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Abstract

We show simulation techniques that enable to computationally bridge
from the atomistic up to the mesoscopic scale. To evaluate the efficiency,
we use a phase-field method to simulate symmetric thermal dendrites
and start the computation at an early stage of solidification related to
nucleation. The early structures are taken from the molecular dynamics
method. The proposed techniques allow to simulate three dimensional
dendrites from the state of nuclei (≈ 50 Å) up to a size proportional to
µm where ternary side-arms start to grow.

Keywords: efficient computational algorithms, phase-field, scale bridging,
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1 Introduction

In material science, a modern computational materials characterization and
development requires multiscale simulation approaches in order to capture the
physical processes acting on both scales, atomistic and mesoscopic length and
time scales [1]. An understanding of the effects on each scale allows to transfer
information, material data and physical properties across different, by now, well-
established methods. Various attempts have recently been reported. Bragard
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et al. [2], for example, make use of parameters delivered by molecular dynamics
(MD) simulations to compute Nickel dendrites on a micrometer length scale
with the phase-field (PF) method. Another combined approach coupling cellular
automaton model to a finite element approach is discussed by Gandin et al. [3].
Provatas et al. [4, 5] use a phase-field crystal model as an alternative concept
on the atomistic length scale compared to MD to provide input data for PF
simulations [6, 7].

To facilitate a computational description ranging from 1 Å to several mi-
crometers, improved numerical algorithms and solution schemes are necessary.
The present paper introduces a number of efficiency optimized techniques as
feasible solutions to be applied e. g. to dendritic morphologies. The methods
chosen to establish a sequential multiscale chain combine MD and PF simula-
tions in order to transfer information from a smaller scale to a bigger scale. As
the presented methods rely on MD and PF simulations, we briefly recall recent
review articles to provide a compressed overview. On the atomistic scale, MD is
established with reliable results, however it has high computational effort such
that big simulations are not very practical [8–12]. The PF method has emerged
as a powerful computational approach to describe phase transition phenomena
and microstructure formation with complex interfacial topologies typically oc-
curring on a mesoscopic length scale of 1 to several hundred micrometers (e. g.
[13–18]). Model derivatives are formulated to study solidification in pure and
multicomponent systems e. g. [19–28], microstructure evolution in solid phase
systems [29–31] and general motion of grain boundaries, e. g. [32].

Due to the complexity of the underlying physical model derivations, the
individual methods operating on the different length scales are on its own com-
putationally very extensive. The challenge of an integrated computational mod-
elling for materials development and engineering with a multiscale information
and data transfer essentially requires new techniques and algorithms to effi-
ciently reduce computing time and memory. The aim of the present paper is to
contribute to this challenge in developing numerical solution schemes based on
symmetry arguments and rescaling procedures.

The considered simulation framework is based on an explicit finite difference
scheme solved within a regular cubic grid. We choose the evolution of a typical
dendritic solidification morphology to illustrate the necessity and computational
advantages of particularly designed algorithms to bridge from atomistic to meso-
scopic scales. We begin on the atomistic scale employing a MD simulation [33]
and set a nucleus of 50 Å in diameter in an undercooled melt. The nucleus grows
in its surrounded melt to a large atom cluster. If solidification proceeds interfa-
cial instabilities as a result of the limited temperature diffusion form and finally
a dendritic shape evolves with a primary trunk, with secondary and ternary
side-arms in the direction of the crystal anisotropy on a mesoscopic scale. The
setup of a scale-bridging simulation needs a huge resolution of the numerical
grid so that both, the initial nucleus can be resolved sufficiently fine as well as
the morphology of the final dendrite can be contained in the simulation domain.
The interface Péclet number (the ratio of the interface width and the diffusion
length) has to be small for the thermodynamic consistency of the PF model
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[34]. In detail, a resolution of 1 Å needs 20 000 cells in each direction to hold a
dendrite of 2µm length. For a 3D application, this rough estimation yields the
need of 8 · 1012 cells and, hence 58TB for each field assuming double precision
with 8Byte per value. If we consider the simplest case of a thermal dendrite
solidification in a pure substance, a PF model consists of two computed fields,
the phase variable defining the phase state of the system and the temperature
field. Based on the above considerations, 116TB are to be stored and executed.
Even with the employment of high performance clusters, the sketched simu-
lation is, without the incorporation of further efficiency techniques, basically
not practical as the equipment of high performance environments typically cov-
ers 2GB per CPU. In total, the execution of the scale-bridging simulation of
a thermal dendrite requires the access to 60 000 CPUs. We even remark that
newer clusters commonly consist of 512MB memory chips. Widely used tech-
niques to reduce the computational effort employ adaptive mesh refinements
which simultaneously reduce the memory demand if finite element structures
are considered [1, 35, 36]. The random walker methods also allow to reduce
the number of grid points in regions further away from the moving interfaces
[37]. Another approach has been suggested in [32] and is based on a hybrid
GPU–CPU parallelization.

In addition to these well-known techniques, we describe algorithms and iter-
ation schemes - (i) which are particularly suited to improve the efficiency of the
diffuse interface nature of PF models and - (ii) which particularly exploit the
symmetry characteristics of crystal anisotropy. The phase field is only indepen-
dent of its interface width within a bounded range, so that it is not arbitrary
scaleable. We discuss a re-scaling technique to reduce the number of grid points
in each direction from 20 000 cells to 4 000 cells. As a result, each field variable
needs memory resources of 477GB which is already in a range computable on
high performance clusters. The rescaling of the grid resolution can be employed
for different types of microstructure. To further improve the computational ef-
fort, we explore the cubic symmetry of the dendrite by applying a geometrical
Hill tetrahedron construction to downsize the computational domain. Together
with the trivial symmetry argument of considering only 1/8 of the domain, the
Hill construction allows to reduce the eighth to an additional subdomain of 1/6.
In total, the whole structure can well be resolved in 1/48 of the original domain
which enables to halve the used number of CPUs and the computing time.

The structure of the paper is the following: In the next section, we introduce
the PF model and define the material parameter obtained from MD simulations
of pure Nickel [38, 39] that are transferred to the successive PF simulations.
Section 3 builds the main body of the paper, in which we provide several simu-
lation techniques that reduce the computational time and memory required to
conduct the multiscale simulation. Among the presented algorithmic schemes,
we exploit the symmetry of the dendrite and compute only 1/48 of the total
structure. Further, we suggest an iterative up-scaling of the computational do-
main accommodated to the size of the crystal during the growth evolution. We
apply the efficient techniques to implement a scale-bridging simulation from a
nucleus of 5 Å up to a several micrometer large 3D structure that shows the typ-
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ical morphological properties of dendrites. In section 4, we conclude by carving
out the resulting speed up of the proposed methods.

2 Phase-field model for dendritic solidification

in pure materials

As the central objective of this paper is to establish a general algorithm frame-
work for scale-bridging computations from a nucleation state to a micrometer
microstructure, we exemplarily elaborate a simple PF model for thermal den-
dritic solidification of pure materials.

The crystal growth in a pure material is modeled by the variables of the
internal energy density e and of a phase-field φ(~x, t) with 0 ≤ φ ≤ 1 in the
interfacial region and with φ = 1 for the solid phase and φ = 0 for the liquid
phase. The variable φ(~x, t) denotes the local fraction of the solid phase at
position ~x and at time t.

The PF model is based on an entropy functional to ensure consistency with
classical irreversible thermodynamics

S(e, φ) =

∫

Ω

s(e, φ)−

(

εa(φ,∇φ) +
1

ε
w(φ)

)

dx. (1)

The bulk entropy density s depends on the internal energy density e and the
phase-field variable φ(~x, t). The functions a(φ,∇φ) and w(φ) reflect the ther-
modynamics of the interfaces and ε is a small length scale parameter related to
the thickness of the diffuse interface.

The gradient entropy a(φ,∇φ) incorporates a formulation of crystal anisotropy

by the factor (A (n̂))
2
depending on the orientation of the interface. We employ

the expression

a(φ,∇φ) = a(∇φ) =
γ0
T

(A (n̂))
2
|∇φ|

2
= γ (n̂) |∇φ|

2
(2)

where n̂ = (n1, n2, n3)
T = −∇φ/|∇φ| is the normalized gradient vector of the

solid–liquid interface.
The function ω(φ) = 16

π2

γ0

T
φ(1 − φ) is an obstacle type potential. We set

ω(φ) = ∞ for φ 6∈ [0, 1]. Note that γ0

T
is the interface entropy density. The ob-

stacle potential is chosen for numerical reasons allowing the phase-field equation
to be solved only in a finite diffuse interface region.

From Eq. (1) one derives the equations for the non-conserved phase-field
variable φ and for the energy conservations by taking the functional derivatives
in the form

τε
∂φ

∂t
=

δS

δφ
,

∂e

∂t
= −∇ · L00(T, φ)∇

δS

δe
, (3)
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where τ = τ(φ,∇φ) is an anisotropic relaxation parameter depending on the

temperature according to τ = L(T )
TTmk(n̂) . By Eq. (4), τ is a function of the kinetic

coefficient k0.
The mobility coefficient L00(T, φ) is related to the thermal conductivity

K(φ). We assume the simple form L00 = KT 2 for a phase independent constant
K(φ) = K.

The evolution of the phase-field variable is described by

τε
∂φ

∂t
= ε

(

∇ ·
∂a(∇φ)

∂∇φ

)

−
1

ε

∂w(φ)

∂φ
+

∂s(e, φ)

∂φ
.

The thermodynamic relation e = f +Ts yields ∂s(e,φ)
∂φ

= − 1
T

∂f(T,φ)
∂φ

(for details

see [40]), so that the phase-field equation can be expressed in terms of the free
energy density f(T, φ). We define

f(T, φ) = L(T )
T − Tm

Tm

h(φ) +
∑

α

(

∫ T

Tm

Cα
v (T̃ )dT̃ − T

∫ T

Tm

Cα
v (T̃ )

dT̃

T̃

)

h(φα)

where h(φ) is a monotonous function on [0, 1] with h(0) = 0, h(1) = 1 and
h′(0) = h′(1) = 0. We choose h(φ) = φ3(6φ2−15φ+10). Note α ∈ {solid, liquid}
and φsolid = φ = 1 − φliquid. L is the latent heat and Cα

v (T ) is the volumetric
heat capacity of phase α, both depending on the temperature T . Tm is the
melting temperature.

The evolution of the temperature is derived from the entropy density s =
− ∂f

∂T
and the thermodynamic relation

e(T, φ) = f(T, φ)− T
∂f(T, φ)

∂T

with T and φ both functions of time t. According to Eq. (3), the time derivative
of e reads

∂e

∂t
=

(

−T
∂2f

∂T 2

)

∂T

∂t
+

(

∂f

∂φ
− T

∂2f

∂T∂φ

)

∂φ

∂t
= −∇ · L00(T, φ)∇

1

T

with δS
δe

= 1
T

for pure substances. Rearrangement results in the evolution
equation for the temperature field

∂T

∂t
=

(

−∇ · L00(T, φ)∇
1

T
−

(

∂f

∂φ
− T

∂2f

∂T∂φ

)

∂φ

∂t

)

·

(

−T
∂2f

∂T 2

)−1

.

We transfer the properties of Ni from molecular dynamics computations
based on an embedded atom method (EAM) potential by Foiles (F85) [38] and
thermophysical properties from [39]. According to the atomistic simulations,
the density satisfies the function ρ(T ) = a+ b · T + c · T 2, with a = 8901 kg/m3,
b = −0.2038 kg/m3K and c = −6.142 · 10−5 kg/m3K2 for the fcc solid phase and
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a = 8992 kg/m3, b = −0.667 kg/m3K and c = 3.316 · 10−5 kg/m3K2 for liquid. The
latent heat is L0(T ) = L̃0(T ) · ρ(T ) with L̃0(T ) = a + b · T + c · T 2 where
a = −1.598 · 104 J/kg, b = 324.7 J/kgK and c = −8.11 · 10−2 J/kgK2.

The specific heat capacity is given by c(T ) = c̃(T ) ·ρ(T ) with c̃(T ) = a+b ·T
where a = 392.1 J/kgK and b = 8.525·10−2 J/kgK2 for the solid and a = 673.4 J/kgK
and b = −3.126 · 10−2 J/kgK2 for the liquid.

The thermal diffusivity proposed by the MD model is calibrated to value
2.1 · 10−7 m2

/s and differs from the experimental value 170 · 10−7 m2
/s by two

orders of magnitude [39]. The melting temperature is Tm = 1748K.
The interfacial energy γ depending on the orientation n̂ is represented by a

harmonic cubic expansion

γ(n̂)

γ0
= 1 + ε1

(

Q−
3

5

)

+ ε2

(

3Q+ 66S −
17

7

)

+ ε3

(

5Q2 − 16S −
94

13
Q+

85

13

)

with Q = n4
1 + n4

2 + n4
3 and S = n2

1n
2
2n

2
3. The mean interfacial free energy

averaged over the orientations is γ0 = 0.302 J/m2 and the anisotropy strengths
are ε1 = 0.102, ε2 = −1.34 · 10−3 and ε3 = 8.76 · 10−3.

The orientation-dependent kinetic coefficient is represented by

k(n̂)

k0
= 1− 3εk + 4Q+ δk (R+ 30S) (4)

with R = n6
1 + n6

2 + n6
3. The mean kinetic coefficient averaged over the orienta-

tions is k0 = 0.3192m/sK and the strengths of the anisotropy are εk = −0.1965
and δk = 0.2303.

3 Techniques to optimize computational efficiency

We solve the phase-field and temperature equation using an explicit finite dif-
ferences scheme on a regular cubic grid. To initialize the simulation domain,
a crystalline cluster of about 5 nm in diameter is appropriately converted from
molecular dynamics. Therefore we calculate the q6q6 order parameter [41] and
map the atom positions to a mesh of 1 Å width. The converted cluster is used
as the starting condition in the PF simulations. Fig. 1 shows the discrete atom
positions of MD and the converted continuous field of PF. However the phase-
field evolution smoothens the cluster approximating a sphere. We benefit from
this by assuming a symmetric cluster and simulating only one eighth of the
cluster. To exploit this property, the cluster is set in one corner of a simulation
domain called reduced cube (see Fig. 2 upper left) and the borders act as reflec-
tion planes. For each border we use Neumann boundary conditions ensuring the
symmetry on the reflection planes. The temperature field evolves very quickly.
To avoid boundary effects of the temperature, we set the simulation box twice
the size needed for the resulting crystal.

To establish a multiscale approach, we develop different techniques to reduce
the computational time. The algorithms are described in the following sections.
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3.1 Iterative up-scaling method

As a first method, we introduce an iterative up-scaling method. The simula-
tion is conducted in a small simulation box with 1453 cells of size 1 Å. We use
the thermal diffusivity of 2.1 · 10−7 m2

/s from MD to benefit from a slower tem-
perature field. The temperature field is initialized with 1450K. The dendrite
starts growing and before boundary effects occur, we interrupt the simulation.
The grid size is multiplied by a factor 2. The dendrite is scaled to this size
so that it fits in a 723 box, the remaining part of the simulating box is filled
with the initial state. We use a trilinear interpolation to scale the domain. The
physical cell width is doubled, the physical size of the evolved nucleus remains
unchanged. Following, that we continue the simulation with a time step size
chosen 4 times larger. This algorithmic scheme is repeated 4 times in total,
resulting in a physical cell width of 16 Å in the final simulation sequence. The
time step size of the last simulation period is 256 times larger than in the first
simulation step.

Fig. 2 shows the simulation starting from an MD nucleus and evolving to a
full mesoscopic dendrite. In the different up-scaling steps, we observe that the
surface of the nucleus changes from a convex curvature to a concave shape. The
dendrite approaches 1µm in size, which is small for a pure nickel dendrite, but
the simulation contains all parameters from MD including a thermal diffusivity
of 2.1 · 10−7 m2

/s.
In this procedure, we also change the value of the diffuse interface thickness

ε, so that we have an interface of about 8 cells for each simulation part. This
implies a change of the physical interface width, which has little effect on the
growth rate. As tested in 1D simulations for varying numbers of ε, the influence
is small i. e. approximately 1.5% for the chosen values of ε (ε, 2ε and 4ε) for early
state solidification. For an ε which is 8 times larger than the physical interface,
the growth is less than 3% faster, for ε 16 times than the size of the interface, the
effect is still less than 7%. This deviation results in a non-symmetric interface
so that large values ∆x > 4 Å lead to a non-expected behavior. The range of
a symmetric interface depends on the driving force and hence on the velocity
of growing, so that for another undercooling this method may produce good
results.

The up-scaling is very fast because of the small simulation box, but, as
discussed, limited by the largest ∆x providing a fine interface profile.

3.2 Symmetry arguments

In the previous section we have shown that the thermal diffusivity taken from
MD provides too small dendrites. If we use a higher thermal diffusivity, e. g. from
experiments, the temperature evolves faster so that we need bigger domains to
avoid boundary effects. To further increase the efficiency of computation and
to enable the consideration of large mesoscopic domains, we derive symmetry
arguments related to the symmetry of the crystal structure.

We explore the crystal symmetry of the nickel dendrites in order to reduce
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the computational domain to a representative volume element in accordance
with the structure requirements. Random noise acts only to the considered
part of the dendrite so that the resulting reconstructed dendrite is perfectly
symmetric. If non-symmetric dendrite arm formations are to be discovered the
following method is not appropriate.

3.2.1 Hill tetrahedron construction

A cube Q :=
{

(x, y, z) ∈ R
3
∣

∣ 0 ≤ x, y, z ≤ 1
}

can be split in 6 symmetric parts
by cutting Q along the three bisection planes: (1̄10), (1̄01) and (01̄1). This
results in six Hill tetrahedrons described by the sets

H1 := {(x, y, z) ∈ R
3 | 0 ≤ x ≤ y ≤ z ≤ 1},

H2 := {(x, y, z) ∈ R
3 | 0 ≤ x ≤ z ≤ y ≤ 1},

H3 := {(x, y, z) ∈ R
3 | 0 ≤ z ≤ x ≤ y ≤ 1},

H4 := {(x, y, z) ∈ R
3 | 0 ≤ y ≤ x ≤ z ≤ 1},

H5 := {(x, y, z) ∈ R
3 | 0 ≤ z ≤ y ≤ x ≤ 1},

H6 := {(x, y, z) ∈ R
3 | 0 ≤ y ≤ z ≤ x ≤ 1}.

The union of these sets is the cube Q =
⋃6

n=1 Hn. Fig. 3 shows the cutting
planes of the set Q. Every cutting plane divides the original cube in two equal
parts, where each part holds three Hill tetrahedrons. A Hill tetrahedron consists
of four triangles. The two non-visible triangles in Fig. 3(d) are isosceles.

We now identify the reduced cube with Q and place a nucleus into the origin
of Q, so that the cube Q contains 1/8 of the nucleus. It is obvious that the
three cutting planes are projection planes for the symmetry of the nucleus.
Each Hill tetrahedron contains 1/6 of the nucleus in the reduced cube Q, hence,
H1 contains 1/48 of the nucleus. The nucleus grows with a dendrite tip in the
z-direction. 1/8 of the arm is contained in H1. The projection plane (1̄10),
together with the xz- and yz-planes project the section back to the whole arm
in z-direction. The arms in x- and y-direction are projected by the (1̄01) and
(01̄1) planes, respectively.

On account of the symmetry arguments, only one of the Hill tetrahedrons is
necessary for the calculation. We use the discrete analogue of the Hill tetrahe-
dron H1 to define the simulation domain by

H1 :=
{

(i, j, k) ∈ N
3
∣

∣ 0 ≤ i ≤ j ≤ k ≤ N
}

,

with N being the number of cells in one direction. Analogously H2, . . . , H6 are
the discrete set of the Hill tetrahedrons H2, . . . ,H6. To reconstruct the whole
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cubic domain, we need to map H1 to H2, . . . , H6 by the mapping functions

A2 : H1 → H2, (i, j, k) 7→ (i, k, j),

A3 : H1 → H3, (i, j, k) 7→ (k, i, j),

A4 : H1 → H4, (i, j, k) 7→ (j, i, k),

A5 : H1 → H5, (i, j, k) 7→ (k, j, i),

A6 : H1 → H6, (i, j, k) 7→ (j, k, i).

To numerically solve the evolution equations for the phase-field and the
temperature, we calculate finite differences in an equidistant mesh. The dis-
cretisation contains a stencil incorporating the direct and diagonal neighbours.
In the case of border cells, where neighbouring cells do not exist, a one-sided
discretisation is replaced. To avoid discretisation errors due to the use of the one
sided discretisation schemes we append one cell in each direction of H1. With
this construction, the inner of H1 is calculated with the full discretisation stencil
ensuring that the calculation in H1 is the same as in a whole cubic domain. The
inner domain border is given by the set

B :=
{

(i, j, k) ∈ N
3
∣

∣ k ≤ N : (i ≤ j ∧ j = k + 1) ∨ (i = j + 1 ∧ j ≤ k)

∨(i ≤ j ∧ j = k + 2) ∨ (i = j + 2 ∧ j ≤ k) ∨ (i = j + 1 ∧ j = k + 1)
}

.

All cells not covered inH1∩B are marked as not to be calculated. For the cells in
B, a suitable boundary condition needs to be formulated. The cells are updated
by the mapping functions A2, . . . , A6 after each simulation step. Consequently,
the cells inside H1 have the same neighbouring cells as in the full cubic domain.
Geometrical details of the inner border B and of the data exchanging mechanism
for boundary elements in a parallel simulation environment are displayed in
Fig. 4.

A test simulation of a 733 cubic domain on a single core shows a speedup of
around 6.5 more than the theoretically expected maximum of 6. The speedup
of parallel simulations is listed in Table 1.

3.2.2 Reduced domain size

To initialize the simulation domain as a rectangular cuboid, we allocate the
memory of the whole reduced cube, although only 1/6 of the domain is cal-
culated. As seen in Fig. 5(a), the dendrite tip fills a small part of the Hill
tetrahedron, which allows to cut the Hill tetrahedron by a plane parallel to the
xz-plane at (0, 1

2 , 0). This plane divides the Hill tetrahedron into two identical
halfs defined by

HR
1 :=

{

(x, y, z) ∈ H1

∣

∣

∣

∣

y ≤
1

2

}

=

{

(x, y, z) ∈ R
3

∣

∣

∣

∣

0 ≤ z ≤ 1 ∧ 0 ≤ x ≤ y ≤ min

{

1

2
, z

}}

.
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HR
1 fits in a rectangular cuboid that is one quarter of the cube Q. The cutting

plane requires a boundary condition. We assume the same as for the other
outer boundaries. As soon as one of the fields reaches the boundary, the result
is influenced by the boundary condition. The diffusion of the fastest field, in
this physical setting the temperature, has approximately the same expansion
as the dendrite surface, if we use infinite relaxation kinetics as described in
appendix A. Due to this property, the cutting plane is not reached before the
tip approaches the boundary.

To simulate a dendrite with an extension of 4000 cells from tip to tip, the ef-
ficiency optimization schemes can be applied to not resolve the structure in
the complete domain of 40003 cells. As discussed, a rectangular cuboid of
2000 × 1000 × 1000 cells is fully sufficient to resolve the symmetric part of
the dendrite. For volumetric data with float precision (4Byte), the simulated
box in the reduced cuboid occupies 7.45GB for one saved timestep. In contrast,
a box containing the full dendrite needs 32 times as much space, summing up
to 238GB.

3.3 Large-scale dendrite simulation

In continuation, we compute a large-scale 3D dendrite of 2µm tip to tip size
using an experimentally measured value of 170 · 10−7 m2

/s [39] for the thermal
diffusivity. The evolution is shown in Fig. 6. As initial structure, we continue
the growth of the rescaled dendrite in Fig. 2 as the third up-scaling step yielding
a cell size ∆x = 5 Å. The simulation conducted using the symmetry optimiza-
tion strategiesis described in Section 3.2, so that only 1/48 of the dendrite is
calculated.

We also apply the half Hill tetrahedron scheme so that a box of 1000 ×
1000× 2000 is simulated. We employ the largest value ∆x = 5 Å establishing a
symmetric interface and apply the infinite relaxation kinetics from appendix A.
The resulting dendrite is set in a 40003 cubic box and shows the formation of
secondary and early state ternary arms.

4 Discussion and conclusion

Applying the efficiency optimization techniques of up-scaling and symmetry ar-
guments allows to simulate huge dendrites. The up-scaling iteration scheme
keeps the size of the domain and the number of grid points constant by in-
creasing, at the same time, the physical length of the considered structure. The
computational effort remains the same and does not increase with the growing
structure. Scaling the length by factor 2 results in a timestep of factor 4. Simi-
larly, a length factor of 16, as used in the last step of Fig. 2, results in a timestep
of factor 256. The theoretical speedup of this method is > 106, in comparison to
a domain with 16 times as many cells in each direction, and with much smaller
timestep. We remark that the need of more memory and thus more CPUs has
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not been considered in the current discussion. The PF method bounds the grid
size so that the up-scaling method is only useful for the first steps.

The symmetry method reduces the computational effort without changing
the grid size. However, the cubic domain is the same as the reduced cube
but only around 1/6 of the cells are calculated. As long as a parallelization by
domain decomposition in 1 selected dimension is used, the speedup is limited by
the domain size and by the number of CPUs. The maximum number of CPUs
for a 1453 cube is 145. Taking advantage of the Hill tetrahedron, a simulation
exceeding over the same time only needs the elaboration of 28CPUs. The usage
of 63CPUs allows to run simulations in half time, under the assumption that
the computational load is distributed homogeneously. This leads to a speedup
of > 4 by the additional symmetry without considering the trivial symmetry of
the reduced cube.

The Hill tetrahedrons reduce the box size by a factor of 48 in total or by an
additional factor of 6 if the trivial symmetry of the reduced cube is taken into
account.

In addition, the memory of the symmetric part in the half Hill tetrahedron
of the dendrite is only 1/32. This can be reduced to 1/96, if the non-calculated
cells marked in Fig. 4 are not saved. The symmetry algorithms require a data
structure that can no longer be linear. If memory problems arise, this reduction
is possible.

Using the up-scaling method at the early stage of growth and continuing
the simulation with the half Hill tetrahedron, allows to compute thermal den-
drites of a mesoscopic scale where ternary side-arms are formed starting from a
small atomic cluster. The presented techniques to improve the computational
efficiency provide new insights into the physics of microstructure formation by
establishing a simulation framework to conduct high resolution computations in
3D.
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A Infinite relaxation kinetics

In order to have infinite relaxation kinetics for the phase-field equation, we adapt
the thin-interface analysis to pure material solidification, similar to the theory
for alloys and under the assumption of an obstacle potential as presented in [28].
The results reflect previous work [24, 42] based on double well potentials. The
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corresponding relation for the relaxation coefficient can be written as,

τ = ε
L2

TTmK
(M + F ) ,

with solvability integrals M and F , while the preceding relation ensures that
the kinetic coefficient β = 1/k0 = 0 for an isotropic interface. In case of solidifi-
cation with anisotropic interfacial energy, a procedure similar to the derivations
proposed by Karma et al. [43] can be formulated as,

τ (n̂) = εA2 (n̂)
L2

TTmK
(M + F ) ,

where A (n̂) is the same as in Eq. (2). The quantitative aspects of the model
have been verified by comparison of the tip velocity of a 2D dendrite for different
interfacial widths. Dimensionless simulations (using length ℓ = 1 Å, time τ =
1ps, temperature ϑ = 1748K and energy density e = 6.6485 J/m3) for ∆x of
40, 50, 60, 70 result in velocities of the tip 3.7370·10−7, 3.7291·10−7, 3.7276·10−7

and 3.7332 · 10−7 respectively. These values deviate by less than 0.3% from the
heoretical velocity.
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Hc3/1 node Hc3/2 nodes Imp/1 node Imp/2 nodes Workstation
Hill tetrahedron 274 s 153 s 507 s 333 s 544 s
full cube 1568 s 498 s 1835 s 1022 s 2840 s
speedup 5.7 3.2 3.6 3.1 5.3

Table 1: Runtime of a MPI parallel test simulation with a 723 cubic domain.
The different clusters in the header are HP XC3000 at Steinbuch Centre for
Computing of Karlsruher Institute of Technologies (Hc3) with 2 Quad-Core
Intel Xeon E5540 (2.53GHz) and 24GB RAM per node and the Institute of
Materials and Processes Cluster at University of Applied Science Karlsruhe
(imp) with 2 Quad-Core AMD Opteron 2350 (2GHz) and 16GB per node.
And a Workstation with Dual-Core Intel E8400 (3GHz) and 4GB running two
workers.
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(a) MD nucleus (b) PF nucleus

Figure 1: (a) Atomic positions of the MD nucleus, the color indicating the func-
tion of the order parameter, (b) converted PF nucleus displayed as an isosurface
of the interface.
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Figure 2: Phase-field simulation of a large dendrite (lower right) starting from
a small MD nucleus (upper right) with four iterative up-scaling steps on the
left side (red growing, blue modifying). The resulting dendrite has a tip to tip
distance of 1µm.
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Figure 3: The initial unit cube Q in (a) is cutted by the (1̄10), (1̄01) and
(01̄1) plane. The result of the first cut (b) is equivalent to the set A1 :=
{(x, y, z) ∈ Q | x ≤ y} = H1 ∪ H2 ∪ H3. The second cut (c) is equal to the
set A2 := {(x, y, z) ∈ A1 | x ≤ z} = H1 ∪ H2. The third cut (d) results in
{(x, y, z) ∈ A2 | y ≤ z} and describes the Hill tetrahedron H1.
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1

2

Figure 4: The scheme shows the simulation domain and copy instruction for
the boundary conditions in a parallel simulation. The diagonal dashed line
denotes the symmetry axis. The upper white cells are calculated, the lower
gray cells are marked as non-calculated cells. After each step of the simulation,
the boundary for parallel communication (red box) are exchanged by operation
1©. In additional the domain boundary conditions are performed (not shown
for clearness). Then the symmetry condition is archived for each inner domain
border cell in B (red). The values from inside the domain are transferred by
using the mapping functions A2, . . . , A6 ( ), except for the cells in 2©. Here
the mapping function needs data from another worker. The cells are not used
for further calculation, and are hence marked as non-calculated cells (gray). If
a cell in B is next to a domain boundary cell, the latter is also updated (implied
by ).
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Figure 5: (a) Representation of the Hill tetrahedron in Fig. 3(d) with a schematic
dendrite and an illustration of the cutting plane, (b) bisected Hill tetrahedron
and (c) reduced simulation domain of a rectangular cuboid of one quarter within
the volume of Q.
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(a) (b)

Figure 6: (a) Computed dendrite with a tip to tip distance of 2000 cells (1µm) in
its associated half Hill box. (b) Dendrite with the formation of ternary side-arms
with a tip to tip distance of 4000 cells (2µm) using experimental parameter and
the kinetics β = 0. The contour of the cutting plane is marked by the arrows.
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