13 research outputs found

    Robust incomplete factorization for nonsymmetric matrices

    Get PDF
    In this paper, a new incomplete LU factorization preconditioner for nonsymmetric matrices is being considered which is also breakdown-free (no zero pivots occurs) for positive definite matrices. To construct this preconditioner, only the information of matrix A is used and just one of the factors of the AINV process is computed. The L factor is extracted as a by-product of the AINV process. The pivots of the AINV process are used as diagonal entries of U . The new preconditioner has left and right-looking versions. To improve the efficiency of the preconditioner, we have used the inverse-based dropping strategies for both L and U factors. Numerical experiments show that the left-looking version of the preconditioner is significantly faster than its right-looking version in terms of preconditioning time and both are equally effective to reduce the number of iterations. Comparisons of the new preconditioner with AINV and ILUT preconditioners are also presented

    Preconditioned fast solvers for large linear systems with specific sparse and/or Toeplitz-like structures and applications

    Get PDF
    In this thesis, the design of the preconditioners we propose starts from applications instead of treating the problem in a completely general way. The reason is that not all types of linear systems can be addressed with the same tools. In this sense, the techniques for designing efficient iterative solvers depends mostly on properties inherited from the continuous problem, that has originated the discretized sequence of matrices. Classical examples are locality, isotropy in the PDE context, whose discrete counterparts are sparsity and matrices constant along the diagonals, respectively. Therefore, it is often important to take into account the properties of the originating continuous model for obtaining better performances and for providing an accurate convergence analysis. We consider linear systems that arise in the solution of both linear and nonlinear partial differential equation of both integer and fractional type. For the latter case, an introduction to both the theory and the numerical treatment is given. All the algorithms and the strategies presented in this thesis are developed having in mind their parallel implementation. In particular, we consider the processor-co-processor framework, in which the main part of the computation is performed on a Graphics Processing Unit (GPU) accelerator. In Part I we introduce our proposal for sparse approximate inverse preconditioners for either the solution of time-dependent Partial Differential Equations (PDEs), Chapter 3, and Fractional Differential Equations (FDEs), containing both classical and fractional terms, Chapter 5. More precisely, we propose a new technique for updating preconditioners for dealing with sequences of linear systems for PDEs and FDEs, that can be used also to compute matrix functions of large matrices via quadrature formula in Chapter 4 and for optimal control of FDEs in Chapter 6. At last, in Part II, we consider structured preconditioners for quasi-Toeplitz systems. The focus is towards the numerical treatment of discretized convection-diffusion equations in Chapter 7 and on the solution of FDEs with linear multistep formula in boundary value form in Chapter 8

    Preconditioned fast solvers for large linear systems with specific sparse and/or Toeplitz-like structures and applications

    Get PDF
    In this thesis, the design of the preconditioners we propose starts from applications instead of treating the problem in a completely general way. The reason is that not all types of linear systems can be addressed with the same tools. In this sense, the techniques for designing efficient iterative solvers depends mostly on properties inherited from the continuous problem, that has originated the discretized sequence of matrices. Classical examples are locality, isotropy in the PDE context, whose discrete counterparts are sparsity and matrices constant along the diagonals, respectively. Therefore, it is often important to take into account the properties of the originating continuous model for obtaining better performances and for providing an accurate convergence analysis. We consider linear systems that arise in the solution of both linear and nonlinear partial differential equation of both integer and fractional type. For the latter case, an introduction to both the theory and the numerical treatment is given. All the algorithms and the strategies presented in this thesis are developed having in mind their parallel implementation. In particular, we consider the processor-co-processor framework, in which the main part of the computation is performed on a Graphics Processing Unit (GPU) accelerator. In Part I we introduce our proposal for sparse approximate inverse preconditioners for either the solution of time-dependent Partial Differential Equations (PDEs), Chapter 3, and Fractional Differential Equations (FDEs), containing both classical and fractional terms, Chapter 5. More precisely, we propose a new technique for updating preconditioners for dealing with sequences of linear systems for PDEs and FDEs, that can be used also to compute matrix functions of large matrices via quadrature formula in Chapter 4 and for optimal control of FDEs in Chapter 6. At last, in Part II, we consider structured preconditioners for quasi-Toeplitz systems. The focus is towards the numerical treatment of discretized convection-diffusion equations in Chapter 7 and on the solution of FDEs with linear multistep formula in boundary value form in Chapter 8

    Preconditioned iterative methods for solving linear least squares problems

    Full text link
    New preconditioning strategies for solving m × n overdetermined large and sparse linear least squares problems using the conjugate gradient for least squares (CGLS) method are described. First, direct preconditioning of the normal equations by the balanced incomplete factorization (BIF) for symmetric and positive definite matrices is studied, and a new breakdown-free strategy is proposed. Preconditioning based on the incomplete LU factors of an n × n submatrix of the system matrix is our second approach. A new way to find this submatrix based on a specific weighted transversal problem is proposed. Numerical experiments demonstrate different algebraic and implementational features of the new approaches and put them into the context of current progress in preconditioning of CGLS. It is shown, in particular, that the robustness demonstrated earlier by the BIF preconditioning strategy transfers into the linear least squares solvers and the use of the weighted transversal helps to improve the LU-based approach.This work was partially supported by Spanish grant MTM 2010-18674 and the project 13-06684S of the Grant agency of the Czech Republic.Bru García, R.; Marín Mateos-Aparicio, J.; Mas Marí, J.; Tuma, M. (2014). Preconditioned iterative methods for solving linear least squares problems. SIAM Journal on Scientific Computing. 36(4):2002-2022. https://doi.org/10.1137/130931588S2002202236

    Performance and Energy Optimization of the Iterative Solution of Sparse Linear Systems on Multicore Processors

    Get PDF
    En esta tesis doctoral se aborda la solución de sistemas dispersos de ecuaciones lineales utilizando métodos iterativos precondicionados basados en subespacios de Krylov. En concreto, se centra en ILUPACK, una biblioteca que implementa precondicionadores de tipo ILU multinivel para la solución eficiente de sistemas lineales dispersos. El incremento en el número de ecuaciones, y la aparición de nuevas arquitecturas, motiva el desarrollo de una versión paralela de ILUPACK que optimice tanto el tiempo de ejecución como el consumo energético en arquitecturas multinúcleo actuales y en clusters de nodos construidos con esta tecnología. El objetivo principal de la tesis es el diseño, implementación y valuación de resolutores paralelos energéticamente eficientes para sistemas lineales dispersos orientados a procesadores multinúcleo así como aceleradores hardware como el Intel Xeon Phi. Para lograr este objetivo, se aprovecha el paralelismo de tareas mediante OmpSs y MPI, y se desarrolla un entorno automático para detectar ineficiencias energéticas.In this dissertation we target the solution of large sparse systems of linear equations using preconditioned iterative methods based on Krylov subspaces. Specifically, we focus on ILUPACK, a library that offers multi-level ILU preconditioners for the effective solution of sparse linear systems. The increase of the number of equations and the introduction of new HPC architectures motivates us to develop a parallel version of ILUPACK which optimizes both execution time and energy consumption on current multicore architectures and clusters of nodes built from this type of technology. Thus, the main goal of this thesis is the design, implementation and evaluation of parallel and energy-efficient iterative sparse linear system solvers for multicore processors as well as recent manycore accelerators such as the Intel Xeon Phi. To fulfill the general objective, we optimize ILUPACK exploiting task parallelism via OmpSs and MPI, and also develope an automatic framework to detect energy inefficiencies

    Accelerating advanced preconditioning methods on hybrid architectures

    Get PDF
    Un gran número de problemas, en diversas áreas de la ciencia y la ingeniería, involucran la solución de sistemas dispersos de ecuaciones lineales de gran escala. En muchos de estos escenarios, son además un cuello de botella desde el punto de vista computacional, y por esa razón, su implementación eficiente ha motivado una cantidad enorme de trabajos científicos. Por muchos años, los métodos directos basados en el proceso de la Eliminación Gaussiana han sido la herramienta de referencia para resolver dichos sistemas, pero la dimensión de los problemas abordados actualmente impone serios desafíos a la mayoría de estos algoritmos, considerando sus requerimientos de memoria, su tiempo de cómputo y la complejidad de su implementación. Propulsados por los avances en las técnicas de precondicionado, los métodos iterativos se han vuelto más confiables, y por lo tanto emergen como alternativas a los métodos directos, ofreciendo soluciones de alta calidad a un menor costo computacional. Sin embargo, estos avances muchas veces son relativos a un problema específico, o dotan a los precondicionadores de una complejidad tal, que su aplicación en diversos problemas se vuelve poco práctica en términos de tiempo de ejecución y consumo de memoria. Como respuesta a esta situación, es común la utilización de estrategias de Computación de Alto Desempeño, ya que el desarrollo sostenido de las plataformas de hardware permite la ejecución simultánea de cada vez más operaciones. Un claro ejemplo de esta evolución son las plataformas compuestas por procesadores multi-núcleo y aceleradoras de hardware como las Unidades de Procesamiento Gráfico (GPU). Particularmente, las GPU se han convertido en poderosos procesadores paralelos, capaces de integrar miles de núcleos a precios y consumo energético razonables.Por estas razones, las GPU son ahora una plataforma de hardware de gran importancia para la ciencia y la ingeniería, y su uso eficiente es crucial para alcanzar un buen desempeño en la mayoría de las aplicaciones. Esta tesis se centra en el uso de GPUs para acelerar la solución de sistemas dispersos de ecuaciones lineales usando métodos iterativos precondicionados con técnicas modernas. En particular, se trabaja sobre ILUPACK, que ofrece implementaciones de los métodos iterativos más importantes, y presenta un interesante y moderno precondicionador de tipo ILU multinivel. En este trabajo, se desarrollan versiones del precondicionador y de los métodos incluidos en el paquete, capaces de explotar el paralelismo de datos mediante el uso de GPUs sin afectar las propiedades numéricas del precondicionador. Además, se habilita y analiza el uso de las GPU en versiones paralelas existentes, basadas en paralelismo de tareas para plataformas de memoria compartida y distribuida. Los resultados obtenidos muestran una sensible mejora en el tiempo de ejecución de los métodos abordados, así como la posibilidad de resolver problemas de gran escala de forma eficiente
    corecore