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Without the first small step, a faraway 

destination can never be reached; 

without the initial tiny stream, an immense 

sea can never come into being. 

Chinese archaic poem 



Abstract 

A mathematical model has been constructed in order to understand the development of 

dendritic structures formed in directional solidification of nickel-based superalloys. 

This model uses the cellular automaton technique to track the nucleation and growth of 

the soHd phase from liquid phase, and a finite difference calculation for the diffusion 

of the alloying solute. Both the constitutional undercooling and the curvature 

undercooling are simulated, since they affect the growth velocity of the solid/liquid 

interface. The effect of crystallographic anisotropy is studied by the adaptation of a 

decentred square/octahedron growth algorithm. The model is three dimensional but 

when it runs on a domain composed of only one layer of cells, it degrades into a two-

dimensional model. 

This model has been applied to three specific aspects of microstructural development: 

the selection of stable primary dendrite spacing during directional solidification under 

varied growth conditions; multi-directional dendritic growth in the platform region of a 

turbine blade; and competitive growth at converging and diverging grain boundaries. 

For the first of these, simulations were carried out in both two and three dimensions; 

but only in two-dimensions for the other two. For competitive growth, a phase filed 

model developed by other researchers was used to carry out further investigations. The 

results of the simulation were compared with earlier analytical predictions, and with 

other computational and experimental results. 

It was found that in directional solidification primary dendrite spacing is dependent on 

the processing history, that there is a range of stable spacings for any given growth 

condition which is reduced by perturbation. Sudden changes in the cross-sectional area 

of the turbine blade can give rise to a significant increase in the tip undercooling, 

favouring the nucleation of stray grains; with the combined effect of concave 

isotherms, a self-converging grain boundary tends to form. The simulations showed 

excellent correlation with prior theoretic analyses, computational models and 

experimental results. 
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Chapter 1 Introduction 

The continuous improvement in the efficiency of gas turbines for both 

aerospace and power appHcations has benefited significantly from continual 

improvements in the alloys used for both turbine blades and discs. Nickel-

based superalloys are widely used in the aerospace industry because of their good 

performance at the high temperatures at which modem gas turbines usually operate. 

The performance of these alloys is dependent upon both their composition and the way 

in which they are processed. The first stage of processing is usually by solidification 

from a melt, where an initial microstructure is formed and subsequently altered by 

thermo-mechanical processing and/or heat treatment. The engineering requirements of 

turbine blades and discs are quite different. The operating temperature of the blades is 

maximised for engine thermal efficiency, requiring a combination of high temperature 

creep resistance coupled with thermal fatigue resistance during engine cycling. Discs 

operate within a lower temperature regime and thus require a high strength alloy to 

accommodate the large centrifugal forces experienced during engine operation and 

good resistance to fatigue crack propagation. These separate requirements have led to 

the development of very different classes of materials but in both cases the properties 

are dependent upon the solidification microstructure. 

The microstructure of cast turbine blades has progressed from an equiaxed to 

directionally soHdified (DS) and subsequently to single crystal (SX) grain structures. 

The processing requirements to achieve these structures have become increasingly 

stringent, and the propensity for the formation of defects has increased. Key to the 

formation of defects is dendritic growth. In DS and SX blades, misaligned stray grains 

cause many parts to be rejected (Pollock, et al 1996). In discs, the initial 

microstructure is formed during a secondary remelting process, such as Vacuum Arc 

Remelting (VAR). During VAR, variations in the process parameters can lead to 

solidification features or defects such as freckles (macrosegregation) (Auburtin, et al. 

2000) and tree rings (strings of equiaxed grains in an otherwise columnar dendritic 

microstructure) (Xu, et al. 2000). Understanding the formation of defects in both blade 

and disc alloys, requires a fundamental knowledge of the growth of the initial dendritic 

microstructure during solidification. 

In this thesis, a mathematical model of dendritic microstructures in nickel-based 

superalloys is presented. The original code was written by Dr. Peter D. Lee, and then 
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expanded by a few prior PhD students (Dr. Robert C. Atwood and Dr. Xuehua Xu, et 

al.). I further expanded the code in several significant ways: incorporation of decentred 

square/octahedron grain growth algorithm, introduction of moving frame of reference 

technique, and many minor additional extensions and bug fixes. 

A literature review is presented in Chapter 2 which describes the theory, experiments 

and modelling of solidification. In the section on modelling different types of 

numerical models of solidification are reviewed, with particular emphasis on the two 

major approaches; cellular automaton models and phase field models, and a 

comparison of these is carried out. 

Chapter 3 describes the modelling theory in detail, including the assumptions made 

and solution techniques used. The model is a combination of a cellular automaton 

description of grain nucleation and growth and a finite difference computation of 

solute diffusion. 

In Chapter 4, two-dimensional simulation results of directional solidification under 

well defined conditions are presented and discussed. The simulation results are 

compared with earlier theoretical and numerical predictions. 

Three-dimensional simulations of directional solidification are presented in Chapter 5, 

and compared with the two-dimensional simulation results. The numerical predictions 

are also compared with earlier experimental results. 

In Chapter 6 another application of the model is presented: simulation of the dendritic 

growth in a platform region of nickel-based superalloy turbine blades. The simulated 

structure is then compared with experiments. 

Competitive growth between differently orientated grains is also studied using the 

model, and the results are presented in Chapter 7. The limitations of the model in this 

context are discussed, and a phase field model developed by other researchers is 

applied to carry out further investigations. 

Conclusions are drawn in the last chapter, followed by recommendations for future 

work. 
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Chapter 2 Background 

Solidification phenomena play an important role in many of the processes used 

in industrial fields for the production of metal and alloy components. The 

course of solidification is affected by material properties (e.g. liquidus 

temperature, initial concentration, equilibrium partition coefficient and solute 

diffusivity et al.) and processing parameters (e.g. initial temperature and cooling rate et 

ah). Changes in material properties and processing parameters can lead to different 

solidification structures, which will in turn affect the properties of the solidified 

products. Solidification has been the subject of extensive experimental and numerical 

investigations, as reviewed by (Hunt 1979; Laxmanan 1985; Kurz, et al. 1992). In this 

chapter the fundamental theory of sohdification will be briefly reviewed, followed by 

descriptions of experiments and modelling of sohdification. In the section on 

solidification modelling, several numerical methods are covered, with particular 

emphasis put on two major methods: cellular automaton models and phase field 

models. 

2.1 Theory of Solidification 

Solidification is a transformation process in which liquid phase changes into one or 

several solid phases. This process starts with grain nucleation and continues with solid 

growth. 

2.1.1 Grain Nucleation 

From a thermodynamic point of view, nucleation is the initial stage of phase 

transformation during which the total free energy approaches a lower value. When a 

liquid is in a state that the free energy of any sohd phase is lower than that of the liquid 

phase, it becomes unstable and is likely to transform into one or several solid phases. 

But practically this transformation does not occur instantly, or in other words, a liquid 

can keep a supercooled or supersaturated state to a certain extent. Furthermore, when 

the condition is satisfied, the liquid does not change into solid entirely at the same 

time, and the transformation initiates at some sporadic places first. The reason for these 

phenomena is that some specific conditions must be satisfied to allow phase change to 

happen, or allow nucleation to start. 
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2.1.1.1 Homogeneous Nucleation 

When a solid forms within its own melt without aid of foreign materials, it is said to 

nucleate homogenously (Flemings 1974). Homogenous nucleation involves creation of 

variously sized crystal clusters each with an interface between the liquid and solid 

phases. Assuming all the clusters have a spherical shape, the total free energy change, 

AG, for a single cluster with a radius of r can be written as (Kurz, et al. 1992) 

= +AG^ =4;zrV —As^AT, (2.1) 

where AG/ is associated with the energy of sohd/liquid interface formed, and AGk 

associated with the difference in the free energies of liquid and solid, crthe solid/liquid 

interface energy. As/the entropy of fusion per unit volume, and AT the undercooling. 

At a temperature above or equal to the melting point, AG is always positive and 

increases monotonically with increasing radius, which means the solid phase is less 

stable than the liquid phase; therefore, no nucleation can occur naturally. At a 

temperature below the melting point, since the second term at the right hand side of 

equation (2.1) has a 3'̂ '̂ -power dependence on r while the first term only has a T^-

power dependence, AG will become negative at large value of r, which means the solid 

phase is more stable than the liquid phase and nucleation is likely to occur. However, 

when r increases from 0 to infinity, AG has to pass through a maximum, AG°, at a 

critical radius, r° - lajAsj AT, 

The maximum value of free energy (AG°) can be regarded as the activation energy for 

homogeneous nucleation, which has to be overcome in order to form a crystal nucleus 

that will continue to grow. When a fluctuation causes the cluster to become larger than 

r°, growth will occur due to the resultant decrease in the total free energy. AG° is the 

reciprocal of the square of AT, therefore, the higher the undercooling, the lower the 

activation energy, hence the easier for nucleation to happen. 
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The occurrence of homogeneous nucleation is limited to very restricted situations and 

often requires a quite high degree of undercooling. Otherwise, at the presence of 

nucleation agents or mould walls, the nucleation process will be facilitated and the 

threshold for nucleation undercooling is decreased, or heterogeneous nucleation 

occurs. 

2.1.1.2 Heterogeneous Nucleation 

When the melt contains solid particles, or is in contact with a crucible wall or oxide 

layer, nucleation may be facilitated if the activation energy is decreased, and it is said 

to nucleate heterogeneously (Flemings 1974). As shown in Fig. 2.1, a nucleus forms on 

the surface of a foreign solid, and the wetting angle, the contact angle between the 

nucleus and the foreign solid, is 0. Two new interfaces, Alc and ^cs are formed during 

nucleation, one between the liquid and the nucleus, and the other between the nucleus 

and the foreign solid, but the area of the original interface between liquid and solid is 

also reduced by Acs-

Liquid 

cr 
LS 0\ Nucleus 

Foreign solid 

Fig. 2.1 Schematic of heterogeneous nucleation, and the wetting angle 

between the nucleus and the foreign solid is 6. There is a balance of surface 

tension of the interfaces between the liquid, the foreign solid and the nucleus 

(Kurz, et al. 1992). 
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The total free energy change can be expressed as 

(Z3) AG = -w AjyAr + 4w (J^ 
v-5 y 

whereX0 is a function of the wetting angle, 0, 

jTfg) . (2 + CPS')*:! - c o s a r (2 4) 

Following a similar analysis as in homogeneous nucleation, the activation energy for 

heterogeneous nucleation is 

The value o f X 0 is always less than 1, thus the activation energy for heterogeneous 

nucleation is lower than that of homogeneous nucleation of a nucleus with the same 

radius r° . Therefore, heterogeneous nucleation is easier to occur in practical 

solidification process than homogeneous nucleation. Since the activation energy for 

heterogeneous nucleation is affected by the wetting angle {9), it is possible to control 

the condition for heterogeneous nucleation by selecting appropriate crucible materials 

or adding appropriate nucleation agents. 

2.1.1.3 Nucleation Rate 

To calculate the number of nuclei formed in unit volume within unit time, the simplest 

case is considered, assuming the melt is an ideal mixture of small crystal clusters and 

liquid atoms. The number of clusters that contain n atoms is N„, the number of atoms 

in liquid is Nl, and the equilibrium distribution of these clusters leads to (Kurz, et al. 

1992) 

(2.6) 

where kg is the Boltzmann's constant, AG„ the free energy change for a nucleus 

containing n atoms formed in the melt, and T the temperature. 
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As AG is a function of the radius of a cluster, r, AG„ is a function of the atoms number 

in a cluster, n, and AG„ also passes a maximum at a critical value of n°. Beyond this 

value, AG„ decreases monotonically with increasing n, which means that the total 

energy of the cluster will decrease as the number of atoms in it increases. According to 

equation (2.6), under this circumstance, the number of clusters (N„) will increase, 

which means that nucleation can occur naturally, and the nucleation rate is (Kurz, et al. 

1992) 

/ = A : , # ; = f , # , e x p (2 7) 

where K\ is a constant. 

Since the formation of clusters requires the transfer of atoms from the liquid to the 

nuclei, if the activation energy for diffusion across the solid/liquid interface, AGj, is 

also considered, the nucleation rate is modified as (Kurz, et al. 1992) 

I = Iq exp 
AG; + AG. 

k,T 
= exp 

K. 
/ 

TAT^J 
exp 

AG, 
(2.8) 

where lo is a pre-exponential factor. 

The above equation contains two exponential terms, one of which varies with -1/7A7^, 

while the other varies with -\/T. An increase in AT, giving more numerous and smaller 

nuclei of critical size, is accompanied by a decrease in T, resulting in fewer atoms 

transferred from the liquid to the nuclei. These opposite tendencies lead to a maximum 

nucleation rate, /max, at a critical temperature, TCR, as shown in Fig. 2.2. 
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XI 

Fig. 2.2 Nucleation rate, I, is a function of temperature, T, and undercooling, 

M . It approaches zero either as the temperature approaches absolute zero or 

approaches melting point, and passes a maximum at the critical value of Tcr 

(Thevoz, et al. 1989). 

2.1.2 Solid Growth 

Once an embryo has exceeded the critical size and becomes a stable nucleus, growth 

kinetics become important and dominate the solidification processes. For pure 

materials, the grain growth velocity is mainly decided by the efficiency to remove the 

heat of fusion; while for alloys, it is the result of combination of heat transfer and 

solute redistribution. 

2.1.2.1 Diffusion Equation 

The heat diffusion equations in liquid and sohd are given as (Kvirz, et al. 1992) 

dt 
=v.(a,vrj. (2.9) 

and 
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^ = v . ( 0 s v r j ) , (2.10) 

where Tl and Ts are temperatures in the solid and liquid, % and % thermal 

diffusivities in the liquid and solid, respectively. At the moving liquid/sohd interface, 

the following boundary conditions should be satisfied 

(2JU) 

and 

dn 

dT 
= , C2.12) 

where and are respectively temperatures of the liquid and solid at the interface, 

and AA/heat of fusion per mole, and V„ the moving velocity of the interface. 

For alloy systems, solute diffusion in the liquid and solid is governed by following 

equations (Kurz, et al. 1992) 

- ^ . V . ( D , V C j , (2.13) 

and 

8C, 

dt 
==17 .(Dj/fC,), (2.14) 

where Q, and Cs are solute concentrations in liquid and solid phases, D l and Ds are 

diffusion coefficients in the two phases, respectively. The local equilibrium condition 

at the liquid/solid interface leads to 

c ; =tc%, (2 15) 

where k is the equilibrium partition coefficient. 
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2.1.2.2 Constrained Growth 

In directional solidification, the direction of heat flow is opposite to that of the growth 

direction. This situation is often referred to as constrained growth, that is, the rate of 

advance of the isotherms constrains the grains to grow at a given velocity. 

The morphology of the solidification front is dependent on both the pulling velocity 

and the thermal gradient in directional solidification: when the pulling velocity is 

sufficiently low and the thermal gradient is sufficiently high, a flat solidification front 

can be maintained, and no microsegregation is resulted; when the pulling velocity 

increases and/or thermal gradient decrease, the flat solidification front will become 

unstable and breaks down in to cellular structure, and microsegregation occurs; when 

the pulling velocity increases and/or thermal gradient decreases to a further extent, the 

cellular structure can transform into a dendritic structure, where microsegregation 

happens at both primary and secondary dendrites (McLean 1983). 

For dendritic growth the morphology of the solidification front is quite complex, but a 

dynamic equilibrium condition is maintained at the solid/liquid interface, which can be 

expressed in terms of different undercoolings as (McCartney, et al. 1984) 

^ t̂otal = l̂iq ~ âctual = ' (2-16) 

where is the total undercooling at the interface, 7]° the liquidus temperature at 

the initial concentration, 7 ^ ^ the actual temperature, AT) the thermal undercooling 

arising from the release of latent heat, AT^ the constitutional undercooling incurred by 

solute redistribution of portioned solute at the interface, A7^ the curvature 

undercooUng due to the effect of surface tension, and A7^ the kinetic undercooling 

which is related to the velocity of the interface. 

2.1.2.3 Primary Dendrite Spacing 

A convenient and widely used measure of the effects of solidification conditions on 

dendrite structure is primary dendrite spacing. In directional solidification the 

columnar dendrites can adjust their spacing according to the varying pulling velocity 

and thermal gradient. As shown in Fig. 2.3, if the spacing is too close, one or another 
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primary arm falls behind and finally vanishes, and thus the spacing is increased; if the 

spacing is too wide, a ternary arm growing fi-om a secondary arm catches up to the 

growing primary tips and becomes one of them, or tip branching occurs, then the 

spacing is reduced. 

/VWVVv/wvww"--'-̂  
W \ A / w v v w \ « w a » . > _ I ; 

V%AAAAAiivwvwirLirt^.' 

/ W W W v w w — I 
W V W V W W u w i ^ ^ , 

3 ' 

/ W V W V A M K W W ^ -

XAAAAAAAAA/WUWŴ. ! 

AAAAAAnAAAAiW"" ' ! 

"XA/VAAAAA/VVyvviAivvwî^̂  ! 

'\A/\AAAAA/vwwwvwiiv̂ ! y., 

(a) (b) 

Fig. 2.3 Schematic illustration of spacing adjustment mechanisms for 

columnar dendritic growth: (a) if the primary arm spacing is too close, one or 

another primary arm falls behind and the spacing is increased; (b) if the spacing 

is too wide, new dendrite forms by tip splitting and the spacing is decreased 

(Wan, et al. 1997). 

Flemings (Flemings 1974) suggested that the primary dendrite spacing dependents on 

the product of thermal gradient (G) and pulling velocity (V) 

(2.17) 

where n is generally very close to 0.5, and 4̂ is a coefficient determined by 

experiments. 

Hunt (Hunt 1979) predicted a slightly different expression for primary dendrite spacing 

in directional solidification 

A, ocG-°: (2 18) 
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By taking into account the equilibrium partition coefficient, solute difEusivity, and 

surface tension, Kurz and Fisher (Kurz, et al. 1992) derived a more complex 

expression 

= 4.3(A7; ,D^ry , (2.19) 

where A TO is the liquidus-solidus range at the initial concentration Cq. This relationship 

is in better agreement with Hunt's solution than Fleming's prediction. 

Through numerical simulations, Hunt and Lu (Hunt, et al. 1996) obtained a 

quantitative relation between dimensionless primary dendrite spacing, Al , 

dimensionless thermal gradient, G', and dimensionless pulling velocity, V , 

A,' = (F' - G ' ) "" , (2.20) 

where the dimensionless variables are defined as Al = AmCg / F , G' = GTKjnC^Y , and 

V -VrliPi^mC^) (where m is liquidus slope, Co initial concentration and F Gibbs-

Thomson coefficient), and a is given by 

fl = -1.131-0.15551ogio(G')-7.589xlO-'[logio(G')]'. (2.21) 

It is necessary to point out that in equation (2.20), the variable A[ refers to half 

spacing. 

2.2 Experiments of Solidification 

Dendritic growth has been the subject of extensive experimental and numerical 

investigation (reviewed by (Hunt 1979; Laxmanan 1985; Kurz, et al. 1992)). 

2.2.1 Transparent Analogue Experiments 

Many difficulties have been encountered in the study of solidification in metals 

because they are opaque. It would be of great interest to directly observe the 

solid/liquid interface morphology during solidification. The existence of transparent 

materials that freeze as metals do provides the opportunity to observe many of the 
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phenomena during solidification. Jackson and Hunt (Jackson, et al. 1965) investigated 

several transparent materials and obtained quite different interfacial morphologies: a 

faceted solid/liquid interface in salol, a planar solidification front in carbon 

tetrabromide, a cellular interface in carbon tetrabromide and a dendritic structure in 

cycolohexanol. 

Somboonsuk and Trivdei (Somboonsuk, et al. 1985) used the succinotrile-acetone 

system to investigate the stability of the dendritic interface in directional solidification. 

Time-dependent changes in the interface pattern were examined as the pulling velocity 

was suddenly changed. A hysteresis effect was observed in the interface restabilisation 

process, and two different mechanisms were found to operate during increase and 

decrease of the puUing velocity, involving the creation of additional primary dendrites 

(branching) and the elimination of existing dendrites (overgrowth). 

Huang et al. (Huang, et al. 1993) used succinonitrile-ethanol and studied the effect on 

the dendritic structure of stepped changes in the pulling velocity. The experimental 

results showed that a wide permitted range of primary spacing of dendritic arrays 

exists for given growth conditions; the upper and lower limits of the allowable range 

are very sharp, and the average primary spacing is remarkably dependent on 

solidification history. The upper limit, , and the lower limit, , as a function of 

pulling velocity, F, can be expressed generally as -aV'' and -a'V~^ , 

where a,a',b and b' are constant for given alloy and temperature gradient. 

Wan et al. (Wan, et al. 1997) also showed in their experiments on succinonitrile-

acetone that the average primary dendrite spacing depends very much on past history. 

Ma (Ma 2002; Ma 2003) carried out a series of experiments using succinonitrile-

acetone to investigate the behaviour of primary dendrite spacing in response to a 

varying temperature gradient during directional solidification while the pulling 

velocity remained constant. When the temperature gradient was increased or decreased 

by a factor of 6, the primary dendrite spacing was found to vary by a factor of 3. After 

a cycle of variation the temperature gradient was restored to its initial state but the 

average primary spacing could not return to its original value, revealing an unclosed 

hysteresis loop for the X^-G diagram, as shown in Fig. 2.4 (cycle 1). Continuing the 

process of changing G, a closed loop will be formed, see cycle 2 in Fig. 2.4. 
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Fig. 2.4 Changes in average primary dendrite spacing in response to the 

variation in temperature gradient (Ma 2003). 

2.2.2 Experiments on Nickel-Based Superalloys 

Many experiments have been carried out on nickel-based superalloys. Pollock et al. 

(Pollock, et al. 1992) carried out a series of experiments on directional solidification of 

simple cylindrical bars in which the pulling velocity was fixed but the thermal gradient 

changed over a wide range. The cooling rate was determined by calculating an average 

between equilibrium solidus and liquidus temperatures, measured by thermocouples 

inserted in the moulds. The experimental results showed that the primary dendrite 

spacing increases from 166 to 686 jj.m when the cooling rate decreases from 0.77 to 

0.01 K/s. Both primary and secondary spacings follow a linear relationship with the 

cooling rate in logarithmic scale, and such a relationship has also been found in many 

other experiments (Yu, et al. 1992; Zou, et al. 1992). The segregation of alloying 

elements across dendrites was also measured (Zeisler-Mashl, et al. 1992; Zou, et al. 

1992). 

Other experiments performed for the directional solidification of nickel-based 

superalloys also show a fine dendritic structure arising from an increase in pulling 
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velocity, together with an reduction in both the primary and secondary spacings while 

the thermal gradient remains roughly constant (Davies, et al. 1980; Kermanpur, et al. 

2000; Wang, et al. 2001). When the pulling velocity is increased by a factor of 5, from 

35 to 145 |im/s, the primary dendrite spacing is reduced from 153 to 97 ^m, and the 

secondary spacing from 67 to 30 p-m (Wang, et al. 2001). 

Several types of grain defect may develop during directional solidification. Pollock et 

al. (Pollock, et al. 1992) investigated the formation of grain defects during the 

directional solidification of nickel-based single crystals over a wide range of imposed 

thermal gradients and pulling velocities. Partitioning of refractory alloying elements, 

such as Re, W and Ta, during solidification leads to the development of convective 

instabilities which promote freckling and equiaxed grain nucleation through dendrite 

fragmentation. A complete transition from columnar to equiaxed solidification occurs 

when the thermal gradient at the solidification front is reduced significantly. 

Numerous grain defects were found in experimental castings of single crystal turbine 

airfoils with complex shapes, including high/low angle boundaries, equiaxed grains 

and freckles. The formation of misorientated dendrites is related to the contour of the 

solidification front (Yu, et al. 1992). 

More experiments will be reviewed in the chapters of results where comparisons are 

carried out between simulations and experiments. 

2.3 Modelling of Solidification 

With the advent of powerful computers, advanced numerical methods have been 

developed for the modelling of microstructure formation and associated characteristics 

or defects. In recent years, three major contributions have emerged: (1) modelling of 

solidification processes and microstructural features using averaging methods; (2) 

modelling of grain structure formation using physically based cellular automata 

methods; (3) modelling of microstructure formation using phase field methods 

(Boettinger, et al. 2000). All three are important since the macro-scale of a 

solidification process (typically cm-m), the grain size (typically mm-cm) and the 

characteristic dimension of the solidification microstructure (typically p,m) encompass 
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six orders of magnitude and cannot be taken into account simultaneously. The main 

characteristics of the three methods are reviewed in the following sections. Some 

dendrite tip growth models, which are widely used in cellular automaton models to 

determine the relationship between tip undercooling and growth velocity, are also 

reviewed. 

2.3.1 Dendrite Tip Growth Models 

A theoretical model (KGT model) was proposed by Kurz et al. (Kurz, et al. 1986) for 

describing the growth of columnar dendrites. It is assumed that the dendrite has an 

ideal parabolic shape. Using Ivanstov's solution for the solute transportation problem 

around the tip, the supersaturation, defined as Q = ( Q - C o ) / [ Q ( 1 - A : ) ] , can be 

derived as a function of solutal Peclet number, Pe, 

Q - Iv(Pe) = Pe • exp(Pe) , (2.22) 
J II Pe " 

and Pe is related to the tip radius, R, and tip velocity, Fiip, by 

RKn 
Pe = - ^ . (2.23) 

2D, 

When the thermal gradient, G, is assumed to be constant and its effect on the diffusion 

field around the tip is neglected, R is given by 

where Gc is the solute gradient in the liquid at the tip, which can be calculated using a 

flux balance at the dendrite tip, and is also a function of Pe which, at low growth 

rates, is close to unity. 

Kinetic undercooling is neglected, and the total undercooling at the dendrite tip only 

contains constitutional undercooling and curvature undercooling, expressed as 

Ar„, =AT, + AT, = m , ( C , + (2.25) 
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Since Q is related to R and Ftip, and the value of R can be calculated from equation 

(2.24), a relationship between and Ftip can then be obtained. No simple 

analytical solution can be derived for this relationship, and the numerical solution can 

be approximated by a polynomial function; 

(2.26) 

where A\ and A2 are two constants related to material properties and surrounding 

parameters. 

The KGT solution showing that the tip velocity is a function of total undercooling, has 

been validated by experimental measurements (Brown, et al. 1994; Koss, et al. 1999). 

It has been widely used in cellular automaton models of grain growth during 

solidification (Charbon, et al. 1993; Ch.-A. Gandin, et al. 1996; Q. Y. Xu, et al. 2002a; 

M. F. Zhu, et al. 2003). 

Hunt and Lu (Hunt, et al. 1996) developed an axisymmetric model of cellular and 

dendritic growth. This model can predict the primary spacing and tip undercooling for 

both cellular and dendritic structures, and the transition between these two structures as 

well. The simulation results confirm that dendrite tips do have a parabolic shape. 

Kinetic undercooling is also taken as zero in this model, and only constitutional 

undercooling and curvature undercooling contribute to the total undercoohng. The 

calculated constitutional undercooling can be fitted by a function of dimensionless 

variables 

^T'c = (2.27) 

where the dimensionless undercooling is defined as, AT" = A7% /[mCg {k -1)], and the 

coefficients are 

a = 8.734 + 5.930 logio W + 0.2578[log,o (A:)f, (2.28) 

and 
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b = 0.4307 -1.656 X lOT* log,q{k) - 4.455 x 10"' [logio ( k ) f , (2.29) 

and 

c -1.454 + 0.2735logio(G') + 4.145x10"'[log,o(G')]' +1.882x 10"'[log,o(G')f . (2.30) 

When the equilibrium partition coefficient, k, is less than 1, equation (2.27) 

approximates to 

(2.31) 
tip 

And the numerical results of curvature undercooling can be fitted with an expression of 

the form 

Ar; =o.4i(F,;p-G')°". (2.32) 

Jackson and Hunt (Jackson, et al. 1966) also studied eutectic growth in binary alloy 

systems. Two solid phases, a and p, are assumed to grow in the form of lamellae 

perpendicular to the solid/liquid interface. By considering the solute diffusion between 

the periodic arrangement of lamellae, and the equilibrium of the surface forces at the 

three-phase junction, the relationship between the growth velocity and undercooling is 

obtained as 

(2.33) 

where A is coefficient determined by the liquidus slope, surface tension and the ratio of 

the width of a phase to that of phase. 

2.3.2 Averaging Models 

Modelling of solidification processes and microstructural features has benefited &om 

the introduction of averaged conservation equations and the coupling of these 

equations with microscopic models of solidification. When conservation equations are 

averaged over the liquid and solid phases, the interfacial continuity condition 
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automatically vanishes and average entities (e.g. mean temperature or solute 

concentration) appear. 

Rappaz et a/.(Rappaz, et al. 1987b; Rappaz, et al. 1987a) proposed a model using 

averaging methods to predict the growth of equiaxed grains under isothermal 

conditions. It was assumed that the grain always has a spherical envelope, its average 

radius, Rg, is demarked by the dendrite tip radius, that the distance between grains are 

long enough that they cannot 'see' each other and each grain grows freely in a total 

volume with a radius of R^u as shown in Fig. 2.5. 

R^ gram 
/ envelope \ 

C 

0 A A / : 

(a) 

(b) 

1 

Fig. 2.5 Schematic representation of equiaxed dendritic solidification. One 

equiaxed grain with a radius of Rg, grows within a total volume of radius, Rtot. 

(a) Concentration profiles based on numerical calculations of the solute 

diffusion; (b) replacement of solute diffusion by a solute layer of thickness, 5 

(Rappaz, etal. 1987b). 
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The volume fraction occupied by the grain envelope is simply given by (Rappaz, et al. 

1987a) 

f e -
V ^TOT J 

(2.34) 

The grain is not fully solid, and the fraction of solid with respect to the volume of the 

grain is fs, and it is related to by 

.4 =.A j ; . (2 35) 

where the internal fraction of solid, f\, is supposed to be constant, typically 0.2-0.4, 

during growth. 

Isothermal conditions are applied in the simulations, and a local equilibrium condition 

is maintained at the dendrite tips. Furthermore, since the curvature undercooling is 

negligible on this simulation scale, the solid/liquid dendrite interface is an iso-

concentrate, C^, whose value can be directly deduced from the equilibrium phase 

diagram. Considering the balance of heat flow, the dendrite tip velocity, or the rate of 

the change of the average grain radius, is related to the concentration by 

d;;, D/MQ 

d( 7r^Y{k-\) 

C ' - C ^ 

Co 
(236) 

When this equation is solved simultaneously with the diffusion equation using a finite 

difference method, the growth rate of the equiaxed grain can then be obtained. 

In order to simplify the calculation, the solute diffusion can be replaced by a solute 

layer of thickness, 5, as shown in Fig. 2.5 (b) (Rappaz, et al. 1987b). This equivalent 

layer contains the same total solute content as the exponential profile. After complex 

algebraic manipulation, the rate of the change of the grain volume fraction is related to 

the supersaturation (Q) by 

^ = (2.37) 
df 
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where ^ is a constant. 

This analytical solution permits one to include realistic nucleation laws easily by 

simply changing the value, Rtot{t), which is calculated at each time step from the grain 

density. Furthermore, such a microscopic model for equiaxed dendritic growth can be 

incorporated into heat-flow calculations for an entire casting. 

Grain structure formation can be modelled successfully with averaging methods. Such 

methods are particularly suitable when the grain size is small with respect to the scale 

of the process and/or when only one morphology, either columnar or equiaxed, is 

present. They are however unable to predict grain competition in the columnar zone 

and the associated texture evolution, and furthermore cannot provide a representation 

of the microstructure. The prediction of morphology transitions (from equiaxed to 

columnar or from columnar to equiaxed (Brown, et al. 1989)) is also quite difficult 

with averaging methods. In order to overcome these shortcomings, cellular automaton 

models and phase field models have been developed. 

2.3.3 Cellular Automaton Models 

Cellular Automaton (CA) models are algorithms that describe the discrete spatial 

and/or temporal evolution of complex systems by applying local, global deterministic 

or probabilistic transformation rules to the sites of a lattice (Raabe 1998). In a CA 

model the simulated domain is divided into a grid of cells, and each cell works as a 

small independent automaton. Variables and state indices are attributed to each cell, 

and a neighbourhood configuration is also associated with it. The time is divided into 

finite steps. At a time step, each cell automaton checks the variables and state indices 

of itself and its neighbours at the last time step, and then decides the updated results at 

the present step according to the pre-defined transition rules. By iterating this operation 

with each time step, the evolution of the variables and state indices of the whole 

systems is obtained. 

2.3.3.1 The Monte Carlo Procedure 

The Monte Carlo procedure was employed in CA models by Brown and Spittle 

(Brown, et al. 1989) to simulate the stochastic process of grain growth and interaction 

23 



Chapter 2 Background 

during solidification. The domain is divided into a triangular lattice, and a state index 

is assigned to each lattice site. If the site is liquid, the index is zero, otherwise it has a 

value greater than zero. And sites belonging to the same grain have the same index 

values. At each time step, a site randomly selected changes from liquid to solid, and 

the energy associated with a grain boundary or liquid/solid interface is calculated. If 

the new energy (iy„) is equal to or greater than the initial value {Hi), the site remains in 

its original state; otherwise a change in state is imposed. By careful selection of 

parameters, this model can simulate equiaxed and columnar growth and determine the 

Columnar-to-Equiaxed Transition (CET). However, the main limitation of the model is 

that both the nucleation and the grain growth occur at a fixed temperature and the 

solute redistribution during alloy freezing is not considered. Also the Monte Carlo step 

is not related to the real time step. 

A significant improvement to the previous model was later made by Spittle and Brown 

(Spittle, et al. 1989a) by associating a temperature with each site, and averaging the 

temperature of every site with its nearest neighbours to calculate the continuous heat 

loss from the system during freezing. This improvement enabled both the nucleation 

and growth to proceed in a natural manner according to local conditions. 

A further improvement was made by the same authors (Spittle, et al. 1989b) to take 

account of the solute redistribution. On freezing, either by nucleation or capture by a 

growing grain, the composition of a site changes from Cl to kCi, and the rejected 

solute is redistributed to its liquid neighbours. 

However, all of the above Monte Carlo procedures are based on hypothetical materials, 

and a number of important physical materials parameters are not included. A new 

Monte Carlo method was developed by Zhu & Smith (P. Zhu, et al. 1992), which is 

coupled with continuum heat and solute transfer equations. Not only the interfacial 

energy but also the bulk free energy is considered. At each time step, a new 

configuration is accepted with a probability of unity only if the new free energy (F„) is 

less than that of the initial value (F,). Otherwise, the probability is 

exp[-(F„ -F i ) lkgT\ , where kB is the Boltzman constant. This algorithm searches for 

the configuration of lowest free energy. This method solves the heat and solute transfer 

equations, and a conversion formula was established between the Monte Carlo steps 
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with the real time. Although different state values of each grain mean they have 

different orientations, the liquid/solid interfacial energy is assumed to be isotropic, 

which is actually an average value of the various different orientations, therefore the 

crystallographic anisotropy cannot be simulated. 

Crystallographic anisotropy is a very important characteristic of metallic and alloy 

materials, and many peculiar solidification phenomena (such competitive growth 

between differently oriented grains) are related to it. In order to incorporate the effect 

of the crystallographic anisotropy, considerable effort has been made, and these 

models, classified by two categories, are presented below, 

2.3.3.2 Neighbourhood Selection Algorithm 

In CA models, once a cell on the solid/liquid interface becomes solid it captures the 

neighbouring cells, which then become interface cells. When a regular square grid is 

used, each cell has four nearest and four second-order nearest neighbours. Through 

combination of these neighbours, different types of neighbourhood configurations can 

be defined. As shown in Fig. 2.6, type (a) is the configuration of four nearest 

neighbours, called a von Neumann neighbourhood (X. Xu, et al. 1999); type (b) is the 

configuration of both four nearest and four second-order nearest neighbours, called the 

Moore neighbourhood (Yao, et al. 2002); type (c) and (d) represent 6-cell left- and 

right-handed neighbourhoods, respectively (Nastac, et al. 1997). 

(a) (b) 

I 

: 
(0) 

1 • 
(d) 

Fig. 2.6 Different types of neighbourhood: (a) 4-cell or von Neumann 

neighbourhood; (b) 8-cell or Moore neighbourhood; (c) 6-cell left-hand 

neighbourhood; (d) right-hand neighbourhood (X. Xu, et al. 1999). 
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The selection of different neighbourhood configurations has a direct effect on the grain 

shape and size. As shown in Fig. 2.7, 4-cell neighbourhoods produce square grains 

with the fastest growth direction being perfectly aligned with the grid, while 8-cell 

neighbourhoods still give square grains but its fastest growth direction has a 45° 

misorientation in respect to the grid. Both 6-cell left-hand and right-hand 

neighbourhood result in elongated hexagonal grains oriented at 45° with respect to the 

grid. Combination of 4-cell and 6-cell neighbourhoods can produce grains that have 

arbitrary misorientation {0) (X. Xu, et al. 1999). 

Growth Step 

ill 

(a) 

Fig. 2.7 Grain growth direction using different type of neighbourhood: (a) 4-

cell, (b) 8-cell, (c) 6-cell left-hand, (d) 6-cell right-hand neighbourhood and (e) 

combination of 4-cell and 6-cell left-hand neighbourhood (X. Xu, et al. 1999). 

This neighbourhood selection algorithm has some difficulties: different types of 

neighbourhood will lead to different occupancy numbers of cells at the same time; 

combination of different types of neighbourhood has practical difficulty in accounting 

for grain misorientation of any given angle {0), since it is impossible to distinguish the 

two directions indicated by the two arrows shown in Fig. 2.7 (e). 
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Aware of the artificial anisotropy introduced by a square grid, Beltran-Sanches and 

Stefanescu (Beltran-Sanchez, et al. 2002) proposed a new set of neighbour capturing 

rules. The neighbourhood is defined as a group of cells centred on the crystallographic 

growth direction of the dendrite. As shown in Fig. 2.8 (a), the neighbourhood group 

has 16 cells. After all the cells in the defined neighbourhood around a centre point are 

solid, a number of new neighbourhoods are captured, becoming interface 

neighbourhoods. As shown in Fig. 2.8 (b), only the four newly captured 

neighbourhoods are displayed and the original one is in the back. 

Neighbourhood of solid Crystallographic 
Possible crystallographic cells (in the back) growth directions 
orientations 

—-1 

1 ; A 

B 
— 

C 
T,-¥- 1 ' 

w C 
T,-¥- 1 ' |V^ 

h 

Cells in the Centering sites 

neighbourhood for the captured centering sites Captured 

neighbourhood for the captured neighbourhood 

neighbourhoods of interface cells 

Fig. 2.8 Definition of neighbourhood used for cells capturing during 

solidification: (a) definition of a neighbourhood around a centre point that 

enables growth in three possible crystallographic orientations; (b) capturing of 

four neighbourhoods of interface cells once the original neighbourhood 

becomes solid for a dendrite growing in the B direction (Beltran-Sanchez, et al. 

2002y 

Theoretically, this definition of a multi-cell neighbourhood is able to reproduce 

physically realistic growth directions not aligned with the grid axis without arbitrary 
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corrections. However, it is sometimes not feasible in practice. As shown in Fig. 2.8 (a), 

the 16-cell neighbouring allows the grain to grow in the three directions: A, B and C. 

And the orientations for these growth directions are: direction A, tan"' (1) ; direction B, 

tan"'(1/2), and direction C, 0 (all the angles are in radians). But if any directions 

other than these are to be simulated, new configurations must be defined. For example 

to simulate the growth of a grain with a misorientation of tan "'(1/100) radian (or 

0.5°), a neighbourhood composed of 200x200 cells must be used. 

In order to tackle the problems of grain growth with arbitrary misorientation with 

respect to the square grid, a decentred square growth algorithm was developed by 

Gandin and Rappaz (Ch.-A. Gandin, et al. 1997). 

2.3.3.3 Decentred Square Algorithm 

A 2D square growth algorithm was first introduced by Rappaz & Gandin (Rappaz, et 

al. 1993) to incorporate the crystallographic anisotropy and the growth kinetics of the 

dendrite tip in modelling grain growth during solidification. This approach was later 

extended to a 3D octahedron model (Ch.-A. Gandin, et al. 1993; Ch.-A. Gandin, et al. 

1994b; Ch.-A. Gandin, et al. 1995). The 2D square algorithm cannot be easily adapted 

to situations of non-uniform temperature; it was modified to a 2D rectangular 

algorithm (Ch.-A. Gandin, et al. 1994a; Ch.-A. Gandin, et al. 1996). But the 2D 

rectangle algorithm is difficult to extend to 3D as the rectangular configuration would 

correspond to non-regular octahedral shapes, and for this reason, a 2D decentred 

square algorithm and its extension to 3D, the decentred octahedron algorithm, were 

finally developed (Ch.-A. Gandin, et al. 1997). 

These models were developed for simulating growth of crystals that have four-fold 

symmetry (i.e. cubic metals). One of the basic assumptions in these algorithms is that, 

the growth velocity along the <100> directions is always V2 times that along the 

<110> directions. Hence, the grain will always grow into a square shape under 

isothermal condition. Under non-isothermal conditions, the growth velocity along 

different <100> directions could be different, but these fastest growth directions must 

be retained. 
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At the beginning of the simulations, all the cells start with a 'liquid' state. Through 

nucleation, some cells change into a 'solid' state. In the decentred square algorithm, a 

small square is then associated with each 'solid' cell. Then the solid growth is 

represented by enlargement of these squares. The KGT solution (Kurz, et al. 1986) is 

used to decide the growth rate. The half size of the 'growing' square at a time t is given 

by 

Z' = ^ J"v[Ar(r)]dr, (2.38) 
In 

where is the time when a nucleus forms or the cell is captured by a growing grain, 

M is the undercoohng at the cell centre. For nucleation, the initial length is set to 

zero. For cell capture it is decided by the relative position of the cell centre and the 

capturing square. 

In a time-stepping calculation, from time t-St to time t, the square envelope centred on 

Q captures the neighbouring cell //, or the corresponding square of size L'̂  has 

engulfed the cell centre ju, as shown in Fig. 2.9. Cell // is then set to a 'solid' state by 

changing its state index to that of cell v (in fact it is mushy, but, since diffusion is not 

solved, a cell only has two states, either 'liquid' or 'solid'). A new square is then 

associated with cell //, and it is generated in such a way that it has the identical 

orientation of the one centred on Q , with one comer overlapping it, or, by shifting the 

centre of the old square along [100] direction from Q to C^, and reducing the size 

correspondingly (see Fig. 2.9). 

If all the neighbours of cell v have been captured by the square centred on , the 

growth of this square is finished, and from this time onwards, the growth of the square 

centred on then continues to capture more neighbours of cell //. The growth of 

grains is represented by the successive growth of small squares associated with each 

cell, with the diagonals of each square oriented parallel to the <100> directions of a 

grain. 
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Fig. 2.9 Schematic diagram of 2D decentred square CA algorithm. For cubic 

metals, it is assumed the grain always grows into a square envelope. The square 

associated with cell v, the half size of which is Ly, is misoriented to the 

coordinates by an angle of 6. When the square grows big enough to touch the 

centre of its neighbouring cell jj,, it is said that cell u is captured, and a new 

square is associated with it. The new square is located inside the original square 

and is shifted toward the comer that is nearest to the centre of cell /a (Ch.-A. 

Gandin, et al 1997). 

These three algorithms (square, rectangle and decentred square) are all based on 

regular square grids. Although cellular automaton models can run on regular triangular 

(Brown, et al. 1989) or hexagonal grids (P. Zhu, et al. 1992), for crystals with four-

fold symmetry a square grid is more convenient. A quite large grid size can be used 

when the solute diffusion and/or heat diffusion is not solved. The grid size used by 

Gandin and Rappaz (Ch.-A. Gandin, et al. 1994a) in the simulation of directional 

solidification of an organic alloy, coupled with the heat diffusion equation, varies 

between 24 and 141 }j,m; while in simulation of grain growth under Bridgman 

conditions, the grid size may go up to 300 fxm (Ch.-A. Gandin, et al. 1997). 
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The 2D square algorithm is capable of simulating the selection and extension of 

columnar grains, and GET, under uniform temperature conditions (Rappaz, et al. 

1993). The 2D rectangle and decentred square algorithm have broken the restriction of 

isothermal condition. They can simulate equiaxed grain growth or Directional 

Solidification under Bridgman conditions (Gh.-A. Gandin, et al. 1996); or coupled 

with Finite Element (FE) heat flow calculation, they can deal with more realistic 

thermal conditions (Gh.-A. Gandin, et al. 1994a). A 3D CA-FE model was also applied 

for the prediction of solidification grain structures in single crystal turbine blades 

(Desbiolles, et al. 1998; Ch. -A. Gandin, et al. 1998). These algorithms can predict the 

maximum growth envelope and keep the original misorientation of grains. However, 

since none of them solves the solute diffusion equation, therefore, they are not able to 

simulate the complex dendrite initiation and growth induced by solute diffusion. 

2.3.4 Phase Field Models 

An alternative technique for investigating solidification is the phase field method. 

Phase field models were firstly developed for simulating equiaxed growth under 

isothermal conditions (Braun, et al. 1994; Warren, et al. 1995). A desirable extension 

of the model was to study the effect of heat flow due to the release of latent heat. A 

simplified approach was proposed in which the temperature was assumed to remain 

spatially uniform at each instant, and a global cooling rate was imposed with 

consideration of the heat extraction rate and increase of the fraction of solid 

(Boettinger, et al. 1996). The attempt to model non-isothermal dendritic solidification 

of a binary alloy was made by Loginova et al. by solving both the solute and heat 

diffusion equations and considering the release of latent heat as well (Loginova, et al. 

2001). 

Besides equiaxed growth in the supersaturated liquid, the phase field model was also 

applied to the simulation of directional solidification, under well-defined thermal 

conditions (Boettinger, et al. 1999; H.-J. Diepers, et al. 2002). The phase field model 

has also been used to simulate the competitive growth between grains with different 

misorientation with respect to the thermal gradient (Tiaden, et al. 1999). 

Further development in phase field models includes the extension into three 

dimensions (Karma, et al. 1996; Steinbach, et al 1998a; Steinbach, et al. 1998b), and 
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multi-component systems (Steinbach, et al. 1996; Tiaden, et al. 1998). Usually a 

regular grid composed of square elements is used in the phase field models (Warren, et 

al. 1995; Boettinger, et al. 1996), but an unstructured mesh composed of triangular 

elements is also used (Provatas, et al. 1998), which enables the phase field method to 

be applicable in a domain with complex geometry shape and also in a large scale. 

From a physical point of view, the phase field method requires knowledge of the 

physical nature of the liquid-solid interface. However, little is known about its true 

structure. Using Lermard-Jones potentials, molecular dynamics simulations of the 

transition in atomic positions across an interface have suggested that the interface 

width extends over several atomic dimensions (Broughton, et al. 1981). At present, it 

is difficult to obtain usable simulations of dendritic growth with interface thickness in 

this range due to the limitations of computational resources. Thus the interface width 

will be a parameter that affects the results of the phase field method. It should be 

realized that in the limit as the interface thickness approaches zero the phase field 

equations converge to the sharp interface formulation (Wheeler, et al. 1992; Caginalp, 

etal. 1993). 

In contrast to CA models which adopt a pseudo-front-tracking technique, phase field 

models express the sohd/liquid interface as a transitional layer which usually spreads 

over several cells. A phase field variable, (/), is defined in the simulation domain. It has 

a value of 1 in the solid and 0 in the liquid, and varies in a smooth, continuous manner 

in the transitional solid/liquid layer (Warren, et al. 1995; Loginova, et al. 2001). Using 

a free energy (Wheeler, et al. 1992; Ahmad, et al. 1998) or entropy (McFadden, et al. 

1993; Warren, et al. 1995) formulation, two equations governing the evolution of 

solute concentration and the phase field variable can be derived. 

The moving velocity of the solid/liquid interface, V„, is related to the changing rate of 

(^by 
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Constitutional undercooling, curvature undercooling and kinetic undercooling are all 

taken into consideration when calculating the velocity. A rate equation for the phase 

field variable can then be obtained (Diepers, et al. 1998) 

- C . ) - J 1 . . ] N - (2.40) 

where fj. the kinetic coefficient, cr the surface energy, and mi the liquidus slope. 

Equation (2.40) does not have a unique solution for a stationary front profile problem; 

hence this profile has to be specified separately. A convenient choice of the profile is 

given by the following function 

1 

2 V ^ / 5 
(f) = — 1 - t a n h — , (2.41) 

where x is the coordinate normal to the interface and 5 is the interface thickness, 

defined by condition of 0.05 < ^ < 0 . 9 5 . 

Substituting equation (2.41) into (2.40), the rate equation for the phase field becomes 

(Diepers, et al. 2002) 

^ + A K + - " . ( Q - C . ) - 4 , 1 ^ ^ .(2.42) 

The effect of the crystallographic anisotropy on the solidifying interface is known to 

enter the liquid/solid interfacial energy, as well was the interfacial mobility. This 

anisotropy can be introduced in equation (2.42) by replacing crwith <7{6), 

o'(<9) = cTq [l - cos(n 6')], (2.43) 

where ŝ t is the amplitude of surface energy anisotropy, and 9 the angle between the 

crystallographic direction and the interface normal (Krumbhaar, et al. 1991), and 

replacing//with ^{9), 

/"(^) = /̂ o [l + k̂in cos(«^)], (2.44) 
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where £km is the amplitude of anisotropy of mobility. For crystals with four-fold 

symmetry, n is 4; while for those having six-fold symmetry, n is 6 (Kobayashi 1993). 

Compared to CA models, phase field models require a much smaller cell size. Warren 

and Boettinger (Warren, et al. 1995) used a cell size of 0.046 |im. Similar cell size was 

used by Semoroz et a/.(Semoroz, et al. 2000), Ax = 0.05 |im. The value of cell size 

used by Loginova et al. (Loginova, et al. 2001) varies between 0.0023 and 0.052 p,m. 

Diepers used a much larger cell size in his simulations, Ax = 2 |am (H.-J. Diepers, et al. 

2002), but still could produce reasonably good dendritic structures. 

2.3.5 Comparison between Different Models 

Some simulation results of the averaging models, cellular automaton models and the 

phase field models are shown in this section for comparison. 

Fig. 2.10 shows the simulation results using the averaging model by Rappaz et al. 

(Rappaz, et al. 1987a). Cooling curves, grain fraction and solid fraction for two 

nucleation undercoolings (i.e. A: 0 K, B: 2 K), are shown in this figure. The 

temperature drops down quickly before nucleation, then increases as nucleation starts, 

and finally drops down again after solidification process is finished. The prediction of 

recalescence agrees well with experimental measurements. 
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Fig. 2.10 Simulation results of deterministic model (Rappaz, et al. 1987a). 

Cooling curves, grain fraction and solid fraction for two nucleation 

undercoolings are shown in this figure. 

Fig. 2.11 (a), (b), (c) and (d) are the CA simulation results of grain growth by choosing 

different types of neighbourhood configurations (Nastac, et al. 1997). It shows that the 

selection of different neighbourhood configurations has a direct effect on the final 

grain patterns. 
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100 ).im 

(c) (d) 

Fig. 2.11 CA Simulation results of grain growth by choosing different types of 

neighbourhood. Results (a), (b) and (c) are the simulation results by using the 4-

cell, 8-cell and 6-cell left-hand neighbourhood configurations shown in Fig. 2.6. 

Result (d) is the result of random combination of these three types of 

neighbourhood configurations (Nastac, et al. 1997). 

Fig. 2.12 (a) and (b) show the analytical and numerical predictions of the evolution of 

the envelope of a single grain growing in a Bridgman condition, using the 2D CA 

decentred square algorithm developed by Gandin et al (Ch.-A. Gandin, et al. 1997). 

The numerical predictions agree well the analytical results. 
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1 mm 

(a) (b) 

Fig. 2.12 Analytical (a) and Numerical predictions (b) using the 2D CA 

decentred square algorithm, of the evolution of the envelope of a single grain 

growing in a Bridgman condition. The grain envelope are drawn every Is from 

the time of nucleation. The grain has a misorientation of 30°. KGT model is 

used to calculate the growth velocity. The parameters used in this simulation are 

referred to (Ch.-A. Gandin, et al. 1997). 

Fig. 2.13 shows the phase field simulation of the microstructure of an equiaxed grain 

growing under isothermal condition. Both primary and secondary dendrites are clearly 

shown in the figure. The secondaries growing from different primary arms impinge 

into each other. The solute concentration is also shown in the figure. The concentration 

between secondary dendrites is much higher than in the solid. 
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Fig. 2.13 Simulation of equiaxed growth under isothermal condition by the 

phase field method. Dimensionless parameters were used in the simulations (for 

details refer to (Loginova, et al. 2001)). A domain composed of 750x750 square 

cells was used in the simulations. The legend at the top-right comer shows the 

dimensionless concentration. 

The averaging model is capable of tracking the evolution of the macro-scale or average 

variables, e.g. average temperature and the total fraction of solid, but it cannot simulate 

the structure of grains. The CA models can simulate the macro-scale and meso-scale 

grain structures, but it has difficulty to resolve the microstructure. The phase field 

method can well reproduce the microstructure of dendritic grains. However, with the 

current computational power, phase field models can only work well on a very small 

scale (up to hundreds of |a.m). The typical scale of laboratory experiments is 1 cm, and 

the scale of an industry problem can be up to 1 m. Both of them are beyond the 

capability of the phase field method. Therefore, a novel combination of these models 

should be developed. A combined CA-FD model with a novel adaptation of modified 

decentred square growth algorithm was developed during the course of this study, and 

is presented in the next chapter. 
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A micro-scale model that combines a Cellular Automaton (CA) description of 

grain nucleation and growth with a Finite Difference (FD) computation of 

solute diffusion has been developed during the course of this study. Both 

the CA and FD components of the model run on the same regular spatial square grid 

and with the same time step. Each spatial cell represents a small amount of materials, 

and can have three states: liquid, solid and 'growing' (i.e. a mixture of liquid and 

solid). A real time scale is adopted in the model so that the numerical predictions can 

be compared directly with experimental observations. 

The model begins with all the cells in a liquid state, and continues with nucleation and 

growth within and across cells. The cells may transform from liquid to the 'growing' 

state by a nucleation event. A 'growing' cell may 'melt' back to liquid state if the 

thermal condition is unfavourable for its growth, or start to grow if the condition is in 

favour. A 'growing' cell can 'capture' its neighbouring liquid cells, and will stop 

growing when it becomes fully solid. 

In order to account for the crystallographic anisotropy of cubic metals, the decentred 

square/octahedron (in 2D/3D respectively) growth and cell 'capture' algorithm, firstly 

developed by Gandin and Rappaz (Gandin, et al. 1997), has been adopted and 

developed in this model. 

Solute partitioning occurs in a 'growing' cell, where liquid and solid coexist, when the 

equilibrium coefficient is not equal to 1. When the equilibrium coefficient is less than 

1, the extra solute will be rejected from the liquid and accumulate in front of the 

solid/liquid interface. Through diffusion, the accumulated solute can be transported to 

neighbouring cells, while a dynamic balance is maintained in the 'growing' cells. 

When the equilibrium coefficient is greater than 1, a solute depleted region will form 

in front of the interface, and the direction of solute diffusion is reversed. 

In this chapter, the nucleation and growth of solid within a CA framework and the 

solute diffusion solved with FD method is described in turn. 
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3.1 Model Assumptions 

The model was designed to simulate the process of nucleation and growth during the 

transformation from liquid to solid phase in a binary alloy system, and was based on 

several simplifying assumptions: no latent heat, linearised phase diagram, and constant 

diffusivity in both liquid and solid phases. 

The problems of interest in the current study are to investigate the development of the 

solute diffusion controlled dendritic microstructures, the scale of which is about 

10-1000 nm. Since the diffusivity of heat is usually several orders higher than that of 

solute, it will not introduce significant error to assume that the heat diffusion has 

reached an equilibrium state at the scale of dendrites. Instead of solving the heat 

diffusion equation and considering the release of latent heat, simple and well-defined 

thermal conditions are usually applied in CA models to facihtate the computation. In 

the current model Bridgman growth conditions are applied in the simulations of 

directional solidification, with a schematic illustration shown in Fig. 3.1: horizontal 

isotherms with a fixed gradient, G, are moving up at a constant velocity, V, giving a 

uniform cooling rate, f = G-V, in the whole simulation domain. At time to the 

position of the liquidus 7)° isotherm is given by an equation >• = jVq ; since it is moving 

up at a constant velocity of V, its position at time t is then given hy y = y^+V -t. Thus 

the thermal history at any point in the domain is then fully determined; for example, at 

a cell centre with coordinates of (x, , y j ) , the temperature at time t is given by 

(3.i) 
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Fig. 3.1 Schematic illustration of the temperature field. 

As shown in Fig. 3.1, at time t\, the cell centre is still above the hquidus 

isotherm, 7}̂  (t), the temperature at centre is above the liquidus; but at time h the 

liquidus isotherm has passed the centre, thus its temperature becomes below the 

liquidus, or it is at a undercooled state. 

Fig. 3.2 is a schematic illustration of the linearised phase diagram of a binary alloy 

system A-B at the element A rich end. Both the liquidus and solidus are straight lines. 

The slope of the Hquidus is mi, and that of the solidus is rus, and the ratio of them is 

defined as the equilibrium partition coefficient, k = m,lm^, which is constant in this 

case. 
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Fig. 3.2 Schematic illustration of the linearised phase diagram of a binary 

alloy system. 

At the beginning of the simulations all the cells have the identical initial concentration, 

Co, and the corresponding liquidus temperature is 7]° . When the temperature in a cell 

drops below the initial liquidus, it becomes undercooled. If a nucleus forms in this cell, 

according to the phase diagram, the concentration in the solid grain is k-C^. The 

rejected solute will be transported to the neighbouring cells by diffusion. 

In this figure the liquidus has a negative slope, mj, or the liquidus temperature, 7])̂ , 

decreases when concentration of element B, Q,, increases. Then the real undercooling, 

Ar, is calculated by 

AT = A r _ , - AT, = ?;» + — ( c , - c . ) - r 
m, 

(3.2) 

where is the total undercooling, IsT^ the constitutional undercooling, Co the 

initial concentration and 7]° the Kquidus at Co. The calculated undercooling will be 

used when considering random nucleation process. 
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It is necessary to point out that the linearised approximation is only applicable when 

the concentration and temperature are within a certain range. Furthermore, because 

eutectic growth has not been incorporated yet, the model can only work properly above 

eutectic temperature. 

One of the results of the linearisation of phase diagram is that the equilibrium partition 

coefficient, k, becomes independent of concentration, which will make it easier for 

programming. Another important simplification made to the model to facilitate 

programming is that diffusion coefficients in liquid and solid phases, DL and Ds, were 

assumed to be independent of either concentration or temperature. 

Latent heat is not considered in the model, because the micro-scale dendritic structure 

is more affected by diffusion of solute rather than heat. The diffusion coefficient of 

heat is usually several orders higher than that of solute, thus it is reasonable to assume 

an equilibrium condition has been reached in the thermal field at the dendritic tips. The 

model can deal with isothermal or constant temperature gradient conditions. 

3.2 Nucleation 

Two types of nucleation have been incorporated into the model: pre-determined 

nucleation at specific conditions and random nucleation. Pre-determined nucleation is 

usually used in test numerical runs to verify the model, or in simulations beginning 

with specified initial conditions. At the beginning of simulations, a few seed grains are 

specified in some cells with a temperature below the liquidus, or in other words, the 

state indices of these cells are assigned as 'growing', and the fraction of solid set to a 

small positive value. Although this nucleation process is not physically justified, it is 

useful when debugging programs, or in carrying out simulations with specified initial 

conditions, e.g. simulations of the growth of columnar dendrites with a specified 

primary dendrite spacing. 

Unlike pre-determined nucleation, random nucleation is determined stochastically, 

representing the statistical and random process of generating nuclei in practice. This 

nucleation process requires a certain degree of undercoohng, and the nucleation rate 

also depends on undercooling. 

44-



Chapter 3 Modelling Theory 

A Gaussian distribution is used to describe the grain density increase, d«/d(AT), which 

is induced by an increase in the undercooling, d(AI), and it is expressed as (Thevoz, et 

al. 1989; Gandin, et al. 1993) 

dn n 

d(Ar) V ^ A r ^ 
exp 

2 ( A r j : 
(3.3) 

where A7V is the mean nucleation undercooling, AJo- the standard deviation of the 

distribution and Wmax the maximum nucleation density. Therefore the total density of 

grains, «(A7), which have been nucleated at a given undercooling, AT, is given by the 

integral of this distribution (Rappaz, et al. 1993): 

(Ar) = (3.4) 
•' d r 0 

During one time-step of CA method the undercooling in a cell increases an amount, 

(^A7), and accordingly, the density of new grains nucleated is given by (Rappaz, et al. 

1993) 

^T+S(^T) J 

5n = n[^T + ^{^T)]-n{^T)= [ — d r . (3.5) 
•' d r Ar 

The grain density increment, 5n, multiplied by the volume of the cell, VQA, gives the 

probability of nucleation in a cell, during the time step (Rappaz, ei al. 1993) 

A random number, r, is generated for each cell (0 < r < 1), and nucleation will occur in 

the cell only if the following condition is satisfied: 

( 3 ^ 

The probability that a nucleus forms in a cell is affected by the undercooling in that 

cell through a deterministic relationship, but whether the nucleus does form or not is 

decided by generating a random number, which is stochastic. 
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Through either pre-determined or random nucleation, if a cell effectively transforms 

from the liquid to the 'growing' state, a grain number is then associated with it and the 

fraction solid in it is changed from zero to a small positive value. The nucleated grain 

could either melt back into liquid if the temperature in that cell increases well beyond 

liquidus later, or start to grow if the thermal condition is in favour of its growth. 

3.3 Diffusion Controlled Growth 

Since the model has been used to investigate the diffusion-controlled growth of 

dendritic grains, solute diffusion and grain growth are interlaced, and thus are 

described together in this section. 

3.3.1 Diffusion Analysis 

Solute diffusion is calculated by solving the diffusion equation on a two-phase domain 

with a moving sohd/liquid boundary. The continuous concentration distribution is 

discretised upon the CA network; a one-dimension schematic is shown in Fig. 3.3. 

Fig. 3.3 A schematic illustration of discretisation of the solute distribution 

profile upon a one-dimensional CA grid. 
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Assuming the partition coefficient {k) is less than unit, and the solid/liquid interface is 

moving from left to the right. The solute is partitioned at the interface, where the solid 

in liquid is and that in solid is . Since the partition coefficient {k) is a constant, 

their relationship can be expressed as 

. (s.s) 

The x-axis is divided into a number of small sections (or cells), with a uniform size of 

Ax. The solid/liquid interface is in the fourth cell, which is called the 'growing' cell. 

All the cells to the left are fully solid, and those to the right are purely liquid. In a 

purely solid or liquid cell there is only one phase and the average concentration is 

presented either as Cs or Q . But in the 'growing' cell sohd and Hquid phases coexist, 

and the average concentration is calculated as 

C = c ; ( i - / s ) + c ; / , = c ; [ i - ( i - i ) / J , (3.9) 

where f s is the fraction of solid in the 'growing' cell. 

If an equivalent concentration in liquid, CL, is defined for those solid cells, which 

satisfies the following requirement, 

Cs=&C^, (3^0) 

the definition of average concentration in 'growing' cell can also be extended to other 

purely solid or liquid cells as 

C = C j l - ( l - % ] . (3.11) 

When f s is zero, C equals CL, when fs is unit, C equals Cs. 

A general diffusion equation in the liquid and solid phases, as well as across the 

solid/liquid boundary, can then be derived as 

— = V - ( D V C j , (3.12) 

where D is defined as 
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D = D X l - / J + A i ) , y , . (3.13) 

It is noticed that only V Q appears in the right-hand side of equation (3.12). In the 

solid phase where f s is one, D equals kDs, and the term in bracket at right-hand side of 

equation (3.12) becomes D^kVC^, which is equal to (since k is constant). 

By solving the general diffusion equation (3.12) using an explicit finite difference 

method, the rate of the change of concentration in each cell can then be obtained. 

However, in the 'growing' cell, the rate of the change of fraction solid has yet been 

decided. Equation (3.9) can be transformed into 

Bfs 1 

St c - ( i - / , ) 
(114) 

It is assumed that a local equilibrium condition is always maintained at the solid/liquid 

interface. Thus the concentration of liquid at the solid/liquid interface (CD can be 

derived from the equilibrium phase diagram. When such a linearised phase diagram as 

that in Fig. 3.2 is used, since the kinetic undercooling is neglected in the model, the 

real undercooling at the interface (AT) must equal zero, and the concentration in the 

liquid at the interface can then be derived as 

=(:'o . (3.1!)) 
m, 

By adding a small modification to equation (3.15) the effect of interfacial curvature 

can also be included: 

CI = c, [r," - r - A 7 - , l = c , [r," - r - r ^ ] , (3.i6) 

where A7^ is curvature undercooling, F the Gibbs-Thomson coefficient, and K the 

average curvature of the solid/liquid interface, which is calculated by an approximate 

method described by Nastac (Nastac 1999) 
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y=i 
(3.17) 

where N is the number of neighbouring cells taken into account. The values of K 

calculated with the above equation vary from a maximum of 1/Ax to zero for convex 

surfaces, and from zero to a minimum of-1/Ax for concave surfaces. 

It needs to be pointed out that the curvature calculated by equation (3.17) is not very 

accurate. But for dendrites growing at high velocities, the curvature undercooling is 

much smaller than the constitutional undercooling; hence such approximation can still 

produce reasonable results. 

After the variation of concentration in the 'growing' cell is determined by equation 

(3.12), by solving equation (3.14), the rate of change of the solid fraction in the 

'growing' cells can be calculated, with the consideration of the effect of both solute 

diffusion and interfacial curvature. This diffusion analysis can easily be extended into 

two- and three-dimensions. 

3.3.2 Growth Algorithm 

The 2D/3D decentred square/octahedron algorithm developed by Gandin and Rappaz 

(Gandin, et al. 1997) is not directly applicable for simulating grain growth from the 

liquid when solute diffusion is considered. In order to solve the diffusion equation, the 

solid fraction within cells must be allowed to change continuously and smoothly from 

0 to 1 if numerical instabilities are to be avoided. The KGT solution (Kurz, et al. 1986) 

that shows the growth velocity to have a power-law relationship to the total 

undercooling is no longer appropriate since it can only predict the growth velocity of 

dendrite tips, but not the whole solid/liquid interface. Therefore, a novel modified 

2D/3D decentred square/octahedron growth algorithm, has been developed to 

overcome these problems. Details are presented below. 

A schematic illustration of the modified 2D decentred square growth algorithm is 

shown in Fig. 3.4. Only nine cells of a whole CA network are displayed for clarity. A 

grain with misorientation angle, 6, has nucleated at the central cell and is growing in a 
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square shaped envelope. The increment of the half width of the square is related to the 

increment of fraction solid by: 

ziL = Ax • A/"̂  (3.18) 

When the misoriented square envelope associated with the solid in the central cell 

touches its four neighbouring cells, their state indices will be changed from 'liquid' to 

'growing' as that of the original. In each of these 'touched' neighbouring cells, a new 

square is created with the same orientation as the solid cell that grew into it. One 

comer of each of the new squares overlaps the original square, hence the term 

"decentred square" method. The growth velocities of these new squares can be 

different from the original square depending on the solute diffusion or local 

temperature. Parts of the growing new squares are shown in Fig. 3.4 (b). The 

misoriented solid squares progressively encroach on more reference cells, as illustrated 

in Fig. 3.4 (c). 

J , y 

0 

\ j X 

\ 

j o i ] y 

\ [10] < 

\ l X 

\ 
(a) (b) 

Fig. 3.4 Schematic of the modified 2D decentred square algorithm. A grain 

that has a misorientation angle 6, is nucleated at the central cell. When it grows 

big enough to touch the side of neighbouring cells, it is said that they are 

captured, and newly generated squares are associated with them. Only the 

overlapped parts of the squares and corresponding cells are shown in the 

picture. 
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The 2D modified decentred square growth technique was also extended into three 

dimensions, termed the 3D modified decentred octahedron growth technique. The 

underlying approach is the same. A misoriented grain is considered to nucleate and 

grow within a regular array of cubic cells having an octahedral shape. When the solid 

grows along one of the crystallographic cube directions to touch any of the six 

neighbouring cubic cells, growth continues from that point along <100> directions into 

the captured cells by generating a new octahedron. Shifting the original octahedron 

along the diagonal towards the comer point that touches the neighbouring cell 

generates the new octahedron that can keep growing along the same <100> directions 

as the nuclei. 

Thus, constitutional and curvature undercooling, together with crystallographic 

orientation, are all incorporated in the model through the application of this modified 

decentred square/octahedron technique within a CA-FD framework. 

3.4 Boundary Conditions 

The 2D model runs on a regular square grid, and the initial and boundary conditions 

need to be defined for this domain. Usually simulations start with conditions that all 

the cells are in a liquid state and have a uniform initial concentration. Two types of 

boundary conditions are most often used: periodic boundary condition and zero-flux 

boundary condition. 

Again a 9- cell domain is taken as an example to illustrate how boundary conditions 

are incorporated in the simulation domain, as shown in Fig. 3.5 (a). Periodic boundary 

conditions are applied to the sides A-B and C-D, while zero-flux boundary conditions 

are placed at the sides A-D and B-C. During the run of the program, a temporary 

buffer array, the size of which is bigger than the original domain, is then generated in 

the following two steps: (i) 'copy' the left row of cells and 'paste' them to the right of 

the original domain, and 'copy' the right row and 'paste' to the left of the original 

domain; a 5x3 cell domain is then obtained, as shown in Fig. 3.5 (b); (ii) based on the 

5x3 cell domain, 'copy' the top layer and 'paste' to the top of it, and 'copy' the bottom 

layer and 'paste' to the bottom of it. Through the two-step 'copy' and 'paste' 
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manipulation, a 5x5 cell domain is obtained, as shown in Fig. 3.5 (c), with the original 

domain marked out by a dashed box. 

A D 

1 

^ ^ 5 

B 

A D 

B "C 

(a) (b) (c) 

Fig. 3.5 Schematic illustration of two-step 'copy' and 'paste' manipulation to 

apply boundary conditions to the domain: (a) the original domain with boundary 

ABCD; (b) 'copy' the left row of cells and 'paste' them to the right of the 

original domain, and 'copy' the right row and 'paste' to the left of the original 

domain; (ii) 'copy' the top layer and 'paste' to the top of it, and 'copy' the 

bottom layer and 'paste' to the bottom of it. 

We now consider the effect of this manipulation on the neighbourhood configuration 

of the original cells in the enlarged domain. Every cell within the dashed box has 

exactly four neighbouring cells; the boundary conditions at the sides A-B and C-D are 

identical, resulting in a periodic pattern; at the sides A-D or B-C, the layers of cells 

above or below the side have the same the concentration and state indices, which 

means that neither can the solute diffusion nor the grain growth can cross the side. 

Thus a zero-flux boundary condition is in effect. This manipulation can be extended to 

a domain composed of mxn cells, and a temporary buffer array of (m+2)x(n+2) cells 

will be obtained. 

For the 3D model a regular cubic grid is used, the 'copy' and 'paste' method can also 

be used to apply boundary conditions, but it becomes a three-step manipulation. This 

manipulation is used to facilitate the programming and computation. Within the 
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enlarged domain, all the original cells have an identical neighbourhood configuration 

that can be treated in the same way when calculating diffusion and growth. This can 

save much more computational time than that required for the two- or three-step 'copy' 

and 'paste' manipulation. Both the periodic and zero-flux boundary conditions will be 

used in the simulations presented in the following chapters. 

Although a regular rectangular grid is used in the model, the model is not constrained 

by this simple geometry. Complex dendrite morphology can be reproduced, providing 

that the scale of the grid is much smaller than the microstructural features. The model 

can also deal with the problems of sohdification in a complex shape mould, such as 

that in Fig. 3.6 (a), by introducing a special kind of invariant cells: 'mould cell'. The 

complex shape mould is discretised using a regular square grid, with an amplified 

section shown in Fig. 3.6 (b). Those cells filled with grey colour, represent the mould, 

which means neither solute diffusion nor grain growth can happen in them; therefore 

they are assigned a special state indices, usually set as '-1', to be distinguished from 

liquid cells (with a state index '0'), and 'growing' or soHd cells 'with an index greater 

than 0). 

(a) (b) 

Fig. 3.6 (a) Schematic illustration of a complex mould; (b) sectional 

enlargement of meshing the mould using a regular square grid. 

During the computational loop at each time step in calculation, the state index of each 

cell is first checked, and diffusion and growth will only be considered for those cells 

with an index equal or greater than zero. Thus these 'mould cells' are skipped over. 
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When a liquid, 'growing' or solid cell is in contact with a 'mould cell', a zero solute 

flux condition is applied between them. 'Mould cells' will be utilised in the simulation 

of dendritic growth in the platform region of single crystal superalloy turbine blades, 

which will be presented in Chapter 7. 

3.5 Solution Techniques 

The framework of the model has been presented above. Now parameters for the 

simulated alloy system and numerical computation need to be selected. The parameters 

which include the materials properties will be given in the following chapters. The two 

of the most important computational parameters for simulations are cell size. Ax, and 

time step, At, both of which will profoundly affect the computational time. 

For the 2D simulations, if the cell size (Ax) is reduced, while maintaining the size of 

the model domain, the total number of cells will be increased, in inverse proportion to 

(Ax)^ . For the 3D cases, the total number of cells is inversely proportional to (Ax)^ . 

Therefore the computer memory required for the simulations will be increased by a 

factor of 4 if the cell size is halved, and the computation time will increase by an even 

greater factor. 

According to the Courant stability requirement (Anderson, et al. 1984), the time step 

should be chosen such that 

n-,' (3-19) 
max(D^,Dg) 

where the coefficient A is 1/2 for a ID case, 1/4 for a 2D case, 1/6 for a 3D case. If 

maintaining the same solidification time in the simulations, the total time step is 

inversely proportional to (Ax)^ . During the computational loop at each time step, each 

cell will be checked, thus the computation time required for each step is roughly 

proportional to the total number of cells, which is inversely proportional to (Ax)^ for 

the 2D case, and (Ax)^ for the 3D case. Therefore, the total computational time for 

simulations in a given size domain for a given solidification time, is inversely 
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proportional to (AX)'* for the 2D case, and (AX)' for the 3D case. For example, if Ax is 

halved, the computational time will increase by a factor of 16 (2D) or 32 (3D); if Ax is 

reduced to 1/5 its original value, the computational time will increase by a factor of 

625 for the 2D case. This means that if a 2D simulation using a 5 )a,m cell takes one 

day to finish, it will take about two years if using a cell size of 1 |^m. It is tempting to 

use a large cell size in simulations in order to save computational time, but critical 

information about the dendritic microstructure will be lost if the cell size is too big. 

The effect of cell size and time step will be discussed in detail with some examples in 

Chapter 4. 

A moving frame of reference technique has been applied in the simulations of 

directional solidification. When the temperature at the bottom decreased to a 

predetermined value, the bottom layer of cells is removed from the simulation domain. 

All the other layers are then shifted down by one cell and a new layer with the initial 

concentration added to the top of the simulation domain. This technique allows the 

dendrites to grow to a sufficient length to ensure a stable state is reached, without 

increasing the domain size and hence reducing the computational resources required. 

The model has been applied to simulate columnar growth in directional solidification 

in both 2D and 3D, sohdification at geometrical discontinuities, and competitive 

growth. The results are presented and discussed in the following chapters. 
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Many multi-component industrial alloys are solidified in conditions that 

produce a complex array of columnar dendrites where microsegregation 

of alloying elements occurs. For face centred cubic (fee) alloys this 

segregation pattern is characterized by primary dendrites parallel, and secondary 

dendrites perpendicular to, the <100> directions closest to the macroscopic 

solidification direction; these features can have significant effects on the mechanical 

properties of solidified products (Flemings 1974; Kurz, et al. 1992). In case of the 

nickel-based superalloys used for gas turbine blades and discs, these features are of 

particular importance as their influence can persist through the subsequent themo-

mechanical and/or heat treatment process (McLean 1983). In order to improve the 

properties of the cast alloys, as well as controlling the formation of solidification 

defects, a fundamental knowledge of the growth of the initial dendritic microstructure 

during solidification is required. Numerical investigation of the influence of the 

processing parameters upon the dendritic structure formed during directional 

solidification was carried out using the model described in Chapter 3. Process 

operational parameters such as pulling velocity and thermal gradient were studied. 

Perturbation of these parameters was also taken into consideration, to simulate the 

variations that occur in practical casting processes. The simulations were performed in 

both two and three dimensions, with results presented in this chapter and the following 

one, respectively. 

4.1 Simulation Parameters 

Nickel-based superalloys have a fee austenitic solid-solution matrix phase, which has 

the capabihty of maintaining good tensile, rupture and creep properties to a very high 

temperature (e.g. 0. ITm according to (Bradley 1988; Tien, et al. 1989)). Alloy 718 is 

one of the most frequently used superalloys for gas turbine discs. The chemical 

composition of alloy 718 is listed in Table 4.1. 
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Table 4.1 Chemical composition of alloy 718 (ESPI 2003) 

Element Concentration (wt%) Element Concentration(wt%) 

Ni 50-55 Cr 17-21 

Fe Balance Co 1 

Mo 2.8-3.3 Nb 4.75-5.5 

Ti 0.65-1.15 Al 0.2-0.8 

C 0.08 Mn 0.35 

Si 0.35 B 0.006 

Cu 0.3 

In this study alloy 718 is approximated as a Ni-Nb binary alloy demonstrating the 

effect of dendritic growth without high computational cost of considering the multi-

component system. Nb is selected due to its combination of a partition coefficient far 

from one, relatively large concentration and high liquidus slope. This combination will 

make the largest impact on diffusion-controlled growth of dendrites in solidification. 

The properties of the approximated Ni-Nb binary alloy are listed in Table 4.2. 

Table 4.2 Material properties of the Ni-Nb binary alloy (Nastac 2000; 

Xu, et al. 2002) 

Property Variable Value 

Liquidus temperature Tuq 1609 K 

Initial concentration Co 4.85 wt% 

Liquidus slope m, -10.9 K/wt% 

Equilibrium partition coefficient k 0.48 

Diffusion coefficient in liquid DL 3.0x10'^ m^/s 

Diffiision coefficient in solid Ds 3.0x10-^2 m^/s 

Gibbs Thomson coefficient r 1.0x10"'K-m 

58-



Chapter 4 Two Dimensional Simulation of Directional Solidification 

4.2 Model Verification 

Firstly, a qualitative comparison is carried out between the simulations and 

experimental results. Fig. 4.1 (a) shows the simulated dendritic structure for conditions 

of a pulling velocity (V) of 150 p,m/s and a thermal gradient (G) of 12 K/mm. At the 

beginning of the simulations, 12 seeds are evenly placed at the base, and with the 

preferred growth directions, <100>, perfectly aligned with the grid. The resultant 

primary dendrites are parallel to the macroscopic solidification direction, and have a 

uniform spacing of 250 |j.m. And the secondary dendrites are also reproduced in the 

simulations. Unlike the primary dendrites, the secondary dendrites are not identically 

arranged nor are they of uniform size, indicating a degree of randomness in their 

formation and competition in their growth. This result is compared to the actual 

microstructure obtained in solidifying IN718 under similar conditions (V= 145 |im/s 

and G = 14 K/mm) (Wang, et al. 2001), and good correlation is found between them. 

Compared to previous CA models (Gandin, et al 1997; Xu, et al. 2000), one of the 

major improvements of the current model is the capacity to reproduce the dendritic 

microstructures. 

(wt%) 

250 |jm 

% 

(a) (b) 

Fig. 4.1 Longitudinal profiles of columnar dendritic grains: (a) predicted by 

micro-model simulation under a pulling velocity of 150 jim/s and a thermal 

gradient of 12 K/mm; and (b) obtained experimentally for alloy 718 under a 

pulling velocity of 145 p,m/s and a thermal gradient of about 14 K/mm (Wang, 

et al. 2001). The region in the small dashed box is magnified in Fig. 4.2 (a). 

-59-



Chapter 4 Two Dimensional Simulation of Directional Solidification 

4.2.1 Concentration Profiles 

A small region is taken from Fig. 4.1, marked by a small dashed box, for further 

investigation of the concentration profiles. As shown in Fig. 4.2 (a), the dendrite tips 

have an approximately parabolic shape, as predicted by other simulations (Hunt 1991; 

Beltran-Sanchez, et al. 2002) and observed experimentally (Somboonsuk, et al. 1985; 

Huang, et al. 1993). 
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c 
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Fig. 4.2 (a) An amplification of the region marked by the small dash box in 

Fig. 4.1; (b) shows the predicted concentration profile along line 'B1-B2'; (c) 

along line 'C1-C2'; and (d) along line 'D1-D2'. 
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The Nb concentration profiles along lines 'B1-B2', 'C1-C2' and 'D1-D2' are shown in 

Fig. 4.2 (b), (c) and (d), respectively. As shown in Fig. 4.2 (b), the concentration of 

Nb has a discontinuity at the solid/liquid interface. The concentration is about 3 wt% in 

the solid, increases sharply to 5.6 wt% at the interface, and then decreases gradually in 

the liquid to 4.85 wt%, approaching the initial concentration (Co), which is denoted by 

the dotted line in the figure. The predicted concentration profile agrees well with the 

theoretical analysis (Tiller, et al. 1953), but the jump at the solid/liquid interface is not 

absolutely vertical and the maximum concentration in the liquid at the interface is less 

than that predicted based on the assumption of equilibrium partitioning 

{Cl ~Cl Ik - 3wt%/0.48 = 6.3wt%). This discrepancy is due to the averaging effect 

in the 'growing' cell which contains the interface (each small graduation on the 

'distance' axis represent the cell size. Ax, in the CA model). 

Fig. 4.2 (c) shows the concentration profile along line 'C1-C2' crossing the tips of the 

two dendrites. The rejected solute forms a pileup layer ahead of the interface, and 

decreases smoothly as the distance increases. At the interface, the concentration is 

about 0.7 wt% higher than Co, and at the mid-point between the two dendrites, it is 

only about 0.06 wt% higher. 

Fig. 4.2 (d) shows the concentration profile along line 'D1-D2' crossing three 

secondary dendrites. Equilibrium partitioning has almost been reached between the 

concentration in the solid and liquid, and the ratio approximates the equilibrium 

partition coefficient (k = 0.48). It is also noted that the concentration in the liquid 

increases with the distance behind the tip, which agrees well with the theoretical 

analysis that, the equilibrium concentration in the liquid (C/,) is a function of the 

distance firom the liquidus line (z), C^ ^Cg -{Glm,)z (Warren, et al. 1993) (plotted 

as the dashed line in Fig. 4.2 (d), and the initial concentration Co is plotted as a dot 

line in this figure). 

4.2.2 Effect of Cell Size 

The typical scale of primary dendrite spacing is 100 - 1000 |im and the scale of 

secondary dendrite spacing is 50 - 100 p.m in nickel-based superalloys (Pollock, et al. 

1992; Zou, et al. 1992). The domain size must be chosen at a scale of millimetre if 
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simulations are to be performed for the growth of several dendrites at the same time. 

The cell size needs to be much smaller than 50 |j.m in order to reproduce the 

morphology of secondary dendrites. As mentioned in Chapter 3, for CA models the 

computational time increases dramatically when the cell size (Ax) decreases for a given 

domain size; it is inversely proportional to (A%)* for 2D simulations. Thus the largest 

cell size which still captures the critical physics is preferred, to reduce the 

computational time. However, if the cell size exceeds a critical value, some important 

aspects of the dendritic microstructure (i.e. secondary dendrites) may not be 

reproduced. Therefore, the effect of cell size on the simulation results has been studied. 

A series of simulations were carried out for the growth of columnar dendrites under the 

same condition, G = 12 K/mm and V= 150 [im/s. As shown in Fig. 4.3, simulations (a) 

- (d) were run in a domain of 1.5x1.5 mm^, and simulation (e) in a smaller domain of 

0.75x0.75 mm^ (only half of the domain is shown in these figures). Different cell sizes 

were used in these simulations; (a) Ax = 20 ^m, (b) Ax = 10 |im, (c) Ac = 5 ^m, (d) Ax 

= 2.5 fj.m, and (e) Ax = 1 pm. Simulations (a) - (d) started with 6 seeds evenly placed 

at the bottom of the domain, and simulation (e) started with 3 seeds. In all these cases 

the initial dendrite spacing was 250 p.m, and it remained unchanged in the 40 s of 

growth. 

It can be seen form Fig. 4.3 that the simulations with different cell size can all generate 

dendritic microstructures. As shown in Fig. 4.3 (a) and (b), when cell size is 20 and 10 

Hm, the resolution of secondary dendrites is not good enough; when it is 5 pm or even 

smaller, a typical dendritic microstructure can be well reproduced (see Fig. 4.3 (c), (d) 

and (e)). However, the morphology of the structures is affected by the cell size. As Ax 

decreases further, the thickness of both the primary and secondary dendrites is 

reduced. It could be possibly due to the factor that in CA models the amplitude of 

numerical noise is inversely proportional to the cell size. Earlier studies (Kobayashi 

1993) showed that the simulated dendritic structures could be affected by the 

numerical noises introduced in the calculations. 
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250 urn 3 (wt%\ 7 

Fig. 4.3 Predicted dendritic morphology using different cell size: (a) 20, (b) 

10, (c) 5, (d) 2.5 and (e) 1 fim. (al), (bl), (cl), (dl) and (el) are 3x 

magnifications of the dendrite tips. Simulations (a)-(d) were run in a domain of 

1.5x1.5 mm^ (only half of the domain is shown in the figures), and simulation 

(e) in a domain of 0.75x0.75 mm^. All the simulations were run under the same 

conditions of V= 150 |xm/s and G = 12 K/mm. The concentration profiles along 

the dashed lines are plotted in Fig. 4.5. 
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Fig. 4.3 (al) - (el) are the magnifications of the primary dendrite tips in each cases. 

All the dendrite tips have approximately a parabolic shape. If a tip approaches a 

parabolic line expressed as, y = Ax^, the tip radius can be approximately evaluated as, 

R = \I{1A) . The values of the tip radius are plotted against the cell size in Fig. 4.4 (a). 

The tip radius increases with the cell size, scaling almost linearly for Ax > 5 p-m. The 

theoretical analysis proposed by Burden and Hunt (Burden, et al. 1974), 

would predict a tip radius of 0.38 pm with the same 

calculation parameters. The numerical model of single dendrite developed by Hunt and 

Lu (Hunt, et al. 1996) would give a tip radius of 0.48 p.m. Both of these values are 

much smaller than the simulated tip radius using the current model (when Ax = 1 pim 

the simulated R = 0.71 pm). This could be due to the fact the cell size used in the 

simulations is not small enough. From the trend shown in Fig. 4.4 (a), it is likely that 

the current model would also predict a tip radius less than 0.5 |im if a cell size smaller 

than 0.6 )j.m is used. However, this also requires a dramatically increase in 

computational time. 
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E 
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-O- (a)/? 

Cell size, Ax (nm) 

Fig. 4.4 The relationships between the predicted (a) tip radius, R, and (b) 

primary dendrite spacing, X\, with the cell size. Ax, in the simulations shown in 

Fig. 4.3. 
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These results show that the model is not entirely network size independent. Beltran-

Sanchez and Stefanescu (Beltran-Sanchez, et al. 2002) have also found a similar 

characteristic that tip radius is affected by the grid size in their CA models. However, 

the main interest of the current study is to explore the influence of processing 

parameters on the spacing between primary dendrites. Thus it is necessary to examine 

the influence on the predicted primary dendrite spacing when the cell size changes. 

As shown in Fig. 4.4 (b), the dendrites have a primary spacing of 250 p,m in all the 

simulations. However, all these simulations started with the same initial condition that 

all the seeds were evenly placed at the base, which may have an artificial effect on the 

final spacing. The profiles of concentration variation, defined as ( Q - C^)/(Cl - Q ) , 

at the primary dendrite tips along the direction parallel with the isotherms (along the 

dashed lines in Fig. 4.3) are plotted against the distance/A, in Fig. 4.5. Because of the 

symmetry of these concentration profiles, only half of these curves, from primary 

dendrite tip to the midpoint between it and its adjacent tip are shown in this figure. It 

can be seen fi-om this figure that all the profiles follow the same trend, i.e. decreasing 

approximately exponentially as the distance increases from the tip, and the slope 

becomes zero as it approaches the midpoint. These profiles show more differences at 

smaller distance from the tip than at larger distance, which is because the diffusion 

field near to the primary dendrite tip is more affected by the tip shape than far away 

firom it. 
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Fig. 4.5 The profiles of the variation in concentration at primary dendrite tips 

along the direction parallel with the isotherms. 

Further examination was carried out for the concentration profiles near the midpoint. 

The concentration variation decreases from 4.40% to 3.06%, as the cell size decreases 

from 20 to 1 jiim. This variation in concentration can be regarded as the interaction of 

diffusion fields between two neighbouring dendrites. Hunt and Lu (Hunt, et al. 1996) 

proposed an axisymmetric model to determine the stable limit of primary spacing. 

Later Wan et al. (Wan, et al. 1997) further developed this model. Two primary 

dendrite tips cannot interact with one another when the two tips are so far apart, or the 

primary dendrite spacing is so large, that the composition at the midpoint between the 

tips is still the initial concentration. The spacing where interaction first takes place was 

arbitrarily taken to be when ( Q -Co)/(C^ -Cg) reached 2%. It corresponds to the 

2% interaction limit line in Fig. 4.6. The minimum observed primary dendrite spacing 

is expected to follow this limit line for high dimensionless velocities (> 4x10"®). The 

experiments carried out by Wan et al. (Wan, et al. 1997) showed that for high 

dimensionless pulling velocities (> 4x10"®), the minimum spacings agree very well 

with the 2% interaction limit line, and maximum spacings are a few times higher than 

the minimum. The dimensionless pulling velocity used in the simulations shown in 
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Fig. 4.3 is 9.47x10"^, and the dimensionless primary spacing is 1.32x10"^ . This 

results is plotted as the triangular point (c) in Fig. 4.6. It is above the limit line, but is 

in the stable range. 
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Velocity V 

1 0 -

Fig. 4.6 Plot of numerically calculated minimum spacings, the array stability 

limit line (a) and the 2% interaction limit line (b) (after (Wan, et al. 1997)). 

Point (c) corresponds to the simulations in Fig. 4.3. 

It is shown in Fig. 4.6, the point corresponding to the simulations in Fig. 4.3 is above 

the 2% interaction limit line, which means that at a dimensionless spacing of 

9.47x10-^ (or dimensional spacing of 250 jam in the current simulations), the 

interaction of the diffusion field of neighbouring dendrites should be less than 2%. 

However, as shown in Fig. 4.5, the interaction varies between 3.06% and 4.40 %. This 

is possibly due to the factor that the model developed by Hunt and his co-workers is an 

axisymmetric model while the current model is in two dimensions. 

Fig. 4.5 shows that when the cell size increases from 1 to 20 p,m, ( Q - Cq)/{CI - Q ) 

at the midpoint increases from 3.06% and 4.40 %. This means the primary dendrite 

spacing in simulations with larger cell size could be a little higher than in simulations 

with smaller cell size. However, this effect is not reflected in the simulations shown in 

Fig. 4.3. This could be due to the influence of the initial conditions - all these 
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simulations started with 6 seeds evenly placed at the bottom. Therefore, more 

simulations were carried out with different initial conditions. A range of stable primary 

spacing was obtained for simulations with different cell size. The results are plotted on 

a logarithmic scale in Fig. 4.7. The solid line represents the mean value for the 

spacings, which has a power-law relationship with the cell size, /I, oc (Ax)° . All the 

points are located within a narrow band demarcated by two dashed lines parallel with 

the solid line. The upper limit is approximately twice the lower limit. 
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Fig. 4.7 The relationship between the predicted stable band of primary 

dendrite spacings, M, with the cell size. At. The dashed lines are the upper and 

lower limits of the stable spacings, and the solid line is the average value. 

Comparing Fig. 4.7 with Fig. 4.4 shows that the predicted primary dendrite spacing is 

less dependent on the cell size than the tip radius does. When Ac = 20 |Lim, the average 

spacing is about 295 |im; when Ac = 1 |im, it is about 188 p.m. Or, in other words, 

when the cell size is reduced by a factor of 20, the average spacing decreases by a 

factor of 1.6. 

The current model fails to predict the correct tip radius because of its dependence of 

the cell size. However, it can provide reasonable predictions of the selection of primary 

spacings. The deviation in the predicted spacing can be evaluated as a function of the 
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cell size. If the same cell size is used in all of the simulations, the effect of the cell size 

can be minimized. 

Running on an IRIX 195 MHz server, simulations (a) - (c) shown in Fig. 4.3 were all 

computed within a few hours time, simulation (d) finished within 2 days, but 

simulation (e) took about 2 weeks (it should be pointed out that simulation (e) was run 

on a domain only of a quarter area as in other simulations). Taking into consideration 

both the quality of the results and the computational time, a cell size of 5 )u,m was 

adopted in the following simulations. 

4.2.3 Effect of Time Step 

In order to ensure the numerical stability of the finite difference computation of solute 

diffusion, the time step, Af, has to be small enough to satisfy the requirement, 

A/< l/4(Ax^/Di), in 2D simulations. If the cell size is chosen as 5 fa.m, this 

requirement becomes Ar < 2.1 x 10~^s . A series of simulation were then carried out for 

dendrite growth under conditions of G = 12 K/mm and F = 150 p.m/s, using different 

values for the time step, ranging from 1x10^ to 3x10^ s. It was found that the 

computation of solute diffusion was unstable in the simulation with 3x10^. All the 

other simulations were stable, and produced similar results. The relationship between 

predicted tip undercooling and time step is shown in Fig. 4.8. It can be seen from this 

figure that the tip undercooling decreases with the time step decreases, and approaches 

a constant as the time step approaches 1x10^ s. When the time step increases by a 

factor of 10 from 1x10"^ to 1x10"^ s, the tip undercooling changes only about 1 per 

cent. To ensure that the simulations are stable when there is a change in the processing 

parameters, a time step of Af = l x l 0 ^ s , was used in the following simulations. 
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Fig. 4.8 Relationship between predicted tip undercooling and time step. 

4.3 Influence of Processing Parameters upon Dendritic 

Structure 

Previous theoretical analysis has predicted that the stable primary dendrite spacing A\ 

in directional solidification is dependent on processing parameters such as pulling 

velocity, V, and thermal gradient, G, (Flemings 1974; Hunt 1979; Kurz, et al. 1981). 

However, experiments using transparent organic analogues showed that instead of a 

single value, there exist a range of stable values for X\ under given growth conditions 

(Somboonsuk, et al. 1985; Huang, et al. 1993; Ma 2002). This gives rise to the 

following two questions: 

• Can columnar dendrites with different spacings grow in a stable state under the 

same processing conditions; if yes, what is the maximum range of allowable 

spacings? 

• What are the effects of processing parameters upon the selection of stable 

dendrite spacing(s)? 
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4.3.1 Selection of Stable Primary Dendrite Spacing 

In the following simulations the same imposed solidification conditions were used: G 

= 12 K/mm, and F = 150 |im/s (giving a cooling rate of -1.8 K/s). It was assumed that 

no nucleation occurs in the bulk liquid; only the growth of the seeds placed at the base 

of the directionally solidified ingot is considered. Therefore the final microstructure 

develops only by branching and overgrowth mechanisms from these initial seeds. The 

undercooling for the nucleation of the seeds was taken to be 4K throughout this work. 

Several simulations were run for directional solidification from different numbers of 

seeds (from 2 to 60) and the preferred growth direction of all the seeds, <100>, were 

perfectly aligned with the grid. Different growth phenomena are observed in the 

simulations with different numbers of seeds, which can be roughly divided into three 

categories: i) steady growth; ii) dendrite branching; and iii) competitive growth. 

Fig. 4.9 shows the dendritic structure after 40 s of growth in these simulations with; (a) 

8 seeds (375 |Lim initial spacing); (b) 12 seeds (250 pm initial spacing); and (c) 20 

seeds (150 )j,m initial spacing). In case (a), where the primary dendrite spacing is 375 

p.m, some tertiary dendrites are observed emanating fi-om secondary dendrites and 

growing in the same direction of the primary dendrites. However, they are all blocked 

by other later developed secondary dendrites, with an example shown in Fig. 4.9 (al). 

In case (b), no apparent tertiary dendrites are observed due to the smaller primary 

dendrite spacing (250 |im). In case (c), where the initial primary spacing is even 

smaller (150 jim), the secondary dendrites are less developed and have a smaller 

spacing than in case (b). In these simulations, there is no indication of dendrite 

branching or overgrowth and, consequently, no noticeable deviation from the initial 

spacings during 40 s of solidification. The primary spacings remained unchanged when 

the three simulations were continued to 200 s. 
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(a) 

(wt%) 7 
500 p.m 

(b) 

(c) : 

Fig. 4.9 Simulation results of columnar dendrites developing form (a) 6, (b) 

12 and (c) 20 seeds after 40 s of growth, under conditions of G = 12 K/mm and 

V= 150 |J,m/s. (al), (bl) and (cl) are 2x magnifications of dendritic structures 

in each case. 

From Fig. 4.9 it can be concluded that the model predicts that columnar dendrites can 

grow in a stable state 40 s after initiation with a wide range of primary spacings, from 

150 to 375 jam for the same thermal conditions. This raises the question of how wide a 

range is possible, and what will happen if the initial seed spacing is outside this range. 

Fig. 4.10 (a) and (b) show the dendrite development during the initial growth stage in 
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two simulations from 2 and 60 seeds respectively. In Fig. 4.10 (a) the dendrites 

develop from a sparse distribution of seeds with an initial spacing of 1500 p-m. As 

solidification proceeds, many small tertiary dendrites emanate from the secondary 

dendrites where the undercooling is progressively increased. Some of the tertiary 

dendrites grow very quickly and catch up with the two original primaries. As a result, 

A] is significantly reduced, reaching 214 |im after 40 s. Fig. 4.10 (b) shows the 

dendrite development from a much more closely spaced set of seeds that have an initial 

spacing of 50 pm. Within 12s, a few dendrites have grown ahead the others blocking 

their growth by the formation of secondary dendrites. After 40s of growth the dendrite 

spacing X\ increases also to 214 |im. When the two simulations continue to 200 s, X\ in 

case (a) increases slightly to 231 nm while in case (b) it remains unchanged. Although 

the initial spacings in the two simulations are very different, one is 1500 |j,m and the 

other only 50 |j.m, the final dendritic structures show little difference, and have similar 

primary dendrite spacings. 
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(a) (b) 

Fig. 4.10 Predicted evolution of dendritic structure in directional solidification 

processes with (a) 2 and (b) 60 seeds placed at the bottom under conditions of G 

= 12 K/mm and V= 150 |a,m/s. 
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More simulations with different initial seed spacings were run to explore the 

relationship between the final primary dendrite spacing and the initial seed spacing, 

with the results given in Fig. 4.11. The initial seed spacings ranged from 50 to 1500 

|Lim, resulting in predicted final stable primary dendrite spacings (A^) of 130 to 380 

^im, or an upper limit of approximately 3 times the lower limit. The stable spacing can 

be divided into three categories: 

i. ^ : when A" is less than 130 )im, the diffusion field interaction of 

neighboring dendrites is so strong that competitive growth occurs, with the 

spacing increasing by an overgrowth mechanism. 

ii. Aj' when As falls between 130 to 380 |a.m, the simulation results show no 

change in primary spacing, with a final equal to A"; therefore, the initial 

spacing is stable for the given thermal conditions. 

iii. <A^°: when As is larger than 380 |j,m, the gaps between the original dendrites 

are so large that tertiary dendrites can form reducing the spacing by a branching 

mechanism. 
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Fig. 4.11 Final stable primary dendrite spacing (Af) versus the initial seed 

spacing (A"). 

4.3.2 Effect of Pulling Velocity 

It is shown in Fig. 4.9 (c) that under conditions of G = 12 K/mm and 150 |^m/s, 

dendrites developing from 20 seeds at the bottom can grow for 40 s without any 

indication of dendrite branching or overgrowth, maintaining a stable primary dendrite 

spacing of 150 p,m. A question then arises whether such a stable growth state can be 

maintained if the growth conditions are changed. The effects of pulling velocity and 

thermal gradient on the growth of columnar dendrites are investigated below. 

Fig. 4.12 shows two simulations of dendrites that are growing under different pulling 

velocities: (a) V=30 p-m/s and (b) F=75 pm/s, while the thermal gradient and initial 

seed density are the same as in the simulation in Fig. 4.9 (c). Quite different results are 

obtained when the pulling velocity is reduced: dendrite overgrowth is observed in both 

simulations. As shown in Fig. 4.12 (a), when V= 30 |am/s, 11 dendrites stop growing 

after the solidification front proceeds by a distance of 2.5 mm, and A, increases to 333 
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|im. As shown in Fig. 4.12 (b), when F = 75 [J-m/s, the overgrowth process is much 

slower; after the solidification front moves forward 5 mm, 9 dendrites are blocked out, 

resulting in X\ = 273 p.m. Both simulations of growth were then continued for another 

6 mm, but no further overgrowth was observed. The simulation results show that a 

wider X\ is likely to be selected at lower V. 
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Fig. 4.12 Simulated dendrite structures developing from 20 seeds placed at the 

bottom at conditions of G = 12 K/mm and different pulling velocities: (a) V = 

30 |am/s and (b) V= 75 )j,m/s. 
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It has been shown in Fig. 4.11 that simulations starting with different numbers of seeds 

(2 to 60) predict that columnar dendrites can grow in a stable state with a wide range of 

X\ (from 130 to 380 fj,m), under a pulling velocity of 150 |J,m/s. A series of simulations 

with the same initial nucleation and thermal conditions were then performed for 

different pulling velocities, from 10 to 300 |j,m/s. The simulation results show that at 

each velocity, there is a range of stable values of X\ for columnar dendrites. The 

distribution of the dimensionless average primary dendrite spacing {X^=\m(llY) 

against dimensionless pulling velocity defined as (F ' = VTI{D^^mC^)) is shown in Fig. 

4.13. The graph is plotted on a logarithmic scale, with two sets of axes, one for 

dimensionless values and the other for dimensional values. The points at each pulling 

velocity represent the final stable primary dendrite spacing in the simulations with 

different numbers of seeds. It is noted in the figure that fewer points are obtained at 

some solidification rates that others, because simulations starting with different 

numbers of seeds can result in the same final primary dendrite spacing. 
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Fig. 4.13 Distribution of primary dendrite spacing against pulling velocity, 

with comparison to the analytical solution of Kurz and Fisher (Kurz, et al 

1992), and also the trend predicted by the numerical model of Hunt and Lu 

(Hunt, et al. 1996). 

A notable characteristic of the results is that all of these points are located within a 

narrow band demarcated by two parallel lines: 

A ; , .=4 .72x io ' ( r ) - " -

,29 

,-0.29 ' 
(4.1) 

These two lines give the upper and lower limits of the allowable primary dendrite 

spacing, both of which are power functions of solidification rate. The value of the 

exponent is marginally higher than the value of 0.25 predicted by early analytical 

solutions of dendrite growth (Kurz, et al. 1992), but slightly lower than the range of 

values predicted by Hunt and Lu (Hunt, et al. 1996) using a quasi-3D simulation (i.e. 

axisymmetric). The upper limit of the distribution is about three times that of the 

lower limit, whereas Hunt and Lu (Hunt, et al. 1996) suggested a factor of 

approximately two. In practical solidification there are inevitable fluctuations in the 
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processing conditions, which may affect the stable growth of columnar dendrites. The 

effect of perturbation of the pulling velocity on the selection of the stable primary 

dendrite spacing will be considered later in this chapter. It is also noted that the 

average primary dendrite spacing predicted by the simulations is larger than that 

obtained by the numerical model of Hunt and Lu (Hunt, et al. 1996). This is probably 

because their model is a quasi-3D one, while the current simulations are in 2D. Thus, it 

is necessary to carry out 3D simulations of directional solidification, which will be 

presented in the next Chapter. 

4.3.3 Effect of Thermal Gradient 

The simulations in the previous section have shown that there exists a range of stable 

spacings for columnar dendrites growing at different velocities, and in this section the 

effect of thermal gradient will be studied. 

In the following simulations the same pulling velocity of 150 jLim/s was used, and the 

thermal gradient varied from 1 to 18 K/mm (giving a cooling rate from -0.15 to -2.7 

K/s). Several simulations with different numbers of seeds (from 2 to 30) were carried 

out for each thermal gradient. Fig. 4.14 shows a series of simulations all starting from 

2 seeds but under different thermal gradients: (a) 1, (b) 3, (c) 6 and (d) 18 K/mm. All 

the simulations were continued for 40 s of solidification. The simulation results show a 

big variation in primary dendrite spacing: when G increases from 1 to 18 K/mm, X\ 

decreases from 1500 to 176 ^m, or decreases by a factor of eight. 
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5 0 0 M-ITI 3 (wt%) 7 

Fig. 4.14 Simulations starting from 2 seeds under conditions of F = 150 mm/s 

and different thermal gradient: (a) 1, (b) 3, (c) 6 and (d) 18 K/mm. 

Similar trends of decreasing X\ with increasing G have also been found in other 

simulations with different numbers of seeds (4, 8, 12, 20 and 30). The distribution of 

dimensionless average primary dendrite spacing (A,' ) with dimensionless thermal 

gradient (G' = GYlimCof) is shown in Fig. 4.15. 
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Fig. 4.15 Distribution of primary dendrite spacing against thermal gradient, 

with comparison to the analytical solution of Kurz and Fisher (Kurz, et al. 

1992), and also the trend predicted by the numerical model of Hunt and Lu 

(Hunt, et al. 1996). 

Similar to the results shown in Fig. 4.13, these points are also all located within a 

narrow band demarcated by two parallel lines; 

A,'„„=1.28X10'(GO 

^•„ , .=3 .92x lO ' (G ' r 

0.51 

51 ' 
(4 2) 

These two lines giving the upper and lower limits of the allowable primary dendrite 

spacings, are both power-law functions of thermal gradient. The value of the exponent 

is almost equal to the value of 0.5 predicted by the analytical solutions (Kurz, et al 

1992), and slightly higher than the range of values predicted by the numerical model of 

Hunt and Lu (Hunt, et al. 1996). The upper limit of the X[ distribution is again about 

three times that of the lower limit. 
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The above simulations have shown that under given growth conditions there exists a 

range of values for the stable primary dendrite spacing, and both the upper and lower 

limits of the stable values have a power-law relationship to the pulling velocity and 

thermal gradient, given by equations (4.1) and (4.2), respectively. If any mutual 

interaction of pulling velocity and thermal gradient upon the selection of stable 

primary dendrite spacings is neglected, these two equations can be combined to give 

= 8 . 7 5 ( G ' r " ( ^ " r " 

^ ' „ , . = 2 . 6 7 ( G T " { K ' r " ' 

This result can be compared with Kurz and Fisher's analytical solution, which is also 

transformed into a dimensionless expression as 

A,'-5.27(G')~°'(F')^' ' . (4.4) 

This constitutes a very good correlation between the analytical and numerical results. 

4.4 Perturbations of Processing Parameters 

Since perturbations of the control parameters in practical solidification are usually 

unavoidable, artificial perturbations have been incorporated in the simulations to 

investigate theirs effect. Perturbations of the pulling velocity and thermal gradient are 

considered in turn. 

4.4.1 Perturbations of Pulling Velocity 

In the simulation shown in Fig. 4.16, the pulling velocity underwent the following 

cycle of perturbation: (i) / = 0 s, V= 150 )j,m/s; (ii) t= 10 s, V= 300 |j,m/s; (iii) f = 20s, 

V =15 |am/s; and (iv) / = 30 s, F = 150 |am/s. The initial primary dendrite spacing is 

500 p.m (see Fig. 4.16 (a)). Doubling the solidification rate causes almost immediate 

dendrite branching and a rapid increase in the density of primary dendrites reducing A.\ 

fi"om 500 to 188 |a.m (see Fig. 4.16 (b)). Subsequent reduction in the growth rate to half 

of the original value, leads to a very slow increase in dendrite spacing, which continues 

on returning to original growth velocity to approach a stable state spacing of 231 pm 
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(see Fig. 4.16 (c) and (d)). Fig. 4.16 (e) shows the global structure, from which the 

generation and annihilation of dendrites can be clearly observed. 

(wt%) 
500 |jm 

(d) 

(c) 

(b) 

(a) 

Fig. 4.16 Simulated dendrite structures undergoing a cycle of perturbation of 

the pulling velocity around a mean value, (a) t = Os, V= 150 )j,m/s; (b) / = 10s, F 

= 300 )j,m/s; (c) t = 20s, F = 75 |im/s; (d) t = 30s, F = 150 p,m/s; (e) the global 

structure. 
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Similar perturbations of the puUing velocity were then applied to all the simulations 

with different numbers of seeds at each pulling velocity. The predicted dimensionless 

average primary dendrite spacings (A,') against dimensionless pulling velocity (V') 

after perturbations of the pulling velocity are plotted in Fig. 4.17. The upper and lower 

limits of the A-l distribution after perturbation of the solidification rate are expressed as 

. i . 2 2 x i o ' ( r r 

=5.24>C10=(fT 

29 

,-0.29 ' 
(4 5) 

Comparing the results with those without perturbation (equation (4.1)), the values of 

the exponents are the same, but the upper limit is now about twice that of the lower 

limit, which is in better agreement with the values suggested by Hunt and Lu (Hunt, et 

al. 1996). The change in the ratio between the upper limit and the lower limit shows 

that perturbation of the growth rate reduces the dendrite spacing to a narrower range 

than the steady state growth condition. 
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Fig. 4.17 Distribution of primary dendrite spacing against solidification rate 

after a cycle of perturbation of the withdrawal velocity. 
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4.4.2 Changing Thermal Gradient 

The effect of perturbations in pulUng velocity upon the selection of stable primary 

dendrite spacing has been shown in the previous section, and in this section the effect 

of changing thermal gradient is studied. In the following simulations, the thermal 

gradient undergoes a cycle of variation, increasing from 1 to 18 K/mm and then 

decreasing back to its original value. As shown in Fig. 4.18, the thermal gradient 

changes in small steps; either increases by 10% in the ascending period or decreases by 

about 9% in the descending period. At each step the thermal gradient is kept constant 

for 10 s, except for the last few steps which are 20 s. 

E 

I 
g 

1 O) 

I 

100 200 300 400 

Time, t (s) 

500 600 700 

Fig. 4.18 Time dependence of thermal gradient in the simulations. 

The values of the average primary dendrite spacing in response to the changing 

thermal gradient are plotted in Fig. 4.19, together with the limit lines described by 

equation (4.2). The dendrite structures corresponding to points 'a' to 'h' in Fig. 4.19 

are shown in Fig. 4.20 (a) to (h), respectively. 
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Fig. 4.19 Response of the average primary dendrite spacing to the changing 

thermal gradient. The dendrite structures corresponding to points (a) to (h) are 

shown in Fig. 4.20. 

The simulations start at point 'a ' with a coarse dendrite spacing, = 1500 |4,m, with a 

thermal gradient of G = 1 K/mm (see Fig. 4.20 (a)). The spacing does not adjust 

immediately as G increases. In this stall stage, more and more small tertiary dendrites 

emanate from the secondary dendrites, but are all blocked by other secondary dendrites 

formed at a position closer to the primary tips (see Fig. 4.20 (b)). When G increases to 

2.16 K/mm, one tertiary dendrite successfully penetrates the blockage of secondary 

dendrites, or dendrite branching happens, and M is reduced to 1000 p,m (see Fig. 4.20 

(c)). As G further increases, more and more dendrites are created, and X\ decreases 

correspondingly. When G increases to 6.24 K/mm, A.\ is reduced to 429 p.m (see Fig. 

4.20 (d)). At point 'e ' the maximum G is achieved and the number of dendrites 

becomes 10, 5 times as many as in the initial stage, and A, becomes 300 |j,m, only one 

fifth of the initial spacing. 

Point 'e ' is the maximum of the G - variation. During the subsequent decrease in G, 

from point 'e ' to point 'h ' in Fig. 4.19, the variation o f ^ i undergoes firstly a hysteresis 
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period without any change. G decreases to 1.62 K/mm before the first elimination of 

existing dendrites takes place. During the further decrease in G more and more 

dendrites are eliminated, leading to a corresponding increase in spacing. At point 'h' G 

is restored to its original value, but X\ doesn't return to its initial value. The final value 

of X\ is 500 p,m, only one third of the initial value. 

As can be seen in Fig. 4.19, the spacing changes in a discontinuous rather than smooth 

manner, especially during the early of stage of increasing G. The reason is that in the 

initial stage of the simulations only two dendrites are present in the domain, which is 

insufficient for proper statistics. However, the trend in the variation of the dendrite 

spacing against changing thermal gradient over a wide range is clearly present. It is 

also noted in Fig. 4.19 that the points are not strictly located between the two limit 

lines. This deviation happens at low thermal gradients. A possible reason could be that 

under conditions of low thermal gradient, the dendrite selection process, either 

branching or overgrowth, is very slow, and a stable state has not yet been reached 

within 10 s (or 20 s for the decreasing G stage). If a larger domain consisting more 

dendrites could be used, and the dendrites were allowed to grow for a longer time until 

a stable state is reached at each step during the G-variation, a better quantitative 

relationship between /li and G might be able to be obtained. However, this requires 

much longer computational time (the current simulations took more than one month 

when running on a IRIX 195 MHZ server). 
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Fig. 4.20 Dendrite structures when thermal gradient undergoes a loop 

variation: (a) 1.00, (b 1.96, (c) 2.16, (d) 6.24, (e) 18.00, (f) 6.24, (g) 2.16 and 

(h) 1.00 K/mm. 
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4.5 Columnar-to-Equiaxed Transition 

It was found in the pervious simulations that the stable primary dendrite spacing is 

affected by the pulling velocity (see Fig. 4.13). The tip undercooling (the concept of 

total undercooling is used here) of columnar dendrites is also dependent on pulling 

velocity. The predicted tip undercooling is plotted against velocity in Fig. 4.21. A 

minimum tip undercooling appears when the pulling velocity is around 30 p-m/s; and 

when the velocity is greater than this value, the points can be fitted by an approximate 

power relationship: 

/vz;, = . (4.6) 

This equation can also be written as 

r = 4.0x10-'(AT^p)'', (4.7) 

which is in good correlation with KGT model (Kurz, et al. 1986). 
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Fig. 4.21 Relationship between pulling velocity and tip undercooUng. The 

thick solid line is the trend predicted by the numerical model of Hunt and Lu 

(Hunt, etal. 1996). 

The simulation results are also compared with the prediction of Hunt and Lu's model 

(Hunt, et al. 1996), which is plotted as the thick solid line in Fig. 4.21. The trends are 

similar, but the power index is higher in the present simulations. It should also be kept 

in mind that the values of the predicted tip undercooling could be wrong because, as 

stated in the beginning of this chapter, the model cannot predict the correct tip radius 

when running on a coarse grid. However, it can at least predict the trend that the tip 

undercoohng increases with increasing pulling velocity. 

Nucleation in the bulk liquid was not included in the earlier simulations. It is now 

considered in the following section, and the effect of changing velocity on the 

nucleation in front of primary dendrites will be investigated. The parameters for 

nucleation used in the simulations are list in Table 4.3. 
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Table 4.3 Nucleation parameters used in the simulations 

Parameter Variable Value 

Nucleation curve centroid 11 K 

Nucleation curve distribution ATa 1 K 

Maximum grain density nMAX 4.0x10'^/m^ 

It can be seen from Fig. 4.21 that when the pulling velocity increases to the range of 

greater than 30 )a,m/s, the degree of undercooling at the dendrite tips increases 

correspondingly, and it will become more favourable for nucleation to occur near the 

dendrite tip. This effect is accentuated when there is a sudden change in pulling 

velocity, as the solute distribution at the tips requires time to respond to this change in 

growth conditions. In the following simulations, the initial pulling velocity of 30 ]am/s, 

is then step-increased by different factors, with the results shown in Fig. 4.22: (a) 2, (b) 

3, (c) 4 and (d) 5 times. Quite different results are obtained in these simulations. 
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Fig. 4.22 Response of crystal growth and nucleation under conditions that the 

pulling velocity is step-increased by a factor of (a) 2, (b) 3, (c) 4 and (d) 5. 
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When the velocity is doubled, no obvious change in the dendrite structures is observed 

(see Fig. 4.22 (a)). When the velocity is increased by a factor of three to 90 jim/s, some 

nucleation occurs between the primary dendrites, as shown in Fig. 4.22 (b); when it is 

increased by a factor of four to 120 p,m/s, more nucleation forms between the primary 

dendrites (see Fig. 4.22 (c)). However, the original primary spacing still persists in 

growing because of their favourable growth direction. When the velocity is increased 

by a factor of five to 150 ^m/s, many equiaxed grains formed ahead of the columnar 

dendrites, and finally totally block their growth, or Columnar-to-Equiaxed (GET) 

transition happens, as shown in Fig. 4.22 (d). 

4.6 Summary 

The two questions posed early this chapter have now been answered: (i) there is a 

range of stable spacings for columnar dendrites growing under given conditions, and 

(ii) the upper limit of the stable spacing is about three times the lower limit under 

constant conditions, and this ratio can be reduced to about two by perturbations of 

pulling velocity. Both the upper and lower limits exhibit a power relationship with the 

pulling velocity and thermal gradient. 

The simulations also show that the primary dendrite spacing is not only dependent on 

the current processing parameters, but also dependent on the processing history. A 

hysteresis phenomenon has also been observed; that is the primary dendrite spacing 

doesn't always change immediately when the processing parameters are changed, but 

there is an incubation period. Variations in the thermal gradient can affect the primary 

spacing, while perturbations of pulling velocity will affect both primary spacing and 

tip undercooling. When the pulling velocity increases, the degree of undercooling near 

the dendrite tips in response can facilitate the nucleation of small equiaxed grains in 

these regions, or, eventually, cause columnar-to-equiaxed transition. 

These conclusions suggest some potential applications of the model. One of these 

applications is to tailor the primary spacing during directional solidification, by 

adjusting the pulling velocity and/or thermal gradient. 
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The simulations were found to correlate well with previous analytical and numerical 

predictions. However, some discrepancies were also noted. For example, the simulated 

primary dendrite spacing is larger than that obtained by the numerical model of Hunt 

and Lu (Hunt, et al. 1996). Therefore, it is necessary to carry out some 3D simulations, 

which will be presented in the next chapter. 
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The influence of processing parameters on directionally solidified dendritic 

structures was investigated by carrying out two dimensional simulations, as 

presented in Chapter 4. It was predicted that there is a range of stable primary 

dendrite spacings for any given growth condition and that both upper and lower limits 

of this range have a power law relationship with the pulling velocity and the thermal 

gradient. The simulations were found have good correlation with previous predictions 

by other researchers (Hunt, et al. 1996; Kurz, et al. 1992) but some discrepancies were 

noted such as the fact that the average value of primary dendrite spacing is higher in 

the current simulations than in the axisymmetric predictions by Hunt and Lu (Hunt, et 

al. 1996). To gain a better understanding of the solidification process, 3D simulations 

were carried out and the results are presented in this chapter. The 3D results are 

compared with the 2D simulations, and also with previous experimental and 

computational results. 

5.1 Model Verification 

A 3D simulation was first performed for a single grain growing at a temperature 

gradient of 12 K/mm and a constant cooling rate of -1.8 K/s. The simulation was run 

on a regular grid composed of 100x100x100 cubic cells of size 5 jam. The grain is 

nucleated at the centre of the box at an undercooling of 5 K, with an initial 

misorientation characterised by three Euler angles (0°, 20°, 0°). The dendritic 

morphology of the grain after 1 s of growth is shown in Fig. 5.1 (c). The envelope of 

the dendritic grain is in excellent accord with the analytical and numerical predictions 

of Gandin and Rappaz (Gandin, et al. 1997) for a dendritic grain envelope as shown in 

Fig. 5.1 (a) and (b). A cell size of 100 |im was used in their simulations in which solute 

diffusion was not solved. 
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1 mm 

Fig. 5.1 3D views of (a) analytical and (b) numerical predictions for a 

dendritic grain envelope without taking solute diffusion into consideration 

(Gandin, et al. 1997), and (c) simulated dendritic structure coupled with solute 

diffusion. Simulation (c) was run on a regular cubic grid with a cell size of 5 pm 

at a temperature gradient of 12 K/mm and a cooling rate of -1.8 K/s. The 

original misorientation of the grain is characterized by three Euler angles (0°, 

20°, 0°). 

The model was then applied to the simulation of directional solidification in three 

dimensions. The relationship between tip undercooling and pulling velocity is shown 

in Fig. 5.2. Tip undercooling reaches its minimum at a velocity of about 30 m/s; when 

the velocity is greater than this the tip undercooling has a power-law relationship with 

the velocity, which can be expressed as 

A r = 7 . 0 3 ( F ' r % (5.1) 

or 
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r =1.87x10-: (Ar; , ) (5 20 

This relationship is very similar to that obtained in 2D simulation (see equations (4.6) 

and (4.7)), but the tip undercooling values are about 50 % lower than those in 2D 

simulations. The slope of the ascending section of this curve however is higher than 

that predicted by Hunt and Lu's model (Hunt, et al. 1996) which may be due to the 

dependence of the tip radius upon the grid size in the current model and this has been 

addressed in Chapter 4. 
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Fig. 5.2 Relationship between tip undercooling and pulling velocity obtained 

in 3D simulations compared with 2D simulations and Hunt and Lu's predictions 

(Hunt, et al. 1996). 

The above simulations show that the predicted tip undercoolings in the 3D simulations 

are lower than those obtained in the 2D simulations under the same growth conditions. 

A question then arises as to the relationship between the stable dendrite spacings in 3D 

and 2D simulations. 
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5.2 Square Packing of Dendrites 

The 2D simulations of directional solidification outlined in Chapter 4 have shown that 

there is a range of stable primary dendrite spacings for columnar dendrites under given 

growth conditions. When the initial spacing is outside this range, columnar dendrites 

can adjust the spacing through branching and/or overgrowth mechanisms. In 2D 

simulations each columnar dendrite has two nearest-neighbour dendrites, whereas in 

3D simulations it can have more than two nearest neighbours. If the columnar 

dendrites have a regular square packing pattern each dendrite will have four nearest 

neighbours, and if they have a regular hexagonal packing pattern each will have six 

nearest neighbours making the interaction between the dendrites much more complex 

in 3D simulations. 

5.2.1 Effect of Initial Seed Density 

In the following simulations a regular grid is used consisting of 150x50x250 cubic 

cells of size 5 p,m. For convenience the sizes along the x, y and z directions are called 

respectively the width, thickness and height of the domain. The imposed solidification 

conditions in the simulations are: G = 12 K/mm, and F = 150 |j,m/s. All the simulations 

started with an array of existing seeds placed at the base and the macroscopic 

solidification direction along the z direction. Zero-flux boundary conditions were 

applied to the top and bottom surfaces, and periodic boundary conditions applied 

respectively to the left and right sides, and the front and back sides. 

Fig. 5.3 shows the development of three dendrites at different time steps: (a) 2, (b) 4, 

(c) 6 and (d) 40 s. Three seeds are placed at the bottom, centred in the y direction, 

equally spaced along the x direction, and with the [100] directions perfectly aligned 

with the z axis. Although some tertiary dendrites are seen to emanate from the 

secondary arms at the initial growth stage, they are blocked by the secondary dendrites 

growing from the primary dendrites, as shown in Fig. 5.3 (al). The three primary 

dendrites proceed at the same velocity along the z direction, and their spacing remains 

unchanged (see Fig. 5.3 (bl), and (cl)). At 6 s the moving frame of reference 

technique is activated, and the whole domain is cooled down at a constant rate of-1.8 

K/s. The dendrites keep growing, but their tip position remains roughly unchanged 
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relative to the moving reference frame. This simulation was continued until 40 s from 

the start of growth, and no apparent change was observed in the primary dendrite 

spacing (see Fig. 5.3 (dl). Because of the periodic boundary conditions along the x and 

y directions, these primary dendrites are arranged quadratically in the transverse 

section perpendicular to the macroscopic solidification direction. This can be viewed 

by replicating to infinity the transverse slide shown in Fig. 5.3 (d2) along both the x 

and y directions. The primary dendrite spacing along the y direction is equal to the 

domain thickness, 250 |j,m, and that along the x direction is equal to a third of the 

width which is also 250 p,m. 

When only one seed is placed at the bottom, it grows freely along all the directions at 

the initial solidification stage (see Fig. 5.4 (al)). The secondary dendrites along the x 

direction grow faster than in the z direction, because of greater tip undercooling. Many 

small tertiary dendrites emanate from the fast growing secondary dendrites, growing in 

the same direction as the original primary dendrite. The newly formed tertiary 

dendrites have a random initial spacing, and some of them grow very quickly at the 

expense of others (see Fig. 5.4 (bl)). After 6 s of solidification only 6 primary 

dendrites survive the competitive growth; among which 5 have developed from the 

tertiary dendrites and 1 directly from the seed (see Fig. 5.4 (cl)). The 6 dendrites all 

continue to grow for 40 s, without any obvious change in the structure (see Fig. 5.4 

(dl)), resulting in an average spacing along x direction of about 125 pm. 

Fig. 5.4 gives an example of solidification with sparse nucleation, during which both 

branching and competitive growth phenomena are observed. A contrary example with 

dense nucleation is shown in Fig. 5.5, where 15 seeds are set at the bottom (50 |j,m 

initial spacing). Because of the dense packing along the x direction, the growth of 

secondary dendrites is suppressed, and the secondary dendrites show severely 

asymmetrical development along both the x and the_y directions (see Fig. 5.5 (a2)). As 

solidification continues, the growth velocities of the 15 dendrites begin to vary, leading 

some of them to slow down (see Fig. 5.5 (cl)). This competitive growth results in only 

10 dendrites surviving after 40 s of solidification (see Fig. 5.5 (dl)), which gives an 

average primary dendrite spacing along the x direction of about 75 |im, while the 

spacing along the^y direction still 250 |j,m. 

- 101 



Chapter 5 Three Dimensional Simulation of Directional Solidification 

250 M.m 

Fig. 5.3 3D simulation for 3 seeds at a solidification time of (al) 2, (bl) 4, 

(cl) 6 and (dl) 40 s. (a2) transverse slice atz = 150|im, t = 2 s, (b2) transverse 

slice at z = 450 [am, f = 4s , (c2) transverse slice at z = 750 |j,m, / = 6 s, and (d2) 

transverse slice at z = 750 |im, f = 40s. 
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250 )-im 

Fig. 5.4 3D simulation for 1 seed at a solidification time of (al) 2 s (bl) 4, 

(cl) 6 and (dl) 40 s. (a2) transverse slice at z = 150p,m, ^ = 2 s, (b2) transverse 

slice at z = 450 jam, f = 4s , (c2) transverse slice at z = 750 |j.m, / = 6 s, and (d2) 

transverse slice at z = 750 p,m, f = 40s. 
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250 |im 

(c1) 

(c2) 

jmid 

Fig. 5.5 3D simulation for 15 seeds at a solidification time of (al) 2 s, (bl) 4 

s, (cl) 6 s, and (dl) 40 s. (a2) transverse slice at z = 150|im, / = 2 s, (b2) 

transverse slice at z = 450 )^m, / = 4 s, (c2) transverse slice at z = 750 p.m, t = 6 

s, and (d2) transverse slice at z = 750 fj.m, f = 40s. 
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In the above three simulations all the seeds are centred along the y direction and thus 

the trunks of the primary dendrites developing from them lie in a plane parallel to the 

X- and 2-axes. The simulations show that the initial seed density has an effect on the 

final dendrite spacing along the x direction, which varies from 75 to 250 |a,m, however, 

the spacings along the y direction are all equal to the domain thickness, 250 [im. The 

question then arises as to whether the domain size gives rise to artificial effect on the 

selection of primary dendrite spacing. Simulations in a domain with an adjustable size 

were carried out, and the results are presented in the following section. 

5.2.2 Effect of Domain Size 

In the following simulations only one seed was placed at the centre of the base. The 

domain has a square cross section and the width and the thickness of the domain are 

equal. Periodic boundary conditions were applied to the side surfaces: all the 

simulations start with a square packing of dendrites, and the spacings along the x and y 

directions are the same, which is equal to the domain width/thickness. 

Fig. 5.6 (al) shows the growth of one dendrite in a domain with a width/thickness of 

250 ^m. No branching is observed in the 40 s of growth, and the resultant structure 

resembles the dendrites shown in Fig. 5.3 (bl), growing under almost identical 

conditions. The final spacings along the x and y directions are both equal to the size of 

the cross section of the domain which is 250 p.m. 

The width/thickness of the domain is then increased. As shown in Fig. 5.6 (bl), the 

size of the cross section of the domain is 300 fj,m, dendrite branching occurs and two 

new dendrites are generated. If replicating the transverse slide shown in Fig. 5.6 (b2) 

along both the x and the y directions infinitely, the dendrites no longer form a regular 

square packing pattern. An average primary dendrite spacing is used to quantify the 

mean distance between the dendrites, defined as - -sjA/n , where A is the cross 

sectional area, and n the number of primary dendrite trunks. In this case, A is 300x300 

)j,m^ and n is 3, giving an average spacing of 173 |am. 

When the cross section of the domain is increased to 350x350 p,m ,̂ 4 new dendrites 

form by branching (see Fig. 5.6 (cl)), and the resulting average spacing is 157 |im. 
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When the cross section is increased to 500x500 10 new dendrites are generated 

(see Fig. 5.6 (dl)), resulting in a final average spacing of about 151 |im. 

The simulation results in Fig. 5.6 show that when the size of the cross section is larger 

than 250 p,m, the growth of one dendrite is no longer stable and branching occurs, 

reducing the average primary dendrite spacing to a smaller value. This poses another 

question: what will happen if the side size of the cross section of the domain is 

reduced. If one seed is still used in the simulations, dendrite overgrowth phenomena 

will not occur and therefore in subsequent simulations four seeds were placed at the 

base to form an initial square packing pattern. 

As shown in Fig. 5.7, the width/thickness of the domain varies from 300 to 100 |j,m, 

with the initial value of the average spacing ranging from 150 to 50 )a,m. When the 

initial spacing is 150, 100 and 75 fj.m, the four dendrites can grow in a stable state, 

maintaining the initial spacing (see Fig. 5.7 (al), (bl) and (cl)) but when the initial 

spacing is less than 75 fim, overgrowth occurs as shown in Fig. 5.7 (dl) and (el). In 

Fig. 5.7 (dl), it can be seen that when the initial spacing is 60 ^im, two of the four 

dendrites are annihilated after 40 s of growth, resulting in an average spacing of 85 

Hm. In Fig. 5.7 (el), when the initial spacing is 50 |a,m, three of the four dendrites are 

blocked out, and the average spacing is increased to 100 )j.m. 
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(a1) 

(a2) 

250 |im 

(b1) 

(b2) 

Fig. 5.6 3D simulation results for 1 seed in domains with different transverse 

section area: (al) 250x250 |am^, (bl) 300x300 [im^, (cl) 350x350 |4.m^ and (dl) 

500x500 |im^. (a2), (b2), (c2) and (d2) are transverse slices at z = 750 |j,m, t = 

40 s. 
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250 )im 

(b1) 

(b2) 

(d2) 0 

Fig. 5.7 3D simulation results for 4 seeds in domains with different 

transverse section area: (al) 300x300 |a,m ,̂ (bl) 200x200 pim ,̂ (cl) 150x150 

|j,m ,̂ (dl) 120x120 )a,m^ and (dl) 100x100 p,m .̂ (a2), (b2), (c2), (d2) and (e2) 

are transverse slices at z = 750|a,m, f = 40s. 
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The relationship between the final average primary dendrite spacing and the initial 

seed spacing (which is equal to the width/thickness of domain when only one seed is 

placed at the base, or to half of the width/thickness when four seeds are placed at the 

base) is shown in Fig. 5.8. The initial seed spacing ranges from 50 to 500 and the 

final average primary dendrite spacing varies between 75 and 250 |im. The upper limit 

is approximately three times the lower limit. 
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Fig. 5.8 Final stable primary dendrite spacing ( ^ ) versus the initial seed 

spacing (A°) in 3D simulations with adjustable domain. 

Since dendrite branching and overgrowth are both random processes, simulations 

starting with regular square-packed dendrites may not result in the same packing 

pattern. In the practical solidification process square packing can rarely be achieved 

and close or hexagonal packing is often obtained for directionally solidified dendrites. 

Simulations starting with hexagonally packed dendrites were also carried out, and will 

be presented in the next section. 
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5.3 Hexagonal Packing of Dendrites 

The following simulations were run on a regular grid, composed of 150x50x250 cubic 

cells with a cell size of 5 fj,m. The imposed sohdification conditions in the simulations 

are: G = 12 K/mm, and 1^= 150 )a,m/s. Periodic boundary conditions were applied to 

the side surfaces. Only growth from existing seeds at the base was considered, and the 

sites of these seeds were chosen in such a way that the columnar dendrites developing 

from them would be approximately hexagonally packed. 

5.3.1 Effect of Initial Seed Density 

Simulations with different numbers of seeds were run to study the effect of the 

nucleation density on the final solidified structure. Two examples of simulations, one 

with sparse seeding and one with dense seeding are shown in Fig. 5.9 and Fig. 5.10, 

respectively. In Fig. 5.9 (al) only 2 seeds are placed at the bottom giving an initial 

spacing of approximately 306 p,m and their positions are staggered so as not to lie on 

the same line, parallel to either the x- or the y-axis. As initially the seed spacing is very 

large, and the solute fields do not interact and so they grow in all directions (see Fig. 

5.9 (al)). After a short time (see Fig. 5.9 (bl)) the solute fields of the secondary arms 

(perpendicular to the macro solidification direction) interact, slowing their growth. 

Ternaries grow from these secondaries, in a direction parallel to the primaries, and are 

initially very closely spaced. Competitive growth caused by solute field interaction 

result in only a few being selected so that only 6 tertiary dendrites surviving at a 

solidification time of 6 s, their tips having caught up with the 2 seed primaries (see Fig. 

5.9 (cl)). With a new total of 8 primaries, the average spacing has been reduced to 153 

|4.m. This spacing remains stable at a solidification time of 40 s as shown in Fig. 5.9 

(d2). 
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250 |j.m 

Fig. 5.9 Simulation for 2 seeds at a solidification time of: (al) 1, (bl) 2, (cl) 

6 and (dl) 40 s. (a2) transverse slice at z = 50)j,m, f = l s , (b2) transverse slice at 

z = 150 )j.m, t = 2 s, (c2) transverse slice at z = 750 jum, / = 6 s, and (d2) 

transverse slice at z = 750 |im, /" = 40 s. 
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250 um 

Fig. 5.10 Simulation for 64 seeds at a solidification time of; (al) 1, (bl) 4, (cl) 

6 and (dl) 40 s. (a2) transverse slice at z = 50 |j,m, ^ = 1 s, (b2) transverse slice 

at z = 450 )J.m, / = 4 s, (c2) is transverse slice at z = 750 |j.m, z" = 6 s, and (d2) 

transverse slice at z = 750 |im, f = 40s. 
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The converse situation, competitive growth of primaries from an initially dense 

number of nuclei, is shown in Fig. 5.10 where 64 seeds are nucleated at the bottom, 

giving an initial seed spacing of approximately 54 îm (see Fig. 5.10 (a 1)). With such a 

fine spacing the solute fields overlap so far that the formation of secondary dendrites is 

almost completely suppressed. Minor variations in the initial spacing cause some of the 

more restricted dendrites to have a greater tip undercooling (see Fig. 5.10 (bl) and 

(b2)), with the result that the spacing slowly increases because of competitive growth. 

This process continues with more and more dendrites being eliminated, as shown in 

Fig. 5.10 (cl) and (c2) with a stable primary dendrite spacing of approximately 90 |im 

being reached after 40 s (Fig. 5.10 (dl) and (d2)). 

A series of simulations with different initial seed spacings (A°) were run to explore the 

relationship between this and the final primary dendrite spacing, with the results 

plotted as the solid points in Fig. 5.11. The initial seed spacing ranges from 50 to 310 

^m, and the final spacing (A' ) varies between 80 and 220 p,m, with an upper limit of 

approximately 3 times the lower limit. 

This relationship was compared with that obtained in the simulations starting with 

square-packed dendrites (see the hollow square points in Fig. 5.11) and it was found 

that the upper limit of the stable spacing obtained in the simulations starting with 

hexagonally packed dendrites (220 |j,m) is slightly lower than with square-packed (250 

jam), but the lower limit in hexagonally packed growth (80 ^m) is slightly higher that 

in square-packed growth (75 jam). 

The range of values of stable primary dendrite spacings in 3D hexagonally packed 

growth (80 - 220 |j,m) was also compared with that obtained in previous 2D simulation 

(130 - 380 |j,m), which is plotted as crossing points in Fig. 5.11. Dividing the upper 

limit of stable spacings in 2D simulations by that in 3D simulations gives a factor of, 

380/220 = 1.73, and the factor between the low limit in 2D and 3D simulations is, 

130/80 = 1.63. It can therefore be seen that the range of stable spacings shifts to the 

smaller values in the 3D simulations by a factor of about 1.7 relative to 2D 

simulations. 
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Fig. 5.11 Final stable primary dendrite spacing (A ' ) versus the initial seed 

spacing (A°) in 2D and 3D simulations. 

5.3.2 Effect of Perturbation on Pulling Velocity 

It has been demonstrated in Chapter 4 that perturbation of the pulling velocity can 

reduce significantly the range of the stable primary dendrite spacing. After a cycle of 

perturbation of the pulling velocity around a mean value, the upper limit of the stable 

spacing becomes about twice the lower limit. For conditions of G = 12 K/mm, and V = 

150 nm/s, the upper and lower limits of stable spacings are 300 and 150 p.m 

respectively. 

Similar perturbation of the pulling velocity was also applied to the 3D simulation 

starting with hexagonally packed dendrites. Fig. 5.12 shows the typical effects of such 

a perturbation on the predicted results. Initially four dendrites were growing in a stable 

state with an average spacing of 217 (see Fig. 5.12 (al). A cycle of perturbation was 

then applied to the pulling velocity: (i) ? = 0 s, V = 150 i^m/s; (ii) t = 10 s, V = 300 

|j,m/s; (iii) f = 20s, V= 75 (j,m/s; and (iv) / = 30 s, V= 150 )a,m/s. As shown in Fig. 5.12 
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(bl) and (b2), the effect of increase in pulling velocity is dramatic with tertiary 

dendrites forming in the gaps between the primaries. These tertiaries grow fast until 

their tips almost catch up with those of original primaries from which they branched 

(see Fig. 5.12 (cl)). The effect of decreasing pulling velocity has less impact, its main 

effect being to stabilise the tertiaries through overgrowth. After the perturbations the 

predicted primary dendrite spacing is reduced to about 164 pm, and remains stable 

after the velocity returns to its pre-perturbation value (see Fig. 5.12 (d2)). 

250 jam 

(c2) 

Fig. 5.12 Tip region of a simulation for 4 seeds and a perturbation of the 

pulling velocity, at a solidification time of: (al) 40, (bl) 50, (cl) 60, and (dl) 75 

s. (a2) transverse slice at z = 750p,m, f = Os, (b2) transverse slice at z = 500 )j,m, 

t= 10 s, (c2) transverse slice at z = 875 p-m, f = 20s, and (d2) transverse slice at 

z = 750 |am, ? = 30 s. 
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The same perturbation sequence was appHed to the entire range of initial seed spacings 

(see Fig. 5.13), resulting in the stable primary dendrite spacing being reduced from 80 

- 220 |am to 9 5 - 1 8 0 fj.m. The resulting upper hmit is about twice the lower limit - i.e. 

the primary dendrite spacing has reached a much narrower distribution after 

undergoing a cycle of perturbation of the pulling velocity. Compared with the stable 

range obtained under the same conditions in 2D simulations (150 - 300 p,m), it was 

again found that both the upper and lower limits shifted to the smaller values by a 

factor of approximately 1.7. 
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Fig. 5.13 Final stable primary dendrite spacing ( A' ) versus initial seed 

spacing (A^) in 3D simulations without and with perturbation of the pulhng 

velocity. 
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5.4 Comparison with Experiments 

The simulations under conditions of G = 12 K/mm and F = 150 [im/s suggests that the 

range of stable spacing is reduced by a factor of approximately 1.7 in 3 D relative to in 

2D. The 2D simulations show that both the upper and lower limits of stable primary 

dendrite spacings have a power-law relationship with the pulling velocity, and the 

upper limit is about twice the lower limit when the solidification undergoes a cycle of 

perturbation of pulling velocity, as given in equation (4.5). Assuming that this 

relationship is still true in 3D, and that the power index remains the same, the 

relationship between and V in 3D can be obtained by reducing the coefficients in 

equation (4.5) by a factor of 1.7: 

= 3 . 0 8 x 1 0 ' ( r ) - " " ' 

These two hnes are plotted in Fig. 5.14, together with 3D simulation results (triangular 

points). They are found have very good correlation with Kurz and Fisher's analytical 

solution (Kurz, et al. 1992) and Hunt and Lu's prediction (Hunt, et al. 1996). Kurz and 

Fisher's solution is approximately a midline between the predicted upper and lower 

limit lines, but the slope is slightly more gradual. Hunt and Lu's prediction fits well 

between the two limit lines with the slope a little steeper. The predictions are also 

compared with the experimental results obtained by (Davies, et al. 1980; Kermanpur, 

et al. 2000; Wang, et al. 2001) and are found to be in good agreement apart firom the 

fact that, at low pulling velocity, some points of experimental results drop below the 

lower limit. 
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Fig. 5.14 Predicted 3D upper and lower limits of the distribution of primary 

dendrite spacing, with the 3D simulation results. They are compared with Kurz 

and Fisher's solution (Kurz, et al. 1992) and Hunt-Lu's prediction (Hunt, et al. 

1996) and previous experimental results (Davies, et al. 1980; Kermanpur, et al. 

2000; Wang, et al. 2001). 

5.5 Summary 

As with 2D, the 3D simulations show that there is a range of stable spacings for 

columnar dendrites in directional sohdification. Perturbation on the pulling velocity 

affects both the primary dendrite spacing and the tip undercooling. The primary 

dendrite spacing has a much narrower distribution after perturbation and the upper 

limit of the distribution of primary spacing is about twice the lower limit. Unlike the 

2D simulations, the whole range of stable spacings shifts towards smaller values by a 

factor of about 1.7. The results show good correlation with earlier computational and 

experimental results. 
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Single crystal (SX) nickel-based superalloys are the current state-of-the-art for 

producing gas turbine blades that satisfy the stringent quality required to 

ensure mechanical integrity at the high operating temperature of modem 

engines. The final casting integrity of these parts, which are produced by the 

unidirectional solidification process, depends upon their microstructures and inherent 

defects (McLean 1983). Many types of performance-limiting crystal defects, such as 

freckles, stray grains, recrystallised grains, low-angle boundaries and microporosity 

can occur in a SX part. Some of these defects are difficult to eliminate in large, 

complex shaped blades. The mechanisms for formation of these defects are known in a 

general sense and some progress has been achieved in identifying their origins and 

quantifying their causes (Meyer ter Vehn, et al. 1996; Schaefer, et al. 1997; D'Souza, 

et al. 2000). Given the cost constraints associated with design and manufacture of the 

SX parts, casting designers have become increasingly reliant on modeling and 

simulation of the casting process in order to be able to produce defect-free 

components. 

6.1 Introduction 

It is known that some types of defects in SX parts are related to the curvature of the 

liquidus isotherm while it is passing through enlargements in the cross section of the 

component (e.g. the platform of a turbine blade) (Paul, et al. 1993). This condition is 

exacerbated when several blades are cast in a cluster (Copley, et al. 1970; Napolitano, 

et al. 2000). Fig. 6.1(a) schematically depicts the liquidus isotherm plane in a turbine 

blade being cast as part of a cluster of blades (Napolitano, et al. 2000). The through-

thickness thermal gradient can be seen from the outward facing side (side A) to the 

inward facing side (side B). It has already been observed that freckle channels tend to 

occur at the steepest regions of the solid-liquid interface, i.e. towards side A (Copley, 

et al. 1970). Indeed, this type of asymmetric concave upward solidification, interacting 

with the platform geometry, can result in increasing defects. The longitudinal section 

of the blade is shown in Fig. 6.1(b). As the solidification front approaches the platform 

at time of t\, a significant degree of undercooling develops in the liquid within the 

platform on the side A (i.e. dark grey region in Fig. 6.1(b)). As the front passes the 

mould comer, t=t2, lateral growth of secondaries from the original primary dendrite 
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into the platform is very fast due to the high undercooling (i.e. light grey region in Fig. 

6.1(b)). This can generate a complex branching pattern of the dendritic structure, such 

as that at time of 3̂. Alternatively, when there is a sufficient undercooling, new grains 

may nucleate stray grain defects, which grow into the undercooled melt. On the inward 

side B of the casting, a quite different situation is observed. The undercooling in the 

platform is only that necessary to drive the motion of the dendrite tips. The front is free 

to follow the isotherm and is never constrained geometrically, as it is on side A. The 

result in this case should be a well-ordered dendritic structure. Clearly, it can be 

concluded that the probability of the formation of structural defects is largely 

dependent on the curvature of the solidification front, which in turn depends on the 

geometrical arrangement of the cluster. Prior models presented so far (e.g. (Napolitano, 

et al. 2000)) have not been able to simulate the full dendritic microstructure in such 

conditions. 

Side 

t=t^ B 

Side B 

(a) 

- Liquidus isotherm 
^ Dendritic front 

High undercooling 
Medium undercooling 

(b) 

Fig. 6.1 (a) Schematic of the isotherms estimated from the microstructure by 

Napolitano et al. for a SX blade cast in a cluster, (b) Schematic of the growth 

into the platform region, illustrating the difference in the dendritic patterns due 

to the effect of the platform geometry and the through-thickness gradient. Side 

A is outward facing, while side B is inward facing (after (Napolitano, et al. 

2000%. 
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The CA-FD model presented in Chapter 3 has been used to investigate the effect of 

changes in both the cross sectional area (i.e. geometrical discontinuities) and the shape 

of isotherms on dendrite growth during SX solidification of a binary approximation of 

a nickel-base superalloy. The dendritic structure formed in SX soHdification when 

passing an increase in cross-sectional area was simulated with a range of different 

imposed isotherm shapes. The simulation results were compared with the experimental 

observations of Napolitano et al. (Napolitano, et al. 2000). 

6.2 Results and Discussions 

In order to demonstrate the effect of mould geometry on dendritic growth, the platform 

region of a turbine blade (see Fig. 6.2) was chosen as the simulation domain. The 

domain is 5.5 mm wide and 8 mm high containing a mould wall (the hatched zone in 

Fig. 6.2) with a thickness of 0.5 mm. The domain was then discretised using a regular 

grid of 5 )j,m square cells. A zero-flux boundary condition was applied at all 

boundaries. Different thermal conditions were applied in the simulations to investigate 

the effect of the temperature field on the growth pattern of dendrites. 

6.2.1 Horizontal Isotherms 

Firstly, the thermal condition of horizontal isotherms with a temperature gradient of 12 

K/mm moving upwards at a constant velocity of 150 p,m/s was considered. The 

predicted dendritic structure and undercooling profiles at different times are shown in 

Fig. 6.2 and Fig. 6.3, respectively. A grain was placed at the bottom-right comer of the 

domain, with one of its <10> directions fiilly aligned with the vertical temperature 

gradient. After l i s growth, the grain starts to propagate a secondary dendrite around 

the mould comer. A significant degree of undercooling develops in front of the 

secondary dendrite as the macroscopic solidification proceeds vertically, reaching 20.7 

K, which is about twice that in front of the original primary dendrite, 10.8 K. As a 

result of the high undercooling, the secondary dendrite grows at a much faster rate than 

the primary dendrite. After 14 s, the secondary dendrite approaches the outside vertical 

wall of the platform, with the tip undercooling having increased to 26.1 K. In the 

platform region, many tertiary dendrites emanate with a random initial spacing on both 

sides of the developing secondary dendrite. However, because of the constraint of the 
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mould wall, only those facing upward can grow. The spacing between these new 

columnar dendrites is quickly reduced through an overgrowth mechanism. Although 

the tertiary dendrites near the outside wall are formed much later than those near the 

centre, they grow much faster because of higher tip undercooling. The macroscopic 

solidification front rapidly approaches the shape of isotherms. Meanwhile, the degree 

of maximum undercooling decreases to approach that in front of the original primary 

dendrite. After 25 s, an almost flat front is achieved, and the maximum undercooling 

near the dendrite tips is reduced to 13.3 K, just marginally higher than the tip 

undercooling of primary dendrite, 11.4 K. Finally, a well-ordered dendritic structure is 

obtained at 30s, when the solidification front passes the platform region, with all the 

tertiary dendrites terminating at the upper wall of platform. This simulation shows that, 

for horizontal isotherms, the abrupt change in the cross section of the mold results in a 

significant increase of undercooling in front of the lateral secondary dendrite near the 

lower wall of the platform. This can reach a value more than twice the tip undercooling 

of the primary dendrite, and if heterogeneous nuclei were present, there would be a 

much greater chance of stray grains forming. The tertiary dendrites emanating from the 

secondary grow rapidly, reducing the undercooling difference with the original 

primary, until the tertiary and primary dendrite tips become isothermal. 
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Fig. 6.2 Predicted dendritic structure under thermal conditions of horizontal 

isotherms moving at a constant velocity of 150 p.m/s: (a) ? = 11 s; (b) ^ = 14 s; 

(c) / = 25 s; (d) ^ = 30 s. 
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Fig. 6.3 Predicted undercooling distribution under thermal conditions of 

horizontal isotherms moving at a constant velocity of 150 |im/s: ( a ) f = l l s ; (b) 

; = 14 s; (c) ^ = 25 s; (d) / = 30 s. 
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6.2.2 Inclined Isotherms 

In the second example, the effect of the direction of the temperature gradient was 

investigated. As shown in Fig. 6.5, the temperature gradient was inclined at 45° 

relative to the macroscopic soHdification direction and the magnitude of the gradient 

was the same as in the previous case, 12 K/mm. Comparing Fig. 6.2 and Fig. 6.4, it is 

found that at the early stage of growth (for t^ 5 s), the development of the dendritic 

microstructure is very similar. However, they diverge after 15 s because of the effect 

of the inclined isotherms on the tip undercooling and growth. After 19 s of growth the 

solidification front approaches the 45° inclination of the isotherms (see Fig. 6.4 (c)). 

Moreover, the fine dendritic structures also exhibit some differences. In Fig. 6.2 all the 

tertiary dendrites grow symmetrically, but in Fig. 6.4, they develop asymmetrically, 

with more branches on the right hand side than the left hand side. Because of the 

inclination of the isotherms, an even higher undercooling develops as high as 39.6 K at 

the left-bottom comer, which is nearly four times that in front of the primary dendrite, 

10.9K. The propensity for stray grains to nucleate is even greater than with horizontal 

isotherms. The change in the direction of temperature gradient, can clearly affect both 

the macro- and micro-scale dendritic structures, as well as the maximum undercooling. 
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Fig. 6.4 Predicted dendritic structure under thermal conditions of 45° 

inclined isotherms with respect to the growth direction moving at a constant 

velocity of 150 p,m/s: (a) / = 11 s; (b) ? = 13 s; (c) / = 19 s; (d) ^ = 30 s. 
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Fig. 6.5 Predicted undercooling distribution under thermal conditions of 45° 

inclined isotherms with respect to the growth direction moving at a constant 

velocity of 150 ).im/s: (a) ^ = 11 s; (b) f = 1 3 s ; (c) f = 1 9 s ; (d) / = 30 s. 
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6.2.3 Concave Isotherms 

In the work of Napolitano et al. (Napolitano, et al. 2000), they suggest that the true 

isotherm shape is concave (Fig. 6.1 (b)). This shape was simulated using a polynomial 

function (Fig. 6.6). For the example shown, at the outside wall, the value of 

temperature gradient is about 20 K/mm, while at the centre it is about 6 K/mm (with a 

mean temperature gradient of approximately 12 K/mm). The direction of the gradient 

relative to the vertical direction varies from 70° at edge to 0° at the centre. Fig. 6.7 

shows the undercooling ahead of the dendrites at different times, and the maximum 

undercooling in the comer reaches 44.4 K, a little more than four times higher than that 

ahead of the primary dendrite, 10.8 K. Fig. 6.6 shows the evolution of the dendritic 

stmcture, with the fastest growth direction marked out by a white arrow at each time. 

At an early stage (see Fig. 6.6 (a)), the secondary dendrite grows very fast from right to 

left, until it reaches the outside wall of the platform. Thereafter, the upward tertiary 

dendrite near the outside wall reaches a maximum growth velocity, growing from the 

bottom to the top in 9 seconds. During the same time, the original primary dendrite 

only extends a distance one-fifth of that traversed by the fastest growing tertiary. As 

the tertiary dendrites approach the upper wall, they branch again. The small dendrites 

growing from left to right, block the growth of other relatively slow growing tertiary 

dendrites. However, eventually all these lateral branches are stopped by the original 

primary dendrite and a complex dendritic pattern is obtained, with a boundary between 

differently oriented dendrites, similar to a grain boundary, being formed. 
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Fig. 6.6 Predicted dendritic stmcture under thermal conditions of concave 

isotherms, as suggested by Napolitano et al. (Napolitano, et al. 2000), moving at 

a constant velocity of 150 jim/s: (a) r = 16.5 s; (b) ^ = 21 s; (c) / = 30 s; (d) t = 

34 s. 
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^ f â f s. • 
,. Jj!iP(ISl!iy.',"i=i F 

(b) 

>liMIIIWtl|l 

12.8K|i. i p ?P̂toRVI<«M 
litoii.ihaj.iJiiiiinMn 

(C) (d) 

Fig. 6.7 Predicted undercooling distribution under thermal conditions of 

concave isotherms, as suggested by Napolitano et al. (Napolitano, et al. 2000), 

moving at a constant velocity of 150 |Lim/s: (a) t= 16.5 s; (b) / = 21 s; (c) t = 30 

s; (d) ^ = 34 s. 
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6.3 Comparison with Experiments 

The simulation results are compared with the microstructures observed experimentally 

by Napolitano et al. (Napolitano, et al. 2000) in a nickel-based superalloy as discussed 

earlier. In the experimental micrograph (see Fig. 6.8 (b)) the boundary between the 

differently oriented dendrites is marked by a dashed line. The simulation shows 

excellent correlation with the experimental result. The model has correctly predicted 

the complex dendrite branching pattern happening in the platform region that results in 

a self-convergent boundary. The region near the boundary will be the last solidified 

part in the platform, where the solute segregation is the highest and non-equilibrium 

eutectic phase can form. 
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if 
(a) (b) 

Fig. 6.8 (c) The complex branching dendritic microstructure predicted by the 

present CAFD model, (b) The microstructure experimentally observed by 

Napolitano et al. at the outward facing platform section of a SX Ni-based 

superalloy blade (after (Napolitano, et al. 2000)). 
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In terms of the fLmctionahty of the SX components, the occurrence of these complex 

self-convergent dendritic structures should be avoided, both in terms ensuring 

consistent properties and because the high undercoolings occurring increases the 

chance of stray grains forming. Application of the current model should allow the 

operating parameters of the SX system to be adjusted so that a well-ordered uniform 

columnar dendritic structure is achieved throughout the entire component. Although 

the current model gives a good qualitative prediction of the complex dendrite 

branching pattern in the platform region under conditions of imposed polynomial 

isotherms, a fully coupled macro-micro model which incorporates both thermal 

calculations and solidification simulation would allow the effect of latent heat to be 

considered and thus give more realistic results. 
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Chapter 7 Simulation of Competitive Growth 

The implementation of single-crystal technology in the production of gas 

turbine blades has greatly improved the properties of the final product, such 

as creep and thermal fatigue resistance (Wagner, et al. 2001). Full 

exploitation of the benefits of the single crystal technology depends on the effective 

control of the solidification process, ensuring the deviation of the crystal orientation 

from the thermal gradient direction is restricted within a few degrees of the preferred 

growth direction [001]. Grain selection mechanisms play an important role in 

producing directionally sohdified (Gandin, et al. 1995) (DS) and single crystal 

(D'Souza 1999) (SX) nickel-based superalloy gas turbine blades. If the orientation is 

selected via 'pig-tail' grain selectors, the alloy at first solidifies as a selection of 

randomly oriented fine grains. Those grains which have one of the <001> preferred 

growth directions closely aligned with the thermal gradient grow faster than, and 

eventually ehminate, the other grains with greater deviations. As a result of the grain 

selection a sharp texture is achieved in the final component. However, in certain 

situations the misorientated grains have been observed to overgrow sharply oriented 

grains, giving a diffuse texture. 

To obtain better understanding of the grain selection process, the CA-FD model was 

applied to simulate competitive growth between aligned and inclined dendrites during 

directional solidification, with the results presented and discussed in this chapter. Good 

qualitative correlation was found between the predictions and experimental results. 

However, the model was found to have some limitations in carrying out quantitative 

investigation on this problem; a phase field model was therefore used to enhance the 

investigations. 

7.1 Cellular Automation Simulation of Competitive Growth 

A modified decentred square growth algorithm has been incorporated into the 2D CA-

FD model which allows simulation of the growth of grains with random misorientation 

with respect of the grid. And the competitive growth between grains with different 

misorientation relative to the macroscopic solidification direction can therefore been 

studied. 
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7.1.1 Effect of Misorientation on Tip Undercooling 

In the following simulations thermal conditions of G = 12K/mm and V= 1.5xl0'^m/s 

were imposed. The simulations were run on a domain composed of 300x600 cells with 

a cell size of 5 |j,m. Periodic boundary conditions were applied to the lateral sides of 

the domain. At the beginning of each simulation, several seeds were placed at the 

bottom. These seeds were assigned with different misorientations, ranging from 1 to 30 

degree. As soHdification proceeds, columnar dendrites develop from these seeds. They 

are not aligned with respect to the grid, but inclined at the angle of misorientation 

associated with the seeds. Part of the simulation domain is shown in Fig. 7.1 for the 

cases with misoriented seeds. 

250 nm wt% 7 

(a) 

(c) (d) 

Fig. 7.1 Predictions of columnar dendrite morphologies with different 

misorientations to the thermal gradient: (a) 1°, (b) 10°, (c) 20° and (d) 30°. 
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In Fig. 7.1, the columnar dendrites have different misorientations: (a) 1°, (b) 10°, (c) 

20° and (d) 30°, and their microstructures also show some differences. In Fig. 7.1 (a), 

the dendrites are almost aligned with the temperature gradient, with only 1° deviation, 

and the secondary dendrites developing from the primary dendrites are both nearly 

perpendicular to the thermal gradient, and show very good symmetry in their 

microstructures. However, the symmetry in the secondary dendrites doesn't exist in 

other cases, as shown in Fig. 7.1 (b), (c) and (d), where the preferred growth 

orientations significantly deviate from the thermal gradient. In these cases, the 

secondary dendrites exhibit more development on the side of primary dendrites facing 

the solidification front than the other side. 

The relationship between the dimensionless undercooling at the dendrite tip position, 

calculated as AT" - A71/(77jCo(A:-1)) , and the misorientation, 0, is plotted in Fig. 7.2. 

The tip undercooling increases as the misorientation increases, agreeing with the 

theoretical analysis of Rappaz and Gandin (Gandin, et al. 1993). 
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Fig. 7.2 Tip undercooling vs. dendrite misorientation. 
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7.1.2 Simulation of Converging and Diverging Grains 

Simulation was carried out for competitive growth between two converging grains. As 

shown in Fig. 7.3(a), grain A has a misorientation of 1°, grain B has a misorientation 

of 15° with respect to the thermal gradient, and they are growing towards each other. 

As grain A has a lower tip undercooling than grain B due to its smaller misorientation, 

it grows ahead of grain B. The growth of secondary dendrites at the edge of grain A is 

suppressed as the primary dendrites in grain B approach it. Also the secondary 

dendrites in grain B adjacent to grain A develop in an asymmetric manner; they are 

suppressed on the side next to grain A, but develop on the side away from it. Finally 

the primary dendrites of grain B stop growing at the edge of grain A. This simulation 

was found to have good agreement with the experimental result carried out by Wagner 

et al. (Wagner, et al. 2001) for CMSX4 superalloy (see Fig. 7.3(b)). 

3 wt% 7 

100 lam 

(a) (b) 

Fig. 7.3 (a) Predicted and (b) experimental results (Wagner, et al. 2001) of 

competitive growth for two converging grains, A and B, with misorientations of 

1° and 7°, respectively. 
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Simulation was also carried out for two diverging grains. As shown in Fig. 7.4 (a), two 

grains with 1° and 25° misorientations, are grown in diverging directions. Tertiary 

dendrites emanate from the secondary dendrites in both grains to fill the diverging gap. 

The boundary between the two simulated grains is nearly a straight line, with a 

misorientation of approximately 7°, or more closely aligned to the oriented grain rather 

than the misoriented one. The reason is that, although the primary dendrites in the 

grain B are better aligned than those in grain A, the secondary dendrites of grain B are 

in better alignment (inclined at 65°) than those in grain A (inclined at 89°) with respect 

to the thermal gradient. Therefore the growth of the secondary dendrites in grain A 

restrain the branching and generation of tertiary dendrites in grain B. Again, the 

predictions show excellent qualitative agreement to the experiments of Wagner et al. 

(Wagner, et al. 2001). 
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(a) (b) 

Fig. 7.4 (a) Predicted and (b) experimental results (Wagner, et al. 2001) of 

competitive growth for two diverging grains, A and B, with misorientations of 

25° and 1°, respectively. 
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7.1.3 Summary 

The simulation results have shown that the current model is capable of reproducing 

dendrite morphology, predicting the relationship between tip undercooling and the 

misorientation of dendrites. The model is also capable of simulating competitive grain 

growth both at converging and diverging grain boundaries, with good correlation to 

experimental results. However, problems are also found that the resolution is not high 

enough. The simulations was run on a grid with a cell size of 5 fj.m, which is not small 

enough to reproduce the correct shape of the primary dendrite tips. If a higher 

resolution is needed, a much finer grid must be used. However, as shown in Chapter 4, 

the dependence of network grid size has not yet been resolved in the model, and when 

the cell size changes, the predicted tip undercooling also changes, which makes the 

prediction unreliable. 

To find an alternative solution, a phase field model, which is believed to have higher 

numerical resolution and less network grid dependency, was used to carry out a 

complementary investigation on competitive growth. 

7.2 Phase Field Simulation of Competitive Growth 

The phase field method solves solid/liquid free boundary problems by introducing a 

diffuse transition layer instead of explicitly tracking a sharp interface as in CA models. 

Not only constitutional undercooling and curvature undercooling but also kinetic 

undercooling which is neglected in the CA-FD model, are taken into consideration to 

calculate the velocity of the solid/liquid interface. The anisotropy of the crystal lattice 

is considered by introducing an anisotropic term in the interfacial mobility and/or 

interfacial energy. The phase field model developed by Steinbach and his colleagues 

(Steinbach, et al. 1998b; Tiaden, et al. 1999) was used to simulate competitive growth 

in directional solidification. For the details of the phase field model theory please refer 

to Chapter 2. 

Simulations were performed for a binary alloy, Ni 0.1 wt% Hf, with the properties 

given in Table 7.1. The simulations were run on a regular grid with a cell size of 1 p.m. 
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and the time step is 2.5x10"^ s. Both the cell size and time step are much smaller than 

those used in the cellular automaton simulations. 

Table 7.1 Parameters used in phase field simulations 

Parameter Symbol Value 

Initial concentration Co 0.1 wt% 

Equilibrium partition coefficient k 0.11 

Liquidus temperature Tuq 1656 K 

Solidus temperature Tsol 1607 K 

Liquidus slope mi -60.6 K/wt% 

Solidus slope ms -550.6 K/wt% 

Diffusivity in hquid DL 1.0xl0"V^/s 

Diffusivity in solid Ds 0 m^/s 

Entropy of fiision Asf 1.0x10^ J/(K-m^) 

Surface energy <7 2.0x10"' W 

Kinetic coefficient 2.5x10""^ m ^ s ) 

Amplitude of mobility anisotropy 4cin 30% 

Cell size Ax 1.0x10"® m 

Interface thickness 5 6.0x10'® m 

Time step At 2.5x10^8 

Periodic boundary conditions were applied to the left and right hand sides of the 

domain, and a zero flux condition was applied to the top and bottom. Thermal 

conditions of a gradient of 15K/mm and a constant pull velocity were used. To reduce 

the domain size and hence computational cost, a moving frame of reference technique 

was applied (Diepers, et al. 2002). 

7.2.1 Prediction on Tip Undercooling 

The competitive growth between two differently orientated grains was simulated under 

different pulling velocities, and the results are shown in Fig. 7.5. All the simulations 
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started with the same initial conditions: seven equally spaced seeds (120 p,m) at the 

base of the domain with an initial undercooling of 2 K. The preferred growth direction 

of the two seeds on the left was aligned with the thermal gradient and they can be 

regarded as a single grain (labelled A in Fig. 7.6). The rightmost grain was also aligned 

with the thermal gradient, and is labelled C. Because of the periodic boundaries, it can 

be considered as part of the grain formed by the two dendrites labelled A. The 

remaining four seeds are misorientated by 15°, labelled B, and they can be considered 

to constitute a second grain. Therefore, two grain boundaries are formed: A-B, where 

the grains converge; and B-C where the grains diverge. Thus competitive growth at 

both converging (A-B) and diverging (B-C) grain boundaries can be simulated at the 

same time. 

Three different solidification rates, V, were applied to the simulations to investigate 

their effect on the competitive growth: (a) 50, (b) 100, and (c) 150 |j,m/s. The 

characteristic diffusion length for each solidification rate, defined as d-D^/V, is 

given in Table 7.2. At the lowest V, d is the largest, with the diffusion fields 

overlapping to a sufficient extent to delay secondary dendrite arm formation relative to 

the higher velocities. As shown in Fig. 7.5(a), for a solidification rate of 50 (j.m/s, the 

diffusion fields of all the dendrites overlap sufficiently to suppress secondary 

formation except for where the dendrites diverge at the B-C boundary. For the higher 

solidification rates (Figs. Fig. 7.5 (b) and (c)), fully developed secondary dendrites 

form on all primaries. 

The sohdification rate also has a significant effect upon the primary dendrite tip 

undercooling, with the predicted values listed in Table 7.2. The average tip 

undercooling for both ftilly aligned dendrites (AT^o) and inclined dendrites (AT îs") 

increases with increasing solidification rate, although /STxs" always remains greater 

than A7o°. The difference in tip undercooling, defined as (?(Ar) = AT̂ jo - Ar^o, was 

also increased with increasing solidification rate. (This is illustrated in Fig. 7.5 by a 

dashed line for the position of the fully aligned dendrites and a dotted line for inclined 

dendrites.) The distance between these two hnes, 77 = 5{hT)lG , increases from 7 to 27 

|im as the solidification rate increases from 50 to 150 pnVs. 
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Table 7.2 Predicted Values for Directional Solidified Dendrites 

Velocity d ATQO ATis" (5(A7) n 

(a) 50 [im/s 20 |4,m 4.03 K 4.14 K 0.11 K 7 |j.m 

(b) 100 nm/s 10 |am 5.73 K 6.00 K 0.27 K 18 p,m 

(c) 150 |im/s 6.7 fj.m 7 ^ 8 K %89K 0.41 K 27 jim 

The average tip undercooling of fully aligned dendrites is less than that of inclined 

dendrites; therefore, the aligned dendrite will usually grow ahead of the misaligned 

ones, suppressing and eventually overgrowing them. Some examples of this 

overgrowth can be seen in Fig. 7.5. However, abnormal overgrowth is also observed 

(e.g. Fig. 7.5(a2)), where an inclined dendrite overtakes a fully aligned one. 

Comparing the values for the critical diffusion length (d) with the gap between the tip 

positions of the fully aligned and inclined dendrites (7) in simulation (a) > 7 ; and in 

(b) and (c) d <7]. When an inclined dendrite approaches a fully aligned one, the 

diffusion fields of the two dendrites overlap, and the growth of the two dendrites will 

both be affected. As a result, in most cases, the inclined dendrite will stop growing, 

whilst the fully aligned dendrite will simply slow down to a greater or lesser extent. In 

simulation (b) and (c), where d ktj , the tip of the inclined dendrite is well behind that 

of the fully aligned dendrite, and this distance is greater than the critical diffusion 

length, thus the diffusion field of the inclined dendrite has little effect on the growth 

velocity of the fully aligned dendrite. However in simulation (a), where d > rj, the 

critical diffusion length is larger than the distance between the two tips, therefore the 

effect becomes more significant. As shown in Fig. 7.5 (al), a fully aligned dendrite is 

overtaking an inclined dendrite, and its growth velocity is obviously slower than other 

fully aligned dendrites. Subsequently, when it comes into contact with the next 

inclined dendrite, it is overtaken by the latter, as shown in Fig. 7.5 (a2). Such abnormal 

overgrowth was only observed in simulations with a low solidification rate, because in 

the simulations with high solidification rate the large tip undercooling difference 

counteracts the effect of overlapping diffusion fields. 
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0.02 wt% 0.28 

100 |j.m 

0.02 wt% 0.32 0.02 wt% 0.36 

Fig. 7.5 Simulated interaction of dendrite tips normal to, and inclined with 

the thermal gradient for three growth velocities: (a) 50 p.m/s, (b) ICQ |a,m/s, and 

(c) 150 )a,m/s. 

7.2.2 Grain Selection 

During processes such as solidification in the grain selector of single crystal turbine 

blades, the rate at which, and/or distance over which, overgrowth occurs, is also 

important. Therefore, the final dendritic structure for the three withdrawal velocities 

was also examined, as shown in Fig. 7.6. The grain with its preferred growth direction 

oriented perpendicular to the isotherms always has overgrown that misoriented by 15° 

when the primary dendrite spacing is the same in both grains. However, the distance 

grain B grows before being completely overtaken reduces with increasing 

solidification velocity, decreasing from 3.3 mm at 50 [im/s to 1.9 mm at 150 ^nVs. 

Two factors contribute to this change in overgrowth distance: i) the different behaviour 

of the dendrite overgrowth at the converging boundary (A-B) due to the reduced size 

of the solute layer with increasing velocity, as discussed above, and ii) the different 
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direction of the diverging boundary (B-C). Although in the three simulations grain B 

has an identical misorientation (15°) and grain C is perfectly aligned with the 

temperature gradient, the diverging grain boundary has a different orientation, 

changing from 7 to 9° with increasing solidification rate. The higher solidification rate 

is more favourable for the fast selection of a well oriented grain. This is contrary to the 

accepted practice when casting of directionally solidified nickel-base superalloy 

turbine blades, where lower solidification rates are often used when more stringent 

texture control is required. In theory, one could conclude that high velocity should 

used; however, there are many other factors, such as the altered furnace designs 

required to maintain flat isotherms, which must be considered when commercially 

casting clusters of turbine blades. 

200 |im 

0.02 wt% 0.28 0.02 wt% 0.32 0.02 wt% 0.36 

I 

Fig. 7.6 Final dendritic structure and an associated schematic of the grain 

boundaries for competitive growth at withdrawal rates of (a) 50 )u,m/s, (b) 100 

|j.m/s, and (c) 150 )J.ITI/S. 
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7.2.3 Anomalous Grain Selection 

All of the calculations shown above exhibit a similar primary spacing between the 

different dendritic grains. However the primary spacing under transient casting 

conditions depends on the history of the process (see Chapter 4), and there is a wide 

range of possible stable spacings. Therefore this assumption is quite restrictive. For 

this reason, a simulation was also performed where the initial spacing of the 

misaligned grain was larger than the well aligned grain. In Fig. 7.7 (c) the left grain, 

which is well aligned with the temperature gradient, starts with a spacing that is half of 

the spacing of the middle grain with a misalignment of 15°. Fig. 7.7 (a) and (b) show 

the development of dendrites at solidification time of 12 and 18 s, respectively. It can 

be seen that the inchned dendrites grow slightly faster than the aligned ones. Fig. 7.7 

(c) shows that the misaligned grain systematically overgrows the well aligned grain. 

The cause of this behaviour is due to the dependence of tip undercooling on the 

primary spacing. A dendritic array with a wide spacing shows a lower solutal tip 

undercooling than a tight array, where the solutal fields of neighbouring tips strongly 

overlap. This dependency of undercoohng on spacing was predicted by prior authors 

(Warren, et al. 1993) and is reproduced by the phase field simulations. A novel 

implication of this effect presented here, is that under certain conditions the reduction 

of tip undercooling due to 'wide' spacing can overcompensate the enhanced tip 

undercooling due to misalignment. When this happens, a systematic overgrowth of a 

well aligned grain by a misahgned grain can occur. 
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(a) (c) 

Fig. 7.7 Prediction on the competitive growth between normal grains with a 

narrow spacing and inclined grains with a wide spacing at a pulling velocity of 

50 ^m/s. (a) the dendritic structure at solidification time of 12 s; (b) at time of 

18 s; and (c) the final structure. 

7.2.4 Summary 

The dendrite tip undercooling during columnar growth in directional solidification is 

affected by both the pulling velocity and the orientation of the preferred growth 

direction of the dendrites relative to the thermal gradient. Higher pulling velocity and 

greater misorientations both result in increased tip undercooling. This increase in tip 

undercooling with increasing misorientation leads to the overgrowth of misaligned 

grains, and the effectiveness of this competitive growth depends on the withdrawal 

velocity. At high pulling velocities, the difference in tip undercooling is large, resulting 

in the aligned dendrites always overtaking those misorientated ones. However, at a low 
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solidification rate of 50 fim/s, the tip undercooling is small and hence occasionally a 

misorientated dendrite overtook a well aligned one. The higher the solidification rate, 

the faster the misorientated grains are overgrown by ahgned ones. Another finding of 

this study was a mechanism for 'anomalous grain selection' due to the dependence of 

tip undercooling on the width of primary spacing. 

However, although Fig. 7.7 suggests the probable mechanism of abnormal overgrowth, 

more detailed studies are needed to produce a fully quantitative description. Some of 

the latest simulations show that the phase field model also has a dependence on the 

grid it runs on which is discussed in the Appendix A. 
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A mathematical model of dendritic microstructures was developed during the 

course of this work which combines a description of grain nucleation and 

growth by means of a cellular automaton technique and a finite difference 

computation of solute diffusion. This model has been used to simulate three specific 

aspects of microstructural development in nickel-based superalloys: (i) selection of 

stable primary dendrite spacing during directional solidification with various growth 

conditions; (ii) multi-directional dendritic growth in the platform region of turbine 

blade; and (iii) competitive growth at converging and diverging grain boundaries. The 

model was subject to some limitations when simulating competitive growth and a 

phase field model developed by Access, RWTH-Aachen was therefore used to 

investigate competitive grain growth during directional solidification. 

The conclusions drawn from this study are presented in this chapter, together with 

recommendations for future work. 

8.1 Conclusions 

The following conclusions can be drawn from the simulations carried out. 

Two-dimensional simulations were carried out for the directional solidification of 

dendritic grains developing from seeds placed at the base of the simulation domain. 

The initial seed density has a direct effect on the initial growth stage of columnar 

dendrites, but little effect on the final primary dendrite spacing after growth becomes 

stable. The columnar dendrites adjust their spacing during solidification by branching 

and/or overgrowth and there is a range of stable primary dendrite spacing for any given 

growth condition. The maximum stable spacing is about three times the minimum 

value. 

The influence on the dendritic structures of processing parameters such as the pulling 

velocity and the thermal gradient was studied. The mean value of stable primary 

dendrite spacing has a power law relationship with the pulling velocity and with the 

thermal gradient. Both higher pulling velocity and thermal gradient result in smaller 

primary spacing. The predicted relationships between the primary spacing, the pulling 
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velocity and the thermal gradient show excellent correlation with earlier theoretical 

analysis and other numerical predictions. 

Perturbations of the processing parameters were also examined. Increases in pulling 

velocity and in thermal gradient lead to a reduction in primary spacing. The dendrite 

spacing selection has the effect of hysteresis in that the change in the spacing in 

response to the variation of the processing parameters does not always take place 

immediately. When the processing parameters are restored to the original values after a 

cycle of variation, the primary dendrite spacing does not necessarily return to its 

original value. The primary dendrite spacing is dependent on history rather than only 

the current processing parameters, and is affected by the process leading to the 

prevailing conditions. 

Perturbation of the puUing velocity affects both the primary dendrite spacing and the 

tip undercooling. Primary dendrite spacing has a much narrower distribution after a 

cycle of variation of the pulling velocity around a mean value. The upper limit of the 

stable primary dendrite spacing is about two times the lower limit. After reaching a 

minimum value the tip undercooling increases with the pulling velocity. The increase 

in the tip undercooling can facilitate the nucleation of small equiaxed grains near the 

primary tips, and eventually a transition from columnar to equiaxed structure may 

occur. 

Three-dimensional simulations were also performed for directional solidification with 

seeds placed at the base of the simulation domain. The seeds were arranged in such a 

way that the columnar dendrites developing from them formed either a square or a 

hexagonal packing pattern. As with the two-dimensional simulations, there is a range 

of stable primary dendrite spacings in three-dimensions, the upper limit of which is 

about three times the lower limit. Compared with the two-dimensional results, the 

whole range of stable spacing is shifted to smaller values by a factor of about 1.7. The 

three-dimensional simulations were compared with earlier experimental results and 

were found to be in good agreement. 

The model was then used to simulate dendritic growth in the platform region of single 

crystal superalloy turbine blades. Differently shaped isotherms moving at a constant 

velocity were imposed. A significant degree of undercooling develops at the platform 
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region in front of the secondary dendrites. The maximum undercooling increases as the 

local temperature gradient increasingly deviates from the withdrawal direction. The 

increase in undercoohng for the curved interfaces found when casting clusters of 

blades is nearly four times the steady state value, with a significant increase in the 

chance of stray grains formation. Even where stray grains are avoided, a complex 

dendritic pattern with a self-convergent grain boundary forms, which is in excellent 

agreement with experimental observations. 

The model was also used to simulate competitive growth between grains with different 

misorientations with respect to the macro-scale growth direction in directional 

solidification. Competitive growth at both converging and diverging grains was 

simulated and compared well with earlier experimental results. 

A phase field model was applied to ftirther investigate competitive grain growth. The 

tip undercooling of the dendrites during directional solidification is affected by both 

the pulling velocity and the orientation of the preferred growth direction of the 

dendrites relative to the thermal gradient. Higher pulling velocity and greater 

misorientation both result in increased tip undercooling. This increase with increasing 

misorientation leads to the overgrowth of misaligned grains, and the efficiency of this 

competitive growth is dependent upon the pulling velocity. At high solidification rates, 

the difference in tip undercooling is large, with the results that the aligned overtake 

misorientated dendrites. Although the simulation results suggest a probable mechanism 

for anomalous grain selection at low pulling velocity arising from the dependence of 

tip undercooling on the width of primary spacing, more studies are needed to produce a 

fully quantitative description. 

These conclusions suggest potential applications of the model: to tailor the primary 

dendrite spacing either by selecting an appropriate seed density or through controlled 

growth history; to reduce the chances of stray grains forming during the solidification 

of turbine blades with a platform region; and to improve the design of a 'pig-tail' 

selector to facilitate the grain selection process. 
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8.2 Future Work 

Based on these simulation results and the conclusions drawn from them, the following 

recommendations are made for future work to complement this study. 

It has been shown in Chapter 4 that in the current CA-FD model, the dependence on 

the grid size has not yet been eliminated. The simulated dendritic morphology and the 

predicted tip radius are both affected by the cell size and thus a major improvement in 

the model is necessary to reduce this dependence on grid size. 

In current simulations thermal conditions are always well defined, i.e. a constant 

thermal gradient and a fixed coohng rate are imposed. But it is desirable to couple the 

model with a finite element or finite difference model of heat diffusion so that 

simulations can be carried out under more realistic conditions. 

The main purpose in implementing the decentred square/octahedron growth algorithm 

in the model is to allow simulation of the growth of dendritic grains with random 

misorientations with respect to the macro-scale solidification direction. Although, as 

shown in Chapter 7, the model can provide quite good qualitative predictions of 

competitive grain growth, it lacks the accuracy to perform quantitative simulations 

which is why the phase field model has been used to investigate the problem of 

competitive growth. There are still many further improvements that can be made for 

example considering multicomponent alloys. 
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Appendices 

Appendix A. Some Problems in Phase Field Model 

The phase field simulations presented in Chapter 7 suggest that the tip undercooling of 

columnar dendrites is affected by the primary spacing. More simulations were run to 

verify this observation. Conditions of G = 50 K/mm and V= 50 K/mm were imposed 

in these simulations. As shown in Fig. A.l, six simulations were carried out, three of 

which (cases (a) (b) and (c)) for fully aligned dendrites and the other (cases (d), (e) and 

(f) for 15° inclined dendrites. Simulation (a) and (d) start with 2 seeds initially placed 

at the base of the domain; (b) and (e) start with 4 seeds; (c) and (f) start with 6 seeds. 

100 nm 0.02 wt% 0.20 

A A 

Fig. A. 1 Simulation of columnar dendrites under conditions of G = 50 K/mm 

and V= 50 K/mm. Simulation (a) and (d) starts with 2 seeds placed at the base; 

(b) and (e) 4 seeds; (c) and (f) 6 seeds. In (a), (b) and (c) dendrites are aligned 

with the grid; while in (d), (e) and (f) they have a 15° misorientation. 
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It can be seen that for the ahgned cases, dendrites developing from (a) 2, (b) 4 and (c) 

6 seeds have all reached a stable growth state after 100 s of growth, and there is a wide 

range of the stable spacings, varying from 140 to 420 p,m. This is in very good 

agreement with the conclusions drawn from the CA simulation. Although the shapes of 

the primary tips are slightly affected by the primary spacing, the significant difference 

in these cases is the development of secondary dendrites. In case (a) where the primary 

spacing is 420 jam, the secondary dendrites are well developed. And some tiny tertiary 

dendrites are also observed emanating from the secondaries, but they are all blocked 

by other latterly formed secondaries. In case (c) where the spacing is only 140 |j,m, the 

growth of secondary dendrites is largely suppressed. 

The results for the 15° inchned dendrites are different. In case (f), 6 seeds are preset at 

the base of the domain, after 100 s of growth, 2 of the 6 dendrites are eliminated. But 

for the cases (d) and (e), the dendrites have reached a stable state. 

The tip undercooling is also measured and plotted in Fig. A.2. For the aligned 

dendrites (a-c), tip undercooling decreases from 3.895 to 3.840 K, or decreases by 

0.055 K, as the primary spacing is tripled, from 140 to 420 [am. A similar trend exists 

for inclined dendrites (d and e): the tip undercooling reduces from 3.820 to 3.780 K, or 

reduces by 0.040 K, when the primary spacing is doubled, from 210 to 420 p,m. 

However, it is also noted that for both cases of 2 and 4 dendrites, the tip undercooling 

of the inclined dendrites is lower than the aligned ones, which means, under the given 

conditions, the inclined dendrites will always overgrow the aligned dendrites. This is 

unlikely be physically correct. 
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Fig. A.2 Predicted tip undercoolings for the cases shown in Fig. A. 1. 

Close examination of the shapes of the primary dendrites in Fig. A.l shows that for the 

inclined dendrites, the dendrite tip is a little sharper than the aligned ones. However, 

since the fimction of output tip curvature has not been incorporated in the version of 

phase field model being used, it is not possible to give an accurate value for the tip 

curvatures. 

Based on personnel communications with Dr. Ingo Steinbach, the director of the group 

that developed the phase field model, some possible reasons are suggested; (i) the 

phase field model has not yet got rid of the grid dependence; (b) since only the 

anisotropy in the kinetic term is accounted in the model, it would be better to 

incorporate the anisotropy in surface tension as well. 
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