarity under the hypothesis of a continuous varia-
tion of density”. Journal of Statistical Physics, 20: 197–200.

Ruan, Y., Mohajerani, A., and Dao, M. (2016). Microstructural and mechanical-
property manipulation through rapid dendrite growth and undercool-
ing in an Fe-based multinary alloy. Scientific Reports, 6: 1–11.

Sadat, H. and Prax, C. (1996). Application of the diffuse approximation for
solving fluid flow and heat transfer problems. International Journal of
Heat and Mass Transfer, 39: 214–218.

Saito, Y., Goldbeck-Wood, G., and Müller-Krumbhaar, H. (1988). Numerical
simulation of dendritic growth. Physical Review A, 38: 2148–2157.

Samet, H. (1989). Neighbor finding in images represented by octrees. Computer
Vision, Graphics, and Image Processing, 46: 367–386.

Shimokawabe, T., Aoki, T., Takaki, T., Endo, T., Yamanaka, A., Maruyama, N.,
Nukada, A., and Matsuoka, S. (2011). Peta-scale phase-field simulation
for dendritic solidification on the TSUBAME 2.0 supercomputer. Pro-
ceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’11, pp. 3:1–3:11. ACM, New York,
NY, USA.

Sladek, J. and Sladek, V. (editors) (2006). Advances in Meshless Methods. Tech
Science Press, Hendersen, Nevada, USA.

Sun, W., Yan, R., Zhang, Y., Dong, H., and Jing, T. (2019). GPU-accelerated
three-dimensional large-scale simulation of dendrite growth for Ti6Al4V
alloy based on multi-component phase-field model. Computational Mate-
rials Science, 160: 149–158.

Šarler, B. (1995). Stefan’s work on solid-liquid phase changes. Engineering
Analysis with Boundary Elements, 16: 83–92.

170



BIBLIOGRAPHY

Šarler, B. and Atluri, S. N. (editors) (2010). Recent Studies in Meshless & Other
Novel Computational Methods. Tech Science Press, Duluth, Minessota,
USA.

Šarler, B., Dobravec, T., Glavan, G., Hatić, V., Mavrič, B., Vertnik, R., Cvahte, P.,
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