

PRECONDITIONERS FOR SOIL-STRUCTURE

INTERACTION PROBLEMS WITH SIGNIFICANT

MATERIAL STIFFNESS CONTRAST

KRISHNA BAHADUR CHAUDHARY

NATIONAL UNIVERSITY OF SINGAPORE

2010

PRECONDITIONERS FOR SOIL-STRUCTURE

INTERACTION PROBLEMS WITH SIGNIFICANT

MATERIAL STIFFNESS CONTRAST

KRISHNA BAHADUR CHAUDHARY

 (B.Eng., TU, Nepal)

(M.Eng., AIT, Thailand)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

 DEPARTMENT OF CIVIL ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2010

 i

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere gratitude to my supervisor,

Prof. Phoon Kok Kwang, for his persistent guidance, inspiration, and

encouragement to conduct this research. I am also highly indebted to my co-

supervisor, Prof. Toh Kim Chuan (Department of Mathematics, NUS), for his

critical evaluation and suggestions on mathematics needed for this research

work. Without their help and support, the accomplishment of this thesis would

be impossible. I am equally grateful to the members of my thesis committee

Prof. Tan Thiam Soon and A/Prof Tan Siew Ann for their valuable advice on

my research work.

I would also like to thank National University of Singapore (NUS) for

providing the ‘Research Scholarship’. Without this support, I could not

imagine myself to be here.

My sincere thanks go to Dr. Chen Xi and Dr. Cheng Yonggang for

their great help, useful materials, and encouragement on various struggling

situations during my research work. I would also like to thank Dr. Hong Sze

Han (GeoSoft Pte Ltd) for his guidance on the use of GeoFEA software for my

thesis. I greatly appreciate our geotechnical lab officers for their readiness to

provide any technical support. My vote of thanks also goes to all the members

of the geotechnical research group, whose company made my stay at NUS

lively and joyful.

Finally, I should not forget to thank my parents, wife, and our entire

family in Nepal for their endless love, caring, and understanding, which gave

me a peace of mind to fully concentrate on my work.

 ii

(blank)

 iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

TABLE OF CONTENTS iii

SUMMARY vii

LIST OF TABLES xi

LIST OF FIGURES xiii

LIST OF SYMBOLS xix

DEDICATION xxix

INTRODUCTION 1

1.1. Introduction 1

1.2. Iterative solvers and the role of preconditioning in

geotechnical problems 5

1.3. Scope and objective of the study 10

1.4. Computer hardware and software 14

1.5. Thesis outline 16

LITERATURE REVIEW 19

2.1. Iterative solution methods 20

2.2. Preconditioning strategies 22

2.2.1. Diagonal preconditioners 25

2.2.2. SSOR preconditioner 28

2.2.3. Incomplete factorization preconditioners 30

2.2.4. Block preconditioners 32

2.2.5. Others 41

2.3. Sparse storage of the matrix 42

2.4. Convergence criteria 43

2.4.1. Numerical experiment 47

2.5. Conclusions 49

PERFORMANCE OF ILU0 VERSUS MSSOR FOR

BIOT’S CONSOLIDATION EQUATIONS 59

3.1. Introduction 59

3.2. Numerical Results 60

 iv

3.2.1. Effect of nodal ordering 62

3.2.2. Problems with ILU factorization and their

stabilization 65

3.2.3. MSSOR versus ILU0 and GJ preconditioners 68

3.2.4. Performance of preconditioners on a pile group

problem 69

3.3. Conclusions 70

BLOCK DIAGONAL PRECONDITIONERS FOR

DRAINED ANALYSIS 89

4.1. Introduction 89

4.2. Soil-structure interaction problem and preconditioning 91

4.2.1. Block diagonal Preconditioner 94

4.2.2. Inexact block diagonal preconditioners 97

4.3. Numerical results 100

4.3.1. Piled-raft foundation 101

4.3.2. Tunneling 111

4.4. Conclusion 113

BLOCK DIAGONAL PRECONDITIONERS FOR BIOT’S

CONSOLIDATION EQUATIONS 139

5.1. Introduction 139

5.2. Biot’s consolidation equations and block diagonal

preconditioning 141

5.3. Numerical experiments 149

5.3.1. Piled-raft foundation 150

5.3.2. Tunneling 164

5.4. Conclusion 167

APPLICATIONS ON CASE HISTORIES 187

6.1. Introduction 187

6.2. GeoFEA implementation details 188

6.2.1. Tutorial manual 191

6.3. Applications on case histories 192

6.3.1. Case study 1 – Piled-raft foundation in Germany 193

6.3.2. Case study 2 – Tunneling in Singapore 200

6.4. Conclusions 203

CONCLUSIONS AND RECOMMENDATIONS 225

7.1. Summary and conclusions 225

7.2. Limitations and Recommendations 228

REFERENCES 231

APPENDIX A. LINEAR ALGEBRA 245

 v

APPENDIX B. BIOT’S CONSOLIDATION

EQUATIONS
259

APPENDIX C. ALGORITHMS 267

APPENDIX D. 1D FINITE ELEMENT

DISCRETIZATION OF OEDOMETER

SETUP

273

APPENDIX E. SOURCE CODES IN FORTRAN 90 275

APPENDIX F. USER DEFINED SOLVER IN GeoFEA 349

 vi

(blank)

 vii

SUMMARY

Three-dimensional finite element analysis of geotechnical problems usually

involves a significant large number of variables (or unknowns) and non-

uniformity of the materials. Recent advances on solution methods of linear

systems show that Krylov subspace iterative methods in conjunction with

appropriate preconditioning are potentially more effective than direct solution

methods for large-scale systems. A preconditioner is the key for the success of

iterative methods. For this reason, a number of publications have recently been

devoted to propose effective preconditioners for the solution of large, often ill-

conditioned coupled consolidation problems. Some of them may require a

number of user-defined parameters, which may limit their practical use. Also,

much of the work has been devoted on the ill-conditioning due to small time

steps in the consolidation analysis. Little attention has been paid on the ill-

conditioning due to significant contrasts in material properties such as stiffness

and permeability. This significant difference in material properties may

deteriorate the performance (Chen et al., 2007) of so called cheap and

effective preconditioners such as generalized Jacobi (GJ) (Phoon et al., 2002)

and modified symmetric successive over-relaxation (MSSOR) preconditioner

(Chen et al., 2006). Similar degradation in performance was also observed for

the standard Jacobi (Lee et al., 2002) and symmetric successive over-

 viii

relaxation (SSOR) preconditioners (Mroueh and Shahrour, 1999) for the

analysis of drained boundary value problems. On the other hand, pragmatic

geotechnical problems often involve materials with highly varied material

zones, such as in soil-structure interaction problems. Hence, the prime

objective of the thesis was to propose a preconditioner that mitigates these

adverse effects and yet remain practical for use.

Firstly, the relative merits and demerits of MSSOR preconditioner was

compared with ILU0 (incomplete LU factorization with zero fill-ins) for the

Biot’s coupled consolidation equations. This is because the ILU-type

preconditioners have also frequently been used for Biot’s problem (Gambolati

et al., 2001, 2002, 2003). The comparison revealed that the ILU0 is

occasionally unstable, but may be preferred over MSSOR if its instability

problem is resolved and RAM constraint is not an issue. On the other hand,

MSSOR and GJ were robust in solving even a severe ill-conditioned system.

Secondly, the ill-conditioning due to the presence of different material zones

with large relative differences in material stiffnesses was addressed by

proposing block diagonal preconditioners. The effect of only stiffness

contrasts was considered first (in Chapter 4) and stiffness/permeability

contrasts in the consolidation analysis was studied next (in Chapter 5). The

inexpensive block diagonal preconditioners for practical use were investigated

numerically using preconditioned conjugate gradient (PCG) solver and

symmetric quasi-minimal residual (SQMR) solver. Significant benefits in

terms of CPU time in comparison to existing preconditioners were

demonstrated with the help of a number of soil-structure interaction problems.

Finally, the general applicability of the proposed block diagonal

 ix

preconditioners for real-world problems was shown using two case history

examples in Chapter 6.

Keywords: Three-dimensional finite element analysis, preconditioning,

iterative solution, stiffness contrast, block diagonal preconditioner, PCG,

SQMR

 x

(blank)

 xi

LIST OF TABLES

Table 3.1. Three-dimensional finite element meshes.84

Table 3.2. Effect of ordering on ILU0 preconditioned SQMR........................85

Table 3.3. Effect of ordering on MSSOR (ω = 1, α = -4)

preconditioned SQMR. ..86

Table 3.4. Effect of ordering on GJ (α = -4) preconditioned SQMR.86

Table 3.5. Statistics that can be used to evaluate an incomplete

factorization. ..87

Table 3.6. ILU statistics and possible reasons of failure for soil 1 (soft

clay)..87

Table 3.7. ILU statistics and possible reasons of failure for soil 2

(sand)..88

Table 3.8. ILU statistics and possible reasons of failure for soil 3

(layered soil). ...88

Table 4.1. 25×25×35 mesh: Effect of different approximations of the

block P with diagonal approximation of block G in the

preconditioner (4.21) for a 9-piled raft problem..........................135

Table 4.2. 25×25×35 mesh: Performance of ILU factorization

preconditioners on entire K for a 9-piled raft problem (size

of K = 267,680×267,680)...136

Table 4.3. Finite element details of piled-raft foundations............................136

Table 4.4. Material properties of NATM tunnel..137

Table 4.5. Comparison of total CPU times for tunnel construction137

Table 5.1. Material properties for piled-raft foundation.184

Table 5.2. 25×25×35 mesh: Effect of different approximations of block

P with diagonal approximation of blocks G and S
~

 in the

preconditioner (5.28) for a 9-piled raft problem..........................185

Table 5.3. Problem statistics of the piled-raft foundations.186

 xii

Table 5.4. Comparison of total CPU times for tunnel construction.186

Table 6.1. Properties of Frankfurt clay and piled-raft for FE analysis.223

Table 6.2. Typical G4 soil parameters found in C704...................................223

Table 6.3. Material properties of liner and grout elements............................223

 xiii

LIST OF FIGURES

Figure 2.1. Guideline for the selection of preconditioned iterative

methods. ...51

Figure 2.2. Flow chart of applying sparse preconditioned iterative

method in FE analysis (after Chen, 2005).52

Figure 2.3. 8×8×8 mesh: A typical footing problem.53

Figure 2.4. Behavior of various norms using GJ-SQMR for different

material properties: (a) Conso1; (b) Conso2; (c) Conso3; (d)

Conso4; (e) Conso5; and (f) Conso6. ..54

Figure 3.1. Twenty-noded displacement finite element coupled with

eight-noded fluid elements...72

Figure 3.2. 20×20×20 finite element mesh of a symmetric quadrant

footing (after Chen, 2005): (a) homogeneous soils 1 and 2,

(b) layered soil 3. ...73

Figure 3.3. Sparsity pattern of A in: (a) Natural ordering, (b) Block

ordering, and (d) Reverse Cuthill-McKee technique on

natural ordering. ...74

Figure 3.4. Typical relative residual norm of an unstable ILU0......................75

Figure 3.5. Interpretation of ILU statistics (after Chow and Saad,

1997). ...76

Figure 3.6. 20×20×20 mesh: Effect of threshold value on convergence

of stabilized ILU0 for different soil profiles..................................77

Figure 3.7. Performance of ILU0 and GJ preconditioners with respect

to MSSOR preconditioner for different soil conditions.................78

Figure 3.8. Eigenvalue distribution of preconditioned matrices with

different preconditioners: (a) stab-ILU0; (b) MSSOR; and

(c) GJ..79

Figure 3.9. RAM usage by preconditioners with SQMR solver......................80

Figure 3.10. 12×12×12 mesh: 3D FE descritization of a quadrant

symmetric 9-pile group foundation in a homogeneous clay

(soil 1) with a uniform load (after Chen et al., 2007).81

 xiv

Figure 3.11. Performance of preconditioners for 9-pile group problem

on homogeneous clay (soil 1). ...82

Figure 3.12. Ground surface settlement for 9-pile group after loading at

1
st
 time step with pile stiffness of pE ′ = 30000 MPa and soil

stiffness of sE ′ = 1 MPa. ..83

Figure 4.1. One-dimensional FE discretization of oedometer test set up

to illustrate the effect of different materials in the

formulation of FE stiffness matrix. The dots and numbers

besides them are finite element nodes and node numbers, F

is the applied load, l is the element size,
ps

E′ and
s

E′ are the

effective Young’s moduli of porous stone and soil,

respectively. ...116

Figure 4.2. Three-dimensional FE discretization of a typical 9-piled

raft foundation (quadrant symmetric): (a) a realistic

problem discretized into 25×25×35 mesh; (b) a model

problem discretized into 7×7×7 mesh to illustrate the

spectral properties of the preconditioned system.........................117

Figure 4.3. 7×7×7 mesh: Condition number and iteration count of

unpreconditioned and theoretical block diagonal

preconditioned stiffness matrix K for varying pile-soil

stiffness ratios. ...118

Figure 4.4. 7×7×7 mesh: Eigenvalue distribution of theoretical exact

block diagonal preconditioned system (4.14) at different

pile-soil stiffness ratios: (a) 1
p s

E E′ ′ = (fictitious pile); (b)

1000
p s

E E′ ′ = ; and (c) 41000
p s

E E′ ′ =119

Figure 4.5. 25×25×35 mesh: Iteration count and total CPU time of

inexact block diagonal preconditioner (4.21) for various

inexact forms of block P with diagonal approximation of

soil block G for a 9-piled raft...120

Figure 4.6. 7×7×7 mesh: Cumulative distribution of eigenvalues of the

preconditioned system with inexact block diagonal

preconditioner (4.21) for different inexact forms of block P

and diagonal of block G at two different stiffness ratios.121

Figure 4.7. 25×25×35 mesh: Performance of different inexact forms of

block G with Cholesky factorization of block P in the block

diagonal preconditioner. ..122

Figure 4.8. 7×7×7 mesh: Cumulative distribution of eigenvalues of the

preconditioned system for different inexact forms of block

 xv

G with Cholesky factorization of block P in the block

diagonal preconditioner. ..123

Figure 4.9. 25×25×35 mesh: Comparison of SBD preconditioners with

other preconditioners for a 9-piled raft in a range of
p s

E E′ ′ .

Preconditioners are: SJ = standard Jacobi; SSOR =

symmetric successive over relaxation [Equation (4.27)];

ILU0 = Incomplete LU factorization preconditioner with

zero fill-ins; SBD = simplified block diagonal

preconditioners [Equations (4.25 and 4.26)]................................124

Figure 4.10. 25×25×35 mesh: Layout of piles in the piled-raft

foundation (quadrant symmetric)...125

Figure 4.11. 25×25×35 mesh: Effect of size of stiff block P (e.g. due to

variation in number of piles, raft thickness = 3 m, in the

piled-raft problem) in the performance of preconditioners at

different stiffness-ratios. ..126

Figure 4.12. CPU time of SBD preconditioners for a range of stiff

DOFs and soil-structure stiffness ratios: (a) SBD1 versus SJ

(b) SBD2 versus SJ...127

Figure 4.13. CPU time of SBD preconditioners for a range of stiff

DOFs and soil-structure stiffness ratios: (a) SBD1 versus

SSOR (b) SBD2 versus SSOR. ..128

Figure 4.14. CPU time of SBD preconditioners for a range of stiff

DOFs and soil-structure stiffness ratios: (a) SBD1 versus

ILU0 (b) SBD2 versus ILU0. ...129

Figure 4.15. RAM consumed with different preconditioners for the

same size (267,680 × 267,680) of the stiffness matrix K.130

Figure 4.16. Finite element mesh and step-by-step installation of liner

in tunneling. ...131

Figure 4.17. Comparison of iteration count and CPU time of

preconditioners for the tunneling example.132

Figure 4.18. 7×7×7 mesh: Sparsity pattern of 2×2 block structured K.

(a) Sequential nodal numbering of nodes in x-z plane

according to Smith and Griffiths (1997; 2004); and (b)

Automatic nodal numbering in GeoFEA.133

Figure 4.19. Surface settlement profile after 40 steps of excavation.............134

Figure 5.1. 7×7×7 mesh: Effect of varying pile-soil stiffness ratios on

spectral condition number and iteration count of

 xvi

unpreconditioned and theoretical block diagonal

preconditioned matrices. The theoretical preconditioner is

as defined by Equation (5.10). ...169

Figure 5.2. 7×7×7 mesh: Eigenvalue distribution of the preconditioned

system with theoretical exact block diagonal preconditioner

for different pile-soil stiffness ratios. r is the number of

rows with ||row(2

~
L)||2 ≥ 0.3 [Equation (5.18)].170

Figure 5.3. 25×25×35 mesh: Iteration count and total CPU time of

block diagonal preconditioner (5.28) for different

approximations of block P. ..171

Figure 5.4. 7×7×7 mesh: Cumulative distribution of the eigenvalues

(real) of the preconditioned system for different

approximations of block P in the preconditioner (5.28).172

Figure 5.5. 25×25×35 mesh: Performance of different approximations

of the soil and Schur complement blocks in the block

diagonal preconditioner with exact block P.................................173

Figure 5.6. 7×7×7 mesh: Distribution of the eigenvalues of a

preconditioned matrix for different approximations of soil

and fluid stiffness blocks in conjunction with an exact block

P in the block diagonal preconditioner. R(λ) = Real part of

the eigenvalue. ...174

Figure 5.7. 25×25×35 mesh: Effect of contrast in pile-soil permeability

on the block diagonal preconditioners M1 and M2.175

Figure 5.8. 25×25×35 mesh: Comparison of proposed preconditioners

M1 and M2 with GJ and MSSOR preconditioners for varying

pile-soil stiffness ratios. ...176

Figure 5.9. 25×25×35 mesh: Effect of size of the pile block P (e.g. due

to variation in number of piles in the piled-raft problem) on

the performance of preconditioners at different pile-soil

stiffness ratios. ...177

Figure 5.10. CPU time of M1 and M2 preconditioners for a range of

stiff DOFs and soil-structure stiffness ratios (a) M1 versus

GJ, (b) M2 versus GJ. ...178

Figure 5.11. CPU time of M1 and M2 preconditioners for a range of

stiff DOFs and soil-structure stiffness ratios (a) M1 versus

MSSOR, (b) M2 versus MSSOR..179

Figure 5.12. Finite element mesh and step-by-step installation of liner

in tunneling. ...180

 xvii

Figure 5.13. Comparison of iteration count and CPU time of the

preconditioners for tunneling example.181

Figure 5.14. 7×7×7 mesh: Sparsity pattern of 3×3 block structured A.

(a) Sequential nodal numbering of nodes in x-z plane

according to Smith and Griffiths (1997; 2004); and (b)

Automatic nodal numbering in GeoFEA.182

Figure 5.15. Surface settlement profile after 10 steps of excavation.............183

Figure 6.1. Westendstrasse 1 building, Frankfurt: (a) Sectional

elevation (after Katzenbach et al., 2000); and (b) Plan with

pile layout (after Franke et al., 2000). ...205

Figure 6.2. Finite element meshes (a) mesh for entire problem domain,

and (b) enlarged mesh for piled-raft. ...206

Figure 6.3. Frankfurt subsoil stratigraphy and undrained shear strength

(after Franke et al., 2000). ...207

Figure 6.4. Comparison of performance of SJ (inbuilt) and SJ (user

defined) preconditioners with PCG. ..208

Figure 6.5. Settlement due to different preconditioners with PCG................209

Figure 6.6. Comparison of computed and measured settlements.210

Figure 6.7. Iteration count and CPU time of different preconditioners.211

Figure 6.8. Effect of soil profile on different preconditioners.212

Figure 6.9. Measured time-dependent raft-pile load share for

Westendstrasse 1 building, Frankfurt (after Franke et al.,

2000); and (b) Idealized load applied on piled-raft for

consolidation analysis. ...213

Figure 6.10. Comparison of inbuilt and user defined preconditioners

with SQMR (ks = 1×10
-9

 m/s). ...214

Figure 6.11. Settlements due to different preconditioners with SQMR

(ks = 1×10
-7

 m/s). ...215

Figure 6.12. Comparison of computed and measured settlements.216

Figure 6.13. Iteration count and CPU time of PCG (for drained

analysis) and SQMR (for consolidation analysis) solvers.217

Figure 6.14. Iteration count and CPU time of different preconditioners.218

 xviii

Figure 6.15. Finite element mesh for twin tunnels: (a) isometric view;

(b) Front view. ...219

Figure 6.16. Finite element simulation procedure for Shield tunnel

advancement. ...220

Figure 6.17. Iteration count and CPU time of different preconditioners.221

Figure 6.18. Surface settlement trough due to tunnel advancement.222

 xix

LIST OF SYMBOLS

 (⋅)−1 inverse of a function

(⋅)T
 transpose of a function

⋅ absolute value or modulus of a number

. norm of a function

F
. Frobenius norm of a function

p
. p-norm of a function, where ∞≤≤ p1

1D one-dimensional

2D two-dimensional

3D three-dimensional

a cross-section area

aij (i, j) entry of matrix A

A general matrix; matrix variable

A
~

 preconditioned matrix A

AINV approximate inverse

b right hand side vector

b
~

preconditioned right hand side vector

B displacement and pore pressure coupling matrix

1B coupling matrix between structural displacement and pore

pressure DOFs

2B coupling matrix between soil displacement and pore

pressure DOFs

Bu shape function derivative for displacement

 xx

BE boundary element

Bi-CG biconjugate gradient

Bi-CGSTAB biconjugate gradient stabilized

BL base-line (preconditioner)

Blk block ordering

c' effective cohesion

cu undrained cohesion

C flow matrix

CG conjugate gradient

CGS conjugate gradient squared

CPU central processing unit

CSC compressed sparse column

CSR compressed sparse row

det(⋅) determinant of a function

diag(⋅) diagonal matrix consisting of leading diagonal entries in

argument

D effective stress-strain matrix

D̂ modified diagonal

D
~

 diagonal matrix variable

D diagonal matrix with pivots

DA diagonal matrix whose diagonal entries are identical to

those of matrix A

Dps effective stress-strain matrix of porous stone

Ds effective stress-strain matrix of soil

D-MCP diagonal variant of mixed constraint preconditioner

DOFs degrees of freedom

 xxi

e index for element number, a vector with ones

ek error vector at k-th iteration

E' effective Young's modulus

clayE ′ effective Young's modulus of clay

pE ′ effective Young's modulus of pile

p s
E E′ ′ soil-structure stiffness ratio

sE ′ effective Young's modulus of soil

sandE ′ effective Young's modulus of clay

EBE element-by-element

f load vector

F applied load

FE finite element

FEM finite element element

G soil effective stiffness matrix

Ĝ approximate matrix G

GJ generalized Jacobi

GMRES generalized minimal residual

H matrix variable

i, j, k integer variables

I identity matrix

I(.) identity matrix of the size of the argument

IC incomplete Cholesky decomposition

IC0 incomplete Cholesky decomposition with no fill-in

ICP inexact constraint preconditioner

ILLT symmetric incomplete LU decomposition

ILU incomplete LU decomposition

 xxii

ILU0 incomplete LU factorization with no fill-in

ILU0(⋅) ILU0 factorization of the matrix in the argument

ILUT Incomplete LU factorization with dual control parameters

for fill-in

k coefficient of permeability

kclay coefficient of permeability of clay

kp coefficient of permeability of pile

ks coefficient of permeability of soil

ksand coefficient of permeability of sand

kx, ky and kz coefficient of permeability in x-, y- and z-directions,

respectively

K' effective bulk modulus of soil

K effective stress stiffness matrix

K̂ symmetric positive definite approximation of K

K
~

 preconditioned matrix K

K
e

element effective stress stiffness matrix

Kw bulk modulus of water

l size of 1D element

L soil-structure link matrix

L
~

 preconditioned matrix L

L lower triangular factor

L(.) matrix variable

LA strictly lower triangular part of A

m an equivalent of the Kronecker delta; m = []1 for 1-D

analyses, []T
011 for 2-D analyses, and

[]T
000111 for 3-D analyses

 xxiii

m the dimension of block P (e.g. pile DOFs or liner DOFs)

)max(⋅ maximum value of a function

)min(⋅ minimum value of the function

M preconditioner or preconditioning matrix

M(.) preconditioner of argument

MBL base-line preconditioner

Mc block constrained preconditioner

Md block diagonal preconditioner

ML left preconditioner

MR right preconditioner

Mt block triangular preconditioner

MCP mixed constraint preconditioner

MINRES minimal residual

MJ modified Jacobi

ModMCP diagonal variant of mixed constraint preconditioner

MPa mega Pascal

MSSOR modified symmetric successive over-relaxation

n soil DOFs (the dimension of block G)

nd total displacement DOFs (the dimension of block K)

np pore pressure DOFs (the dimension of block C)

N the dimension of total linear system, e.g. the dimension of

matrix A

Nu shape function for displacement

N shape function for excess pore water pressure

Nat natural ordering

NATM New Austrian Tunneling Method

 xxiv

NDF total number of degrees of freedom including fixities, if any

O(⋅) order of a function

OCR overconsolidation ratio

p excess pore water pressure vector

P effective stiffness matrix of structural elements (or stiff

material)

P permutation matrix

P̂ approximate matrix P

PC(s) personal computer(s)

PCG preconditioned conjugate gradient

Q a matrix

QMR quasi-minimal residual

QMR-

CGSTAB

quasi-minimal residual variant of Bi-CGSTAB

r integer variable

rk residual vector at k-th iteration;

R upper triangular factor

R(.) Cholesky factor of the matrix in the argument

RE relative error norm

Ri relative improvement norm

Rr relative residual norm

R(λ) real part of the eigenvalue

RAM random access memory

RCM reverse Cuthill McKee (ordering)

R-Nat natural ordered variables reordered by RCM algorithm

S Schur complement matrix

 xxv

S
~

 Schur complement matrix

Ŝ symmetric positive definite approximation of Schur

complement matrix S
~

1Ŝ symmetric positive definite approximation of Schur

complement matrix S

SBD simplified block diagonal

SJ standard Jacobi

SPD symmetric positive definite

SQMR symmetric quasi-minimal residual (solver)

SSOR symmetric successive over-relaxation

SSOR(⋅) SSOR factorization of the matrix in argument

stab-ILU0 stabilized incomplete LU factorization with no fill-in

SYMMLQ symmetric LQ

t time

TFQMR transpose-free quasi-minimal residual

T-MCP triangular variant of mixed constraint preconditioner

x local spatial coordinate; vector variable

x0 initial guess for solution

xk solution vector at k-th iteration

X matrix variable

u unknown function; displacement vector

U matrix variable

U upper triangular factor

UA strictly upper triangular part of A

v a vector

V volume domain; matrix variable

 xxvi

W matrix variable

W
)

 matrix variable

y vector variable

z an integer variable

Z upper triangular factor

α scalar

β scalar

∆p pore water pressure increment

∆t time integration step

Y a matrix variable

∆u displacement increment vector

∆ε strain increment vector

∆σ stress increment vector

∆σ1 vertical stress increment

∆σ3 horizontal stress increment

ε perturbation to a value; strain vector

εx, εy and εz normal strain in X-, Y- and Z-directions, respectively

φ' effective angle of friction

γ scalar; bulk unit weight

γbulk bulk unit weight

γw unit weight of water

η scalar

λ eigenvalue

λmax maximum eigenvalue

λmin minimum eigenvalue

 xxvii

λ modulus of eigenvalue

max
λ maximum modulus of eigenvalue

min
λ minimum modulus of eigenvalue

Λ diagonal matrix

ν Poisson's ratio

ν' effective Poisson's ratio

pν ′ effective Poisson's ratio of pile

sν ′ effective Poisson's ratio of soil

δ scalar

ρ scalar

ρΚ the number of terms stored in each row of the factorization

in excess to the non-zeroes of K

ρS the number of terms stored in each row of Ŝ in excess to

the non-zeroes of C

ρS1 the number of terms stored in each row of the factorization

in excess to the non-zeroes of Ŝ

σx, σy and σz normal stress in X-, Y- and Z-directions, respectively

σx', σy' and σz' effective normal stress in X-, Y- and Z-directions,

respectively

τxy, τyz and τxz shear stress in XY-, YZ-, and XZ-directions, respectively

τ scalar

τZ the fraction of the Z diagonal terms below which an extra-

diagonal coefficient is dropped in AINV factorization

ω scalar, a relaxation parameter for SSOR factorization

ξ scalar

)(⋅∂ partial derivative of a function

∑ ⋅
i

)(summation of a function over the range of index i

 xxviii

∑
=

⋅
n

i 1

)(
summation of a function from index i = 1 to i = n

ℜ set of real numbers

ℜN
 vector space of real N-vectors

ℜN×N
 vector space of real N-by-N matrices

 xxix

To my parents and wife

 xxx

(blank)

 1

Chapter 1

INTRODUCTION

1.1. Introduction

Traditionally geotechnical design has been carried out using simplified

analyses and empirical approaches. Within the past three decades, various

numerical techniques have been developed and successfully applied to a wide

range of geotechnical problems. Among them, much progress has been made

in modeling the behavior of soil and understanding the mechanism of soil-

structure interaction using finite element method. The application of finite

element method has been proven to be successful in modeling of nonlinear

behavior of soils, soil-structure interaction problems, including accounting for

the construction sequences (e.g. Balasubramaniam et al., 1992; Potts and

Zdravković 1999).

Although the nature of most geotechnical problems is three-

dimensional, many simplified analyses have been frequently used in design

practice and for the finite element (FE) analyses for last several decades. Most

of the FE analyses conducted in geotechnical engineering assume plane strain

or axisymmetric conditions. Such an assumption allows a two-dimensional

 2

(2D) treatment of a real three-dimensional (3D) problem for which several

computer codes and examples have already been published (e.g. Zienkiewicz

et al., 1969; Nayak and Zienkiewicz, 1972; Britto and Gunn, 1987; Smith and

Griffiths, 1997) and a number of commercial geotechnical finite element

softwares are available (e.g SAGE-CRISP, 2000; GeoFEA, 2006; SIGMA/W,

2007; PLAXIS 2D, 2009). However, real problems, such as those encountered

in underground construction works or pile-group foundations, are often

intrinsically three-dimensional (3D) in nature and the complete 3D analysis

cannot be avoided in many situations (Potts and Zdravković 2001; Brinkgreve

and Broere, 2006) mainly because of three reasons: (a) complex interactions

between soil and structure; (b) complexity in problem geometry; and (c)

spatial variation of soils. Consideration of three-dimensional effects arises

particularly due to increased urbanization where various underground

structures and high-rise buildings are being erected at a very close proximity

to existing structures because of increasing need for office/residence space in a

rather small city area. The corresponding geotechnical risks are significantly

aggravated by the presence of rather compressible clay layer of significant

thickness (over 40 m in some areas, e.g. Singapore, Bangkok, Frankfurt).

Hence, a rigorous 3D analysis is necessary to cope with the complexity of

these intrinsically 3D problems. At the same time, 3D analysis is generally

considered prohibitive to perform because it requires a large amount of

computational time and storage (Papadrakakis, 1993b; Smith and Griffiths,

1997; Janna et al., 2009).

For example, in piled-raft foundation, the interaction between pile, raft,

and soil is important for supporting the load from upper structure. Such a

 3

situation can only be modeled effectively by means of three dimensional finite

element calculations. However, because of the limitation of available

computing resources and proper algorithms, a number of simplified

calculation methods have been developed over the last three decades in order

to minimize the computer memory required to simulate the real 3D behavior

for the analyses of load bearing and settlement behavior of piled-raft

foundation. Poulos (2001b) categorized these methods into three broad

classes: simplified calculation methods (Randolph and Wroth, 1978; Poulos

and Davis, 1980); approximate computer-based methods (Clancy and

Randolph, 1993; Poulos, 1994); and more rigorous computer-based methods

(Butterfield and Banerjee, 1971; Ottaviani, 1975; Kuwabara, 1989; Smith and

Wang, 1998). For more details about these methods, the reader is referred to

the report by Technical Committee TC18 of the International Society of Soil

Mechanics and Geotechnical Engineering (Poulos, 2001b). Comparison of

some of these methods shows that the type and quality of results depend on the

capabilities of the applied method (e.g. Poulos et al., 1997). Hence, recently,

there has been an increasingly use of 3D analysis of the piled-raft problems

(e.g. Maleki Javan et al., 2008; Small and Liu, 2008).

Similarly, Finite Element Method (FEM) has been frequently used to

model tunneling construction and its effects such as surface settlement, etc.

Although tunneling is a three-dimensional process, two-dimensional analyses

of tunneling are often used in the practice because of limitations of hardware

and software in the past. As a result, a number of two-dimensional FE

simplifications have been developed to model the 3D tunnel, for example, axi-

symmetric analysis (Rowe and Lee, 1992), plane strain analysis (Pan and

 4

Hudson, 1988; Burd et al., 1994; Addenbrooke et al., 1997). However, many

assumptions are required in 2D analysis in order to replicate the real 3D tunnel

behavior (Potts and Zdravković 2001). Hence, some researchers have also

studied 3D analysis of tunnels (e.g. Katzenbach and Breth, 1981; Lee and

Rowe, 1990; Dasari et al., 1996). Recent trend shows that there is a

proliferation use of 3D analyses of tunnels (e.g. Galli et al., 2004; Lee et al.,

2006; Phoon et al., 2006; Mroueh and Shahrour, 2008; Migliazza et al., 2009).

As mentioned earlier, three-dimensional FE analyses are

computationally expensive because a large number of finite elements are

required to represent realistically a 3D behavior. This may generate a few tens

of thousands to millions degrees of freedom (DOFs), or FE equations. In

general, this system of equations is condensed in the following form:

 bAx = (1.1)

where N N
A

×∈ℜ is known as coefficient matrix, N
x ∈ℜ is the vector of

unknowns, and N
b ∈ℜ is the force vector. N is the total dimension of the

linear system. Solution of this system of equations (1.1) is computationally

one of the most expensive parts in the finite element analysis. For this reason,

efficient and economical solution of the linear system is essential for making

3D finite element analysis to be routinely used in practice. This linear system

is solved mainly in two ways: direct method or iterative method. For 1D or

2D FE modeling, the resulting linear system is usually small and the direct

solution method [e.g. Gaussian elimination approach or Frontal solver (Irons,

1970)] is always preferred due to its robustness and effectiveness. It has been

the basis for many finite element programs. However, for large-scale

geotechnical problems, such as those arising from 3D analyses, the size of the

 5

linear system is significantly large. The large memory requirement may limit

the application of direct solution method for large-scale (3D) analysis and the

out-of-core facility may significantly slow down the computing speed (Lee et

al., 2006). For such problems, iterative solvers are helping to meet these

demands.

1.2. Iterative solvers and the role of preconditioning in

geotechnical problems

In an iterative solution method, a solution guess is provided and is refined

iteratively until the solution is sufficiently close to the exact solution. In recent

years, there is an increasing interest in the use of iterative rather than direct

solvers for 3D geotechnical finite element analyses. Among the most desirable

advantages of iterative methods are the low storage (computer memory)

requirements and shorter CPU time for the solution of linear FE equations

compared with direct methods (e.g. Papadrakakis, 1993b). Whether or not this

happens depends on the nature of the coefficient matrix A (1.1) of the linear

system of equations and the preconditioning. In most geotechnical problems,

the coefficient matrix can be severely ill-conditioned (see Appendix A for

definitions of some algebraic terms), thus calling for the development of

robust and efficient preconditioners. A preconditioner is the key to the success

of iterative methods. A preconditioner is another matrix which transforms the

original linear system to a more favorable linear system and accelerates the

convergence of an iterative solution (Axelsson, 1994; Barrett et al., 1994;

Kelley, 1995; Saad, 1996; Greenbaum, 1997; Saad and Van Der Vorst, 2000).

 6

Hence, in the preconditioned iterative solution, the transformed system (1.2) is

solved instead of the original linear system (1.1):

 1 1
M Ax M b

− −= (1.2)

where M is the preconditioner.

Probably the first application of a preconditioned iterative method to

geotechnical problems may be by Smith et al. (1989) and Wong et al. (1989).

They used preconditioned conjugate gradient (PCG) solver (Hestenes and

Stiefel, 1952) in conjunction with different preconditioners for the solution of

first order and second order transient problems. The issue of preconditioning

in computational geomechanics has been addressed in a number of recent

works. For drained boundary value problems, Mroueh and Shahrour (1999)

studied the application of standard Jacobi (SJ) and Symmetric Successive

Over-Relaxation (SSOR) preconditioners in conjunction with bi-conjugate

gradient (Bi-CG) (Lanczos, 1952), bi-conjugate gradient stabilized (Bi-

CGSTAB) (van der Vorst, 1992), and quasi-minimal residual variant of Bi-

CGSTAB (QMR-CGSTAB) (Chan et al., 1994) iterative solvers for the

resolution of 3D soil-structure interaction problems. They concluded that the

SSOR preconditioner performs better in comparison to SJ preconditioner for

soil-structure interaction problems with highly varied material heterogeneity

and plasticity. Payer and Mang (1997) investigated the three preconditioners,

namely, diagonal scaling, SSOR, and ILU-type preconditioner with conjugate

gradient squared (CGS) method (Sonneveld, 1989), Bi-CGSTAB, and

generalized minimum residual (GMRES) method (Saad and Schultz, 1986) for

hybrid boundary element-finite element solution of tunneling problem. Based

on which, they concluded the hierarchical use of above preconditioners

 7

depending on the problem complexity. Similarly, the SJ preconditioned CGS

and GMRES were shown to be more efficient and robust than direct solution

method in solving underground construction problems (Kayupov et al., 1998).

However, the investigation of SJ preconditioner on three possible geotechnical

loading conditions (namely, drained, undrained, and consolidation) by Lee et

al. (2002) showed that the SJ performs well for the drained problems, but is

much less effective for undrained, and counter productive for consolidation

problems.

In coupled consolidation analysis, the coefficient matrix A can be

severely ill-conditioned, especially in the early stage of the process where

small time steps are required to obtain an accurate transient solution (Chan et

al., 2001; Ferronato et al., 2001; Ferronato et al., 2009). Thus, considerable

efforts have been made in the development of preconditioning techniques for

coupled consolidation problems in recent years. For example, several diagonal

preconditioners were proposed in conjunction with symmetric quasi-minimal

residual (SQMR) solver (Freund and Nachtigal, 1994b) for the symmetric

indefinite linear systems produced by 3D Biot’s consolidation equations. The

heuristic preconditioner, Modified Jacobi (MJ), by Chan et al. (2001) was

based on the observation that the standard Jacobi preconditioned SQMR

actually performed worse than the unpreconditioned version when the

diagonal elements corresponding to flow stiffness matrix is close to zero. In

2002, Phoon et al. proposed the generalized Jacobi (GJ) preconditioner, which

is an improvement over MJ from both theoretical and numerical perspectives.

Effectiveness of GJ to a variety of geotechnical problems has been

demonstrated in a number of papers by Phoon and co-workers (Phoon et al.,

 8

2003; Phoon, 2004; Lee et al., 2006; Phoon et al., 2006). Observing the

breakdown of conventional SSOR preconditioner for consolidation problems,

a modified version of the SSOR preconditioner (MSSOR) was proposed by

Chen et al. (2006) by replacing the original diagonal by GJ in SSOR

factorization. Numerical results show that the MSSOR can lead to faster

convergence than the GJ preconditioner (Chen et al., 2007) or block

constrained preconditioner (Toh et al., 2004, will be discussed later). The most

promising advantage of diagonal preconditioners is that they do not incur an

additional memory and easy to use in any PC environment. However, the

performance of these preconditioners degrades for heterogeneous soil profiles

or for soil-structure interaction problems when significant contrasts in stiffness

of the materials exist (Chen et al., 2007).

Another type of preconditioners that is commonly encountered for

Biot’s equations are ILU-type and IC-type incomplete triangular factorization

preconditioners (Ferronato et al., 2001; Gambolati et al., 2001, 2002, 2003).

Their numerical results suggest that although ILU0 preconditioner accelerates

the convergence of Bi-CGSTAB solver, it may breakdown for ill-conditioned

systems. The effect of time integration steps on ill-conditioning of the system

(Ferronato et al., 2001) and the effect of ordering of the variables on the

performance of ILU preconditioners (Gambolati et al., 2001) were taken into

account. An optimum ILUT preconditioner (with variable fill-in) was shown

to have overcomed the problems of ILU0 and accelerates the convergence.

However, for the optimal performance of ILUT preconditioners, the user-

specified parameters (which control the number of fill-ins) can only be found

 9

empirically via a trial-and-error procedure. Hence, it may be worth comparing

the pros and con of ILU0 preconditioner to that of MSSOR preconditioner.

A more recent development for the iterative solution of ill-conditioned

coupled consolidation problems is the block preconditioners that exploit the

block structure of the coefficient matrix. In fact, the development of GJ or MJ

was also based on block structure of A . Toh et al. (2004) systematically

investigated three common block preconditioners, namely, block diagonal,

block triangular and block constrained preconditioners with different

approximation of blocks. A comparison of performance of GJ (Phoon et al.,

2002) and block constrained preconditioner (Toh et al., 2004) showed that the

latter can be about two times faster than the former, but at the cost of more

memory (Phoon et al., 2004). Similar to the work of Toh et al. (2004), an

inexact constraint preconditioner (ICP) was proposed more recently by

Bergamaschi et al. (2007) in conjunction with Bi-CGSTAB solver. Their

numerical results showed that the ICP preconditioner can be up to more than

two times faster than the standard ILU/ILUT preconditioners (Saad, 1994b,

1996) for large-scale 3D problems. Another variant of constrained

preconditioner is the so-called mixed constraint preconditioner (MCP)

(Bergamaschi et al., 2008) whose basic idea relies on approximating

independently the inverse of the structural submatrix and the global Schur

complement. However, a major limitation of these preconditioners for

practical use is the optimal selection of a number of user-defined parameters

(at least 4) (e.g. Ferronato et al., 2010), which is problem dependent. These

preconditioners also require relatively more memory in comparison to

diagonal preconditioners.

 10

 Much of the work described earlier is based on assembled coefficient

matrix A and such preconditioners are commonly known as global

preconditioners. A brief description, formulation, and implementation of these

global preconditioners are summarized in Chapter 2. An interesting trade-off

between the above preconditioning strategies with the aim of limited core

memory requirement is the element-by-element (EBE) technique. In EBE

implementation, the matrix-vector multiplication is operated at the element

level and assembly of the global matrix is not required. Thus, the computer

memory usage is significantly reduced. For example, the application of Jacobi

preconditioner in EBE strategies has been demonstrated for the iterative

solution of a range of geotechnical problems (Smith et al., 1989; Wong et al.,

1989; Smith and Griffiths, 1997; Smith and Wang, 1998; Chan, 2002; Lim,

2003; Smith and Griffiths, 2004). Some new EBE preconditioners have been

proposed recently (Augarde et al., 2006, 2007) that enhances the convergence

better than conventional EBE-Jacobi preconditioning. However, these

preconditioners are more suitable for parallel computation using multiple

processors. This study focuses on PC based computing platform. Hence, only

global preconditioners based on global assembled coefficient matrix are

considered in this thesis.

1.3. Scope and objective of the study

As mentioned earlier, direct methods do not appear to be the choice for large-

scale 3D problems because of their large memory requirement and

preconditioned iterative method is one of the promising approaches for the

repeated solution of such linear systems, which are often ill conditioned, in an

 11

efficient way. The overall objective of this study is to allow large-scale 3D

finite element modeling of geotechnical engineering problems to be performed

economically, both in terms of computational time and resources, so that

average practitioners can afford to simulate large and complex problems

realistically in a normal PC environment.

The brief review in the preceding Section shows that there has been

tremendous development in the use of preconditioned iterative solutions in the

last decade, and several preconditioning strategies (e.g. diagonal

preconditioning, incomplete factorization preconditioning, block constrained

preconditioning, EBE preconditioning) have been proposed with specific

application to the geotechnical problems. However, until now, much of the

work has been focused on the preconditioners for general consolidation

problems and ill-conditioning due to small time-steps and low permeability

materials. Only limited attention has been paid on the effect of material

properties on the performance of iterative solution (e.g. Augarde et al., 2008).

It was observed that the performance (iteration count and runtime) of SJ

(Mroueh and Shahrour, 1999; Lee et al., 2002) and SSOR preconditioners

(Payer and Mang, 1997) is significantly affected by the material properties,

especially due to the contrast in Young’s moduli of materials, for drained

boundary value problems. Similarly, the performance of GJ and MSSOR is

also found to be affected by the heterogeneity of materials in consolidation

analysis (e.g. Chen et al., 2007).

Materials with differing stiffness are commonly encountered in

pragmatic geotechnical problems because of the variability of natural

geomaterials and the involvement of stiff structural elements. Young’s

 12

modulus can vary from 1 MPa or less for soft soils to more than 100,000 MPa

for rocks. A similar difference in stiffness is common in soil-structure

interaction problems where the Young’s modulus of a structural material (e.g.

reinforced concrete, steel) can be more than four to five orders of magnitude

larger than the Young’s modulus of the surrounding soil. Such a large stiffness

contract can produce a severely ill-conditioned system (Lee et al., 2002). In

consolidation analysis, besides stiffness, there can be a significant contrast in

permeabilities of materials. Thus, there is considerable scope for an

improvement in the preconditioning technique to minimize the adverse effects

due to these differences in material properties to allow fast 3D simulation of

large-scale problems involving heterogeneous materials, such as in soil-

structure interaction problems.

The specific objectives of this study can be summarized as follows:

1. To compare the MSSOR and ILU0 preconditioning strategies used for

Biot’s consolidation equations.

Since different preconditioning strategies have been used by different

researchers for the effective solution of Biot’s consolidation equations,

this study sheds light on the advantages and disadvantages of these

methods. A thorough investigation of these may help a practicing

engineer to select a preconditioner that best suits the problem based on

available resources.

2. To develop a preconditioner that mitigates the effect of differences in

stiffnessess of materials in drained analysis.

 13

To simplify the problem, a drained boundary value problem was

considered first and the source of ill-conditioning due to differences in

stiffness of materials was investigated with the help of 1-Dimensional

oedometer example. For this, a theoretical block diagonal

preconditioner was derived that possesses an attractive eigenvalue

clustering property. However, this theoretical form is very expensive.

Hence, practical simplified block diagonal (SBD) preconditioners were

proposed that are less expensive. The proposed preconditioners

effectively mitigated the ill-conditioning due to relative differences in

stiffness of materials in the linear system.

3. To develop a preconditioner that mitigates the coupled effect of

differences in stiffness and permeability of materials in consolidation

analysis.

Given the considerable potential usefulness of the proposed

preconditioners from objective (2), the study was extended to cover a

more general framework described by Biot’s consolidation equations.

For consolidation analysis, the permeability can vary (order of

magnitude) from 1 m/s for a stone column to 10
-12

 m/s for unsaturated

soils. The coupled effects of large relative differences in stiffnesses

and permeabilities of materials may produce an even more severely ill-

conditioned system. First, a block diagonal preconditioner was derived

and shown to have an attractive eigenvalue property theoretically.

Finally, some cost-effective approximate block diagonal

preconditioners were investigated which effectively mitigate the ill-

conditioning due to such variation in material properties.

 14

4. To evaluate the effectiveness of the proposed block diagonal

preconditioners in the context of realistic large-scale soil-structure

interaction problems.

The effectiveness and general applicability of the proposed

preconditioners for a wide range of practical geotechnical problems

was demonstrated with the help of two case histories soil-structure

interaction problems: a piled-raft foundation problem and a twin tunnel

problem.

The mitigation of the effect of material properties on preconditioning by the

proposed block diagonal preconditioners has significant impact on saving the

computational time over existing SJ, SSOR, and ILU0 preconditioners in

drained analysis, and over GJ, MSSOR, and ILU preconditioners in

consolidation analysis. Their general applicability to case history examples

with varying soil properties suggests that the proposed preconditioners are

potentially useful for the problems beyond the examples covered in this study,

whenever a difference in Young’s moduli of materials exists. However, only a

symmetric linear system is considered in this study.

1.4. Computer hardware and software

All the numerical experiments in this thesis are carried out on a DELL Intel

Core Duo CPU, 2.4GHz PC with 2GB of RAM running on a Windows XP

operating system.

The Fortran source codes used for 3D finite element analysis of Biot’s

consolidation problems are based on research work by Chen (2005). These

 15

finite element codes are compatible with the codes of Smith and Griffiths

(1997). The results of Chapter 3 were obtained by using Compaq Visual

Fortran, Professional Edition 6.5.0. Results of all other Chapters were obtained

with Intel Visual Fortran Compiler 10.1, Professional Edition. A commercial

software GeoFEA (2006) was used for the simulation of complex soil-

structure interaction problems, where appropriate preconditioned iterative

solvers were implemented as user-defined solvers.

Other publicly available software packages/libraries used for this report are:

1. SPARSKIT: A basic tool-kit for sparse matrix computations. The

software package can be obtained from Yousef Saad’s homepage:

http://www-

users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html

2. SparseM: The software package is a basic linear algebra package for

sparse matrices and can be obtained from:

http://cran.r-project.org/src/contrib/Descriptions/SparseM.html

3. Template. It is a package for some popular iterative methods in

Fortran, Matlab and C, and can be used to demonstrate the algorithms

of the book “Templates for the solution of linear systems: Building

blocks for iterative methods.”

http://www.netlib.org/templates/

4. RCM. This is a Fortran 90 library of routines which computes the

reverse Cuthill McKee (RCM) ordering of the nodes of a graph. The

package is maintained by Burkardt J.

http://people.scs.fsu.edu/~burkardt/f_src/rcm/rcm.html

 16

5. SPARSEPAK. Waterloo sparse matrix package. It is a library of

Fortran 90 routines for solving large sparse systems of linear

equations.

http://people.scs.fsu.edu/~burkardt/f_src/sparsepak/sparsepak.html

1.5. Thesis outline

The material covered in this thesis has been divided up into following logical

chapters. Chapter 2 provides a brief overview of iterative methods used in this

thesis and review of various preconditioners, convergence criteria, etc.

Chapter 3 compares the performance of recently developed MSSOR

preconditioner (Chen et al., 2006) with that of standard ILU0 preconditioner

and highlights the merits and demerits of each preconditioner for the solution

of finite element Biot’s consolidation equations. In Chapter 4, the effect of

relative difference in material stiffnesses, such as in soil-structure interaction

problems, on the iterative solution and its effective mitigation by block

diagonal preconditioners are discussed. Only drained boundary value

problems are considered to isolate the sole ill-conditioning due to contrasts in

stiffnesses only. Owing the effectiveness of block diagonal preconditioning, it

is extended to the coupled consolidation analysis in Chapter 5 for the

mitigation of coupled effect due to contrasts in both stiffness and permeability

of the materials. The application of these preconditioners to two case histories

examples is demonstrated in Chapter 6. Finally, Chapter 7 offers some

general conclusions with recommendations for the further study.

Appendix A provides the definition of various algebraic terms used in this

thesis.

 17

Appendix B explains the finite element discretization of Biot’s consolidation

equations

Appendix C comprises the algorithms or pseudo codes used in this thesis.

Appendix D details the effect of soil-structure stiffness ratio in 1D example.

Appendix E includes the source codes used for this research.

Appendix D includes the source code for user defined solver in GeoFEA.

 18

(blank)

 19

CHAPTER 2

LITERATURE REVIEW

Finite element analyses of geotechnical problems can broadly be categorized

into three types of analyses: drained, undrained, and consolidation depending

upon the loading and drainage conditions. For example, sand usually exhibits

a drained behaviour because of its high permeability. Drained and undrained

are two extreme loading conditions (long term and short term, respectively),

while consolidation is the intermediate condition. Note that all the above

loading conditions can be represented by Biot’s (1941) coupled consolidation

equations depending on the time integration step and have wide applications in

many engineering problems (e.g. Abbo, 1997; Lewis and Schrefler, 1998).

The repeated solution in time of the linear system arising from finite element

(FE) discretization of the coupled consolidation equations is the most time

consuming computational effort in geotechnical engineering analysis. This

could be the reason that the development of most of the preconditioners for

geotechnical problems is based on Biot’s consolidation equations. See

Appendix B for the finite element discretization of the Biot’s consolidation

 20

equations. The succeeding Sections provide a review of iterative methods and

various preconditioning approaches used in geotechnical engineering analysis.

2.1. Iterative solution methods

The linear systems produced by finite element analysis of geotechnical

problems can broadly be grouped into definite and indefinite linear systems.

The linear system may be symmetric or unsymmetric depending on the

constitutive model used for the soil and the formulation of equations. For

example, the linear system arising from the FE integration of coupled

consolidation equations can also be written in a form of symmetric indefinite

(Smith and Griffiths, 1997), unsymmetric indefinite (Gambolati et al., 2001),

or unsymmetric positive definite (Ferronato et al., 2009). Although these

different formulations are mathematically equivalent, numerically they are not,

and different iterative solvers and preconditioners are required. Several

iterative methods are available (see, for instance, Barrett et al., 1994) and the

choice of an optimal method is largely depends on the properties of the

coefficient matrix A [Equation (1.1)].

If an unsymmetric form of Biot’s equations were used, Bi-CGSTAB

(van der Vorst, 1992) would have been a robust and efficient alternative

provided that appropriate preconditioners are used (Gambolati et al., 2001,

2002, 2003). However, based on the study of Ferronato et al. (2007), and Toh

and Phoon (2008) for symmetric and unsymmetric forms of Biot’s

consolidation equations, symmetric form is preferable over the unsymmetric

form because the former requires less computer memory for storage and a

cheaper Krylov subspace method (see Appendix A for the definition) to solve.

 21

Thus, only symmetric linear system of the consolidation equations (Appendix

B) is considered in this study, which reads as:







 ∆

=








∆

∆









− exexT
Cp

f

p

u

CB

BK
 (2.1)

or, in the compact form:

 Ax b= . (2.2)

 Here, N N
A

×∈ℜ is a sparse 2×2 block symmetric indefinite matrix,

nd nd
K

×∈ℜ is soil stiffness matrix (symmetric positive definite),

np np
C tHθ ×= ∆ ∈ℜ is fluid stiffness matrix (symmetric positive semi-definite),

and nd np
B

×∈ℜ is the displacement-pore pressure coupling matrix. The

existing Krylov subspace methods for solving symmetric indefinite linear

system include the MINRES (minimum residual) and SYMMLQ (symmetric

LQ) methods proposed by Paige and Saunders (1975), as well as a recently

developed SQMR (symmetric quasi-minimal residual) method by Freund and

Nachtigal (1994b). The convergence of PCG (preconditioned conjugate

gradient) (Hestenes and Stiefel, 1952) is not guaranteed for such systems

(Paige and Saunders, 1975; Golub and Van Loan, 1989; Barrett et al., 1994).

Similarly, the MINRES and SYMMLQ require the use of symmetric positive

definite preconditioners, which is rather unnatural restriction when the matrix

itself is highly indefinite. Thus, the SQMR is used in this study because it can

be combined with indefinite preconditioners, has more stable iterations and

usually converges faster than the MINRES and SYMMLQ (Freund and

Nachtigal, 1994a, b; Freund, 1997).

Although coupled consolidation equations can be generalized for all

kinds of analyses (drained/undrained/consolidation) depending on the loading

 22

and drainage conditions, the drained and undrained (modeled as a nearly

incompressible problem) analysis can also be performed using elasticity

equations. In this case, the linear system is symmetric positive definite.

Solving a definite system is, in general, easier than an indefinite one, unless

the system is very ill-conditioned such as that from the undrained analysis

with Poisson’s ratio, ν ≈ 0.5. A large amount of powerful techniques are

available that can effectively solve the definite linear systems. For example,

the Cholesky factorization is about a factor of two faster than other alternative

methods (Press et al., 1992) in the direct approach. In iterative approach, PCG

(preconditioned conjugate gradient) method proposed by Hestenes and Stiefel

(1952) or ChebyShev iteration methods can be used (Barrett et al., 1994).

However, PCG is known to be the best for symmetric positive definite linear

systems (Papadrakakis, 1993a; Barrett et al., 1994). Its excellent performance

is due to its short recurrences in the Krylov subspace and the minimization

properties that guarantee a monotonic and regular convergence with

economical storage requirement. Thus, the PCG is used for the drained

analysis of all the problems in this thesis. See Appendix A for more details

about the methods used in this thesis. A guideline for the selection of an

appropriate method is provided in Figure 2.1 based on the flowchart by Barrett

et al. (1994). The implementation of the preconditioned iterative solvers in

the finite element modeling is as shown in Figure 2.2.

2.2. Preconditioning strategies

If the iterative methods are applied directly to the original linear system (1.1),

the rate of convergence may be slow or may even not converge. The rate of

 23

convergence of iterative methods depends on the eigenvalue (spectrum) of the

coefficient matrix A. Many iterative methods have convergence characteristics

which vary substantially with the condition number of A . In general, the

larger the condition number, the more likely is the failure to converge.

A preconditioner is a matrix that transforms the original linear system

(1.1) to a more favorable linear system to accelerate the convergence of an

iterative solution. Hence, it is the key for the success of an iterative method. A

preconditioner can be applied in three formats depending on its position with

respect to A . For example, given a preconditioner M, the preconditioned

system can be written as:

 bMxAM 11 −− = (2.3)

or,

 bMxAM =−)(1 (2.4)

or,

 bMxMAMM 1

12

1

2

1

1)(−−− = (2.5)

where,

 1 2

N N
M M M R

×= ∈ . (2.6)

The preconditioning approach in (2.3) is known as left preconditioning.

Similarly, the approach in (2.4) is right preconditioning and that in (2.5) is

left-right preconditioning. Right preconditioning has an advantage in that the

right hand side is not required to modify and also the generated residuals are

identical to the true residuals. In practice, the choice of preconditioning

position often depends on selected iterative method and on properties of the

coefficient matrix A . In general, the preconditioned system is written as:

 bxA
~~

= (2.7)

 24

The preconditioner for the iterative solver is such that it best approximates

inverse of the coefficient matrix. In general, a preconditioner should have the

following three good qualities (e.g. Barrett et al., 1994):

1. The preconditioned system should converge rapidly, i.e., the

preconditioned matrix should have good spectral properties.

2. The preconditioner should be cheap to construct and easy to invert

within each iteration.

3. The preconditioner should not consume a large amount of memory. It

is preferable to avoid massive indirect memory addressing operations

to exploit the cache architecture in CPUs.

Generally speaking, these conditions are often conflicting for the selection of a

suitable preconditioner. Because the preconditioned procedure requires a

matrix-vector product at each iteration, the preconditioner must be such that

this product can be performed inexpensively. On the other hand, for a rapid

convergence, the preconditioner needs to be a sufficiently good approximation

of the inverse of A. Thus, a well-balanced trade-off between the above

requirements is to some extent problem dependent, and is the key factor the

success of a preconditioned iterative solver. As we often deal with a “difficult”

A due to material non-uniformity and pore-pressure consideration in

geotechnical engineering, understanding well the coefficient matrix and the

source of ill-conditioning allow one to control the trade-offs and yet achieve a

higher performance. Thus, finding a suitable preconditioner is an active

research area and several new preconditioners have recently been proposed for

the efficient solution of geomechanical problems. These are categorized into

the following broad groups:

 25

2.2.1. Diagonal preconditioners

Diagonal preconditioners are among the cheapest and most memory effective

ones. It simply scales the coefficient matrix with a diagonal matrix.

2.2.1.1. Standard Jacobi (SJ) preconditioner

The standard Jacobi preconditioner is a diagonal matrix whose diagonal

entries are identical to those of the coefficient matrix:

 ()
SJ

M diag A= (2.8)

It is simple to construct and the cheapest preconditioner. Payer and Mang

(1997) used SJ as well as SSOR (Section 2.2.2) and ILU (Section 2.2.3)

preconditioned iterative solvers for the analysis of tunnel drivings. The main

purpose was to demonstrate that a considerable acceleration of the solution

can be achieved by using iterative solvers in comparison to direct solvers for

the systems of equations arising in pure BE (boundary element) simulations

and hybrid BE–FE analyses of tunnel drivings. Similarly, SJ preconditioned

CGS and GMRES methods are shown to be efficient and robust than the direct

Gauss elimination method for underground construction problems in mining

and civil engineering using indirect boundary element method (IBEM)

(Kayupov et al., 1998). The faster convergence was because of the diagonal

dominance of the equations with adaptive integration technique for IBEM.

The eigenvalues of strongly diagonally dominant scaled matrices are well

clustered around unity (Gershgorin’s theorem), which leads to fast convergent

iterative procedures. Using this preconditioner, Smith and Wang (1998)

successfully studied the behavior of large piled-raft foundations using 3D

finite element analysis. However, Lee et al. (2002) observed that the

performance of SJ is dependent on the type of analysis (namely, drained,

 26

undrained, and consolidation). It is ineffective for consolidation analysis

because the coefficient matrix is indefinite with significant contrast in

diagonal entries corresponding to displacement and pore pressure DOFs.

Jacobi preconditioning compresses the displacement-dominated eigenvalues,

but pore-pressure-dominated eigenvalues are often over-scaled. Similarly, it is

also ineffective for undrained problem, modelled as a nearly incompressible

problem, because its ill-conditioning arises from the large stiffness ratios of

the bulk modulus of water and the bulk modulus of the soil skeleton.

However, the acceleration in the convergence is relatively better for the

problems with drained boundary conditions. This is because the diagonal

scaling transforms the matrix approximately to one of a uniform material and

compresses the eigenvalue spread (Lee et al., 2002). Smith and Wang (1998)

had also shown that the SJ preconditioner confers good convergence

characteristics on well-conditioned problems with Poisson’s ratio ν less than

0.4; however, its convergence drops down drastically as ν approaches close to

0.5, indicating its poor performance for nearly incompressible problems.

Hence, the SJ preconditioner is used for the drained problems only in this

thesis.

2.2.1.2. Modified Jacobi (MJ) preconditioner

Chan et al. (2001) observed that the SJ scaling is actually counter productive

for consolidation equations because the magnitude of the diagonal entries

corresponding to flow stiffness matrix [block (2, 2) of the coefficient matrix in

Equation (2.1)] are significantly smaller than the off-diagonal ones. To

overcome this problem of SJ, they proposed to modify the diagonals of block

 27

(2, 2) heuristically with a scaling factor. The Modified Jacobi preconditioner

reads as:

() 0

0 ()
MJ

diag K
M

Q diag C

 
=  − 

 (2.9)

where Q is a scaling matrix, the entries of which are computed as

max | | | | 1
jj i ij jj

q a a= ≥ ,
ij

a is an element of coefficient matrix A . It has

significantly improved the performance compared with SJ preconditioner.

Using MJ for consolidation problems involving very low hydraulic

permeabilities, the rate of convergence for the SQMR solver (Freund and

Nachtigal, 1994b) can be accelerated by roughly one order of magnitude.

2.2.1.3. Generalized Jacobi (GJ) preconditioner

The motivation for the construction of GJ preconditioner came from the

elegant eigenvalue clustering results given by Murphy et al. (2000) for a linear

system with similar 2×2 block structure as that of Biot’s problems, but with

zero (2, 2) block. The GJ preconditioner (Phoon et al., 2002) takes the

following form:

()

()
0

ˆ0
GJ

diag K
M

diag Sα

 
 =
 
 

 (2.10)

where 1ˆ ()TS C B diag K B−= + is an approximate Schur complement matrix;

α is a real scalar and a negative value of α is recommended for practical use.

Specifically, α = -4 has a theoretical significance in the ideal case (Phoon et

al., 2002) and has been shown to be effective in the form (2.10) as well (Toh

et al., 2004). Thus, only this value of α is considered throughout this thesis.

Numerical results showed that GJ is an efficient choice for solving Biot’s

linear equation due to its cheap diagonal form and robustness to accelerate the

 28

convergence of SQMR (Phoon et al., 2002; Phoon et al., 2003; Phoon, 2004;

Toh, 2004; Toh et al., 2004). The GJ preconditioner can also readily be

derived and applied to solve nonsymmetric linear systems (Gambolati et al.,

2003; Toh and Phoon, 2008). It is also superior to MJ from both the theoretical

and numerical point of view because MJ was essentially constructed from a

heuristic basis and its performance outside the scope of study is less assured.

The effectiveness of GJ has also been demonstrated in other areas of study

such as interior-point methods (Toh, 2004). Hence, the GJ preconditioner is

considered as the benchmark for the performance of other sophisticated

preconditioners for the consolidation problems in this study.

2.2.2. SSOR preconditioner

SSOR (Symmetric Successive Over-Relaxation) iteration belongs to classical

iterative methods; however, it is widely used as a preconditioner for Krylov

subspace iterative methods. SSOR preconditioning can be regarded as a single

iteration of SSOR iterative method with a zero initial vector. In left-right

preconditioning approach, it takes the following form:

 1

1

2

A
A

D
M L

ω ω
 = + −  

,

1

2
A A

A

D D
M U

ω ω

−
   = +   
   

 (2.11)

where LA and UA are strictly the lower and upper triangular parts of

decomposition of A = LA + DA + UA and ω is a relaxation parameter. The

scaling factor 1 (2)ω− can be neglected when using as a preconditioner for

Krylov subspace iterative methods, but it may be important when the iterative

method is not scale invariant (e.g. Chow and Heroux, 1998). Similar to

diagonal preconditioners, the advantage of SSOR preconditioner is that it can

readily be constructed from the coefficient matrix with a minor modification

 29

of the diagonal. For this reason, it is sometimes regarded as a diagonal

preconditioner (Ferronato et al., 2009). As this preconditioner involves a

triangular solution in each preconditioning step, it is also regarded in the

family of incomplete factorization preconditioners (e.g. Saad, 1996). Based on

the comparison of SJ and SSOR preconditioners for soil-structure interaction

problems, Mroueh and Shahrour (1999) recommended that the left

preconditioned SSOR to be used for the problems involving highly varied

materials. They observed that the left SSOR with Bi-CGSTAB or QMR-

CGSTAB methods can lead to an economy of 70-80% on iterations count and

50-70% on CPU-times in comparison with the results obtained with the SJ

preconditioner. This could be because the SSOR factorization involves the off-

diagonal terms as well, and hence, a better approximation of the coefficient

matrix (Chen et al., 2006). In contrast, Payer and Mang (1997) observed

longer CPU times for SSOR than SJ preconditioned systems even though

SSOR reduces the iteration counts considerably. It may be because of the

ordering of the variables as it involves triangular solutions. Similarly, the

preconditioning position (2.3-2.5) can also affect the results (Mroueh and

Shahrour, 1999). Chen et al. (2006) recommended the left-right

preconditioning (2.5) with Eisenstat trick (Eisenstat, 1981) for the efficient

implementation of SSOR. It may be because Chen et al. studied the SSOR

implementation on symmetric linear systems, while the linear system was

unsymmetric for the case of Mroueh and Shahrour.

2.2.2.1. MSSOR preconditioner

Observing the breakdown of conventional SSOR preconditioner for indefinite

linear systems arising from consolidation problems, a modified version of the

 30

SSOR preconditioner (MSSOR) was proposed by Chen et al. (2006). The

preconditioner takes the following form:

 ()() ()DLDDL
D

U
DD

LM T

AAAAMSSOR

~~~ˆˆˆ 1

1

++=









+




















+=

−
−

ωωω
 (2.12) 

where ˆ
GJD M= . The MSSOR preconditioner is based on the standard SSOR 

factorization, but with the diagonal replaced by GJ. The MSSOR 

preconditioner implemented with Eisenstat trick (Eisenstat, 1981) leads a 

faster  convergence than the GJ preconditioner (2.10) and block constrained 

preconditioner (Section 2.2.4.1) (Chen et al., 2006). The MSSOR 

preconditioned global system is also preferable over partitioned iterative 

methods  (Chen et al., 2007). 

2.2.3. Incomplete factorization preconditioners 

We call a factorization incomplete if during the factorization process certain 

‘fill’ elements, nonzero elements in the factorization in positions where the 

original matrix had a zero, have been ignored. Probably the earliest use of ILU 

(incomplete LU) preconditioning may be originated by Meijerink and van der 

Vorst (1977) and Kershaw (1978). A broad class of preconditioners is based 

on incomplete factorizations of the coefficient matrix. A preconditioner is then 

given in factored form: 

 M LU=  (2.13) 

with L  the lower and U  the upper triangular factors of A . For a symmetric 

matrix, the corresponding preconditioner can also be formed as TM LDL= , 

where D  is the diagonal matrix with pivots in its diagonal and L  is the unit 

lower triangular. When the matrix is symmetric positive definite system, the 



 

 31 

corresponding preconditioner is termed as Incomplete Cholesky (IC) 

preconditioner: 

 TM R R=  (2.14) 

where, R  is the upper triangular factor.  

The efficiency of the preconditioner depends on how well 1M −  

approximates 1A−  depending on allowed fill-in elements. One possibility is to 

completely discard the fill-in elements in the position other than in original 

coefficient matrix, so that the preconditioner at worst takes exactly as much 

space to store as the original matrix. This is commonly known as ILU0 or IC0 

factorization (e.g. Kershaw, 1978). This is the most inexpensive factorization. 

As the factorization is crude, it may result in the Krylov subspace solver 

requiring more iterations to converge for challenging problems (Saad, 1996). 

The second possibility is to partially neglect the fill-in elements based on some 

specified size criterion but, it can be more expensive than ILU0. One such 

factorization is ILUT(ρ, τ), where ρ and τ are user-specified parameters which 

controls the fill-in process (Saad, 1994b). The parameter ρ controls the 

maximum number of fill-in elements to be allowed in  L  and U   factors 

while the parameter  τ controls the magnitude of the fill-in element (relative to 

the corresponding row of A) below which the elements are dropped. If ρ and τ 

are set to N (the dimension of A) and 0, respectively, i.e. ILUT(N, 0) yields the 

exact LU decomposition.  

For challenging problems, Payer and Mang (1997) recommended to 

use ILU preconditioners with partial fill-ins over the SJ and SSOR 

preconditioners. The performance of ILU0 was acceptable only for relatively 

small differences of the stiffness of the soil and of the shotcrete in tunnel 



 

 32 

driving problems. Based on the extensive use of ILU preconditioners on 

coupled consolidation analysis, Gambolati and co-workers (Ferronato et al., 

2001; Gambolati et al., 2001, 2002, 2003) pointed that an optimal ILUT can 

numerically be obtained which can lead to faster convergence rate and smaller 

CPU time than ILU0. However, they failed to recommend any particular 

values for ρ and τ  for the optimal performance of ILUT. This is because these 

user-defined parameters are very much problem dependent and can only be 

ascertained through numerical experiments. The matrix conditioning may 

strongly affect the choice of parameters and its contribution to the total 

computational cost. Hence, getting an optimal performance can be a difficult 

task. For consolidation problems, Ferronato et al. (2001) showed that a critical 

time step ∆tcrit may exist depending on the hydrogeological properties of the 

subsurface and the mesh discretization, below which the coefficient matrix 

may suffer from ill-conditioning. In addition, the blind application of ILU 

preconditioners on indefinite problems may result in failure for many 

problems (Chow and Saad, 1997). These are further discussed in Chapter 3 for 

the Biot’s problem. Gambolati et al. (2003) showed that the diagonal scaling 

of the coefficient matrix prior to ILU factorization may improve the numerical 

stability and accelerate the convergence of ILU preconditioned Bi-CGSTAB 

solver.  

2.2.4. Block preconditioners 

Block preconditioners are motivated from the block structure of the coefficient 

matrix A  (2.1). For geomechanical problems, the numerical performances of 

three classes of block preconditioners, namely, block constrained, block 

diagonal and block triangular preconditioners have been studied recently.  



 

 33 

2.2.4.1. Block constrained preconditioner 

Block constrained preconditioners are the recent development for the iterative 

solution of large-scale coupled consolidation problems. These preconditioners 

are originally advanced for the discrete saddle point problems encountered in 

optimization (Keller et al., 2000). This class of preconditioners is called 

constrained because they have the same block structure as the native 

coefficient matrix, but one or more blocks are approximated or ‘constrained’. 

Specifically, they preserve the off-diagonal blocks and approximate the 

diagonal ones. The constrained preconditioner proposed by Toh et al. (2004) 

is motivated from the exact inverse of A  and reads as: 

 
ˆ

c T

K B
M

B C

 
=  

− 
 (2.15) 

where K̂  is the symmetric positive definite approximation of K , Ŝ  the 

symmetric positive definite approximation of Schur complement S for block 

(2, 2), and is given by: 

 CBKBS
T += −1ˆˆ . (2.16) 

Under the ideal situation where K̂  = K and Ŝ  = S, 
1−

cM  is exactly the inverse 

of A and a Krylov subspace method such as GMRES (Saad and Schultz, 1986) 

would converge in one iteration. Since the preconditioner is symmetric but 

indefinite for Biot’s problem, SQMR is the most economical solver as 

mentioned in the Section 2.1. However, the exact K and S in the 

preconditioner are impractical for large-scale problems. Hence, Toh et al. 

studied the performance of the preconditioner (2.15) over a range of 

approximations of K and S for a footing problem. Their numerical results 

suggest that the best runtimes achieved using memory efficient simple 



 

 34 

diagonal approximation of block K and inexpensive approximations to the 

Schur complement S were at most twice the lowest runtime achieved using 

incomplete Cholesky factorization of K with about 10% of the number of 

nonzero elements of K in its factor. However, the main disadvantage of the 

latter is that it requires a non-trivial amount of memory in its storage and 

computation of large-scale problems because the entire K matrix needs to be 

stored in the memory for the factorization. The constrained preconditioner 

(2.15) with simple diagonal approximation of the blocks ( K̂  and Ŝ ) was 

shown to be about two times faster than the GJ (2.10), but at the cost of using 

more memory (Phoon et al., 2004). 

2.2.4.2. Inexact constrained preconditioner (ICP) 

Bergamaschi et al. (2007) argued that the conditioning number of the 

preconditioned Biot’s problem depends on the quality of the approximation of 

the block corresponding to the structural matrix K, and if the block K is not 

diagonally dominant, the diagonal approximation (preceding Section) may 

prove to be a poor approximation. According to Toh et al. (2004),  the block K 

in Biot’s system is a diagonally significant matrix (a notion weaker than the 

diagonally dominant, i.e., although diagonal elements are significantly larger 

than the off-diagonal ones, the diagonal dominance ratio is about 0.11 or 

larger. The ratio should ideally be 1.0 or above for a diagonally dominant 

matrix in the traditional sense). Thus, Bergamaschi et al. proposed a new 

constrained preconditioner based on the sparse approximate inverse (AINV) 

(Benzi et al., 1996; Benzi et al., 2001) preconditioning of block K and the 

incomplete Cholesky decomposition of Schur complement ,Ŝ  namely: 

 TZZKK =≈ −− 11 ˆ  (2.17) 



 

 35 

 T

SS LLSS =≈ ˆ  (2.18) 

where, Z and LS are incomplete upper triangular and lower triangular factors, 

respectively. Such a preconditioner is termed as inexact constrained 

preconditioner (ICP). In terms of Equation (2.1), the ICP can be expressed as: 

 








−








=

−−−

−
−

11

1 0

0 S

TT

S

T

T

S

T

S

T

ICP
LZZBL

Z

L

BLZZZ
M . (2.19) 

One major drawback of the ICP preconditioner is its cost of construction and 

application (in terms of time and memory usage). It requires an explicit 

formulation the Schur complement (2.16); particularly, the computation of the 

first term of (2.16) can be very expensive when the linear system is very large. 

This could be the reason that the performance of ICP (in terms of runtime) was 

similar to that of ILU-type preconditioners on the studied large-scale Biot’s 

problem (see Bergamaschi et al., 2007). It only showed an advantage (speed-

up to 2-times or more) over ILUT preconditioners for relatively smaller 

problems. However, the objective of our study is the cost-effective large-scale 

computation of the geotechnical problems. Similarly, another disadvantage of 

the ICP preconditioner is the requirement of a number of user-specified 

parameters (dropping tolerances for the AINV factorization and the 

computation of ,Ŝ  and fill-in parameters for the incomplete decomposition of 

Ŝ ). The optimum values of which are unknown a priori and may perform 

poorer than the traditional ILUT preconditioners if the parameters are not 

optimally selected (see, for example, Bergamaschi et al., 2008). 

2.2.4.3. Mixed constrained preconditioner (MCP) 

Motivated from the improvement in performance by ICP, but observing 

somewhat less satisfactory performance of ICP preconditioners on severely ill-



 

 36 

conditioned consolidation problems (due to small time integration steps), 

Bergamaschi et al. (2008) further proposed an another constrained 

preconditioner. The construction scheme of the new preconditioner is similar 

to the ICP; however, it uses two different approximations of the structural 

block K  in the same algorithm, and hence, was termed as mixed constrained 

preconditioner (MCP). MCP uses the incomplete Cholesky decomposition of 

K  (2.20) with variable fill-in for preconditioning the structural block ,K̂ while 

its AINV approximation (2.17) is used for the computation of Schur 

complement Ŝ  (2.21), before performing its incomplete Cholesky 

decomposition (2.18) for the preconditioner, namely: 

 111 )(ˆ −−− =≈ KK LLKK  (2.20) 

 CBZZBCBKBS
TTT +≈+= −1ˆˆ  (2.21) 

Hence, the MCP preconditioner takes the following form: 

 








−








=

−−−−

−

−

−−−−
−

111

11

1 0

0 SK

T

K

T

S

K

T

S

T

SK

T

K

T

K

MCP
LLLBL

L

L

BLLLL
M  (2.22) 

MCP preconditioned Bi-CGSTAB was shown to be robust and superior to ICP 

and ILUT preconditioners (in terms of convergence and runtime) on ill-

conditioned problems. The relative gain in the speed-up was up to a factor of 2 

for large-scale problems in comparison to ILUT with controlled fill-in (see 

Bergamaschi et al., 2008). Similar performance gain by MCP was also shown 

in the modeling of faulted rocks with large penalty terms (Ferronato et al., 

2008).  

Though MCP is computationally more efficient than ILUT (or ILLT 

for symmetric positive definite A) in terms of runtime, the implementation of 

MCP is generally not easy for practical application. This is because the MCP 



 

 37 

requires a number of user-specified parameters to be set in a more or less 

optimal way via a trial-and-error procedure, similar to ICP. In particular, the 

implementation of MCP requires the following parameters to be set 

(Bergamaschi et al., 2008; Ferronato et al., 2008; Ferronato et al., 2009): 

1. The fill-in degree ρK, i.e. the number of terms stored in each row of LK 

in excess to the non-zeroes of K; 

2. The fill-in degree ρS, i.e. the number of terms stored in each row of Ŝ  

in excess to the non-zeroes of C; 

3. The AINV tolerance τZ, i.e. the fraction of the Z diagonal terms below 

which an extra-diagonal coefficient is dropped; 

4. The fill-in degree ρS1, i.e. the number of terms stored in each row of LS 

in excess to the non-zeroes of Ŝ ; 

Based on the use of MCP for faulted rocks, Ferronato et al. (2008) concluded 

that the right selection of τA and ρS1 is crucial for the convergence. The 

sensitivity analysis of these parameters shows that not all parameters are 

equally important (Ferronato et al., 2010); however, the selection of optimal 

combination of parameters is likely to be problem dependent. Thus, with 

stricter drop tolerances, the preconditioner may become better (in terms of 

iteration count), but at the same time it also becomes more expensive to be 

used in practice. In addition, the MCP requires double factorization of the 

block K relative to ICP. Note that the size of K is significantly large [about 

90% of the size of A (Toh et al., 2004)] for practical problems. Hence, the 

application of MCP is costlier than ILUT and ICP. These drawbacks make the 

implementation of MCP less attractive to practical problems. Thus, we shall 

not consider the MCP or ICP in our study.  



 

 38 

2.2.4.4. Block triangular preconditioner 

Toh et al. (2004) studied the block triangular preconditioners as well for 

solving (2.1). Block triangular preconditioners are formed by considering 

either only the lower or the upper blocks, as given below: 

 
ˆ 0

ˆt
T

K
M

B S

 
=  

−  
 for left preconditioning (2.23) 

 
ˆ

ˆ0
t

K B
M

S

 
=  

−  
 for right preconditioning (2.24) 

In the ideal situation, where K̂  = K and Ŝ  = S, the preconditioned matrix has 

1 as the only eigenvalues and a preconditioned GMRES (Saad and Schultz, 

1986) would converge in a small number of iterations (may not converge in 

one iteration). This is because the triangular preconditioner destroys 

diagonalizability (Toh et al., 2004). Their study showed that triangular 

preconditioners hardly offer any advantage over constrained and diagonal 

preconditioners in terms of runtime and memory usage on the studied Biot’s 

problem. Similarly, Bergamaschi et al. (2008) recommended a triangular (T-

MCP) and a diagonal (D-MCP, discussed in Section 2.2.4.5) variants of the 

native MCP for the practical use to lessen the drawbacks of native MCP 

discussed earlier. The T-MCP (2.25) was found computationally competitive 

to the native MCP. However, the practical drawbacks of T-MCP are no less 

than the native MCP, except a minor advantage in terms of computation and 

memory. 

 








−
=

−

−−−−−
−

− 1

111

1

)(0

)(
T

SS

S

T

S

T

K

T

K

T

KK

MCPT
LL

LLBLLLL
M  (2.25) 

One notable feature of the triangular preconditioner is that the preconditioned 

matrix AM t

1−  (or AM MCPT

1−
− ) is non-symmetric even for symmetric A  (2.1). 



 

 39 

Hence, a different Krylov subspace method such as Bi-CGSTAB (Figure 2.1) 

is necessary. Note that each iteration of such a solver (e.g. with Mt) is about 

two-times more expensive than each SQMR or MINRES iteration (e.g. with 

Mc) in terms of matrix-vector products and preconditioning steps (Toh et al., 

2004; Ferronato et al., 2010). Thus, the gain in convergence (iteration count) 

is outweighed by a costlier solver application. As we only study symmetric 

linear systems in this study, we shall not consider the triangular preconditioner 

for the above reasons. 

2.2.4.5. Block diagonal preconditioner 

The proposed block diagonal preconditioner for linear system (2.1) takes the 

following form (Toh et al., 2004): 

 
ˆ 0

ˆ0
d

K
M

Sα

 
=  
  

 (2.26) 

where α  is a given nonzero real scalar and possibly negative, K̂  and Ŝ  are as 

defined in Section 2.2.4.1. For the ideal case, when K̂ K=  and Ŝ S= , the 

eigenvalues of the preconditioned matrix are clustered around at most 3 points, 

namely 1 and (1 1 4 ) 2α± + . Choosing 4α = −  leads to at most 2 clusters of 

eigenvalues at 1 and 1/2 (Phoon et al., 2002). Particularly, the negative sign of 

α is important for the convergence (Toh et al., 2004). The comparison of 

numerical performances of block constrained, block triangular, and block 

diagonal preconditioners for a range of block approximations showed that the 

diagonal preconditioners are reasonably competitive (in terms of runtime) with 

the more sophisticated ones (Toh et al., 2004). However, according to 

Bergamaschi et al. (2008), the diagonal variant of native MCP [D-MCP (2.27)] 

is too poor approximation of A
-1

 and may perform less satisfactorily for very 



 

 40 

ill-conditioned system and preferred T-MCP (2.25). On the other hand, the 

ModMCP [also a diagonal variant of MCP (2.27), but with positive block (2, 2) 

for the symmetric positive definite linear system, and with its complete 

Cholesky factorization] was shown to perform comparably with the native 

MCP for modeling the geological faults (Ferronato et al., 2008).  

 








−
=

−

−
−

− 1

1

1

)(0

0)(
T

SS

T

KK

MCPD
LL

LL
M  (2.27) 

The modified MCP is less expensive relative to native MCP as it only requires 

one symmetric incomplete factorization (LK) and one symmetric complete 

factorization (C
-1

). However, its performance is dependent on the user-

specified parameter for LK and the factorization can be expensive when the 

block K (solid stiffness matrix) is very large, which is obvious in large-scale 

computation.  

Block diagonal preconditioners have also been successfully applied in 

the solution of Navier-Stokes equations (Wathen and Silvester, 1993; Silvester 

and Wathen, 1994), which have a similar matrix property as from Biot’s 

consolidation equations. Block diagonal preconditioners are less expensive 

relative to the sophisticated constrained preconditioners as the former neglects 

extra-diagonal blocks of the preconditioner, and hence, a cheaper 

preconditioner application. Such a cost effective scheme is even more 

attractive for the realistic non-linear elasto-plastic problems, where the 

preconditioner has to be re-computed at every step, unlike elastic problems. 

Hence, we only focus on block diagonal preconditioners in this study as they 

provide a cost-effective scheme in overall. The SJ (2.8) or GJ (2.10) can be 

seen as the limiting form of this preconditioner. 



 

 41 

2.2.5. Others 

Several other preconditioners have been proposed in the literature; for 

example, polynomial expansion (Johnson et al., 1983), explicit approximate 

inverse of A (Benzi et al., 1996; Grote and Huckle, 1997; Huckle, 1999; Benzi 

et al., 2001), etc. However, such preconditioners are designed for 

implementation on a parallel computer, and are outside the PC environment 

we assumed in this thesis. Hence, we shall not consider these preconditioners 

in this thesis. Similarly, preconditioners based on element-by-element strategy 

have also been proposed recently (Augarde et al., 2006, 2007). The use of 

EBE strategy with a diagonal preconditioner to solve first order and second 

order time dependent partial differential equations has been demonstrated a 

long time ago (Smith et al., 1989; Wong et al., 1989). Using EBE strategies, a 

substantial reduction in storage requirement can be achieved as it does not 

require the assembly of the global coefficient matrix. However, many 

preconditioners in EBE strategies are based on approximate factorization 

techniques that perform operations at element level and then globalize the 

result (Hughes et al., 1983; Nour-Omid and Parlett, 1985; Winget and Hughes, 

1985). Thus, the use of such preconditioners invariably results in a significant 

increase in book-keeping workload and indirect addressing operations. As a 

result, EBE preconditioners often require a higher total CPU time for the 

solution, unless some sophisticated techniques such as element amalgamation 

or regrouping are implemented, to further reduce the iteration counts (cited in 

Chan et al., 2001; Phoon et al., 2002). However, by doing so, the demand on 

memory also increases substantially. Thus, these preconditioners could not be 

competitive with the global preconditioners (in terms of runtime) on scalar 



 

 42 

computers. For this reason, this study focuses on global preconditioners only. 

On the other hand, EBE preconditioners are more attractive to the 

computations in a parallel environment.  

In most of the above studies, ill-conditioning of the Biot’s system due 

to smaller time step and low permeability has been stressed and suitable 

preconditioning strategies are discussed accordingly (see also Ferronato et al., 

2009; Gambolati et al., 2010). Ill-conditioning due to significant contrasts in 

material properties such as stiffness and/or permeability (e.g. soil-structure 

interaction problems) and its effective mitigation has rarely been studied, 

although the occurrence of such ill-conditioning has been pointed out by some 

researches. Recently, ill-conditioning due to contrasts in large stiffness, but in 

a different context, with the use of large penalty terms for the modeling of 

rock faults is discussed by Ferronato et al. (2008). The study suggested using 

either MCP or modMCP to mitigate such ill-conditioning. However, these 

preconditioners have their own demerits for the practical use as discussed in 

the preceding sections. 

2.3. Sparse storage of the matrix 

The finite element descritization of large-scale problems (3D analyses) 

generally leads to sparse matrices of high order in which more than ninety per 

cent of the entries are zeros (e.g. Papadrakakis, 1993a). If the full matrix 

(including those zero entries) is needed to be stored, the demand of storage 

will prohibitively be large. Hence, sparse storage schemes are used in this 

thesis to store the matrices. Since, in Fortran, multidimensional arrays are 

referenced in column-major order (Intel Fortran Guide), the CSC (compressed 



 

 43 

sparse column) storage is used wherever possible. CSR (compressed sparse 

row) storage is also used sparingly (particularly for ILU subroutines). This is 

because the available codes of ILU subroutines are encoded in CSR format 

(Saad, 1994a). See Appendix A for more details about the storage schemes.  

2.4. Convergence criteria 

The obvious difference between iterative solvers and direct solvers is that the 

former provides an approximate solution with an “acceptable” approximate 

solution of Equation (1.1) while the latter gives an exact solution. That 

acceptable approximate solution depends on the adopted convergence 

(stopping) criterion and the prescribed tolerance. A convergence criterion is an 

essential component of an iterative solver, which determines when to stop the 

iteration process with a reasonably acceptable approximation. Stopping 

iterations prematurely may lead to an inaccurate solution while prolonged 

iterations may increase CPU runtime without a proportionate gain in accuracy. 

Hence, a suitable convergence criterion and tolerance is of paramount 

importance for a reliable solution. 

A good convergence criterion stops the iteration process when the 

solution is identified as acceptable enough and controls the maximum iteration 

time. Ideally we would like to stop when the magnitudes of entries of the error 

ek = xk – x fall below a user-supplied threshold (tolerance), where xk is the 

approximate solution vector of (1.1) after k-th iteration and x is the exact 

solution vector. The relative error norm criterion is: 

 itktolstop
xx

xx

e

e
R kk

E max_,,2,1,_
||||

||||

||||

||||

00

K=≤
−

−
==  (2.28) 



 

 44 

where 0x  is the initial guess of the solution and 2-norm is often used, i.e. 

2|| || T
v v v=  for any vector v . max_it and stop_tol are user specified 

parameters. The integer ‘max_it’ is the maximum number of iterations the 

algorithm will be permitted to perform and the real number ‘stop_tol’ 

measures how small the user wants the residual rk = Axk – b (or the error ek) of 

the ultimate solution xk to be (Barrett et al., 1994). More details about stop_tol 

are discussed shortly. But, RE is hard to estimate directly because the exact 

solution x is not known a priori. Thus, the residual rk is commonly used to 

measure the error, which is more readily computed. However, the above 

criterion (2.28) based on exact solution determined post-analysis is usually 

used as a ‘theoretical’ benchmark to gauge the effectiveness of other 

alternative practical convergence criteria (e.g. Lee et al., 2002; Chen and 

Phoon, 2009). One commonly used convergence criterion is the relative 

‘improvement’ norm (Smith and Griffiths, 1997; Smith and Wang, 1998; 

Smith and Griffiths, 2004), defined as: 

 itktolstop
x

xx
R

k

kk

i max_,,2,1,_
||||

|||| 1
K=≤

−
=

∞

∞−  (2.29) 

The obvious advantage of this criterion is that it only depends on the 

approximate solutions which are outputs of the iterative methods. However, Ri 

was found to have dramatic local oscillations for ill-conditioned linear systems  

(such as those from consolidation analyses) which may lead to premature 

termination of an iterative solver (Lee et al., 2002).  Chen and Phoon (2009) 

concluded that the reasons for such oscillations of Ri are the complex 

eigenvalues of the preconditioned matrix and cautioned the use of Ri. It is 

common to have complex eigenvalues of the preconditioned matrices when 



 

 45 

the symmetric indefinite linear system (1.1) is preconditioned by GJ or 

MSSOR (see, for example, Chen et al., 2006). A numerical experiment is 

presented in the subsequent Section to further validate the above statement. 

Another convergence criterion routinely used in numerical analyses is the 

relative ‘residual’ norm (Barrett et al., 1994; Saad, 1996; Mroueh and 

Shahrour, 1999; Gambolati et al., 2001; Lee et al., 2002; Phoon et al., 2002; 

van der Vorst, 2003), defined as: 

 itktolstop
Axb

Axb

r

r
R kk

r max_,,2,1,_
||||

||||

||||

||||

20

2

20

2
K=≤

−

−
==  (2.30) 

If x is the displacement vector, then Rr in k-th iteration is, in effect, a relative 

measure of the out-of-balance force remaining after k iterations (Lee et al., 

2002). The numerical studies of different convergence criteria on various 

geotechnical problems by Lee et al. (2002), and Chen and Phoon (2009) 

suggested that Rr is more reliable than Ri. The study by Chen and Phoon 

suggested that if Ri were selected as the convergence criterion, the stop_tol 

value of significantly smaller than 10
-6 

should be used in practical finite 

element computations. However, the stop_tol = 10
-6 

appears to be reasonable 

for Rr. A numerical experiment for a simple footing problem is presented in 

the subsequent Section. For more details, see (Lee et al., 2002; Chen and 

Phoon, 2009). Several other criteria are also being used in other applications. 

For more details of these, the reader is referred to  (Barrett et al., 1994; Arioli, 

2004). The study of all these is beyond the scope of this thesis. 

The obvious disadvantage of Rr is that the convergence is strongly 

dependent on the initial guess x0. However, in the absence of no good initial 

guess, the usual practice is to choose x0 = 0. In this study too, zero initial 



 

 46 

guess, i.e. x0 = 0, is adopted. Since 
k k

r Ae=  or ek = A
-1

rk, the criterion has the 

following error bound: 

 1 1

0|| || || || || || _ || || || ||
k k

e A r stop tol A r
− −≤ ⋅ ≤ ⋅ ⋅  (2.31) 

Another user specified parameter which controls the error bound is ‘stop_tol’. 

The stop_tol indicates the approximate uncertainty in the entries of A and b 

(1.1) relative to ||A|| and ||b||, respectively. For example, choosing stop_tol = 

10
-6

 means that the user considers the entries of A and b to have errors in the 

range ±10
-6 

||A|| and ±10
-6 

||b||, respectively. The algorithm will compute x no 

more accurately than its inherent uncertainty warrants. Barrett et al. (1994) 

recommended that the user should choose stop_tol to be less than 1 and 

greater than the machine precision ε (on a machine with IEEE Standard 

Floating Point Arithmetic, ε = 2
-24

 ≈ 10
-7

 in single precision, and ε = 2
-53

 ≈ 10
-

16
 in double precision). The numerical results on a typical geotechnical 

problem in the subsequent Section suggest that the stop_tol = 10
-6

 is quite 

sufficient to attain the approximate solution to be close to the exact solution. 

Hence, a global stop_tol = 10
-6

 is adopted for this study.  

A recent study on various convergence criteria (Chen and Phoon, 

2009) also suggests that a decoupled or separated residual norm criteria (for 

systems involving two or more types of variables, e.g. displacement and pore 

pressure variables in coupled consolidation equations) can be an attractive 

alternative to the global residual norm criterion because the 

separated/decoupled residual vectors are shorter than the global vector. 

However, the evaluation of decoupled criteria will cost an additional 

computation, and hence, checking these criteria for an interval of n-th iteration 



 

 47 

is recommended to be practical. For this reason, this criterion shall not be 

considered in this study. 

2.4.1. Numerical experiment 

Figure 2.3 shows a typical footing problem resting on two different soil 

profiles. The material is assumed to be linear elastic with an effective 

Poisson’s ratio ν′ = 0.3. Different material properties (Table 2.1) are 

considered to see their effect on the convergence behavior with different 

convergence criteria. The symmetric quadrant of the footing of 10 m cube 

spatial domain is discretized using 20-noded solid elements coupled with 8-

noded fluid elements into 8×8×8 finite element mesh. A few points in the 

mesh (e.g. points: a1, a2, and a3) are marked for the settlement comparison 

with different convergence criteria. The ground water is assumed to be at the 

ground surface and is in hydrostatic condition at the initial stage.  The top 

surface is free in all directions and free draining with pore pressures assumed 

to be zero. The base of the mesh is assumed to be fixed in all directions and 

impermeable. The movement of the side face boundaries is constrained in the 

perpendicular direction, but is free in in-plane directions. A uniform pressure 

of 100 kPa is applied instantaneously over the first time step and the time 

increment is taken as 1t s∆ = .  

The convergence history with three different criteria for the footing 

problem with different material properties are shown in Figure 2.4. It can be 

seen from the Figure that the relative residual norm (Rr) closely tracks the 

relative error norm (RE), while the relative improvement norm (Ri) usually lies 

below the RE norm. As shown in Table 2.2, the general accuracy is quite poor 

with stop_tol = 1×10
-4 

when Ri is used as the stopping criterion. Even a 



 

 48 

tolerance of 1×10
-6

 is less reliable (Table 2.2). The greatest difficulties are met 

in stiff and low permeable porous media (see also Table 2.4). The only way to 

gain the accuracy with Ri is to use a more stricter tolerance, which is 

consistent to the finding of  Chen and Phoon (2009). However, this, in turn, 

will increase the computational cost. Hence, we discard the use of Ri in this 

study. 

Rr, on the other hand, usually lies on above the theoretical norm RE and 

tracks it more closely. As shown in Tables 2.3 and 2.4, if Rr is used as the 

stopping criterion, the error in the result implied by stop_tol = 1×10
-4

 is very 

tiny and is quite acceptable; however, their impact on the final result of a 

longer computation may be amplified if the system is very ill-conditioned and 

algorithm involves cancellations (small difference in the numbers). Hence, the 

stop_tol of 1×10
-6

 is selected to use in this study for the following reasons: 

• In general, the linear system (1.1) has to be solved repeatedly and with 

a generally variable time step ∆t because the analysis of a geotechnical 

problem usually involves several steps.  The accuracy of solution of 

one time step can affect the accuracy of the results of the subsequent 

steps, and ultimately the final solution. In such circumstances, the use 

of loose tolerance may reflect uncertainties in the final result after a 

long computation (e.g. 3D simulation). 

• The actual convergence behaviour usually depends on the problem, the 

preconditioner and the solver used (see, for example, Lee et al., 2002; 

Chen and Phoon, 2009). As this thesis deals with soil-structure 

interaction problems involving significant contrast in material 

properties, the resulting coefficient matrix is severely ill-conditioned, 



 

 49 

and oscillations in the convergence (even for Rr) of the preconditioned 

solvers are likely to occur. This is particularly true when the 

preconditioner is not a very close approximation of A
-1

. Thus, it is 

more prudent to use a stricter tolerance (i.e. 1×10
-6

) to avoid any 

potential risk of terminating the iteration prematurely and producing 

inaccurate results. 

• Relatively more accurate solution using a tolerance of 1×10
-6

 than of 

1×10
-4

 (Table 2.4) can be achieved with a slight additional iteration 

counts (Table 2.5). Surprisingly, the additional cost is smaller for more 

ill-conditioned problems. 

A use of similar or even stricter tolerance has been reported in several other 

literatures as summarized in Table 2.6.   

 

2.5. Conclusions 

The review of the literatures show that the development of a suitable 

preconditioner is an active area or several preconditioning strategies have been 

suggested recently with a particular focus on ill-conditioned Biot’s 

consolidation equations. Some of the key findings are as follows: 

• Much of the emphasis has been given to the ill-conditioning of the 

Biot’s system due to small time steps and/or low permeability of the 

material. 

• Preconditioners ranging from a simple diagonal to a complex 

constrained preconditioner requiring several user-specified parameters 

have been proposed. 



 

 50 

• Although some authors have recognized the worsening condition of the 

system due to significant contrasts in stiffness of the materials, almost 

no or less attention has been paid to effectively address such an ill-

conditioning with only one paper recently (Ferronato et al., 2008). 

• Block diagonal preconditioners have proven to be resilient and 

competitive (in terms of runtime) to more complex constrained 

preconditioners, and yet remain memory efficient with easier 

implementation. Hence, we will emphasis more on block diagonal 

preconditioners in this study. 

• The relative residual norm criterion with a tolerance of 1×10
-6

 as the 

stopping criterion seems quite reasonable with sufficient accuracy in 

the solution using iterative methods. Hence, we adopt this as the 

convergence criterion in this study. 



 

 51 

 

Figure 2.1. Guideline for the selection of preconditioned iterative methods. 

Is the matrix 

A 

symmetric? 

Is A positive 

definite? 
Is 

T
A v  easy to 

compute? 

QMR, 

BiCG 

Is the storage a 

problem? 

BiCGSTAB, 

TFQMR, 

CGS, 

GMRES(m) 

GMRES 

Is the 

preconditioner 

symmetric and 

 positive 

definite? 

MINRES, 

SYMMLQ 

SQMR, 

PCG?? 

PCG 

Y N 

Y 

Y 

Y 

Y 

N 
N 

N N 



 

 52 

 

Figure 2.2. Flow chart of applying sparse preconditioned iterative method in 

FE analysis (after Chen, 2005). 

For all elements: 

For each generated element stiffness matrix, store 

the nonzero entries and their global index (e.g. row 

and column number) into three vectors:  

iebea, jebea and ebea. 

End for 

 

Set up global matrix in CSR (or CSC) storage: 

Sort the element level three vectors: iebea, jebea 

and ebea. Add them up to form  icsra, jcsra and 

csra (or icsca, jcsca and csca) 

 

Form Preconditioner 

 

For all time steps of load increments: 

Apply preconditioned iterative method to solve the 

linear system 

End for 

 

Obtain the displacements and stresses at each 

node and gauss point, respectively 

 



 

 53 

 
 

Figure 2.3. 8×8×8 mesh: A typical footing problem. 

 

 

  

7 m 

3 m Material 1 

Material 2 

10 m 10 m 

0.1 MPa 

a1 

a2 

a3 



 

 54 

 

0 200 400 600 800
Iteration count

10
-15

10
-13

10
-11

10
-9

10
-7

10
-5

10
-3

10
-1

10
1

V
ar

io
u
s 

N
o
rm

s

Rr

RE

Ri

0 200 400 600 800 1000
Iteration count

10
-15

10
-13

10
-11

10
-9

10
-7

10
-5

10
-3

10
-1

10
1

V
ar

io
u
s 

N
o
rm

s

Rr

RE

Ri

0 400 800 1200
Iteration count

10
-15

10
-13

10
-11

10
-9

10
-7

10
-5

10
-3

10
-1

10
1

V
ar

io
u
s 

N
o
rm

s

Rr

RE

Ri

0 400 800 1200 1600
Iteration count

10
-15

10
-13

10
-11

10
-9

10
-7

10
-5

10
-3

10
-1

10
1

10
3

V
ar

io
u

s 
N

o
rm

s

Rr

RE

Ri

0 400 800 1200 1600
Iteration count

10
-15

10
-13

10
-11

10
-9

10
-7

10
-5

10
-3

10
-1

10
1

10
3

V
ar

io
u
s 

N
o
rm

s

Rr

RE

Ri

0 400 800 1200 1600
Iteration count

10
-15

10
-13

10
-11

10
-9

10
-7

10
-5

10
-3

10
-1

10
1

10
3

V
ar

io
u

s 
N

o
rm

s

Rr

RE

Ri

 

Figure 2.4. Behavior of various norms using GJ-SQMR for different material 

properties: (a) Conso1; (b) Conso2; (c) Conso3; (d) Conso4; (e) Conso5; and 

(f) Conso6. 

(a) (b) 

(c) (d) 

(e) (f) 



 

 55 

Table 2.1.  Material properties for the consolidation analysis of the footing. 

Test 

case 
1E′   

(MPa) 
2E′   

(MPa) 
21 EE ′′  1k  

(m/s) 
2k  

(m/s) 
21 kk  t∆   

(s) 

Conso1 1 1 1 1.00E-03 1.00E-03 1 1.0 

Conso2 1 1 1 1.00E-09 1.00E-09 1 1.0 
Conso3 100000 1 100000 1.00E-03 1.00E-03 1 1.0 
Conso4 100000 1 100000 1.00E-09 1.00E-09 1 1.0 
Conso5 100000 1 100000 1.00E-03 1.00E-12 1.00E+09 1.0 
Conso6 100000 1 100000 1.00E-09 1.00E-12 1.00E+03 1.0 

 

 

Table 2.2.  Computed settlements based on relative improvement norm (Ri) 

criterion.  

   stop_tol = 1×10
-4

 stop_tol = 1×10
-6

 

Test case 

Points 

in 

Figure 

2.3 

Actual 

settlement
# 

(m) 

Settlement 

(m) 

Error 

(%) 

Settlement 

(m) 

Error 

(%) 

Conso1 a1 -1.5238E-01 -1.4485E-01 -4.94 -1.5238E-01 0.00 

 a2 -3.5547E-02 -2.8091E-02 -20.98 -3.5547E-02 0.00 

 a3 -9.4622E-03 -5.7640E-03 -39.08 -9.4615E-03 -0.01 

       

Conso2 a1 -1.3934E-01 -1.2836E-01 -7.88 -1.3934E-01 0.00 

 a2 -3.4532E-02 -2.3061E-02 -33.22 -3.4526E-02 -0.02 

 a3 -9.1328E-03 -3.5013E-03 -61.66 -9.1300E-03 -0.03 

       

Conso3 a1 -3.5139E-05 -2.4155E-05 -31.26 -3.5138E-05 0.00 

 a2 -3.3922E-05 -2.2938E-05 -32.38 -3.3921E-05 0.00 

 a3 -1.7827E-06 -1.3193E-06 -25.99 -1.7926E-06 0.56 

       

Conso4 a1 -3.4871E-06 -1.0482E-06 -69.94 -4.9583E-06 42.19 

 a2 -2.5529E-06 -2.2377E-07 -91.23 -4.0325E-06 57.96 

 a3 -9.6137E-07 -2.0919E-08 -97.82 -1.7415E-06 81.15 

       

Conso5 a1 -3.4455E-05 -4.5300E-06 -86.85 -3.3882E-05 -1.66 

 a2 -3.3238E-05 -3.3383E-06 -89.96 -3.2664E-05 -1.73 

 a3 -3.6133E-06 -4.6812E-07 -87.04 -3.6313E-06 0.50 

       

Conso6 a1 -3.4871E-06 -1.0482E-06 -69.94 -4.9659E-06 42.41 

 a2 -2.5529E-06 -2.2377E-07 -91.23 -4.0403E-06 58.26 

 a3 -9.6137E-07 -2.0919E-08 -97.82 -1.7424E-06 81.24 
 

#
 Actual settlement is based on the Frontal solver (GeoFEA, 2006). 

 

 



 

 56 

Table 2.3.  Computed settlements based on on relative residual norm (Rr) 

criterion. 

   stop_tol = 1×10
-4

 stop_tol = 1×10
-6

 

Test case 

Position 

in 

Figure 

2.3 

Actual 

settlement
# 

(m) 

Settlement 

(m) 

Error 

(%) 

Settlement 

(m) 

Error 

(%) 

Conso1 a1 -1.5238E-01 -1.5238E-01 0.00 -1.5238E-01 0.00 

 a2 -3.5547E-02 -3.5547E-02 0.00 -3.5547E-02 0.00 

 a3 -9.4622E-03 -9.4620E-03 0.00 -9.4622E-03 0.00 

       

Conso2 a1 -1.3934E-01 -1.3934E-01 0.00 -1.3934E-01 0.00 

 a2 -3.4532E-02 -3.4531E-02 0.00 -3.4532E-02 0.00 

 a3 -9.1328E-03 -9.1328E-03 0.00 -9.1329E-03 0.00 

       

Conso3 a1 -3.5139E-05 -3.5139E-05 0.00 -3.5139E-05 0.00 

 a2 -3.3922E-05 -3.3921E-05 0.00 -3.3922E-05 0.00 

 a3 -1.7827E-06 -1.7812E-06 -0.08 -1.7828E-06 0.01 

       

Conso4 a1 -3.4871E-06 -3.4871E-06 0.00 -3.4871E-06 0.00 

 a2 -2.5529E-06 -2.5529E-06 0.00 -2.5529E-06 0.00 

 a3 -9.6137E-07 -9.6129E-07 -0.01 -9.6137E-07 0.00 

       

Conso5 a1 -3.4455E-05 -3.4455E-05 0.00 -3.4455E-05 0.00 

 a2 -3.3238E-05 -3.3238E-05 0.00 -3.3238E-05 0.00 

 a3 -3.6133E-06 -3.6133E-06 0.00 -3.6133E-06 0.00 

       

Conso6 a1 -3.4871E-06 -3.4871E-06 0.00 -3.4871E-06 0.00 

 a2 -2.5529E-06 -2.5529E-06 0.00 -2.5529E-06 0.00 

 a3 -9.6137E-07 -9.6107E-07 -0.03 -9.6138E-07 0.00 
 

#
 Actual settlement is based on the Frontal solver (GeoFEA, 2006). 

 

 

 

Table 2.4.  Error norm of the solution. 

 Relative improvement norm (Ri) Relative residual norm (Rr) 

Test case stop_tol = 1×10
-4

 stop_tol = 1×10
-6

 stop_tol = 1×10
-4

 stop_tol = 1×10
-6

 

Conso1 1.60E-01 4.20E-05 2.75E-05 1.25E-07 

Conso2 2.39E-01 2.83E-04 3.56E-05 2.21E-07 

Conso3 8.51E-03 8.49E-07 5.32E-08 1.84E-09 

Conso4 1.99E-01 2.44E-02 9.25E-06 7.76E-08 

Conso5 2.05E-02 6.06E-04 2.41E-08 7.05E-10 

Conso6 1.99E-01 2.43E-02 1.72E-05 8.81E-08 

 

 



 

 57 

Table 2.5.  Iteration counts. 

 Relative improvement norm (Ri) Relative residual norm (Rr) 

Test case 

stop_tol  

= 1×10
-4

 

stop_tol  

= 1×10
-6

 

Increase 

in 

iteration 

count (%) 

stop_tol  

= 1×10
-4

 

stop_tol  

= 1×10
-6

 

Increase 

in 

iteration 

count (%) 

Conso1 113 263 132.74 266 345 29.70 

Conso2 90 250 177.78 283 368 30.04 

Conso3 370 478 29.19 500 574 14.80 

Conso4 45 397 782.22 595 678 13.95 

Conso5 232 437 88.36 548 626 14.23 

Conso6 45 397 782.22 599 676 12.85 

 



 

 58 

Table 2.6.  Tolerance values used in the literatures.  

S.N. Author(s) Convergence 

Criterion 

Tolerance 

value 

Problem description 

1 Chan et al. (2001) Rr 1×10
-3

 Linear system arising 

from Biot’s 

consolidation equations 

2 Bergamaschi et al. 

(2007); 

Bergamaschi et al. 

(2008) 

RE 1×10
-5

, 

1×10
-5

- 

1×10
-8

 

Linear system arising 

from Biot’s 

consolidation equations 

3 Mroueh and Shahrour  

(1999)  

Rr 1×10
-6

 soil-structure interaction 

problems 

4 Kayupov et al.  (1998)  Rr 1×10
-6

 analysis of mining and 

underground 

constructions 

5 Lee et al. (2002) Ri, Rr, RE 1×10
-6

 Linear system from 

drained, undrained, and 

consolidation analyses 

6 Phoon et al. (2002) 

Phoon et al. (2004);  

Toh et al. (2004); 

Chen et al. (2006); 

Chen et al. (2007); 

Toh and Phoon (2008) 

Rr 1×10
-6

 Linear system arising 

from Biot’s 

consolidation equations 

7 Augarde et al. (2006); 

Augarde et al. (2007) 

Rr 1×10
-6

 elastic and elasto-plastic 

problems  

8 Chen and Phoon (2009) Ri, Rr, RE 1×10
-6

 Linear system from 

drained, undrained, and 

consolidation analyses 

9 Ferronato et al. (2009) RE 1×10
-8

 Linear system arising 

from Biot’s 

consolidation equations 

10 Payer and Mang (1997)  Rr 1×10
-10

 analysis of tunnel 

excavation 

11 Ferronato et al. (2008) Rr 1×10
-10

 Faulted rocks with 

penalty approach 

12 Gambolati et al. 

(2002); 

Gambolati et al. (2010) 

Rr 1×10
-10

 Linear system arising 

from Biot’s 

consolidation equations 

13 Ferronato et al. (2001) Rr 1×10
-12

 Linear system arising 

from Biot’s 

consolidation equations 

14 Phoon et al. (2003) Rr 1×10
-14

 soil-structure interaction 

problems 

15 Gambolati et al. (2001) Rr 1×10
-15

 Linear system arising 

from Biot’s 

consolidation equations 

16 Gambolati et al. (2003) Rr Machine 

precision 

Linear system arising 

from Biot’s 

consolidation equations 



 

 59 

Chapter 3 

 

PERFORMANCE OF ILU0 VERSUS MSSOR 

FOR BIOT’S CONSOLIDATION EQUATIONS 
 

 

 

 

 

 

3.1. Introduction 

As discussed in Chapter 2, several preconditioners have been proposed for the 

efficient solution of Biot’s consolidation equations. Some have focused on 

cheaper diagonal preconditioners while others on memory intensive 

incomplete factorization preconditioners. For example, Phoon et al. (2002) 

derived the generalized Jacobi (GJ) preconditioner (2.10) based on Murphy et 

al.’s (2000) theoretical derivation of block diagonal preconditioner. However, 

observing GJ’s less satisfactory performance on heterogeneous soil profiles, 

Chen et al. (2006) proposed a modified SSOR (MSSOR) preconditioner 

(2.12). The latter was shown to have a better performance (in terms of 

iteration count and runtime) than the GJ with no extra memory demand.   

Alternatively, Gambolati and co-workers  (e.g. Ferronato et al., 2001; 

Gambolati et al., 2001, 2002, 2003) have focused on incomplete factorization 

preconditioners with Bi-CGSTAB solver (van der Vorst, 1992). Bi-CGSTAB 

was selected because of the nonsymmetric 2×2 block indefinite matrix derived 

from finite element discretization of Biot’s consolidation equations. Thus, it 



 

 60 

would be worth comparing the performance of MSSOR preconditioner to that 

of incomplete LU factorization with zero fill-ins (ILU0). This is because the 

MSSOR preconditioner does not include any extra term other than the native 

coefficient matrix A. Similarly, ILU0 prescribes the triangular factors L  and 

U that has the same sparsity pattern as the coefficient matrix A. In addition, 

both involve backward and forward triangular solutions in their application. 

Note that the ILU0 preconditioner is symmetric for the symmetric Biot’s 

system (2.1). 

As discussed in Section 2.1, symmetric Biot’s system is preferred over 

nonsymmetric ones. Hence, this study compares the performance of MSSOR 

and ILU0 preconditioners in conjunction with SQMR in relation to a number 

of factors: (i) problem size (N ≈ 55,000-300,000 degrees of freedom); (ii) 

nodal ordering; and (iii) soil conditions with the aid of a simple footing 

problem. The performance of GJ is also included for the completeness. 

Finally, these preconditioners are also compared for a pile group foundation 

problem for their effectiveness in soil-structure interaction problems.  

3.2. Numerical Results 

A simple footing problem resting on three different soil profiles is considered: 

Soil 1: homogeneous soft clay with clayE ′ = 1 MPa and coefficient of 

permeability, kclay = 10
-9

 m/s, 

Soil 2: homogeneous dense sand with sandE ′ = 100 MPa and coefficient of 

permeability, ksand = 10
-5

 m/s, 



 

 61 

Soil 3: heterogeneous soil consisting of alternate dense sand and soft clay with  

sandE ′ = 100 MPa, ksand = 10
-5

 m/s and  clayE ′ = 1 MPa, kclay = 10
-9

 m/s. 

The material is assumed to be linear elastic with an effective Poisson’s ratio, 

ν′ = 0.3. The symmetric quadrant of the footing of 10 m cube spatial domain is 

discretized using 20-noded solid elements coupled with 8-noded fluid 

elements as shown in Figure 3.1. The studied finite element mesh ranges from 

16×16×16 producing 55,280 DOFs to 28×28×28 producing 291,620 DOFs. 

Figure 3.2 shows a 20×20×20 finite element mesh used for homogeneous and 

heterogeneous soils. More details of finite element meshes are presented in 

Table 3.1.  

The ground water table is assumed to be at the ground surface and is in 

hydrostatic condition at the initial stage. The base of the mesh is assumed to 

be fixed in all directions and impermeable. Side face boundaries are 

constrained to move only in in-plane directions. The top surface is free in all 

directions with zero excess pore pressures. A uniform pressure of 100 kPa is 

applied instantaneously over the first time step and the time increment is taken 

as 1t s∆ = . 

Following indicators are used for the comparison of preconditioners: 

1) Number of iterations required to achieve a residual norm below 610− . 

The maximum iteration is limited to 5,000. 

2) CPU time required for the solution of the problem using SQMR solver  

3) RAM usage for the execution of the problem. 

The ILU0 and GJ preconditioners are applied in right preconditioning. Right 

preconditioning is chosen due to the fact that it does not modify the right hand 

side vector. The MSSOR preconditioner is applied in left-right 



 

 62 

preconditioning to exploit the Eisenstat trick (Eisenstat, 1981). For ILU 

factorization, the storage of full A in compressed sparse row (CSR) format 

(e.g. Saad, 1996) is required, while the implementation of GJ and MSSOR 

preconditioners requires the storage of upper half of symmetric A only in 

compressed sparse column (CSC) format (e.g. Chen et al., 2006). 

3.2.1. Effect of nodal ordering 

The convergence of iterative solver preconditioned with incomplete 

factorization preconditioner is related to the nodal ordering of the unknowns 

(e.g. Gambolati et al., 2001). This is so because dropping of fill-ins in 

incomplete factorization is sensitive to the sparsity structure of A which 

depends very much on the nodal ordering of unknowns.  

In this study, the effect of three different nodal orderings is studied. In 

nodal ordering 1, all the unknown (displacements and pore pressure) variables 

at each node are ordered in sequence. We termed this ordering as ‘natural 

ordering’. The nodal ordering 2 arranges the variables so that displacement 

unknowns precede pore pressure unknowns. In this case, the coefficient matrix 

takes the 2×2 block form (2.1). Ordering 3 is obtained by applying the reverse 

Cuthill-McKee or RCM technique (e.g. George and Lui, 1981) on ordering 1. 

In summary, the studied nodal orderings are: 

1) Natural ordering: Nat = 

[ ]1 1 1 1 2 2 2 2, , , , , , , , , , , ,N N N Nx y z p x y z p x y z pK  

2) Block ordering: Blk = 

[ ]1 1 1 2 2 2 1 2, , , , , , , , , , , , ,N N N Nx y z x y z x y z p p pK K  

3) Reverse Cuthill-McKee algorithm applied on natural ordering: R-Nat 



 

 63 

where xi, yi, zi are the displacement unknowns in x-, y-, z-directions, 

respectively, pi is the excess pore pressure unknown at node i, and N is the 

total dimension of A. A plot of the sparsity pattern of A for the above orderings 

is shown in Figure 3.3. The ordering where all displacements in x-direction 

(e.g. x1, x2, …) come first followed by displacements in y-direction, z-

direction, and then pore pressures is not addressed in the present study since it 

appeared to be unattractive in the past studies (e.g. Gambolati et al., 2001; 

Chen et al., 2006). Similarly, no appreciable difference between application of 

RCM algorithm on nodal ordering 1 or 2 was observed; hence, the latter is not 

included. The RCM algorithm usually compresses the matrix bandwidth.  

However, its application cannot make the bandwidth smaller than ordering 1 

in this problem (see Figure 3.3) but, it does help in improving the quality of 

incomplete factorizations (see results latter). Fortran90 subroutines for reverse 

Cuthill McKee algorithm are obtained from  (Burkardt, 2003). The resulting 

permutation matrix (or vector) is used to permute A and the right hand side 

vector via the subroutines from SPARSKIT (Saad, 1994a), which is originally 

used for ILU0 factorization. The original ILU0 code is modified to produce 

TLDL  for symmetric A , where L  is unit lower triangle and D  is the 

diagonal consisting of pivots. The solution process with reordering of 

variables can generally be divided into three steps (George and Lui, 1981): 

(a) Re-ordering: Permute symmetrically the rows and columns of 

matrix A  using the permutation matrix generated from RCM 

algorithm. Suppose the permutation matrix is P , then the re-

ordered matrix is TPAP . 



 

 64 

(b) Numerical factorization: Perform the incomplete LU factorization 

so that  TPAP  = TLDL . 

(c) Triangular solution: Solve TLDL xP  = bP  for xP  by solving two 

triangular linear systems. Then recover x  from xP . 

Numerical results are summarized in Tables 3.2-3.4. Note that ILU0 

preconditioned SQMR failed to converge in naturally ordered linear system 

for the soil profiles 1 and 3 (see Table 3.2). Figure 3.4 shows a typical pattern 

of relative residual norms when ILU0 is unstable. However, the same problem 

converges when the variables are ordered in the block form. The convergence 

is further improved (about 2 to 8 times) by reordering the variables with RCM 

algorithm prior to factorization (if it converges). Surprisingly, RCM ordering 

can be counter-productive.  For example, for the 20×20×20 mesh containing 

soils 1 and 3, the block ordering system can converge but the RCM system 

cannot. Physically, the lower permeability in soils 1 and 3 will usually involve 

smaller entries in the flow equations. The accuracy of floating point arithmetic 

may be a factor in these problems. This issue is studied in the next Section. 

By distinction, the MSSOR and GJ-preconditioned systems (Tables 3.3 

and 3.4) are less sensitive to the ordering in comparison to ILU0 

preconditioned system. These systems are usually superior when the variables 

are ordered in the natural ordering, for all soil conditions, consistent to the 

findings of Chen et al. (2006). The 2×2 block and the RCM ordered forms are 

about 10-20% more expensive than the natural ordering. For ILU0 system to 

be competitive, this RCM step is necessary.  There is an additional cost 

associated with RCM, which is given in parenthesis in Table 3.2.  The 

practical observation here is that the GJ and MSSOR-preconditioned systems 



 

 65 

are robust.  These preconditioners do not exhibit convergence problems over 

the range of problems studied and they are not much sensitive to the ordering 

scheme. Hence, it can be concluded that although RCM ordering leads ILU0 

to converge faster than the GJ and MSSOR preconditioned systems, ILU0 

preconditioner may fail to converge in some cases.  At present, no clear 

guidelines are available to advise the user on when such breakdowns will 

occur. 

3.2.2. Problems with ILU factorization and their stabilization 

Chow and Saad (1997) have successfully applied ILU preconditioners to many 

indefinite matrices. However, according to their numerical experience, the 

failure rate of ILU preconditioners is still too high and too unpredictable for 

them to be useful as black-box library software for general matrices. The 

common problems which can cause failure of ILU preconditioners are (e.g. 

Barrett et al., 1994; Saad, 1996; Chow and Saad, 1997):  

1) Inaccuracy due to very small pivots or zero pivots,  

2) Unstable triangular solves, and  

3) Inaccuracy due to dropping of fill-ins.  

These problems may occur together or one problem may mask another. Chow 

and Saad (1997) proposed three statistics to be monitored during factorization 

or after the factorization has been computed in order to understand what can 

happen in an incomplete factorization (see Table 3.5). The first statistic 

‘condest’ measures the stability of triangular solves. This statistic is also a 

lower bound for ||( UL )
-1

||∞ and indicates a relation between unstable 

triangular solves and poorly conditioned L  and U  factors. We refer to this 

statistic as the condition estimate of ( UL )
-1

. The second statistic ‘1/smallest 



 

 66 

pivot’ is needed to help interpret this condition estimate. The condition 

estimate will certainly be poor if there are very small pivots. If both, first and 

second, quantities are about the same size, then we assume that ||( L U )
-1

||∞ is 

large due to at least one very small pivot. If ‘condest’ is much larger than 

1/pivot then we assume that recurrences associated with the triangular solves 

are unstable. The third statistic is the size of the largest element in the L  and 

U  factors. A large value of this statistic in relation to the size of the elements 

in A indicates an unstable and thus inaccurate factorization. 

According to Chow and Saad, these statistics are usually meaningful 

when their values are very large, e.g. on the order of 10
15

. Extremely large 

values, particularly of the condition estimate, can be used to predict when the 

ILU0 preconditioner will fail. When all three statistics are reasonably small 

and the ILU preconditioner does not help an iterative method converge, their 

experience suggests that the cause of failure is inaccuracy due to dropping of 

fill-ins. Figure 3.5 describes how to interpret the abovementioned statistics. 

Note that there are no cases of small condest and large 1/pivot. 

The ILU statistics and possible cause of failure of the ILU0 

preconditioned system for soil 1 (clay) are presented in Table 3.6. As shown in 

the Table, a very large ‘condest’ value (>10
30

) for naturally ordered system 

indicates that the factorization is useless. The ILU0 preconditioned system can 

also fail when one of the smallest pivot is in the order of 10
-7

 (e.g. RCM 

ordered system in 20×20×20 mesh). For the latter case, ILU factorization with 

partial fill-ins may improve the results (e.g. Gambolati et al., 2001). The 

values of ILU statistics for sand (soil 2) are found to be small (Table 3.7) 

because no failure was observed for this soil condition. It could be because the 



 

 67 

system is well conditioned for materials involving high permeability 

(Ferronato et al., 2001). However, the similar ILU statistics for heterogeneous 

soil 3 and for homogeneous soil 1 (compare Tables 3.8 and 3.6) could be 

because of the presence of same low permeable clay on both cases.  

Several ways have been proposed in the literatures to stabilize the ILU 

factorization, including diagonal perturbation of the matrix (e.g. Kershaw, 

1978; Manteuffel, 1980) before or during the factorization when a small or 

negative pivot is encountered, pivoting, and reordering of the variables. The 

effect of reordering the variables using RCM algorithm has already been 

presented in Table 3.2. A preliminary left and right scaling of the matrix can 

also be implemented in order to improve the stability of factorization 

(Gambolati et al., 2003). Another way is to simply replace the smaller pivots 

by larger values (e.g. Chow and Saad, 1997).  

This study follows the stabilization technique suggested by Chow and 

Saad (1997), in which the stabilization is carried out by replacing the pivots 

whose absolute values are smaller than a parameter ‘threshold’ by itself with 

the original sign of the pivot during factorization. Parametric studies of the 

‘threshold’ values (Figure 3.6) shows a reduction of the condest values (one of 

the prominent ILU statistics) with appropriate threshold values. However, the 

number of iteration counts can be significantly large beyond a limited range of 

threshold values as shown in Figure 3.6. A reasonably good choice of 

threshold value ranges from 0.008 – 0.07 for both soils 1 and 3. It is possible 

that the ranges for soils 1 and 3 are similar because the same low permeability 

clay (kclay) appears in both cases. Also, the number of iteration counts 

significantly differs for the same range of values of ILU statistics; for 



 

 68 

example, the iteration counts and ILU statistics for block ordered and RCM 

ordered systems in Tables 3.6-3.8. Hence, although ILU statistics are useful to 

diagnose the failure, they may not be sufficient to guide users for optimal 

performance of ILU0. It is postulated that the determination of proper 

threshold value (stabilization parameter) is largely problem dependent (mesh 

and soil type). For this reason, Toh et al. (2004) noted that “this optimal 

balance can only be identified through numerical experiments – a luxury that 

practitioners can ill-afford and completely self-defeating if the goal is to solve 

a problem in the shortest time”.  

3.2.3. MSSOR versus ILU0 and GJ preconditioners 

The performance of each preconditioning in its most favorable form is 

compared. With this, the ILU0 preconditioning includes the stabilized ILU0 

with threshold value 0.009, 0.0009, and 0.02 for soils 1, 2, and 3, respectively. 

RCM ordering prior to factorization is adopted. The GJ and MSSOR 

preconditioners are applied in naturally ordered form. 

Figure 3.7 shows the iteration count and the total CPU time required 

by each preconditioning. For comparison purpose, the results are scaled with 

respect to MSSOR. From the practical yardstick of minimizing total runtime, 

stabilized ILU0 is only slightly effective than MSSOR when the soil is 

homogeneous (soils 1 and 2). However, it can be up to 2 times faster than 

MSSOR for heterogeneous soils (e.g. soil 3). The faster convergence of 

stabilized ILU0 is mainly because the number of iteration counts for ILU0 can 

be 50-70% smaller than that for MSSOR. This faster rate can be explained by 

the eigenvalue distribution of preconditioned matrices, as shown in Figure 3.8. 



 

 69 

The Figure also shows why GJ performs poorly in comparison to MSSOR or 

stabilized ILU0.  

In terms of cost of construction of preconditioner, ILU0 is obviously 

more expensive than GJ or MSSOR preconditioner which is simply a diagonal 

construction. The ILU0 preconditioner demands more memory due to full 

storage of A , secondary storage requirement for RCM ordering as well as for 

the triangular factors. Our numerical experiments show that the RAM required 

by ILU0 is about 75% more than that of GJ or MSSOR (see Figure 3.9).  

3.2.4. Performance of preconditioners on a pile group 

problem 

This Section compares the performance of above preconditioners for a pile 

group problem. For this, consolidation analysis of a 9-pile group located in 

homogeneous soft clay is considered. The same threshold value (0.009) is 

used for stabilized ILU0 preconditioner because the same soft clay (soil 1; that 

was considered for the shallow footing problem in the preceding Sections) is 

used for this example as well. Figure 3.10 shows the 12×12×12 finite element 

mesh descritization used for a symmetric quadrant of the problem. The mesh 

involves 1,728 elements and 23,604 unknowns (21,576 displacement DOFs, 

and 2,028 pore pressure DOFs). The pile element is also assumed to be 

consolidation element with Young’s modulus pE ′  = 3,000 to 30,000 MPa, 

coefficient of hydraulic permeability kp = 10
-17

 m/s (almost impermeable), and 

Poisson’s ratio ν′ = 0.15. A uniform pressure of 100 kPa is applied to the 7×7 

m
2
 pile-group area. Other boundary conditions are similar to the one explained 

in Section 3.2. 



 

 70 

As shown in Figure 3.11, the stabilized ILU0 converges in much fewer 

iteration counts than the GJ or MSSOR preconditioners. Because of this, the 

stabilized ILU0 may save up to 30% CPU time in comparison to MSSOR 

preconditioner, while GJ can be slower by more than 2 times in comparison to 

MSSOR. However, the performance of each preconditioner degrades with 

increasing pile-soil stiffness contrasts. This is similar to the findings of Chen 

et al. (2006). Hence, it can be concluded that the application of ILU0 may be 

preferred over MSSOR under the following conditions: (a) instability problem 

of ILU can be resolved effectively, (b) optimum threshold value is known a 

priori from the solution of similar problems, and (c) RAM constraint is not an 

issue. 

The ground surface settlement profile for the above loading is as 

shown in Figure 3.12. The maximum settlement occurred at the centre of pile 

group is about 0.1 m after first time step of load application with pile stiffness 

of pE ′  = 30,000 MPa . 

3.3. Conclusions 

The numerical performance of ILU0 and MSSOR was compared for the FE 

solution of coupled consolidation problems over a range of soil conditions, 

nodal ordering of variables, and for a soil-structure interaction problem. It is 

observed that a straightforward application of incomplete factorization 

preconditioner may lead to convergence failure. In contrast, MSSOR is robust 

enough to converge over the range of problems studied, albeit, with a higher 

iteration count than ILU0. Ordering of variables has a significant impact on 

ILU0 and reordering the variables by Reverse Cuthill-McKee (RCM) 



 

 71 

algorithm prior to factorization helps to reduce convergence failures but 

cannot eliminate such failures completely. Various statistics proposed by 

Chow and Saad (1997) were found to be helpful in diagnosing the failure of 

ILU0 factorizations. However, no perfect guidelines exist. It was demonstrated 

that the factorization could be stabilized by perturbation of the pivots. 

However, the determination of a proper threshold value (stabilization 

parameter) is largely problem dependent (mesh and soil type). This optimal 

balance can only be identified through numerical experiments – a luxury that 

practitioners can ill-afford and completely self-defeating if the goal is to solve 

a problem in a shortest time. On the other hand, the stabilized ILU0 

preconditioned system (if it converges) is up to two times faster than the 

MSSOR preconditioned system, particularly in heterogeneous problems. Thus, 

it can be concluded that the application of ILU0 may be preferred over 

MSSOR under the following conditions: (a) instability problem of ILU can be 

resolved effectively, (b) optimum threshold value is known a priori from the 

solution of similar problems, and (c) RAM constraint is not an issue. 

 



 

 72 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Twenty-noded displacement finite element coupled with eight-

noded fluid elements. 

 

Displacement nodes 

Pore pressure nodes 



 

 73 

 

 

Figure 3.2. 20×20×20 finite element mesh of a symmetric quadrant footing 

(after Chen, 2005): (a) homogeneous soils 1 and 2, (b) layered soil 3. 

 

(a) 

(b) 



 

 74 

 

  
(a) 

 
(b) 

 
 (c) 

Figure 3.3. Sparsity pattern of A in: (a) Natural ordering, (b) Block ordering, 

and (d) Reverse Cuthill-McKee technique on natural ordering. 



 

 75 

0 1000 2000 3000 4000 5000
Iteration counts

0.1

1

10

100

1000

10000

R
el

at
iv

e 
re

si
d
u

al
 n

o
rm

ILU0 (unstable)

 

Figure 3.4. Typical relative residual norm of an unstable ILU0. 



 

 76 

 

  Condest 

  Small Large 

S
m

al
l 

 

 

Inaccuracy due 

to dropping 

 

 

Unstable 

triangular 

solve 
1

/p
iv

o
t 

L
ar

g
e 

 

 

 

Very small 

pivots 

 

 

 

Figure 3.5. Interpretation of ILU statistics  (after Chow and Saad, 1997). 



 

 77 

0.0001 0.001 0.01 0.1
Thresh value

0

200

400

600

800

It
er

at
io

n
 c

o
u
n
ts

ILU0 (R-Nat)

Soil 1

Soil 2

Soil 3

0.0001 0.001 0.01 0.1
Thresh value

10
1

10
6

10
11

10
16

10
21

10
26

10
31

10
36

10
41

10
46

C
o
n
d
es

t

ILU0 (Nat) - soil 1

ILU0 (Nat) - soil 2

ILU0 (Nat) - soil 3

ILU0 (R-Nat) - soil 1

ILU0 (R-Nat) - soil 2

ILU0 (R-Nat) - soil 3

 

Figure 3.6. 20×20×20 mesh: Effect of threshold value on convergence of 

stabilized ILU0 for different soil profiles. 

 



 

 78 

1.0x10
5

2.0x10
5

3.0x10
5

Total DOFs

0

1

2

3

4

5

6

 
It

er
at

io
n
 c

o
u
n
t 
o
f 

st
ab

-I
L

U
0
 o

r 
G

J

 I
te

ra
ti
o

n
 c

o
u
n

t 
o
f 

M
S

S
O

R
 

stab-ILU0 - soil 1

stab-ILU0 - soil 2

stab-ILU0 - soil 3

GJ - soil 1

GJ - soil 2

GJ - soil 3

1.0x10
5

2.0x10
5

3.0x10
5

Total DOFs

0

1

2

3

4

5

6

 
C

P
U

 t
im

e 
o
f 

st
ab

-I
L

U
0
 o

r 
G

J

C
P

U
 t
im

e 
 o

f 
M

S
S

O
R

 

 

Figure 3.7. Performance of ILU0 and GJ preconditioners with respect to 

MSSOR preconditioner for different soil conditions. 



 

 79 

-0.8

-0.4

0

0.4

0.8

im
ag

in
ar

y
(λ

)

-0.8

-0.4

0

0.4

0.8

im
ag

in
ar

y
(λ

)

0 1 2 3 4 5 6

real(λ)

-0.8

-0.4

0

0.4

0.8

im
ag

in
ar

y
(λ

)

|R(λ)|max = 2.4082

|R(λ)|min  = 0.2239

|R(λ)|max = 1.2578

|R(λ)|min  = 0.0138

|R(λ)|max = 5.4477

|R(λ)|min  = 0.0132

 

Figure 3.8. Eigenvalue distribution of preconditioned matrices with different 

preconditioners: (a) stab-ILU0; (b) MSSOR; and (c) GJ. 

(a) 

(b) 

(c) 



 

 80 

Mesh

0

400

800

1200

1600

R
A

M
 (

M
B

)

Total DOFs

GJ

MSSOR

stab-ILU0

16×16×16 20×20×2024×24×24 28×28×28

55,280 107,180 184,296 291,620

 

Figure 3.9. RAM usage by preconditioners with SQMR solver. 



 

 81 

 

  

Figure 3.10. 12×12×12 mesh: 3D FE descritization of a quadrant symmetric 9-

pile group foundation in a homogeneous clay (soil 1) with a uniform load 

(after Chen et al., 2007). 

 

10 m 

10 m 

10 m 



 

 82 

10
0

10
1

10
2

10
3

10
4

10
5

Pile-soil stiffness ratio (Ep
'/Es

')

0

4

8

12

16

20

 
It

er
at

io
n

 c
o
u
n
t

 I
te

ra
ti
o
n
 c

o
u
n
t 
o

f 
M

S
S

O
R

 a
t 

 E
p

' /E
s'  =

 1
  

 

10
0

10
1

10
2

10
3

10
4

10
5

Pile-soil stiffness ratio (Ep
'/Es

')

0

4

8

12

 
C

P
U

 t
im

e

C
P

U
 t
im

e 
o
f 

M
S

S
O

R
 a

t 
 E

p
' /E

s'  =
 1

  
 

                         (RAM)

GJ                61

MSSOR       62

stab-ILU0   105

 

Figure 3.11. Performance of preconditioners for 9-pile group problem on 

homogeneous clay (soil 1). 



 

 83 

 

A  

Figure 3.12. Ground surface settlement for 9-pile group after loading at 1
st
 

time step with pile stiffness of pE ′  = 30000 MPa and soil stiffness of sE ′  = 1 

MPa. 

 



 

 84 

Table 3.1. Three-dimensional finite element meshes. 

Mesh size 16×16×16 20×20×20 24×24×24 28×28×28 

Number of elements 

(nels) 4,096 8,000 13,824 21,952 

Number of nodes 18,785 35,721 60,625 95,033 

          nnz ( )K  7,790,768 15,573,896 27,285,204 43,758,934 

          nnz ( )B  907,652 1,812,577 3,173,905 5,092,775 

          nnz ( )C  110,446 215,818 373,030 592,450 

          nnz ( )A  9,716,518 19,414,868 34,006,044 54,536,934 

nnz 
2( ) /A N ,  % 0.32 0.17 0.10 0.06 

Displacement DOFs 

(nd)  50,656 98,360 169,296 268,072 

Pore pressure DOFs 

(np)  4,624 8,820 15,000 23,548 

Total DOFs  

(N = nd + np) 55,280 107,180 184,296 291,620 

 



 

 

8
5
 

Table 3.2. Effect of ordering on ILU0 preconditioned SQMR. 

Mesh size  Soil 1 (Clay) Soil 2 (Sand) Soil 3 (Layered) 

  Nat Blk R-Nat Nat Blk R-Nat Nat Blk R-Nat 

16×16×16 iter Fail 166 90 108 142 84 Fail 487 217 

 tt (s)  
141.3 

 

117.0 

(3.58) 
119.6 

133.2 

 

114.8 

(3.56) 
 247.3 

159.4 

(3.56) 

20×20×20 iter Fail 268 Fail 169 271 114 Fail 928 Fail 

 tt (s)  347.1  278.2 350.4 
248.5 

(7.16) 
 778.4  

24×24×24 iter Fail 498 134 296 528 150 Fail 1677 320 

 tt (s)  871.4 
459.3 

(12.72) 
628.3 903.8 

474.9 

(12.48) 
 2216.1 

670.6 

(12.5) 

28×28×28 iter Fail 940 170 639 1277 195 Fail 3872 473 

 tt (s)  2226.4 
803.7 

(20.20) 
1650.7 2839.6 

848.2 

(20.16) 
 7543.2 

1357.1 

(20.05) 

 

Note: Fail = relative residual shows no sign of decreasing with number of iteration counts (see Figure 3.4), iter = number of iteration counts, tt (s) = total runtime of 

the program including ordering if any, and the term in the parenthesis represents ordering time. 

 



 

 

8
6
 

Table 3.3. Effect of ordering on MSSOR (ω = 1, α = -4) preconditioned SQMR. 

Mesh size  Soil 1 (Clay) Soil 2 (Sand) Soil 3 (Layered) 

  Nat Blk R-Nat Nat Blk R-Nat Nat Blk R-Nat 

16×16×16 iter 215 270 270 220 250 255 700 790 815 

 tt (s) 120.8 139.0 154.8 122.8 131.9 150.8 257.7 284.5 308.4 

20×20×20 iter 330 360 375 290 305 315 940 995 1075 

 tt (s) 305.0 326.2 367.2 283.0 295.0 334.7 647.6 683.5 760.5 

24×24×24 iter 420 480 475 355 365 395 1240 1455 1465 

 tt (s) 621.0 688.0 742.7 558.1 594.6 661.1 1431.9 1652.0 1717.9 

28×28×28 iter 510 560 590 415 470 480 1540 1705 1905 

 tt (s) 1138.4 1231.0 1373.2 989.4 1085.2 1204.9 2766.2 3060.8 3483.3 

 

Table 3.4. Effect of ordering on GJ (α = -4) preconditioned SQMR. 

Mesh size  Soil 1 (Clay) Soil 2 (Sand) Soil 3 (Layered) 

  Nat Blk R-Nat Nat Blk R-Nat Nat Blk R-Nat 

16×16×16 iter 1050 1057 1040 866 942 839 2903 3222 3046 

 tt (s) 349.5 351.7 364.8 299.3 322.3 309.0 865.7 956.6 922.8 

20×20×20 iter 1449 1482 1459 1287 1294 1294 4282 4606 4493 

 tt (s) 915.0 935.1 959.4 826.0 835.5 867.8 2489.8 2663.6 2641.3 

24×24×24 iter 1978 2089 2021 1610 1621 1695 5000+ 5000+ 5000+ 

 tt (s) 2109.1 2224.4 2219.2 1755.0 1772.6 1903.2    

28×28×28 iter 2440 2656 2490 2021 1974 1999 5000+ 5000+ 5000+ 

 tt (s) 4109.4 4449.5 4182.5 3465.7 3400.9 3436.0    

Note: 5000+  = maximum iteration count (5000) is reached without satisfying the accuracy criterion for relative residual norm. 



 

 87 

Table 3.5. Statistics that can be used to evaluate an incomplete factorization. 

Statistic  Meaning  

condest ||( UL )
-1

 e||∞, e = (1, 1, …, 1)
T
 

1/pivot Size of reciprocal of the smallest pivot 

max( L +U ) Size of the largest element in L  and U  factors 

 

 

Table 3.6. ILU statistics and possible reasons of failure for soil 1 (soft clay). 

Ordering condest 1/Pivot 
max 

( L +U ) 
iters 

Reason for 

failure 

Mesh: 16×16×16      

 Nat 8.36E+64 1.75E+04 9.19E+06 Fail unstable solve 

 Blk 5.68E+03 1.52E+03 1.09E+01 166  

 R-Nat 1.31E+03 4.43E+03 2.22E+01 90  

Mesh: 20×20×20      

 Nat 1.56E+37 8.68E+06 8.08E+05 Fail unstable solve 

 Blk 1.17E+04 2.99E+03 8.74E+00 268  

 

R-Nat 2.50E+08 5.45E+07 8.89E+05 5000+ 

small pivot? 

inaccuracy due 

to dropping? 

Mesh: 24×24×24      

 Nat 3.63E+72 1.45E+05 1.73E+06 Fail unstable solve 

 Blk 2.87E+04 5.16E+03 7.29E+00 498  

 R-Nat 4.60E+03 1.49E+04 3.91E+01 134  

Mesh: 28×28×28      

 Nat 1.17E+51 2.91E+05 1.46E+08 Fail unstable solve 

 Blk 5.48E+05 8.18E+03 1.19E+01 940  

 R-Nat 7.55E+03 2.34E+04 4.86E+01 170  

 
Note: Fail = relative residual shows no sign of decreasing with number of iteration 

counts. 



 

 88 

Table 3.7. ILU statistics and possible reasons of failure for soil 2 (sand). 

Ordering condest 1/Pivot 
max 

( L +U ) 
iters 

Reason for 

failure 

Mesh: 16×16×16      

 Nat 1.49E+04 5.98E+03 1.12E+03 109  

 Blk 1.36E+04 5.76E+03 1.09E+03 143  

 R-Nat 1.28E+04 6.07E+03 1.10E+03 82  

Mesh: 20×20×20      

 Nat 2.15E+04 7.51E+03 8.89E+02 168  

 Blk 1.96E+04 7.33E+03 8.74E+02 258  

 R-Nat 1.88E+04 7.64E+03 8.78E+02 114  

Mesh: 24×24×24      

 Nat 3.40E+04 9.02E+03 1.40E+03 286  

 Blk 2.56E+04 8.88E+03 1.40E+03 508  

 R-Nat 2.48E+04 9.26E+03 7.33E+02 151  

Mesh: 28×28×28      

 Nat 3.15E+05 1.05E+04 6.89E+02 639  

 Blk 5.99E+05 1.99E+04 6.24E+02 1277  

 R-Nat 3.12E+04 1.08E+04 6.28E+02 195  

 

 

Table 3.8. ILU statistics and possible reasons of failure for soil 3 (layered soil). 

Ordering condest 1/Pivot 
max 

( L +U ) 
iters 

Reason for 

failure 

Mesh: 16×16×16      

 Nat 1.16E+35 2.46E+04 8.69E+08 Fail unstable solve 

 Blk 1.11E+04 5.76E+03 8.14E+02 504  

 R-Nat 9.95E+03 6.07E+03 1.10E+03 221  

Mesh: 20×20×20      

 Nat 1.29E+28 3.83E+04 3.20E+06 Fail unstable solve 

 Blk 1.70E+04 7.33E+03 6.53E+02 955  

 

R-Nat 3.56E+08 5.45E+07 8.89E+05 5000+ 

small pivot? 

inaccuracy due 

to dropping? 

Mesh: 24×24×24      

 Nat 8.57E+26 1.84E+05 4.50E+06 Fail unstable solve 

 Blk 2.37E+04 8.88E+03 5.44E+02 1988  

 R-Nat 2.18E+04 1.49E+04 7.33E+02 332  

Mesh: 28×28×28      

 Nat 2.10E+32 1.37E+06 3.82E+07 Fail unstable solve 

 Blk 2.98E+04 1.04E+04 4.66E+02 3872  

 R-Nat 2.84E+04 2.33E+04 6.28E+02 473  



 

 89 

 Chapter 4 

 

BLOCK DIAGONAL PRECONDITIONERS 

FOR DRAINED ANALYSIS 
 

 

 

 

 

 

4.1. Introduction 

As discussed in Chapter 2, some effective preconditioners have been proposed 

in the recent years for the iterative solution of geotechnical problems. 

However, little or no attention has been paid on the ill-conditioning due to 

relative differences in stiffnesses of materials. Recently, ill-conditioning of the 

system due to contrasts in large stiffness, but in a different context, with the 

use of large penalty terms in modeling the rock faults was discussed by 

Ferronato et al. (2008). Similarly, Augarde et al. (2008) demonstrated that the 

material properties such as Poisson’s ratio and constitutive matrix are 

important on the performance of iterative methods.  

Of course, the linear system is ill-conditioned (see, for example, 

Zienkiewicz, 2000) for undrained analysis with  ν  close to 0.5.  For such 

incompressible problems, Phoon et al. (2003) demonstrated that cost-effective 

and exact solution can be achieved without any numerical instability by using 

two-field mixed formulation.  For a typical drained analysis, Poisson’s ratio 

usually varies in the range of ν = 0.2 to 0.35. This variation was shown to be 



 

 90 

less significant for the convergence of SJ preconditioned system (e.g. Smith 

and Wang, 1998). On the other hand, materials with differing Young’s moduli 

are commonly encountered in geotechnical engineering, mainly because of 

two reasons: (i) variability in natural geomaterials, and (ii) soil-structure 

interaction problems. For example, Young’s moduli can vary from 1 MPa or 

less for very soft soils to more than 100,000 MPa for rocks. Similarly, in soil-

structure interaction problems, the Young’s modulus of a structural material 

(e.g. reinforced concrete or steel) can be four to five orders of magnitude 

larger than the Young’s modulus of the surrounding soil. The typical Young’s 

moduli of reinforced concrete and steel are 30,000 MPa and 205,000 MPa, 

respectively. Another common class of problems is ground improvement 

involving introduction of stiff materials into the ground such as grouting, 

cement-mixed piles, stone columns, etc. Hence, this is a common practical 

problem and there is a need to develop effective solution techniques that are 

capable of exploiting such differences in stiffnesses of materials to accomplish 

the solutions in acceptable computing time for large-scale problems. 

The aim of this study is to investigate the ill-conditioning of the linear 

system due to large relative differences in material stiffnesses and its 

mitigation by block diagonal preconditioners. Particular emphasis is given to 

the numerical performance of the preconditioners based on various inexact 

forms of the blocks. The results are discussed and evaluated on a wide range 

of material stiffnesses and structural DOFs with the help of two typical soil-

structure interaction problems: piled-raft foundation and tunneling.  



 

 91 

4.2. Soil-structure interaction problem and 

preconditioning 

Confining our study to drained boundary value problems, finite element (FE) 

discretization of the continuum leads to a well-known symmetric positive 

definite linear system (Smith and Griffiths, 1997): 

 fKu =  (4.1) 

where T N N
K K

×= ∈ℜ  is the FE stiffness matrix, u  and Nf ∈ℜ  are the 

displacement and load vectors respectively, N  is the total number of 

displacement degrees of freedom (DOFs) excluding any fixities. The stiffness 

matrix K  is evaluated as follows (e.g. see Smith and Griffiths, 1997): 

 T

u u

e V

K B DB dV
 

=  
 

∑ ∫  (4.2) 

where 
u

B  is the shape function derivative for displacement, and D  the stress-

strain matrix. The integration is performed over the volume domain of each 

finite element (denoted as V ) and the global matrix is formed by summing the 

contribution of each element (symbolically represented by e∑ ).  

In order to investigate the effect of stiffness of different material zones 

in the formulation of FE stiffness matrix, the finite element discretization is 

demonstrated using a simple one-dimensional (1D) constrained compression 

problem (e.g. Oedometer test set up, see Figure 4.1). For simplicity, Equation 

(4.2) is evaluated analytically using a simple one-dimensional two-noded 

element. The continuous displacement variable u  is approximated in terms of 

discrete nodal values. For a 2-noded element, the field variable is assumed to 

vary linearly between the nodal values. Hence, 



 

 92 

 [ ] 







=+=

2

1

212211
u

u
NNuNuNu  (4.3) 

For a linear element, the shape functions for displacement ( )
u

N  in this 

example is: 

 [ ]1 2 1u

x x
N N N

l l

 = = −  
 (4.4) 

where x  is the local spatial coordinate and l  is the element size. The 

derivative of 
u

N  is: 

 [ ]1 1 1
1 1u

u

dN
B

dx l l l

 = = − = −  
 (4.5) 

The element stiffness matrix is now evaluated as: 

 [ ]( ) 








−

−
=−







−
= ∫ 11

11
11

1

1

0

2 l

aD
dxa

l

D
K

l

e  (4.6) 

where a is the cross-sectional area of the element. For constrained 1D 

compression, 

 ED ′
′−′+

′−
=

)21)(1(

)1(

νν
ν

 (4.7) 

is known as constrained modulus; E′  is the effective Young’s modulus of a 

material, and ν ′  is the effective Poisson’s ratio. Hence, the element stiffness 

matrices for the porous stone and the soil element, respectively, are: 

 










−

−
=










−

−
=

11

11

11

11

l

aD
K

l

aD
K

se

s

pse

ps

 (4.8) 

where the subscripts ps and s stand for porous stone and the soil, respectively. 

Finite element model of the entire problem is obtained by assembling the 



 

 93 

element equations and applying the boundary condition, which yields after 

rearranging the variables: 

 



























=

















































−−

−−

−+

−+−

−

0

0

0

0

200

200

000

00

000

4

3

5

2

1 F

u

u

u

u

u

DDD

DDD

DDD

DDDD

DD

l

a

sss

sss

ssps

sspsps

psps

 (4.9) 

As can be seen from Equation (4.8), element stiffness matrices are 

proportional to the Young’s moduli of the materials of corresponding elements. 

In the real field, the porous stone can be a structure (footing, pile, tunnel, 

retaining wall, etc.) or a stiff geo-material. In an extreme case, the Young’s 

modulus of a structure can be as high as 205,000 MPa, such as for steel 

structures, and the Young’s modulus of soil can be as low as 1 MPa for a very 

soft clay. The corresponding soil-structure stiffness ratio can be as large as 

205,000. The term ‘soil-structure stiffness-ratio’ is defined here as the ratio of 

Young’s moduli of structural (stiff) material and soil. Geometry and boundary 

conditions have not been considered in the definition of stiffness-ratio. The FE 

formulation of such systems will produce entries corresponding to structural 

(or stiff) elements significantly larger in magnitude than those produced by 

soil elements in the global K  [see Equation (4.9)]. This is the main source of 

ill-conditioning when dealing with two very different materials.  For example, 

for a model piled-raft foundation shown in Figure 4.2b, Figure 4.3 shows the 

proportional increase in the condition number of the unpreconditioned K  with 

an increase in pile-soil stiffness ratio ( )
p s

E E′ ′ . More numerical results will be 

discussed later in Section 4.3, where pE ′  and sE ′  are the Young’s moduli of 



 

 94 

pile and soil, respectively. For this reason, it is prudent to partition the global 

stiffness matrix K  into 2×2 blocks such that: 

 
T

P L
K

L G

 
=  
 

 (4.10) 

where submatrix T m m
P P

×= ∈ℜ  is structure (or stiff material) stiffness matrix, 

submatrix T n n
G G

×= ∈ℜ  is soil stiffness matrix, and submatrix m n
L

×∈ℜ  is 

the soil-structure connection matrix. m  and n  are the DOFs corresponding to 

structure and soil elements, respectively. Partitioning of K  into blocks in this 

way allows preconditioners for the structural block and the soil block to be 

chosen independently.  

4.2.1. Block diagonal Preconditioner 

For 2×2 block structured matrix (4.10), Murphy et al. (2000) have shown that 

preconditioners incorporating an exact Schur complement matrix lead to 

exactly three distinct eigenvalues of the preconditioned matrices. The 

preconditioner considered in their paper is: 

 







=

S

P
M MURPHY

0

0
 (4.11) 

where 

 LPLGS
T 1−−=  (4.12) 

is the Schur complement matrix. However, when the second diagonal block, G, 

is positive definite and most of the eigenvalues of L
T
P

-1
L are much smaller 

than the smallest eigenvalue of G (unlike the saddle-point problems 

considered in their paper) the subtraction of L
T
P

-1
L in (4.12) was found to be 

unfruitful. Hence, the subtraction term is dropped and the block diagonal 

preconditioner for K  takes the form: 



 

 95 

 







=

G

P
M K

0

0
 (4.13) 

Let RP and RG be the Cholesky factors of P and G, respectively. Applying left-

right preconditioning to (4.10), the preconditioned matrix is given by:  

 







=








=

−−

−−

n

T

m

nP

TT

G

G

T

Pm

IL

LI

IRLR

LRRI
K ~

~
~

1

1

 (4.14) 

with 

 1~ −−= G

T

P LRRL  (4.15) 

where Im and In are identity matrices of appropriate sizes, respectively. Recall 

that m and n are structure (or stiff material) and soil DOFs, respectively. 

According to the theorem in the Appendix of Phoon et al. (2002), if a matrix is 

of the form: 

 








−
=

n

T

m

IY

YI
A

ηα
βξ

 (4.16) 

The eigenvalues of A are given by: 

 

( )
( )














−+

=++−−

=+++−

=

rnmplicitywith multi

rjY

rjY

A j

j

2 

,,2,1,)]([4)(
2

1

,,2,1,)]([4)(
2

1

)( 22

22

ξ

σαβηξηξ

σαβηξηξ

λ K

K

   

  (4.17) 

where ξ, α, β and η are arbitrary constants, and r is the rank of block (1, 2), 

which is L
~

 in our case. Let the non-zero singular values of L
~

 be: 

 1 2 0
r

σ σ σ≥ ≥ ≥ >L . (4.18) 

Comparing Equations (4.14), (4.16) and (4.17), the eigenvalues of the 

preconditioned matrix K
~

 can be written as: 



 

 96 

 









−+

=−

=+

=

rnmplicitywith multi

rjL

rjL

K j

j

2 1

,,2,1),
~

(1

,,2,1),
~

(1

)
~

( K

K

σ

σ

λ  (4.19) 

Remark 1 

As can be seen from Equation (4.19), when an exact block diagonal 

preconditioner is used, the multiplicity of unity eigenvalue of the 

preconditioned matrix is controlled by the rank r of  L
~

. Since L is the link 

matrix of soil and structure [see (4.9) or (4.10)], the rank r  depends very 

much on the dimension of block P , which, in general, is small ( nm << ) in 

the FE analyses of most of the soil-structure interaction problems. In addition, 

generally, r m≤  because the entries of L are contributed from soil-structure 

interface nodes only and, hence, many rows of L  (e.g. interior structural 

nodes or boundary nodes that are unconnected to soil) can be filled with zeros; 

for example, the first row of L  is zero [Equation (D2)] in the Appendix D for 

1D FE discretization of oedometer setup. 

 

Remark 2 

It can be shown, from the first order approximation, that the order of entries of 

L
~

 (4.15) is inversely proportional to the square root of soil-structure stiffness 

ratio as below: 

 ( ) ( )














′

′
=















′
×′×

′
≈= −−

ps

s

s

s

ps

G

T

P
E

E
O

E
E

E
OLRROLO

11~ 1  (4.20) 

where psE ′  and sE ′  are Young’s moduli of porous stone (or structure) and soil 

(Figure 4.1), respectively. For example, the entries of L
~

 are affected by the 

inverse of soil-structure stiffness ratio, except the second row, for the 



 

 97 

considered 1D problem in Figure 4.1 (see Appendix D for details). In other 

words, most of the singular values of L
~

 will tend to be smaller as the soil-

structure stiffness ratio increases. This, on the other hand, will improve the 

clustering of the 2r  eigenvalues of the preconditioned matrix that are 

symmetric about unity as indicated by Equation (4.19). Numerical results will 

be discussed in Section 4.3.1.1. 

 

Remark 3 

Although the eigenvalue distribution of the preconditioned matrix for the 

theoretical exact block diagonal preconditioner has an attractive clustering 

property with increasing soil-structure stiffness ratios, the exact block diagonal 

preconditioner is impractical when the system is very large. However, the 

theorem does serve as a useful guide to clarify the convergence behavior that 

one may expect from a Krylov subspace method when increasingly better 

approximations of P  and G  are used. The approximations would still 

produce some eigenvalue clustering, albeit in a more diffused way. The actual 

convergence behavior associated with more practical preconditioners can only 

be evaluated by numerical experiments. 

4.2.2. Inexact block diagonal preconditioners 

We have observed that the block P  is the main source of ill-conditioning and 

a better approximation of block P  is needed. For example, P  is close to 

singular when the soil-structure stiffness ratio is very large [see Equation (D2) 

in the Appendix D]. Hence, we emphasized the study of the numerical 

performance of inexact block diagonal preconditioners over a range of 

approximations for block P . The approximations considered are from the 



 

 98 

crudest level, where 1
ˆ ( )P diag P= , to the finest level, where 4P̂ P= . In the 

intermediate levels, we use an inexact 2P̂  that is obtained from SSOR 

(Symmetric Successive Over Relaxation) factorization, 

1

2
ˆ ( )( ) ( )T

P P P P P
P L D D L D

−= + +% % % , where 
P

L  and 
P

D  are strictly lower triangular 

and diagonal part of P , respectively. 
P P

D D ω=%  and ω  is the relaxation 

parameter, which is set to 1 throughout the study. We also use inexact 

3
ˆ ILU0( )P P=  (incomplete LU factorization with zero fill-ins). For the study 

of these inexact forms of block P , we simply use the diagonal approximation 

of the soil block G . Incorporating all these, the inexact block diagonal 

preconditioner for K  takes the following form: 

 







=

)(0

0ˆ
ˆ

Gdiag

P
M K  (4.21) 

where the inexact forms used for P  are: 

 1
ˆ ( )P diag P= ,  2P̂ = SSOR ( )P ,  3P̂ = ILU0 ( )P ,  4P̂ P=  (4.22) 

The approximations 1P̂  and 2P̂  require only the storage of a single m ×1 vector 

for the preconditioning purpose and are the cheapest. However, the 

approximations 3P̂  and 4P̂  require the entire P matrix to be stored. For the 

inexact form of 3P̂  = ILU0(P), its computational and storage costs are 

moderate if P is sparse. In contrast, 4P̂  may require a large amount of memory 

to store its Cholesky factor and it can be computationally expensive for a very 

large soil-structure problems. Nonetheless, it will be significantly less 

expensive in comparison to exact block diagonal preconditioner (4.13) 

involving an exact G block. In practice, the size of the block P is significantly 



 

 99 

less than the size of block G (i.e. nm << ) because the soil mesh must increase 

as the size of structure increases, to avoid possible boundary effects. In 

addition, we also considered the incomplete factorization with partial fill-ins 

[such as ILUT (Saad, 1994b)] for the approximation of block P in Section 

4.3.1.2. 

Once the appropriate inexact form for block P  is identified, we fine-

tune the inexact form for block G  by studying the following three 

possibilities: 

 1
ˆ ( )G diag G= ,  2Ĝ = SSOR ( )G ,  3Ĝ = ILU0 ( )G  (4.23) 

Note that G  is the soil stiffness matrix and its dimension will be significantly 

larger than of block P  in all practical geotechnical problems. Hence, any 

inexact form of G  beyond a simple diagonal or SSOR will become very 

costly quickly with an increase in problem size and may not be practical. For 

example, the inexact forms that are based on ILU0 factorization of G  would 

be extremely expensive to compute (both in terms of storage and time) 

because the full G  needs to be stored explicitly. Hence, 3Ĝ  can be considered 

as the limit of what is practical. On the other hand, the SSOR approximation 

of blocks has an advantage in that it can exploit the Eisenstat trick (Eisenstat, 

1981) for the preconditioned matrix-vector multiplication. It also requires the 

storage of only the upper triangular part of G. 

For ILU factorization, the matrix is reordered prior to factorization 

using Reverse Cut-hill McKee (RCM) permutation (George and Lui, 1981) so 

as to minimize possible incorrectness due to dropping in ILU. The subroutines 

of ILU factorization are obtained from SPARSKIT (Saad; 1996) and RCM 

algorithms are from the RCM Package (Burkardt). Note that the factors L  and 



 

 100 

U  from ILU subroutines are nonsymmetric for a general matrix. However, 

the preconditioner needs to be symmetric for a conjugate gradient solver 

(Barrett et al., 1994). For symmetric positive definite K, its incomplete 

Cholesky factorization (R
T
R) can be obtained by scaling each row of U  with 

the reciprocal of the square root of its pivot, i.e. 

 . to1for      *
1

:),(

),(

:),(  N i U
U

R i

ii

i ==  (4.24) 

Similarly, prior to Cholesky factorization (Ng and Peyton, 1993), the matrix is 

reordered using Multiple Minimal Degree (MMD) permutation (George and 

Lui, 1981) to minimize the possible fill-ins in factorization.  

4.3. Numerical results 

Our purpose now is to evaluate the numerical performance of various inexact 

block diagonal preconditioners discussed in the preceding Section for some 

representative soil-structure interaction problems. The evaluation is based on 

the following: 

1. Number of iterations required to converge for a preconditioner 

2. Total CPU time taken for the solution 

3. Random access memory (RAM) required for the execution of the 

problem with that preconditioner. 

PCG (Hestenes and Stiefel, 1952; Shewchuk, 1994) is taken as an iterative 

solver (see Section 2.1), which is best for the symmetric positive definite 

linear systems (Barrett et al., 1994). The two soil-structure interaction 

problems studied are piled-raft foundation and tunneling. The former is solved 

using an in-house Fortran code compatible to the code of Smith and Griffiths’ 



 

 101 

(1997) and latter is solved after implementing the above code into GeoFEA 

(2006). GeoFEA is a finite element program which can be used for drained, 

undrained and time dependent analysis of static problems under monotonic 

loading/unloading conditions (http://www.geosoft.sg/). See Chapter 6 for more 

details about GeoFEA implementation. 

4.3.1. Piled-raft foundation 

A piled-raft foundation may lead to significant economical benefits compared 

to classical piled or raft foundations because the total load coming from the 

superstructure is partly shared by the raft through contact with soil and the 

remaining load is shared by piles through skin friction (Katzenbach et al., 

2000; Poulos, 2001a; Maharaj, 2004). The use of piled raft foundations has 

become more popular in recent years primarily because they provide better 

control of the differential settlement or they reduce the overall settlement 

(Poulos, 2001a; Reul and Randolph, 2003; Novak et al., 2005; Small and Liu, 

2008). It is obvious that the ultimate load capacity of the entire system will be 

increased as well.  

Our purpose now is to study various preconditioning strategies detailed 

in the Section 4.2 for the mitigation of material ill-conditioning in the iterative 

solution of a large-scale piled raft foundation in a Desktop PC. The problem of 

interest involves a typical 9 (3×3) piled-raft problem. The pile cross-section is 

square with 1 m width. The pile-spacing is equal to 3 m, the raft (pile-cap) 

thickness is 3 m and is in direct contact with ground and the cap overhang is 

0.5 m. The length of the pile, including the raft thickness, is taken as 20 m. A 

uniform load of 100 kPa is applied to the entire cap area. Symmetry 

consideration allows only a quadrant of the foundation to be analyzed. The 



 

 102 

quadrant is discretized into 25×25×35 finite element mesh as shown in Figure 

4.2a. The mesh comprises of 21,875 20-noded brick elements, with a total of 

12,767 pile displacement degrees of freedom (DOFs) and 254,913 soil 

displacement DOFs. The pile and raft materials are assumed to be the same. 

Hence, the number of pile DOFs includes the number of raft DOFs as well. 

This forms the submatrix P [see Equation (4.10)] and termed as “pile block” in 

this example. The dimension of P is only 4.76% of the total dimension of the 

stiffness matrix K. A similar problem involving a 7×7×7 coarse mesh (Figure 

4.2b) is configured so that it is large enough to study the convergence 

behavior, and yet small enough for the spectral properties of the 

preconditioned system to be examined readily. The base of the mesh is 

assumed to be fixed in all directions. Side face boundaries are constrained in 

the transverse directions but free in in-plane directions. 

All materials (pile, raft, and soil) are assumed as linear elastic with 

constant Poisson’s ratios of 0.3
s

ν ′ =  for soil and 0.2
p

ν ′ =  for pile materials. 

Young’s modulus of the soil is held constant (E′s = 5 MPa) but the Young’s 

modulus of pile is varied (E′p = 100 to 205,000 MPa) to alter the condition 

number of the stiffness matrix. The corresponding pile-soil stiffness ratio 

)( sp EE ′′  ranges from 20 to 41000, which are typical for most soil-structure 

interaction problems. The lower bound is typical of sand piles used in ground 

improvement and the upper bound is typical of steel piles. The lower bound 

also captures the natural variation of soil types. In addition, 
p s

E E′ ′  equals to 1 

is also considered. It is studied for completeness, rather than realism. It refers 

to the condition where all pile/raft elements are replaced by soil elements, i.e. 



 

 103 

a homogeneous problem domain. This configuration is included as a 

benchmark to gauge the effect of difference in stiffness relative to the 

homogeneous soil condition on various preconditioning methods. As expected, 

the condition number of K increases with increasing pile-soil stiffness ratios, 

as shown in Figure 4.3. 

4.3.1.1. Validation of theory 

Figure 4.3 shows that the number of iteration counts of the theoretical exact 

block diagonal preconditioner (4.13) decreases with the increase in pile-soil 

stiffness ratios (
p s

E E′ ′ ), opposite to the trend of unpreconditioned K. Hence, 

the exact block diagonal preconditioner actually exploits the large 
p s

E E′ ′  to 

be an advantage. The reduction in iteration count is mainly because of the 

reduction in condition number of the preconditioned system (Figure 4.3) and 

the increase in clustering of eigenvalues towards unity with increasing
p s

E E′ ′  

(Figure 4.4). Similar gain in the convergence behavior was also observed for 

the problems in 1D and 2D. This is in line with the Remark 2 in Section 4.2.1. 

However, a stable condition number of K
~

 (Figure 4.3) may be because at least 

one singular value of L
~

 is unaffected by the stiffness ratios (see the second 

row of L
~

 for 1D example in the Appendix D), resulting almost constant 

extreme eigenvalues of K
~

 [Figure 4.4 and Equation (4.19)]. However, the 

exact block diagonal preconditioner is very expensive for large-scale problems 

for the reasons mentioned in Remark 3, Section 4.2.1. For example, it cannot 

be applied to solve the problem in Figure 4.2a (with the size of K = 267,680) 

owing to insufficient memory. Hence, the performance of various inexact 

forms of blocks is evaluated in the following Sections.  



 

 104 

4.3.1.2. Comparison between inexact block P  

Figure 4.5 compares the numerical performance (iteration count and total 

runtime) of inexact block diagonal preconditioner (4.21) with various inexact 

forms of pile block P  (4.22) for the 9-piled raft problem in 25×25×35 mesh 

(Figure 4.2a). In this Section, the soil block G  is a simple diagonal matrix in 

the preconditioner. As shown in the Figure 4.5, the number of iteration counts 

of the preconditioner increases with increasing 
p s

E E′ ′  when the 

approximations of block P  are not exact.  This trend opposes that for the 

exact block diagonal preconditioner shown in Figure 4.3. The performance 

improves consistently with more rigorous approximation of P block; however, 

the convergence with SSOR(P) and ILU0(P) still appear to deteriorate when 

the relative difference in stiffnesses is large. In contrast, when the block P  is 

solved directly, such convergence deterioration seems to be suppressed 

effectively. Figure 4.6 explains the reason for this improvement in the 

convergence behavior. The magnitude of the smallest eigenvalue of K
~

 

decreases by several orders for large 
p s

E E′ ′ , resulting an ill-conditioned 

matrix for the crudest approximation of P  [e.g. diag(P)]. This is consistent to 

the findings of Lee et al. (2002),  who examined the eigenvalues of the 

standard Jacobi (SJ) preconditioned system.  On the other hand, the eigenvalue 

profiles are almost identical for different 
p s

E E′ ′ with Cholesky factorization of 

P  in the preconditioner. Thus, the material ill-conditioning effect seems to 

have mitigated. This is different from the theoretical exact block diagonal 

preconditioner (4.13) where the clustering of eigenvalues increases towards 



 

 105 

unity with increasing 
p s

E E′ ′  (compare Figure 4.4), but is expensive in terms 

of both time and memory usage. 

The additional RAM required by the exact P  block preconditioner 

over the simplest standard Jacobi [diag(P), diag(G)] is minor (only about 

0.02% for the studied above problem, Figure 4.15). However, it is obvious that 

the Cholesky factorization of block P  can become very expensive when the 

size of block P is very large. More details on the effect of size of block P on 

the preconditioners will be discussed later in Section 4.3.1.5. Note that solving 

P  (a submatrix of the stiffness matrix K ) directly does not mean that we have 

already computed the final answer for the pile DOFs in a single iteration. We 

will show subsequently that solving P  directly is unproductive for smaller 

p s
E E′ ′ ratios. 

It is possible that a more optimal balance between reduction in 

iteration count and increase in preconditioning overhead be located by 

conducting a more refined search between ILU0(P) and exact P , such as 

ILUT (Saad, 1994b) with controlled fill-ins. This Section examines the 

performance of ILUT( ρ, τ ) approximation of block P, where ρ is the number 

of fill-ins in excess of original number of nonzeros in each row of L and U, 

and τ is a dropping parameter below which the fill-ins are discarded. As 

shown in Table 4.1, the ILUT approximation of block P does improves the 

performance in comparison to ILU0 of the same. However, it still shows the 

effect of material stiffness contrasts on convergence, particularly when 
p s

E E′ ′  

ratio is above 1000. In addition to 
p s

E E′ ′ , the ill-conditioning of the system is 

also influenced by other factors such as the size of the stiff block P as studied 



 

 106 

in Section 4.3.1.5. For an effective mitigation of such material heterogeneity 

and for ILUT to be competitive with 4P̂  in terms of runtime, it requires a large 

number of fill-ins depending on the problem at hand. For this reason, Toh et 

al. (2004) noted that “these ‘optimal’ block approximations can only be 

identified through numerical experiments – a luxury that practitioners can ill-

afford and completely self-defeating if the goal is to solve a given problem in 

the shortest time”. Moreover, allowing a large number of fill-ins makes ILUT 

approximation to be almost as expensive as the Cholesky factorization. Thus, 

the direct factorization of block P seems to be more appropriate for the 

preconditioner (4.21) to be effective. 

4.3.1.3. Comparison between inexact block G 

After ascertaining the most appropriate form of block P  from the previous 

Section, this Section evaluates the effect of inexact forms of block G  in the 

preconditioner. It is possible that the best approximation for block P  depends 

on the approximation for block G .  

As shown in Figure 4.7, the number of iteration counts reduces 

drastically for increasingly better approximation of G . This can be attributed 

to the shift of the eigenvalue profiles closer to unity with increasingly better 

approximation of  G  (Figure 4.8). Increasingly better approximation of G  

with exact  P   in the preconditioner means the preconditioner is closer to 

exact block diagonal preconditioner (4.13). Thus, the theory of exact block 

diagonal preconditioner holds true again. However, SSOR(G) is found to be 

superior than ILU0(G) in terms of runtime (see Figure 4.7) despite its slower 

convergence in terms of iteration counts. This is because the SSOR 

approximation can exploit the Eisenstat trick (Eisenstat, 1981) for efficient 



 

 107 

matrix-vector multiplication. SSOR approximation is also about 50% cheaper 

than ILU0 approximation, and is equivalent to diagonal approximation, in 

terms of memory requirement.   

Based on above studies, it can be concluded that the preferred 

preconditioners are:  

 







=

)(0

0
SBD1

Gdiag

P
 (4.25) 

 







=

)(SSOR0

0
SBD 2

G

P
 (4.26) 

from the practical yardstick of minimizing runtime and keeping in mind the 

memory constraint. In almost all geotechnical problems, the size of block G is 

dominant because it represents soil stiffness matrix and the inexact forms 

diag(G) and SSOR(G) are the simplest approximations requiring the least 

storage among all inexact forms. Thus, we denote these inexact block diagonal 

preconditioners (4.25) and (4.26) as “Simplified Block Diagonal” (SBD) 

preconditioners. 

4.3.1.4. Comparison of SBD, SJ, SSOR, and ILU 

preconditioners 

Mroueh and Shahrour (1999) noted that the standard SSOR preconditioner is 

more efficient than the SJ preconditioner for soil-structure interaction 

problems. The application of SSOR factorization on stiffness matrix K  is 

analogous to the SSOR factorization of P  or G  used in the preceding 

Sections. The algorithm of SSOR preconditioned PCG method combined with 

Eisenstat trick (Eisenstat, 1981) is given elsewhere  (e.g. Chen et al., 2007). 

Algorithm  provided in Appendix C specializes the algorithm in (Chen et al., 

2007) for the case in which SSOR is applied to block (2,2) only and Appendix 



 

 108 

E provides the source code. For solving the linear system (4.1), the SSOR 

preconditioner can be written as: 

 ( ) ( ) ( )ωωω K

T

KKKKSSOR DLDDLM ++= −1
 (4.27) 

where 
K

L  and 
K

D  are strictly lower triangular and diagonal of K  respectively.  

Figure 4.9 demonstrates that the performances of SJ, SSOR, and ILU0 

preconditioners degrade with increasing pile-soil stiffness ratios (
p s

E E′ ′ ) for 

the same 9-piled raft in 25×25×35 mesh. The performance of SJ degrades the 

most (about 10 times) in terms of runtime, while the runtime of both SSOR 

and ILU0 degrades by over three times, for the increase in 
p s

E E′ ′  from 1 to 

41000. Similarly, ILUT(50, 10
-6

) on entire K can even be slower than ILU0 

despite taking smaller iteration counts than the ILU0 (Table 4.2). The increase 

in runtime is mainly contributed by the expensive ILUT factorization (85-95% 

of the total runtime) for a large and ill-conditioned matrix, and to a lesser 

extent, contributed by the more expensive triangular solves in each 

preconditioning step. Thus, we will not consider ILUT preconditioners in the 

further discussion. In contrast, the proposed SBD preconditioners (4.25-4.26) 

turn out to be superior to these preconditioners as 
p s

E E′ ′  increases (Figure 

4.9) because of their stable convergence. Existing preconditioners (SJ, SSOR 

or ILU0) are competitive with SBDs for only lower range of stiffness ratios. 

The crossover points (
p s

E E′ ′ ) above which the SBD1 and SBD2 are preferable 

over existing preconditioners are about 400 and 30, respectively. However, 

these crossover points are likely to be dependent on the problem at hand and 

the FE mesh. The next Section discusses more on this.  



 

 109 

4.3.1.5. Effect of number of piles  

As noted in Section 4.3.1.2, the cost of SBD preconditioners is affected by the 

dimension of block P  because these preconditioners require a Cholesky 

factorization of block P. It is also true that the Cholesky factorization of entire 

stiffness matrix K is impractical for large-scale problems. Hence, in this 

Section, the performances of SBD, SJ, SSOR, and ILU0 preconditioners are 

compared for different dimensions of the block P . To achieve this, the 

number of piles is varied from 1 to 49 within a square raft configuration as 

shown in Figure 4.10. The practical importance of studying the effect of 

number of piles in the piled-raft foundation is to access the minimum number 

of piles required to achieve the desired performance of piled-raft. However, 

from the computational point of view, the number of piles present can 

influence the computational performance of the iterative solvers. A single pile 

is representative of a design scenario with limited structural/stiff material 

(block P ).  The 49-pile group is representative of a design scenario with more 

extensive structural/stiff material.  A raft thickness of 3 m is first considered.  

Subsequently, it is increased until a maximum P block is achieved.  The 

maximum P block is controlled by the available RAM required for Cholesky 

factorization, which is 2GB in this study.  Hence, the dimension of block P  

varies from 668 (0.25% of N ) for a single pile to 97,178 (36.30% of N ) for 

49-piled raft with 5 m raft thickness, where the total dimension of the linear 

system ( N ) is held constant to 267,680 [Equation (4.10)] for the sake of 

comparison. The same finite element mesh (Figure 4.2a) is used for all the 

cases and details of each problem are presented in Table 4.3. Although in 



 

 110 

actual practice, the mesh must increase in extent with widening the lateral 

directions of raft to avoid boundary effects. 

Figure 4.11 shows that the number of iteration counts and the CPU 

times of SJ, SSOR, and ILU0 preconditioners are not only affected by 
p s

E E′ ′  

but also by the number of piles (size of the block P) in the group. When the 

size of block P  is minor (e.g. due to 1-pile), the large 
p s

E E′ ′  is not a problem 

for SJ, SSOR, and ILU0; however, as both the size of P  and 
p s

E E′ ′  

increases, the effectiveness of these preconditioners decreases significantly. 

For such problems, ILU0 performs even worse (or even failed to converge) 

than that of the simplest standard Jacobi preconditioner. However, the 

performance of SBD preconditioners remain stable due to the variation in both 

the size of block P  and 
p s

E E′ ′ . Thus, SBD preconditioners seem to have 

effectively mitigated the ill-conditioning effect due to relative differences in 

material stiffnesses. 

Figures 4.12-4.14 show the savings in runtimes by the SBD 

preconditioners over other preconditioners vary depending on the number of 

pile (stiff structural) DOFs and soil-structure stiffness ratios. Depending on the 

problem at hand, SBD preconditioners can even be more than 10 times faster 

than SJ, SSOR, or ILU0 preconditioners if the 
p s

E E′ ′  is large. SBD 

preconditioners seem to be more suitable when the presence of stiff structural 

DOFs is above 5% in total. However, they may become less effective when 

the finite element mesh is such that the size of stiff structural DOFs is above 

one-third of the total. This is because the Cholesky factorization of block P  

becomes more expensive to factorize when its size increases, and at the same 



 

 111 

time, the triangular solves at each preconditioning step also become more 

expensive due to a denser Cholesky factor. Since many soil-structure 

interaction problems involve stiffness ratios larger than 1000 (quite off from 

the crossover line), the SBD preconditioners are likely to be effective for most 

practical problems.  

As shown in Figure 4.15, the RAM required for SBD preconditioners 

is merely larger than that for SJ/SSOR preconditioners when the percentage of 

structural DOFs in the mesh is not very significant and it can grow up to or 

even larger than that of RAM for ILUT preconditioner when such a percentage 

is 35 or above.  

4.3.2. Tunneling 

The aim of this study is to investigate the effectiveness of the proposed SBD 

preconditioners for fast 3D analysis of tunnels. In tunneling too, the large 

relative difference in stiffnesses of liner and soil can deteriorate the solver 

performance. The problem considered here is the settlement trough analysis of 

a circular NATM (New Austrian Tunneling Method) tunnel. See Möller 

(2006) and Vermeer et al. (2001) for more details. A block of 100×55×28 was 

divided into 13074 20-noded brick elements, resulting 151,902 total unknown 

DOFs as shown in Figure 4.16. The outer boundary conditions are the same as 

were explained for the piled-raft foundation problem. The excavation and 

installation of 0.3m thick liner was simulated according to step-by-step 

procedure as shown in the same Figure. Thus, there is no liner in the first 

excavation (i.e. no block P) and the size of block P increases in each 

excavation and reaches up to 13,459 (about 10% of the size of K) at the end of 

40 excavation steps. Each excavation step consists of 40 increments to account 



 

 112 

for nonlinear soil behavior. To facilitate the FE analysis of step-by-step 

tunneling, a geotechnical software GeoFEA (2006) is used in the present 

study. The preconditioners (SJ, SSOR, SBD1 and SBD2) are implemented as 

user defined solvers. Details of implementation are explained in Chapter 6. 

Soil is modeled as Mohr-Coulomb material and the liner as linear 

elastic. The material parameters considered here are the same as Möller’s 

(2006), except the dilation angle. Here, the dilation angle is the same as the 

angle of friction to keep the stiffness matrix K  to be symmetric. Table 4.4 

summarizes the parameters used in the analysis, which gives the liner-soil 

stiffness ratio of 476 for the studied problem. 

As expected, SJ and SSOR preconditioners require increasingly larger 

number of iteration counts in each step as shown in Figure 4.17. As explained 

for piled-raft problem, this can be attributed to the increase in liner (stiff 

structural) DOFs in each step. SBD preconditioners, on the other hand, 

consistently converged at small iteration counts at excavation step (see a 

flattened linear trend of iteration counts as well as CPU times by SBD 

preconditioners). This again shows the effective mitigation of material ill-

conditioning, which ultimately led SBD preconditioners to be about three 

times faster than SJ and SSOR preconditioners. A comparison of actual total 

CPU times for the tunnel analysis and that manipulated from Figures 12 and 

13 (point T) shows a good agreement between SBD1/SJ and SBD2/SSOR 

respectively (Table 4.5),  whereas a large variation in other CPU ratios. This 

variation can be attributed to the unduly slower performance of SSOR than SJ 

preconditioner, contrary from the piled-raft problem. This has also affected the 

performance of SBD2 as it uses SSOR approximation for the soil block [see 



 

 113 

Equation (4.26)]. One possible reason for this difference may be due to the 

differences in sparsity pattern of K as shown in Figure 4.18. Piled-raft problem 

was solved using the in-house FORTRAN code in which node numbering is 

sequential in x-z plane (e.g. Smith and Griffiths, 1997, 2004), whereas 

GoeFEA has its own way of nodal numbering. Considering these results, we 

can say that the Figures 4.12-4.14 can be used for a general guidance for an 

estimated relative savings in runtimes by SBD preconditioners for modeling 

soil-structure interaction problems when prevailing conditions are known. 

Figure 4.19 shows the computed steady-state surface settlement profile 

after 40 excavation steps which closely matches with that of Möller (2006). A 

peculiar large settlement near the left mesh boundary was observed by Möller 

and was attributed to the lack of immediate support by a tunnel lining for the 

first excavation. However, the present study using GeoFEA did not observe 

such behavior. 

4.4. Conclusion 

The ill-conditioning of linear systems due to large relative differences in 

stiffnesses of the materials such as those in soil-structure interaction problems 

was investigated in this study. For such systems, the performance of SJ, SSOR 

or ILU preconditioners degrades with increasing relative differences in 

stiffnesses and the number of elements of stiff materials (e.g. structural 

elements) in the mesh. A block diagonal preconditioner was shown to exploit 

such relative differences in stiffnesses to an attractive eigenvalue clustering of 

the preconditioned system. Various inexact block diagonal preconditioners 

were systematically studied for the practical usage. Finally, two simplified 



 

 114 

block diagonal (SBD) preconditioners were proposed that were shown to be 

effective in mitigating such material ill-conditionings. Studied examples 

showed that such mitigation offers a significant improvement in the 

performance for modeling large-scale soil-structure interaction problems.  

The key observations are summarized as follows: 

1. A large soil-structure stiffness ratio was shown to be an advantage only 

for linear systems preconditioned by the theoretical exact block 

diagonal preconditioner. However, this exact form is not practical in 

terms of runtime and memory usage. 

2. Numerical results showed that inexact block diagonal preconditioners 

are much cheaper and faster than the theoretical exact block diagonal 

preconditioner because the large preconditioning costs for the latter 

will overwhelm the saving accrued from massive reduction in iteration 

count. Inexact forms are always less memory intensive than the exact 

form. 

3.  It was found that the inexact block diagonal preconditioners with 

Cholesky factorization of block P  effectively mitigated the 

degradation in performance due to increasing soil-structure stiffness 

ratios regardless of the approximation of soil block G.  

4. From the runtime as well as memory point of view, the diagonal 

preconditioners with exact P  combined with diagonal or SSOR 

approximation of G  were found to be the most practical. These two 

preconditioners were termed as SBD preconditioners. However, SBD2 

(4.26) may or may not be faster than SBD1 (4.25) depending on the 

problem at hand and the ordering of variables. 



 

 115 

5. SJ, SSOR, or ILU preconditioners are not only affected by large soil-

structure stiffness ratios, but also by the size of block P . In contrast, 

SBD preconditioners are stable and convergence consistently for a 

variable size of the block P . Some charts have been proposed that 

may be useful for engineers for a general guidance on an estimated 

saving in runtimes by SBD preconditioners over others. 



 

 116 

 

Figure 4.1. One-dimensional FE discretization of oedometer test set up to 

illustrate the effect of different materials in the formulation of FE stiffness 

matrix. The dots and numbers besides them are finite element nodes and node 

numbers, F is the applied load, l is the element size, 
ps

E′  and 
s

E′  are the 

effective Young’s moduli of porous stone and soil, respectively.  

 

1 

2 

3 

4 

F 
Porous stone, psE′  

Soil, sE ′   

l 
l 

x 

y 
z 

εy =  εz = 0 

εx ≠ 0 

εx = εy =  εz = 0 

5 

6 



 

 117 

 
 

15.0 m
15.0 m

H
 =

 3
0

.0
 m

xy
z

3
.0

L
 =

 2
0

.0
 m

 
 

 

 

 

 

No. of elements 21,875 

No. of nodes 94,796 

Pile DOFs ( m ) 12,767 

Soil DOFs ( n ) 254,913 

Total DOFs ( N ) 267,680 

  

Raft  

        Thickness 3 m 

         Overhang 0.5 m 

 

1
0
.0

 m

10.0 m10.0 m

 

 

 

 

 

  

m  1,632 
n  2,764 

N  4,396 

Figure 4.2. Three-dimensional FE discretization of a typical 9-piled raft 

foundation (quadrant symmetric): (a) a realistic problem discretized into 

25×25×35 mesh; (b) a model problem discretized into 7×7×7 mesh to illustrate 

the spectral properties of the preconditioned system. 

0.1 MPa 

(a) 

0.1 MPa 

(b) 



 

 118 

 

10
0

10
1

10
2

10
3

10
4

10
5

E'p/E's

10
0

10
1

10
2

10
3

10
4

10
5

It
er

at
io

n
 c

o
u
n
t

Unpreconditioned K

[P, G]-1 K

10
0

10
1

10
2

10
3

10
4

10
5

E'p/E's

10
1

10
2

10
3

10
4

10
5

10
6

10
7

C
o
n
d
it

io
n
 n

u
m

b
er

 

Figure 4.3. 7×7×7 mesh: Condition number and iteration count of 

unpreconditioned and theoretical block diagonal preconditioned stiffness 

matrix K for varying pile-soil stiffness ratios. 



 

 119 

-0.01

0

0.01

im
ag

in
ar

y
 λ

-0.01

0

0.01

im
ag

in
ar

y
 λ

0 0.4 0.8 1.2 1.6 2

real λ

-0.01

0

0.01

im
ag

in
ar

y
 λ

|λ|max = 1.96×100

|λ|min  = 3.81×10-2

|λ|max = 1.95×100

|λ|min  = 5.45×10-2

|λ|max = 1.95×100

|λ|min  = 5.55×10-2

Ep
'/Es

' = 1

Ep
'/Es

' = 1000

Ep
'/Es

' = 41000

Iteration count = 37

Iteration count = 13

Iteration count = 7

 

Figure 4.4. 7×7×7 mesh: Eigenvalue distribution of theoretical exact block 

diagonal preconditioned system (4.14) at different pile-soil stiffness ratios: (a) 

1
p s

E E′ ′ = (fictitious pile); (b) 1000
p s

E E′ ′ = ; and (c) 41000
p s

E E′ ′ = . 

(c) 

(b) 

(a) 



 

 120 

 

10
0

10
1

10
2

10
3

10
4

10
5

Ep
'/Es

'

0

4

8

12

16

 
It

er
at

io
n
 c

o
u
n
t

 I
te

ra
ti
o
n
 c

o
u
n
t 
o
f 

[d
ia

g
(P

),
d
ia

g
(G

)]
 a

t 
 E

p
' /E

s'  =
 1

  
 

10
0

10
1

10
2

10
3

10
4

10
5

Ep
'/Es

'

0

4

8

12

16

 
C

P
U

 t
im

e

C
P

U
 t
im

e 
o
f 

[d
ia

g
(P

),
d
ia

g
(G

)]
 a

t 
 E

p
' /E

s'  =
 1

  
                            RAM (MB)

diag(P)        654 

SSOR(P)     654

ILU0(P)       865

P                  667

 

Figure 4.5. 25×25×35 mesh: Iteration count and total CPU time of inexact 

block diagonal preconditioner (4.21) for various inexact forms of block P with 

diagonal approximation of soil block G for a 9-piled raft. 



 

 121 

 

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

real eigenvalues

0.0001

0.001

0.01

0.1

1

cu
m

u
la

ti
v

e 
d

is
tr

ib
u

ti
o

n

                    Ep'/Es' = 1

                    Ep'/Es' = 41000

                     Iteration count

                     Ep'/Es'    Ep'/Es'

                       = 1     = 41000

diag(P)     188     370

SSOR(P)  178     354

ILU0(P)    166     230

P               162     159

Boundary of 

smallest λ for 

[diag(P), diag(G)] 

at Ep
'/Es

' = 1

 

Figure 4.6. 7×7×7 mesh: Cumulative distribution of eigenvalues of the 

preconditioned system with inexact block diagonal preconditioner (4.21) for 

different inexact forms of block P and diagonal of block G at two different 

stiffness ratios. 



 

 122 

10
0

10
1

10
2

10
3

10
4

10
5

Ep
'/Es

'

0

0.2

0.4

0.6

0.8

1

 
It

er
at

io
n

 c
o

u
n

t

 I
te

ra
ti
o

n
 c

o
u

n
t 
o

f 
[P

,d
ia

g
(G

)]
 a

t 
 E

p
' /E

s'  =
 1

  
 

10
0

10
1

10
2

10
3

10
4

10
5

Ep
'/Es

'

0

0.2

0.4

0.6

0.8

1

 
C

P
U

 t
im

e

C
P

U
 t
im

e 
o

f 
[P

,d
ia

g
(G

)]
 a

t 
 E

p
' /E

s'  =
 1

  
 

                           RAM (MB)

diag(G)          667 

SSOR(G)       669

ILU0(G)       1343

 

Figure 4.7. 25×25×35 mesh: Performance of different inexact forms of block 

G with Cholesky factorization of block P in the block diagonal preconditioner. 



 

 123 

 

10
-3

10
-2

10
-1

10
0

10
1

real eigenvalues

0.0001

0.001

0.01

0.1

1

cu
m

u
la

ti
v

e 
d
is

tr
ib

u
ti

o
n

                    Ep'/Es'  = 1

                    Ep'/Es'  = 41000

                     Iteration count

                     Ep'/Es'    Ep'/Es'

                       = 1     = 41000

diag(G)     162     159

SSOR(G)    63       46

ILU0(G)     44       24

 

Figure 4.8. 7×7×7 mesh: Cumulative distribution of eigenvalues of the 

preconditioned system for different inexact forms of block G with Cholesky 

factorization of block P in the block diagonal preconditioner. 



 

 124 

10
0

10
1

10
2

10
3

10
4

10
5

Ep
'/Es

'

0

2

4

6

8

10

12

14

 
It

er
at

io
n
 c

o
u
n
t

 I
te

ra
ti
o
n
 c

o
u
n
t 
o
f 

S
J 

at
  
E

p
' /E

s'  =
 1

  
 

                  RAM (MB)

SJ           654

SSOR     654

ILU0     1290

SBD1       667

SBD2       669

10
0

10
1

10
2

10
3

10
4

10
5

Ep
'/Es

'

0

2

4

6

8

10

 
C

P
U

 t
im

e

C
P

U
 t
im

e 
o
f 

S
J 

at
  
E

p
' /E

s'  =
 1

  
 

Cross-over 

points 

for SBD 

preconditioners

 

Figure 4.9. 25×25×35 mesh: Comparison of SBD preconditioners with other 

preconditioners for a 9-piled raft in a range of 
p s

E E′ ′ . Preconditioners are: SJ 

= standard Jacobi; SSOR = symmetric successive over relaxation [Equation 

(4.27)]; ILU0 = Incomplete LU factorization preconditioner with zero fill-ins; 

SBD = simplified block diagonal preconditioners [Equations (4.25 and 4.26)]. 



 

 125 

 

 

10 m 15 m0

CL

CL

x

y

3x3

5x5

7x7 piles

1x1

 
 

Figure 4.10. 25×25×35 mesh: Layout of piles in the piled-raft foundation 

(quadrant symmetric). 

Raft 

Piles 

Face nodes  

εx = 0 

Face nodes  

εy = 0 



 

 126 

0 10 20 30 40 50
Number of piles

0

5

10

15

 
It

er
at

io
n

 c
o

u
n

t

 I
te

ra
ti

o
n

 c
o
u

n
t 
o

f 
S

J 
fo

r 
1
-p

il
e 

at
  
E

p
' /E

s'  =
 1

  
 

SJ

SSOR

ILU0

SBD1

SBD2

0 10 20 30 40 50
Number of piles

0 10 20 30 40 50
Number of piles

E'
p/E

'
s = 1 E'

p/E
'
s = 1000 E'

p/E
'
s = 41000

slower, but converged

No convergence in 

50,000 iterations

 

 

0 10 20 30 40 50
Number of piles

0

5

10

15

 
C

P
U

 t
im

e

 C
P

U
 t

im
e 

o
f 

S
J 

fo
r 

1
-p

il
e 

at
  

E
p

' /E
s'  =

 1
  
 

0 10 20 30 40 50
Number of piles

0 10 20 30 40 50
Number of piles

E'
p/E

'
s = 1 E'

p/E
'
s = 1000 E'

p/E
'
s = 41000

Number      size of 

of piles       block P

       1               668

       9          12,767

     25          36,948

     49          72,601    

 

Figure 4.11. 25×25×35 mesh: Effect of size of stiff block P (e.g. due to 

variation in number of piles, raft thickness = 3 m, in the piled-raft problem) in 

the performance of preconditioners at different stiffness-ratios. 



 

 127 

 

5

10

15

20

25

30

35

%
 o

f 
P

il
e 

(o
r 

st
if

f)
 D

O
F

s

0 5 10 15 20 25 30 35 40 45

10 x Log10(E'p/E's)

 
 

 

5

10

15

20

25

30

35

%
 o

f 
P

il
e 

(o
r 

st
if

f)
 D

O
F

s

0 5 10 15 20 25 30 35 40 45

10 x Log10(E'p/E's)

 
 

Figure 4.12. CPU time of SBD preconditioners for a range of stiff DOFs and 

soil-structure stiffness ratios: (a) SBD1 versus SJ (b) SBD2 versus SJ. 

(a) 

(b) 

Cross-over 

line of SBD1 

over SJ 

T 

T 



 

 128 

 

5

10

15

20

25

30

35

%
 o

f 
P

il
e 

(s
ti

ff
) 

D
O

F
s

0 5 10 15 20 25 30 35 40 45

10 x Log10(E'p/E's)

 
 

5

10

15

20

25

30

35

%
 o

f 
P

il
e 

(s
ti

ff
) 

D
O

F
s

0 5 10 15 20 25 30 35 40 45

10 x Log10(E'p/E's)

 
 

Figure 4.13. CPU time of SBD preconditioners for a range of stiff DOFs and 

soil-structure stiffness ratios: (a) SBD1 versus SSOR (b) SBD2 versus SSOR.  

(a) 

(b) 

Cross-over 

line of SBD1 

over SSOR 

Cross-over 

line of SBD2 

over SSOR 

T 

T 



 

 129 

 

5

10

15

20

25

30

35

%
 o

f 
P

il
e 

(s
ti

ff
) 

D
O

F
s

0 5 10 15 20 25 30 35 40 45

10 x Log10(E'p/E's)

 
 

5

10

15

20

25

30

35

%
 o

f 
P

il
e 

(s
ti

ff
) 

D
O

F
s

0 5 10 15 20 25 30 35 40 45

10 x Log10(E'p/E's)

 
 

Figure 4.14. CPU time of SBD preconditioners for a range of stiff DOFs and 

soil-structure stiffness ratios: (a) SBD1 versus ILU0 (b) SBD2 versus ILU0. 

(a) 

(b) 

Cross-over 

line of SBD1 

over ILU0 

Cross-over 

line of SBD2 

over ILU0 



 

 130 

 

 

Preconditioner

0

400

800

1200

1600

2000

R
A

M
 (

M
B

)

Piles (raft th.)

  SJ

SSOR

ILU0 SBD1

SBD2

ILUT
(50, 1E-6)

49 (4 m)

49 (3 m)

25 (3 m)

9 (3 m)

49 (5 m)

*

*

*

*  Memory does not depend on the 

    number of piles in the mesh

 

Figure 4.15. RAM consumed with different preconditioners for the same size 

(267,680 × 267,680) of the stiffness matrix K. 

 



 

 131 

 
  

   

  

Figure 4.16. Finite element mesh and step-by-step installation of liner in 

tunneling. 

 

i-1 i i+1 

2 m 

28 m 

55 m 

16 m 

8 m 

4 m 

No. of elements            =   13,074 

Total Liner DOFs, m    =   13,459 

Total DOFs, N              = 151,902 

100 m 



 

 132 

0

0.4

0.8

1.2

 
C

u
m

u
la

ti
v

e 
it
er

at
io

n
 c

o
u

n
t

C
u
m

u
la

ti
v
e 

to
ta

l 
It

er
at

io
n
 c

o
u
n
t 

o
f 

S
J 

0

5000

10000

15000

L
in

er
 D

O
F

s

SJ 

SSOR

SBD1

SBD2

Liner DOFs

0 400 800 1200 1600
Simulation increment number

0

0.4

0.8

1.2

 
C

u
m

u
la

ti
v

e 
C

P
U

 t
im

e

C
u

m
u
la

ti
v

e 
to

ta
l 
C

P
U

 t
im

e 
o
f 

S
J 

0

5000

10000

15000

L
in

er
 D

O
F

s

 

Figure 4.17. Comparison of iteration count and CPU time of preconditioners 

for the tunneling example. 

 



 

 133 

 

         
 

Figure 4.18. 7×7×7 mesh: Sparsity pattern of 2×2 block structured K. (a) 

Sequential nodal numbering of nodes in x-z plane according to Smith and 

Griffiths (1997; 2004); and (b) Automatic nodal numbering in GeoFEA. 

 

L
T
 

G 

L 

P 

L
T
 

G 

L 

P 



 

 134 

0 20 40 60 80 100

Distance from front mesh boundary (m)

5

4

3

2

1

0
S

et
tl

em
en

t 
(c

m
)

This study

Moller (2006)

 

Figure 4.19. Surface settlement profile after 40 steps of excavation. 

 

 

 



 

 135 

Table 4.1. 25×25×35 mesh: Effect of different approximations of the block P 

with diagonal approximation of block G in the preconditioner (4.21) for a 9-

piled raft problem. 

p s
E E′ ′  Approximation of 

block P 

Iteration 

count 

Total CPU 

time (s) 

Total CPU 

time ratio 

(%) 

nnzl(P)  

or  

nnzu(P) 

1 
1P̂

 
= diag 694 174.05 88.91  

 
2P̂  = SSOR 747 190.53 97.33  

 
3P̂  = ILU0 741 190.78 97.46 696,532 

 ILUT(50,1E-6) 740 197.59 100.94 1,294,071 

         ILUT(100,1E-6) 740 201.81 103.10 1,802,023 

 
4P̂  = Cholesky LL

T
 741 195.75 100.00 2,366,010 

20 
1P̂  = diag 849 203.39 105.92  

 
2P̂  = SSOR 772 195.55 101.83  

 
3P̂  = ILU0 725 187.80 97.80 699,400 

 ILUT(50,1E-6) 720 193.94 100.99 1,306,927 

         ILUT(100,1E-6) 720 198.05 103.13 1,821,928 

 
4P̂  = Cholesky LL

T
 722 192.03 100.00 2,382,766 

1000 
1P̂  = diag 2749 560.42 303.01  

 
2P̂  = SSOR 1584 353.53 191.15  

 
3P̂  = ILU0 1427 325.31 175.89 699,355 

 ILUT(50,1E-6) 713 192.33 103.99 1,308,782 

         ILUT(100,1E-6) 684 190.50 103.00 1,825,319 

 
4P̂  = Cholesky LL

T
 685 184.95 100.00 2,535,800 

6000 
1P̂  = diag 5446 1021.59 548.68  

 
2P̂  = SSOR 3532 732.98 393.67  

 
3P̂  = ILU0 2527 540.45 290.27 699,759 

 ILUT(50,1E-6) 1691 389.70 209.30 1,309,820 

         ILUT(100,1E-6) 972 249.55 134.03 1,810,974 

 
4P̂  = Cholesky LL

T
 692 186.19 100.00 2,444,136 

41000 
1P̂  = diag 8557 1651.08 883.17  

 
2P̂  = SSOR 5103 1039.17 555.85  

 
3P̂  = ILU0 3243 680.86 364.19 699,353 

 ILUT(50,1E-6) 2180 488.28 261.18 1,299,575 

         ILUT(100,1E-6) 1086 272.61 145.82 1,785,517 

 
4P̂  = Cholesky LL

T
 696 186.95 100.00 2,427,441 

 
Note: The ILU subroutines store both the upper and lower triangular factors of a matrix. The 

nnzu is the number of nonzeroes of extracted symmetric upper triangular factor (R) for 

preconditioning. Similarly, nnzl is the number of nonzeroes of symmetric lower triangular 

factor (R
T
) from Cholesky subroutines. 

 

 



 

 136 

Table 4.2. 25×25×35 mesh: Performance of ILU factorization preconditioners 

on entire K for a 9-piled raft problem (size of K = 267,680×267,680). 

p s
E E′ ′  Preconditioner Iteration 

count 

Total CPU 

time (s) 

nnzu(K) 

1 ILU0 90 108.62 21,901,222 

 ILUT(50,1E-6) 38 736.28 35,280,731 

     

20 ILU0 95 110.61 21,904,039 

 ILUT(50,1E-6) 37 726.62 35,283,548 

     

1000 ILU0 434 233.06 21,904,032 

 ILUT(50,1E-6) 49 717.80 35,283,534 

     

6000 ILU0 897 400.83 21,904,324 

 ILUT(50,1E-6) 116 746.48 35,283,818 

     

41000 ILU0 1352 566.16 21,904,016 

 ILUT(50,1E-6) 234 799.97 35,283,213 

 
Note: For the given computing configuration (2GB RAM) the memory was insufficient for 

ILUT(100, 1E-6), where ILUT(50, 1E-6) requires 1753 MB, about 36% more than that for 

ILU0. 
 

 

 

Table 4.3. Finite element details of piled-raft foundations. 

Mesh 25×25×35 

No. of elements 21,875 

Number 

of piles 

Raft  

thk. 

(metre) 

Size(P) 

-Pile DOFs  

( m ) 

Size(G) 

-Soil DOFs 

( n ) 

Size(K) 

-Total DOFs 

( N ) 

Number of 

nonzeros 

nnz(K) 

m N  

(%) 

1 - 668 267,012 267,680 43,534,492 0.25 

9  3 12,767 254,913 267,680 43,534,764 4.77 

25 3 36,948 230,732 267,680 43,534,612 13.80 

49 3 72,601 195,079 267,680 43,534,640 27.12 

49 4 86,145 181,535 267,680 43,562,744 32.18 

49 5 97,178 170,502 267,680 43,565,156 36.30 

 

 



 

 137 

Table 4.4. Material properties of NATM tunnel. 

Parameter, symbol, and unit  Soil Liner 
Material model Mohr-Coulomb Liner elastic 
Effective Young's modulus, E', MN/m

2 42 20,000 

Effective Poisson's ratio,ν' 0.25 0.15 
Effective cohesion,  c', kN/m

2 20 - 

Effective angle of friction,  φ', degree 20 - 
K0 1-sinφ' - 

Bulk unit weight, γbulk, kN/m
3 20 24 

Thickness, m 28 0.30 

 

Table 4.5. Comparison of total CPU times for tunnel construction 

 Ratio of CPU times 

Preconditioners Actual From Figures 4.12-4.13 

SBD1 vs. SJ 0.31 0.47 

SBD2 vs. SJ 0.43 0.19 

SBD1 vs. SSOR 0.29 0.92 

SBD2 vs. SSOR 0.41 0.47 

 



 

 138 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(blank) 

 

 



 

 139 

Chapter 5 

 

BLOCK DIAGONAL PRECONDITIONERS 

FOR BIOT’S CONSOLIDATION EQUATIONS 
 

 

 

 

5.1. Introduction 

The finite element simulation of Biot’s consolidation equations results in a 

symmetric but indefinite linear system (2.1). Because of low permeability of 

soils in consolidation analysis, the resulting linear systems are usually ill-

conditioned (Chan et al., 2001; Ferronato et al., 2001; Lee et al., 2002), 

requiring significant computational efforts for the solution of large-scale 

systems. In the recent years, several preconditioning strategies have been 

proposed to accelerate the convergence of such systems (see Section 2.2). One 

main disadvantage of incomplete factorization (Section 2.2.3) and block 

constrained preconditioners (Sections 2.2.4.1-2.2.4.3) is that their performance 

(iteration count and CPU time) depends on user-specified ad hoc parameters 

which are problem dependent. For example, the incomplete factorization 

preconditioners are often rather unstable and may fail to converge for some 

common problems (e.g. Phoon et al., 2008; Ferronato et al., 2009). Secondly, 

these preconditioners require a considerably more computer memory than a 

diagonal preconditioner. In contrast, diagonal preconditioners are simple in 



 

 140 

formulation, easy to implement, and require relatively modest computer 

memory for storage. These preconditioners are more suitable for a desktop PC 

environment; for example, GJ (Section 2.2.1.3) or MSSOR preconditioner 

(Section 2.2.2.1). However, the performance of these preconditioners was 

found to deteriorate when the relative differences in stiffnessess of materials 

are large (Chen et al., 2007). Here, the term ‘relative difference in stiffness’ of 

materials, refers to the ratio of Young’s moduli of involved materials in the 

consideration. In geotechnical engineering, materials with significant stiffness 

contrast are commonly encountered for soil-structure interaction problems 

(pile foundation, tunneling, excavation, etc.) or for problems involving soil 

and rock materials. 

Similar adverse effect of material stiffness contrasts on standard Jacobi 

(SJ) and SSOR preconditioners was also observed for the analysis of drained 

boundary value problems (Mroueh and Shahrour, 1999; Lee et al., 2002). For 

such problems, some simplified block diagonal (SBD) preconditioners have 

been proposed in Chapter 4 to mitigate such adverse effects. However, the 

large stiffness contrasts coupled with low permeable materials are likely to 

produce an even more severe ill-conditioned system in the consolidation 

analysis and demands a thorough study. Fundamentally, the coefficient matrix 

in the consolidation analysis is different (indefinite) from that of a 

drained/undrained analysis (positive definite). Thus, both a different iterative 

solver and a different preconditioning strategy are necessary. The objective of 

this study is to investigate a block diagonal preconditioner that mitigates such 

effects and yet remains practical for large-scale problems. The symmetric 

quasi-minimal residual (SQMR) is selected as an iterative solver (see Section 



 

 141 

2.1). Numerical results are evaluated based on three-dimensional Biot’s 

consolidation analyses of a piled-raft foundation and a tunneling problem.  

As discussed in Chapter 4, a pile foundation can exhibit an extremely 

large stiffness contrast between the pile and the surrounding soil (up to an 

order of 10
5
 between steel piles and soft clay). A common practical problem is 

the settlement of soft clay in the vicinity of piles. This settlement of the soft 

clay introduces negative skin friction (NSF) on the piles (e.g. Fellenius, 1984). 

The clay surrounding the pile may settle due to reconsolidation after pile 

driving, ground water lowering, and/or surcharge loading after installation of 

piles. NSF (or dragload) can severely affect the structural integrity and bearing 

capacity of the pile foundation, and can cause additional pile head settlement 

(Fellenius, 2004; Kuhns, 2008; Shen, 2008).  Hence, it is important to study 

the effect of consolidation on a piled-raft. 

Similar large stiffness contrasts exist in tunneling in soft soils due to 

the presence of stiff liner or other structural components [e.g. steel pipe 

umbrella arch (Yeo et al., 2009)]. In tunneling, deformation is a major design 

topic, as surrounding structures might be damaged by differential settlements. 

Hence, numerical analysis such as finite element method is often employed 

(e.g. Dasari et al., 1996; Möller and Vermeer, 2008; Yeo et al., 2009) owing 

to the complexity in geometry, soil stratification, and soil behavior that often 

encountered in the field. 

5.2. Biot’s consolidation equations and block diagonal 

preconditioning 

The block matrix structure resulting from the finite element discretization of 

coupled consolidation analysis (see Appendix B) suggests the use of block 



 

 142 

preconditioners. Block diagonal preconditioners for the 2×2 block indefinite 

matrix A  (2.1) has been extensively studied in the scientific computing 

community (Section 2.2.4.5). Phoon et al. (2002) generalized the Murphy et 

al.’s (2000) block diagonal preconditioner for an indefinite A  with 0C ≠ , 

where Murphy et al.’s block diagonal preconditioner takes the following form: 

 
0

0
MURPHY

K
M

S

 
=  
 

 (5.1) 

with 1T
S C B K B

−= + . (5.2) 

where, S  is the Schur complement of A  ( 0=C  in Murphy’s case). The 

inexpensive approximation of the generalized preconditioner of Phoon et al. is 

given by (2.10). Notice that, unlike the preconditioner (5.1), the block  K   is 

not exact in the preconditioner (2.10). Such an approximation is necessary for 

practical problems where the size of K  is extremely large. The GJ 

preconditioner is also the key for the success of the MSSOR (2.12) 

preconditioner (e.g. see Chen et al., 2006). However, the convergence of these 

preconditioners deteriorates when they are applied to a problem with 

significant stiffness contrasts such as a pile-group (Chen et al., 2007). The 

source of such deterioration in convergence behavior can be investigated by 

looking closely into the individual blocks of Equation (2.1). Using a 2-noded 

linear 1D element the individual blocks can be written as (see Phoon et al., 

2002): 

 
1 1

1 1

aD
K

l

− 
=  − 

, 
0.5 0.5

0.5 0.5
B a

− − 
=  

 
, and 

1 1

1 1
w

ak t
C

lγ

− ∆
=  − 

 (5.3) 

where, [ (1 )] [(1 )(1 2 )]D E ν ν ν′ ′ ′ ′= − + −  is the constrained modulus,  E′  the 

effective stress Young’s modulus, ν ′  the effective stress Poisson’s ratio, a  the 



 

 143 

cross-sectional area of the element, l  the element size,  k  the permeability 

matrix, t∆  the time step, and 
w

γ  the unit weight of water. 

Notice that the magnitude of the terms of the matrices depends 

primarily on E′ , k , t∆ , and the mesh. The block K  is proportional to E′  of 

the materials. E′  (orders of magnitude) can vary from 1 MPa for a soft soil to 

10
5
 MPa for a steel. For block C , the permeability k  (orders of magnitude) 

can vary  from 1 m/s for a stone column to 10
-9

 m/s for a soft clay or even 

lower for unsaturated soils. This significant differences in the magnitude of 

blocks K  and C , particularly at small time step, is the major source of ill-

conditioning in the consolidation analysis (Chan et al., 2001; Ferronato et al., 

2001). Furthermore, for soil-structure interaction problems (or problems 

involving very stiff and very soft materials), Chapter 4 suggests that it is 

expedient to partition the solid stiffness matrix K  into 2×2 blocks after 

reordering the variables corresponding to a stiff material (such as structural 

components) and a soil. Following the above strategy, the coefficient matrix 

A  will appear in a 3×3 block form for the coupled consolidation analysis: 

 

1

2

1 2

T

T T

P L B

A L G B

B B C

 
 =  
 − 

 with  
T

P L
K

L G

 
=  
 

 (5.4) 

where mm
P

×ℜ∈  is the structure (or stiff material) stiffness matrix and 

nn
G

×ℜ∈  is the soil stiffness matrix. In general, || || || || || ||P G C>> >> , where  

||⋅|| represents the norm of a matrix. The size of the P is governed by the 

discretization of stiff/structural elements and DOFs associated with them. In 

all practical soil-structure interaction problems, the size of the block P (i.e. m) 

is much smaller than the size of soil block G  (i.e. n). nmL ×  is the soil-structure 



 

 144 

displacement coupling matrix, the entries of which are contributed from soil-

structure interface nodes only. Hence, many rows of L  will be filled with 

zeros and the rank of L  ≤ m. Similarly, 1B  is the coupling matrix between 

structural displacement and pore pressure DOFs, and 2B  the coupling matrix 

between soil displacement and pore pressure DOFs. Note that, while the block 

B  in (2.1) has full column rank, the individual blocks 1B  and 2B  in (5.4) may 

not have full column rank. This is because the coupling entries from the soil-

structure interface nodes will only appear in block 
1B , making corresponding 

columns in 2B  to be zeros. 

For the 3×3 coefficient matrix A , Murphy et al.’s preconditioner (5.1) 

and the GJ preconditioner (2.10) will now take the following respective forms: 

 

0
0

0
0

0 0

T

MURPHY

P L
K

M L G
S

S

 
   = =       

 (5.5) 

 

















=







=

)ˆ(00

0)(0

00)(

)ˆ(0

0)(

Sdiag

Gdiag

Pdiag

Sdiag

Kdiag
M GJ

α
α

 (5.6) 

where 

 

1

11

1 2

2

T T T

T

BP L
S C B K B C B B

BL G

−

−   
 = + = +    

   
 (5.7) 

 

1

11

1 2

2

( ) 0
ˆ ( )

0 ( )

T T T
Bdiag P

S C B diag K B C B B
Bdiag G

−

−   
 = + = +    

   
. (5.8) 

Let, 

 2

1

21

1

1

~
BGBBPBCS TT −− ++=  (5.9) 

Since [ 1B ; 2B ]∈ℜnd×np
 has full column rank, S

~
 is nonsingular even when C=0.  

Let the block diagonal preconditioner for A  be: 



 

 145 

 

















=

S

G

P

M A
~

00

00

00

 (5.10) 

where mm
P

×ℜ∈ , nn
G

×ℜ∈ , and npnp
S

×ℜ∈
~

. Recall that m is the structural 

displacement DOFs, n the soil displacement DOFs, nd = m+n is the total 

displacement DOFs, and np the pore pressure DOFs. 

Let 
P

R , 
G

R , and 
S

R  be the Cholesky factors of P , G , and S
~

 blocks, 

respectively. Then the preconditioner (5.10) can be written as: 

 

















=
T

S

T

G

T

P

AL

R

R

R

M

00

00

00

, 

















=

S

G

P

AR

R

R

R

M

00

00

00

 (5.11) 

Let 11 −−= ARAL AMMW  be the preconditioned matrix. We have, 

 EW

CRRRBRRBR

RBRIRLR

RBRLRRI

W

S

T

SG

TT

SP

TT

S

S

T

GnP

TT

G

S

T

PG

T

Pm

+=
















−

=
−−−−−

−−−−

−−−−

)

11

2

1

1

1

2

1

1

1

1

 (5.12) 

where 

 

















=
−−−−

−−

−−

0

0

0

1

2

1

1

1

2

1

1

G

TT

SP

TT

S

S

T

Gn

S

T

Pm

RBRRBR

RBRI

RBRI

W
)

, 

















−

=
−− 100

00
~

0
~

0

S

T

S

T

CRR

L

L

E  

  (5.13) 

and 

 1~ −−= G

T

P LRRL . (5.14) 

It is readily shown that the eigenvalues decomposition of W
)

 are given by 

TQQW Λ=
)

, where Q  is orthogonal and Λ is a diagonal matrix whose 

diagonal elements are the eigenvalues of W
)

 given by: 



 

 146 

 










−

=+−

=++

=

npndciplicitywith multi

npj

npj

W j

j

 1

,,1)411(

,,1)411(

)( 2

2
1

2

2
1

K

K

)
σ

σ

λ  (5.15) 

where, and npjj ,,1,2
K=σ  are the eigenvalues of X , 

 
11

1

2

1

21

1

1

)
~

(

)(

−−−−

−−−−−−

−=−=

+=

S

T

SnpS

T

S

S

T

GG

TT

PP

TT

S

CRRIRCSR

RBRRBBRRBRX
 (5.16) 

Assuming that ||C||
2
 is so small that || 1T

S S
R CR

− − ||2 << 1.  By the Bauer-Fike 

Theorem (Golub and Van Loan, 1989, p. 342), the eigenvalues of W
)

 are 

clustered within 3 discs of radii δ = || 1T

S S
R CR

− − ||2 and they are centered at γ– = 

(1-√5)/2 with multiplicity np, 1 with multiplicity nd – np, and γ+ = (1+√5)/2 

with multiplicity np.  

By the Bauer-Fike Theorem (Golub and Van Loan, 1989, p. 342), the 

eigenvalues of W are those of W
)

 up to the perturbation ||E||2 = max{|| L
~

||2, 

|| 1T

S S
R CR

− − ||2 } = || L
~

||2, assuming that ||C||2 is so small that || 1T

S S
R CR

− − ||2 << 

|| L
~

||2. It turns out that there are a few rows of L
~

 which have norms that are 

much larger than the other rows, and the perturbation || L
~

||2 is too large to give 

informative bounds on the eigenvalues of W based on those of W
)

. By 

considering the partition 21

~~~
LLL += , where 2

~
L is formed by extracting those

rows of L
~

 with large norms, say r rows, we have:

 W U V= + (5.17)

where

















−

+=
−− 1

1

1

00

00
~

0
~

0

S

T

S

T

CRR

L

L

WU
)

,

















=

000

00
~

0
~

0

2

2

T
L

L

V . (5.18)

 147

Theorem 1 Suppose U, V ∈ℜN×N
(N = m+n+np, the size of A) are symmetric

matrices, and suppose V has rank at most r. Assume that the eigenvalues of U

and V are arranged in ascending order. Then

 rNkUVU rkk 2,,1)()(−=≤+ + Kλλ (5.19)

 rNkVUU rkk 2,,1)()(−=+≤ + Kλλ (5.20)

Proof: See Theorem 4.3.6 in p.184 of Horn and Johnson (1985).

Theorem 2 For the matrices U, V, and W in (5.17), we have

)()()()(11 UWWU nprnpr λλλλ ≤≤≤≤ −+ L (5.21)

)()()()(11 UWWU NrNrnpnp λλλλ ≤≤≤≤ −+++ L (5.22)

Proof: We first prove the left and right most inequalities in (5.21). The left

most inequality follows from (5.20) with k = 1, whereas the right most

inequality follows from (5.19). Similarly, the left and right most inequalities in

(5.22) follows from (5.20) and (5.19) with k = np + 1 and k = N – r,

respectively.

Theorem 2 shows that all the eigenvalues of W, except 4r of them

consisting of λ1(W), … , λr(W), λnp+1-r (W), … , λnp+r (W), λN+1-r (W), … , λN

(W), are contained in the intervals [λ1(U), λnp(U)] ∪ [λnp+1(U), λN(U)]. By the

Bauer-Fike Theorem (Golub and Van Loan, 1989, p. 342), the eigenvalues of

U are those of W
)

 up to the perturbation max{|| 1

~
L ||2, ||

1T

S S
R CR

− − ||2 } =: ε. Since

the eigenvalues of W
)

are clustered at γ– = (1 - √5)/2 with multiplicity np, 1

with multiplicity nd – np, and γ+ = (1 + √5)/2 with multiplicity np, we know

that all the eigenvalues of W, except 4r of them, are contained in the intervals:

 εγλλλλεγ +≤≤≤≤≤≤− −−+−)()()()(11 UWWU nprnpr L (5.23)

 εγλλλλε +≤≤≤≤≤≤− −−+++)()()()(1 11 UWWU NrNrnpnp L (5.24)

 148

Remark 1

Since the order of magnitude of elements of L
~

 is, in general, affected by the

inverse of the square root of soil-structure stiffness ratios (see Appendix D),

the perturbation || 1

~
L ||2 (5.18) will become smaller with the increase of soil-

structure stiffness ratios. That is, when the soil-structure stiffness ratio is large,

the clustering of eigenvalues of the W (5.15) increases towards the centre of

the discs at 1 and (1±√5)/2. The numerical results in Section 5.3.1.1 partially

substantiate this Remark.

Remark 2

For a 3×3 block matrix A, a Schur complement S
~

 (5.9) is proposed which

ignores the off-diagonal block L . Since the computation of S
~

 involves only

the diagonal blocks of K , it is simpler in comparison to S (5.7) given by

Murphy et al. (2000). The proposed S
~

 has an added advantage in that the

blocks P and G can be approximated individually (and differently) for large-

scale practical problems, whereas an approximation to the entire K need to be

considered for S. Hence, the preconditioner (5.10) is the special case of

preconditioner (5.5), when L = 0. The numerical results in Section 5.3.1.1 will

show that the exclusion of L in S
~

 has practically no effect on the convergence

in terms of iteration count, but reduces the computation cost of Schur

complement significantly.

 149

Remark 3

We have assumed that ||C|| is very small because it is proportional to the

permeability of the materials [see Equation (5.3)] and the coupled

consolidation analysis usually involves the materials of low permeabilities.

However, ||C|| may not be small if the analysis involves either a large time step

or a highly permeable material. When ||C|| is large, Phoon et al. (2002)

concluded that the GJ preconditioner is closely related to the standard Jacobi

(SJ) preconditioner (2.8). According to several researches (see, for example,

Ferronato et al., 2001; Lee et al., 2002; Chen et al., 2006; Ferronato et al.,

2009), when ||C|| is large, the ill-conditioning of the problem reduces and

standard Jacobi (SJ) performs well for such problems. On the other hand, there

can be a significant contrast in permeabilities of structural elements and soils,

the effect of which may not be straightforward. Section 5.3.1.4 will discuss the

numerical results on a wide range of contrasts in permeability of materials.

5.3. Numerical experiments

Although the exact block diagonal preconditioner (5.10) has an attractive

eigenvalue clustering property, this exact form would be too expensive for

practical use because some blocks may not be readily invertible. For large-

scale computing, the practical approach is to approximate the blocks so that

they are cheap to invert and yet remain fairly effective in clustering the

eigenvalues. However, the actual performance of these approximations can

only be evaluated numerically. Hence, this Section serves to achieve the

following objectives:

 150

(a) Establish an approximate block diagonal preconditioner as close to a

simple diagonal preconditioner as possible. But, it should be effective

in mitigating the coupled ill-conditioning contrasts in stiffness and

permeability of the materials.

(b) Fine tune the above preconditioner for higher efficiency, keeping in

mind the memory constraint.

(c) Comparison of the proposed preconditioner with existing GJ, MSSOR,

and ILU preconditioners.

Since the coefficient matrix A is symmetric, only the upper triangular part of

A is stored in compressed sparse column (CSC) format to reduce memory

usage (see Section 2.3). The preconditioned system is solved using SQMR

method (Freund and Nachtigal, 1995) (see Section 2.1).

The problem of interest involves two representative soil-structure

interaction problems: piled-raft foundation and tunneling examples. Similar to

Chapter 4, the former problem is solved using in-house Fortran 90 programs

compatible with programs of Smith and Griffiths’ (1997) and the latter is

solved after implementing the above code into GeoFEA (2006).

5.3.1. Piled-raft foundation

The piled-raft foundation problem considered here is the same as that in

Chapter 4 for the drained analysis (Section 4.3.1). The FE mesh discretizations

are the same as those shown in Figure 4.2 in Chapter 4. For coupled

consolidation analysis, the discretization comprises 20-noded hexahedral

elements for displacement degrees of freedom (DOFs) coupled with 8-noded

hexahedral elements for pore pressure DOFs. Hence, each finite element

 151

(including pile/raft elements) consists of 60 displacement DOFs and 8 pore

pressure DOFs.

The ground water table is assumed to be at the ground surface and is in

hydrostatic condition at the initial stage. Free draining with zero pore

pressures is assumed on the top surface and the base is impermeable. The base

of the mesh is assumed to be fixed in all directions; side face boundaries are

constrained in the transverse direction but free in in-plane directions. A

uniform load of 100 kPa is applied to the entire cap area in the first time step

and the time increment is taken as t∆ = 1s. Subsequent dissipation of pore

pressure and the settlement are studied by using a backward difference

technique.

All materials (pile, raft, and soil) are assumed to be linear elastic with a

constant effective Poisson’s ratios. The effective Young's modulus of pile

(
p

E′) is varied to study potential ill-conditioning due to contrasts in pile-soil

stiffnesses. The details of material properties used for the numerical study are

shown in Table 5.1. The variation in hydraulic conductivity (k) of the

materials will be considered later in Section 5.3.1.4. The lower bound of pile-

soil stiffness ratio (
p s

E E′ ′) covers the natural variation of soil types whereas

the upper bound covers soil-structure interaction problems, where
s

E′ is the

Young’s modulus of soil. In addition,
p s

E E′ ′ equals to 1 is also considered. It

refers to the condition where all pile/raft elements are replaced by soil

elements, i.e. a fictitious pile. This configuration is included as a benchmark to

gauge the effect of differences in stiffness relative to a homogeneous soil

condition on various preconditioning methods. This is done for the sake

completeness.

 152

5.3.1.1. Validation of theory

As expected, the spectral condition number of A increases by several orders

with the increase of pile-soil stiffness ratios (
p s

E E′ ′), holding other

parameters constant, and the unpreconditioned SQMR solver immediately

fails to converge as shown in Figure 5.1. Spectral condition number is the ratio

of the absolute largest and smallest eigenvalues of the matrix. However, the

trend is opposite with the exact block diagonal preconditioner (5.10). Both the

spectral condition number and the number of iteration counts decrease with

the increase of
p s

E E′ ′ . Similar convergence trend was also observed for

drained problems with exact block diagonal preconditioner in Chapter 4. The

decrease in iteration count can be attributed to the increase in clustering of

eigenvalues of the preconditioned matrix towards the three centers of the discs

at 1, (1 5) 2+ , and (1 5) 2− with the increase of
p s

E E′ ′ (Figure 5.2). This

substantiates the Remark 1 in Section 5.2. However, some of the eigenvalues

(particularly extreme eigenvalues) do not decrease with increasing
p s

E E′ ′ ,

giving nearly the same spectral condition numbers (Figure 5.1). This is

because the norms of some rows of L
~

 (i.e. 2

~
L , see Theorem in Section 5.2)

do not decrease with increasing
p s

E E′ ′ . For a 1D example, at least one row of

L
~

 is independent of soil-structure stiffness ratios (see, for example, Appendix

D). The numerical results of the studied 3D problem show that the maximum

value of norms of L
~

 lies in between 0.5 and 1.0 depending on the problem.

For example, if we assume 0.3 as a perturbation value, the r number of rows

of L
~

 with ||)
~

(row|| L ≥ 0.3 is 8 and 1, respectively, for
p s

E E′ ′ = 1000 and

 153

41000 for the studied problem. The respective bounds of the eigenvalues of

the preconditioned matrices are shown in Figure 5.2.

Figure 5.1 also demonstrates that the Schur complement S
~

 or S for

block (3, 3) in MA (5.10) makes no difference in the performance. The relative

merits of S
~

 compared with S are discussed in Remark 2 in Section 5.2.

However, the exact block diagonal preconditioners are impractical. Even the

computation of the simpler S
~

 is very expensive since it requires the Cholesky

factorization of the large matrix G and computation of the matrix 2

1

2 BGBT − . In

addition, as the last matrix is typically dense and large, it would also require

excessive amount of memory to store it. Hence for practical computation,

approximation of the block G is necessary when selecting a cheaper

alternative to S
~

. We should note that as the elements of P have much larger

magnitudes than those of G, the contribution of the term 1

1

1 BPBT − to S
~

 is

much less significant than the term 2

1

2 BGBT − . Thus it would not make

substantial difference to the effectiveness of S
~

even if we replace the block P

in 1

1

1 BPBT − by a cheaper alternative such as diag(P).

5.3.1.2. Effect of approximation of diagonal blocks of the

preconditioner

The following approximations for the pile block P [block (1, 1)] in the block

diagonal preconditioner (5.10) are investigated for their effectiveness:

P

T

P

P

T

PPPP

RRPP

PP

DLDDLPP

PdiagP

==

=

++==

=
−

4

3

1

2

1

ˆ

)(ILU0ˆ

)())(()(SSORˆ

)(ˆ

 (5.25)

 154

where
P

L and
P

D are strictly lower triangular and diagonal part of P,

respectively, and
P

R is the Cholesky factorization of block P. Here, the exact

block P (i.e. 4P̂) is considered because Chapter 4 concluded that the block P

is the main source of ill-conditioning due to contrast in stiffnesses in soil-

structure interaction problems.

The approximations 1P̂ and 2P̂ would require the lowest storage of

only a single m×1 vector for the preconditioner. For 1P̂ and 2P̂ , the FE

simulation can effectively be performed by storing only the upper triangular

part of P . In contrast, the approximations 3P̂ (incomplete LU factorization

with zero fill-ins) and 4P̂ require the entire P matrix to be stored for the

preconditioner. For ILU factorization, the matrix is first reordered by Reverse

Cut-hill McKee (RCM) permutation (George and Lui, 1981) so as to minimize

possible fill-ins. The subroutines for ILU and RCM algorithm are obtained

from Saad (1994a) and Burkardt (2003), respectively. For SQMR solver, the

symmetric factorizations (R
T
R or TLDL) are obtained by manipulating the

upper triangular factor from ILU subroutines. Similarly, prior to sparse

Cholesky factorization of P , the matrix is reordered by Multiple Minimal

Degree (MMD) permutation (George and Lui, 1981) to minimize the possible

fill-ins in the factorization to cut down the cost of factorization and back

substitution in each preconditioning step. Subroutines for sparse Cholesky

factorization with MMD ordering (Ng and Peyton, 1993) are obtained from

SparseM package (Koenker and Ng, 2007). Although the computational and

storage costs for 3P̂ are moderate for a sparse P , the approximation 4P̂ can be

computationally expensive, particularly when the size of P becomes large for

 155

large soil-structure interaction problems. However, it is significantly less

expensive in comparison to the exact block diagonal preconditioner (5.10), if

the approximations of other diagonal blocks are crude. In addition to this, we

also considered the incomplete factorization with partial fill-ins [such as ILUT

(Saad, 1994b)] for the approximation of block P.

As mentioned in Chapter 4, the size of the stiff block P (pile block in

this example) would be much smaller than the size of soil block G for all soil-

structure interaction problems because the soil mesh must increase with the

increase of the size of the structural components to avoid boundary effects.

Hence, the most practical approximation for the block G [block (2, 2)] is:

 1
ˆ diag()G G= (5.26)

The diagonal approximation is easy to invert. It is certainly the cheapest

possible approximation as well. Other approximations such as ILU0 or

variants of ILU would be significantly more expensive by comparison (both in

terms of storage and time) for large-scale computing (see, for example,

Chapter 4).

Likewise, the computation of an exact Schur complement S
~

 is also

onerous. Therefore, a less expensive approximation of S
~

 [block (3, 3)] is

considered:

 1 1

1 1 1 2 2
ˆ () ()T T
S C B diag P B B diag G B

− −= + + (5.27)

Note that, although the exact S and S
~

 [Equations (5.7) and (5.9)] are

different, their diagonal approximations [Equations (5.8) and (5.27)] turn out

to be identical.

 156

In summary, our proposed practical block diagonal preconditioner with

the above approximations would take the following form:

















=

)ˆ(00

0)(0

00ˆ

ˆ

1Sdiag

Gdiag

P

M A

α

 (5.28)

where P̂ varies from 1P̂ to 4P̂ and the parameter α is a user supplied real-

value. For a cheap approximation of Schur complement such as Equation (5.8),

the effectiveness of α (particularly, the negative sign) has been demonstrated

elsewhere (e.g. Phoon et al., 2002; Toh et al., 2004; Chen et al., 2006). In this

study, α = -4 is used based on the theoretical results from (Phoon et al., 2002).

It should be noted that for the special case of 1P̂ = diag(P) and α = -4, the

preconditioner (5.28) is identical to the GJ preconditioner (5.6). In other words,

GJ would be the baseline to gauge the proposed preconditioner and any

approximation of P which converges slower than the GJ is deemed inferior.

Figure 5.3 demonstrates that when the block P is not exact in the

proposed preconditioner (5.28), the performance (iteration count and total

CPU runtime) of the preconditioners degrades with the increase of pile-soil

stiffness ratios (
p s

E E′ ′). Conversely, the effect of stiffness ratio is stabilized

when the (1, 1) block is the exact P (i.e. 4P̂) for the preconditioner (5.28).

This is consistent to the findings for drained analysis of the same problem

(Chapter 4). Such mitigation of deteriorating behavior due to difference in

material properties can be attributed to the almost identical real eigenvalue

profiles of the preconditioned system by the preconditioner (5.28) with exact

P, as shown in Figure 5.4. Since SSOR and ILU0 approximations of P do not

 157

seem to be satisfying the aimed results, they will not be included in the

succeeding discussions.

It may be possible that an approximation in between 3P̂ = ILU0 ()P

and 4P̂ P= exists which can optimize the tradeoff between overhead cost

(formation time and computer memory requirement) of preconditioning and

overall runtime (particularly for a problem with a very large size of block P).

For example, Toh et al. (2004) studied the ILUT approximations – incomplete

Cholesky factorization with partial fill-ins for symmetric matrices (Saad,

1994b) of K and S for their block preconditioners. Similarly, Bergamaschi

et al. (2007, 2008) used ILUT and AINV (Benzi et al., 2001) approximations

of block K for their block constrained preconditioners. See Section 2.2.4 for

more details about these block preconditioners. Hence, the performance of

ILUT(ρ, τ) approximation of block P is considered, where ρ is the number of

fill-ins in excess of original number of non-zeroes in each row of lower and

upper triangular factors, and τ is a dropping parameter below which the fill-ins

are discarded. Table 5.2 shows that the ILUT approximation of the block P

does improve the performance in comparison to ILU0(P) and is comparable to

its Cholesky counterpart when the material stiffness ratio is below 1000.

However, the material ill-conditioning is only effectively suppressed when the

block P is solved directly. With ILUT, the effective suppression of such ill-

conditioning can only be attained at a cost of allowing more fill-ins, the

optimum value of which is unknown a priori when the problem changes. As a

result, such an approximation is difficult to apply routinely and reliably for the

solution of complex soil-structure interaction problems that are of interest. A

practicing engineer running an FEM problem is unlikely to know how to

 158

choose an ad-hoc parameter without conducting costly parametric studies.

Moreover, when more fill-ins are allowed in ILUT, it becomes as expensive as

the Cholesky factorization.

Thus, let us denote the preconditioner (5.28) with exact block P by M1

so that:

















=

)ˆ(00

0)(0

00

1

1

Sdiag

Gdiag

P

M

α
 (5.29)

Observe that M1 is inferior, in terms of convergence behavior, to the exact

form MA (5.10), although P is exact in M1. In Figure 5.1, the number of

iteration counts of MA decreases with the increase of
p s

E E′ ′ . In Figure 5.3, the

number of iteration counts of M1 holds steady with the increase of
p s

E E′ ′ . It

would be unrealistic to expect an approximate form to outperform the exact

form in convergence. The approximate form, on the other hand, is much more

efficient in terms of runtime. Memory constraints is also far less of a problem.

For example, while M1 took about 620-750 sec and 855 MB RAM for the

solution of 9-piled raft in 25×25×35 mesh (Figure 4.2a), MA was inapplicable

owing to insufficient memory. However, note that, preconditioners based on

exact P alone can be futile without an appropriate Schur complement

preconditioning for the flow stiffness block. This is observed when the M1

preconditioner is compared with the base line (BL) preconditioner, where MBL

(5.30) did not converge in 50,000 iterations for the above problem for even

with a homogeneous material (
p s

E E′ ′ =1). The BL preconditioner means

preconditioning the displacement DOFs only (see, for example, Phoon et al.,

2002):

 159

















=

np

BL

I

Gdiag

P

M

00

0)(0

00

 (5.30)

It indicates the effect of approximation of other blocks (i.e. soil and flow

stiffness blocks) in the preconditioner, which is considered in the subsequent

Section.

5.3.1.3. Effect of approximation of soil and flow stiffness

blocks

We only consider approximations of blocks G (soil stiffness matrix) and S%

(Schur complement matrix for flow stiffness block) that require no or small

increase in computer memory than of the preconditioner (5.29). As discussed

in (Chen et al., 2006), the memory requirement for SSOR (Symmetric

Successive Over Relaxation) approximation is as low as a simple diagonal.

Hence, it is an obvious choice. Thus, the following different approximations

are studied:

 







=

)(MSSOR0

0
2

H

P
M with

2

2

T

G B
H

B C

 
=  − 

 (5.31)

















=

)ˆ(00

0)(SSOR0

00

1

3

Sdiag

G

P

M

α
 (5.32)

where, H is the lower-right 2×2 block of A (5.4). The diagonal of H is

replaced by the diagonal of M1 (5.29), similar to the replacement of diagonal

of A by GJ in the original development of MSSOR preconditioner (Chen et

al., 2006). The approximation such as ILU0 of blocks G or H is not included

because of because of two reasons (i) it can be slower than SSOR (see, for

example, Chapter 4), and (ii) it incurs large memory overhead. The ILU0 is

 160

also unstable for consolidation problems; see detailed comparisons of ILU0

and MSSOR preconditioners in (Phoon et al., 2008).

Figure 5.5 shows that the MSSOR approximation of the block H (in

M2) or SSOR approximation of block G (in M3) makes the preconditioners to

be about 2 times faster in terms of total CPU time while the iteration counts

can be reduced by about 3 times in comparison to the diagonal approximation

of the same blocks in M1. Such an improvement in the performance is because

the spectrum of the preconditioned matrices also shrunk by about 3 times with

M2 and M3 preconditioners than with M1, as shown in Figure 5.6. Since there

is no appreciable difference in the performance between M2 and M3, a

selection of either one is equally preferable. However, one disadvantage of M3

is that the submatrices in upper symmetric A (e.g. blocks L , 1B , 2B , and C)

are required to be stored separately for the efficient matrix-vector

multiplication (the algorithm is presented in Appendix C), whereas only the

separate storage of [L 1B] is required in the case of M2 preconditioner. From

the view point of implementation, the preconditioner M2 also reduces the

coefficient matrix A to a 2×2 form. Thus, we adopt M2 preconditioner for the

rest of the study. Finally it goes without saying that the implementation of M1

is much simpler than the implementation of M2 or M3.

5.3.1.4. Effect of pile and soil permeabilities

In the preceding Sections, the permeabilities of pile and soil were held

constant. In actual practice, the permeability of soil changes during

consolidation process. This, on the other hand, affects the flow stiffness matrix

C [Equation (5.4)]. Also, the permeability of soil varies over several orders of

 161

magnitude (ks = 10
-3

 to 10
-12

 m/s) depending on the soil type. Permeability

significantly lower than 10
-9

 m/s is common for unsaturated soils, e.g. up to

10
-12

 m/s for Singapore residual soils (Agus et al., 2005). Similarly, the

permeability of a pile can be as high as kp = 1 m/s, e.g. for a stone column

(Han and Ye, 2002), to as low as kp = 10
-17

 m/s, e.g. for a reinforced concrete

pile (Gonilho Pereira et al., 2009). The stone columns are used for ground

improvement of a soft soil and the reinforced concrete piles are commonly

used for building foundations. This Section demonstrates the effect of this

wide range of contrasts in permeability of materials on the above studied new

block diagonal preconditioners considering a constant pile-soil stiffness ratio

of 30,000. See Table 5.1 for more details of the material properties used for

the analysis.

As shown in Figure 5.7, the effect of soil-structure permeability

contrasts on M1 and M2 is apparent (up to 60% deviation) for the extreme case

of ground improvement with highly permeable pile (kp = 1 m/s) in nearly

impermeable soil (ks ≤ 10
-9

 m/s). However, when the pile (or structure) is less

permeable (kp ≤ 10
-9

 m/s), the effect of relative difference in the soil

permeabilities is minor due to M1, while such effects are effectively mitigated

by M2. This indicates that although there is a room for improvement on M1 and

M2 for a complete mitigation of the effect due to contrasts in permeabilities, it

may be achievable only at a cost of more complex preconditioners. On the

other hand, in most soil-structure interaction problems, the structural

components are less permeable, for which, the simple M1 and M2

preconditioners appear to be quite effective.

 162

5.3.1.5. Comparison of M1, M2, GJ, MSSOR, and ILU

preconditioners

Figure 5.8 shows that the mitigation of effect of material heterogeneity

(mainly due to stiffness and permeability contrasts) by the block

preconditioners (M1 and M2) enables them to outperform the GJ, MSSOR, and

ILU0 preconditioners when
p s

E E′ ′ is large. Note that the ILU0 preconditioner

considered here is the stabilized ILU0. Stabilization of the factorization is

carried out by replacing the pivots dynamically whose absolute values are

smaller than a threshold (=0.009 in this study) value (see Chapter 3 for details).

As noted in (Phoon et al., 2008), such stabilization is necessary for ILU0 to be

successful and to be competitive with MSSOR. However, as shown in the

Figure 5.8, ILU0 degrades much more rapidly than MSSOR does for

increasing
p s

E E′ ′ . On the other hand, ILUT(10, 10
-6

) on the entire A took 4080

s for factorization alone (about six times the total CPU time of M1, see Table

5.2) and failed to converge. This indicates that for ILUT to be successful for

such ill-conditioned problems, a proper stabilization is mandatory, and

underscores the superiority of M1 and M2 preconditioners for soil-structure

interaction problems. The cross-over stiffness ratios (
p s

E E′ ′) above which M1

and M2 preconditioners are preferable over GJ, MSSOR, and ILU0

preconditioners are about 50 and 1000, respectively. However, these cross-

over
p s

E E′ ′ points may be problem dependent. The succeeding Section

discusses more on this.

 163

5.3.1.6. Effect of size of block P

One limitation of M1 or M2 is the Cholesky factorization of block P, especially

when its size is very large. This Section investigates the effect of the size of

block P in the preconditioners by considering a range of piles from 1 to 49 in

a square raft configuration. Firstly, a constant raft thickness of 3m is

considered. It is subsequently increased to achieve the maximum size of block

P for which the available RAM (2GB in this study) supports its Cholesky

factorization. The layout of piles is the same as that shown in Figure 4.10. The

same 25×25×35 FE mesh (Table 4.2a) is used for all the problems to keep

constant the total number of DOFs for fair comparison, although, in actual

practice, the FE mesh domain would also be extended with increasing piled-

raft size to avoid boundary effects. Details of problem statistics are presented

in Table 5.3.

As shown in Figure 5.9, the performance of GJ, MSSOR, and ILU0

preconditioners are not only affected by the stiffness ratios but also by the

number of piles (size of the block P) whereas the preconditioners M1 and M2

are almost insensitive to both of these factors. When the problem domain is

homogeneous (fictitious pile), GJ, MSSOR, and ILU0 are not affected by the

size of block P , because there are actually no piles. However, they become

less and less effective as
p s

E E′ ′ increases. Interestingly, the proposed block

diagonal preconditioners M1 and M2 are practically unaffected not only by

p s
E E′ ′ but also by the size of block P indicating the effective mitigation of

the ill-conditioning due to material heterogeneity by M1 and M2. Note that the

size of block P is only 668 (less than 0.25% of the size of A) for a single pile,

 164

whereas it is 72,601 (≈ 25% of the size of A) for 49 piles with 3 m raft (see

Table 5.3).

Figures 5.10-5.11 show that the saving in runtime by M1 and M2

preconditioners over others depends on the problem at hand. If the percentage

of stiff DOFs in total is above 5% and the soil-structure stiffness ratio is also

large, both M1 and M2 can be more than 10 times faster than GJ and MSSOR.

However, it is not surprising to know that when the size of P is larger than

30% of the size of global A, where the size of global A is 291,340 × 291,340,

both M1 and M2 face the problem of lack of core memory (which is 2GB in the

present study). Assuming the size of P is usually much smaller than the size

of A in most soil-structure interaction problems, this memory requirement for

M1 and M2 is much less severe than that demanded by an ILUT factorization

on the entire A. Thus, the proposed M1 and M2 preconditioners are likely to be

useful for the simulation of large-scale ill-conditioned soil-structure

interaction problems because of the advantages they offer in mitigating

material ill-conditioning.

5.3.2. Tunneling

In any tunneling project, long-term settlement will occur with time due to

dissipation of excess pore pressure generated during the tunneling process. For

large-scale simulation of tunnels, advantages of preconditioned iterative

solution methods over direct solution method have been demonstrated by

several researchers (e.g. Mroueh and Shahrour, 2003; Lee et al., 2006; Phoon

et al., 2006). This study compares the effectiveness of previously discussed

preconditioners (GJ, MSSOR, M1, and M2) for the 3D FE consolidation

analysis of a tunnel. The problem is analyzed using GeoFEA (2006) after

 165

implementing these preconditioners as user defined solvers. Details of

GeoFEA implementation are explained in Section 6.2 in Chapter 6. The

problem considered here is taken from Möller (2006); see also Vermeer et al.

(2001). The tunnel with a diameter of 8 m and a cover of 16 m was modeled in

a symmetric half with an unsupported excavation of 2m. A block of

100×55×28 was divided into 12594 20-noded brick elements, resulting

165,005 unknown DOFs as shown in Figure 5.12. The ground water table is

assumed to be at the ground surface and is in hydrostatic condition at the

initial stage. More details of the problem are described in Section 4.3.2 in

Chapter 4.

Soil is modeled as Mohr-Coulomb material and the liner as linear

elastic. The permeabilities of soil and liner are taken as 10
-8

 and 10
-12

 m/s,

respectively. Unlike to Möller’s parameters, the dilation angle is taken the

same as the angle of friction for stiffness matrix A . The tunnel advancement

rate of 4 m/day is assumed. The excavation and installation of 0.3m thick liner

was simulated according to step-by-step procedure. Each step simulates an

excavated length of 2m by removing the soil elements and the installation of

liner in the previously excavated portion. Only 10 steps of excavation are

simulated for the demonstration purpose, which results 3229 liner

displacement DOFs (about 2% of the size of A).

Similar to piled-raft problem, the GJ and MSSOR preconditioners take

increasingly larger iteration counts and the CPU times with excavation steps,

as shown in Figure 5.13. The inclusion of stiff liner elements may have

worsened the ill-conditioning of the system with each excavation step. In

contrast, the linear cumulative curve for M1 and M2 preconditioners indicates

 166

the mitigation of such ill-conditioning effect. This lets them to outperform the

GJ and MSSOR preconditioners by a factor of about 2 (in terms of CPU times)

at the end of 10 excavations. Note that, the size of the block P can be

considered to be insignificant (only 2% of the size of A) in the studied

problem and the liner-soil stiffness ratio is also 476 only (Table 4.4). Table 5.4

shows that the M1 and M2 preconditioners have actually performed better than

what Figures 5.10-5.11 suggest, except for the case of M2 versus GJ. This is

because of relatively no difference in CPU times of GJ and MSSOR (Figure

5.13), unlike to the piled-raft problem in preceding Sections. This led M2 to be

slower as it uses MSSOR preconditioning for the soil and fluid stiffness blocks

[Equation (5.31)]. One possible reason for this discrepancy in CPU times

could be due to the differences in sparsity patterns of A by two different FE

algorithms (Figure 5.14). The above findings indicate that the Figures 5.10-

5.11 may be taken as a general reference that one can expect from M1 and M2

preconditioners for the soil-structure interaction problems, although the actual

saving may vary depending on the problem due to some other numerical

factors.

Figure 5.15 shows the computed surface settlement profile after 10

excavation steps. The consistent smooth settlement profile indicates the

correctness of the simulation. However, the actual settlement depends on

many factors such as the rate of excavation, construction sequence,

permeability of soils, etc.

 167

5.4. Conclusion

The present study proposed some cost effective block diagonal

preconditioners that are effective in mitigating the ill-conditioning due to large

relative differences in stiffness and permeability of materials for solving large-

scale Biot’s consolidation equations. These preconditioners were derived from

approximations to a theoretical block diagonal preconditioner, which was

proven mathematically to possess an attractive eigenvalue clustering property

with increasing stiffness contrasts.

Some of the key observations can be summarized as follows:

1. A 3×3 block form of the coefficient matrix was proposed for Biot’s

consolidation analysis of problems involving large relative differences

in stiffness of materials. For example, for the soil-structure interaction

problems, structural displacement degrees of freedom (DOFs) are

separated from soil displacement DOFs and pore pressure DOFs.

2. The 3×3 block form of A offers a greater flexibility in the calculation

of Schur complement and its approximate. A simple way of computing

Schur complement was proposed that only involves the diagonal

blocks of the solid stiffness matrix K . It simplifies the computation

significantly compared with that of Murphy et al. (2000). But, no

difference in the rate of convergence (in terms of iteration count) was

observed for the exact block preconditioners incorporating both Schur

complements. The proposed form has an added advantage in that the

diagonal blocks of K can be approximated individually and differently

for large-scale practical problems.

 168

3. The approximate block diagonal preconditioners (M1) with exact stiff

block P (stiffness matrix corresponding to stiff materials) with

diagonal approximation of soil and Schur complement matrices

effectively mitigated the material stiffness contrast effects.

4. The theoretical exact block diagonal preconditioner (MA) shows the

number of iteration counts decreases with increasing stiffness contrasts,

while proposed approximate forms show almost steady iteration counts

with stiffness contrasts. However, latter forms are much cheaper and

faster in comparison to MA.

5. The MSSOR approximation of soil and flow blocks (M2) or the SSOR

approximation of soil block (M3) improves the convergence time by

about 55% compared with diagonal approximation of the same blocks

in M1.

6. The proposed preconditioners demonstrate effective mitigation of ill-

conditioning not only due to large stiffness contrasts but also due to

large permeability contrasts for most problems.

7. The GJ, MSSOR, and ILU preconditioners were not only affected by

the stiffness contrasts but also by the size of the stiff block P. By

contrast, M1 or M2 preconditioners are almost insensitive with the

increase of both the stiffness contrasts and the size of the stiff block P.

Such mitigation offers significant saving in runtime by latter

preconditioners. Some generalized charts have been devised for an

estimate of the saving; however, the actual saving may vary depending

on the problem at hand.

 169

10
0

10
1

10
2

10
3

10
4

10
5

E'p/E's

10
1

10
2

10
3

10
4

10
5

It
e
ra

ti
o

n
 c

o
u

n
t

10
0

10
1

10
2

10
3

10
4

10
5

E'p/E's

10
1

10
3

10
5

10
7

10
9

10
11

10
13

S
p
e
ct

ra
l

co
n

d
it

io
n

 n
u

m
b

er

Unpreconditioned A

[P, G, S]-1A

[P, G, S]-1A

~

No converge in

50,000 iterations

~

Figure 5.1. 7×7×7 mesh: Effect of varying pile-soil stiffness ratios on spectral

condition number and iteration count of unpreconditioned and theoretical

block diagonal preconditioned matrices. The theoretical preconditioner is as

defined by Equation (5.10).

 170

-0.01

0

0.01

im
ag

in
ar

y
(λ

)

-0.01

0

0.01

im
ag

in
ar

y
(λ

)

Ep
'/Es' = 1

Ep
'/Es' = 1000

Iteration count = 73

Iteration count = 27

1 (1+√5)/2(1-√5)/2

λ1(U) λnp(U) λnp + 1(U) λN(U)

λ1 + r(W) λnp - r(W) λnp + 1+ r(W) λN - r(W)

-1 0 1 2 3

real(λ)

-0.01

0

0.01

im
ag

in
ar

y
(λ

)

Ep
'/Es' = 41000

Iteration count = 17λ1(U) λnp(U) λnp + 1(U) λN(U)

λ1 + r(W) λnp - r(W) λnp + 1+ r(W) λN - r(W)

r 2r

eigenvalues

r

Figure 5.2. 7×7×7 mesh: Eigenvalue distribution of the preconditioned system

with theoretical exact block diagonal preconditioner for different pile-soil

stiffness ratios. r is the number of rows with ||row(2

~
L)||2 ≥ 0.3 [Equation

(5.18)].

 171

10
0

10
1

10
2

10
3

10
4

10
5

Ep
'/Es

'

0

4

8

12

16

It

er
at

io
n

 c
o

u
n

t

 I
te

ra
ti

o
n
 c

o
u

n
t

o
f

G
J

at

E
p

' /E
s' =

 1

10
0

10
1

10
2

10
3

10
4

10
5

Ep
'/Es

'

0

4

8

12

16

C

P
U

 t
im

e

C
P

U
 t
im

e
o

f
G

J
at

E

p
' /E

s' =
 1

 P RAM (MB)

diag(P) 833

SSOR(P) 833

ILU0(P) 837

P 855

Preconditioner:

[P , diag(G), α diag(S1)]
^^

^

Figure 5.3. 25×25×35 mesh: Iteration count and total CPU time of block

diagonal preconditioner (5.28) for different approximations of block P.

 172

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

real eigenvalues

0.0001

0.001

0.01

0.1

1

cu
m

u
la

ti
v

e
d

is
tr

ib
u

ti
o

n

 Ep'/Es' = 1

 Ep'/Es' = 41000

 Iteration count

 Ep'/Es' Ep'/Es'

 = 1 = 41000

diag(P) 259 580

SSOR(P) 266 562

ILU0(P) 229 393

P 210 255

Boundary of the

smallest λ for

P = diag(P)

at Ep
'/Es

' = 1

Preconditioner:

[P , diag(G), α diag(S1)]

P

^^

^

^

Figure 5.4. 7×7×7 mesh: Cumulative distribution of the eigenvalues (real) of

the preconditioned system for different approximations of block P in the

preconditioner (5.28).

 173

10
0

10
1

10
2

10
3

10
4

10
5

Ep
'/Es

'

0.2

0.4

0.6

0.8

1

1.2

1.4

It

er
at

io
n
 c

o
u
n
t

 I
te

ra
ti
o
n

 c
o
u
n
t
o
f

 M
1
 a

t
 E

p
' /E

s' =
 1

10
0

10
1

10
2

10
3

10
4

10
5

Ep
'/Es

'

0.2

0.4

0.6

0.8

1

1.2

1.4

C

P
U

 t
im

e

C
P

U
 t

im
e

o
f

 M
1
 a

t
 E

p
' /E

s' =
 1

 RAM (MB)

M1 855

M2 855

M3 914

Figure 5.5. 25×25×35 mesh: Performance of different approximations of the

soil and Schur complement blocks in the block diagonal preconditioner with

exact block P.

 174

-0.6

-0.3

0

0.3

0.6

im
ag

in
ar

y
(λ

)

0 2 4 6

real(λ)

-0.6

-0.3

0

0.3

0.6

im
ag

in
ar

y
(λ

)

-0.6

-0.3

0

0.3

0.6

im
ag

in
ar

y
(λ

)

|R(λ)|max = 5.37

|R(λ)|min = 5.22×10-3

|R(λ)|max = 1.51

|R(λ)|min = 5.19×10-3

|R(λ)|max = 1.73

|R(λ)|min = 5.16×10-3

Ep
'/Es

' = 41000

Ep
'/Es

' = 41000

Ep
'/Es

' = 41000

Iteration count = 255

Iteration count = 143

Iteration count = 149

M1 = [P, diag(G), α diag(S1)]

M3 = [P, SSOR(G), α diag(S1)]

M2 = [P, MSSOR(H)]

^

^

Figure 5.6. 7×7×7 mesh: Distribution of the eigenvalues of a preconditioned

matrix for different approximations of soil and fluid stiffness blocks in

conjunction with an exact block P in the block diagonal preconditioner. R(λ) =

Real part of the eigenvalue.

 175

10
-12

10
-10

10
-8

10
-6

10
-4

soil permeability, ks (m/s)

0

0.4

0.8

1.2

1.6

2

It

er
at

io
n
 c

o
u
n

t

 I
te

ra
ti
o

n
 c

o
u
n

t
o
f

 M
1
 f

o
r

fi
ct

it
io

u
s

p
il

e*

M1

M2

10
-12

10
-10

10
-8

10
-6

10
-4

soil permeability, ks (m/s)

0

0.4

0.8

1.2

1.6

2

C

P
U

 t
im

e

C
P

U
 t
im

e
 o

f
 M

1
 f

o
r

fi
ct

it
io

u
s

p
il
e*

kp = 1

kp = 10-9

kp = 10-17

*fictitious pile:

E'p/E's = 1

kp = ks = 10-9 m/s

E'p/E's = 30,000
Pile permeability (m/s):

Figure 5.7. 25×25×35 mesh: Effect of contrast in pile-soil permeability on the

block diagonal preconditioners M1 and M2.

 176

10
0

10
1

10
2

10
3

10
4

10
5

Ep
'/Es

'

0

4

8

12

16

It

er
at

io
n
 c

o
u
n
t

 I
te

ra
ti

o
n
 c

o
u
n
t
o
f

G
J

at

E

p
' /E

s' =
 1

 RAM (MB)

GJ 834

MSSOR 834

ILU0 1634

M1 855

M2 855

10
0

10
1

10
2

10
3

10
4

10
5

Ep
'/Es

'

0

4

8

12

16

C

P
U

 t
im

e

C
P

U
 t
im

e
o
f

G
J

at

E

p
' /E

s' =
 1

Cross-over

points

for M1 and M2

preconditioners

Figure 5.8. 25×25×35 mesh: Comparison of proposed preconditioners M1 and

M2 with GJ and MSSOR preconditioners for varying pile-soil stiffness ratios.

 177

0 10 20 30 40 50
Number of piles

0

5

10

15

It

er
at

io
n

 c
o
u
n

t

 I
te

ra
ti
o
n
 c

o
u
n
t
o

f
G

J
fo

r
1

-p
il

e
at

E

p
' /E

s' =
 1

GJ

MSSOR

ILU0

M1

M2

0 10 20 30 40 50
Number of piles

0 10 20 30 40 50
Number of piles

0 10 20 30 40 50
Number of piles

0

5

10

15

C

P
U

 t
im

e

 C
P

U
 t

im
e

o
f

G
J

fo
r

1
-p

il
e

at

E

p
' /E

s' =
 1

0 10 20 30 40 50
Number of piles

0 10 20 30 40 50
Number of piles

E'
p/E

'
s = 1 E'

p/E
'
s = 1000 E'

p/E
'
s = 41000

E'
p/E

'
s = 1 E'

p/E
'
s = 1000 E'

p/E
'
s = 41000

Number size of RAM(MB) for

of piles block P M1 and M2

 1 668 834

 9 12,767 855

 25 36,948 941

 49 72,601 1106

No convergence in

50,000 iterations

for 25 and 49 piles

Figure 5.9. 25×25×35 mesh: Effect of size of the pile block P (e.g. due to

variation in number of piles in the piled-raft problem) on the performance of

preconditioners at different pile-soil stiffness ratios.

 178

5

10

15

20

25

%
 o

f
P

il
e

(s
ti

ff
)

D
O

F
s

0 5 10 15 20 25 30 35 40 45

10 x Log10(E'p/E's)

5

10

15

20

25

%
 o

f
P

il
e

(s
ti

ff
)

D
O

F
s

0 5 10 15 20 25 30 35 40 45

10 x Log10(E'p/E's)

Figure 5.10. CPU time of M1 and M2 preconditioners for a range of stiff DOFs

and soil-structure stiffness ratios (a) M1 versus GJ, (b) M2 versus GJ.

(a)

(b)

Cross-over

line of M1

over GJ

T

T

 179

5

10

15

20

25

%
 o

f
P

il
e

(s
ti

ff
)

D
O

F
s

0 5 10 15 20 25 30 35 40 45

10 x Log10(E'p/E's)

5

10

15

20

25

%
 o

f
P

il
e

(s
ti

ff
)

D
O

F
s

0 5 10 15 20 25 30 35 40 45

10 x Log10(E'p/E's)

Figure 5.11. CPU time of M1 and M2 preconditioners for a range of stiff DOFs

and soil-structure stiffness ratios (a) M1 versus MSSOR, (b) M2 versus

MSSOR.

(a)

(b)

Cross-over

line of M1

over

MSSOR

Cross-over

line of M2

over

MSSOR

T

T

 180

Figure 5.12. Finite element mesh and step-by-step installation of liner in

tunneling.

i-1 i i+1

No. of elements = 12,594

Total Liner DOFs, m = 3,229

Total DOFs, N = 165,005

2 m

28 m

55 m

16 m

8 m

4 m

100 m

 181

0

0.2

0.4

0.6

0.8

1

C

u
m

u
la

ti
v

e
it
er

at
io

n
 c

o
u

n
t

C
u
m

u
la

ti
v
e

to
ta

l
It

er
at

io
n

 c
o

u
n
t

o
f

G
J

0

800

1600

2400

3200

4000

L
in

er
 D

O
F

s

GJ

MSSOR

M1

M2

Liner DOFs

0 100 200 300 400
Simulation increment number

0

0.2

0.4

0.6

0.8

1

C

u
m

u
la

ti
v

e
C

P
U

 t
im

e

C
u

m
u

la
ti

v
e

to
ta

l
C

P
U

 t
im

e
o
f

G
J

0

800

1600

2400

3200

4000

L
in

er
 D

O
F

s

Figure 5.13. Comparison of iteration count and CPU time of the

preconditioners for tunneling example.

 182

Figure 5.14. 7×7×7 mesh: Sparsity pattern of 3×3 block structured A. (a)

Sequential nodal numbering of nodes in x-z plane according to Smith and

Griffiths (1997; 2004); and (b) Automatic nodal numbering in GeoFEA.

L
T

G

L

P

L
T

G

L

P

B1

B2

B1

B2

B
T

2
B

T

1
-C B

T

2
B

T

1 -C

 183

0 20 40 60 80 100

Distance from front mesh boundary (m)

5

4

3

2

1

0
S

et
tl

em
en

t
(c

m
)

This study (consolidation analysis)

Moller (2006) (drained analysis)

Figure 5.15. Surface settlement profile after 10 steps of excavation.

 184

 Table 5.1. Material properties for piled-raft foundation.

(a) To study the effect of pile-soil stiffness contrasts

Material type

Young’s modulus,

E′(MPa)

Permeability, k

(m/s)

Poisson’s

ratio, ν′

Pile
100, 5000,

30000, 205000
*

10
-17

 0.2

 Soil 5 10
-9

 0.3

(b) To study the effect of pile-soil permeability contrasts

 Pile 30000 1, 10
-9

, 10
-17

 0.2

 Soil 1 10
-3

, 10
-9

, 10
-12**

 0.3

*
typical of steel piles,

 **
typical of unsaturated soils

 185

Table 5.2. 25×25×35 mesh: Effect of different approximations of block P with

diagonal approximation of blocks G and S
~

 in the preconditioner (5.28) for a

9-piled raft problem.

p s
E E′ ′ Approximation of

block P

Iteration

count

Total CPU

time (s)

Total CPU

time ratio

(%)

nnzl(P)

or

nnzu(P)

1
1P̂ = diag

2,033 533.30 86.21

2P̂ = SSOR

2,457 650.20 105.10

3P̂ = ILU0

2,283 610.92 98.76 696,409

 ILUT(50,1E-6) 2197 608.64 98.39 1,294,089

 ILUT(100,1E-6) 2225 626.25 101.23 1,802,004

4P̂ = Cholesky LL

T

2,247 618.62 100.00 2,383,272

20
1P̂ = diag

2,398 619.52 98.83

2P̂ = SSOR

2,388 633.09 100.99

3P̂ = ILU0

2,202 592.94 94.59 699,397

 ILUT(50,1E-6) 2272 627.66 100.13 1,307,092

 ILUT(100,1E-6) 2252 634.14 101.16 1,821,992

4P̂ = Cholesky LL

T

2,269 626.86 100.00 2,662,570

1000
1P̂ = diag

7,686 1,868.30 281.83

2P̂ = SSOR

4,535 1,153.53 174.01

3P̂ = ILU0

6,512 1,642.02 247.70 699,327

 ILUT(50,1E-6) 2477 679.20 102.46 1,308,862

 ILUT(100,1E-6) 2219 625.64 94.38 1,825,371

4P̂ = Cholesky LL

T

2,416 662.92 100.00 2,516,319

6000
1P̂ = diag

14,859 3,558.72 538.75

2P̂ = SSOR

8,995 2,234.41 338.27

3P̂ = ILU0

7,822 1,967.69 297.89 699,829

 ILUT(50,1E-6) 6899 1786.19 270.41 1,310,623

 ILUT(100,1E-6) 3372 918.88 139.11 1,812,558

4P̂ = Cholesky LL

T

2,413 660.55 100.00 2,399,448

41000
1P̂ = diag

31,317 7,451.77 990.48

2P̂ = SSOR

17,257 4,237.25 563.21

3P̂ = ILU0

13,654 3,391.73 450.82 699,339

 ILUT(50,1E-6) 9157 2351.27 312.53 1,299,411

 ILUT(100,1E-6) 5227 1390.00 184.76 1,786,296

4P̂ = Cholesky LL

T

2,771 752.34 100.00 2,502,579

Note: The ILU subroutines store both the upper and lower triangular factors of a matrix. The

nnzu is the number of nonzeroes of the symmetric upper triangular factor for preconditioning.

Similarly, nnzl is the number of nonzeroes of symmetric lower triangular factor from

Cholesky subroutines.

 186

Table 5.3. Problem statistics of the piled-raft foundations.

25×25×35 Mesh

No. of elements 21,875

No. of

piles

Raft

thick.

(metre)

Size of

block P

-Pile DOFs

(m)

Size of

block G

-Soil DOFs

(n)

Size of

block C

-Pore press.

DOFs

(np)

Size of A

-Total

DOFs

(N)

Number of

nonzeros

nnz(A)

m N

(%)

1 - 668 267,012 23,660 291,340 54,299,992 0.23

9 3 12,767 254,913 23,660 291,340 54,299,938 4.38

25 3 36,948 230,732 23,660 291,340 54,300,112 12.68

49 3 72,601 195,079 23,660 291,340 54,300,104 24.92

49 4 86,145 181,535 23,660 291,340 54,327,896 29.57

Table 5.4. Comparison of total CPU times for tunnel construction.

 Ratio of CPU times

Preconditioners Actual From Figures 5.10-5.11

(point T)

M1 vs. GJ 0.45 0.67

M 2 vs. GJ 0.46 0.33

M 1 vs. MSSOR 0.52 > 1

M 2 vs. MSSOR 0.54 0.88

 187

Chapter 6

APPLICATIONS ON CASE HISTORIES

6.1. Introduction

The study of various preconditioning approaches for drained analysis (Chapter

4) and consolidation analysis (Chapter 5) provides an in-depth understanding

of the effect of relative differences in material stiffnesses and permeabilities

on the performance of iterative methods. Some effective block diagonal

preconditioners have been proposed to mitigate such effects. The cost of such

block diagonal preconditioners lies in between simple diagonal

preconditioning and incomplete LU factorization preconditioning. However,

the application and effectiveness of those preconditioners were illustrated for

some idealized homogeneous soil conditions using relatively simple examples.

In many practical cases, the soil is non-uniform. One difficulty with non-

uniform soil is that the value of soil-structure stiffness ratio is not constant.

While there is no reason why those preconditioners cannot be applied to such

problems, the effectiveness of the newly proposed preconditioners is still

unknown compared with other existing preconditioners for this type of

problems. Two case history problems are considered to evaluate the

 188

performance under a more realistic geotechnical engineering context. The

first problem is a three-dimensional (3D) finite element analysis of a piled-raft

foundation of building Westendstrasse 1, Frankfurt and the second is a twin-

tunnel construction in Singapore. These examples are selected to investigate

the general applicability of the proposed preconditioners to real-world

problems arising in geotechnical engineering.

The geotechnical software package GeoFEA (2006) is used in the

present study for the FE simulation of above problems. GeoFEA is a finite

element program which can be used for drained, undrained and time

dependent analysis of static problems under monotonic loading/unloading

conditions (http://www.geosoft.sg/). Besides, several inbuilt solvers, an

important new feature of GeoFEA is that it allows the users to use their own

solvers to solve the linear system of equations. This interface provides

maximum flexibility to a user or a researcher in choosing an optimal solution

method for the problem at hand. In this study, PCG and SQMR solvers with

various preconditioners are implemented as user defined solvers into GeoFEA

for drained and consolidation analyses, respectively. Various preconditioners

are considered for the comparison of advantages offered by proposed block

diagonal preconditioners (Chapter 4 and Chapter 5) over them.

6.2. GeoFEA implementation details

GeoFEA has many inbuilt iterative solvers/preconditioners to simulate the

large-scale geotechnical problems. However, for some users, the available

solvers may not suit their desired purpose. For this reason, GeoFEA also

provides an interface for user defined solvers. The comparisons of

 189

performances of preconditioners in this thesis are based on using this feature

of GeoFEA and the coding implementation is given in Appendix F. A tutorial

manual to use this feature is detailed in the subsequent Section. In this thesis,

the user defined solver option is adopted for the following two reasons:

1. Non-availability of a particular preconditioner and/or solver or the

difference in implementation. Hence, it is difficult to make a direct

comparison of the performance (CPU time, etc.) with that from the

proposed preconditioners. For example, the available inbuilt SJ-

PCG [PCG solver in conjunction with Standard Jacobi (2.8)

preconditioner] in GeoFEA is implemented to perform the matrix-

vector multiplication using element-by-element (EBE) approach

(Section 2.2.5), which is different than the approach (global

assembly) considered in this research work.

2. Differences in the incorporation of boundary conditions.

As in many finite element packages, GeoFEA also uses penalty method for the

prescribed boundary conditions. For more details about the penalty method,

the reader is referred to Britto and Gunn (1987). However, by using the

penalty method, we are solving some unknowns which we actually know. For

example, zero displacement is imposed along the sides and base of the finite

element mesh for fixed boundaries. Thus, the size of the linear system (N) is

same as the total number of degrees of freedom including all fixities (NDF).

An alternate way to incorporate boundary conditions exists, known as

the elimination method. In this method, for the prescribed variable values, the

corresponding rows and columns in the global stiffness matrix are eliminated

by modifying the right hand side vector with the prescribed values multiplied

 190

by column entries of those rows in the stiffness matrix (see, e.g. Chen and

Phoon, 2009). However, one difficulty in the above approach is when the

prescribed values of variables are non-zeros. A hybrid method is widely used

where equation components associated with prescribed zero value of variables

(homogeneous boundary conditions) are not assembled into the global

stiffness matrix, while a penalty method is used whenever the prescribed

values are non-zero. Thus, a smaller size of linear system (smaller than NDF)

is solved for the same problem, i.e. only the non-zero nodal values are being

solved. An example of implementation of such a hybrid approach is the finite

element codes of Smith and Griffiths (1997). The same approach to

incorporate the boundary conditions has been implemented in user defined

solvers for GeoFEA application. The treatment of boundary conditions and

counting of degrees of freedom (DOFs) including previous Chapters follow

the same strategy. See Appendix F for the implementation details. The

procedure to use user defined solver in GeoFEA is explained in the next

Section.

The incorporation of boundary conditions by this hybrid approach may

reduce the size of A (1.1) by about 10%. While for a small linear system (e.g.

from 2D analysis), the reward gained by such a reduction in the size of A may

be insignificant, it may contribute a big difference in the iterative solution of

large linear systems (e.g. from 3D analysis), such as in the CPU time and

memory requirement. More importantly, it may sometimes help to reduce the

ill-conditioning of the problem to avoid a possible premature breakdown of

the iterative solvers (for example, see Section 6.3.1.3).

 191

6.2.1. Tutorial manual

GeoFEA ‘PROJECT SETUP’ window does not have an option to select ‘user

defined solver’. The user defined solver interface of GeoFEA can be used in

the following way:

1. Users can create a DLL file (USOLV.DLL) for their desired solver

(with preconditioner). A sample FORTRAN code (USOLV.F90) for

the ‘user defined solver’ is provided with the software package,

which is located at ‘C:\Program Files\GeoFEA\Usolv’ upon

installation. Users are encouraged to modify this code according to

their desired solver and preconditioner. To do this, it is assumed that

the user has a FORTRAN compiler in his/her PC. This original source

code with some modifications to incorporate the boundary conditions,

as discussed in the previous section, is provided in Appendix F.

2. Other supplementary FORTRAN files required to compile this DLL

file are ‘XFLOGM.F90’ and ‘resource.fd’. These files are needed for

some of the functions related to dialogues and convergence history

plotting routine in the main subroutine ‘UDSOL’.

3. For the stiffness matrix formulation, GeoFEA provides an option to

select either element-by-element storage scheme (element stiffness

matrices are not required to be assembled) or global assembled sparse

storage scheme. Only the latter option is used in the present work.

4. Place the new USOLV.DLL in the directory ‘C:\Program

Files\GeoFEA’.

5. Create the finite element model with all assignments and boundary

conditions as is for other inbuilt solvers.

 192

6. In the ‘SOLVE’ window, check the box beside ‘Generate input files

only’ and click on ‘OK’ button. This will generate three input files

(geosoil.gad, geosoil.gpd, and geosoil.cnn) at ‘C:\Program

Files\GeoFEA’.

7. Open the ‘geosoil.gad’ file using any text editor (such as

Notepad/WordPad) and change the very first integer to 99. This is the

only change needed by the user to use user interface solver.

8. Go back to the ‘SOLVE’ window and check the box beside ‘Use

existing input files (geosoil.gpd, geosoil.gad)’. Click on ‘OK’ to solve

the problem using the user defined solver.

6.3. Applications on case histories

Two representative soil-structure interaction problems are considered where

the large relative differences in stiffnesses usually result in ill-conditioned

systems (Mroueh and Shahrour, 1999; Lee et al., 2002; Chen et al., 2007). The

studied problems include piled-raft foundation (loading type), tunneling

(unloading type) with a large number of structural elements and

nonhomogeneous soil properties.

Similar to piled-raft construction in urban areas, it is often required to

construct new tunnels in close proximity of to existing tunnels. For example,

the construction of twin running tunnels in the North East Line Project,

Singapore (Lee et al., 2006), twin running tunnels in Jubilee Line Extension

Project in London, UK (Harris et al., 1996). The interaction effect due to a

new construction of new tunnel in close proximity to existing tunnel is likely

to be three-dimensional in nature (Ng et al., 2004). Although plane strain

 193

analysis can be employed to study the interaction effects (e.g. Addenbrooke

and Potts, 2001; Hage Chehade and Shahrour, 2008), the results are dependent

on the assumed volume loss. The conventional superposition of Greenfield

values from individual tunnels may produce erroneous results (Phoon et al.,

2006), thus the 3D analysis is necessary. Similar to piled-raft foundation, a

tunnel construction also involves significant stiff structural elements such as

concrete lining, steel anchors, etc. used for stabilization purposes. However,

contrary to the piled-raft analysis, the analysis of tunneling construction

involves a repeated cycle of unloading (excavation of soil) and loading

(application of grout pressure, installation of liner, etc.) conditions. Also, the

number of structural elements (e.g. lining elements) increases incrementally in

each step of tunnel advancement.

6.3.1. Case study 1 – Piled-raft foundation in Germany

Many high-rise buildings in Frankfurt, Germany were founded on piled-rafts

and extensive observations were made of the behavior of the foundations

(Franke et al., 1994; El-Mossallamy and Franke, 1997; Franke et al., 2000;

Katzenbach et al., 2000). One of those buildings was Westendstrasse 1. The

piled-raft foundation of 208 m tower consists of the raft of an approximately

47 m × 62 m in area with a thickness 3 m at the edges and 4.65 m in the

central part as shown in Figure 6.1. The pile configuration below the main

tower is also shown. There are 40 bored piles of length 30.0 m below the raft

and of diameter 1.3 m. For the 3D finite element analysis using GeoFEA, the

entire problem (soil and foundation) is discretized using 20-noded hexahedron

elements (Figure 6.2). This results in 19,854 elements, 86,923 nodes, and

239,040 displacement degrees of freedom (DOFs). In the model, a uniform

 194

raft thickness of 4.5 m is considered and the circular piles are replaced by

square piles with the same shaft circumference. This results the pile

displacement DOFs of 59,259 (≈ 25% of total). Note that the pile DOFs also

accounts the raft DOFs because the same material is assumed for both. The

piled-raft is assumed to be a reinforced-concrete structure and modeled as

linear elastic. The following properties are assigned: pE ′ = 24, 822 MPa, ν′ =

0.2, γconc = 22 kN/m
3
, which are similar to the parameters adopted in (Novak et

al., 2005).

The subsoil condition in Frankfurt am Main, Germany, consists of

tertiary soils and rock. The soils at Westendstrasse 1 site consist of 6-8 m thick

bed of gravely sand followed by an overconsolidated stiff plastic clay known

as Frankfurt clay. The ground water table lies about 5-7 m below the ground

surface. The general stratigraphy together with values of undrained shear

strength (cu) is shown in Figure 6.3. Only the soil below the foundation level

(i.e. Frankfurt clay) is modeled with finite elements. Properties of Frankfurt

clay that are used in the modeling are given in Table 6.1, which are based on

data presented in (Franke et al., 2000). Mohr-Coulomb elastic- perfectly

plastic soil model is used for the analysis. Settlement behavior of Frankfurt

clay using other constitutive models have been studied, e.g. Duncan and

Chang model (Franke et al., 2000), Cap model (Reul and Randolph, 2003).

However, the main focus of this study is not the constitutive models.

The base of the mesh is assumed to be fixed in all directions. Side face

boundaries are constrained in the transverse directions but free in in-plane

directions. The piled-raft is assumed wished-in-place before the start of

simulation. A load of 1,000 MN is applied to the top of the piled raft in 4 steps

 195

and each step is simulated in 3 increments to take into account the nonlinear

soil behavior. These loads are converted to an equivalent pressure on the top

of the raft using an approximate surface area of 47 m by 62 m (2914 m
2
). The

contact between structure and soil is assumed to be perfectly rough. This

means no interface elements are considered in between the soil and raft or soil

and pile. Settlement analysis and preconditioners’ performance comparison in

both drained and consolidation conditions are studied.

6.3.1.1. Inbuilt versus user defined solvers for drained analysis

For drained analysis of a problem, PCG in conjunction with SJ (2.8) is

available in GeoFEA. Although SQMR solver available in GeoFEA can also

be used for drained problems, only PCG is employed for all the drained

problems throughout this work. This is because PCG is known to be the best

for symmetric positive definite linear systems (Barrett et al., 1994).

As mentioned in Section 6.2, the inbuilt solver solves the linear system

of size N = 260,769 (= NDF), while the user defined solvers only need to solve

the linear system of size N = 239,040 (8.33% smaller than NDF) for the given

problem because of the difference in incorporation of boundary conditions.

This could be a factor for about 45% less CPU time (Figure 6.4) by the user

defined solver for the same iteration counts. However, as mentioned earlier,

this could also be partly due to different storage schemes for the stiffness

matrix. Inbuilt SJ-PCG uses the EBE storage scheme whereas user defined SJ-

PCG uses global assembly of the stiffness matrix.

Figure 6.5 shows that the settlements due to all solvers are identical,

indicating no loss of accuracy in the results due to smaller linear systems in

the user defined solvers. As shown in Figure 6.6, there is a good agreement

 196

between the settlement computed by GeoFEA with preconditioned iterative

methods and that from the field measurements. Note that the direct solution of

the same problem could not be obtained in the given computing configuration

owing to the limited core memory.

6.3.1.2. Performance of preconditioners

This Section compares the performance of preconditioners only in the form of

user defined solvers. Figure 6.7 shows the performance of various

preconditioners in conjunction with PCG for drained analysis of the problem.

The SBD preconditioners are more than 6 times faster in terms of iteration

counts and about 1.7 times faster in terms of CPU time than the conventional

SJ and SSOR preconditioners. Note that the problem involves a significantly

large structural block P [Equation (4.25)] due to the presence of a thick raft

with 40 bored piles. Hence, the Cholesky factorization of block P is

expensive, but the SBD preconditioners are yet superior (in terms of CPU

time) than others. Note that the soil-structure stiffness ratio is not unique and

lies in range of 160 to 3,546 in the present problem because the stiffness of the

soil increases with depth. This indicates the robustness of the SBD

preconditioners. However, relatively slower performance of SBD2 (in terms of

CPU time) in comparison to SBD1 and SSOR in comparison to SJ (Figure 6.7)

could be due to a large triangular solution of the blocks. The sparsity pattern

of the coefficient matrix may have contributed to this difference, as mentioned

in Chapters 4 and 5.

A parametric study of homogenous soil profiles (Figure 6.8) with three

different stiffnesses, namely, the minimum, maximum, and average value of

Young’s modulus of the actual Gibson soil profile suggests that the effective

 197

soil-structure stiffness ratio is somewhat closer to that with an average soil

modulus. This finding may help to roughly interpret the soil-structure ratio in

the case of nonuniform soils and gives the rough idea on expected saving in

CPU time by SBD preconditioners over conventional SJ or SSOR

preconditioners. It generalizes that the SBD preconditioners are effective as

long as stiffness contrast of the materials exists, the nonhomogeneity of the

soil does not affect the characteristic performance of SBD preconditioners,

thus the robustness of the preconditioner. As expected, the saving in CPU time

by the SBD preconditioner is the highest (about 3.5 times) when the value of

soil modulus is the lowest (7 MPa). This is because of the larger soil-structure

stiffness ratio. Thus, when the soil is soft, a significant saving in CPU time by

SBD preconditioners can be achieved, reinforcing the findings of Chapter 4.

6.3.1.3. Inbuilt versus user defined solvers for consolidation

analysis

For many tall buildings in Germany, almost 70% of the final settlement

occurred during the construction time and the settlement had completely

stopped after three years of completion of construction of buildings (Breth and

Amann, 1975). In view of modes of construction and thick layer of Frankfurt

clay, the time dependent settlement of multi-storey buildings becomes

particularly important. On the other hand, consolidation analysis requires more

computational effort than the drained analysis does. This may be a reason that

most of the published literatures have usually considered a single-phase

material in their analyses (e.g. Reul and Randolph, 2003; Novak et al., 2005).

This Section demonstrates the settlement, and differences in performance of

 198

inbuilt and user defined solvers (SQMR) with various preconditioners for the

consolidation analysis of the problem.

The same finite element mesh as shown in Figure 6.2 is used for the

analysis. The ground water table is considered to be on the top surface of the

mesh since the piled-raft was constructed below the ground water level

(Franke et al., 2000). To consider the pore pressure variation, a 20-noded

hexahedral element coupled with 8-noded pore pressure nodes is used. This

leads the total degrees of freedom (DOFs) to be 259,173 with 20,133 pore

pressure DOFs. The number of pile and soil displacement DOFs will remain

the same as in drained analysis. The time dependent application of load on the

piled-raft is as shown in Figure 6.9. Permeability of the piled-raft is taken as

1×10
-17

 m/s.

As shown in Figure 6.10, the inbuilt GJ-SQMR may sometimes fail to

converge for some problems. Because the same finite model is used for both

inbuilt and user defined solvers, it is suspected that this could have resulted

from the differences in the way boundary conditions are incorporated between

inbuilt and user defined solvers, as mentioned in Section 6.2. Similarly,

another advantage of using hybrid boundary conditions is the saving in

runtime. For example, the user defined MSSOR-SQMR solver is about 20%

faster than the inbuilt MSSOR-SQMR (Figure 6.10). This is because a smaller

size of the linear system (N = 259,173, 8.46% smaller than NDF) is solved

with the user defined solvers than with the inbuilt solvers (N = NDF =

283,139) for the same problem.

Similar to the drained case, the settlement from all the user defined

solvers are identical (Figure 6.11). The computed settlement is compared with

 199

the observed settlement as shown in Figure 6.12. The computed consolidation

settlement is sufficiently close to that of the measured ones when the

permeability of the soil ks = 1×10
-7

 m/s for the loading shown in Figure 6.9.

Note that the settlement from consolidation analysis is affected by the two

factors: (i) permeability of the materials, and (ii) consolidation time. Drained

condition is the end of consolidation stage, which is achieved when either the

permeability of the material is very high or the consolidation time is very long.

In the studied problem, the computed consolidation settlements with soil

permeability ks = 1×10
-6

-1×10
-7

 m/s are identical with that from the drained

analysis, except for the first time step. The smaller consolidation settlement in

the first time step is because the first load is applied immediately as shown in

Figure 6.9. In the numerical simulation, the time step for this step is taken as 1

day. Thus, it may represent the condition close to an undrained state.

However, if the soil permeability is taken as ks = 1 m/s, the consolidation

settlement profile is identical to the drained one (Figure 6.12) even though the

time step is small (i.e. the same 1 day). Thus, it suggests that one can use

Biot’s consolidation equations to reproduce the drained or undrained condition

depending on the value of time step and permeability of the materials used.

But, from the view point of CPU time, there is some penalty using

consolidation equations (indefinite linear system) to solve the ideal drained

analysis (positive definite linear system, see Chapter 4) as shown in Figure

6.13. The computation of drained analysis (solving the positive definite linear

system with PCG solver) may take about 30-45% less time than the

consolidation analysis (SQMR solver with similar preconditioners) for the

same final result. This is because the PCG solver for drained analysis

 200

converges at much fewer iteration counts (about 50% less in terms of iteration

counts) than the SQMR for the corresponding consolidation analysis.

However, for undrained analysis with Poisson’s ratio close to 0.50

(incompressible problems), consolidation analysis with low permeability and

small time step is recommended (see, for example, Phoon et al., 2003).

6.3.1.4. Performance of preconditioners

The comparison of preconditioners (only user defined ones) in conjunction

with SQMR (Figure 6.14) demonstrates that although M2 offers no significant

benefit over M1, both preconditioners are about 2 times faster than the GJ and

MSSOR counterparts for the given soil condition. This is mainly because of

the mitigation of material ill-conditioning by M1 and M2 preconditioners

(Chapter 5). This can also be interpreted from the iteration count plot in Figure

6.14, where the cumulative plot of iteration counts and CPU times for M1 and

M2 preconditioners increases linearly. The smaller gradients of these profiles

indicate the robustness and applicability of M1 and M2 preconditioners for

real-world soil-structure interaction problems.

6.3.2. Case study 2 – Tunneling in Singapore

The tunneling problem studied herein is the North East Line (NEL) tunnel,

contract C704, where twin rail tunnels were driven using 9 m long Earth

Pressure Balance (EPB) machines. The tunnel extrados diameter was 6 m and

the springline of the tunnel varies from a depth of 18 m to 21 m below the

ground surface. In the finite element analysis, the springline depth of 21 m is

considered. The finite element mesh used for the analysis is as shown in

Figure 6.15. The lateral boundary is set at 10 times the tunnel diameter to

 201

avoid boundary effects. A length of 90 m was modeled in the longitudinal

direction. Thus the front and back boundaries are located at 7.5 times the

diameter of tunnel from the monitored section. The entire problem including

the soil and structural parts of tunnel is modeled using 20-noded brick element

coupled with 8-noded fluid elements (see Figure 3.1) resulting in a total of

14,640 elements, 57,677 nodes, and 187,880 unknown DOFs.

The vertical side of the mesh is restrained against transverse movement

whilst the base is completely fixed. The water table is located at 5 m below the

ground surface. The ground condition consists of completely weathered

Granite or residual soil with a weathering grade between V and VI (known as

G4 type), which behaves more like an over-consolidated soil with over-

consolidation ratio (OCR) of about 3. The soil behavior was modeled with

associated Mohr-Coulomb model and the parameters adopted are presented in

Table 6.2, which are similar to the ones adopted in (Lee et al., 2006).

Equivalent soil stiffness were derived based on the Unconsolidated Undrained

test results, which gives Eu/cu = 400~480. More details of soil properties are

explained elsewhere (Lim, 2003).

The concrete tunnel lining is assumed to be impervious. In C704, the

overcutting is about 0.5% of the face area (Shirlaw et al., 2001). This is

approximately equivalent to an all-round 75-mm gap between the excavated

tunnel and the tail skin shield. In the finite element model, compressible

“grout” elements of thickness 100 mm are used surrounding the lining

elements to fill up the gap between the shield overcut and the tunnel diameter.

Both the concrete lining and grout are modeled as elastic materials and the

parameters used are summarized in Table 6.3.

 202

Simulation of the tunnel involves a repeated soil excavation and lining

installation steps. In the first step, the tunneling process is simulated by

removing the soil elements, 6 m in length, followed by application of pressure

(due to Shied machine or grout) against exposed surface. A tunnel advance

rate of 4 m/day is adopted, this being an average advance rate for tunnels in

the studied section. The actual tunnel advance rate varies from 3 m/day to 10.5

m/day (Pang, 2006). In the next step, the concrete lining and grout elements

are installed by activating the lining and grout elements. The previously

applied pressure is removed simultaneously. This simulation method follows

the method adopted by other researchers (Chan, 2002; Möller and Vermeer,

2008) for the tunnel construction. A space of 9 m (size of Shield machine)

between the tunnel face and the liner is maintained by the application of 150

kPa pressure against the exposed surface. The finite element steps of tunnel

construction are shown in Figure 6.16. To account for soil non-linearity, each

excavation step is modeled with 20 increments.

As shown in Figure 6.17 the performance of GJ preconditioner

deteriorates rapidly (with total CPU time ≈ 139 hours) as the excavation

proceeds. However, the linear cumulative curve for M1 indicates a stable

convergence (with total CPU time ≈ 30 hours) for each excavation step and

about 4 times saving in runtime. Note that the number of stiff structural

elements (e.g. lining elements) increases incrementally in each step of tunnel

advancement. This is shown in Figure 6.17 as “Liner DOFs”. Thus, the above

result suggests that the nonhomogeneity of soil does not hinder the

effectiveness of the M1 preconditioner as long as the stiff block P exists.

Similarly, the effectiveness of the M1 preconditioner becomes more apparent

 203

as the model accumulates more stiff (liner) elements in the system due to

tunnel advancement. For brevity, only the results of GJ and M1

preconditioners are shown in Figure 6.17 as the pair MSSOR and M2 follows a

similar trend. This suggests the general applicability of M1 and M2

preconditioners to realistic subsurface problems.

Figure 6.18 shows the computed settlement trough from the above 3D

analyses. The measured values of settlements (e.g. Pang, 2006) are also

included for the comparison purpose. As seen in the Figure, the computed

settlements closely match the measured ones. It should be noted that the

computed settlement is affected by the soil model, shield/grout pressure,

construction method adopted, etc. In the field, the settlement is also affected

by various other factors such as operational and human factor. For a

parametric study on these, the reader is referred to (Lim, 2003; Pang, 2006).

6.4. Conclusions

GeoFEA can be used to simulate complex geotechnical problems, while

allowing users to incorporate their own specific implementation of iterative

solvers. The numerical results suggested that the nonhomogeneous soil, which

is present in almost all realistic problems, is not a problem for the convergence

of the recently proposed inexact block diagonal preconditioners (SBD1, SBD2,

M1, and M2). Their convergence behaviors are comparable to those presented

for homogeneous problems (Chapters 4 and 5). In other words, the ill-

conditioning problem associated with significant contrast in material stiffness

has been solved. The effectiveness of the proposed preconditioners increases

as the system accumulates more and more stiff elements. For example, the

 204

tunneling example illustrates how stiff elements increase with the installation

of liner elements. Thus, the proposed preconditioners have general

applicability to realistic problems involving geometrically complex soil-

structure interaction problems in complex geological conditions.

 205

Figure 6.1. Westendstrasse 1 building, Frankfurt: (a) Sectional elevation (after

Katzenbach et al., 2000); and (b) Plan with pile layout (after Franke et al.,

2000).

(a) (b)

 206

Figure 6.2. Finite element meshes (a) mesh for entire problem domain, and (b)

enlarged mesh for piled-raft.

Raft area ≈ 47×62 m
2

Raft thickness = 4.5 m

No. of piles = 40

Dia. of pile = 1.3 m

Length of pile = 30 m

(below raft)

Elements = 19,854

Pile DOFs = 59,259

Total DOFs = 239,040

(drained analysis)

Total DOFs = 259,173

(conso. analysis)

(a)

(b)

300 m 300 m

60 m

 207

Figure 6.3. Frankfurt subsoil stratigraphy and undrained shear strength (after

Franke et al., 2000).

 208

0 3 6 9 12
Load increment number

0

0.2

0.4

0.6

0.8

1

C

u
m

u
la

ti
v

e
it
er

at
io

n
 c

o
u
n

t

C
u
m

u
la

ti
v
e

to
ta

l
It

er
at

io
n

 c
o

u
n

t
o

f
S

J
(i

n
b
u

il
t)

SJ (inbuilt)

SJ (UD)

0 3 6 9 12
Load increment number

0

0.2

0.4

0.6

0.8

1

C

u
m

u
la

ti
v

e
C

P
U

 t
im

e

C
u
m

u
la

ti
v
e

to
ta

l
C

P
U

 t
im

e
o

f
S

J
(i

n
b
u
il

t)

Figure 6.4. Comparison of performance of SJ (inbuilt) and SJ (user defined)

preconditioners with PCG.

 209

0 200 400 600 800 1000

Load (MN)

0

2

4

6

8

10

12

S
et

tl
em

en
t

(c
m

)

SJ (inbuilt)

SJ (UD)

SSOR (UD)

SBD1 (UD)

SBD2 (UD)

Figure 6.5. Settlement due to different preconditioners with PCG.

 210

0 200 400 600 800 1000

Load (MN)

0

2

4

6

8

10

12

S
et

tl
em

en
t

(c
m

)

This study (drained)

Observed (Franke et al., 2000)

Figure 6.6. Comparison of computed and measured settlements.

 211

0 3 6 9 12
Load increment number

0

0.2

0.4

0.6

0.8

1

C

u
m

u
la

ti
v

e
it
er

at
io

n
 c

o
u
n

t

C
u

m
u

la
ti

v
e

to
ta

l
it

er
at

io
n
 c

o
u

n
t
o

f
S

J

SJ

SSOR

SBD1

SBD2

0 3 6 9 12
Load increment number

0

0.2

0.4

0.6

0.8

1

C

u
m

u
la

ti
v

e
C

P
U

 t
im

e

C
u

m
u

la
ti

v
e

to
ta

l
C

P
U

 t
im

e
o

f
S

J

Figure 6.7. Iteration count and CPU time of different preconditioners.

 212

100 1000 10000
E'p/E's

0

1

2

3

T

o
ta

l
it

er
at

io
n
 c

o
u

n
t

T
o

ta
l
it
er

at
io

n
 c

o
u
n

t
o
f

S
J

fo
r

so
il
 w

it
h
 E

' s,
ac

tu
al

SJ

SBD1

100 1000 10000
E'p/E's

0

1

2

3

T

o
ta

l
C

P
U

 t
im

e

T
o
ta

l
C

P
U

 t
im

e
o
f

S
J

fo
r

so
il
 w

it
h
 E

' s,
ac

tu
al

E's,maxE's,min

E's,ave

E's,actual

E's,minE's,max E's,ave

E's,actual

Figure 6.8. Effect of soil profile on different preconditioners.

 213

0 0.5 1 1.5 2
Time (years)

200

400

600

800

1000

L
o
ad

 (
M

N
)

Figure 6.9. Measured time-dependent raft-pile load share for Westendstrasse 1

building, Frankfurt (after Franke et al., 2000); and (b) Idealized load applied

on piled-raft for consolidation analysis.

(a)

(b)

 214

0 3 6 9 12
Load increment number

0

0.2

0.4

0.6

0.8

1

C

u
m

u
la

ti
v

e
it
er

at
io

n
 c

o
u

n
t

C
u

m
u

la
ti

v
e

to
ta

l
It

er
at

io
n

 c
o

u
n

t
o

f
G

J
(i

n
b

u
il

t)

0 3 6 9 12
Load increment number

0

0.2

0.4

0.6

0.8

1

C

u
m

u
la

ti
v

e
C

P
U

 t
im

e

C
u
m

u
la

ti
v

e
to

ta
l
C

P
U

 t
im

e
o

f
G

J
(i

n
b
u

il
t)

GJ (inbuilt)

GJ (UD)

MSSOR (inbuilt)

MSSOR (UD)

Breakdown of

GJ (inbuilt)

Breakdown of

GJ (inbuilt)

Figure 6.10. Comparison of inbuilt and user defined preconditioners with

SQMR (ks = 1×10
-9

 m/s).

 215

0 200 400 600 800 1000

Load (MN)

0

2

4

6

8

10

12

S
et

tl
em

en
t

(c
m

)

GJ (inbuilt)

GJ (UD)

MSSOR (UD)

M1 (UD)

M2 (UD)

Figure 6.11. Settlements due to different preconditioners with SQMR (ks =

1×10
-7

 m/s).

 216

0 200 400 600 800 1000

Load (MN)

0

2

4

6

8

10

12

S
et

tl
em

en
t

(c
m

)

consolidation, ks = 10-8 m/s

consolidation, ks = 10-7 m/s

consolidation, ks = 10-6 m/s

consolidation, ks = 1 m/s

drained

Observed (Franke et al., 2000)

Figure 6.12. Comparison of computed and measured settlements.

 217

0 3 6 9 12
Load increment number

0

4000

8000

12000

16000

C
u

m
u
la

ti
v

e
it

er
at

io
n
 c

o
u
n
t

GJ

MSSOR

M1

M2

0 3 6 9 12
Load increment number

0

4000

8000

12000

16000

C
u

m
u

la
ti

v
e

it
e
ra

ti
o
n

 c
o
u
n
t

SJ

SSOR

SBD1

SBD2

+ PCG

SQMR +

0 3 6 9 12
Load increment number

0

50

100

150

200

250

C
u
m

u
la

ti
v
e

C
P

U
 t

im
e

(m
in

)
GJ

MSSOR

M1

M2

0 3 6 9 12
Load increment number

0

50

100

150

200

250

C
u
m

u
la

ti
v
e

C
P

U
 t

im
e

(m
in

)

SJ

SSOR

SBD1

SBD2

+ PCG
+ SQMR

Figure 6.13. Iteration count and CPU time of PCG (for drained analysis) and

SQMR (for consolidation analysis) solvers.

 218

0 3 6 9 12
Load increment number

0

20

40

60

80

100

C

u
m

u
la

ti
v
e

it
er

at
io

n
 c

o
u
n

t

C
u

m
u
la

ti
v
e

to
ta

l
it
er

at
io

n
 c

o
u
n

t
o
f

G
J

GJ

MSSOR

M1

M2

0 3 6 9 12
Load increment number

0

20

40

60

80

100

C

u
m

u
la

ti
v

e
C

P
U

 t
im

e

C
u

m
u
la

ti
v
e

to
ta

l
C

P
U

 t
im

e
o
f

G
J

Figure 6.14. Iteration count and CPU time of different preconditioners.

 219

Figure 6.15. Finite element mesh for twin tunnels: (a) isometric view; (b)

Front view.

(a)

(b)

139 m

90 m

50 m

SB NB

RS-G4a

RS-G4b

CW-G4a

 220

Figure 6.16. Finite element simulation procedure for Shield tunnel

advancement.

shield

shield

shield

step i-1

step i

step i+1

soil

liner

grout

 221

0

0.2

0.4

0.6

0.8

1

C

u
m

u
la

ti
v
e

it
er

at
io

n
 c

o
u
n

t

C
u
m

u
la

ti
v
e

to
ta

l
It

er
at

io
n
 c

o
u

n
t
o

f
G

J

0

5000

10000

15000

20000

25000

L
in

er
 D

O
F

s

GJ

M1

Liner DOFs

0 100 200 300 400 500 600 700
Simulation increment number

0

0.2

0.4

0.6

0.8

1

C

u
m

u
la

ti
v

e
C

P
U

 t
im

e

C
u

m
u

la
ti
v
e

to
ta

l
C

P
U

 t
im

e
o
f

G
J

0

5000

10000

15000

20000

25000

L
in

er
 D

O
F

s

SB tunnel

NB tunnel

SB tunnel

NB tunnel

Figure 6.17. Iteration count and CPU time of different preconditioners.

 222

0 20 40 60 80 100 120 140

Distance from left of mesh (m)

70

60

50

40

30

20

10

0
S

et
tl

em
en

t
(m

m
)

SB tunnel

SB (measured)

SB + NB tunnel

SB + NB (measured)
SBNB

Figure 6.18. Surface settlement trough due to tunnel advancement.

 223

 Table 6.1. Properties of Frankfurt clay and piled-raft for FE analysis.

Parameter, symbol, and unit Soil Piled-raft
Material model Mohr-Coulomb Liner elastic
Effective Young's modulus, E', MN/m

2 7+2.45 z

(z is the depth in metres

from clay surface)

24,822

Effective Poisson's ratio,ν' 0.3 0.2
Effective cohesion, c', kN/m

2 20 -

Effective angle of friction, φ', degree 20 -
Coefficient of earth pressure at rest, K0 0.6 -

Bulk unit weight, γbulk, kN/m
3 18.5 22

Table 6.2. Typical G4 soil parameters found in C704.

Sub-layer RS-G4a RS-G4b CW-G4a
Depth (m) 0 ~ 7.5 7.5 ~ 40 40 ~ 50
Cu, kN/m

2 73 ± 26 80 ± 29 150 ± 26
E', MN/m

2
 15 + 1.3 z 24.75 + 1.2 z 63.75 + 1.1 z

c', kN/m
2 19.8 19.6 20

φ', degree 19.2 24.2 30.5
k, m/s 2.16 × 10

-7
 1.46 × 10

-6
 1 × 10

-8

K0 0.86 0.65 0.51

z is the depth in metres measured from top of each soil layer.

Table 6.3. Material properties of liner and grout elements.

Parameter, symbol, and unit Liner Grout
Material model Liner elastic Liner elastic
Effective Young's modulus, E', MN/m

2 28,000 2,800

coefficient of permeability, k, m/s 1 × 10
-12

 1 × 10
-12

Bulk unit weight, γbulk, kN/m
3 24 24

 224

(blank)

 225

Chapter 7

CONCLUSIONS AND RECOMMENDATIONS

7.1. Summary and conclusions

The linear systems that result from the finite element discretization of

problems involving material zones of widely differing stiffness and

permeability are usually ill-conditioned. Hence, the efficient solution of large-

scale geotechnical problems is a major computational work in the finite

element modeling. The existing standard preconditioners [e.g. Standard Jacobi

(SJ), symmetric successive over relaxation (SSOR), incomplete LU

factorization (ILU) preconditioner] or recently developed so called efficient

generalized Jacobi (GJ) and modified SSOR (MSSOR) have been found to be

inefficient (require relatively longer runtime) for solving such ill-conditioned

problems than for problems involving a homogeneous material. This thesis

presented some inexact block diagonal preconditioners to mitigate such ill-

conditioning effect (particularly, due to relative differences in the stiffness and

permeability of the materials), and hence, resolved a long-standing question.

As stated by Barbour and Krahn (2004), “Modeling is more about process

than prediction. Modeling of many problems is likely to involve hundreds, if

 226

not thousands, of simulations”, such mitigation by proposed preconditioners

can lead to a significant saving in the computational time. For example,

dynamic analysis may involve thousands of simulation steps. Hence, the

reduction in solution time by the proposed preconditioners for soil-structure

interaction problems involving large stiffness ratios will greatly enhance the

feasibility of 3D simulation to be used more routinely in actual practice.

The conclusions drawn from the preceding chapters and discussions can be

summarized as follows:

1. Different solution approaches have been suggested for the FE solution

of Biot’s consolidation analysis of problems. The finite element

integration of the Biot’s equations can be written in the form of

symmetric indefinite, unsymmetric indefinite and unsymmetric

positive definite matrices requiring different iterative solvers. However,

symmetric indefinite linear system is preferred over others.

2. Preconditioners ranging from a simple diagonal approximation to more

complex block constrained preconditioners have been proposed, with

most developments in the last decade.

3. The comparison of MSSOR preconditioner with ILU0 in Chapter 3

revealed that the ILU0 preconditioner should be used with more

cautions for Biot’s system. However, MSSOR did not show any

breakdown or failure in convergence. On the other hand, the ILU0 may

be preferred over MSSOR if (a) instability problem of ILU can be

resolved effectively; and (b) RAM constraint is not an issue.

 227

4. In Chapter 4, two simplified block diagonal (SBD) preconditioners

were proposed for the practical large-scale soil-structure interaction

problems involving significant contrasts in stiffness of the materials.

These preconditioners were demonstrated to be insensitive not only to

the soil-structure stiffness ratios but also to the number of stiff

structural elements present in the system. Hence, SBD preconditioners

offered a considerable gain in the solution time relative to the standard

SJ, SSOR, and ILU preconditioners.

5. The study in Chapter 4 was extended to Biot’s consolidation analysis

of the problem in Chapter 5 because these equations can be generalized

to produce all geotechnical conditions (drained, undrained, or

consolidation condition). Fundamentally, the coefficient matrix in the

consolidation analysis is different (indefinite) than a drained analysis

(positive definite, Chapter 4), requiring an entirely different iterative

solver and preconditioning strategy. Some cost effective block

diagonal preconditioners were proposed to effectively mitigate the

coupled ill-conditioning of the system due to large relative differences

in stiffness and permeability of the materials. The GJ, MSSOR, or ILU

preconditioners were found to be affected not only by the stiffness

contrasts but also by the number of stiff structural DOFs. The proposed

preconditioners were insensitive in both of these respects, which led

them to be significantly more efficient (in terms of CPU time) than the

other preconditioners when the soil-structure stiffness ratio was large

(say 1000 or above).

 228

6. Some charts were presented in Chapters 4 and 5 on when to use the

proposed block diagonal preconditioners. These charts may help

engineers to select a suitable preconditioner for the problem at hand

and an estimated saving in runtime relative to other preconditioners.

7. Finally, the general applicability of the proposed preconditioners was

demonstrated by considering two real-world soil-structure interactions

problems with nonhomogeneous soil profiles in Chapter 6. It was

found that the nonhomogeneous soil profiles are not a problem for the

proposed preconditioners. Their convergence behaviors were

comparable to those presented for homogeneous problems in preceding

Chapters.

In short, the ill-conditioning problem associated with significant contrast in

material stiffnesses has been solved. Although the examples demonstrated in

this study are limited to piled-raft and tunneling problems, the principles are

more generally applicable to all soil-structure interaction problems where

significant stiff structural elements are present.

7.2. Limitations and Recommendations

As is said commonly, a PhD thesis is not the end of research, this thesis is no

exception. Although this study has provided a breakthrough in the numerical

simulation of large-scale problems with significant heterogeneity in material

properties, it still has many rooms for further works. In the following, the

limitations of this study are listed and areas for further study are subsequently

recommended:

 229

1. This study focused particularly on the solution of symmetric large

linear systems that arise from drained and time dependent

consolidation analysis of static problems under monotonic

loading/unloading condition. Dynamic loading condition was not

considered. However, there should not be much difficulty in applying

the same approach for dynamic problems.

2. The study is limited to symmetric linear system only. Hence, the

material behavior that obeys the associated flow rule was taken into

consideration. The study can be extended for nonlinear elasto-plastic

modeling of soils with non-associated plastic flow rule. For this,

however, a nonsymmetric solver needs to be used (Figure 2.1). The

central theme of the thesis is that, regardless of chosen soil model, an

appropriate preconditioning for the iterative solution of the resulting

large system of equations from 3D finite element simulation is at least

as important as the characterization of the ground.

3. The results of this thesis are essentially based on numerical

experiments in a serial computer. Preconditioners based on element-

by-element method and corresponding implementation in parallel

computing have not been covered in this study. It would be worth

studying the performance of the proposed preconditioning strategies in

a parallel computing environment.

 230

(blank)

 231

REFERENCES

Abbo A.J. Finite element algorithms for elastoplasticity and consolidation.

PhD Thesis, University of Newcastle, Newcastle. 1997.

Addenbrooke T.I., and Potts D.M. Twin tunnel interaction: surface and

subsurface effects. International Journal of Geomechanics, 1(2): pp.

249-271. 2001.

Addenbrooke T.I., Potts D.M., and Puzrin A.M. The influence of pre-failure

soil stiffness on the numerical analysis of tunnel construction.

Geotechnique, 47(3): pp. 693-712. 1997.

Agus S.S., Leong E.C., and Rahardjo H. Estimating permeability functions of

Singapore residual soils. Engineering Geology, 78(1-2): pp. 119-133.

2005.

Arioli M. A stopping criterion for the conjugate gradient algorithm in a finite

element method framework. Numerische Mathematik, 97(1): pp. 1-24.

2004.

Augarde C.E., Ramage A., and Staudacher J. An element-based displacement

preconditioner for linear elasticity problems. Computers and

Structures, 84(31-32): pp. 2306-2315. 2006.

Augarde C.E., Ramage A., and Staudacher J. Element-based preconditioners

for elasto-plastic problems in geotechnical engineering. International

Journal for Numerical Methods in Engineering, 71(7): pp. 757-779.

2007.

Augarde C.E., Crouch R.S., Li T., and Ramage A. The effects of geotechnical

material properties on the convergence of iterative solvers. In: Proc.

12th International Conference of International Association for

Computer Methods and Advances in Geomechanics (IACMAG), Goa,

India, 1-6 October. pp. 587-594. 2008.

Axelsson O. Iterative solution methods. Cambridge University Press,

Cambridge England ; New York. 1994.

Balasubramaniam A.S., Loganathan N., Fernando G.S.K., Indraratna B.,

Phien-wej N., Bergado D.T., and Hanjo Y. Advanced geotechnical

analysis : finite element analysis coupled with critical state theories

using CRISP computer programme. Asian Institute of Technology,

Bangkok. 1992.

Barbour S.L., and Krahn J. Numerical modelling - Prediction or process?

Geotechnical News, 22(4): pp. 44-52. 2004.

 232

Barrett R., Berry M., Chan T.F., Demmel J., Donato J.M., Dongarra J.,

Eijkhout V., Pozo R., Romine C., and Van der Vorst H. Templates for

the solution of linear systems: Building blocks for iterative methods.

SIAM press, Philadelphia PA. 1994.

Benzi M., Meyer C.D., and Tuma M. A sparse approximate inverse

preconditioner for the conjugate gradient method. SIAM Journal on

Scientific Computing, 17(5): pp. 1135-1149. 1996.

Benzi M., Cullum J.K., and Tůma M. Robust approximate inverse

preconditioning for the conjugate gradient method. SIAM Journal of

Scientific Computing, 22(4): pp. 1318-1332. 2001.

Bergamaschi L., Ferronato M., and Gambolati G. Novel preconditioners for

the iterative solution to FE-discretized coupled consolidation

equations. Computer Methods in Applied Mechanics and Engineering,

196(25-28): pp. 2647-2656. 2007.

Bergamaschi L., Ferronato M., and Gambolati G. Mixed constraint

preconditioners for the iterative solution of FE coupled consolidation

equations. Journal of Computational Physics, 227(23): pp. 9885-9897.

2008.

Biot M.A. General theory of three-dimensional consolidation. Journal of

applied physics, 12(2): pp. 155. 1941.

Breth H., and Amann P. Time-settlement and settlement distribution with

depth in Frankfurt Clay. In: Settlement of Structures, British

Geotechnical Society, Pentech Press, London. pp. 141-154. 1975.

Brinkgreve R.B.J., and Broere W. Plaxis 3D foundation manual, A.A.

Balkema, Rotterdam, The Netherlands. 2006.

Britto A.M., and Gunn M.J. Critical state soil mechanics via finite elements.

Ellis Horwood Ltd, Chichester, West Sussex. 1987.

Burd H.J., Houlsby G.T., Chow L., Augarde C.E., and Liu G. Analysis of

settlement damage to masonry structures. In: Proceedings of 3rd

European Conference on Numerical Methods in Geotechnical

Engineering - ECONMIG 94 Manchester, United kingdom, 7-9

September. pp. 203-208. 1994.

Burkardt J. Reverse Cuthill McKee Ordering,

<http://people.scs.fsu.edu/~burkardt/f_src/rcm/rcm.html>. (Access

date: August, 2007). 2003.

Butterfield R., and Banerjee P.K. The elastic analysis of compressible piles

and pile groups. Geotechnique, 21(1): pp. 43-60. 1971.

Chan S.H. Iterative solution for large indefinite linear systems from Biot's

finite element formulation. PhD Thesis, National University of

Singapore, Singapore. 2002.

 233

Chan S.H., Phoon K.K., and Lee F.H. A modified Jacobi preconditioner for

solving ill-conditioned Biot's consolidation equations using symmetric

quasi-minimal residual method. International Journal for Numerical

and Analytical Methods in Geomechanics, 25(10): pp. 1001-1025.

2001.

Chan T.F., Gallopoulos E., Simoncini V., Szeto T., and Tong C.H. A quasi-

minimal residual variant of the Bi-CGSTAB algorithm for

nonsymmetric systems. SIAM Journal on Scientific Computing, 15(2):

pp. 338-347. 1994.

Chen X. Preconditioners for iterative solutions of large-scale linear systems

arising from Biot's consolidation equations. PhD Thesis, National

University of Singapore, Singapore. 2005.

Chen X., and Phoon K.K. Some numerical experiences on convergence

criteria for iterative finite element solvers. Computers and

Geotechnics, 36(8): pp. 1272-1284. 2009.

Chen X., Toh K.C., and Phoon K.K. A modified SSOR preconditioner for

sparse symmetric indefinite linear systems of equations. International

Journal for Numerical Methods in Engineering, 65(6): pp. 785-807.

2006.

Chen X., Phoon K.K., and Toh K.C. Partitioned versus global Krylov

subspace iterative methods for FE solution of 3-D Biot's problem.

Computer Methods in Applied Mechanics and Engineering, 196(25-

28): pp. 2737-2750. 2007.

Chow E., and Saad Y. Experimental study of ILU preconditioners for

indefinite matrices. Journal of Computational and Applied

Mathematics, 86(2): pp. 387-414. 1997.

Chow E., and Heroux M.A. An object-oriented framework for block

preconditioning. ACM Transactions on Mathematical Software, 24(2):

pp. 159-183. 1998.

Clancy P., and Randolph M.F. An approximate analysis procedure for piled

raft foundations. International Journal for Numerical & Analytical

Methods in Geomechanics, 17(12): pp. 849-869. 1993.

Dasari G.R., Rawlings C.G., and Bolton M.D. Numerical modelling of a

NATM tunnel construction in London clay. In: the1st International

Symposium on the Geotechnical Aspects of Underground Construction

in Soft Ground, A.A. Balkema, Rotterdam, The Netherlands, London.

pp. 491–496. 1996.

Eisenstat S.C. Efficient implementation of A class of preconditioned conjugate

gradient methods. SIAM Journal on Scientific and Statistical

Computing, 2: pp. 1-4. 1981.

 234

El-Mossallamy Y., and Franke E. Piled rafts: numerical modelling to simulate

the behaviour of piled raft foundations. Published by the Authors,

Darmstadt, Germany. 1997.

Fellenius B.H. Negative skin friction and settlement of piles. In: the 2nd

International Seminar on Pile Foundations, Singapore, 28-30

November. 1984.

Fellenius B.H. Unified design of piled foundations with emphasis on

settlement analysis. In: Current Practice and Future Trends in Deep

Foundations, J. A. DiMaggio and M. H. Hussein (Eds.), ASCE

Geotechnical Special Publication 125. pp. 253–275. 2004.

Ferronato M., Gambolati G., and Teatini P. Ill-conditioning of finite element

poroelasticity equations. International Journal of Solids and Structures,

38(34-35): pp. 5995-6014. 2001.

Ferronato M., Janna C., and Gambolati G. Mixed constraint preconditioning in

computational contact mechanics. Computer Methods in Applied

Mechanics and Engineering, 197(45-48): pp. 3922-3931. 2008.

Ferronato M., Pini G., and Gambolati G. The role of preconditioning in the

solution to FE coupled consolidation equations by Krylov subspace

methods. International Journal for Numerical and Analytical Methods

in Geomechanics, 33(3): pp. 405-423. 2009.

Ferronato M., Bergamaschi L., and Gambolati G. Performance and robustness

of block constraint preconditioners in finite element coupled

consolidation problems. International Journal for Numerical Methods

in Engineering, 81(3): pp. 381-402. 2010.

Ferronato M., Pini G., Gambolati G., and Janna C. Symmetric and

unsymmetric block preconditioning for the iterative solution to FE

coupled consolidation. In: International Conference on Numerical

Analysis and Applied Mathematics, American Institute of Physics,

Melville, NY, USA, 16-20 September. pp. 216-219. 2007.

Franke E., Lutz B., and El-Mossallamy Y. Measurements and numerical

modelling of high rise building foundations on Frankfurt Clay. Vertical

and Horizontal Deformations of Foundations and Embankments,

ASCE Geotechnical Special Publication, 40(2): pp. 1325-1336. 1994.

Franke E., EI-Mossallamy Y., and Wittmann P. Calculation methods for raft

foundations in Germany. In: Design applications of raft foundations, J.

A. Hemsley (Ed.), Thomas Telford, London. pp. 283-322. 2000.

Freund R.W. Preconditioning of symmetric, but highly indefinite linear

systems. In: Proc. 15th IMACS World Congress on Scientific

Computation Modelling and Applied Mathematics, Berlin, Germany,

25-29 August. pp. 551-556. 1997.

 235

Freund R.W., and Nachtigal N.M. QMR: a quasi-minimal residual method for

non-Hermitian linear systems. Numerische Mathematik, 60(1): pp.

315-339. 1991.

Freund R.W., and Nachtigal N.M. An implementation of the QMR method

based on coupled two-term recurrences. SIAM Journal on Scientific

Computing, 15(2): pp. 313-337. 1994a.

Freund R.W., and Nachtigal N.M. A new Krylov-subspace method for

symmetric indefinite linear systems. In: Proc. 14th MIACS World

Congress on Computational and Applied Mathematics, Atlanta, USA.

pp. 1253-1256. 1994b.

Freund R.W., and Nachtigal N.M. Software for simplified Lanczos and QMR

algorithms. Applied Numerical Mathematics, 19(3): pp. 319-341.

1995.

Galli G., Grimaldi A., and Leonardi A. Three-dimensional modelling of tunnel

excavation and lining. Computers and Geotechnics, 31(3): pp. 171-

183. 2004.

Gambolati G., Pini G., and Ferronato M. Numerical performance of projection

methods in finite element consolidation models. International Journal

for Numerical and Analytical Methods in Geomechanics, 25(14): pp.

1429-1447. 2001.

Gambolati G., Pini G., and Ferronato M. Direct, partitioned and projected

solution to finite element consolidation models. International Journal

for Numerical and Analytical Methods in Geomechanics, 26(14): pp.

1371-1383. 2002.

Gambolati G., Pini G., and Ferronato M. Scaling improves stability of

preconditioned CG-like solvers for FE consolidation equations.

International Journal for Numerical and Analytical Methods in

Geomechanics, 27(12): pp. 1043-1056. 2003.

Gambolati G., Ferronato M., and Janna C. Preconditioners in computational

geomechanics: A survey. International Journal for Numerical and

Analytical Methods in Geomechanics. DOI: 10.1002/nag.937. 2010.

GeoFEA. Software, Version 8.0. GeoSoft Pte. Ltd. 2006.

George A., and Lui J. Computer solution of large sparse positive definite

systems. Prentice-Hall, Englewood Cliffs, NJ. 1981.

Golub G.H., and Van Loan C.F. Matrix computations (2nd ed.). Johns

Hopkins University Press, Baltimore, USA. 1989.

Gonilho Pereira C., Castro-Gomes J., and Pereira de Oliveira L. Influence of

natural coarse aggregate size, mineralogy and water content on the

permeability of structural concrete. Construction and Building

Materials, 23(2): pp. 602-608. 2009.

 236

Greenbaum A. Iterative methods for solving linear systems. Society for

Industrial and Applied Mathematics, Philadelphia, PA. 1997.

Grote M.J., and Huckle T. Parallel preconditioning with sparse approximate

inverses. SIAM Journal on Scientific Computing, 18(3): pp. 838-853.

1997.

Hage Chehade F., and Shahrour I. Numerical analysis of the interaction

between twin-tunnels: Influence of the relative position and

construction procedure. Tunnelling and Underground Space

Technology, 23(2): pp. 210-214. 2008.

Han J., and Ye S.L. A theoretical solution for consolidation rates of stone

column-reinforced foundations accounting for smear and well

resistance effects. International Journal of Geomechanics, 2(2): pp.

135-151. 2002.

Harris D.I., Menkiti C.O., Pooley A.J., and Stephenson J.A. Construction of

low-level tunnels below Waterloo Station with compensation grouting

for the Jubilee Line Extension. In: Aspects of Underground

Construction in Soft Ground, R. J. Mair and R. N. Taylor (Eds.),

Balkema, Rotterdom. pp. 361-366. 1996.

Hestenes M.R., and Stiefel E. Methods of conjugate gradients for solving

linear systems. Journal of Research of the National Bureau of

Standards, 49(6): pp. 409-436. 1952.

Horn R.A., and Johnson C.R. Matrix analysis. Cambridge University Press,

Cambridge, UK. 1985.

Huckle T. Approximate sparsity patterns for the inverse of a matrix and

preconditioning. Applied Numerical Mathematics, 30(2): pp. 291-304.

1999.

Hughes T., Levit I., and Winget J. An element-by-element solution algorithm

for problems of structural and solid mechanics. Computer Methods in

Applied Mechanics and Engineering, 36(2): pp. 241-254. 1983.

Intel® Fortran Compiler User and Reference Guides(Document Number:

304970-006US).

Irons B.M. A frontal solution program for finite element analysis.

International Journal for Numerical Methods in Engineering, 2(1): pp.

5-32. 1970.

Janna C., Comerlati A., and Gambolati G. A comparison of projective and

direct solvers for finite elements in elastostatics. Advances in

Engineering Software, 40(8): pp. 675-685. 2009.

Johnson O.G., Micchelli C.A., and Paul G. Polynomial preconditioners for

conjugate gradient calculations. SIAM Journal on Numerical Analysis,

20(2): pp. 362-376. 1983.

 237

Katzenbach R., and Breth H. Nonlinear 3D analysis for NATM in Frankfurt

clay. In: Proc. 10th International Conference on Soil Mechanics and

Foundation Engineering, Rotterdam, Balkema. pp. 315–318. 1981.

Katzenbach R., Arslan U., and Moormann C. Piled raft foundation projects in

Germany. In: Design Applications of Raft Foundations, J. A. Hemsley

(Ed.), Thomas Telford, London. pp. 323-391. 2000.

Kayupov M.A., Bulgakov V.E., and Kuhn G. Efficient solution of 3-D

geomechanical problems by indirect bem using iterative methods.

International Journal for Numerical and Analytical Methods in

Geomechanics, 22(12): pp. 983-1000. 1998.

Keller C., Gould N.I.M., and Wathen A.J. Constraint preconditioning for

indefinite linear systems. SIAM Journal on Matrix Analysis and

Applications, 21(4): pp. 1300-1317. 2000.

Kelley C.T. Iterative methods for linear and nonlinear equations. Society for

Industrial and Applied Mathematics, Philadelphia. 1995.

Kershaw D.S. The incomplete Cholesky-conjugate gradient method for the

iterative solution of systems of linear equations. Journal of

Computational Physics, 26: pp. 43-65. 1978.

Koenker R., and Ng P. SparseM: A sparse matrix package for R *,

<http://cran.r-project.org/web/packages/SparseM/index.html>. (Access

date: August, 2007). 2007.

Kuhns G.L. Downdrag in pile design: The positive aspects of negative skin

friction. In: From Research to Practice in Geotechnical Engineering,

ASCE, New Orleans, LA, USA, 9-12 March. pp. 489-506. 2008.

Kuwabara F. An elastic analysis for piled raft foundations in a homogeneous

soil. Soils and foundations, 29(1): pp. 82-92. 1989.

Lanczos C. Solution of systems of linear equations by minimized iterations.

Journal of Research of the National Bureau of Standards, 49(1): pp.

33-53. 1952.

Lee F.H., Phoon K.K., and Lim K.C. Large scale three-dimensional finite

element analysis of underground construction. In: Proc. International

Conference on Numerical Simulation of Construction Processes in

Geotechincal Engineering for Urban Environment, Bochum, Germany,

23-24 March. pp. 141-153. 2006.

Lee F.H., Phoon K.K., Lim K.C., and Chan S.H. Performance of Jacobi

preconditioning in Krylov subspace solution of finite element

equations. International Journal for Numerical and Analytical Methods

in Geomechanics, 26(4): pp. 341-372. 2002.

Lee K.M., and Rowe R.K. Finite element modelling of the three-dimensional

ground deformations due to tunnelling in soft cohesive soils: Part I -

 238

Method of analysis. Computers and Geotechnics, 10(2): pp. 87-109.

1990.

Lewis R.W., and Schrefler B.A. The finite element method in the static and

dynamic deformation and consolidation of porous media (2nd ed.).

John Wiley, New York. 1998.

Lim K.C. Three-dimensional finite element analysis of earth pressure balance

tunnelling. PhD Thesis, National University of Singapore, Singapore.

2003.

Maharaj D.K. Three dimensional nonlinear finite element analysis to study the

effect of raft and pile stiffness on the load-settlement behaviour of

piled raft foundations. Electronic Journal of Geotechnical Engineering,

9A. 2004.

Maleki Javan M.R., Noorzad A., and Latifi Namin M. Three dimensional

nonlinear finite element analysis of pile groups in saturated porous

media using a new transmitting boundary. International Journal for

Numerical and Analytical Methods in Geomechanics, 32(6): pp. 681-

699. 2008.

Manteuffel T.A. An incomplete factorization technique for positive definite

linear systems. Mathematics of Computation, 34(150): pp. 473-497.

1980.

Marcus M., and Minc H. A survey of matrix theory and matrix inequalities.

Dover Publications, New York. 1992.

Meijerink J.A., and van der Vorst H.A. An iterative solution method for linear

systems of which the coefficient matrix is a symmetric M-matrix.

Mathematics of Computation, 31: pp. 148-162. 1977.

Meurant G.A. Computer solution of large linear systems. North-Holland:

Elsevier, Amsterdam; New York. 1999.

Migliazza M., Chiorboli M., and Giani G.P. Comparison of analytical method,

3D finite element model with experimental subsidence measurements

resulting from the extension of the Milan underground. Computers and

Geotechnics, 36(1-2): pp. 113-124. 2009.

Möller S.C. Tunnel induced settlements and structural forces in linings. PhD,

Institut für Geotechnik der Universität Stuttgart, Stuttgart. 2006.

Möller S.C., and Vermeer P.A. On numerical simulation of tunnel installation.

Tunnelling and Underground Space Technology, 23(4): pp. 461-475.

2008.

Mroueh H., and Shahrour I. Use of sparse iterative methods for the resolution

of three-dimensional soil/structure interaction problems. International

Journal for Numerical and Analytical Methods in Geomechanics,

23(15): pp. 1961-1975. 1999.

 239

Mroueh H., and Shahrour I. A full 3-D finite element analysis of tunneling-

adjacent structures interaction. Computers and Geotechnics, 30(3): pp.

245-253. 2003.

Mroueh H., and Shahrour I. A simplified 3D model for tunnel construction

using tunnel boring machines. Tunnelling and Underground Space

Technology, 23(1): pp. 38-45. 2008.

Murphy M.F., Golub G.H., and Wathen A.J. A note on preconditioning for

indefinite linear systems. SIAM Journal of Scientific Computing,

21(6): pp. 1969-1972. 2000.

Nayak G.C., and Zienkiewicz O.C. Elasto-plastic stress analysis. A

generalization for various constitutive relations including strain

softening. International Journal for Numerical Methods in Engineering,

5(1): pp. 113-135. 1972.

Ng C.W.W., Lee K.M., and Tang D.K.W. Three-dimensional numerical

investigations of new Austrian tunnelling method (NATM) twin tunnel

interactions. Canadian Geotechnical Journal, 41(3): pp. 523-539. 2004.

Ng E.G., and Peyton B.W. Block sparse Cholesky algorithms on advanced

uniprocessor computers. SIAM Journal of Scientific Computing, 14:

pp. 1034-1056. 1993.

Nour-Omid B., and Parlett B.N. Element preconditioning using splitting

techniques. SIAM Journal on Scientific and Statistical Computing,

6(3): pp. 761-770. 1985.

Novak L.J., Reese L.C., and Wang S.T. Analysis of pile-raft foundations with

3D finite element method. In: Proc. 2005 Structures and Congress and

2005 Forensic Engineering Symposium, ASCE, New York, New York.

2005.

Nyhoff L.R., and Leestma S.C. FORTRAN 90 for engineers and scientists.

Prentice Hall, Upper Saddle River, N.J. 1997.

Ottaviani M. Three-dimensional finite element analysis of vertically loaded

pile groups. Geotechnique, 25(2): pp. 159-174. 1975.

Paige C.C., and Saunders M.A. Solution of sparse indefinite systems of linear

equations. SIAM Journal on Numerical Analysis, 12(4): pp. 617-629.

1975.

Pan X.D., and Hudson J.A. Plane strain analysis in modelling three-

dimensional tunnel excavations. International Journal of Rock

Mechanics and Mining Sciences, 25(5): pp. 331-337. 1988.

Pang C.H. The effects of tunnel construction on nearby pile foundation. PhD

Thesis, National University of Singapore, Singapore. 2006.

 240

Papadrakakis M. Solving large-scale linear problems in solid and structural

mechanics. In: Solving Large-scale Problems in Mechanics: The

Development and Application of Computational Solution Methods, M.

Papadrakakis (Ed.), Wiley, Chichester. pp. 1–32. 1993a.

Papadrakakis M. (Ed.). Solving large-scale problems in mechanics: The

development and application of computational solution methods.

Wiley, Chichester. 1993b.

Payer H.J., and Mang H.A. Iterative strategies for solving systems of linear,

algebraic equations arising in 3D BE-FE analyses of tunnel drivings.

Numerical Linear Algebra with Applications, 4(3): pp. 239-268. 1997.

Phoon K.K. Iterative solution of large-scale consolidation and constrained

finite element equations for 3D problems. In: International e-

Conference on Modern Trends in Foundation Engineering:

Geotechnical Challenges and Solutions, IIT Madras, India, 26-30

January. 2004.

Phoon K.K., Toh K.C., and Chen X. Block constrained versus generalized

Jacobi preconditioners for iterative solution of large-scale Biot's FEM

equations. Computers and Structures, 82(28): pp. 2401-2411. 2004.

Phoon K.K., Lee F.H., and Chan S.H. Iterative solution of intersecting tunnels

using the generalised Jacobi preconditioner. In: Proc. International

Conference on Numerical Simulation of Construction Processes in

Geotechnical Engineering for Urban Environment, Bochum, Germany,

23-24 March. pp. 155-163. 2006.

Phoon K.K., Chaudhary K.B., and Toh K.C. Comparison of MSSOR versus

ILU(0) preconditioners for Biot’s FEM consolidation equations. In: the

12th IACMAG Conference, Goa, India, 1-6 October. pp. 185-192.

2008.

Phoon K.K., Toh K.C., Chan S.H., and Lee F.H. An efficient diagonal

preconditioner for finite element solution of Biot's consolidation

equations. International Journal for Numerical Methods in

Engineering, 55(4): pp. 377-400. 2002.

Phoon K.K., Chan S.H., Toh K.C., and Lee F.H. Fast iterative solution of large

undrained soil-structure interaction problems. International Journal for

Numerical and Analytical Methods in Geomechanics, 27(3): pp. 159-

181. 2003.

PLAXIS 2D. Software, Version 9.02. PLAXIS. 2009.

Potts D.M., and Zdravković L. Finite element analysis in geotechnical

engineering. Thomas Telford, London. 1999.

Potts D.M., and Zdravković L. Finite element analysis in geotechnical

engineering: application. Thomas Telford, London. 2001.

 241

Poulos H.G. An approximate numerical analysis of pile-raft interaction.

International Journal for Numerical and Analytical Methods in

Geomechanics, 18(2): pp. 73-92. 1994.

Poulos H.G. Methods of analysis of piled raft foundations. Report to technical

committee TC 18 on piled foundations, International Society on Soil

Mechanics and Geotechnical Engineering. 2001a.

Poulos H.G. Piled raft foundations: design and applications. Geotechnique,

51(2): pp. 95-113. 2001b.

Poulos H.G., and Davis E.H. Pile foundation analysis and design. Wiley, New

York. 1980.

Poulos H.G., Small J.C., Ta L.D., Sinha J., and Chen L. Comparison of some

methods for analysis of piled rafts. In: Proc. 14th International

Conference on Soil Mechanics and Foundation Engineering, AA

Balkema, Hamburg. pp. 1119-1124. 1997.

Press W.H., Teukolsky S.A., Vetterling W.T., and Flannery B.P. Numerical

recipes in FORTRAN : The art of scientific computing (2nd ed.).

Cambridge University Press, Cambridge England; New York, NY,

USA. 1992.

Press W.H., Teukolsky S.A., Vetterling W.T., and Flannery B.P. Numerical

recipes in Fortran 90 : The art of parallel scientific computing (2nd

ed.). Cambridge University Press, New York, N.Y. 1996.

Randolph M.F., and Wroth C.P. Analysis of deformation of vertically loaded

piles. Journal of the Geotechincal Engineering Division, 104(12): pp.

1465-1488. 1978.

Randolph M.F., and Wroth C.P. Analysis of the vertical deformation of pile

groups. Geotechnique, 29(4): pp. 423-439. 1979.

Reid J.K. On the method of conjugate gradients for the solution of large sparse

systems of linear equations. In: Large Sparse Sets of Linear Equations,

J. K. Reid (Ed.), Academic Press, New York. pp. 231-254. 1971.

Reul O., and Randolph M.F. Piled rafts in overconsolidated clay: Comparison

of in situ measurements and numerical analyses. Geotechnique, 53(3):

pp. 301-315. 2003.

Rowe R.K., and Lee K.M. An evaluation of simplified techniques for

estimating 3-dimensional undrained ground movements due to

tunneling in soft soils. Canadian Geotechincal Journal, 29(1): pp. 39-

52. 1992.

Saad Y. SPARSKIT: A basic tool kit for sparse matrix computations,

<http://www-

users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html>. (Access

date: December, 2006). 1994a.

 242

Saad Y. ILUT: A dual threshold incomplete LU factorization. Numerical

Linear Algebra with Applications, 1(4): pp. 387-402. 1994b.

Saad Y. Iterative methods for sparse linear systems. PWS Publishing

Company, Boston. 1996.

Saad Y., and Schultz M.H. GMRES: A generalized minimal residual

algorithm for solving nonsymmetric linear systems. SIAM Journal on

Scientific and Statistical Computing, 7(3): pp. 856-869. 1986.

Saad Y., and Van Der Vorst H. Iterative solution of linear systems in the 20th

century. Journal of Computational and Applied Mathematics, 123(1-2):

pp. 1-33. 2000.

SAGE-CRISP. Software, Version 4.02b. Sage Consortium. 2000.

Shen R.F. Negative skin friction on single piles and pile groups. PhD Thesis,

National University of Singapore, Singapore. 2008.

Shewchuk J.R. An introduction to the conjugate gradient method without the

agonizing pain, <http://www-2.cs.cmu.edu/~jrs/jrspapers.html>.

(Access date: December, 2006). 1994.

Shirlaw J.N., Ong J.C.W., Rosser R.B., Osborne N.H., Tan C.G., and Heslop

P.J.E. Immediate settlements due to tunnelling for the North East Line.

In: Proc. Underground Singapore, Singapore, 29-30 November. pp. 76-

90. 2001.

SIGMA/W. Software, Version 7.15. GEO-SLOPE. 2007.

Silvester D., and Wathen A.J. Fast iterative solution of stabilised Stokes

systems part II: Using general block preconditioners. SIAM Journal on

Numerical Analysis, 31(5): pp. 1352-1367. 1994.

Small J.C., and Liu H.L.S. Time-settlement behaviour of piled raft foundations

using infinite elements. Computers and Geotechnics, 35(2): pp. 187-

195. DOI: 10.1016/j.compgeo.2007.04.004. 2008.

Smith I.M., and Griffiths D.V. Programming the finite element method (3rd

ed.). Wiley, Chichester, New York. 1997.

Smith I.M., and Wang A. Analysis of piled rafts. International Journal for

Numerical and Analytical Methods in Geomechanics, 22(10): pp. 777-

790. 1998.

Smith I.M., and Griffiths D.V. Programming the finite element method (4rd

ed.). John Wiley & Sons, West Sussex. 2004.

Smith I.M., Wong S.W., Gladwell I., and Gilvary B. PCG methods in transient

FE analysis. Part I. First order problems. International Journal for

Numerical Methods in Engineering, 28(7): pp. 1557-1566. 1989.

 243

Sonneveld P. CGS: A fast Lanczos-type solver for nonsymmetric linear

systems. SIAM Journal on Scientific and Statistical Computing, 10: pp.

36-52. 1989.

Toh K.C. Solving large scale semidefinite programs via an iterative solver on

the augmented systems. SIAM Journal on Optimization, 14(3): pp.

670-698. 2004.

Toh K.C., and Phoon K.K. Comparison between iterative solution of

symmetric and non-symmetric forms of Biot's FEM equations using

the generalized Jacobi preconditioner. International Journal for

Numerical and Analytical Methods in Geomechanics, 32(9): pp. 1131-

1146. 2008.

Toh K.C., Phoon K.K., and Chan S.H. Block preconditioners for symmetric

indefinite linear systems. International Journal for Numerical Methods

in Engineering, 60(8): pp. 1361-1381. 2004.

van der Vorst H.A. Bi-CGSTAB: A fast and smoothly converging variant of

Bi-CG for the solution of nonsymmetric linear systems. SIAM Journal

on Scientific and Statistical Computing, 13: pp. 631-644. 1992.

van der Vorst H.A. Iterative Krylov methods for large linear systems.

Cambridge University Press. 2003.

Vermeer P.A., Bonnier P.G., and Möller S.C. On a smart use of 3D-FEM in

tunnelling. Plaxis Bulletin, 11: pp. 2-7. 2001.

Wathen A.J., and Silvester D. Fast iterative solution of stabilized stokes

systems Part I: Using simple diagonal preconditioners. SIAM Journal

on Numerical Analysis, 30(3): pp. 630-649. 1993.

Winget J.M., and Hughes T.J.R. Solution algorithms for nonlinear transient

heat-conduction analysis employing element-by-element iterative

strategies. Computer Methods in Applied Mechanics and Engineering,

52(1-3): pp. 711-815. 1985.

Wong S.W., Smith I.M., and Gladwell I. PCG methods in transient FE

analysis. Part II. Second order problems. International Journal for

Numerical Methods in Engineering, 28(7): pp. 1567-1576. 1989.

Yeo C.H., Lee F.H., Tan S.C., Hasegawa O., Suzuki H., and Shinji M. Three

dimensional numerical modelling of a NATM tunnel. International

Journal of the JCRM, 5(1): pp. 33-38. 2009.

Zienkiewicz O.C. The finite element method (5th ed.). Butterworth

Heinemann, Oxford. 2000.

Zienkiewicz O.C., Valliappan S., and King I.P. Elasto-plastic solutions of

engineering problems `initial stress', finite element approach.

International Journal for Numerical Methods in Engineering, 1: pp. 75-

100. 1969.

 244

(blank)

 245

APPENDIX A

LINEAR ALGEBRA

This Section provides the meaning of various mathematical terms used in this

thesis. The information provided here is very brief. For more detailed

description, the reader is referred to any text book on linear algebra (e.g.

Golub and Van Loan, 1989).

A.1. Definition of terminologies

A.1.1. Sparse matrix

A matrix with a large number of zero entries is called a sparse matrix. A

different storage scheme is required to exploit the sparsity in storing the matrix

and matrix related operations.

A.1.2. Symmetric positive definite matrix

A matrix which satisfies TAA = is called symmetric and if 0>Avv
T for a

vector v with 0≠v is called symmetric positive definite (SPD) matrix. SPD

matrix has a nice property that the Cholesky factorization of A, in direct

method, reduces computations by a factor of two in comparison to alternative

methods (Press et al., 1992). In iterative methods, the storage requirement can

 246

be halved as the matrix-vector operation can effectively be performed with a

symmetric half matrix only. The eigenvalues of SPD matrix are all positive.

A.1.3. Symmetric indefinite matrix

If the matrix is neither positive definite nor negative definite, it is called

symmetric indefinite. Indefinite matrices have both positive and negative

eigenvalues.

A.1.4. Eigenvalue of a matrix

Eigenvalues are special values associated with a square matrix, which can be

used to analyze the action of pre-multiplying a square matrix to a vector

(basically, linear transform). An eigenvalue of a matrix A is that it is any

value λ which is a root of the characteristic equation of A. The characteristic

equation is a polynomial equation of the form:

 0)det(=− IA λ (A1)

where)det(⋅ denotes the determinant and I denotes the identity matrix. λ is an

eigenvalue of A if and only if there is a nonzero vector v, known as an

eigenvector, satisfying the following equation:

 vAv λ= (A2)

For an N×N matrix A, its characteristic equation (A1), has exactly N roots, so

matrix A also has N eigenvalues.

Some important facts about eigenvalues of matrix A are as follows:

 If A is singular i.e. the determinant of A is 0, then 0 is an eigenvalue. In

such circumstances, A cannot be inverted and hence, no unique

solution to the linear system.

 If A is symmetric, all eigenvalues are real (not complex).

 247

 If A is positive definite, all eigenvalues are positive; if A is negative

definite, all eigenvalues are negative; and if A is indefinite, eigenvalues

consist of both positive and negative values.

Eigenvalues are important in dealing with iterative solution methods because

eigenvalues provide some indications on the convergence behavior of an

iterative method for a linear system.

A.1.5. Singular values of a matrix

Eigenvalues apply only to a square matrix; for a rectangular matrix, singular

values may be used instead. Singular values and their corresponding singular

vectors of an m× n rectangular matrix A are the ones that satisfy the following:

 zwA σ= (A3)

 wzA σ=T (A4)

For a symmetric positive definite matrix, the eigenvalues and eigenvectors are

identical to its singular values and singular vectors, respectively. But, when A

departs from symmetricity or positive definiteness, the difference increases for

both sets of parameters. In particular, the singular values of a real matrix are

always real, but the eigenvalues of a real and non-symmetric matrix might be

complex. Browne's Theorem (Marcus and Minc, 1992; cited in Chan, 2002)

correlates eigenvalues and singular values of a real matrix using the following

inequalities:

 maxmaxminmin σ≤λ≤λ≤λ≤σ (A5)

where σmin and σmax denote the minimum and maximum singular values,

respectively;
maxmin

 and λλ denote the absolute minimum and maximum

eigenvalues, respectively; and λ denotes the modulus of an eigenvalue.

 248

A.1.6. Rank of a matrix

The rank of a matrix is the common value of its row rank and column rank.

The row (column) rank of a matrix is the dimension of the vector space

spanned by its row (column) vectors, or is equal to the maximum number of

linearly independent row (column) vectors of the matrix. A matrix is of full

rank if its rank is equal to the smallest dimension of the matrix. A matrix is of

full row (column) rank if its rank is equal to the dimension of its row

(column).

A.1.7. Condition number of a matrix

The stability or sensitivity of a linear system bAx = can be determined from

the condition number of the coefficient matrix A and occasionally by its

clustering of eigenvalues (e.g. Shewchuk, 1994). The condition number is a

positive number used to estimate the significance by which small errors in the

right hand side vector b, or in the matrix A itself, can affect the solution x. In

other words, the condition number is an approximate index indicating the

amplification or diminution of round-off errors. Small values of the condition

number indicate that the linear system will not be sensitive to errors, but large

values suggest that small data errors or floating point arithmetic errors may

incur enormous errors in the solution.

The condition number is usually defined in terms of matrix norms (see

the definition next). In general, the condition number of a non-singular matrix

A is defined by:

 ||||||||)(1−= AAAκ (A6)

where |||| ⋅ denotes a matrix norm. For a symmetric positive definite matrix,

the condition number can be defined as:

 249

)(

)(
)(

min

max

A

A
A

λ

λ
=κ (A7)

where λmax(A) and λmin(A) denote the maximum and minimum eigenvalues of

the matrix A, respectively. Generally, a matrix is said to be well-conditioned if

the condition number is close to unity, and ill-conditioned if it is large. If the

condition number is infinite, the matrix is singular. Eigenvalues of a well-

conditioned matrix also tend to appear in a single tight cluster, while

eigenvalues of an ill-conditioned matrix are much more widely spread. The

study of condition number is important in predicting the convergence rate in

the iterative solution method.

A.1.8. Vector and matrix norms

A norm is a way to measure the magnitude of an element (vector or matrix). It

is like the absolute value of a number, but in more dimensions and there are

more ways to combine the different components. A norm always has real

values even for a complex vector space. It is usually denoted by a double bar

notation ⋅ .

The most important class of vector norms in connection with

computations is the p-norm defined by:

 () p/1pp

1p
.... nxxx ++= where ∞≤≤ p1 (A8)

In practice, one usually takes p = 1, 2 and ∞, that is:

L1 vector norm: ∑
=

=++=
n

i

in xxxx
1

11
.... (A9)

L2 vector norm: () () 2/1T

2/1

1

22/122

12
.... xxxxxx

n

i

in =







=++= ∑

=

 (A10)

L infinity vector norm: i
ni

xx
≤≤∞

=
1
max (A11)

 250

L2 vector norm is also known as the Euclidean vector norm or root-mean-

square vector norm.

Matrix norms are frequently used to estimate the effects of solving

linear systems, matrix-vector multiplication, or other matrix operations. In

particular, they are used in the analyses of error and convergence. The most

commonly used matrix norms in numerical linear algebra are the p-norm and

the Frobenius norm, as follows:

p-norm:

p

p

p
sup

x

Ax
A

x 0≠
= where ∞≤≤ p1 (A12)

Frobenius norm:

2/1

1 1

2

F 









= ∑∑

= =

m

i

n

j

ijaA (A13)

A p-norm is a vector-bound matrix norm, which is a matrix norm that can be

derived from vector norms with the supremum (roughly equivalent to

"maximum") is taken over all nonzero vector x, as shown in Equation (A12).

Hence,
p

A can be defined as the p-norm of the largest vector obtained by

applying A to a unit p-norm vector, as follows:

p1

p
p

p
p

maxsup Ax
x

x
AA

xx =≠
=














=

0

 (A14)

Similar to vector norms, the matrix norms are usually computed based upon p

= 1, 2 and ∞. In general, the computation of the L2 matrix norm is rather

expensive, so it is often simpler to use the more easily computed Frobenius

matrix norm (A13) instead. A matrix norm and a vector norm are compatible

or consistent if it is true, for all vectors x and matrices A that:

 xAAx ≤ (A15)

[Note: most of the above definitions are taken from (Chan, 2002)].

 251

A.2. Iterative solution methods

The term ‘iterative methods’ refers to a wide range of techniques that use

successive approximations to obtain more accurate solutions to a linear system

starting from an initial guess. The essential feature of iterative methods is that

they require significantly smaller memory and less runtime for large-scale

problems. Increasing popularity of iterative methods indicates that they are

preferred over direct methods for the solution of linear FE equations arising

from large-scale problems.

Iterative methods are broadly categorized into two basic types:

stationary or classical iterative methods and nonstationary iterative methods

(Barrett et al., 1994). In stationary iterative methods, each iteration follows the

same recipe without iteration dependency. The main stationary iterative

methods are: Jacobi, Gauss-Seidel, SOR, and SSOR methods. These methods

are usually less effective; however, they can be used as preconditioners for

nonstationary methods.

Nonstationary methods are relatively recent developments and differ

from stationary methods in that the computations involve information that

changes at each iteration. Such iterative methods are often referred to as

Krylov subspace methods. The attractiveness of these methods for large sparse

linear system of equations is that they reference the coefficient matrix only

through its multiplication with a vector, or the multiplication of its transpose

and a vector. Krylov subspace methods form an orthogonal basis of the

sequence of successive matrix powers times the initial residual (the Krylov

sequence). That is,

 () { }1, , , , 0k

k
v A span v Av A v for k−= ≥KK (A16)

 252

where (),k v AK is called k-th Krylov subspace generated by A with respect

to v . It is clear that the subspace depends on the initial vector v . Typically, it

is chosen as the initial residual vector of the linear system, i.e. 0 0v r b Ax= = − .

Then, the iterate
k

x is updated as follows:

 ()0 0 , , 1, 2,k kx x r A k∈ + = KK (A17)

Some of the popular nonstationary iterative methods are:

1. Conjugate Gradient (CG)

2. Minimum Residual (MINRES) and Symmetric LQ (SYMMLQ)

3. Generalized Minimal Residual (GMRES)

4. Biconjugate Gradient (BiCG)

5. Quasi-Minimal Residual (QMR)

6. Transpose-Free Quasi-Minimal Residual (TFQMR)

7. Symmetric Quasi-Minimal Residual (SQMR)

8. Conjugate Gradient Squared (CGS)

9. Biconjugate Gradient Stabilized (Bi-CGSTAB)

These methods have been intensively re-examined over past decades for their

merits and demerits (e.g. Axelsson, 1994; Barrett et al., 1994; Saad, 1996).

Each of the above mentioned methods has its own specific function and

applications. The choice of an optimal method is largely depends on the

properties of the coefficient matrix (See Figure 2.1, Chapter 2). The methods

that are used in this thesis are:

A.2.1. Conjugate Gradient (CG)

The conjugate gradient (CG) method is originally proposed firstly by Hestenes

and Stiefel (1952). CG is presented as an iterative method for large sparse

 253

system of linear equations after Reid (1971). The algorithm begins with an

initial guess for x followed by successive updates based on residuals. The

method creates search directions that are orthogonal so that the method must

converge in a maximum of N steps, where N is the size of the matrix A

(1.1). The convergence rate of CG depends on the condition number of A

(Section 0). However, the conditioner number is only a general indicator;

clustered eigenvalues usually results in faster convergence (Shewchuk, 1994).

To accelerate the convergence, the method is often used in conjunction with

preconditioners. Hence, it is commonly referred as preconditioned conjugate

gradient method (PCG). The pseudo code of Preconditioned Conjugate

Gradient (PCG) is as given below. The linear system is Ax b= and M is the

symmetric preconditioner (e.g. Barrett et al., 1994; van der Vorst, 2003).

 254

Start: Choose an initial guess N
x ℜ∈0

Set 00 Axbr −=

Do End

DoFor

loop. Doexit converged, If e.convergencCheck

1

 Solve

 max_ to1

1

1

1

111

211

1

111

11

kkkk

kkkk

k

T

kkk

kk

kkkk

kkk

kk

k

T

kk

kk

qrr

pxx

qp

Apq

ifend

pwp

else

wp

thenkif

wr

rMw

itk

α

α

ρα

β

ρρβ

ρ

−=

+=

=

=

+=

=

=

=

=

=

=

−

−

−

−−−

−−−

−

−−−

−−

A.2.2. Symmetric Quasi-Minimal Residual (SQMR)

For symmetric indefinite linear system, SQMR (Freund and Nachtigal, 1994b)

is a preferred choice. It can be interpreted as a special case of QMR method

(Freund and Nachtigal, 1991, 1994a), which was initially proposed for

unsymmetric systems. The pseudo code for SQMR is as given below:

The symmetric linear system is Ax b= and the symmetric

preconditioner is M = MLMR (Freund and Nachtigal, 1994b).

 255

Start: Choose an initial guess N
x ℜ∈0

Set

0,,0

,||||,,,

00000

20

1

00

1

00

===

===−= −−

dqr

ttMqrMtAxbr

T

RL

ρθ

τ

Do End

DoFor

1

1

1

1

11

2

1

2

1

2

1
2

1

21

11

1

1

1111

,,,

Compute (4)

loop. Doexit converged, If e.convergencCheck

Set (3)

,
1

1
,

||||
,

Compute (2)

,,,

Compute (1)

max_1

−
−

−

−

−−−−

−
−

−

−−
−

−
−−−−

+====

+=

+=

=
+

===

−====

=

iiii

i

i

ii

T

iiRi

iii

iiiiiii

iiiii

i

iiL

iii

i

i

i

T

iii

qsqsrtMs

dxx

qcdcd

cc
t

rMt

trrtqAqt

ittoi

β
ρ
ρ

βρ

αθ

θττ
θτ

θ

α
σ
ρ

ασ

A.3. Sparse storage of the matrix

Several sparse storage schemes are available in which only the nonzero

elements of the sparse matrix are stored and the matrix operation

(multiplication, etc.) can be performed effectively. The details of all these are

beyond the scope of this thesis. Readers are referred to the templates by

Barrett et al. (1994) or the book by Saad (1996) for more details. The storage

schemes used in this thesis are described below. These are the standard storage

schemes and are widely used in numerical analyses.

A.3.1. Compressed sparse row (CSR) storage

In this scheme all the nonzero entries of FE coefficient matrix A are stored

row by row in three one-dimensional arrays as shown below:

 256

Let

16 0 4 0 3

0 8 0 2 0

4 0 10 0 4

0 2 0 9 5

3 0 4 5 25

A

 
 
 
 =
 
 
  

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

csra 16 4 3 8 2 4 10 4 2 9 5 3 4 5 25
jcsra 1 3 5 2 4 1 3 5 2 4 5 1 3 4 5

icsra 1 4 6 9 12 16

• A real array csra contains the real values
ij

a stored row by row, from

1 to N . The length of csra is nnz (number of nonzero entries in A).

• An integer array jcsra contains the column indices of the elements

ij
a . The length of jcsra is also nnz .

• An integer array icsra contains the pointers to the beginning of each

row in the arrays csra and jcsra . Thus, the content of ()icsra i is the

position in arrays csra and jcsra where the i-th row starts. The length

of icsra is N +1 with (1)icsra N + containing the number (1)icsra +

nnz , i.e. the address in csra and jcsra of the beginning of a fictitious

row number N +1.

A.3.2. Compressed sparse column (CSC) storage

The ‘compressed sparse column’ format is identical with the ‘compressed

sparse row’ format except that the columns of A are scanned and stored

instead of the rows. In other words, the CSC format is simply the CSR format

 257

for the matrix TA . The arrays csca , icsca , and jcsca are used for the storage

of entries of A , row indices of the entries, and the pointers to the beginning

of each column as shown below:

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

csca 16 4 3 8 2 4 10 4 2 9 5 3 4 5 25
icsca 1 3 5 2 4 1 3 5 2 4 5 1 3 4 5

jcsca 1 4 6 9 12 16

For symmetric matrices, both CSC and CSR storages are the same. In

addition, the matrix operations can be performed by only storing the

symmetric upper (or lower) triangular part of A. For example, the CSC storage

of upper A is shown below:

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

csca 16 8 4 10 2 9 3 4 5 25
icsca 1 2 1 3 2 4 1 3 4 5

jcsca 1 2 3 5 7 11

Cleary, the CSC storage of upper triangular is equivalent to the CSR storage of

lower triangular. In this study, the sparse storage of the coefficient matrix A is

done by assembling the global stiffness matrix in element loop (Figure 2.2,

Chapter 2). The three vectors (iebea, jebea, and ebea) are used to store the

global row number, global column number, and corresponding value of A for

the symmetric upper (or lower) triangular part for each element. For CSR

 258

storage, the vector iebea (jebea for CSC storage) is sorted in ascending

order and corresponding reordering on jebea and ebea is carried out

simultaneously. In the next step, jebea is sorted with simultaneous reordering

of ebea for the same iebea. Finally, the entries with the same iebea and

jebea number are summed up to get the new three global vectors ,icsra

,jcsra and csra (or ,icsca ,jcsca and csca for CSC storage) for global

sparse stiffness matrix A . For sorting the arrays with 16 or less entries,

insertion sorting is adopted otherwise quick sorting for efficiency (Press et al.,

1996; Nyhoff and Leestma, 1997). The previous three element-level vectors

would be deallocated for the memory management.

 259

APPENDIX B

BIOT’S CONSOLIDATION EQUATIONS

Biot (1941) put forward the three-dimensional soil consolidation theory as a

further development of Terzaghi’s one-dimensional soil consolidation theory.

In terms of Biot’s definition, soil consolidation is the process of a gradual

ground water flow and solid skeleton deformation of the porous medium. In

Biot’s formulation the groundwater flow within the soil is fully accounted for

based on Darcy’s law. This means that if the time increment is very short

solution of the coupled consolidation analysis is akin to an undrained analysis

and if the time is very long, the analysis will converge to a drained analysis.

Another way of understanding this is that the end state of the consolidation

process is the drained state.

B.1. Biot’s consolidation equations

In Biot’s theory, soil is regarded as a porous skeleton filled with water, and the

interaction between soil skeleton and pore water is determined by the principle

of effective stress and the continuity relation. When taking an infinitesimal

soil element, the equilibrium equations of this element can be expressed as:

 260

0

0

0

=+
∂

∂
+

∂

∂
+

∂

∂

=+
∂

∂
+

∂

∂
+

∂

∂

=+
∂

∂
+

∂

∂
+

∂

∂

z

zzyzxz

y

zyyyxy

x

zxyxxx

b
zyx

b
zyx

b
zyx

σττ

τστ

ττσ

 (B1)

where , ,
x y

b b and
z

b are the body forces, per unit volume, in the ,x ,y and z

directions. With an ordinary gravity field and z direction vertically

downwards, and
x y

b b are zero and
z

b is the unit weight, γ , of the material.

In compact form, Equation (B1) can be written as:

 0
~

=+∇ b
Tσ (B2)

where T∇
~

 is a differential operator given by:

 T∇
~

0 0 0

0 0 0

0 0 0

x y z

y x z

z y x

 ∂ ∂ ∂
 ∂ ∂ ∂ 
 ∂ ∂ ∂

=  ∂ ∂ ∂ 
 ∂ ∂ ∂
 ∂ ∂ ∂ 

 (B3)

According to principle of effective stress, the total stress is equal to the

summation of effective stress and pore water pressure, i.e. m pσ σ ′= + .

Thus, Equation (B2) can be written as:

 T∇
~

0m p bσ ′(+) + = (B4)

where { }, , , , ,
T

x y z xy yz zx
σ σ σ σ τ τ τ′ ′ ′ ′= is the vector of effective stresses,

{ }1,1,1, 0, 0, 0
T

m = is a second-order Kronecker delta in vectorial form, and

st exp p p= + is the total pore water pressure decomposed into steady state

component, stp , and excess component, exp (pore pressure in excess of that at

steady state), respectively.

 261

For a linear elastic solid element, the stress-strain relationship is given

as:

 e
Dσ ε′ = (B5)

where { }, , , , ,
T

x y z xy yz zx
ε ε ε ε τ τ τ= is the strain vector, and eD is the elastic

stress-strain matrix given as:

1 ' 0 0 0

1 ' 0 0 0

1 ' 0 0 0

0 0 0 0.5 ' 0 0(1) (1 2 ')

0 0 0 0 0.5 ' 0

0 0 0 0 0 0.5 '

e E
D

ν ν ν

ν ν ν

ν ν ν

νν ν
ν

ν

′ ′− 
 ′ ′− 

′ ′ −′
=  ′ −+ −  

 −
 

− 
 (B6)

where E′ is the effective young’s modulus and ν ′ is the effective Poisson’s

ratio. The strain vector is related to the displacement vector in terms of:

u e

B uε = (B7)

where },,,,,,{ 111 zkykxkzyxe uuuuuuu K= is the vector of nodal displacement

for a k − node solid element and
u

B is the strain-displacement matrix, given

by
u

B = uN∇
~

. The displacement shape function matrix
u

N , and its derivatives

are given by:

1 2

1 2

1 2 3 3

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

k

u k

k k

N N N

N N N N

N N N
×

 
 =  
  

L

L

L

 (B8)

 262

1 2

1 2

1 2

1 1 2 2

1 1 2 2

1 1 2 2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 0

0 0 0

k

k

k

u

k k

k k

k k

NN N

x x x

NN N

y y y

NN N

z z z
B

N NN N N N

y x y x y x

N NN N N N

z y z y z y

N NN N N N

z x z x z x

∂∂ ∂ 
 ∂ ∂ ∂
 

∂∂ ∂ 
 ∂ ∂ ∂
 

∂∂ ∂ 
 ∂ ∂ ∂ =
 ∂ ∂∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂
 ∂ ∂∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂
 ∂ ∂∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ 

L

L

L

L

L

L

6 3k×









 (B9)

Another relation between velocity (or flux) and pore water pressure is given

by the continuity equation. Physically, this means that the volume of fluid

flowing in or out is equal to the volume of change of the soil mass (if no

sources or sinks are considered).

 0
yx vz

qq q

x y z t

ε∂∂ ∂∂
+ + + =

∂ ∂ ∂ ∂
 (B10)

where T

v x y z mε ε ε ε ε= + + = is the volumetric strain. Equation (B10) can be

expressed in compact form as:

 0Tdiv q m ε+ =& (B11)

Here { }, ,
x y z

q q q q= is the vector of volumetric flow rates per unit area into

and out of the element. These components in coordinate directions can be

determined by Darcy’s law:

 263

0 0
1

0 0

0 0

wx

x x

y y wy

w

z z

wz

p
b

xq k
p

q k b
y

q k
p

b
z

γ

 ∂
− ∂    

∂    = −     ∂         ∂
− 

∂ 

 (B12)

Or, in a compact form:

[] ()w

w

k
q p b

γ
= ∇ − (B13)

where []k is the permeability matrix,
w

γ unit weight of pore water pressure,

taken as 10 kN/m
3
 in this study, and T

wzwywxw bbbb },,{= . Combining

Equations (B11) and (B13):

[] () 0T

w

w

k
div p b m ε

γ

 
∇ − + = 

 
& (B14)

Equations (B4) and (B14) constitute the Biot’s consolidation equations.

To carry out the finite element analysis of Biot’s consolidation

problem, it is required to discretize the consolidation equations in space

domain and time domain, respectively. Usually weighted residual Galerkin

method is adopted for the discretization of space domain. After spatial

discretization and applying weighting residual method, we would obtain the

global coupled equation as:

0=−

=+
exT

ex

HpuB

fBpKu

&
 (B15)

where,

 264

()
()

∑

∑ ∫

∑ ∫

∑ ∫

=









=

=

=

e

e

e
V

p

w

T

p

e
V

p

T

p

e
V

u

eT

u

ff

dVN
k

BH

dVNmBB

dVBDBK

γ
][

 (B16)

K and H are solid and fluid stiffness matrices, respectively, and B is the

connection matrix. The vectors u and exp are displacement and excess pore

water pressure, respectively, and f is the current magnitude of load. When

nonlinear elasto-plastic soil behavior is considered, the stress-strain relation is

determined by the ealsto-plastic stress-strain matrix epD .

Using finite difference scheme in time domain, we would obtain the

incremental formulation of Biot’s consolidation equation as:

T ex ex

K B u f

B tH p tHpθ

∆ ∆     
=    − ∆ ∆ ∆     

 (B17)

where θ is a time integrating parameter. The choice of 1 2θ = leads to the

Crank-Nicolson approximation method, however, oscillatory results may be

incurred by this approximation, and thus, the fully implicit method by

choosing 1θ = is often used (e.g. Smith and Griffiths, 1997). For

consolidation analysis, Equation (B17) needs to be solved for each time step

t∆ . This symmetric indefinite linear system (B17) can be written in general

form as:







 ∆

=








∆

∆









− exexT
Cp

f

p

u

CB

BK
 (B18)

In compact form,

 Ax b= (B19)

 265

Here, N N
A

×∈ℜ is a sparse 2×2 block symmetric indefinite matrix, nd nd
K

×∈ℜ

is soil stiffness matrix (symmetric positive definite), np np
C tHθ ×= ∆ ∈ℜ is

fluid stiffness matrix (symmetric positive semi-definite), and nd np
B

×∈ℜ is the

displacement-pore pressure coupling matrix. When employing the Sylvesters’s

inertia theorem, the congruence transform is:

1

1

0 0

0 0
T T

K B I K I K B
A

B C B K I S I

−

−

      
= =       − −       

 (B20)

indicates the indefiniteness because A has nd positive eigenvalues and np

negative eigenvalues (e.g. Wathen and Silvester, 1993).

 1T
S C B K B

−= + (B21)

is called Schur complement matrix. For a detailed derivation, the reader is

referred to Smith and Griffiths (1997), Lewis and Schrefler (1998), Chen

(2005).

 266

(blank)

 267

APPENDIX C

ALGORITHMS

C.1. SSOR-PCG

This algorithm describes SSOR (1.0)ω = preconditioned PCG algorithm

(Meurant, 1999) for the symmetric positive definite linear system Ax b= with

Eisenstat trick (Eisenstat, 1981).

Start: Choose an initial guess 0x n∈ℜ , then set 0 0z =

Compute 1

0 0 0 0 0() , ,A A Ar L D b s D r p s
−= + = =

Do End

DoFor

kkkk

kkkkk

k

T

AAk

kAk

kkkk

kkkk

kkkkk

kk

psp

srsr

zLDxx

rDs

tαrr

pαzz

ptsrα

pAt

ittok

111

111

1

1

01

11

1

1

),(),(

Else

loop DoExit

)(Set

converged, if e,convergencfor Check

),(),(

PMatvec) Procedureby out carried(
~

max_0

+++

+++

+
−

+

++

+

+

+=

=

++=

=

−=

+=

=

=

=

β

β

 268

Procedure PMatvec：

hft

gpLDh

fDg

pLDf

k

kAA

A

k

T

AA

+=

−+=

=

+=

−

−

.4

)()(.3

.2

)(.1

1

1

C.2. SBD2-PCG

PCG algorithm (Meurant, 1999) for the symmetric positive definite linear

system Ku f= by [P , SSOR ()G] block diagonal preconditioner using

Eisenstat trick (Eisenstat, 1981) for block (2,2), see also (Chen et al., 2007).

Start: Choose an initial guess 0u N∈ℜ , then set 0 0z =

Compute 1

0 0 01/2 1

2

,
()

T

P

G G G

R f
s p s

D L D f

−

−

 
= = 

+ 
% %

Do End

DoFor

kkkk

kkkkk

kG

T

GG

kP

k

kkkk

kkkk

kkkkk

kk

psp

ssss

zDLD

zR
uu

tαss

pαzz

ptssα

pKt

ittok

111

111

1

2/11

1

1

01

1

1

),(),(

Else

loop DoExit

~
)

~
(

Set

converged, if e,convergencfor Check

),(),(

PMatvec) Procedureby out carried(
~

max_0

+++

+++

+
−

+
−

+

+

+

+=

=









+
+=

−=

+=

=

=

=

β

β

 269

 Procedure PMatvec [t Kp= % → 1 2 1 2(;) (;)t t K p p= %].

1. 1()T

G Gf L D w
−= + % where 1/2

2G
w D p= %

2. 1 (*)T

P
q R L f

−=

3. 1 1 1t p q= +

4. 1

2 2()T

P
q L R p

−=

5. (2*)*
G G

g D D f w= − +%

6. 1

2() ()
G G

y L D q g
−= + +%

7. 1/2

2 ()
G

t D y f= +%

C.3. M3-SQMR

The coefficient matrix in 3×3 block form (5.4) is:

1

2

1 2

T

T T

P L B

A L G B

B B C

 
 =  
 − 

,

and the block diagonal preconditioner is:

















=

)ˆ(00

0)(SSOR0

00

1

3

Sdiag

G

P

M

α

Let,

















+

































+= −

np

G

T

G

P

G

m

np

GG

T

P

I

DL

R

Sdiag

D

I

I

DL

R

M

00

0)
~

(0

00

)ˆ(00

0
~

0

00

00

0)
~

(0

00

1

1

3

α

 T

AAA LDLM
1

3

−=

where,

T

P PP R R= is Cholesky factorization of block P ,

)
~

(
~

)
~

(1

G

T

GGGG DLDDLG ++= is SSOR factorization of block G , and

1 1

1 1 1 2 2
ˆ { ()} { ()}T T
S C B diag P B B diag G B

− −= + + is an approximate Schur

complement.

 270

GL and GD are the strictly lower and diagonal parts of G , ωGG DD =
~

, ω is

relaxation parameter (taken as 1 in this study), α is a real parameter (taken as -

4 in this study).

Start: Choose an initial guess 0

N
x ∈ℜ , then set 0 0 N

z = ∈ℜ

Compute 0 0r b Ax= −

















+== −

−

−

03

02

1

01

0

1

0)
~

(

r

rDL

rR

rLs GG

T

P

A , 0 0v s= ,

{ } 















==
−

03

1

1

02

01

00

)ˆ(

~

vSdiag

vD

v

vDw GA

α

Compute 0 0 0

T
s sτ = , and 0 0 0

T
s wρ =

set 0 0 N
d = ∈ℜ , and 0 0ϑ = ∈ℜ

()

{ }

{ }

{ }
Do End

DoFor

















==+=

==
















==

















+=+=

+=

+=

=
+

==

−==

==

=

=

−
−

−−

−

−

−

−

−

−−−−

−
−

−−−
−

−
−

−−−−

−−

k

kG

k

kAkkkkk

k

k
kk

T

kk

k

kG

k

kAk

k

kGG

T

G

kP

kA

T

Ak

kkk

kkkkkk

kkkk

k

k

k

j

T

k

k

kkkk

k

k
k

kk

T

kk

kk

vSdiag

vD

v

vDwvsv

qs

sSdiag

sD

s

sDq

zSdiag

zDDL

zR

zDLxx

dzz

vdcd

cc
ss

tss

tw

vAt

ittok

3

1

1

2

1

1

1

3

1

1

2

1

3

1

1

2

1

1

1

0

1

1111

1

1

111

1

1
1

1111

11

)ˆ(

~
and

,,

)ˆ(

~

Compute

loop DoExit

)ˆ(

~
)

~
(

 thenconverged, if e,convergencCheck

Set

,
1

1
,

Compute

and

STOPthen ,0 if,

)PMatvec Procedure(
~

Compute

max_1

α

β

ρ
ρ

βρ

α

α

αϑ

ϑττ
ϑτ

ϑ

α
σ
ρ

α

σσ

 271

PMatvec (Preconditioned matrix-vector multiplication AvMt
1

3

−=)

i.e. [] []321321 ;;
~

;; vvvAttt =

where,

{ }
{ }

{ } 

















−+

++++

+

=
−−−

−−−−−−

−−−−

1

1

1

2

1

1

1

12

11111

1

11

1

)ˆ(
~

)
~

(

)ˆ()
~

(
~

)
~

()
~

()
~

(

)ˆ(
~

)
~

(
~

SdiagCDDLBRB

SdiagBDLDDLGDLRLDL

SdiagBRDDLLRI

A

GG

T

G

T

P

T

GGGG

T

GGGP

T

GG

T

PGG

T

G

T

Pm

α

α

α

 The algorithm is:

1. 1

3 1 3
ˆ{ ()}w diag S vα −= ; 3 1 3f B w=

2. 22

~
vDw G= ; 2

1

2)
~

(wDLf G

T

G

−+=

3. 1 2 3*f L f f= + ; 1 1

T

Pq R f
−=

4. 1 1 1t v q= +

5. 3 2 3*g B w=

6. 222 *)
~

*2(wfDDg GG +−=

7. 1

1 1Pu R v
−= ; 1 1*T

g L u=

8. 2 1 2 3q g g g= + +

9. 2

1

2)
~

(qDLh GG

−+=

10. 2 2 2t f h= +

11. 1 1 1

T
y B u=

12. 2 2 2

T
y B f=

13. 3 1 2 3t y y Cw= + −

 272

(blank)

 273

APPENDIX D

1D FINITE ELEMENT DISCRETIZATION OF

OEDOMETER TEST SET UP

The dots and numbers besides them are finite element nodes and node

numbers, F is the applied load, l is the element size,
ps

E′ and
s

E′ are the

effective Young’s moduli of porous stone and soil, respectively.

Finite element model of the entire problem is obtained by assembling

the element equations and applying the boundary condition, which yields after

reordering the variables:

1

2

3

4

F
Porous stone, psE′

Soil, sE ′

l
l

x

y
z

εy = εz = 0

εx ≠ 0

εx = εy = εz = 0

5

6

 274



























=

















































−−

−−

−+

−+−

−

0

0

0

0

200

200

000

00

000

4

3

5

2

1 F

u

u

u

u

u

DDD

DDD

DDD

DDDD

DD

l

a

sss

sss

ssps

sspsps

psps

 (D1)

where a is the cross-sectional area of the element, psD and sD are constrained

modulus of porous stone and soil elements. Assuming a unit length of element

with unit cross-sectional area, the various submatrices can be written as:

















+

+−

−

=

χ
χ

100

011

011

psDP , 








−

−
=

21

12
sDG , and

















−

−=

10

01

00

sDL (D2)

in which χ = pss DD ()
pss EE ′′≅ . Let RP and RG be Cholesky factors of P and

G, respectively. Then, RP and RG are now computed as:

















+

−

=

χ
χ

100

00

011

psP DR (D3)

















 −
=

2

3
0

2

1
2

sG DR . (D4)

Now, it can easily be shown that

























+
−

−−== −−

χ
χ

13

2
0

6

1

2

1

00

~ 1

G

T

P LRRL (D5)

 275

APPENDIX E

SOURCE CODES IN FORTRAN 90

These programs are extensions of programs in the book “Programming the

finite element method” by Smith and Griffiths (1997) for 3D analysis using

sparse iterative methods. Hence, the modules ‘new_library’ and

‘geometry_lib’ are taken from the above book. Module ‘spchol’ contains the

sparse Cholesky factorization routines authored by Ng and Peyton (1993).

Module ‘sparselib_v3’ is an extension of the sparse_lib package

(http://www.eng.nus.edu.sg/civil/people/cvepkk/sparse_lib.html) [see also

Chen (2005)] developed at National University of Singapore. The above

mentioned webpage also provides a user manual on how to use this sparse_lib

package with finite element package. Hence, only some new additions to the

sparse_lib package that are more relevant to this thesis are provided in this

Section.

E.1. Main program for SBD1-PCG

!---

program sbd1pcgmain

!---

! Soil-strcuture interaction analysis with drained parameters

!---

! Program for 3-D pile group analysis using 20-node solid

! brick elements

! PCG solver is used for solving the linear system Ax = b

! in each time step

! A = [P L ; L' G]

 276

! ==> P : Pile Block, G = Geo Block, and L = Link matrix

! Block diagonal preconditioner

! M^(-1) = [P^(-1) 0;

! 0 (diag(G))^-1]

!---

 use new_library ; use geometry_lib; use sparselib_v3;

 use dfport ; use spchol ;

 implicit none

 integer:: i,j,k,l,nn,nels,nxe,nye,nze,nip,nodof=3,nod=20, &

 nst=6,ndim=3,ndof,iel,ns,nstep,inc,loaded_nodes, &

 neq,nband,nmesh,ebeanz,maxit,iters,isolver,icho, &

 ipre,icc,iinc,uanz,np_types,npiles,nels_pile, &

 gneq,pneq,ir,k1,k2,pnz,gnz,llnz,anz,nonzp,ierr, &

 punz,gunz,iwsiz,nsub,iflag,nnzl,nsuper,nnzlmax, &

 tmpsiz,tmpmax,cachsz,level,nxr,nyr,nzr,neltp, &

 nelbp,soil_id=1,pile_id=2,raft_id=2,snsoil, &

 snpile,snraft,nxlmsh,nylmsh,nr

 real(8)::e,v,det,dtim,theta,ttime,loadl,equpval,tol,coef, &

 omega,resi,ot1,ot2,it1,it2,tt1,tt2,tim1,tim2,tim3, &

 xlen,ylen

 logical:: converged

 character (len=15):: element = 'hexahedron'

!------------------------ dynamic arrays----------------------

 real(8),allocatable :: prop(:,:),dee(:,:,:), points(:,:), &

 coord(:,:),jac(:,:),der(:,:),deriv(:,:),weights(:), &

 bee(:,:),km(:,:),eld(:),sigma(:), g_coord(:,:), &

 fun(:),widthx(:), widthy(:),depth(:),load_val(:), &

 loads(:), ans(:),ebea(:),csrp(:),diagg(:),piv(:), &

 tmpvec(:),lnz(:),tmpv(:)

 integer,allocatable:: nf(:,:), g(:), num(:), g_num(:,:), &

 g_g(:,:),id(:),nodnum(:),iebe(:),jebe(:),etype(:), &

 pile_rc(:,:),iblkord(:),iblkordrev(:),icsrp(:), &

 jcsrp(:),adj_row(:),adj(:),perm(:),perm_inv(:), &

 xadj2(:), adjncy2(:),colcnt(:),snode(:),xsuper(:), &

 iwork(:),xlindx(:), lindx(:),xlnz(:),split(:)

!----------------------- input and initialization ------------

 open (10,file='p3dpile.dat',status= 'old',action='read')

 open (11,file='p3dpile.res',status='replace',action='write')

 open (12,file='surface.res',status='replace',action='write')

 open (13,file='relres.res',status='replace',action='write')

 write(*,*)" Iterative Solution Method for pile-group "

 write(11,*)" Iterative Solution Method for pile-group "

 write(*,*)" The program is running, please wait..... "

 call timestamp ()

 read (10,*) nxe,nye,nze,nip,dtim,nstep,theta,maxit,tol

 ! Input of raft and pile details

 read(10,*) nxr,nyr,nzr,npiles,nelbp ; neltp = nzr + 1

 ! if bottom element of pile < top element

 if (nelbp < neltp)then

 write(*,*)'There is No pile element'

 neltp = 0; nelbp = 0; ! stop

 end if

 ! nxr,nyr,nzr = no. of raft elements

 ! in x-, y-, and z-directions

 277

 ! npiles = the number of piles.

 ! neltp = no. of top element of pile (in z-direction)

 ! nelbp = no. of bottom element of pile (in z-direction)

 ! np_types = the number of material types (zones)

 np_types = 3 ! iel = 1-Soil, 2-pile, and 3-raft materials

 ndof=nod*nodof; call msh_info(nxe,nye,nze,nels,nn)

 write(11,'(a,i16)')' Number of elements = ',nels

 write(11,'(a,i16)')' Number of nodes = ',nn

 allocate (prop(2,np_types),etype(nels), &

 dee(nst,nst,np_types),points(nip,ndim), &

 coord(nod,ndim),jac(ndim,ndim),der(ndim,nod), &

 bee(nst,ndof),deriv(ndim,nod),km(ndof,ndof), &

 eld(ndof),sigma(nst),g_g(ndof,nels),fun(nod), &

 nf(nodof,nn),g(ndof),g_coord(ndim,nn),num(nod), &

 weights(nip),g_num(nod,nels),widthx(nxe+1), &

 widthy(nye+1),depth(nze+1),pile_rc(npiles,4))

 read(10,*)(prop(:, i), i=1,np_types)

 ! prop(1,i) = Effective Young's modulus (E')

 ! prop(2,i) = Poisson's ratio (v')

 read(10,*)(pile_rc(i,:), i = 1, npiles) ;

 etype = 1 ! initial set for soil elements

 call form_idpile(nxe,nze,npiles,pile_rc,neltp,nelbp,etype, &

 pile_id)

 call form_idraft(nxe,nye,nxr,nyr,nzr,etype,raft_id)

 read (10,*) widthx, widthy, depth

 call nfinfo_drained(nxe,nye,nze,nf,neq)

 ! do i=1,nn; write(14,*) i, nf(:,i); end do

 !--

 do i=1, np_types;

 call deemat(dee(:,:,i),prop(1,i),prop(2,i)) ; end do

 call sample(element,points,weights)

 allocate(id(1:neq)) ;

 id(:) = 1 ! initial set for soil elements.

! id(:) = 1 --> soil DOFs

! id(:) = 2 --> pile DOFs

! id(:) = 2 --> pile DOFs(pile_id)

! id(:) = 3 --> raft DOFs(raft_id)

! id(:) = 0 --> pore pressure DOFs

!------------- loop the elements to set up global arrays-------

 call cpu_time (tt1)

 elements_1: do iel = 1, nels

 call geometry_20bxz(iel,nxe,nze,widthx,widthy,depth, &

 coord,num)

 inc=0 ;

 do i=1,20;

 do k=1,3; inc=inc+1;g(inc)=nf(k,num(i));end do;end do

 ! ---

 do i=1, inc;

 if (g(i)/=0) then

 if (etype(iel) == pile_id) then ;

 id(g(i)) = pile_id ;

 elseif (etype(iel) == raft_id) then ;

 id(g(i)) = raft_id ;

 end if

 end if

 end do

 ! ---

 g_num(:,iel)=num;g_coord(:,num)=transpose(coord);

 g_g(:,iel)= g

 278

 if(nband<bandwidth(g))nband=bandwidth(g) ;

 end do elements_1

 write(11,'(a)') "Global coordinates "

 do k=1,nn;

 write(11,'(a,i7,a,3e12.4)')"Node",k," ",g_coord(:,k);

 end do

 write(11,'(a)') "Global node numbers "

 do k = 1 , nels;

 write(11,'(a,i6,a,20i7)') "Element ",k," ",g_num(:,k);

 end do

 ! do k = 1 , nels;

 ! write(14,'(a,i6,a,60i7)') "Element ",k," ",g_g(:,k);

 ! end do

 write(11,'(2(a,i8))') &

 "There are ",neq, &

 " equations and the half-bandwidth is ",nband

!---

 snpile = 0; snraft = 0;

 do i = 1,neq;

 if (id(i) == pile_id) then ;

 snpile = snpile + 1;

 else if (id(i) == raft_id) then;

 snraft = snraft + 1;

 end if

 end do

 snsoil = neq - snpile - snraft

 write(*,'(a)') ' '

 write(*,'(2(a,i12))') ' Pile DOFs = ',snpile, &

 ' Raft DOFs = ',snraft

 write(11,'(2(a,i12))') ' Pile DOFs = ',snpile, &

 ' Raft DOFs = ',snraft

 write(*,'(2(a,i12))') ' Soil DOFs = ',snsoil, &

 ' Total DOFs = ',neq ;

 write(11,'(2(a,i12))') ' Soil DOFs = ',snsoil, &

 ' Total DOFs = ',neq ;

 allocate(iblkordrev(neq),iblkord(neq))

 call form_3bord(neq,snpile,snraft,pile_id,raft_id,1,id, &

 iblkordrev,iblkord)

 !--

 ! xlen,ylen = length and breadh (m) of the loaded area

 !(x- and y-direction)

 ! nxlmsh,nylmsh = no. of loaded elements in x & y directions

 ! equpval = applied load in MPa

 read(10,*) xlen,ylen,nxlmsh,nylmsh,equpval

 ! the no. of loaded nodes

 loaded_nodes =(nxlmsh*2+1)*(nylmsh+1)+(nxlmsh+1)*nylmsh

 allocate(nodnum(loaded_nodes),load_val(loaded_nodes))

 call load_raft(nxe,nye,nze,nels,nn,xlen,ylen,nxlmsh,nylmsh, &

 equpval,loaded_nodes,nodnum,load_val)

 !--

 ebeanz = int(ndof*(ndof+1)/2)*nels

 write(*,'(a)') ' '

 write(*,'(a)') &

 ' Estimated ebeanz for element stiffness integration'

 write(*,'(a,i16)') ' and assembly ',ebeanz

 write(11,'(a)') ' '

 write(11,'(a)') &

 ' Estimated ebeanz for element stiffness integration'

 write(11,'(a,i16)') ' and assembly ',ebeanz

 279

 allocate(iebe(ebeanz),jebe(ebeanz), ebea(ebeanz))

!------------- element stiffness integration and assembly ----

 ebeanz=0 ! used for counting the true number

 call cpu_time (ot1) ;

 elements_2: do iel = 1 , nels

 num = g_num(: , iel); coord=transpose(g_coord(:,num))

 g = g_g(: , iel) ;

 km = .0 ;

 gauss_points_1: do i = 1 , nip

 call shape_der(der,points,i); jac = matmul(der,coord)

 det = determinant(jac); call invert(jac);

 deriv = matmul(jac,der); call beemat(bee,deriv);

 km = km + &

 matmul(matmul(transpose(bee),dee(:,:,etype(iel))),bee) &

 det weights(i)

 end do gauss_points_1

!---collect nonzero entries from element stiffness matrices---

 ! This fmelspar subroutine is for 2 x 2 block ordering

 call

fmelspar(ndof,g,km,iblkord,iebe,jebe,ebea,ebeanz)

 end do elements_2

!---

 write(*,'(a)') ' '

 write(*,'(a,i16)') &

 ' Returned true ebeanz after element assembly',ebeanz

 write(11,'(a)') ' '

 write(11,'(a,i16)') &

 ' Returned true ebeanz after element assembly',ebeanz

 call sortadd(ebeanz,jebe(1:ebeanz),iebe(1:ebeanz), &

 ebea(1:ebeanz),neq+1,uanz)

 write(11,*)'*** '

 write(11,*)'-- The returned true storage for CSC Upper A: --'

 write(11,'(a,i9)') ' NNZ of CSC Upper A =', uanz

 pneq = snpile + snraft ; gneq = snsoil ;

!--------building the block diagonal preconditioner-----------

 write(*,'(a)') " Block diagonal preconditioner P3G1"

 write(11,'(a)') " Block diagonal preconditioner P3G1"

 write(*,'(a)') &

 " MMD-Chol factorization of block(1,1) and Diagonal &

 & of block(2,2)"

 write(11,'(a)') &

 " MMD-Chol factorization of block(1,1) and Diagonal &

 & of block(2,2)"

 !-----Sparse Cholesky factorization on Blk(1,1)--------------

 call cpu_time (tim1)

 call countnzblk11 (pneq,neq,jebe(1:neq+1),iebe(1:uanz), &

 ebea(1:uanz),pnz)

 allocate (icsrp(pneq+1),jcsrp(pnz),csrp(pnz))

 call formblk11 (pneq,neq,jebe(1:neq+1),iebe(1:uanz), &

 ebea(1:uanz),icsrp,jcsrp,csrp,pnz)

 write(*,'(a)') ' '

 write(*,'(a,i16)') &

 ' Returned ture nnz for block(1,1) i.e. Pile =', pnz

 write(11,'(a,i16)') &

 ' Returned ture nnz for block(1,1) i.e. Pile =', pnz

 punz = int((pnz+pneq)/2)

 280

 allocate (perm(pneq),perm_inv(pneq),colcnt(pneq), &

 snode(pneq),xsuper(pneq+1))

 write (*, '(a)')' '

 write (*, '(a)') &

 'the Multiple Minimal Degree (MMD) algorithm is used for'

 write (*, '(a)')'ordering the coefficient matrix.'

 ! No. of adjacency entries excluding diagonal entries

 nonzp = pnz-pneq

 allocate (adj_row(pneq+1),adj(nonzp))

 call form_adjacency (pneq,icsrp(1:pneq+1),jcsrp(1:pnz), &

 adj_row,adj)

 iwsiz=7 * pneq + 3

 allocate (xadj2(pneq+1), adjncy2(nonzp),iwork(iwsiz))

 ! Save another copy (xadj2,adjncy2) because the

 ! (xadj,adjncy) structure is destroyed by the minimum

 ! degree ordering routine ordmmd.

 xadj2 = adj_row

 adjncy2 = adj

 !--

 iwsiz=4 * pneq

 call ordmmd (pneq, xadj2, adjncy2, perm_inv, perm, iwsiz, &

 iwork ,nsub,iflag)

 if(iflag==-1)then

 write(*,'(a)') &

 'Insufficient Working Storage,IWORK(:), when executing &

 & ORDMMD...'

 stop

 end if

 deallocate (xadj2, adjncy2)

 !--------Cholesky factorization

 iwsiz=7 * pneq + 3

 call sfinit (pneq, nonzp, adj_row, adj, perm, perm_inv, &

 colcnt, nnzl,nsub, nsuper, snode, xsuper, &

 iwsiz ,iwork , iflag)

 if(iflag==-1)then

 write(*,'(a)') 'ERROR: Insufficient Working &

 & Storage,IWORK(:),when executing SFINIT '

 stop

 end if

 !------------------

 allocate(xlindx(nsuper+1),lindx(nsub), xlnz(pneq+1), &

 split(pneq))

 iwsiz = nsuper + 2 * pneq + 1

 call symfct (pneq, nonzp, adj_row, adj, perm , perm_inv, &

 colcnt, nsuper,xsuper,snode ,nsub, xlindx, &

 lindx , xlnz , iwsiz ,iwork ,iflag)

 if(iflag==-1)then

 write(*,'(a)') &

 'ERROR: Insufficient Working Storage,IWORK(:), &

 & when executing SYMFCT... '

 stop

 elseif(iflag==-2) then

 write(*,'(a)') &

 281

 'ERROR: Inconsistancy in The Input when executing &

 & SYMFCT... '

 stop

 end if

 deallocate (adj_row, adj, colcnt)

 !------------------

 iwsiz = pneq

 ! write(*,'(a)') 'Attention: If program break down &

 ! & here,pls considerto increase-nnzlmax

'

 allocate (lnz(nnzl))

 write(*,'(a,i9)') 'No. of nonzeros of Cholesky factor &

 & of block P, NNZL =',nnzl

 write(11,'(a,i9)') 'No. of nonzeros of Cholesky factor &

 & of block P, NNZL =',nnzl

 call inpnv (pneq, icsrp(1:pneq+1),jcsrp(1:pnz), &

 csrp(1:pnz), perm,perm_inv, nsuper, xsuper, &

 xlindx, lindx,xlnz, lnz, iwork)

 deallocate (icsrp,jcsrp, csrp)

 !------------------

 ! bfinit: Initialization for block factorization

 cachsz = 16

 !size of the cache (in kilobytes) on the target

machine

 call bfinit(pneq, nsuper, xsuper, snode, xlindx, lindx, &

 cachsz, tmpsiz,split)

 ! if (tmpsiz > tmpmax) then

 ! write(*,'(a)') 'ERROR: tmpsiz > tmpmax when calling &

 ! & symfct; pls increase tmpmax '

 ! write(*,'(2(a,i16))') &

 ! 'tmpsiz=', tmpsiz , '; tmpmax=', tmpmax

 ! stop

 ! endif

 !------------------

 ! blkfct: Numerical factorization

 iwsiz = 2 * pneq + 2 * nsuper

 level = 4

 ! level of loop unrolling while performing numerical

 ! factorization

 allocate (tmpvec(tmpsiz))

 if (level .eq. 1) then

 call blkfct(pneq, nsuper, xsuper, snode, split, &

 xlindx, lindx, xlnz,lnz, iwsiz, iwork, &

 tmpsiz, tmpvec, iflag , mmpy1, smxpy1)

 elseif (level .eq. 2) then

 call blkfct(pneq, nsuper, xsuper, snode, split, &

 xlindx, lindx, xlnz, lnz, iwsiz, iwork,&

 tmpsiz, tmpvec, iflag , mmpy2, smxpy2)

 elseif (level .eq. 4) then

 call blkfct(pneq, nsuper, xsuper, snode, split, &

 xlindx, lindx, xlnz,lnz, iwsiz, iwork, &

 tmpsiz, tmpvec, iflag , mmpy4, smxpy4)

 elseif (level .eq. 8) then

 call blkfct(pneq, nsuper, xsuper, snode, split, &

 xlindx, lindx, xlnz, lnz, iwsiz, iwork,&

 tmpsiz, tmpvec, iflag , mmpy8, smxpy8)

 282

 endif

 if(iflag==-1)then

 write(*,'(a)') 'ERROR: Nonpositive Diagonal &

 & Encountered, when executing BLKFCT... '

 stop

 elseif(iflag==-2) then

 write(*,'(a)') 'Insufficient Working Storage, &

 & TEMP(:), when executing BLKFCT... '

 stop

 elseif(iflag==-3) then

 write(*,'(a)') 'ERROR: Insufficient Working &

 & Storage,IWORK(:), when executing BLKFCT... '

 stop

 end if

 deallocate (snode, split, iwork, tmpvec)

 !------------------

 call cpu_time (tim2)

 !-----Diagonal on Blk(2,2)---------------------------

 allocate (diagg(gneq))

 do j = pneq+1,neq

 ir=jebe(j+1)-1 ; diagg(j-pneq) = ebea(ir);

 end do

 diagg(1:gneq) = 1./diagg(1:gneq) ;

 ! inverted diagonals form for preconditioning

 !----------------------------

 call cpu_time (tim3)

 call cpu_time (ot2) ; ot2=ot2-ot1

! --------------------- enter the time-stepping loop----------

 allocate(loads(0:neq), ans(0:neq))

 ttime = .0; loads = .0

 time_steps: do ns = 1 , nstep

 write(*, '(a, i5,a)') &

 ' Current Time Step is No.', ns , ' Step. '

 write(11,*)'**'

 ttime = ttime+dtim;

 write(11,'(a,e12.4)')"The current time is",ttime

 ans=.0;

! ----------------------- Apply Constant Loading -------------

 ! the Load is applied at the first step.

 if(ns == 1) then

 do i=1,loaded_nodes

 ans(nf(3,nodnum(i))) = - load_val(i)

 end do

 end if

! Permute the rhs (or load vector) according to block ordering

 call dvperm(neq,ans(1:),iblkord)

!----------------- Preconditioned Iterative Solver -----------

 call cpu_time (it1)

 call sbd1pcg(neq,jebe(1:neq+1),iebe(1:uanz),ebea(1:uanz),&

 diagg,nsuper,xsuper,xlindx,lindx,xlnz,lnz, &

 perm,perm_inv,ans(1:),maxit,tol,iters,resi) ;

 ans(0) = 0.0

 call cpu_time (it2) ; it2=it2-it1

 283

! obtain the original(natural) solution from block ordering

 call perm_rv (neq, ans(1:), iblkordrev)

 loads(1:neq) = loads(1:neq) + ans(1:neq)

 write(11,'(a)') " The nodal displacements are :"

 do k=1,5; write(11,'(i7,a,3e13.5)') &

 k," ",loads(nf(:,k)) ; end do

 do k=1,nn; write(25,'(i7,a,3e13.5)') &

 k," ",loads(nf(:,k)) ; end do

 ! ------------

 ! nodplane = (2*nx+1)*(nz+1)+(nx+1)*nz;

 ! node number for each x-z plane

 ! nodbetwplane = (nx+1)*(nz+1) ;

 ! node number between two x-z planes

 ! To get the surface settlement of the footing

 do i=1, nye+1

 do j = 1, nxe+1

 k = ((2*nxe+1)*(nze+1)+(nxe+1)*nze+(nxe+1)*(nze+1)) &

 *(i-1)+2*j -1

 write(12,'(2f10.2,e20.8)') widthx(j),widthy(i), &

 loads(nf(3,k));

 end do

 end do

!-------------------recover stresses at Gauss-points---------

 elements_5 : do iel = 1 , nels

 num = g_num(:,iel); coord=transpose(g_coord(:,num))

 g = g_g(: , iel); eld = loads(g (1 : ndof))

 ! print*,"The Gauss Point effective stresses for &

 ! & element",iel,"are"

 gauss_points_2: do i = 1,nip

 call shape_der (der,points,i); jac= matmul(der,coord)

 call invert (jac); deriv= matmul(jac,der)

 bee= 0.;call beemat(bee,deriv);

 sigma= matmul(dee(:,:,etype(iel)),matmul(bee,eld))

 ! print*,"Point ",i ;! print*,sigma

 end do gauss_points_2

 end do elements_5

 end do time_steps

 call cpu_time (tt2) ; tt2=tt2-tt1

 write(11,'(a,f10.2)') &

 " Operation time on blocks(1,1) is: ",tim2-tim1

 write(11,'(a,f10.2)') &

 " Operation time on blocks(2,2) is: ",tim3-tim2

 write(11,'(a,f10.2)') &

 " Overhead time is: ",ot2

 write(11,'(a,f10.2)') &

 "Iterative time (the last time step) is: ",it2

 write(11,'(a,f10.2,a)') &

 " Total runtime for the FEM program is ",tt2,"seconds."

 end program sbd1pcgmain

!---

Input file ‘p3dpile.dat’ of a small example in 7×7×7 mesh

7 7 7 27 1. 1 1. 10000 1.e-6

5 5 2 4 5

 284

5.0 0.3

205000.0 0.2

205000.0 0.2

1 1 1 1

4 5 1 1

1 1 4 5

4 5 4 5

.0 1.0 2.0 3.0 4.0 5.0 7.5 10.0

.0 1.0 2.0 3.0 4.0 5.0 7.5 10.0

.0 -1.0 -2.0 -3.0 -4.0 -5.0 -7.5 -10.0

5.0 5.0 5 5 0.1

E.2. Main program for SBD2-PCG

!---

program sbd2pcgmain

!---

! 3D Soil-structure analysis with drained parameters

!---

! Program for 3-D soil-structure analysis using 20-node

! solid brick elements

! PCG solver is used for solving the linear system Ax = b

! in each time step

! A = [P L ; L' G] ==> P : Pile Block, G = Geo Block,

! and L = Link matrix

! Block diagonal preconditioner

! M^(-1) = [P^(-1) 0;

! 0 ssor(G))^-1]

!---

 use new_library ; use geometry_lib; use sparselib_v3;

 use dfport ; use spchol ;

 implicit none

 integer:: i,j,k,l,nn,nels,nxe,nye,nze,nip,nodof=3,nod=20, &

 nst=6,ndim=3,ndof,iel,ns,nstep,inc,loaded_nodes, &

 neq,nband,nmesh,ebeanz,maxit,iters,isolver,icho, &

 ipre,icc,iinc,uanz,np_types,npiles,nels_pile, &

 gneq,pneq,ir,k1,k2,pnz,gnz,llnz,anz,nonzp,ierr, &

 punz,gunz,iwsiz,nsub,iflag,nnzl,nsuper,tmpsiz, &

 cachsz,level,nxr,nyr,nzr,neltp,nelbp,soil_id=1, &

 pile_id=2,raft_id=2,snsoil,snpile,snraft,nxlmsh, &

 nylmsh,nr

 real(8)::e,v,det,dtim,theta,ttime,loadl,equpval,tol,coef, &

 omega,resi,ot1,ot2,it1,it2,tt1,tt2,tim1,tim2,tim3, &

 xlen,ylen

 logical:: converged

 character (len=15):: element = 'hexahedron'

!------------------------ dynamic arrays----------------------

 real(8),allocatable :: prop(:,:),dee(:,:,:), points(:,:), &

 coord(:,:),jac(:,:),der(:,:),deriv(:,:),weights(:), &

 bee(:,:),km(:,:),eld(:),sigma(:), g_coord(:,:), &

 fun(:),widthx(:), widthy(:),depth(:),load_val(:), &

 loads(:), ans(:),ebea(:),csrp(:),csrg(:),csrug(:), &

 diagg(:),piv(:),tmpvec(:),lnz(:),tmpv(:)

 ! csca(:),

 integer,allocatable:: nf(:,:), g(:), num(:), g_num(:,:), &

 285

 g_g(:,:),id(:),nodnum(:),iebe(:),jebe(:),etype(:), &

 pile_rc(:,:),iblkord(:),iblkordrev(:),icsrp(:), &

 jcsrp(:),icsrg(:),jcsrg(:),adj_row(:),adj(:),perm(:),&

 perm_inv(:),icsru(:),jcsru(:),xadj2(:),adjncy2(:), &

 colcnt(:),snode(:),xsuper(:),iwork(:),xlindx(:), &

 lindx(:),xlnz(:),split(:)

 ! icsca(:),jcsca(:),

!----------------------- input and initialization ------------

 open (10,file='p3dpile.dat',status= 'old',action='read')

 open (11,file='p3dpile.res',status='replace',action='write')

 open (12,file='surface.res',status='replace',action='write')

 open (13,file='relres.res',status='replace',action='write')

 write(*,*)" Iterative Solution Method for pile-group "

 write(11,*)" Iterative Solution Method for pile-group "

 write(*,*)" The program is running, please wait..... "

 call timestamp ()

 read (10,*) nxe,nye,nze,nip,dtim,nstep,theta,maxit,tol

 ! Input of raft and pile details

 read(10,*) nxr,nyr,nzr,npiles,nelbp ; neltp = nzr + 1

 ! if bottom element of pile < top element

 if (nelbp < neltp)then

 write(*,*)'There is No pile element'

 neltp = 0; nelbp = 0; ! stop

 end if

 ! nxr,nyr,nzr = no. of raft elements in x-, y-,

 ! and z-directions

 ! npiles = the number of piles.

 ! neltp = no. of top element of pile (in z-direction)

 ! nelbp = no. of bottom element of pile (in z-direction)

 ! np_types = the number of material types (zones)

 np_types = 3 ! iel = 1-Soil, 2-pile, and 3-raft materials

 ndof=nod*nodof; call msh_info(nxe,nye,nze,nels,nn)

 write(11,'(a,i16)')' Number of elements = ',nels

 write(11,'(a,i16)')' Number of nodes = ',nn

 allocate (prop(2,np_types),etype(nels), &

 dee(nst,nst,np_types),points(nip,ndim), &

 coord(nod,ndim),jac(ndim,ndim),der(ndim,nod), &

 bee(nst,ndof),deriv(ndim,nod),km(ndof,ndof), &

 eld(ndof),sigma(nst),g_g(ndof,nels),fun(nod), &

 nf(nodof,nn),g(ndof),g_coord(ndim,nn),num(nod), &

 weights(nip), g_num(nod,nels),widthx(nxe+1), &

 widthy(nye+1),depth(nze+1),pile_rc(npiles,4))

 read(10,*)(prop(:, i), i=1,np_types)

 ! prop(1,i) = Effective Young's modulus (E')

 ! prop(2,i) = Poisson's ratio (v')

 read(10,*)(pile_rc(i,:), i = 1, npiles) ;

 etype = 1 ! initial set for soil elements

 call form_idpile(nxe,nze,npiles,pile_rc,neltp,nelbp,etype, &

 pile_id)

 call form_idraft(nxe,nye,nxr,nyr,nzr,etype,raft_id)

 read (10,*) widthx, widthy, depth

 call nfinfo_drained(nxe,nye,nze,nf,neq)

 ! do i=1,nn; write(14,*) i, nf(:,i); end do

 !--

 do i=1, np_types;

 call deemat(dee(:,:,i),prop(1,i),prop(2,i)) ; end do

 call sample(element,points,weights)

 286

 allocate(id(1:neq)) ;

 id(:) = 1 ! initial set for soil elements.

! id(:) = 1 --> soil DOFs

! id(:) = 2 --> pile DOFs

! id(:) = 2 --> pile DOFs(pile_id)

! id(:) = 3 --> raft DOFs(raft_id)

! id(:) = 0 --> pore pressure DOFs

!------------- loop the elements to set up global arrays------

 call cpu_time (tt1)

 elements_1: do iel = 1, nels

 call geometry_20bxz(iel,nxe,nze,widthx,widthy,depth, &

 coord,num)

 inc=0 ;

 do i=1,20;

 do k=1,3; inc=inc+1;g(inc)=nf(k,num(i));

 end do;

 end do

 ! ---

 do i=1, inc;

 if (g(i)/=0) then

 if (etype(iel) == pile_id) then ;

 id(g(i)) = pile_id ;

 elseif (etype(iel) == raft_id) then ;

 id(g(i)) = raft_id ;

 end if

 end if

 end do

 ! ---

 g_num(:,iel)=num;g_coord(:,num)=transpose(coord);

 g_g(:,iel)= g

 if(nband<bandwidth(g))nband=bandwidth(g) ;

 end do elements_1

 write(11,'(a)') "Global coordinates "

 do k=1,nn;

 write(11,'(a,i7,a,3e12.4)')"Node",k," ",g_coord(:,k);

 end do

 write(11,'(a)') "Global node numbers "

 do k = 1 , nels;

 write(11,'(a,i6,a,20i7)') "Element ",k," ",g_num(:,k);

 end do

 write(11,'(2(a,i8))') &

 "There are ",neq, &

 " equations and the half-bandwidth is ",nband

!---

 snpile = 0; snraft = 0;

 do i = 1,neq;

 if (id(i) == pile_id) then ;

 snpile = snpile + 1;

 else if (id(i) == raft_id) then;

 snraft = snraft + 1;

 end if

 end do

 snsoil = neq - snpile - snraft

 write(*,'(a)') ' '

 write(*,'(2(a,i12))') ' Pile DOFs = ',snpile, &

 ' Raft DOFs = ',snraft

 write(11,'(2(a,i12))') ' Pile DOFs = ',snpile, &

 ' Raft DOFs = ',snraft

 write(*,'(2(a,i12))') ' Soil DOFs = ',snsoil, &

 ' Total DOFs = ',neq ;

 287

 write(11,'(2(a,i12))') ' Soil DOFs = ',snsoil, &

 ' Total DOFs = ',neq ;

 allocate(iblkordrev(neq),iblkord(neq))

 call form_3bord(neq,snpile,snraft,pile_id,raft_id,1,id, &

 iblkordrev,iblkord)

 !--

 ! xlen,ylen = length and breadh (m) of the loaded area

 ! (x- and y-direction)

 ! nxlmsh,nylmsh = no. of loaded elements in

 ! x- and y-direction

 ! equpval = applied load in MPa

 read(10,*) xlen,ylen,nxlmsh,nylmsh,equpval

 ! the no. of loaded nodes

 loaded_nodes =(nxlmsh*2+1)*(nylmsh+1)+(nxlmsh+1)*nylmsh

 allocate(nodnum(loaded_nodes),load_val(loaded_nodes))

 call load_raft(nxe,nye,nze,nels,nn,xlen,ylen,nxlmsh,nylmsh, &

 equpval,loaded_nodes,nodnum,load_val)

 !--

 ebeanz = int(ndof*(ndof+1)/2)*nels

 write(*,'(a)') ' '

 write(*,'(a)') &

 ' Estimated ebeanz for element stiffness integration'

 write(*,'(a,i16)') ' and assembly ',ebeanz

 write(11,'(a)') ' '

 write(11,'(a)') &

 ' Estimated ebeanz for element stiffness integration'

 write(11,'(a,i16)') ' and assembly ',ebeanz

 allocate(iebe(ebeanz),jebe(ebeanz), ebea(ebeanz))

!------------- element stiffness integration and assembly ----

 ebeanz=0 ! used for counting the true number

 call cpu_time (ot1) ;

 elements_2: do iel = 1 , nels

 num = g_num(: , iel); coord=transpose(g_coord(:,num))

 g = g_g(: , iel) ;

 km = .0 ;

 gauss_points_1: do i = 1 , nip

 call shape_der(der,points,i); jac = matmul(der,coord)

 det = determinant(jac); call invert(jac);

 deriv = matmul(jac,der); call beemat(bee,deriv);

 km = km + &

 matmul(matmul(transpose(bee),dee(:,:,etype(iel))),bee) &

 det weights(i)

 end do gauss_points_1

!---collect nonzero entries from element stiffness matrices---

 ! This fmelspar subroutine is for 2 x 2 block ordering

 call

fmelspar(ndof,g,km,iblkord,iebe,jebe,ebea,ebeanz)

 end do elements_2

!---

 write(*,'(a)') ' '

 write(*,'(a,i16)') &

 ' Returned true ebeanz after element assembly',ebeanz

 write(11,'(a)') ' '

 write(11,'(a,i16)') &

 ' Returned true ebeanz after element assembly',ebeanz

 call sortadd(ebeanz,jebe(1:ebeanz),iebe(1:ebeanz), &

 ebea(1:ebeanz),neq+1,uanz)

 288

 ! allocate (jcsca(neq+1),icsca(uanz),csca(uanz))

 ! jcsca = jebe(1:neq+1) ; icsca = iebe (1:uanz) ;

 ! csca = ebea(1:uanz) ;

 ! deallocate (jebe,iebe,ebea)

 write(11,*)'** '

 write(11,*)'-The returned true storage for CSC Upper A: -- '

 write(11,'(a,i9)') ' NNZ of CSC Upper A =', uanz

 pneq = snpile + snraft ; gneq = snsoil ;

!--------building the block diagonal preconditioner-----------

 write(*,'(a)') " Block diagonal preconditioner P3G1"

 write(11,'(a)') " Block diagonal preconditioner P3G1"

 write(*,'(a)') " MMD-Chol factorization of block(1,1) &

 & and Diagonal of block(2,2)"

 write(11,'(a)') " MMD-Chol factorization of block(1,1) &

 & and Diagonal of block(2,2)"

 !-----Sparse Cholesky factorization on Blk(1,1)-------------

 call cpu_time (tim1)

 call countnzblk11 (pneq,neq,jebe(1:neq+1),iebe(1:uanz), &

 ebea(1:uanz),pnz)

 allocate (icsrp(pneq+1),jcsrp(pnz),csrp(pnz))

 call formblk11 (pneq,neq,jebe(1:neq+1),iebe(1:uanz), &

 ebea(1:uanz),icsrp,jcsrp,csrp,pnz)

 write(*,'(a)') ' '

 write(*,'(a,i16)') &

 ' Returned ture nnz for block(1,1) i.e. Pile =', pnz

 write(11,'(a,i16)') &

 ' Returned ture nnz for block(1,1) i.e. Pile =', pnz

 punz = int((pnz+pneq)/2)

 allocate (perm(pneq),perm_inv(pneq),colcnt(pneq), &

 snode(pneq),xsuper(pneq+1))

 write (*, '(a)')' '

 write (*, '(a)') &

 'the Multiple Minimal Degree (MMD) algorithm is used for'

 write (*, '(a)')'ordering the coefficient matrix.'

 ! No. of adjacency entries excluding diagonal entries

 nonzp = pnz-pneq

 allocate (adj_row(pneq+1),adj(nonzp))

 call form_adjacency (pneq,icsrp(1:pneq+1),jcsrp(1:pnz), &

 adj_row,adj)

 iwsiz=7 * pneq + 3

 allocate (xadj2(pneq+1), adjncy2(nonzp),iwork(iwsiz))

 ! Save another copy (xadj2,adjncy2) because the

 !(xadj,adjncy) structure is destroyed by the minimum

 ! degree ordering routine ordmmd.

 xadj2 = adj_row

 adjncy2 = adj

 !--

 iwsiz=4 * pneq

 call ordmmd (pneq, xadj2, adjncy2, perm_inv, perm, iwsiz, &

 iwork ,nsub,iflag)

 if(iflag==-1)then

 write(*,'(a)') 'Insufficient Working Storage, &

 & IWORK(:), when executing ORDMMD...'

 stop

 289

 end if

 deallocate (xadj2, adjncy2)

 !--------Cholesky factorization

 iwsiz=7 * pneq + 3

 call sfinit (pneq, nonzp, adj_row, adj, perm, perm_inv, &

 colcnt, nnzl,nsub, nsuper, snode, xsuper, &

 iwsiz ,iwork , iflag)

 if(iflag==-1)then

 write(*,'(a)') 'ERROR: Insufficient Working &

 & Storage,IWORK(:), when executing SFINIT '

 stop

 end if

 !------------------

 allocate(xlindx(nsuper+1),lindx(nsub), xlnz(pneq+1), &

 split(pneq))

 iwsiz = nsuper + 2 * pneq + 1

 call symfct (pneq, nonzp, adj_row, adj, perm , perm_inv, &

 colcnt, nsuper,xsuper,snode ,nsub,xlindx, &

 lindx , xlnz , iwsiz ,iwork ,iflag)

 if(iflag==-1)then

 write(*,'(a)') 'ERROR: Insufficient Working &

 & Storage,IWORK(:), when executing SYMFCT... '

 stop

 elseif(iflag==-2) then

 write(*,'(a)') 'ERROR: Inconsistancy in The Input &

 & when executing SYMFCT... '

 stop

 end if

 deallocate (adj_row, adj, colcnt)

 !------------------

 iwsiz = pneq

 allocate (lnz(nnzl))

 call inpnv (pneq, icsrp(1:pneq+1),jcsrp(1:pnz), &

 csrp(1:pnz), perm,perm_inv, nsuper, xsuper, &

 xlindx, lindx,xlnz, lnz, iwork)

 deallocate (icsrp,jcsrp, csrp)

 !------------------

 ! bfinit: Initialization for block factorization

 !size of the cache (in kilobytes) on the target machine

 cachsz = 16

 call bfinit(pneq, nsuper, xsuper, snode, xlindx, lindx, &

 cachsz, tmpsiz,split)

 ! blkfct: Numerical factorization

 iwsiz = 2 * pneq + 2 * nsuper

 level = 4

 ! level of loop unrolling while performing numerical

 ! factorization

 allocate (tmpvec(tmpsiz))

 if (level .eq. 1) then

 call blkfct(pneq, nsuper, xsuper, snode, split, &

 xlindx, lindx, xlnz,lnz, iwsiz, iwork, &

 tmpsiz, tmpvec, iflag , mmpy1, smxpy1)

 elseif (level .eq. 2) then

 call blkfct(pneq, nsuper, xsuper, snode, split, &

 xlindx, lindx, xlnz,lnz, iwsiz, iwork, &

 290

 tmpsiz, tmpvec, iflag , mmpy2, smxpy2)

 elseif (level .eq. 4) then

 call blkfct(pneq, nsuper, xsuper, snode, split, &

 xlindx, lindx, xlnz,lnz, iwsiz, iwork, &

 tmpsiz, tmpvec, iflag , mmpy4, smxpy4)

 elseif (level .eq. 8) then

 call blkfct(pneq, nsuper, xsuper, snode, split, &

 xlindx, lindx, xlnz,lnz, iwsiz, iwork, &

 tmpsiz, tmpvec, iflag , mmpy8, smxpy8)

 endif

 if(iflag==-1)then

 write(*,'(a)') 'ERROR: Nonpositive Diagonal &

 & Encountered, when executing BLKFCT... '

 stop

 elseif(iflag==-2) then

 write(*,'(a)') 'Insufficient Working Storage, &

 & TEMP(:), when executing BLKFCT... '

 stop

 elseif(iflag==-3) then

 write(*,'(a)') 'ERROR: Insufficient Working &

 & Storage,IWORK(:), when executing BLKFCT... '

 stop

 end if

 deallocate (snode, split, iwork, tmpvec)

 !------------------

 call cpu_time (tim2)

 !-----Diagonal on Blk(2,2)---------------------------

 allocate (diagg(gneq))

 do j = pneq+1,neq

 ir=jebe(j+1)-1 ; diagg(j-pneq) = ebea(ir);

 end do

! inverted diagonals form for preconditioning

 diagg(1:gneq) = 1./diagg(1:gneq) ;

 !----------------------------

 call cpu_time (tim3)

 call cpu_time (ot2) ; ot2=ot2-ot1

! --------------------- enter the time-stepping loop----------

 allocate(loads(0:neq), ans(0:neq))

 ttime = .0; loads = .0

 time_steps: do ns = 1 , nstep

 write(*, '(a, i5,a)') &

 ' Current Time Step is No.', ns , ' Step. '

 write(11,*)'*** '

 ttime = ttime+dtim;

 write(11,'(a,e12.4)')"The current time is",ttime

 ans=.0;

! ----------------------- Apply Constant Loading -------------

 ! the Load is applied at the first step.

 if(ns == 1) then

 do i=1,loaded_nodes

 ans(nf(3,nodnum(i))) = - load_val(i)

 end do

 end if

! Permute the rhs (or load vector) according to block ordering

 call dvperm(neq,ans(1:),iblkord)

!----------------- Preconditioned Iterative Solver -----------

 call cpu_time (it1)

 291

 call sbd2pcg(neq,jebe(1:neq+1),iebe(1:uanz),ebea(1:uanz),&

 diagg,nsuper,xsuper,xlindx,lindx,xlnz,lnz, &

 perm,perm_inv,ans(1:),maxit,tol,iters,resi);

 ans(0) = 0.0

 call cpu_time (it2) ; it2=it2-it1

! obtain the original(natural) solution from block ordering

 call perm_rv (neq, ans(1:), iblkordrev)

 loads(1:neq) = loads(1:neq) + ans(1:neq)

 write(11,'(a)') " The nodal displacements are :"

 do k=1,5;

 write(11,'(i7,a,3e13.5)')k," ",loads(nf(:,k)) ; end do

 do k=1,nn;

 write(25,'(i7,a,3e13.5)')k," ",loads(nf(:,k)) ; end do

 ! ------------

 ! node number for each x-z plane

 ! nodplane = (2*nx+1)*(nz+1)+(nx+1)*nz;

 ! node number between two x-z planes

 ! nodbetwplane = (nx+1)*(nz+1) ;

 ! To get the surface settlement of the footing

 do i=1, nye+1

 do j = 1, nxe+1

 k = ((2*nxe+1)*(nze+1)+(nxe+1)*nze+(nxe+1)*(nze+1)) &

 *(i-1)+2*j -1

 write(12,'(2f10.2,e20.8)') widthx(j),widthy(i), &

 loads(nf(3,k));

 end do

 end do

!-------------------recover stresses at Gauss-points---------

 elements_5 : do iel = 1 , nels

 num = g_num(:,iel); coord=transpose(g_coord(:,num))

 g = g_g(: , iel); eld = loads(g (1 : ndof))

! print*,"The Gauss Point effective stresses for element", &

! iel,"are"

 gauss_points_2: do i = 1,nip

 call shape_der (der,points,i); jac= matmul(der,coord)

 call invert (jac); deriv= matmul(jac,der)

 bee= 0.;call beemat(bee,deriv);

 sigma= matmul(dee(:,:,etype(iel)),matmul(bee,eld))

 ! print*,"Point ",i ;! print*,sigma

 end do gauss_points_2

 end do elements_5

 end do time_steps

 call cpu_time (tt2) ; tt2=tt2-tt1

 write(11,'(a,f10.2)') &

 " Operation time on blocks(1,1) is: ",tim2-tim1

 write(11,'(a,f10.2)') &

 " Operation time on blocks(2,2) is: ",tim3-tim2

 write(11,'(a,f10.2)') &

 " Overhead time is: ",ot2

 write(11,'(a,f10.2)') &

 "Iterative time (the last time step) is: ",it2

 write(11,'(a,f10.2,a)') &

 " Total runtime for the FEM program is ",tt2, &

 "seconds."

 end program sbd2pcgmain

!---

 292

The input file is the same as for the SBD1-PCG.

E.3. Main program for M1-SQMR

!---

program p3dbiot

!---

! 3D Biot Consolidation Analysis of Soil-structure

! interaction problem

!---

! Program for 3-D consolidation analysis using 20-node solid

! brick elements coupled to 8-node fluid elements,

! incremental formulation. SQMR solver is used for solving

! the linear system in each time step, M1 preconditioner

! is available.

!

! A = [Pile block = [P L B' ;

! Soil Block L^T G B ;

! Fluid block] B'^T B^T -C]

!--

 use new_library ; use geometry_lib; use sparselib_v3;

 use dfport ; use spchol ;

 implicit none

 integer:: i,j,k,l,nn,nels,nxe,nye,nze,nip,nodof=4,nod=20, &

 nodf=8,nst=6,ndim=3,nodofs=3,ntot,ndof,iel,ns, &

 nstep,inc,loaded_nodes,neq,nband,sneq,fneq,nmesh, &

 ebeanz, maxit,iters,isolver,icho,ipre,icc,iinc, &

 uanz,np_types,npiles,nels_pile,gneq,pneq,ir,k1, &

 k2,pnz,gnz,llnz,anz,nonzp,ierr,punz,gunz,iwsiz, &

 nsub,iflag,nnzl,nsuper,nnzlmax,tmpsiz,tmpmax, &

 cachsz,level,nxr,nyr,nzr,neltp,nelbp,soil_id=1, &

 pile_id=2,raft_id=2,snsoil,snpile,snraft,nr, &

 nxlmsh,nylmsh

 real(8):: permx,permy,permz,e,v,det,dtim,theta,ttime,loadl, &

 equpval,tol,coef,omega,resi,ot1,ot2,it1,it2,tt1, &

 tt2,tim1,tim2,tim3,xlen,ylen

 logical:: converged

 character (len=15):: element = 'hexahedron'

!------------------------ dynamic arrays----------------------

 real(8),allocatable :: prop(:,:),dee(:,:,:), points(:,:), &

 coord(:,:),derivf(:,:),jac(:,:),kay(:,:),der(:,:), &

 deriv(:,:),weights(:),derf(:,:),funf(:),coordf(:,:), &

 bee(:,:),km(:,:),eld(:),sigma(:),kp(:,:), ke(:,:), &

 g_coord(:,:), kd(:,:), fun(:), c(:,:), bk(:),vol(:), &

 volf(:,:),widthx(:),widthy(:),depth(:),load_val(:), &

 loads(:), ans(:), ebea(:),tmpv(:),diag(:),diaga(:), &

 diaga1(:),csrp(:),tmpvec(:),lnz(:)

 integer,allocatable:: nf(:,:), g(:), num(:), g_num(:,:), &

 g_g(:,:),nodnum(:),iebe(:),jebe(:),id(:),etype(:), &

 pile_rc(:,:),iblkordrev(:),iblkord(:),adj_row(:), &

 adj(:),perm(:),perm_inv(:),icsrp(:),jcsrp(:), &

 xadj2(:), adjncy2(:),colcnt(:),snode(:),xsuper(:), &

 iwork(:),xlindx(:),lindx(:),xlnz(:),split(:)

!----------------------- input and initialization ------------

 open (10,file='p3dbiot.dat',status= 'old',action='read')

 293

 open (11,file='p3dbiot.res',status='replace',action='write')

 open (12,file='surface.res',status='replace',action='write')

 open (13,file='relres.res',status='replace',action='write')

 call timestamp ()

 print *, " Iterative Solution Method for pile-group "

 write(11,*)" Iterative Solution Method for pile-group "

 print *, " The program is running, please wait..... "

 read (10,*) nxe,nye,nze,nip,dtim,nstep,theta,maxit,tol, &

 coef,omega,isolver,icho,ipre,icc,iinc

 ! Input of raft and pile details

 ! nxr,nyr,nzr = no. of raft elements in x-, y-, and

 ! z-directions

 ! npiles = the number of piles.

 ! neltp = no. of top element of pile (in z-direction)

 ! nelbp = no. of bottom element of pile (in z-direction)

 read(10,*) nxr,nyr,nzr,npiles,nelbp ; neltp = nzr + 1

 ! if bottom element of pile < top element

 if (nelbp < neltp)then

 write(*,*)'There is No pile element'

 neltp = 0; nelbp = 0; ! stop

 end if

 ! np_types = the number of material types (zones)

 np_types = 3 ! iel = 1-Soil, 2-pile, and 3-raft materials

 ndof=nod*3; ntot=ndof+nodf;

 call msh_info(nxe,nye,nze,nels,nn) !,nr)

 write(11,'(a,i16)')' Number of elements = ',nels

 write(11,'(a,i16)')' Number of nodes = ',nn

 allocate(prop(5,np_types),etype(nels), &

 dee(nst,nst,np_types),points(nip,ndim), &

 coord(nod,ndim),jac(ndim,ndim),derivf(ndim,nodf), &

 kay(ndim,ndim),der(ndim,nod),deriv(ndim,nod), &

 derf(ndim,nodf),funf(nodf),coordf(nodf,ndim), &

 bee(nst,ndof),km(ndof,ndof),eld(ndof),sigma(nst), &

 kp(nodf,nodf),ke(ntot,ntot),g_g(ntot,nels),fun(nod), &

 c(ndof,nodf),vol(ndof),nf(nodof,nn),g(ntot), &

 volf(ndof,nodf),g_coord(ndim,nn),num(nod),weights(nip), &

 g_num(nod,nels),widthx(nxe+1),widthy(nye+1), &

 depth(nze+1),pile_rc(npiles,4))

 !

 ! kay=0.0; kay(1,1)=permx; kay(2,2)=permy; kay(3,3)=permz

 read(10,*)(prop(:, i), i=1,np_types)

 ! np_types material properties

 ! prop(4,i) for Effective Young's modulus E' ;

 ! prop(5,i) for Poisson's ratio ;

 read(10,*)(pile_rc(i,:), i = 1, npiles) ;

 etype = 1 ! initial set for soil elements

 call form_idpile(nxe,nze,npiles,pile_rc,neltp,nelbp,etype, &

 pile_id)

 call form_idraft(nxe,nye,nxr,nyr,nzr,etype,raft_id)

 read (10,*) widthx, widthy, depth

 call nfinfo(nxe,nye,nze,nf,neq,sneq,fneq)

 !--

 do i=1, np_types;

 call deemat(dee(:,:,i),prop(4,i),prop(5,i)) ; end do

 call sample(element,points,weights)

 allocate(id(1:neq)) ;

 id(:) = 1 ! initial set for soil elements.

! id(:) = 1 --> soil DOFs

 294

! id(:) = 2 --> pile DOFs(pile_id)

! id(:) = 3 --> raft DOFs(raft_id)

! id(:) = 0 --> pore pressure DOFs

!------------- loop the elements to set up global arrays------

 call cpu_time (tt1)

 elements_1: do iel = 1, nels

 call geometry_20bxz(iel,nxe,nze,widthx,widthy,depth, &

 coord,num)

 inc=0 ;

 do i=1,20;

 do k=1,3; inc=inc+1;g(inc)=nf(k,num(i));end do;end do

 ! ---

 do i=1, inc;

 if (g(i)/=0) then

 if (etype(iel) == pile_id) then ;

 id(g(i)) = pile_id ;

 elseif (etype(iel) == raft_id) then ;

 id(g(i)) = raft_id ;

 end if

 end if

 end do

 ! ---

 do i=1,7,2; inc=inc+1;g(inc)=nf(4,num(i)); end do

 do i=13,19,2; inc=inc+1;g(inc)=nf(4,num(i)); end do

 ! ---

 do i=61, inc; if(g(i)/=0) id(g(i)) = 0 ; end do

 ! ---

 g_num(:,iel)=num;g_coord(:,num)=transpose(coord);

 g_g(:,iel)= g

 if(nband<bandwidth(g))nband=bandwidth(g) ;

 end do elements_1

 write(11,'(a)') "Global coordinates "

 do k=1,nn;

 write(11,'(a,i7,a,3e12.4)')"Node",k," ",g_coord(:,k);

 end do

 write(11,'(a)') "Global node numbers "

 do k = 1 , nels;

 write(11,'(a,i6,a,20i7)') "Element ",k," ",g_num(:,k);

 end do

 write(11,'(2(a,i8))') &

 "There are ",neq, &

 " equations and the half-bandwidth is ",nband

 snpile = 0; snraft = 0;

 do i = 1,neq;

 if (id(i) == pile_id) then ;

 snpile = snpile + 1;

 else if (id(i) == raft_id) then;

 snraft = snraft + 1;

 end if

 end do

 snsoil = sneq - snpile - snraft

 write(*,'(a)') ' '

 write(*,'(2(a,i12))') ' Pile DOFs = ',snpile, &

 ' Raft DOFs = ',snraft

 write(11,'(2(a,i12))') ' Pile DOFs = ',snpile, &

 ' Raft DOFs = ',snraft

 write(*,'(2(a,i12))') ' Soil DOFs = ',snsoil, &

 ' Pore Press. DOFs = ',fneq

 write(11,'(2(a,i12))') ' Soil DOFs = ',snsoil, &

 ' Pore Press. DOFs = ',fneq

 write(*,'(a,i12)') ' Total DOFs = ',neq ;

 295

 write(11,'(a,i12)') ' Total DOFs = ',neq

 write (*,'(a)') ' '

 write (*,'(a)') ' Block ordering of the coefficient matrix '

 write (11,'(a)') ' Block ordering of the coefficient matrix '

 allocate(iblkordrev(neq),iblkord(neq))

 call form_4bord(neq,snpile,snraft,snsoil,pile_id,raft_id, &

 1,0,id,iblkordrev,iblkord)

 !---

 ! xlen,ylen = length and breadh (m) of the loaded area

 ! (x- and y-direction)

 ! nxlmsh,nylmsh = no. of loaded elements in x- & y- direction

 ! equpval = applied load in MPa

 read(10,*) xlen,ylen,nxlmsh,nylmsh,equpval

 ! the no. of loaded nodes

 loaded_nodes =(nxlmsh*2+1)*(nylmsh+1)+(nxlmsh+1)*nylmsh

 allocate(nodnum(loaded_nodes),load_val(loaded_nodes))

 call load_raft(nxe,nye,nze,nels,nn,xlen,ylen,nxlmsh,nylmsh, &

 equpval,loaded_nodes,nodnum,load_val)

 !--

 ebeanz = int(ntot*(ntot+1)/2)*nels

 write(*,'(a)') ' '

 write(*,'(a)') &

 ' Estimated ebeanz for element stiffness integration'

 write(*,'(a,i16)') ' and assembly ',ebeanz

 write(11,'(a)') ' '

 write(11,'(a)') &

 ' Estimated ebeanz for element stiffness integration'

 write(11,'(a,i16)') ' and assembly ',ebeanz

 allocate(iebe(ebeanz),jebe(ebeanz), ebea(ebeanz))

!------------- element stiffness integration and assembly ----

 ebeanz=0 ! used for counting the true number

 call cpu_time (ot1) ; kay =.0 ;

 elements_2: do iel = 1 , nels

 num = g_num(: , iel); coord=transpose(g_coord(:,num))

 g = g_g(: , iel) ;

 coordf(1 : 4 , :) = coord(1 : 7 : 2, :)

 coordf(5 : 8 , :) = coord(13 : 19 : 2, :)

 km = .0 ; c = .0 ; kp = .0

 !-------------forming Kay for each element --------

 kay(1,1) = prop(1,etype(iel));

 kay(2,2) = prop(2,etype(iel));

 kay(3,3) = prop(3,etype(iel));

 gauss_points_1: do i = 1 , nip

 call shape_der(der,points,i); jac = matmul(der,coord)

 det = determinant(jac); call invert(jac);

 deriv = matmul(jac,der); call beemat(bee,deriv);

 vol(:)=bee(1,:)+bee(2,:)+bee(3,:);

km=km+matmul(matmul(transpose(bee),dee(:,:,etype(iel))),bee) &

 det weights(i);

!-----------------------now the fluid contribution------------

 call shape_fun(funf,points,i);

 call shape_der(derf,points,i) ;

 derivf=matmul(jac,derf)

kp=kp + matmul(matmul(transpose(derivf),kay),derivf)*det &

 *weights(i)*dtim ;

 do l=1,nodf; volf(:,l)=vol(:)*funf(l); end do

 c= c+volf*det*weights(i)

 296

 end do gauss_points_1

 ! for incremental formula

 call formke(km,kp,c,ke,theta)

!---collect nonzero entries from element stiffness matrices---

 call fmelspar(ntot,g,ke,iblkord,iebe,jebe,ebea,ebeanz)

 end do elements_2

!---

 write(*,'(a)') ' '

 write(*,'(a,i16)') &

 ' Returned true ebeanz after element assembly',ebeanz

 write(11,'(a)') ' '

 write(11,'(a,i16)') &

 ' Returned true ebeanz after element assembly',ebeanz

 call sortadd(ebeanz,jebe(1:ebeanz),iebe(1:ebeanz), &

 ebea(1:ebeanz),neq+1,uanz)

 write(*,'(a)') ' '

 write(*,'(a)')' The returned true storage for CSC Upper A: '

 write(*,'(a,i9)') ' NNZ of CSC Upper A =', uanz

 write(11,'(a)')'**'

 write(11,'(a)')' The returned true storage for CSC Upper A: '

 write(11,'(a,i9)') ' NNZ of CSC Upper A =', uanz

 pneq = snpile + snraft ; gneq = snsoil ;

!--------building the block diagonal preconditioner-----------

 write(*,'(a)') " Block diagonal preconditioner M1"

 write(11,'(a)') " Block diagonal preconditioner M1"

 !-----Sparse Cholesky factorization on Blk(1,1)-------------

 call cpu_time (tim1)

 call countnzblk11 (pneq,neq,jebe(1:neq+1),iebe(1:uanz), &

 ebea(1:uanz),pnz)

 allocate (icsrp(pneq+1),jcsrp(pnz),csrp(pnz))

 call formblk11 (pneq,neq,jebe,iebe,ebea,icsrp,jcsrp,csrp,pnz)

 write(*,'(a)') ' '

 write(*,'(a,i16)') &

 ' Returned ture nnz for block(1,1) i.e. Pile =', pnz

 write(11,'(a,i16)') &

 ' Returned ture nnz for block(1,1) i.e. Pile =', pnz

 punz = int((pnz+pneq)/2)

 allocate (perm(pneq),perm_inv(pneq),colcnt(pneq), &

 snode(pneq),xsuper(pneq+1))

 write (*, '(a)')' '

 write (*, '(a)')'the Multiple Minimal Degree (MMD) &

 & algorithm is used for'

 write (*, '(a)')'ordering the coefficient matrix.'

 ! No. of adjacency entries excluding diagonal entries

 nonzp = pnz-pneq

 allocate (adj_row(pneq+1),adj(nonzp))

 call form_adjacency (pneq,icsrp(1:pneq+1),jcsrp(1:pnz), &

 adj_row,adj)

 iwsiz=7 * pneq + 3

 allocate (xadj2(pneq+1), adjncy2(nonzp),iwork(iwsiz))

 ! Save another copy (xadj2,adjncy2) because the

 ! (xadj,adjncy) structure is destroyed by the minimum

 297

 ! degree ordering routine ordmmd.

 xadj2 = adj_row

 adjncy2 = adj

 !--

 iwsiz=4 * pneq

 call ordmmd (pneq, xadj2, adjncy2, perm_inv, perm, iwsiz, &

 iwork,nsub,iflag)

 if(iflag==-1)then

 write(*,'(a)') 'Insufficient Working Storage, &

 & IWORK(:), when executing ORDMMD...'

 stop

 end if

 deallocate (xadj2, adjncy2)

 !--------Cholesky factorization

 iwsiz=7 * pneq + 3

 call sfinit (pneq, nonzp, adj_row, adj, perm, perm_inv, &

 colcnt, nnzl,nsub, nsuper, snode, xsuper, &

 iwsiz ,iwork , iflag)

 if(iflag==-1)then

 write(*,'(a)') 'ERROR: Insufficient Working &

 & Storage, IWORK(:), when executing SFINIT '

 stop

 end if

 !------------------

 allocate(xlindx(nsuper+1),lindx(nsub), xlnz(pneq+1), &

 split(pneq))

 iwsiz = nsuper + 2 * pneq + 1

 call symfct (pneq, nonzp, adj_row, adj, perm , perm_inv, &

 colcnt, nsuper,xsuper,snode ,nsub, xlindx, &

 lindx , xlnz , iwsiz ,iwork ,iflag)

 if(iflag==-1)then

 write(*,'(a)') 'ERROR: Insufficient Working &

 & Storage,IWORK(:), when executing SYMFCT... '

 stop

 elseif(iflag==-2) then

 write(*,'(a)') 'ERROR: Inconsistancy in The Input &

 & when executing SYMFCT... '

 stop

 end if

 deallocate (adj_row, adj, colcnt)

 !------------------

 iwsiz = pneq

 allocate (lnz(nnzl))

 write(*,'(a,i9)') &

 'No. of nonzeros of Cholesky factor of block P, NNZL =',nnzl

 write(11,'(a,i9)') &

 'No. of nonzeros of Cholesky factor of block P, NNZL =',nnzl

 call inpnv (pneq, icsrp(1:pneq+1),jcsrp(1:pnz), &

 csrp(1:pnz), perm,perm_inv, nsuper, xsuper, &

 xlindx, lindx,xlnz, lnz, iwork)

 deallocate (icsrp,jcsrp, csrp)

 !------------------

 ! bfinit: Initialization for block factorization

 !size of the cache (in kilobytes) on the target machine

 298

 cachsz = 16

 call bfinit(pneq, nsuper, xsuper, snode, xlindx, lindx, &

 cachsz, tmpsiz,split)

 !------------------

 ! blkfct: Numerical factorization

 iwsiz = 2 * pneq + 2 * nsuper

 level = 4

 ! level of loop unrolling while performing numerical

 ! factorization

 allocate (tmpvec(tmpsiz))

 if (level .eq. 1) then

 call blkfct(pneq, nsuper, xsuper, snode, split, &

 xlindx, lindx, xlnz,lnz, iwsiz, iwork, &

 tmpsiz, tmpvec, iflag , mmpy1, smxpy1)

 elseif (level .eq. 2) then

 call blkfct(pneq, nsuper, xsuper, snode, split, &

 xlindx, lindx, xlnz, lnz, iwsiz,iwork, &

 tmpsiz, tmpvec, iflag , mmpy2, smxpy2)

 elseif (level .eq. 4) then

 call blkfct(pneq, nsuper, xsuper, snode, split, &

 xlindx, lindx, xlnz,lnz, iwsiz, iwork, &

 tmpsiz, tmpvec, iflag , mmpy4, smxpy4)

 elseif (level .eq. 8) then

 call blkfct(pneq, nsuper, xsuper, snode, split, &

 xlindx, lindx, xlnz,lnz, iwsiz, iwork, &

 tmpsiz, tmpvec, iflag , mmpy8, smxpy8)

 endif

 if(iflag==-1)then

 write(*,'(a)') 'ERROR: Nonpositive Diagonal &

 & Encountered, when executing BLKFCT... '

 stop

 elseif(iflag==-2) then

 write(*,'(a)') 'Insufficient Working Storage, &

 & TEMP(:), when executing BLKFCT... '

 stop

 elseif(iflag==-3) then

 write(*,'(a)') 'ERROR: Insufficient Working &

 & Storage,IWORK(:), when executing BLKFCT... '

 stop

 end if

 deallocate (snode, split, iwork, tmpvec)

 !------------------

 call cpu_time (tim2) ;

 !-form GJ diagonal

 allocate(diag(neq), diaga(neq),diaga1(neq))

 call formda_pg(neq,iebe(1:uanz),jebe(1:neq+1),ebea(1:uanz), &

 icho,ipre,sneq,coef,omega,diag,diaga,diaga1)

 !---

 call cpu_time (tim3);

 call cpu_time (ot2) ; ot2=ot2-ot1

! --------------------- enter the time-stepping loop----------

 allocate(loads(0:neq), ans(0:neq), tmpv(neq))

 ttime = .0; loads = .0

 time_steps: do ns = 1 , nstep

 write(*, '(a, i5,a)') &

 ' Current Time Step is No.', ns , ' Step. '

 write(11,*) &

 '** '

 ttime = ttime+dtim;

 299

 write(11,'(a,e12.4)')"The current time is",ttime

 ans=.0;

 call kpu(iebe(1:uanz),jebe(1:neq+1),ebea(1:uanz),theta, &

 id,loads(1:),ans(1:));

 ans(0)=.0

! ----------------------- Apply Constant Loading -------------

 ! the Load is applied at the first step.

 if(ns == 1) then

 do i=1,loaded_nodes

 ans(nf(3, nodnum(i)))=-load_val(i)

 end do

 end if

! Permute the rhs (or load vector) according to block ordering

 call dvperm(neq,ans(1:),iblkord)

!----------------- Preconditioned Iterative Solver -----------

 call cpu_time (it1)

 call m1sqmr(neq,iebe(1:uanz),jebe(1:neq+1),ebea(1:uanz), &

 nsuper,xsuper,xlindx,lindx,xlnz,lnz,perm, &

 perm_inv,diaga1,ans(1:),maxit,tol,icc,iters, &

 resi);

 ans(0)=.0 ;

 deallocate (perm,perm_inv)

 call cpu_time (it2) ; it2=it2-it1

! obtain the original(natural) solution from block

ordering

 do i = 1, neq; tmpv(iblkordrev(i)) = ans(i) ; end do

 loads(1:neq)=loads(1:neq) + tmpv

 write(11,'(a,i5,a,e12.4)')" Psolver took", iters, &

 " iterations to converge to ",resi

 write(11,'(a)') &

 " The nodal displacements and porepressures are :"

 do k=1,5; write(11,'(i7,a,4e13.5)')k," ",loads(nf(:,k)) ;

end do

 ! ------------

 ! node number for each x-z plane

 ! nodplane = (2*nx+1)*(nz+1)+(nx+1)*nz;

 ! node number between two x-z planes

 ! nodbetwplane = (nx+1)*(nz+1) ;

 do i=1, nye+1

 do j = 1, nxe+1

 k = ((2*nxe+1)*(nze+1)+(nxe+1)*nze+(nxe+1)*(nze+1)) &

 *(i-1)+2*j -1

 write(12,'(2f10.2,e16.5)') widthx(j),widthy(i), &

 loads(nf(3,k));

 end do

 end do

!-------------------recover stresses at Gauss-points---------

 elements_5 : do iel = 1 , nels

 num = g_num(:,iel); coord=transpose(g_coord(:,num))

 g = g_g(: , iel); eld = loads(g (1 : ndof))

 ! print*, &

 ! "The Gauss Point effective stresses for element",iel,"are"

 gauss_points_2: do i = 1,nip

 call shape_der (der,points,i); jac= matmul(der,coord)

 300

 call invert (jac); deriv= matmul(jac,der)

 bee= 0.;call beemat(bee,deriv);

 sigma= matmul(dee(:,:,etype(iel)),matmul(bee,eld))

 ! print*,"Point ",i ;! print*,sigma

 end do gauss_points_2

 end do elements_5

 end do time_steps

 call cpu_time (tt2) ; tt2=tt2-tt1

 write(11,'(a,f10.2)') &

 " Operation time on blocks(1,1) is: ",tim2-tim1

 write(11,'(a,f10.2)') &

 " Operation time on blocks(2,2) is: ",tim3-tim2

 write(11,'(a,f10.2)') &

 " Overhead time is: ",ot2

 write(11,'(a,f10.2)') &

 "Iterative time (the last time step) is: ",it2

 write(11,'(a,f10.2,a)') &

 " Total runtime for the FEM program is: ",tt2, &

 " seconds."

 end program p3dbiot

!--

Input file ‘p3dbiot.dat’ of a small example in 7×7×7 mesh

7 7 7 27 1. 1 1. 10000 1.e-6 -4.0 1.0 1 2 2 2 5

5 5 2 4 5

1.e-7 1.e-7 1.e-7 5.0 0.3

1.e-15 1.e-15 1.e-15 30000.0 0.2

1.e-15 1.e-15 1.e-15 30000.0 0.2

1 1 1 1

4 5 1 1

1 1 4 5

4 5 4 5

.0 1.0 2.0 3.0 4.0 5.0 7.5 10.0

.0 1.0 2.0 3.0 4.0 5.0 7.5 10.0

.0 -1.0 -2.0 -3.0 -4.0 -5.0 -7.5 -10.0

5.0 5.0 5 5 0.1

E.4. Main program for M2-SQMR

!---

program p3dbiot

!---

! 3D Biot Consolidation Analysis of Soil-structure

! interaction problem

!---

! Program for 3-D consolidation analysis using 20-node

! solid brick elements coupled to 8-node fluid elements,

! incremental formulation. SQMR solver is used for

! solving the linear system in each time step.

!

! A = [Pile block = [P L B1 ;

! Soil Block L' G B2 ;

 301

! Fluid block] B1' B2' -C]

!

! A block diagonal preconditioner is used.

! Preconditioner M = [P 0;

! 0 MSSOR(H)]

!

! where P = pile block

! MSSOR(H) = Modified SSOR for soil-fluid block H

! H = [G B2;

! B2' -C]

! diag(C) is replaced by alpha*diag(S)

! S = C + B1' * inv(diag(P)) * B1 + B2' * inv(diag(G)) * B2

! = approximate Schur complement

!---

 use new_library ; use geometry_lib; use sparselib_v3;

 use dfport ; use spchol ;

 implicit none

 integer:: i,j,k,l,nn,nels,nxe,nye,nze,nip,nodof=4,nod=20, &

 nodf=8,nst=6,ndim=3,nodofs=3,ntot,ndof,iel,ns, &

 nstep,inc,loaded_nodes,neq, nband,sneq,fneq, &

 nmesh,ebeanz, maxit,iters,isolver,icho,ipre,icc, &

 iinc,uanz,np_types,npiles,nels_pile,gneq,pneq,ir, &

 k1,k2,pnz,gnz,llnz,anz,nonzp,ierr,punz,gunz, &

 iwsiz,nsub,iflag,nnzl,nsuper,nnzlmax,tmpsiz, &

 tmpmax,cachsz,level,nxr,nyr,nzr,neltp,nelbp, &

 soil_id=1,pile_id=2,raft_id=2,snsoil,snpile, &

 snraft,nr,nxlmsh,nylmsh,hneq,enz

 real(8):: permx,permy,permz,e,v,det,dtim,theta,ttime,loadl, &

 equpval,tol,coef,omega,resi,ot1,ot2,it1,it2,tt1, &

 tt2,tim1,tim2,tim3,xlen,ylen

 logical:: converged

 character (len=15):: element = 'hexahedron'

!------------------------ dynamic arrays----------------------

 real(8),allocatable :: prop(:,:),dee(:,:,:), points(:,:), &

 coord(:,:),derivf(:,:),jac(:,:),kay(:,:),der(:,:), &

 deriv(:,:),weights(:),derf(:,:),funf(:),coordf(:,:), &

 bee(:,:),km(:,:),eld(:),sigma(:),kp(:,:), ke(:,:), &

 g_coord(:,:), kd(:,:), fun(:), c(:,:), bk(:),vol(:), &

 volf(:,:), widthx(:), widthy(:),depth(:), &

 load_val(:),loads(:), ans(:), ebea(:),tmpv(:), &

 diag(:),diaga(:),diaga1(:), csrp(:),tmpvec(:), &

 lnz(:),csce(:)

 integer,allocatable:: nf(:,:), g(:), num(:), g_num(:,:), &

 g_g(:,:),nodnum(:),iebe(:),jebe(:),id(:),etype(:), &

 pile_rc(:,:),iblkordrev(:), iblkord(:),adj_row(:), &

 adj(:),perm(:),perm_inv(:),icsrp(:),jcsrp(:), &

 xadj2(:), adjncy2(:),colcnt(:),snode(:),xsuper(:), &

 iwork(:),xlindx(:), lindx(:),xlnz(:),split(:), &

 icsce(:),jcsce(:)

!----------------------- input and initialization ------------

 open (10,file='p3dbiot.dat',status= 'old',action='read')

 open (11,file='p3dbiot.res',status='replace',action='write')

 open (12,file='surface.res',status='replace',action='write')

 open (13,file='relres.res',status='replace',action='write')

 call timestamp ()

 print *, " Iterative Solution Method for pile-group "

 write(11,*)" Iterative Solution Method for pile-group "

 print *, " The program is running, please wait..... "

 302

 read (10,*) nxe,nye,nze,nip,dtim,nstep,theta,maxit,tol, &

 coef,omega,isolver,icho,ipre,icc,iinc

 ! Input of raft and pile details

 read(10,*) nxr,nyr,nzr,npiles,nelbp ; neltp = nzr + 1

 ! nxr,nyr,nzr = no. of raft elements in x-, y-,

 ! and z-directions

 ! npiles = the number of piles.

 ! neltp = top element of pile (the no. in z-direction)

 ! nelbp = bottom element of pile (the no. in z-direction)

 ! if bottom element of pile < top element

 if (nelbp < neltp)then

 write(*,*)'There is No pile element'

 neltp = 0; nelbp = 0; ! stop

 end if

 ! np_types = the number of material types (zones)

 np_types = 3 ! iel = 1-Soil, 2-pile, and 3-raft materials

 ndof=nod*3; ntot=ndof+nodf;

 call msh_info(nxe,nye,nze,nels,nn)

 write(11,'(a,i16)')' Number of elements = ',nels

 write(11,'(a,i16)')' Number of nodes = ',nn

 allocate(prop(5,np_types),etype(nels),dee(nst,nst,np_types),&

 points(nip,ndim),coord(nod,ndim),jac(ndim,ndim), &

 derivf(ndim,nodf),kay(ndim,ndim),der(ndim,nod), &

 deriv(ndim,nod),derf(ndim,nodf),funf(nodf), &

 coordf(nodf,ndim),bee(nst,ndof),km(ndof,ndof), &

 eld(ndof),sigma(nst),kp(nodf,nodf),ke(ntot,ntot), &

 g_g(ntot,nels),fun(nod),c(ndof,nodf),vol(ndof), &

 nf(nodof,nn),g(ntot),volf(ndof,nodf), &

 g_coord(ndim,nn),num(nod),weights(nip), &

 g_num(nod,nels),widthx(nxe+1),widthy(nye+1), &

 depth(nze+1),pile_rc(npiles,4))

 ! kay=0.0; kay(1,1)=permx; kay(2,2)=permy; kay(3,3)=permz

 ! np_types material properties

 read(10,*)(prop(:, i), i=1,np_types)

 ! prop(1:3,i) = permx,permy, and permz, respectively

 ! prop(4,i) = Effective Young's modulus E' ;

 ! prop(5,i) = Poisson's ratio ;

 read(10,*)(pile_rc(i,:), i = 1, npiles) ;

 etype = 1 ! initial set for soil elements

 call form_idpile(nxe,nze,npiles,pile_rc,neltp,nelbp,etype, &

 pile_id)

 call form_idraft(nxe,nye,nxr,nyr,nzr,etype,raft_id)

 read (10,*) widthx, widthy, depth

 call nfinfo(nxe,nye,nze,nf,neq,sneq,fneq)

 !--

 do i=1, np_types;

 call deemat(dee(:,:,i),prop(4,i),prop(5,i)) ; end do

 call sample(element,points,weights)

 allocate(id(1:neq)) ;

 id(:) = 1 ! initial set for soil elements.

 ! id(:) = 1 --> soil DOFs

 ! id(:) = 2 --> pile DOFs(pile_id)

 ! id(:) = 2 --> raft DOFs(raft_id)

 ! id(:) = 0 --> pore pressure DOFs

!------------- loop the elements to set up global arrays------

 call cpu_time (tt1)

 elements_1: do iel = 1, nels

 303

 call geometry_20bxz(iel,nxe,nze,widthx,widthy,depth, &

 coord,num)

 inc=0 ;

 do i=1,20;

 do k=1,3; inc=inc+1;g(inc)=nf(k,num(i));end do;end do

 ! ---

 do i=1, inc;

 if (g(i)/=0) then

 if (etype(iel) == pile_id) then ;

 id(g(i)) = pile_id ;

 elseif (etype(iel) == raft_id) then ;

 id(g(i)) = raft_id ;

 end if

 end if

 end do

 ! ---

 do i=1,7,2; inc=inc+1;g(inc)=nf(4,num(i)); end do

 do i=13,19,2; inc=inc+1;g(inc)=nf(4,num(i)); end do

 ! ---

 do i=61, inc; if(g(i)/=0) id(g(i)) = 0 ; end do

 ! ---

 g_num(:,iel)=num;g_coord(:,num)=transpose(coord);

 g_g(:,iel)= g

 if(nband<bandwidth(g))nband=bandwidth(g) ;

 end do elements_1

 write(11,'(a)') "Global coordinates "

 do k=1,nn;

 write(11,'(a,i7,a,3e12.4)')"Node",k," ",g_coord(:,k);

 end do

 write(11,'(a)') "Global node numbers "

 do k = 1 , nels;

 write(11,'(a,i6,a,20i7)') "Element ",k," ",g_num(:,k);

 end do

 write(11,'(2(a,i8))') &

 "There are ",neq, &

 " equations and the half-bandwidth is ",nband

 snpile = 0; snraft = 0;

 do i = 1,neq;

 if (id(i) == pile_id) then ;

 snpile = snpile + 1;

 else if (id(i) == raft_id) then;

 snraft = snraft + 1;

 end if

 end do

 snsoil = sneq - snpile - snraft

 write(*,'(a)') ' '

 write(*,'(2(a,i12))') ' Pile DOFs = ',snpile, &

 ' Raft DOFs = ',snraft

 write(11,'(2(a,i12))') ' Pile DOFs = ',snpile, &

 ' Raft DOFs = ',snraft

 write(*,'(2(a,i12))') ' Soil DOFs = ',snsoil, &

 ' Pore Press. DOFs = ',fneq

 write(11,'(2(a,i12))') ' Soil DOFs = ',snsoil, &

 ' Pore Press. DOFs = ',fneq

 write(*,'(a,i12)') ' Total DOFs = ',neq ;

 write(11,'(a,i12)') ' Total DOFs = ',neq

 write (*,'(a)') ' '

 write (*,'(a)') &

 ' Block ordering of the coefficient matrix '

 write (11,'(a)') &

 304

 ' Block ordering of the coefficient matrix '

 allocate(iblkordrev(neq),iblkord(neq))

 call form_4bord(neq,snpile,snraft,snsoil,pile_id,raft_id, &

 1,0,id,iblkordrev,iblkord)

 !------------ loading -------------------------------------

 read(10,*) xlen,ylen,nxlmsh,nylmsh,equpval

 ! xlen,ylen = length and breadh (m) of the loaded area

 ! (x- and y-direction)

 ! nxlmsh,nylmsh = no. of loaded elements in x- & y-direction

 ! equpval = applied load in MPa

 loaded_nodes =(nxlmsh*2+1)*(nylmsh+1)+(nxlmsh+1)*nylmsh

 ! loaded_nodes = total no. of loaded nodes

 allocate(nodnum(loaded_nodes),load_val(loaded_nodes))

 call load_raft(nxe,nye,nze,nels,nn,xlen,ylen,nxlmsh,nylmsh, &

 equpval,loaded_nodes,nodnum,load_val)

 !--

 ebeanz = int(ntot*(ntot+1)/2)*nels

 write(*,'(a)') ' '

 write(*,'(a)') &

 ' Estimated ebeanz for element stiffness integration'

 write(*,'(a,i16)') ' and assembly ',ebeanz

 write(11,'(a)') ' '

 write(11,'(a)') &

 ' Estimated ebeanz for element stiffness integration'

 write(11,'(a,i16)') ' and assembly ',ebeanz

 allocate(iebe(ebeanz),jebe(ebeanz), ebea(ebeanz))

!------------- element stiffness integration and assembly ----

 ebeanz=0 ! used for counting the true number

 call cpu_time (ot1) ; kay =.0 ;

 elements_2: do iel = 1 , nels

 num = g_num(: , iel); coord=transpose(g_coord(:,num))

 g = g_g(: , iel) ;

 coordf(1 : 4 , :) = coord(1 : 7 : 2, :)

 coordf(5 : 8 , :) = coord(13 : 19 : 2, :)

 km = .0 ; c = .0 ; kp = .0

 !-------------forming Kay for each element --------

 kay(1,1) = prop(1,etype(iel));

 kay(2,2) = prop(2,etype(iel));

 kay(3,3) = prop(3,etype(iel));

 gauss_points_1: do i = 1 , nip

 call shape_der(der,points,i); jac = matmul(der,coord)

 det = determinant(jac); call invert(jac);

 deriv = matmul(jac,der); call beemat(bee,deriv);

 vol(:)=bee(1,:)+bee(2,:)+bee(3,:);

km=km+matmul(matmul(transpose(bee),dee(:,:,etype(iel))),bee) &

 det weights(i);

!-----------------------now the fluid contribution------------

 call shape_fun(funf,points,i);

 call shape_der(derf,points,i) ;

 derivf=matmul(jac,derf)

kp=kp+matmul(matmul(transpose(derivf),kay),derivf) &

 *det*weights(i)*dtim ;

 do l=1,nodf; volf(:,l)=vol(:)*funf(l); end do

 c= c+volf*det*weights(i)

 end do gauss_points_1

 ! for incremental formula

 call formke(km,kp,c,ke,theta)

!---collect nonzero entries from element stiffness matrices---

 call fmelspar(ntot,g,ke,iblkord,iebe,jebe,ebea,ebeanz)

 end do elements_2

 305

!---

 write(*,'(a)') ' '

 write(*,'(a,i16)') &

 ' Returned true ebeanz after element assembly',ebeanz

 write(11,'(a)') ' '

 write(11,'(a,i16)') &

 ' Returned true ebeanz after element assembly',ebeanz

 call sortadd(ebeanz,jebe(1:ebeanz),iebe(1:ebeanz), &

 ebea(1:ebeanz),neq+1,uanz)

 write(*,'(a)') ' '

 write(*,'(a)')' The returned true storage for CSC Upper A: '

 write(*,'(a,i9)') ' NNZ of CSC Upper A =', uanz

 write(11,'(a)')'*** '

 write(11,'(a)')' The returned true storage for CSC Upper A: '

 write(11,'(a,i9)') ' NNZ of CSC Upper A =', uanz

 pneq = snpile + snraft ; gneq = snsoil ;

!--------building the block diagonal preconditioner-----------

 write(*,'(a)') " Block diagonal preconditioner M2"

 write(11,'(a)') " Block diagonal preconditioner M2"

 !-----Sparse Cholesky factorization on Blk(1,1)-------------

 call cpu_time (tim1)

 call countnzblk11 (pneq,neq,jebe(1:neq+1),iebe(1:uanz), &

 ebea(1:uanz),pnz)

 allocate (icsrp(pneq+1),jcsrp(pnz),csrp(pnz))

 call formblk11 (pneq,neq,jebe,iebe,ebea,icsrp,jcsrp,csrp,pnz)

 write(*,'(a)') ' '

 write(*,'(a,i16)') &

 ' Returned ture nnz for block(1,1) i.e. Pile =', pnz

 write(11,'(a,i16)') &

 ' Returned ture nnz for block(1,1) i.e. Pile =', pnz

 punz = int((pnz+pneq)/2)

 allocate (perm(pneq),perm_inv(pneq),colcnt(pneq), &

 snode(pneq),xsuper(pneq+1))

 write (*, '(a)')' '

 write (*, '(a)')'the Multiple Minimal Degree (MMD) &

 & algorithm is used for'

 write (*, '(a)')'ordering the coefficient matrix.'

 ! No. of adjacency entries excluding diagonal entries

 nonzp = pnz-pneq

 allocate (adj_row(pneq+1),adj(nonzp))

 call form_adjacency (pneq,icsrp(1:pneq+1),jcsrp(1:pnz), &

 adj_row,adj)

 iwsiz=7 * pneq + 3

 allocate (xadj2(pneq+1), adjncy2(nonzp),iwork(iwsiz))

 ! Save another copy (xadj2,adjncy2) because the

 ! (xadj,adjncy) structure is destroyed by the minimum

 ! degree ordering routine ordmmd.

 xadj2 = adj_row

 adjncy2 = adj

 !--

 iwsiz=4 * pneq

 call ordmmd (pneq, xadj2, adjncy2, perm_inv, perm, iwsiz, &

 iwork ,nsub,iflag)

 306

 if(iflag==-1)then

 write(*,'(a)') 'Insufficient Working Storage, &

 & IWORK(:), when executing ORDMMD...'

 stop

 end if

 deallocate (xadj2, adjncy2)

 !--------Cholesky factorization

 iwsiz=7 * pneq + 3

 call sfinit (pneq, nonzp, adj_row, adj, perm, perm_inv, &

 colcnt, nnzl,nsub, nsuper, snode, xsuper, &

 iwsiz ,iwork , iflag)

 if(iflag==-1)then

 write(*,'(a)') 'ERROR: Insufficient Working &

 & Storage,IWORK(:), when executing SFINIT '

 stop

 end if

 !------------------

 allocate(xlindx(nsuper+1),lindx(nsub), xlnz(pneq+1), &

 split(pneq))

 iwsiz = nsuper + 2 * pneq + 1

 call symfct (pneq, nonzp, adj_row, adj, perm , perm_inv, &

 colcnt, nsuper,xsuper,snode ,nsub, xlindx, &

 lindx , xlnz , iwsiz ,iwork ,iflag)

 if(iflag==-1)then

 write(*,'(a)') 'ERROR: Insufficient Working &

 & Storage,IWORK(:), when executing SYMFCT... '

 stop

 elseif(iflag==-2) then

 write(*,'(a)') 'ERROR: Inconsistancy in The Input &

 & when executing SYMFCT... '

 stop

 end if

 deallocate (adj_row, adj, colcnt)

 !------------------

 iwsiz = pneq

 allocate (lnz(nnzl))

 call inpnv (pneq, icsrp(1:pneq+1),jcsrp(1:pnz), &

 csrp(1:pnz), perm,perm_inv, nsuper, xsuper, &

 xlindx, lindx,xlnz, lnz, iwork)

 deallocate (icsrp,jcsrp, csrp)

 !------------------

 ! bfinit: Initialization for block factorization

 !size of the cache (in kilobytes) on the target machine

 cachsz = 16

 call bfinit(pneq, nsuper, xsuper, snode, xlindx, lindx, &

 cachsz, tmpsiz,split)

 !------------------

 ! blkfct: Numerical factorization

 iwsiz = 2 * pneq + 2 * nsuper

 level = 4

 ! level of loop unrolling while performing

 ! numerical factorization

 allocate (tmpvec(tmpsiz))

 if (level .eq. 1) then

 call blkfct(pneq, nsuper, xsuper, snode, split, &

 xlindx, lindx, xlnz, lnz, iwsiz, iwork, tmpsiz, &

 tmpvec, iflag , mmpy1, smxpy1)

 307

 elseif (level .eq. 2) then

 call blkfct(pneq, nsuper, xsuper, snode, split, &

 xlindx, lindx, xlnz,lnz, iwsiz, iwork, tmpsiz, &

 tmpvec, iflag , mmpy2, smxpy2)

 elseif (level .eq. 4) then

 call blkfct(pneq, nsuper, xsuper, snode, split, &

 xlindx, lindx, xlnz,lnz, iwsiz, iwork, tmpsiz, &

 tmpvec, iflag , mmpy4, smxpy4)

 elseif (level .eq. 8) then

 call blkfct(pneq, nsuper, xsuper, snode, split, &

 xlindx, lindx, xlnz,lnz, iwsiz, iwork, tmpsiz, &

 tmpvec, iflag , mmpy8, smxpy8)

 endif

 if(iflag==-1)then

 write(*,'(a)') 'ERROR: Nonpositive Diagonal &

 & Encountered, when executing BLKFCT... ' ;

stop

 elseif(iflag==-2) then

 write(*,'(a)') 'Insufficient Working Storage, &

 & TEMP(:), when executing BLKFCT... ' ;

stop

 elseif(iflag==-3) then

 write(*,'(a)') 'ERROR: Insufficient Working &

 & Storage,IWORK(:), when executing BLKFCT... ' ; stop

 end if

 deallocate (snode, split, iwork, tmpvec)

 !------------------

 call cpu_time (tim2) ;

 !--------- formation fo GJ diagonal for block H ------------

 allocate(diag(neq), diaga(neq),diaga1(neq))

 hneq = gneq + fneq ;

 call formdh(neq,iebe(1:uanz),jebe(1:neq+1),ebea(1:uanz), &

 pneq,sneq,coef,omega,diag,diaga,diaga1)

 ! diag = original diag of H, diag(1:pneq) = 1.0

 ! diaga = modified diag of H for MSSOR

 ! diaga1 = inverse of diaga

 !--------- extraction of block E ---------------------------

 call cscnnz(neq,1,pneq,pneq+1,neq,jebe(1:neq+1), &

 iebe(1:uanz),enz)

 allocate (icsce(enz),jcsce(hneq+1),csce(enz))

 call cscsubmat(neq,1,1,pneq,pneq+1,neq,ebea(1:uanz), &

 jebe(1:neq+1),iebe(1:uanz),pneq,hneq,csce, &

 jcsce,icsce)

 write(*,'(a,i16)') ' Returned ture nnz of block E =', enz

 !---

 call cpu_time (tim3);

 call cpu_time (ot2) ; ot2=ot2-ot1

! --------------------- enter the time-stepping loop----------

 allocate(loads(0:neq), ans(0:neq), tmpv(neq))

 ttime = .0; loads = .0

 time_steps: do ns = 1 , nstep

 write(*, '(a, i5,a)') &

 ' Current Time Step is No.', ns , ' Step. '

 write(11,*) &

 '** '

 ttime = ttime+dtim;

 write(11,'(a,e12.4)')"The current time is",ttime

 ans=.0;

 call kpu(iebe(1:uanz),jebe(1:neq+1),ebea(1:uanz),theta, &

 308

 id,loads(1:),ans(1:)); ans(0)=.0

! ----------------------- Apply Constant Loading -------------

 ! the Load is applied at the first step.

 if(ns == 1) then

 do i=1,loaded_nodes

 ans(nf(3, nodnum(i)))=-load_val(i)

 end do

 end if

! Permute the rhs (or load vector) according to block ordering

 call dvperm(neq,ans(1:),iblkord)

!----------------- Preconditioned Iterative Solver -----------

 call cpu_time (it1)

 call m2sqmr(neq,iebe(1:uanz),jebe(1:neq+1),ebea(1:uanz), &

 nsuper,xsuper,xlindx,lindx,xlnz,lnz,perm, &

 perm_inv,pneq,sneq,hneq,icsce,jcsce,csce,diag, &

 diaga,diaga1,ans(1:),maxit,tol,iinc,iters,resi) ;

 ans(0)=.0 ;

 deallocate (perm,perm_inv,icsce,jcsce,csce)

 call cpu_time (it2) ; it2=it2-it1

! obtain the original(natural) solution from block ordering

 do i = 1, neq; tmpv(iblkordrev(i)) = ans(i) ; end do

 loads(1:neq)=loads(1:neq) + tmpv

 write(11,'(a,i5,a,e12.4)')" Psolver took", iters, &

 " iterations to converge to ",resi

 write(11,'(a)') &

 " The nodal displacements and porepressures are :"

 do k=1,5;

 write(11,'(i7,a,4e13.5)')k," ",loads(nf(:,k)) ; end do

 ! ------------

 ! node number for each x-z plane

 ! nodplane = (2*nx+1)*(nz+1)+(nx+1)*nz;

 ! node number between two x-z planes

 ! nodbetwplane = (nx+1)*(nz+1) ;

 do i=1, nye+1

 do j = 1, nxe+1

 k = ((2*nxe+1)*(nze+1)+(nxe+1)*nze+(nxe+1)*(nze+1)) &

 *(i-1)+2*j -1

 write(12,'(2f10.2,e16.5)') widthx(j),widthy(i), &

 loads(nf(3,k));

 end do

 end do

!-------------------recover stresses at Gauss-points---------

 elements_5 : do iel = 1 , nels

 num = g_num(:,iel); coord=transpose(g_coord(:,num))

 g = g_g(: , iel); eld = loads(g (1 : ndof))

 ! print*, &

 ! "The Gauss Point effective stresses for element",iel,"are"

 gauss_points_2: do i = 1,nip

 call shape_der (der,points,i); jac= matmul(der,coord)

 call invert (jac); deriv= matmul(jac,der)

 bee= 0.;call beemat(bee,deriv);

 sigma= matmul(dee(:,:,etype(iel)),matmul(bee,eld))

 309

 ! print*,"Point ",i ;! print*,sigma

 end do gauss_points_2

 end do elements_5

 end do time_steps

 call cpu_time (tt2) ; tt2=tt2-tt1

 write(11,'(a,f10.2)') &

 " Operation time on blocks(1,1) is: ",tim2-tim1

 write(11,'(a,f10.2)') &

 " Operation time on blocks(2,2) is: ",tim3-tim2

 write(11,'(a,f10.2)') &

 " Overhead time is: ",ot2

 write(11,'(a,f10.2)') &

 "Iterative time (the last time step) is: ",it2

 write(11,'(a,f10.2,a)') &

 " Total runtime for the FEM program is: ",tt2, &

 " seconds."

 end program p3dbiot

!---

The input file is the same as for the M1-SQMR.

E.5. New routines for module sparselib_v3

module sparselib_v3

 use dfport ; use spchol

 contains

!---

subroutine form_idpile(nxe,nze,npiles,pile_rc,neltp,nelbp, &

 etype,pile_id)

 ! This subroutine forms the element id of pile

 ! etype(i) = 1 - soil element

 ! etype(i) = pile_id - pile element

 ! pile_rc = pile location in terms of finite elements in

 ! row-column form

 ! npiles = no. of piles

 ! neltp = top element of pile (in z-direction)

 ! nelbp = bottom element of pile (in z-direction)

 ! etype = array of element identification

 ! pile_id = a given id for pile

 implicit none

 integer,intent(in):: nxe,nze,npiles,pile_rc(:,:),neltp, &

 nelbp,pile_id

 integer,intent(inout):: etype(:)

 integer:: i,j,k,l,t,kx1,kx2,ky1,ky2,nels_pile

 nels_pile = nelbp - neltp + 1

 ! no. of elements in length of pile

 do i = 1, npiles

 kx1 = pile_rc(i,1); kx2 = pile_rc(i,2);

 ky1 = pile_rc(i,3); ky2 = pile_rc(i,4);

 do j=kx1, kx2

 do k = ky1, ky2

 t = nxe*nze*(k-1) + (neltp-1)*nxe + j ;

 etype(t) = pile_id;

 do l = 1, nels_pile-1;

 etype(t + l*nxe) = pile_id ;

 310

 end do

 end do

 end do

 end do

 !

 return

end subroutine form_idpile

!---

subroutine form_idraft(nxe,nze,nxr,nyr,nzr,etype,raft_id)

 ! This subroutine forms the element id for raft elements

 ! etype(i) = raft_id - raft element

 ! etype = array of element identification

 ! raft_id = a given id for raft elements

!---

 implicit none

 integer,intent(in):: nxe,nze,nxr,nyr,nzr,raft_id

 integer,intent(inout):: etype(:)

 !local variables

 integer:: i,j,k,nelxz,m

 m = 0

 do j = 1,nyr

 nelxz = (j-1)*(nxe*nze)

 do k = 1,nzr

 m = (k-1)*nxe + nelxz

 do i = 1,nxr

 m = m+1; etype(m) = raft_id ! raft elements

 end do

 end do

 end do

 !

 return

end subroutine form_idraft

!---

subroutine form_4bord(neq,snb11,snb22,snb33,idb11,idb22, &

 idb33,idb44,id,iordrev,iord)

 ! This subroutine generates "iord" array to form 4 x 4 block

 ! structured matrix

 ! neq = total number of DOFs

 ! snb11,snb22,snb33

 ! = no. of DOFs for block 11, 22, and 33 respectively

 ! e.g., no. of DOFs for pile, raft, and soil

 ! block 44 is for pore pressure DOFs (in this case)

 ! idb11,idb22,idb33

 ! = material id of block 11, 22, and 33 respectively

 ! e.g., idb11 = id_pile, idb22 = id_raft, idb33 = id_soil

 ! idb44 = In consolidation analysis, idb44 = 0,

 ! pore pressure DOFs

 ! = In drained analysis, idb44 = id of 4th material,

 ! if any

 ! block matrix= [Pile

 ! Raft

 ! Soil

 ! Pore Pressure] 4 x 4 matrix

 ! id(:,:) = array of id for DOFs corresponding to

 ! material and pore pressure

 ! iord,iordrev = array for re-ordering the matrix and inverse

 ! re-ordering

!---

 implicit none

 integer,intent(in):: neq,snb11,snb22,snb33,idb11,idb22, &

 idb33,idb44,id(:)

 311

 integer,intent(out)::iordrev(:),iord(:)

 integer:: i,j,ic0,ic1,ic2,ic3,sn ! local variables

 !

 sn = snb11 + snb22 + snb33

 ic0 = 0; ic1 = snb11 ; ic2 = snb11 + snb22; ic3 = sn

 do i = 1,neq

 if (id(i) == idb11) then ! block 11 (e.g. pile)

 ic0 = ic0 + 1; iordrev(ic0) = i; iord(i) = ic0

 else if (id(i) == idb22) then ! block 22 (e.g. raft)

 ic1 = ic1 + 1; iordrev(ic1) = i; iord(i) = ic1

 else if (id(i) == idb33) then ! block 33 (e.g. soil)

 ic2 = ic2 + 1; iordrev(ic2) = i; iord(i) = ic2

 else if (id(i) == idb44) then

 ! pore pressure block or 4th material

 ic3 = ic3 + 1; iordrev(ic3) = i; iord(i) = ic3

 end if

 end do

 !

 return

end subroutine form_4bord

!---

subroutine form_3bord(neq,snb11,snb22,idb11,idb22,idb33,id, &

 iordrev,iord)

 ! This subroutine generates "iord" array to form 3 x 3 block

 ! structured matrix

 ! neq = total number of DOFs

 ! snb11,snb22 = no. of DOFs for block 11 and 22 respectively

 ! e.g., no. of DOFs for pile, raft, and soil

 ! block 33 can be pore pressure DOFs

 ! idb11,idb22,idb33

 ! = material id of block 11, 22, and 33 respectively

 ! e.g., idb11 = id_pile, idb22 = id_raft, idb33 = id_soil

 ! idb33 = In consolidation analysis, idb33 = 0,

 ! pore pressure DOFs

 ! = In drained analysis,

 ! idb33 = id of 3rd material, if any

 ! A = [Pile [Pile

 ! Raft OR Soil

 ! Soil] Pore Pressure] 3 x 3

 ! id(:,:) = array of id for DOFs corresponding to material

 ! and pore pressure

 ! iord,iordrev = array for re-ordering the matrix and inverse

 ! re-ordering

 !---

 implicit none

 integer,intent(in):: neq,snb11,snb22,idb11,idb22,idb33,id(:)

 integer,intent(out)::iordrev(:),iord(:)

 integer:: i,j,ic0,ic1,ic2,sn ! local variables

 !

 sn = snb11 + snb22

 ic0 = 0; ic1 = snb11 ; ic2 = sn

 do i = 1,neq

 if (id(i) == idb11) then ! block 11 (e.g. pile)

 ic0 = ic0 + 1; iordrev(ic0) = i; iord(i) = ic0

 else if (id(i) == idb22) then ! block 22 (e.g. raft)

 ic1 = ic1 + 1; iordrev(ic1) = i; iord(i) = ic1

 else if (id(i) == idb33) then

 ! block 33 (e.g. soil or pore pressure)

 ic2 = ic2 + 1; iordrev(ic2) = i; iord(i) = ic2

 end if

 312

 end do

 !

 return

end subroutine form_3bord

!---

subroutine formda_pg(n,icsc,jcsc,csca,icho,ipre,sn,coef, &

 omega,d,da,da1)

! This subroutine forms GJ diagonal vector - da (d and da1);

! In this routine:

! n: dimension of coefficient matrix A;

! icsc,jcsc,csca:

! CSC storage of upper triangular part of matrix A;

! icho: choose standard or modified preconditioenr.

! =1: standard preconditioner.

! =2: generalized or modified preconditioner.

! ipre: choose preconditioner,

! =1: Jacobi preconditioner.

! =2: SSOR preconditioner.

! coef: the scaling factor for GJ diagonal vector.

! omega: relaxation parameter, which is applied to MSSOR.

! id: a vector to indicate the type of current DOF,

! id(j)= 0 for pore water pressure DOF;

! id(j)= 1 for displacement DOF.

! d: diagonal of A;

! da: modified diagonal for MSSOR preconditioner;

! da1: inverse of da;

 implicit none

 real(8):: coef,omega,d(:),da(:),da1(:),csca(:),absv, &

 maxabs,minabs

 integer::n,sn,s1,j,r,k,k1,k2,icho,ipre,icsc(:), jcsc(:)

 !

 s1 = sn + 1

 do j=1, n;

 r=jcsc(j+1)-1 ; da(j) = csca(r);

 end do

 !

 ! Transfer diagonal of A from da to d;

 if(ipre==2) d = da ;

 ! For generalized or modified preconditioner

 if(icho == 2)then

 !

 do j=s1, n

 k1=jcsc(j) ; k2=jcsc(j+1)-2

 do k=k1 , k2

 r = icsc(k)

 if(r > sn)exit

 da(j)=da(j)-csca(k)**2/da(r) ;

 end do

 end do

 !

 coef = coef/omega ;

 ! coef-scaling factor (negative is preferred)

 do j=s1, n

 da(j)=coef*abs(da(j))

 end do

 do j = 1, sn

 da(j)=da(j)/omega

 end do

 end if

 da1 = 1./da ;

 313

 !

 return

end subroutine formda_pg

!---

subroutine formdh(n,icsc,jcsc,csca,np,sn,coef,omega,dh,mdh, &

 mdh1)

! This subroutine forms GJ diagonal vector for block H where

! A = [Pile block = [P L B1 ;

! Soil Block L' G B2 ;

! Fluid block] B1' B2' -C]

!

! and H = [G B2;

! B2' -C]

!

! A block diagonal preconditioner is used.

! Preconditioner M = [P 0;

! 0 MSSOR(H)]

!

! where P = pile block

! MSSOR(H) = Modified SSOR for soil-fluid block H

! diag(C) is replaced by alpha*diag(S)

! S = C + B1' * inv(diag(P)) * B1 + B2' * inv(diag(G)) * B2

! = approximate Schur complement

! This subroutine forms:

! mdh = [I 0 0;

! 0 diag(G)/omega 0;

! 0 0 (alpha*diag(S))/omega]

!

! In this routine:

! n: dimension of coefficient matrix A;

! icsc,jcsc,csca: CSC storage of upper triangular part

! of matrix A;

! np: pile displacement DOFs

! sn: total (pile + soil) displacement DOFs

! nh: dimension of block H

! (soil + pore pressure DOFs)

! coef: the scaling factor for GJ diagonal vector for H

! omega: relaxation parameter, which is applied to MSSOR.

! dh: original diagonal of H;

! mdh: modified diagonal for MSSOR preconditioner;

! mdh1: inverse of mdh;

!---

 implicit none

 real(8),intent(in):: csca(:),omega ;

 real(8),intent(inout):: coef

 real(8),intent(out):: dh(:),mdh(:),mdh1(:)

 integer,intent(in):: n,np,sn,icsc(:),jcsc(:)

 integer:: s1,j,ir,k,k1,k2 ! local variables

 !

 s1 = sn + 1

 do j=1, n;

 ir=jcsc(j+1)-1 ; dh(j) = csca(ir);

 end do

 !

 mdh = dh ; ! Transfer diagonal of A from dh to mdh;

 !

!For generalized or modified diagonal for MSSOR preconditioner

 do j=s1, n

 k1=jcsc(j) ; k2=jcsc(j+1)-2

 do k=k1 , k2

 ir = icsc(k)

 314

 if(ir > sn)exit

 mdh(j)=mdh(j)-csca(k)**2/dh(ir) ;

 end do

 end do

 !

 mdh(1:np) = 1.0 ;

 dh(1:np) = 1.0 ; ! Identity for pile block

 coef = coef/omega ;

 ! coef-scaling factor (negative is preferred)

 do j=s1, n

 mdh(j)=coef*abs(mdh(j))

 end do

 do j = np+1, sn

 mdh(j)=mdh(j)/omega

 end do

 mdh1(np+1:n) = 1./mdh(np+1:n) ;

 !

 return

end subroutine formdh

!---

subroutine cscnnz(n,i1,i2,j1,j2,ja,ia,nnz)

! This subroutine counts the number of nonzeros in the

! submatrix A(i1:i2,j1:j2)

! In this subroutine,

! n = column dimension of the matrix A

! i1,i2 = two integers with i2 .ge. i1 indicating the range

! of rows to be extracted.

! j1,j2 = two integers with j2 .ge. j1 indicating the range

! of columns to be extracted.

! * There is no checking whether the input values for

! i1, i2, j1, j2 are between 1 and n.

! a,

! ja,

! ia = matrix in compressed sparse column format

! ia = array containing the row indices and

! ja = pointer to the beginning of the each

! column in array a

!---

 implicit none

 integer,intent(in):: n,i1,i2,j1,j2,ia(:),ja(:)

 integer,intent(out):: nnz

 integer:: i,j,k,k1,k2,jj,nr,nc

 nr = i2-i1+1 ! number of rows of submatrix

 nc = j2-j1+1 ! number of columns of submatrix

 if (nr <= 0 .or. nc <= 0) return

 if (nr == n .and. nc == n) then

 nnz = ja(n+1)-1

 return

 end if

 nnz = 0;

 do j = 1,nc

 jj = j1+j-1

 k1 = ja(jj)

 k2 = ja(jj+1)-1

 do k = k1,k2

 315

 i = ia(k)

 if (i >= i1 .and. i <= i2) then

 nnz = nnz+1

 end if

 end do

 end do

 return

end subroutine cscnnz

!---

subroutine cscsubmat (n,job,i1,i2,j1,j2,a,ja,ia,nr,nc,ao,jao, &

 iao)

! This subroutine extracts the submatrix A(i1:i2,j1:j2) and

! puts the result in matrix ao,iao,jao

!---- In place: ao,jao,iao may be the same as a,ja,ia.

!--------------

! on input

!---------

! n = column dimension of the matrix

! i1,i2 = two integers with i2 .ge. i1 indicating the range

! of rows to be extracted.

! j1,j2 = two integers with j2 .ge. j1 indicating the range

! of columnsto be extracted.

! * There is no checking whether the input values

! for i1, i2, j1,j2 are between 1 and n.

! a,

! ja,

! ia = matrix in compressed sparse column format.

!

! job = job indicator: if job .ne. 1 then the real values

! in a are NOT extracted, only the column indices

! (i.e. data structure) are. Else, values as well

! as column indices are extracted...

!

! on output

!--------------

! nr = number of rows of submatrix

! nc = number of columns of submatrix

! * if either of nr or nc is nonpositive the code will quit.

!

! ao,

! jao,iao = extracted matrix in general sparse column

! format with iao containing the row indices,and jao being the

! pointer to the beginningof the each column,in arrays a,ia.

! Reference: submat in SPARSKIT2,Y. Saad, Sep. 21 1989

!

!---

implicit none

integer,intent(in):: n,job,i1,i2,j1,j2,ia(:),ja(:)

integer,intent(out):: nr,nc,jao(:),iao(:)

real(8),intent(in):: a(:) ; real(8),intent(out):: ao(:)

integer:: i,j,k,jj,k1,k2,klen ! local variables

 nr = i2-i1+1

 nc = j2-j1+1

!

 if (nr <= 0 .or. nc <= 0) return

!

 klen = 0

!

! simple procedure. proceeds column-wise...

!

 316

 do j = 1,nc

 jj = j1+j-1

 k1 = ja(jj)

 k2 = ja(jj+1)-1

 jao(j) = klen+1

!--

 do k = k1,k2

 i = ia(k)

 if (i >= i1 .and. i <= i2) then

 klen = klen+1

 if (job .eq. 1) ao(klen) = a(k)

 iao(klen) = i - i1+1

 endif

 end do

 end do

 jao(nc+1) = klen+1

 return

!------------end-of submat------------------------------------

!---

 end subroutine cscsubmat

!---

subroutine msh_info(nxe,nye,nze,nels,nn) !,nr

! This subroutine calculates the no. of elements,nodes,

! restrained nodes

!---

 implicit none

 integer,intent(in):: nxe,nye,nze

 integer,intent(out):: nels,nn !,nr

 nels = nxe*nye*nze

 nn = ((2*nxe+1)*(nze+1) + (nxe+1)*nze)*(nye+1) + &

 (nxe+1)*(nze+1)*nye

 ! nr = 3*nxe*nye*nze + 4*(nxe*nye+nye*nze+nze*nxe) &

 ! + nxe+nye+nze + 2

 return

end subroutine msh_info

!---

subroutine nfinfo(nxe,nye,nze,nf,neq,sneq,fneq)

! This subroutine generates nf array with only 0 and 1

! integer value for 3D Biot's consolidation problems, and

! this subroutine is restricted to the geometric model

! discussed in this thesis.

! nn: total number of nodes;

! nodof: number of freedoms per node;

! nxe, nye, nze: number of elements in each direction

! nf: generated nodal freedom array,

! nf(:,:) = 1, free DOF;

! nf(:,:) = 0, restricted DOF.

! neq: number of DOFs in the mesh ;

! sneq: number of DOFs corresponding to

! displacement;

! fneq: number of DOFs corresponding to pore

! pressure;

! and there exists "neq = sneq + fneq".

!---

 implicit none

 integer,intent(in)::nxe,nye,nze ;

 integer,intent(out)::nf(:,:),neq,sneq,fneq;

 integer::i,j,k,nn,nodof,nodplane,nodbetwplane

 !-----------------

 !nn = ubound(nf,2);nodof = ubound(nf,1);

 317

 ! node number for each x-z plane

 nodplane=(2*nxe+1)*(nze+1)+(nxe+1)*nze ;

 ! node number between two x-z planes

 nodbetwplane=(nxe+1)*(nze+1)

 !

 nf = 1 ; ! initialize all nodes unrestricted

 xdirection1: do i=0, nye

 xloop1: do j=0, nze

 ! right element corner nodes in

nodplane

nf(1,i*(nodplane+nodbetwplane)+2*nxe+1+j &

 *(3*nxe+2))=0 ;

 ! left element corner node in nodplane

 nf(1,i*(nodplane+nodbetwplane)+1+j &

 *(3*nxe+2))=0 ;

 end do xloop1

 !

 xloop2: do j=1, nze

 ! right element midside node in nodplane

 nf(1,i*(nodplane+nodbetwplane)+j*(3*nxe+2)) &

 =0 ;

 ! left element midside node in nodplane

 nf(1,i*(nodplane+nodbetwplane)+j &

 *(3*nxe+2)-nxe)=0 ;

 end do xloop2

 end do xdirection1

 !

 xdirection2: do i=1, nye

 xloop3: do j=1, nze+1

 ! Right element mid node in nodbetwplane

 nf(1,i*nodplane+(i-1)*nodbetwplane+j &

 *(nxe+1))=0 ;

 ! Left element mid node in nodbetwplane

 nf(1,i*nodplane+(i-1)*nodbetwplane+(j-1) &

 *(nxe+1)+1)=0 ;

 end do xloop3

 end do xdirection2

 !---------------------------

 ydirection1: do i=1, nodplane

 ! front face nodplane

 nf(2,i)=0

 ! back face nodplane

 nf(2,nye*(nodplane+nodbetwplane)+i)=0

 end do ydirection1

 !---------------------------

 xyzdirection1: do i=0, nye

 xyzloop1: do j=1,2*nxe+1

 ! bottom nodes in nodplanes

 nf(1:3,i*(nodplane+nodbetwplane)+nodplane &

 -(2*nxe+1)+j)=0 ;

 end do xyzloop1

 end do xyzdirection1

 !

 xyzdirection2: do i=1, nye

 xyzloop2: do j=1,nxe+1

 ! bottom nodes in nodbetwplanes

 nf(1:3,i*(nodplane+nodbetwplane)-(nxe+1)+j)=0 ;

 end do xyzloop2

 end do xyzdirection2

 !---------------------------

 318

 !Pore pressure boundary condition

 nf(4,:) = 0 !Initialization including top B.C.

 ppressure: do i = 0,nye

 ploop1: do j = 1,nze

 ploop2: do k = 1,nxe+1

 ! remaining corner nodes of elements

 nf(4,i*(nodplane+nodbetwplane)+j*(3*nxe+2) &

 +(2*k-1))=1 ;

 end do ploop2

 end do ploop1

 end do ppressure

 !

 fneq = sum(nf(4,:));

 call formnf(nf); neq=maxval(nf); sneq = neq - fneq ;

 !

 return

end subroutine nfinfo

!---

subroutine nfinfo_drained(nxe,nye,nze,nf,neq)

! This subroutine generates nf array with only 0 and 1

! integer value for 3D drained problems

! with Diritchlet Boundary condition

! nn: total number of nodes;

! nodof: number of freedoms per node;

! nxe, nye, nze: number of elements in each direction

! nf: generated nodal freedom array,

! nf(:,:) = 1, free DOF;

! nf(:,:) = 0, restricted DOF.

! neq: number of DOFs in the mesh

!---

 implicit none

 integer,intent(in)::nxe,nye,nze ;

 integer,intent(out)::nf(:,:),neq;

 integer::i,j,k,nn,nodof,nodplane,nodbetwplane

 !-----------------

 !nn = ubound(nf,2);nodof = ubound(nf,1);

 ! node number for each x-z plane

 nodplane=(2*nxe+1)*(nze+1)+(nxe+1)*nze ;

 ! node number between two x-z planes

 nodbetwplane=(nxe+1)*(nze+1)

 !

 nf = 1 ; ! initialize all nodes unrestricted

 xdirection1: do i=0, nye

 xloop1: do j=0, nze

 ! right element corner nodes in nodplane

 nf(1,i*(nodplane+nodbetwplane)+2*nxe+1+j &

 *(3*nxe+2))=0 ;

 ! left element corner node in nodplane

 nf(1,i*(nodplane+nodbetwplane)+1+j &

 *(3*nxe+2))=0 ;

 end do xloop1

 !

 xloop2: do j=1, nze

 ! right element midside node in nodplane

nf(1,i*(nodplane+nodbetwplane)+j*(3*nxe+2))=0;

 ! left element midside node in nodplane

 nf(1,i*(nodplane+nodbetwplane)+j &

 *(3*nxe+2)-nxe)=0 ;

 end do xloop2

 319

 end do xdirection1

 !

 xdirection2: do i=1, nye

 xloop3: do j=1, nze+1

 ! Right element mid node in nodbetwplane

 nf(1,i*nodplane+(i-1)*nodbetwplane+j &

 *(nxe+1))=0 ;

 ! Left element mid node in nodbetwplane

 nf(1,i*nodplane+(i-1)*nodbetwplane+(j-1) &

 *(nxe+1)+1)=0 ;

 end do xloop3

 end do xdirection2

 !---------------------------

 ydirection1: do i=1, nodplane

 ! front face nodplane

 nf(2,i)=0

 ! back face nodplane

 nf(2,nye*(nodplane+nodbetwplane)+i)=0

 end do ydirection1

 !---------------------------

 xyzdirection1: do i=0, nye

 xyzloop1: do j=1,2*nxe+1

 ! bottom nodes in nodplanes

 nf(1:3,i*(nodplane+nodbetwplane)+nodplane &

 -(2*nxe+1)+j)=0 ;

 end do xyzloop1

 end do xyzdirection1

 !

 xyzdirection2: do i=1, nye

 xyzloop2: do j=1,nxe+1

 ! bottom nodes in nodbetwplanes

 nf(1:3,i*(nodplane+nodbetwplane)-(nxe+1)+j)=0 ;

 end do xyzloop2

 end do xyzdirection2

 !

 call formnf(nf); neq=maxval(nf);

 !

 return

end subroutine nfinfo_drained

!---

subroutine load_raft(nxe,nye,nze,nels,nn,xlen,ylen,nxlmsh, &

 nylmsh,lval,nlnod,lnn,lnv)

! This subroutine computes nodal loads from uniform pressure.

! nxe,nye,nze = no. of elements in x,y, and z directions

! nodplane = x-z plane containing corner nodes of

! 20 noded finite element

! nodbetwplane = x-z plane containing the mid-nodes of

! 20 noded finite element

! xlen = length of raft in x-direction (m)

! ylen = breath of raft in y-direction (m)

! nxlmsh = no. of loaded elements in x-direction

! nylmsh = no. of loaded elements in y-direction

! lval = applied uniform pressure (MPa)

! nlnod = no. of loaded nodes

! nn = total no. of nodes

! a = length of each loaded element

! b = breadth of each loaded element

! lnn = array of loaded nodes

! lnv = array of loaded node values

! sval = the special value (1/12 of element load)

! Modified by: Krishna Bahadur Chaudhary

 320

! on: March 31, 2008

 implicit none

 integer,intent(in):: nxe,nye,nze,nels,nn,nxlmsh,nylmsh, &

 nlnod

 real(8),intent(in):: xlen,ylen,lval

 integer,intent(out):: lnn(:) ;

 real(8),intent(out):: lnv(:)

 ! local variables

 integer:: i,j,k,m,l,nodplane,nodbetwplane

 real(8):: sval,a,b

 !

 nodplane = (2*nxe+1)*(nze+1)+(nxe+1)*nze

 nodbetwplane = (nxe+1)*(nze+1)

 a = xlen/nxlmsh ; b = ylen/nylmsh ;

 ! the special value (1/12 of element load)

 sval=lval* a*b/12.

 !

 m = 0;

 loop1: do i = 1,nylmsh

 k = (i-1)*(nodplane+nodbetwplane)+1

 ! write(11,'(a,i2,a,i7)')'1st node of No.',2*i-1, &

 ! ' plane :', k

 if(i==1)then !!!

 do j=0,2*nxlmsh

 if(mod(j,2)==0)then

 m=m+1; lnn(m)=k+j ; lnv(m)=-2*sval

 else

 m=m+1; lnn(m)=k+j ; lnv(m)=4*sval

 end if

 end do

 else !!!

 do j=0,2*nxlmsh

 if(mod(j,2)==0)then

 m=m+1; lnn(m)=k+j ; lnv(m)=-4*sval

 else

 m=m+1; lnn(m)=k+j ; lnv(m)=8*sval

 end if

 end do

 end if !!!

 !

 k = i*nodplane+(i-1)*nodbetwplane+1

 !write(11,'(a,i2,a,i7)')'1st node of No.',2*i,' plane :', k

 do j=0,nxlmsh

 if(j==0.or.j==nxlmsh)then

 m=m+1; lnn(m)=k+j; lnv(m)=4*sval

 else

 m=m+1; lnn(m)=k+j; lnv(m)=8*sval

 end if

 end do

 end do loop1

 !

 k = nylmsh*(nodplane+nodbetwplane)+1

 ! write(11,'(a,i2,a,i7)')'1st node of No.',2*nylmsh+1, &

 ! ' plane :', k

 do j=0,2*nxlmsh

 if(mod(j,2)==0)then

 m=m+1; lnn(m)=k+j ; lnv(m)=-2*sval

 else

 m=m+1; lnn(m)=k+j ; lnv(m)=4*sval

 end if

 321

 end do

!-------Modify the two sides------------------

 do i = 1,nylmsh+1

 l=(i-1)*(3*nxlmsh+2)+1; lnv(l)=-2*sval

 l=(i-1)*(3*nxlmsh+2)+2*nxlmsh+1; lnv(l)=-2*sval

 end do

 lnv(1)=-sval; lnv(2*nxlmsh+1)=-sval

 lnv(nlnod)=-sval; lnv(nlnod-2*nxlmsh)=-sval

!---

 !

 return

end subroutine load_raft

!---

subroutine fmelspar(ntot,g,ke,icount,iebea,jebea,ebea,ebeanz)

 ! forming the element level 3 vectors storing the nonzero

 ! entries of upper A matrix

 implicit none

 real(8):: ke(:,:),ebea(:)

 integer::i,j,s,t,ntot,ebeanz,g(:),icount(:),iebea(:),jebea(:)

 !--------------------------

 do j=1, ntot

 do i=1, j

 ! forming A (upper triangle column by column)

 if(g(i)/=0.and.g(j)/=0) then

 if(ke(i,j)/=.0)then

 s = icount(g(i)) ; t = icount(g(j))

 if(s <= t)then

 ebeanz=ebeanz+1 ; iebea(ebeanz) = s

 jebea(ebeanz)= t ; ebea(ebeanz)=ke(i,j)

 else

 ebeanz=ebeanz+1 ; iebea(ebeanz) = t

 jebea(ebeanz) = s ; ebea(ebeanz)=ke(i,j)

 end if

 end if

 end if

 end do

 end do

end subroutine fmelspar

!--

subroutine countnzblk11 (pneq,neq,jcsca,icsca,csca,pnz)

 ! This subroutine counts the no. of nonzeros in block(1,1),

 ! i.e. P from upper triangular storage of matrix A

 ! A = [P L ; L^t G] ==> count nnz of P

 ! parameters:

 ! On input:

 ! pneq = Pile DOFs

 ! neq = order (size) of the matrix A

 ! jcsca,icsca,csca = CSC storage of the upper part of the

 ! symmetric matrix A dimension:

 ! jcsca(neq+1), icsca(uanz), csca(uanz)

 ! uanz is the no. of nonzeros in upper A

 ! On output:

 ! pnz = returned true no. of nonzeros in P

 !--

 implicit none

 integer,intent(in):: pneq,neq,jcsca(:),icsca(:)

 real(8),intent(in):: csca(:)

 integer,intent(out):: pnz

 ! local variables

 integer:: i,j,k,l,k1,k2,m

 322

 !---------Extracting Pile Block i.e. block(1,1)----------

 m = 0

 do j = 1,pneq

 k1 = jcsca(j) ; k2 = jcsca(j+1)-1

 ! upper triangular nonzero terms

 do k = k1, k2 ; m = m+1 ; end do

 end do

 pnz = 2*m - pneq ;

 !

 return

end subroutine countnzblk11

!---

subroutine formblk11 (pneq,neq,jcsca,icsca,csca,icsrp,jcsrp, &

 csrp,pnz)

! This subroutine extracts block(1,1) i.e. P from upper

! triangular storage of matrix A

! A = [P L ; L^t G] ==> extract P

! parameters:

! On input:

! pneq = Pile DOFs

! neq = order (size) of the matrix A

! jcsca,icsca,csca = CSC storage of the upper part of the

! symmetric matrix A dimension:

! jcsca(neq+1), icsca(uanz), csca(uanz)

! uanz is the no. of nonzeros in upper A

! pnz = On input, estimated no. of nonzeros in P

! On return, true no. of nonzeros in P

! On output:

! icsrp,jcsrp,csrp = CSR storage of full matrix P (Pile block)

! For symmetric case CSR and CSC storage

! are equivalent dimension:

! icsrp(pneq+1), jcsrp(pnz), csrp(pnz)

! pnz = returned true no. of nonzeros in P

!--

 implicit none

 integer,intent(in):: pneq,neq,jcsca(:),icsca(:)

 real(8),intent(in):: csca(:)

 integer,intent(out):: icsrp(:),jcsrp(:)

 integer,intent(out):: pnz

 real(8),intent(out):: csrp(:)

 ! local variables

 integer:: i,j,k,l,k1,k2,m,ir,ic,epnz

 integer,allocatable:: rowp(:),rowg(:)

 !---------Extracting Pile Block i.e. block(1,1)----------

 epnz = size(jcsrp)

 allocate (rowp(epnz))

 m = 0

 do j = 1,pneq

 k1 = jcsca(j) ; k2 = jcsca(j+1)-1

 do k = k1, k2-1 ! off-diagonal terms

 m = m+1 ; rowp(m) = icsca(k); jcsrp(m) = j;

 csrp(m) = csca(k)

 m = m+1 ; rowp(m) = j; jcsrp(m) = icsca(k);

 csrp(m) = csca(k)

 end do

 ! diagonal terms

 m = m+1 ; rowp(m) = icsca(k2); jcsrp(m) = j;

 csrp(m) = csca(k2)

 end do

 323

 pnz = m ;

 call sort_3(rowp(1:m),jcsrp(1:m),csrp(1:m),m)

 icsrp(1) = 1 ; l = 1

 do j = 2, m

 if(rowp(j) /= rowp(j-1)) then

 l = l+1; icsrp(l) = j

 end if

 end do

 icsrp(l+1) = pnz+1

 do i = 1, pneq

 k1 = icsrp(i) ; k2 = icsrp(i+1)-1

 j = k2-k1+1

 call sort_2(jcsrp(k1:k2),csrp(k1:k2),j)

 end do

 deallocate (rowp)

 !

 return

end subroutine formblk11

!---

 subroutine form_adjacency (neq,icsr,jcsr,adj_row,adj)

 ! form adjacency structure of the matrix

 ! Parameters:

 ! Input:

 ! neq = the number of equations

 ! icsr = row pointer for CSR storage

 ! jcsr = column index for CSR storage

 ! adj_row(neq+1) = node pointers for adj

 ! adj(nonz) = adjacency information

 !

 implicit none

 integer,intent(in)::neq,icsr(:),jcsr(:)

 integer,intent(out)::adj_row(:),adj(:)

 ! local variables

 integer:: nonz,totnonz,i,j,k,kstrt,kend

 nonz = 0

 totnonz = 0

 do i = 1,neq

 kstrt = icsr(i)

 kend = icsr(i+1)-1

 do j = kstrt,kend

! if (jcsr(j) == i) then

! adj_row(i) = adj_row(i-1)

! end if

 if (jcsr(j) /= i) then

 adj_row(i) = totnonz + 1

 nonz = nonz + 1

 adj(nonz) = jcsr(j)

 end if

 end do

 totnonz = nonz

 end do

 adj_row(neq+1) = totnonz + 1

 !

 return

 end subroutine form_adjacency

!---

 324

subroutine lsolve_2(n,n1,da1,icsc,jcsc,csca,b, x)

 ! This subroutine performs forward solve of MSSOR(G),

 ! that is, (LG+DG)xG = bG

 ! LG and DG are strict lower and diagonal of G

 ! A = [P, L; LT, G] --but ONLY SSOR of G (block(2,2))

 ! n: dimension of coefficient matrix A;

 ! n1: dimension of block P

 ! icsc,jcsc,csca: CSC storage of upper triangular part

 ! of matrix A;

 ! da1: inverse of da(G)(da(G): modified diagonal

 ! for MSSOR);

 ! b: it is right hand vector b (size: dim(G,1))

 ! x: solution vector (size: dim(G,1));

 !---

 implicit none

 real(8):: da1(:), csca(:), b(:), x(:), tmp

 integer::i, j, k1, k2, n, n1, icsc(:), jcsc(:)

 ! -------- forward substitution --------

 x(1)=b(1)*da1(1);

 do j = n1+2, n

 k1=jcsc(j); k2=jcsc(j+1)-1 ; tmp=.0

 do i=k1, k2-1

 if (icsc(i) > n1) then

 tmp = tmp + csca(i) * x(icsc(i)-n1) ;

 end if

 end do

 tmp = b(j-n1) - tmp

 x(j-n1) = tmp*da1(j-n1) ;

 end do

 !

 return

end subroutine lsolve_2

!---

subroutine usolve_2(n,n1, da1,icsc,jcsc,csca,b, x)

 ! This subroutine performs backward solve of MSSOR(G),

 ! that is, (DG+UG)xG = bG

 ! DG and UG are diagonal and strict lower of G

 ! A = [P, L; LT, G] --but ONLY SSOR of G (block(2,2))

 ! n: dimension of coefficient matrix A;

 ! n1: dimension of block P

 ! icsc,jcsc,csca: CSC storage of upper triangular part of

 ! matrix A;

 ! da1: inverse of da(G) (da(G): modified

 ! diagonal for MSSOR);

 ! b: it is right hand vector b (size: dim(G,1))

 ! x: solution vector (size: dim(G,1));

 !---

 implicit none

 real(8):: da1(:),csca(:),b(:),x(:)

 real(8),allocatable:: tmp(:)

 integer::j,ic,ir,k,k1,k2,n,n1,icsc(:), jcsc(:)

 allocate(tmp(n-n1))

 ! ----- backward substitution -----

 tmp = b ;

 do k = n, n1+2, -1

 ic = k-n1;

 x(ic) = tmp(ic)*da1(ic)

 do j = jcsc(k), jcsc(k+1)-2

 ir = icsc(j);

 325

 if (ir > n1) then

 tmp(ir-n1) = tmp(ir-n1) - x(ic)*csca(j)

 end if

 end do

 end do

 x(1) = tmp(1)*da1(1)

 !

 return

end subroutine usolve_2

!---

subroutine pa11ssora22x(n,icsc,jcsc,csca,nsuper,xsuper, &

 xlindx,lindx,xlnz,lnz,perm1,perm_inv1,n1,n2,icsce, &

 jcsce,csce,md2,md21,dsub,x,y)

! This subroutine performs the preconditioned matrix vector

! multiplication

! A = [A11 A12; and M = [A11 0;

! A12' A22] 0 MSSOR(G)]

!

! y = (inv(M)*A) * x

! Left-right preconditioning: M = L*inv(D)*U

! (similar to SSOR factorization)

! Eisenstat trick is applied for block (2,2)

!

! In this routine:

! n: dimension of coefficient matrix A;

! icsc,jcsc,csca: CSC storage of coefficient matrix A;

! icsce,jcsce,csce: CSC storage of block E = A(1,2)

! nsuper,xsuper,xlindx,lindx,xlnz,lnz: Sparse Cholesky

! factorization of A11

! perm1,perm_inv1: MMD Permutation and Inverse permutation

! vectors for A11

! n1: size of block (1,1)

! n2: size of block (2,2)

! md2: modified diagonal for MSSOR of block(2,2)

! md11: inverse of md2;

! dsub: d2-2*md2

! x: input vector

! y: output vector

!

! Modfied by: Krishna B. Chaudhary, NUS

! on: January 3, 2009

!---

 implicit none

 integer,intent(in):: n,icsc(:),jcsc(:),nsuper,xsuper(:), &

 xlindx(:),lindx(:),xlnz(:),perm1(:), &

 perm_inv1(:),n1,n2,icsce(:),jcsce(:)

 real(8),intent(in):: csca(:),lnz(:),csce(:),md2(:),md21(:), &

 dsub(:),x(:)

 real(8),intent(out):: y(:)

 ! local variables

 real(8),allocatable:: f(:),tvec1(:),tvec2(:),g(:),q2(:)

 allocate(f(n2),tvec1(n1),tvec2(n2),g(n2),q2(n2))

 call usolve_2(n,n1+1,n,md21(n1+1:n),icsc,jcsc,csca, &

 x(n1+1:n),f)

 call cscbx(n2,icsce,jcsce,csce,f,tvec1)

 call dvperm(n1,tvec1,perm_inv1) ! permutation of vector

 call fwblkslv(nsuper,xsuper,xlindx,lindx,xlnz,lnz,tvec1)

 y(1:n1) = x(1:n1) + tvec1 ;

 !--------------------------

 tvec1 = x(1:n1)

 326

 call bwblkslv(nsuper,xsuper,xlindx,lindx,xlnz,lnz,tvec1)

 ! obtain the original solution from permuted solution

 call perm_rv(n1, tvec1, perm1)

 call cscbtx(n2,icsce,jcsce,csce,tvec1,tvec2)

 g = dsub*f + x(n1+1:n) ;

 q2 = g + tvec2 ;

 call lsolve_2(n,n1+1,n,md21(n1+1:n),icsc,jcsc,csca,q2, &

 y(n1+1:n))

 y(n1+1:n) = y(n1+1:n) + f ;

 !

 return

end subroutine pa11ssora22x

!---

subroutine ccrb_2(n,i,icsc,jcsc,csca,nsuper,xsuper,xlindx, &

 lindx,xlnz,lnz,permp,perm_invp,np,nh,da, &

 da1,s,z,iinc,tol,nrmb,rhs,ic,iters,relres)

 ! nrmr,

! This subroutine performs convergence check in terms of

! relative residual with initial guess x0 =.0 is chosen,

! Preconditioner M = [Rp' 0; inv[I 0; [Rp 0;

! 0 Lh] [Dh] [0 Uh]

! Cholesky factorization of block(1,1) and

! SSOR factorization of block(2,2)

!

! In this subroutine,

! n: i.e. neq - number of total DOFs or equations;

! i: current iteration # ;

! icsc,jcsc,csca:

! CSC storage of upper triangular part of matrix A;

! nsuper,xsuper,xlindx,lindx,xlnz,lnz: Sparse Cholesky

! factorization of P

! permp,perm_invp: MMD Permutation and Inverse permutation

! vectors for P

! np: pile displacement DOFs

! nh: dimension of block H

! (soil + pore pressure DOFs)

! da: modified diagonal for MSSOR preconditioner;

! da1: inverse of da;

! s: preconditioned residual;

! z: "preconditioned" solution;

! iinc: Check convergence every 'iinc' iteration.

! tol: it is the user-defined stopping tolerance;

! nrmb: computed initial residual (b) norm

! multiplied by tol;

! rhs: at input, it is right hand vector b;

! at convcergence,it is returned approximate

! solution x;

! ic: = 1 converged (ic is a identifier);

! = 0 doesn't satisfy the convergence criterion;

! iters: returned iteration count when converged;

! nrmr: norm of true residual.

! relres: returned relative residual when converged.

!---

 implicit none

 integer,intent(in):: n,i,icsc(:),jcsc(:),nsuper, &

 xsuper(:),xlindx(:),lindx(:), &

 xlnz(:),permp(:),perm_invp(:), &

 np,nh,iinc

 integer,intent(inout):: ic ;

 integer,intent(out):: iters

 real(8),intent(in):: csca(:),lnz(:),da(:),da1(:),s(:), &

 327

 tol,nrmb

 real(8),intent(inout):: rhs(:),z(:),relres

 ! local variables

 real(8):: nrmr ; real(8),allocatable:: tvec1(:),tr(:)

 allocate(tvec1(np),tr(n))

 !

 ! if(mod(i, iinc)==0)then

 ! per iinc steps, check convergence with true residual

 ! call blkmxy(nsuper,xsuper,xlindx,lindx,xlnz,lnz, &

 ! s(1:np),tvec1,np)

 ! obtain the original solution from permuted solution

 ! call perm_rv (np, tvec1, permp)

 ! tr(1:np) = tvec1 ;

 !-----------------

 ! call stor(n,np,icsc,jcsc,csca,da(np+1:n),s(np+1:n), &

 ! tr(np+1:n)) ;

 ! nrmr = dsqrt(dot_product(tr, tr)) ;

 !---------------------------

 ! Preconditioned residual

 nrmr = dsqrt(dot_product(s, s)) ;

 write(13,'(a,i7,e13.5)') &

 " i, relres = ", i, nrmr*tol/nrmb

 if(nrmr < nrmb)then

 write(* ,*) &

 'SQMR converges to user-defined tolerance '

 write(*,'(a,i7)') ' at iteration =', i

 write(11,*) &

 '** '

 write(11,*) &

 'SQMR converges to user-defined tolerance '

 write(11,'(a,i7)') ' at iteration =', i

 tvec1 = z(1:np);

 call bwblkslv(nsuper,xsuper,xlindx,lindx,xlnz,lnz, &

 tvec1)

 ! obtain the original solution

 call perm_rv(np, tvec1, permp)

 ! rhs is the solution.

 rhs(1:np) = tvec1 ;

 z(np+1:n) = da(np+1:n) * z(np+1:n) ;

 call usolve_2(n,np+1,n,da1(np+1:n),icsc,jcsc,csca, &

 z(np+1:n),rhs(np+1:n))

 ic =1 ; iters = i ; relres = nrmr*tol/nrmb ;

 return

 end if

 ! end if

 !

 return

 end subroutine ccrb_2

!---

! $$

!***

!***

!

! Version: 0.3

! modified: Krishna Bahadur Chaudhary, NUS

! Authors: Esmond G. Ng and Barry W. Peyton

! (December 27, 1994)

!

! Mathematical Sciences Section, Oak Ridge National

! Laboratory

!

 328

!***

!***

!********* FWBLKSLV ... BLOCK FOWARD TRIANGULAR SOLUTIONS

!***

!***

!

! PURPOSE:

! GIVEN THE CHOLESKY FACTORIZATION OF A SPARSE SYMMETRIC

! POSITIVE DEFINITE MATRIX, THIS SUBROUTINE PERFORMS THE

! LOWER TRIANGULAR SOLUTION. IT USES OUTPUT FROM BLKFCT.

!

! INPUT PARAMETERS:

! NSUPER - NUMBER OF SUPERNODES.

! XSUPER - SUPERNODE PARTITION.

! (XLINDX,LINDX) - ROW INDICES FOR EACH SUPERNODE.

! (XLNZ,LNZ) - CHOLESKY FACTOR.

!

! UPDATED PARAMETERS:

! RHS - ON INPUT, CONTAINS THE RIGHT HAND

! SIDE. ONOUTPUT, CONTAINS THE

! SOLUTION.

!**

!

 SUBROUTINE FWBLKSLV (NSUPER, XSUPER, XLINDX, LINDX , &

 XLNZ ,LNZ , RHS)

!**

!

 INTEGER NSUPER

 INTEGER LINDX(*) , XSUPER(*)

 INTEGER XLINDX(*) , XLNZ(*)

 DOUBLE PRECISION LNZ(*) , RHS(*)

!

!***

!

 INTEGER FJCOL , I , IPNT , IX , &

 IXSTOP, IXSTRT, JCOL , JPNT , &

 JSUP , LJCOL

 DOUBLE PRECISION T

!

!***

!

 IF (NSUPER .LE. 0) RETURN

!

! ------------------------

! FORWARD SUBSTITUTION ...

! ------------------------

 FJCOL = XSUPER(1)

 DO 300 JSUP = 1, NSUPER

 LJCOL = XSUPER(JSUP+1) - 1

 IXSTRT = XLNZ(FJCOL)

 JPNT = XLINDX(JSUP)

 DO 200 JCOL = FJCOL, LJCOL

 IXSTOP = XLNZ(JCOL+1) - 1

 T = RHS(JCOL)/LNZ(IXSTRT)

 RHS(JCOL) = T

 IPNT = JPNT + 1

! DIR$ IVDEP

 DO 100 IX = IXSTRT+1, IXSTOP

 I = LINDX(IPNT)

 RHS(I) = RHS(I) - T*LNZ(IX)

 IPNT = IPNT + 1

 329

 100 CONTINUE

 IXSTRT = IXSTOP + 1

 JPNT = JPNT + 1

 200 CONTINUE

 FJCOL = LJCOL + 1

 300 CONTINUE

!

 RETURN

 END SUBROUTINE FWBLKSLV

!---

! $$

!***

!***

!

! Version: 0.3

! Last modified: Krishna Bahadur Chaudhary, NUS

! Authors: Esmond G. Ng and Barry W. Peyton

! (December 27, 1994)

!

! Mathematical Sciences Section, Oak Ridge National

! Laboratory

!

!***

!***

!******* BWBLKSLV ... BLOCK BACKWARD TRIANGULAR SOLUTIONS

!***

!***

!

! PURPOSE:

! GIVEN THE CHOLESKY FACTORIZATION OF A SPARSE SYMMETRIC

! POSITIVE DEFINITE MATRIX, THIS SUBROUTINE PERFORMS THE

! UPPER TRIANGULAR SOLUTION. IT USES OUTPUT FROM BLKFCT.

!

! INPUT PARAMETERS:

! NSUPER - NUMBER OF SUPERNODES.

! XSUPER - SUPERNODE PARTITION.

! (XLINDX,LINDX) - ROW INDICES FOR EACH SUPERNODE.

! (XLNZ,LNZ) - CHOLESKY FACTOR.

!

! UPDATED PARAMETERS:

! RHS - ON INPUT, CONTAINS THE RIGHT HAND

! SIDE. ON OUTPUT, CONTAINS THE

! SOLUTION.

!***

!

 SUBROUTINE BWBLKSLV (NSUPER, XSUPER, XLINDX, LINDX , &

 XLNZ , LNZ , RHS)

!

!***

!

 INTEGER NSUPER

 INTEGER LINDX(*) , XSUPER(*)

 INTEGER XLINDX(*) , XLNZ(*)

 DOUBLE PRECISION LNZ(*) , RHS(*)

!

!***

!

 INTEGER FJCOL , I , IPNT , IX , &

 IXSTOP, IXSTRT, JCOL , JPNT , &

 JSUP , LJCOL

 DOUBLE PRECISION T

 330

!

!***

!

 IF (NSUPER .LE. 0) RETURN

!

! -------------------------

! BACKWARD SUBSTITUTION ...

! -------------------------

 LJCOL = XSUPER(NSUPER+1) - 1

 DO 600 JSUP = NSUPER, 1, -1

 FJCOL = XSUPER(JSUP)

 IXSTOP = XLNZ(LJCOL+1) - 1

 JPNT = XLINDX(JSUP) + (LJCOL - FJCOL)

 DO 500 JCOL = LJCOL, FJCOL, -1

 IXSTRT = XLNZ(JCOL)

 IPNT = JPNT + 1

 T = RHS(JCOL)

! DIR$ IVDEP

 DO 400 IX = IXSTRT+1, IXSTOP

 I = LINDX(IPNT)

 T = T - LNZ(IX)*RHS(I)

 IPNT = IPNT + 1

 400 CONTINUE

 RHS(JCOL) = T/LNZ(IXSTRT)

 IXSTOP = IXSTRT - 1

 JPNT = JPNT - 1

 500 CONTINUE

 LJCOL = FJCOL - 1

 600 CONTINUE

!

 RETURN

 END SUBROUTINE BWBLKSLV

!--

!**

!------ Sorting Routines --------------------------------------

!**

!---

subroutine sortadd(uanz,arr,brr,crr,ni,nnz)

! For the same arr index, subsort brr, and at the same time,

! crrchanges correspondingly with brr. After this work, adding

! up all crrcomponents with the same (arr, brr) or (brr, arr)

! index, and thezero-value crr entry will be removed. Finally

! forming the Compressed Sparse Row (CSR) format or Compressed

! Sparse Column (CSC) format to overwrite arr,brr,crr.

! uanz: the nonzero number of arr (or brr, crr).

! arr,brr,crr: three vectors required to be sorted.

! ni: = n + 1 (n is dimension of A)

! nnz: the nonzero number of crr.

!---

 integer, intent(inout):: arr(:),brr(:)

 integer, intent(in):: uanz,ni

 integer, intent(out):: nnz

 real(8), intent(inout):: crr(:)

 integer:: i,j,k,k1,k2,m

 integer, allocatable:: itep(:)

 real(8):: aa

 allocate (itep(ni))

 call sort_3(arr,brr,crr,uanz) ; ! sorting three vectors

 k=1; itep(1)=1

 do i=2, uanz

 331

 if(arr(i)/=arr(i-1)) then

 k=k+1 ; itep(k)=i

 end if

 end do

 itep(k+1)=uanz+1

 !----------------------------

 do i=1, k

 k1=itep(i); k2=itep(i+1)-1

 j=k2-k1+1

 ! call sort_2(brr(k1:k2),crr(k1:k2),j)

 ! sub-brr sorting by Insertion sort if j <= 16.

 if(j<=16) then

 call inssort_2(brr(k1:k2),crr(k1:k2),j)

 else ! quick sorting when j is larger (>16).

 call sort_2(brr(k1:k2),crr(k1:k2),j)

 end if

 end do

 !----------------------------

 m = 0 ;

 do i=1, k

 k1=itep(i); k2=itep(i+1)-1 ; m=m+1;

 arr(i) = m ; brr(m) = brr(k1) ; aa = .0

 do j=k1, k2-1

 aa = aa + crr(j) ;

 if(brr(j+1)/=brr(j)) then

 if(aa /=.0) then

 crr(m) = aa

 m=m+1 ;

 brr(m)= brr(j+1)

 aa = .0

 else ! aa is removed when it is zero.

 brr(m)= brr(j+1)

 end if

 end if

 end do

 crr(m) = aa + crr(k2)

 if(crr(m)==.0) m=m-1

 end do

 arr(k+1)=m+1; nnz=m

 !

 return

end subroutine sortadd

!---

subroutine sort_3(arr,brr,crr,uanz)

! This subroutine - sorts arr into ascending order, brr and

! crr change correspondingly by using Quicksort method.

! quicksort chooses a "pivot" in the set, and explores the

! array from both ends, looking for a value > pivot with the

! increasing index (left to right), for a value <= pivot with

! the decreasing index (right to left), and swapping them when

! it has found one of each. ! The array is then subdivided in

! 2 ([3]) subsets: { values <= pivot} {pivot} {values > pivot}.

! One then call recursively the program to sort each subset.

! When the size of the subarray is small enough, one uses a

! selection sort that is faster for very small sets. Sorting

! an array arr(1:n) into ascending order with quicksort, while

! making the corresponding rarrangements of arrays brr(1:n)

! and crr(1:n).(Revised from ORDERPACK codes)

! uanz: the nonzero number of arr (or brr, crr).

! reference: Chen (2005) and Num. Recipes in Fortran (2002)

 332

!---

 implicit none

 real(8), intent(inout):: crr(:)

 integer, intent(inout):: arr(:),brr(:)

 integer:: uanz

 !

 ! uanz = size(arr) ;

 call quicksort_3(arr,brr,crr,1, uanz) ;

 call inssort_3(arr,brr,crr,uanz) ;

 !

 return

end subroutine sort_3

!--

Recursive subroutine quicksort_3(arr,brr,crr,first,last)

 ! This subroutine sorts arr from first to last in ascending

 ! order

 implicit none

 integer, intent(inout):: arr(:),brr(:)

 real(8), intent(inout):: crr(:)

 integer, intent (in) :: first, last

 integer :: left,right,low,high,mid,xpivot,nins = 16

 ! Max data for insertion sort

 ! for < 16 data, insertion sort will sort

them

 low = first

 high = last

 if ((high - low) > nins) Then

 mid = (low + high) / 2

 ! One chooses a pivot, median of 1st, last, and

middle

 ! values

 if (arr(mid) < arr(low)) Then

 call swap_i(arr(mid),arr(low))

 call swap_i(brr(mid),brr(low))

 call swap_r(crr(mid),crr(low))

 end if

 !

 if (arr(mid) > arr(high)) Then

 call swap_i(arr(mid),arr(high))

 call swap_i(brr(mid),brr(high))

 call swap_r(crr(mid),crr(high))

 !

 if (arr(mid) < arr(low)) Then

 call swap_i(arr(mid),arr(low))

 call swap_i(brr(mid),brr(low))

 call swap_r(crr(mid),crr(low))

 end if

 end if

 !

 xpivot = arr(mid)

 !

 ! One exchanges values to put those > pivot in the

 ! end and those <= pivot at the beginning

 !

 left = low

 right = high

 ! Repeat the follwoing while left and right haven't

 ! met

 outer: do !---------------------------

 if (left >= right) exit

 333

 ! scan right to left to find element < pivot

 do

 if (arr(right) <= xpivot) exit

 right = right -1

 end do

 ! scan left to right to find element > pivot

 do

 if(arr(left) > xpivot) exit

 left = left + 1

 if (left >= right) exit

 ! the last value < pivot is always less than

 ! left-1

 end do

 ! if left and right haven't met, exchange the

 ! items

 if (left < right) then

 call swap_i(arr(left),arr(right))

 call swap_i(brr(left),brr(right))

 call swap_r(crr(left),crr(right))

 end if

 end do outer !---------------------------

 !

 ! One now sorts each of the two sub-intervals

 !

 call quicksort_3(arr,brr,crr,first,left-1)

 call quicksort_3(arr,brr,crr,right,last)

 end if

 !

 return

end subroutine quicksort_3

!---

subroutine inssort_3(arr,brr,crr,uanz)

! This subroutine sorts arr into increasing order

! (Insertion sort)

! reference: Numerical Reciepts '90 book & Chen (2005)

!---

 integer,intent(inout) :: arr(:),brr(:)

 integer, intent(in):: uanz

 integer :: left,right,xswap,yswap

 real(8),intent(inout) :: crr(:)

 real(8) :: zswap

 !

 do right = 2, uanz ! Pick out each element in turn

 xswap = arr(right); yswap = brr(right);

 zswap = crr(right);

 ! Look for the place to insert it

 do left = right-1, 1,-1

 if (arr(left) <= xswap) exit

 arr (left+1) = arr (left)

 brr (left+1) = brr (left)

 crr (left+1) = crr (left)

 end do

 ! insert it

 arr(left+1) = xswap; brr(left+1) = yswap;

 crr(left+1) = zswap

 end do

 !

 return

end subroutine inssort_3

 334

!---

!---

subroutine sort_2(brr,crr,n)

! This subroutine - sorts brr into ascending order and crr

! changes correspondingly by using Quicksort method.

! quicksort chooses a "pivot" in the set, and explores the

! array from both ends, looking for a value > pivot with the

! increasing index (left to right), for a value <= pivot with

! the decreasing index (right to left), and swapping them when

! it has found one of each. ! The array is then subdivided in

! 2 ([3]) subsets: { values <= pivot} {pivot} {values > pivot}.

! One then call recursively the program to sort each subset.

! When the size of the subarray is small enough (say < 16,

! in this case), one uses a selection sort that is faster for

! very small sets.(Revised from ORDERPACK codes)

! n : size of brr (or crr) to be sorted

!---

 implicit none

 real(8), intent(inout):: crr(:)

 integer, intent(inout):: brr(:)

 integer, intent(in):: n

 !

 call quicksort_2(brr,crr,1,n) ;

 call inssort_2(brr,crr,n) ;

 !

 return

end subroutine sort_2

!---

Recursive subroutine quicksort_2(brr,crr,first,last)

 implicit none

 integer, intent(inout):: brr(:)

 real(8), intent(inout):: crr(:)

 integer, intent (in) :: first, last

 integer :: left,right,low,high,mid,xpivot,nins = 16

 ! Max data for insertion sort

 ! for < 16 data, insertion sort will sort them

 low = first

 high = last

 if ((high - low) > nins) Then

 mid = (low + high) / 2

 ! One chooses a pivot, median of 1st, last,

 ! and middle values

 if (brr(mid) < brr(low)) Then

 call swap_i(brr(mid),brr(low))

 call swap_r(crr(mid),crr(low))

 end if

 !

 if (brr(mid) > brr(high)) Then

 call swap_i(brr(mid),brr(high))

 call swap_r(crr(mid),crr(high))

 !

 if (brr(mid) < brr(low)) Then

 call swap_i(brr(mid),brr(low))

 call swap_r(crr(mid),crr(low))

 end if

 end if

 !

 xpivot = brr(mid)

 !

 ! One exchanges values to put those > pivot in the

 335

 ! end and those <= pivot at the beginning

 !

 left = low

 right = high

 ! Repeat the follwoing while left and right haven't

 ! met

 outer: do !---------------------------

 if (left >= right) exit

 ! scan right to left to find element < pivot

 do

 if (brr(right) <= xpivot) exit

 right = right -1

 end do

 ! scan left to right to find element > pivot

 do

 if(brr(left) > xpivot) exit

 left = left + 1

 if (left >= right) exit

 ! the last value < pivot is always less than

 ! left-1

 end do

 ! if left and right haven't met, exchange the

 ! items

 if (left < right) then

 call swap_i(brr(left),brr(right))

 call swap_r(crr(left),crr(right))

 end if

 end do outer !---------------------------

 !

 ! One now sorts each of the two sub-intervals

 !

 call quicksort_2(brr,crr,first,left-1)

 call quicksort_2(brr,crr,right,last)

 end if

 !

 return

end subroutine quicksort_2

!---

subroutine inssort_2(brr,crr,n)

! This subroutine sorts brr into increasing order

!(Insertion sort)

! and at the same time, crr changes correnspondingly with brr

! Insertion sort is considered faster for small size of arrays

!---

 integer, intent(inout) :: brr(:)

 integer, intent(in):: n

 integer :: left,right,yswap

 real(8), intent(inout) :: crr(:)

 real(8) :: zswap

 !

 do right = 2, n ! Pick out each element in turn

 yswap = brr(right); zswap = crr(right);

 ! Look for the place to insert it

 do left = right-1, 1,-1

 if (brr(left) <= yswap) exit

 brr (left+1) = brr (left)

 crr (left+1) = crr (left)

 end do

 ! insert it

 336

 brr(left+1) = yswap; crr(left+1) = zswap

 end do

 !

 return

end subroutine inssort_2

!---

subroutine swap_i(a,b)

 ! swap the contents of a and b

 ! reference: Numerical Recipes in Fortran 90 (2002),p.1366

 integer, intent(inout):: a,b

 integer:: temp

 temp = a; a = b ; b = temp

 !

 return

end subroutine swap_i

!---

subroutine swap_r(a,b)

 ! swap the contents of a and b

 ! reference: Numerical Recipes in Fortran 90 (2002),p.1367

 real(8), intent(inout):: a,b

 real(8):: temp

 temp = a; a = b ; b = temp

 !

 return

end subroutine swap_r

!---

 end subroutine dperm

 subroutine dvperm (n, x, perm)

 integer:: n, perm(:)

 real(8):: x(:)

!---

! this subroutine performs an in-place permutation of a real

! vector x according to the permutation array perm(*),

! i.e., on return, the vector x satisfies,

!

! x(perm(j)) :== x(j), j=1,2,.., n

!

!---

! on entry:

!---------

! n = length of vector x.

! perm = integer array of length n containing the

permutation

! array.

! x = input vector

!

! on return:

!----------

! x = vector x permuted according to x(perm(*)) := x(*)

!

!---

! Y. Saad, Sep. 21 1989

!---

! local variables

 real*8 tmp, tmp1

!

 init = 1

 tmp = x(init)

 ii = perm(init)

 perm(init)= -perm(init)

 k = 0

 337

!

! loop

!

 6 k = k+1

!

! save the chased element --

!

 tmp1 = x(ii)

 x(ii) = tmp

 next = perm(ii)

 if (next .lt. 0) goto 65

!

! test for end

!

 if (k .gt. n) goto 101

 tmp = tmp1

 perm(ii) = - perm(ii)

 ii = next

!

! end loop

!

 goto 6

!

! reinitilaize cycle --

!

 65 init = init+1

 if (init .gt. n) goto 101

 if (perm(init) .lt. 0) goto 65

 tmp = x(init)

 ii = perm(init)

 perm(init)=-perm(init)

 goto 6

!

 101 continue

 do 200 j=1, n

 perm(j) = -perm(j)

 200 continue

!

 return

!-------------------end-of-dvperm-----------------------------

!---

subroutine perm_rv (n, rhs, perm)

! This subroutine is from sparspak.f90

!

!! PERM_RV undoes the permutation of the right hand side.

!

! Discussion:

!

! This routine should be called once the linear system has

! been solved and the solution returned in RHS. The

! routine then undoes the permutation of RHS, restoring the

! original ordering. To do this, it needs the PERM vector

! which defined the reordering used by the solver.

!

! Modified:

!

! 24 February 2007

!

! Author:

!

! Alan George, Joseph Liu

 338

!

! Reference:

!

! Alan George, Joseph Liu,

! Computer Solution of Large Sparse Positive Definite Systems,

! Prentice Hall, 1981,

! ISBN: 0131652745,

! LC: QA188.G46.

!

! Parameters:

!

! Input, integer N, the number of equations.

!

! Input/output, real (kind = 8) RHS(N).

! On input, the solution of the permuted linear system.

! On output, the solution of the original linear system.

!

! Input, integer PERM(N), the permutation information.

! PERM(I) = K means that the K-th equation and variable

! in the original ordering became the I-th equation and

! variable in the reordering.

!

 implicit none

 integer::n,iput,istart,perm(:)

 real(8):: pull,put,rhs(:)

! integer n

! integer iput

! integer istart

! integer perm(n)

! real (kind = 8) pull

! real (kind = 8) put

! real (kind = 8) rhs(n)

!

! Mark PERM with negative signs which will be removed

! as each permuted element is restored to its rightful place

!

 perm(1:n) = -perm(1:n)

!

! Search for the next element of PERM which is the first

! element of a permutation cycle.

!

 istart = 0

20 continue

 do

 istart = istart + 1

 if (n < istart) then

 return

 end if

 if (0 < perm(istart)) then

 cycle

 end if

 if (abs (perm(istart)) /= istart) then

 exit

 339

 end if

 perm(istart) = abs (perm(istart))

 end do

!

! Begin a cycle.

!

 perm(istart) = abs (perm(istart))

 iput = istart

 pull = rhs(iput)

 do

 iput = abs (perm(iput))

 put = rhs(iput)

 rhs(iput) = pull

 pull = put

 if (0 < perm(iput)) then

 go to 20

 end if

 perm(iput) = abs (perm(iput))

 end do

end subroutine perm_rv

!**

!------ Preconditioned Iterative Solvers ----------------------

!**

!---

subroutine sbd1pcg(n,jcsca,icsca,csca,diagg,nsuper,xsuper, &

 xlindx,lindx,xlnz,lnz,permp,perm_invp,rhs, &

 maxit,tol,iters,relres)

 ! This subroutine uses diagonal block PCG to solve Ax=b

 ! linear system with a right diagonal preconditioner.

 ! A = [P L ; L' G]

 ! M^(-1) = [P^-1 0;

 ! 0 (diag(G))^-1]

 !

 ! Parameters:

 ! On input:

 ! n: dimension of coefficient matrix A;

 ! jcsca,icsca,

 ! csca: CSC storage of coefficient matrix A;

 ! diagp: diagonal of block(1,1) in inverted form

 ! nsuper,xsuper,

 ! xlindx,lindx,

 ! xlnz,lnz: Sparse Cholesky factorization of

block(2,2),

 ! permg: MMD permutation vector

 ! perm_invg: Inverse of MMD permutation vector

 ! rhs: at input, it is right hand vector b;

 ! at output,it is returned approximate

 ! solution x;

 ! maxit: user-defined maximum iteration count;

 ! tol: it is the user-defined stopping tolerance;

 ! relative residual norm criterion (x0=.0)

 ! for convergence

 340

 ! ic: indentifier of convergence;

 ! = 1, solver converged;

 ! = 0, not converge.

 ! On output:

 ! rhs: approximate solution x

 ! iters: the iterative count when PCG converges;

 ! relres: the relative residual when PCG converges.

 ! Reference: Book: Van der Vorst (2003) or Template (1994)

 !---

 implicit none

 integer,intent(in):: n,jcsca(:),icsca(:),nsuper,xsuper(:), &

 xlindx(:),lindx(:),xlnz(:),permp(:), &

 perm_invp(:),maxit

 real(8),intent(in):: csca(:),diagg(:),lnz(:),tol

 integer,intent(out):: iters

 real(8),intent(out):: relres

 real(8),intent(inout):: rhs(:)

 ! local variables

 integer:: i,ic,np,ng

 real(8):: nrmb,nrmr,rho,rho0,alpha,beta

 real(8),allocatable:: r(:),z(:),p(:),q(:),x(:),xold(:), &

 tvec(:)

 allocate (r(n),z(n),p(n),q(n),x(n),xold(n))

 ng = size(diagg) ; ! size of block(2,2)

 np = n-ng ! size of block(1,1)

 allocate (tvec(np))

 ! b -- is RHS vector when inputting, while it is the

 ! Solution Vector when returning.

 x = .0 ; ! x0=0 is the initial solution guess

 r = rhs ;

 nrmb=sqrt(dot_product(rhs, rhs))*tol;

 ic=0 ; xold = x ;

pcg_iter: do i=1, maxit

 !------preconditioning step----- z = pr*r ------------

 tvec = r(1:np)

 ! permute the rhs according to MMD permutation

 call dvperm(np,tvec,perm_invp)

 call blkslv(nsuper,xsuper,xlindx,lindx,xlnz,lnz,tvec)

 ! obtain the original solution from permuted solution

 call perm_rv (np, tvec, permp)

 z(1:np) = tvec

 !-------

 z(np+1:) = diagg*r(np+1:) ;

 !--

 rho = dot_product(r, z) ;

 if (i > 1)then ! direction vector

 beta = rho/rho0;

 p = z + beta*p;

 else

 p = z;

 end if

 !-----q=Ap, Matrix-vector product----------------------

 call cscax(icsca,jcsca,csca,p,q)

 !-------------------------------

 alpha = rho/dot_product(p, q) ;

 x = x + alpha * p ;

 341

 r = r - alpha * q ;

 nrmr=sqrt(dot_product(r, r)) ;

 call pccrb(n,i,r,x,rhs,tol,nrmb,ic,iters, nrmr,relres)

 if(ic==1)return ; ! PCG converged

 rho0 = rho

end do pcg_iter

 write(11,'(a)') ' '

 write(11,'(a)') &

 ' PCG does not converge to user-defined tolerance. '

 write(11,'(a,i7)') ' at iteration =',maxit

 write(11,'(a)') &

 '*** '

 write(11,'(a)') &

 ' PCG does not converge to user-defined tolerance. '

 relres=nrmr*tol/nrmb ; iters = maxit ; rhs=x

 return

end subroutine sbd1pcg

!---

subroutine sbd2pcg(n,jcsca,icsca,csca,diagg,nsuper,xsuper, &

 xlindx,lindx,xlnz,lnz,permp,perm_invp,rhs, &

 maxit,tol,iters,relres)

 ! This subroutine uses diagonal block PCG to solve Ax=b

 ! linear system with a right diagonal preconditioner.

 ! A = [P L ; L' G]

 ! M^(-1) = [P^-1 0;

 ! 0 SSOR(G)^-1]

 !

 ! Parameters:

 ! On input:

 ! n: dimension of coefficient matrix A;

 ! jcsca,icsca,

 ! csca: CSC storage of coefficient matrix A;

 ! diagg: diagonal of block(2,2) in inverted form

 ! nsuper,xsuper,

 ! xlindx,lindx,

 ! xlnz,lnz: Sparse Cholesky factorization of block(1,1)

 ! permp: MMD permutation vector

 ! perm_invp: Inverse of MMD permutation vector

 ! rhs: at input, it is right hand vector b;

 ! at output,it is returned approximate

 ! solution x;

 ! maxit: user-defined maximum iteration count;

 ! tol: it is the user-defined stopping tolerance;

 ! relative residual norm criterion (x0=.0)

 ! for convergence

 ! ic: indentifier of convergence;

 ! = 1, solver converged;

 ! = 0, not converge.

 ! On output:

 ! rhs: approximate solution x

 ! iters: the iterative count when PCG converges;

 ! relres: the relative residual when PCG converges.

 ! Reference: Book: Van der Vorst (2003) or Template (1994)

 !---

 implicit none

 integer,intent(in):: n,jcsca(:),icsca(:),nsuper,xsuper(:), &

 xlindx(:),lindx(:),xlnz(:),permp(:), &

 342

 perm_invp(:),maxit

 real(8),intent(in):: csca(:),diagg(:),lnz(:),tol

 integer,intent(out):: iters

 real(8),intent(out):: relres

 real(8),intent(inout):: rhs(:)

 ! local variables

 integer:: i,j,ic,np,ng

 real(8):: nrmb,nrmr,rho,rho0,alpha,beta

 real(8),allocatable:: r(:),z(:),p(:),q(:),x(:),xold(:), &

 tvec1(:),tvec2(:),tvec3(:)

 allocate (r(n),z(n),p(n),q(n),x(n),xold(n))

 ng = size(diagg) ; ! size of block(2,2)

 np = n-ng ! size of block(1,1)

 allocate (tvec1(np),tvec2(ng),tvec3(ng))

 ! b -- is RHS vector when inputting, while it is the

 ! Solution Vector when returning.

 x = .0 ; r = rhs ; ! x0=0 is the initial solution guess

 nrmb=sqrt(dot_product(rhs, rhs))*tol;

 ic=0 ; xold = x ;

pcg_iter: do i=1, maxit

 !------preconditioning step----- z = pr*r ------------

 tvec1 = r(1:np)

 ! permute the rhs according to MMD permutation

 call dvperm(np,tvec1,perm_invp)

 call blkslv(nsuper,xsuper,xlindx,lindx,xlnz,lnz,tvec1)

 ! obtain the original solution from permuted solution

 call perm_rv (np, tvec1, permp)

 z(1:np) = tvec1

 !-------

 tvec2 = r(np+1:n)

 call lsolve_2(n,np, diagg,icsca,jcsca,csca,tvec2,tvec3);

 do j = 1,ng ; tvec3(j) = tvec3(j)/diagg(j) ; end do

 call usolve_2(n,np,diagg,icsca,jcsca,csca,tvec3,z(np+1:n));

 ! z(np+1:) = diagg*r(np+1:) ;

 !--

 rho = dot_product(r, z) ;

 if (i > 1)then ! direction vector

 beta = rho/rho0;

 p = z + beta*p;

 else

 p = z;

 end if

 !-----q=Ap, Matrix-vector product----------------------

 call cscax(icsca,jcsca,csca,p,q)

 !-------------------------------

 alpha = rho/dot_product(p, q) ;

 x = x + alpha * p ;

 r = r - alpha * q ;

 nrmr=sqrt(dot_product(r, r)) ;

 call pccrb(n,i,r,x,rhs,tol,nrmb,ic,iters, nrmr,relres)

 if(ic==1)return ; ! PCG converged

 rho0 = rho

end do pcg_iter

 343

 write(11,'(a)') ' '

 write(11,'(a)') &

 ' PCG does not converge to user-defined tolerance. '

 write(11,'(a,i7)') ' at iteration =',maxit

 write(11,'(a)') &

 '*** '

 write(11,'(a)') &

 ' PCG does not converge to user-defined tolerance. '

 relres=nrmr*tol/nrmb ; iters = maxit ; rhs=x

 return

end subroutine sbd2pcg

!---

subroutine m1sqmr(n,icsc,jcsc,csca,nsuper,xsuper,xlindx, &

 lindx,xlnz,lnz,permp,perm_invp,invgj,rhs, &

 maxit,tol,icc,qmriters,relres)

 ! This subroutine uses SQMR to solve Ax=b linear system

 ! with a right diagonal preconditioner.

 ! In this routine:

 ! n: dimension of coefficient matrix A;

 ! icsc,jcsc,csca: CSC storage of coefficient matrix A;

 ! pr: right preconditioner

 ! (which is inverted at input);

 ! rhs: at input, it is right hand vector b;

 ! at output,

 ! it is returned approximate solution x;

 ! maxit: user-defined maximum iteration count;

 ! tol: it is the user-defined stopping tolerance;

 ! icc: choice for convergence criterion;

 ! = 1, relative improvement norm criterion

 ! = 2, relative residual norm criterion

 ! ic: indentifier of convergence;

 ! = 1, solver converged;

 ! = 0, not converge.

 ! qmriters: the iterative count when SQMR converges;

 ! relres: the relative residual when SQMR converges.

 implicit none

 integer,intent(in)::n,maxit,icc,icsc(:),jcsc(:),nsuper, &

 xsuper(:),xlindx(:),lindx(:),xlnz(:), &

 permp(:),perm_invp(:)

 real(8),intent(in)::tol,csca(:),lnz(:),invgj(:)

 ! pr(:)

 integer,intent(out):: qmriters

 real(8),intent(out):: relres ;

 real(8),intent(inout):: rhs(:)

 integer:: i,ic,np

 real(8):: tao,theta0,rho0,rho,nrmb,nrmr,sigma,alpha,beta, &

 theta,cj

 real(8),allocatable::x(:),xold(:),r(:),t(:),q(:),d(:),u(:), &

 z(:)

 allocate(x(n),xold(n),r(n),t(n),q(n),d(n),u(n))

 np = size(permp) ;

 allocate (z(np))

 !------ Initial vectors of SQMR iterations ------

 x=.0 ! assumed initial guess

 r=rhs;

 t=r; ! left preconditioning

 !----right preconditioning---- q = M2^-1 * t ------

 z = t(1:np) ; ! z is a temporary vector

 ! permute the rhs according to MMD permutation

 344

 call dvperm(np,z,perm_invp)

 call blkslv(nsuper,xsuper,xlindx,lindx,xlnz,lnz,z)

 ! obtain the original solution from permuted solution

 call perm_rv (np, z, permp)

 q(1:np) = z

 !----------

 q(np+1:) = invgj(np+1:) * t(np+1:)

 !--

 tao=sqrt(dot_product(t, t));

 theta0=.0;

 rho0=dot_product(r,q);

 nrmb=sqrt(dot_product(r, r))*tol;

 d=.0; ic=0 ; xold = x ;

 !------------ Sart SQMR iterations -------------

 iteration: do i=1, maxit

 ! t=A*q, Matrix-vector product.

 call cscax(icsc,jcsc,csca,q,t)

 sigma=dot_product(q,t);

 alpha=rho0/sigma ;

 r = r-alpha*t ;

 t= r; ! left preconditioning

 theta=sqrt(dot_product(t, t))/tao ;

 cj=1./sqrt(1+theta*theta);

 tao=tao*theta*cj;

 d=(cj*theta0)**2*d+(cj*cj)*alpha*q ;

 x = x + d;

 nrmr=sqrt(dot_product(r, r)) ;

 select case (icc)

 case (1)

 call pccri(n,i,xold,x,rhs,tol,ic,qmriters,relres)

 xold = x ;

 case (2)

 call pccrb(n,i,r,x,rhs,tol,nrmb,ic,qmriters,nrmr, &

 relres)

 end select

 if(ic==1) return ; ! SQMR converged

 !u=pr*t ; ! right preconditioning

 !------ right preconditioning u = M2^-1 * t ------

 z = t(1:np) ; ! z is a temporary vector

 call dvperm(np,z,perm_invp)

 call blkslv(nsuper,xsuper,xlindx,lindx,xlnz,lnz,z)

 ! obtain the original solution from permuted solution

 call perm_rv (np, z, permp)

 u(1:np) = z

 !----------

 u(np+1:) = invgj(np+1:) * t(np+1:)

 !---

 rho=dot_product(r,u);

 beta=rho/rho0; q = u + beta*q ;

 !

 rho0=rho; theta0=theta;

 end do iteration

 write(*,'(a)') ' '

 write(*,'(a)') &

 'SQMR does not converge to user-defined tolerance. '

 write(*,'(a,i7)') ' at iteration =' ,maxit

 write(11,'(a)') &

 '*** '

 write(11,'(a)') &

 'SQMR does not converge to user-defined tolerance. '

 relres=nrmr*tol/nrmb ; qmriters = maxit ; rhs=x

 345

 !

 return

end subroutine m1sqmr

!---

subroutine m2sqmr(n,icsc,jcsc,csca,nsuper,xsuper,xlindx, &

 lindx,xlnz,lnz,permp,perm_invp,np,sn,nh, &

 icsce,jcsce,csce,d,da,da1,rhs,maxit,tol, &

 iinc,qmriters,relres)

! This subroutine uses SQMR to solve Ax=b linear system with

! a left-right blockdiagonal preconditioner.

!

! A = [Pile block = [P L B1 ;

! Soil Block L' G B2 ;

! Fluid block] B1' B2' -C]

!

! Preconditioner M = [P 0;

! 0 MSSOR(H)]

!

! where P = pile block

! MSSOR(H) = Modified SSOR for soil-fluid block H

! H = [G B2;

! B2' -C]

! diag(C) is replaced by alpha*diag(S)

! S = C + B1' * inv(diag(P)) * B1 + B2' * inv(diag(G)) * B2

! = approximate Schur complement

!

! In this routine:

! n: dimension of coefficient matrix A;

! icsc,jcsc,csca: CSC storage of coefficient matrix A;

! icsce,jcsce,csce: CSC storage of block E, E = [L B1]

! nsuper,xsuper,xlindx,lindx,xlnz,lnz: Sparse Cholesky

! factorization of P

! permp,perm_invp: MMD Permutation and Inverse

! permutation vectors for P

! np: pile displacement DOFs

! sn: total (pile + soil) displacement DOFs

! nh: dimension of block H

! (soil + pore pressure DOFs)

! d: original diagonal of H (d(1:np) = 1.0);

! da: modified diagonal for MSSOR preconditioner;

! da1: inverse of da;

! rhs: at input, it is right hand vector b;

! at output,

! it is returned approximate solution x;

! maxit: user-defined maximum iteration count;

! tol: it is the user-defined stopping tolerance;

! ic: indentifier of convergence;

! = 1, solver converged;

! = 0, not converge.

! qmriters: the iterative count when SQMR converges;

! relres: the relative residual when SQMR converges.

!---

 implicit none

 integer,intent(in)::n,maxit,icsc(:),jcsc(:),nsuper, &

 xsuper(:),xlindx(:),lindx(:),xlnz(:), &

 permp(:),perm_invp(:),np,sn,nh,icsce(:),&

 jcsce(:),iinc

 integer,intent(out):: qmriters

 real(8),intent(in)::tol,csca(:),lnz(:),csce(:),d(:),da(:), &

 da1(:)

 real(8),intent(out):: relres ;

 346

 real(8),intent(inout):: rhs(:)

 ! local variables

 integer:: i,ic

 real(8):: tao,theta0,rho0,rho,nrmb,nrmr,sigma,alpha,beta, &

 theta,cj

 real(8),allocatable::x(:),xold(:),r(:),s(:),v(:),w(:), &

 t(:),q(:),c(:),z(:),tvec1(:),tvec2(:),tvec3(:), &

 f(:),invdiagh(:),d2(:)

 allocate(x(n),xold(n),r(n),s(n),v(n),w(n),t(n),q(n),c(n), &

 z(n),tvec1(np),tvec2(nh),tvec3(nh),f(nh), &

 invdiagh(nh),d2(nh))

 !------ Initial vectors of SQMR iterations ------

 x = .0 ; r = rhs; z = .0 ! assumed initial guess

 tvec1 = r(1:np);

 ! permute the rhs(1:np) according to MMD permutation

 call dvperm(np,tvec1,perm_invp)

 call

fwblkslv(nsuper,xsuper,xlindx,lindx,xlnz,lnz,tvec1)

 s(1:np) = tvec1 ; ! s is left preconditioned residual

 !----------

 call lsolve_2(n,np+1,n,da1(np+1:n),icsc,jcsc,csca, &

 r(np+1:n),s(np+1:n))

 v = s ; w(1:np) = v(1:np) ;

 w(np+1:n) = da(np+1:n) * v(np+1:n) ;

 !--

 tao = dot_product(s, s) ; theta0 = .0;

 rho0 = dot_product(s,w);

 ! preconditioned residual

 nrmb = dsqrt(dot_product(s, s))*tol;

 ! nrmb = dsqrt(dot_product(r, r))*tol; ! true residual

 c = .0; ic = 0 ; xold = x ;

 d2 = d(np+1:n) - 2.0*da(np+1:n)

 !------------ Sart SQMR iterations -------------------------

 iteration: do i = 1, maxit

 ! t=A~*v, (w = da*v) Preconditioned matrix-vector

 ! multiplication

 call pa11ssora22x(n,icsc,jcsc,csca,nsuper,xsuper,xlindx, &

 lindx,xlnz,lnz,permp,perm_invp,np,nh, &

 icsce,jcsce,csce,da,da1,d2,w,t)

 sigma=dot_product(w,t);

 if(sigma==.0) then

 write(11,*) 'SQMR stops due to Sigma=0 '; stop

 end if

 alpha = rho0/sigma ; s = s-alpha*t ;

 theta = dot_product(s, s)/tao ; cj = 1./(1.+theta);

 tao = tao*theta*cj;

 c = cj*(theta0*c + alpha*v) ;

 z = z + c;

 ! Check for convergence

 call ccrb_2(n,i,icsc,jcsc,csca,nsuper,xsuper,xlindx, &

 lindx,xlnz,lnz,permp,perm_invp,np,nh,da,da1, &

 s,z,iinc,tol,nrmb,rhs,ic,qmriters,relres)

 if(ic==1) return ; ! SQMR converged

 q(1:np) = s(1:np) ; q(np+1:n) = da(np+1:n) * s(np+1:n) ;

 rho = dot_product(s,q); beta = rho/rho0;

 v = s + beta*v ;

 w(1:np) = v(1:np) ; w(np+1:n) = da(np+1:n) * v(np+1:n) ;

 !

 347

 rho0 = rho; theta0 = theta;

 end do iteration

 write(*,'(a)') ' '

 write(*,'(a)') &

 'SQMR does not converge to user-defined tolerance. '

 write(*,'(a,i7)') ' at iteration =' ,maxit

 write(11,'(a)') &

 '** '

 write(11,'(a)') &

 'SQMR does not converge to user-defined tolerance. '

 qmriters = maxit ;

 tvec1 = z(1:np);

 call bwblkslv(nsuper,xsuper,xlindx,lindx,xlnz,lnz,tvec1)

 ! obtain the original solution from permuted solution

 call perm_rv (np, tvec1, permp)

 rhs(1:np) = tvec1

 !----------------

 z(np+1:n) = da(np+1:n) * z(np+1:n) ;

 call usolve_2(n,np+1,n,da1(np+1:n),icsc,jcsc,csca, &

 z(np+1:n),rhs(np+1:n))

 !

 return

end subroutine m2sqmr

!---

end module sparselib_v3

 348

(blank)

 349

APPENDIX F

USER DEFINED SOLVER IN GeoFEA

F.1. Source code for user defined solver

This is the source code of user defined solver (USOLV.F90). Some

modifications are made to properly run the original sample USOLV.F90.

These are as follows (Sequence numbers follows the box numbers indicated in

the source code):

1. Changes in INTENT (IN and INOUT) declaration of the variables in

the original subroutine UDSOL. The variables that are modified

within the subroutine are declared as INTENT (INOUT).

 Integer(4),Intent(INOUT):: IHND_PIC,NCORR(NTPE,NEL), &

 TF(7,50000),IPOS(NDF),IRPOS(NDF), &

 IYIELD_CODE(NIP,NEL),NPLax

 Real(8), Intent(INOUT) :: DTIMEI,FRACLD,TOLD,TOLT, &

 XYZ(NDIM,NN),DA(NDF),P(NDF),PCOR(NDF), &

 REAC(NDF),STR(NVRN,NIP,NEL), &

VARINT(NVRS,NIP,NEL),W(120), PORINS(NN), &

 PR(NPR,NMT),L(4,120),DXYT(7,50000)

2. Modification in the local variables as per necessary.

3. A new subroutine SPSNEQ is embedded. This subroutine counts the

free degrees of freedom (DOFs) excluding fixities with zero

prescribed values. In order not to disturb the global arrays KGVN,

 350

IPOS, and IRPOS from GeoFEA, corresponding arrays KGVN2,

IPOS1, and IRPOS1 were introduced to take into account the changes

according to new number of DOFs. The meaning of variables is

explained in the next Section.

 CALL SPSNEQ(IWO,NDIM,NDFR,NDF,MXDF,NN,KGVN,NTPE,NEL, &

NCORR,LINFO,NF,MF,TF,DXYT, LTYP,IPOS,IRPOS,&

 NEQ,KGVN2,IPOS1,IRPOS1,IDOF,IDFX,RGF, REAC, &

ITERP,FRACLD,DA,PORINS,ValSML,NUMFX,NFXDF)

Subsequent changes in the assembly procedures in the subroutines

SPSMAT, FMSPS2, formation of GJ preconditioner in FMGJDIAG, and

in SQMR solver have been made.

4. There is a major change in subroutine SPSMAT. It is almost rewritten

differently to accommodate the changes in item 3. There are several

changes in this subroutine. Particularly, the reaction fixing and

assigning fixities Section were removed as these are taken care by

subroutine SPSNEQ.

5. Subsequent changes in the subroutine FMSPS2 are indicated in box

number 5.

6. Changes in the size of allocatable arrays according to NEQ (number of

equations excluding equations for zero prescribed fixities) and

formation of GJ preconditioner in the subroutine FMGJDIAG2.

7. Minor changes in the SQMR solver are indicated by box number 7.

 351

For demonstration purpose, only the code for generalized Jacobi

preconditioned SQMR (GJ-SQMR) solver is presented here.

Subroutine UDSOL(DTIMEI,NN,MXDF,NEL,NDF,NTPE,NIP,NPR,NMT, &

 KES,NS,NB,NPLax,NDIM,NDMX,NVRS,NPMX,INXL,MDFE, &

KSS,XYZ,DI,DA,NVRN,STR,P,PCOR,REAC,VARINT,NCORR, &

KGVN,NMOD,NL,W,PORINS,LTYP,MRELVV,MAT,L,PR,NTY, &

FRACLD,IDNA,NEL_NA,MFZ,IPOS,IRPOS,NDFR,DXYT, &

 MINFO,LINFO,TF,MF,NF,TOLD,TOLT, MAXIT,StartDlg, &

 Dlg_iter,IHND_PIC,IUPD,ITERP,IYIELD_CODE)

 !DEC$ ATTRIBUTES DLLEXPORT :: UDSOL

 Use Xflogm ; Use Ifwin ;

 Implicit None

!

!--

! GLOBAL VARIABLES (CHANGE NOT ALLOWED REGION)

!--

Type(DIALOG),Intent(INOUT):: Dlg_iter

 Logical,Intent(INOUT):: StartDlg

 Integer(4),Intent(IN):: NN,MXDF,NEL,NDF,NTPE,NIP,NPR,NMT, &

KES,NS,NB,NDIM,NDMX,NVRS,NPMX,INXL,MDFE,KSS, &

 NVRN,NL,MAXIT,ITERP,IUPD,KGVN(MXDF,NN), &

 NMOD(NIP,NEL),LTYP(NEL),MRELVV(NEL),MAT(NEL), &

 NTY(NMT),IDNA(NEL),NEL_NA,MINFO(6,30,20), &

 LINFO(50,20),MF(50000),NF

 Integer(4),Intent(INOUT):: IHND_PIC,NCORR(NTPE,NEL), &

 TF(7,50000),IPOS(NDF),IRPOS(NDF), &

 IYIELD_CODE(NIP,NEL),NPLax,NDFR

 Integer(8),Intent(IN):: MFZ

 Real(8), Intent(INOUT) :: DTIMEI,FRACLD,TOLD,TOLT, &

 XYZ(NDIM,NN),DA(NDF),P(NDF),PCOR(NDF), &

 REAC(NDF),STR(NVRN,NIP,NEL), &

VARINT(NVRS,NIP,NEL),W(120), PORINS(NN), &

 PR(NPR,NMT),L(4,120),DXYT(7,50000)

 Real(8), Intent(Out) :: DI(NDF)

!===START

! CONVERGENCE HISTORY PLOTTING INTERFACE (IF USER PREFER)

!--

 Pointer (IDPLOT, CHPLOT)

 Interface

 Subroutine CHPLOT(XDlg,StartDlg,IHND_PIC,ISTAGE,IUP, &

ITERP,ISque,ISubInc,iSolve, IDcore, Iters, &

 RelRes,TruRes,iPoints)

 !DEC$ ATTRIBUTES DLLIMPORT :: CHPLOT

 Use XFLOGM

 Implicit None

!--

! GLOBAL VARIABLES

!--

 Include 'resource.fd'

 Type(DIALOG),Intent(INOUT):: XDlg

 Logical,Intent(INOUT) :: StartDlg

 Integer,Optional, Intent(IN):: IUP,ITERP,ISque, &

ISubInc,iSolve,IDcore,iPoints,Iters(:)

 Real(4),Optional, Intent(IN) :: RelRes(:),TruRes(:)

 Integer,Intent(INOUT) ::IHND_PIC,ISTAGE

(1)

(1)

 352

 End Subroutine CHPLOT

 End Interface

!===END

!--

! LOCAL VARIABLES (CHANGE ALLOWED REGION)

!--

 Integer(4) :: IWO,ISTAGE,IUP,IDcore,nPoints,iPoints, &

IPLOTDLL,IDPLOT,ISque, ISubInc,iSolve,NDF1, &

 I,IRR,IJK,ITER,NEBE,NNZ,NEQ,J,K,K1,K2,NUM, &

 NUMFX,NFXDF(30000)

 Integer(4), Allocatable:: IDFX(:),Iters(:),IDOF(:), &

IEBE(:),JEBE(:),KGVN2(:,:),IPOS1(:),IRPOS1(:)

 Real(8) :: ValSML,RhsNrm,ResNrm,RelNrm,TAO,TAO1, TAO2, &

TETA,TETA1,RHO,RHO1, SIGMA,ALPHA,CN,CNN1, &

 CNN2,BETA,DISP1,DISP2,DISP

 Real(4), Allocatable :: RelRes(:),TruRes(:)

 Real(8), Allocatable:: EBEA(:),DINEW(:),PG(:),AG(:), &

RG(:),BG(:),BG0(:),RGF(:),BGF(:),DG(:),AD(:), &

 RES(:)

!--

! INFORMATION OUTPUT (IF USER PREFER)

!--

 IWO = 166

OPEN(IWO,FILE="USOLV.OUT",FORM='FORMATTED',STATUS='REPLACE')

!--

! CONVERGENCE HISTORY PLOTTING (IF USER PREFER, BUT INTERFACE

! MUST BE PROVIDED)

!--

 IF(.not. STARTDLG)THEN

 ! WRITE (IW6,*) ' ***** Error: Iterative &

! & Solver dialog not found ! '

 ELSE

 IPLOTDLL = LOADLIBRARY("./iterplot.dll"C)

 IF(IPLOTDLL == 0)THEN

 ! WRITE(IW6,*) " *** ERROR - IterPlot.DLL &

! & CANNOT BE FOUND, PROGRAM &

 ! & RUNS WITHOUT CONVERGENCE &

! HISTORY PLOTTING ! "

 STARTDLG = .FALSE.

 ELSE

 WRITE(IWO,*) " ---IterPlot.dll has been FOUND! "

 IDPLOT = GETPROCADDRESS(IPLOTDLL, "CHPLOT"C)

 IF(IDPLOT == 0)THEN

 ! WRITE(IW6,*) " **** ERROR - PROCEDURE &

 ! & for CHPLOT cannot BE LOCATED &

 ! & IN THE DYNAMIC LIBRARY &

 ! & (IterPlot.dll)! "

 STARTDLG = .FALSE.

 ELSE

 WRITE(IWO,*) " --- CHPLOT has been &

 & LOCATED IN THE DYNAMIC &

 & LIBRARY (IterPlot.dll)! "

 END IF

 END IF

 END IF

!--!

GLOBAL MATRIX ASSEMBLY (CHANGE ALLOWED REGION)

!--

 IF (NDIM == 3) NPLax = 0

 ALLOCATE (IDOF(NDF),IDFX(NDF),KGVN2(MXDF,NN), &

IPOS1(NDF),IRPOS1(NDF),BG0(NDF),RGF(NDF), &

(2)

 353

 BGF(NDF))

 RGF = 0.D0 ; BGF = 0.D0 ; BG0 = 0.D0;

 DI = 0.D0 ; ValSML= 1.D-40

 CALL SPSNEQ(IWO,NDIM,NDFR,NDF,MXDF,NN,KGVN,NTPE,NEL, &

NCORR,LINFO,NF,MF,TF,DXYT, LTYP,IPOS,IRPOS,&

 NEQ,KGVN2,IPOS1,IRPOS1,IDOF,IDFX,RGF, REAC, &

ITERP,FRACLD,DA,PORINS,ValSML,NUMFX,NFXDF)

 NEBE = 69*34*NEL ! ESTIMATED EBE STORAGE

 NDF1 = NEQ + 1

 ALLOCATE(IEBE(NEBE),JEBE(NEBE),EBEA(NEBE))

!

 CALL SPSMAT(IWO,DTIMEI,NN,MXDF,NEL,NDF,NDF1,NTPE, NIP, &

NPR,NMT,KES,NS,NB,NPLax, NDIM,NDMX,NVRS, &

 NPMX,INXL,MDFE,KSS,XYZ,DA,NVRN,STR,P,PCOR, &

REAC,VARINT,NCORR,KGVN,NMOD,NL,W,PORINS, &

 LTYP,MRELVV,MAT,MINFO,LINFO,TF,MF,NF,DXYT, &

 IDFX,L,PR,NTY,FRACLD,IUPD,ITERP,IDOF, &

 NEBE,IEBE,JEBE,EBEA,NNZ,IPOS1,IRPOS1,NEQ, &

 RGF,BGF,BG0,KGVN2,NUMFX,NFXDF,IYIELD_CODE)

!--

! FORMING PRECONDITIONER (CHANGE ALLOWED REGION)

!--

 ALLOCATE (RG(NEQ),PG(NEQ),AG(NEQ),DINEW(NEQ),DG(NEQ), &

BG(NEQ),AD(NEQ),RES(NEQ))

 BG(1:NEQ) = BGF(1:NEQ) ! Transfer of diagonals

 RG(1:NEQ) = RGF(1:NEQ) ! Transfer of RHS

 DEALLOCATE(RGF, BGF)

 CALL FMGJDIAG2(NNZ,IEBE,JEBE,EBEA,IPOS1,IRPOS1,NEQ, &

NDF,IDOF,BG)

!--

! SQMR ITERATIVE SOLVER (CHANGE ALLOWED REGION)

!--

 nPoints = 5000 ; iPoints = 0

 ALLOCATE(Iters(nPoints),RelRes(nPoints),TruRes(nPoints))

 PG = BG*RG

 TAO = DSQRT(DOT_PRODUCT(RG,RG))

 IF(DABS(TAO)<ValSML)THEN

 Stop

 End if

!

 RhsNrm = 0.D0

 DO I = 1, NEQ

 RhsNrm = RhsNrm + RG(I)*RG(I)

 END DO

 RhsNrm = DSQRT(RhsNrm)

!

 TETA = 0.D0

 RHO = DOT_PRODUCT(RG,PG)

!

 DG = 0.D0

 DINEW = 0.D0

!--

! START SQMR ITERATIONS

!--

 DO ITER = 1, MAXIT

 IF(ITER.NE.1)THEN

(3)

(3)

(4)

(6)

(7)

 354

 TAO = TAO1

 TETA = TETA1

 RHO = RHO1

 END IF

! ========= PERFORM --- AG = A*PG ========================START

 AG=0.D0

 CALL UDMATVEC3(NEQ,NDF1,IEBE(1:NNZ),JEBE(1:NDF1), &

EBEA(1:NNZ),NNZ,PG,AG)

! ========= PERFORM --- AG = A*PG ==========================END

 SIGMA = DOT_PRODUCT(PG,AG)

 IF(DABS(SIGMA)<ValSML)THEN

 Write(IWO,*)" SIGMA=0, ALPHA CANNOT BE COMPUTED IN ", &

 ITER,"-TH ITERATION! "

 STOP

 END IF

 ALPHA=RHO/SIGMA

 RG=RG-ALPHA*AG

 TAO2=DSQRT(DOT_PRODUCT(RG,RG))

 TETA1=TAO2/TAO

 CN=1.D0/DSQRT(1.D0+TETA1*TETA1)

 TAO1=TAO*TETA1*CN

 CNN1=(CN*TETA)*(CN*TETA)

 CNN2=CN*CN*ALPHA

 DG=CNN1*DG+CNN2*PG

 DINEW=DINEW+DG

!

 RES = RG

 ResNrm = 0.D0

 DO I = 1, NEQ

 ResNrm = ResNrm + RES(I)*RES(I)

 END DO

 ResNrm = DSQRT(ResNrm)

!

 IF(RhsNrm>ValSML) RelNrm=ResNrm/RhsNrm

 IF(MOD(ITER,100).EQ.0)THEN

 WRITE(IWO,90) ITER,RelNrm,ResNrm

 END IF

! CONVERGENCE PLOTTING

 IF(MOD(ITER,10)==0)THEN

 IF(STARTDLG)THEN

 iPoints = iPoints + 1

 IF(iPoints <= nPoints)THEN

 Iters(iPoints) = ITER

 RelRes(iPoints) = SNGL(RelNrm)

 TruRes(iPoints) = SNGL(ResNrm)

 ISTAGE = 1 ; IUP = 2

 CALL CHPLOT(Dlg_ITER,StartDlg,IHND_PIC,ISTAGE, &

IUP,ITERP,ISque,ISubInc,iSolve,IDcore, &

Iters,RelRes,TruRes,iPoints)

 END IF

 END IF

 END IF

!

 IF(RelNrm<TOLD .AND. ResNrm<TOLT)THEN

 DO I = 1, NEQ

 IRR = IRPOS1(I)

 DI(IRR)=DINEW(I)

 END DO

 GOTO 100

 END IF

(7)

(7)

 355

 AG = BG*RG

 RHO1 = DOT_PRODUCT(RG, AG)

 IF(DABS(RHO)<ValSML)THEN

 WRITE(IWO,*)" RHO=0, BETA CANNOT BE COMPUTED"

 STOP

 END IF

 BETA=RHO1/RHO

 PG=AG+BETA*PG

 END DO

!

 100 WRITE(IWO,80) NDF,ITER,RelNrm,ResNrm !TOLD,

 70 FORMAT(1X,'****** ITERATION RESULTS : SPARSE &

& GENERALISED JACOBIAN SQMR'/)

 80 FORMAT(5X,'NDF =',I7,4X,'ITER=',I7,4X,'RELRES=', &

E12.3,4X,'TRURES=',E12.3/)

 90 FORMAT(5X,'ITER=',I7,4X,'REL. DISP=',E16.7,4X, &

'TRUE DISP=',E16.7/)

 WRITE(IWO,'(A,I7)') 'NUMBER OF EQUATIONS = ',NEQ

 Return

End Subroutine UDSOL

!

!------END OF MAIN USER DEFINED SUBROUTINE---------------------

!==

Subroutine SPSMAT(IWO,DTIMEI,NN,MXDF,NEL,NDF,NDF1,NTPE, &

NIP,NPR,NMT,KES,NS,NB,NPLax,NDIM,NDMX,NVRS,NPMX, &

INXL,MDFE,KSS,XYZ,DA,NVRN,STR,P,PCOR,REAC,VARINT, &

 NCORR,KGVN,NMOD,NL,W,PORINS,LTYP,MRELVV,MAT, &

 MINFO,LINFO,TF,MF,NF,DXYT,IDFX,L,PR,NTY,FRACLD, &

 IUPD,ITERP,IDOF,NEBE,IEBE,JEBE,EBEA,NNZ,IPOS, &

 IRPOS,NDFR,RG,BG,BG0,KGVN2,NUMFX,NFXDF,IYIELD_CODE)

!**

! THIS SUBROUTINE IS TO FORM GOBAL COMPRESED MATRIX FROM

! ELEMENT STIFFNESS MATRICES AND CONSTRUCT GJ

! PRECONDITIONER FOR SYMMETRIC ITERATIVE SOLVER.

!**

 Use Ifwin

 Implicit None

! ---

! Global Variables

! ---

 Integer(4),Intent(In):: IWO,NN,MXDF,NEL,NDF,NTPE,NIP, &

NPR,NMT,KES,NS,NB,NPLax,NDIM,NDMX,NVRS,NPMX,INXL, &

 MDFE,NL,IUPD,KSS,NVRN,NF,ITERP,NEBE,NDFR, &

KGVN(MXDF,NN),NMOD(NIP,NEL),LTYP(NEL),MAT(NEL), &

NTY(NMT),MRELVV(NEL),MINFO(6,30,20),LINFO(50,20), &

 MF(50000),KGVN2(MXDF,NN),IDOF(NDF),IDFX(NDF), &

 NUMFX,NFXDF(200)

 Integer(4),Intent(InOut):: NNZ,NDF1,NCORR(NTPE,NEL), &

TF(7,50000),IEBE(NEBE),JEBE(NEBE),IPOS(NDF), &

 IRPOS(NDF),IYIELD_CODE(NIP,NEL)

 Real(8),Intent(In):: DTIMEI,FRACLD,L(4,120), &

XYZ(NDIM,NN),DA(NDF),REAC(NDF),W(120),PORINS(NN), &

 STR(NVRN,NIP,NEL)

 Real(8),Intent(InOut):: RG(NDF),BG(NDF),BG0(NDF), &

P(NDF),PCOR(NDF),DXYT(7,50000),EBEA(NEBE), &

 PR(NPR,NMT),VARINT(NVRS,NIP,NEL)

! ---

 356

! Local Variables

! ---

 Integer(4):: I,J,K,K1,K2,KL,NE,LT,ICONSO,MUS,KC,NDOF, &

NNE,IL,IL1,IG,NA,IJ2,IJ3,IJ4,IJ5,JN0,MN1,NUM,MN, &

 NZEBE,IRR,IELSTDLL,IDASSDLL,IDELST,IDASSEMB

 Real(8):: ALAR

 Integer(4),ALLOCATABLE:: IEE(:)

 Real(8),Allocatable :: ES(:),AG(:),RG1(:)

!===START

 POINTER (IDELST, ELESTF)

 INTERFACE

 Subroutine ELESTF(IWO,Lt,Ne,Mus,Inxl,Sg,Ksg,Dtimei, &

Nn,Mxdf,Nel,Ndf,Ntpe,Nip,Npr,Nmt,Ns,Nb,Nl,NPLax, &

 Ndim,Ndmx,Nvrs,Npmx,Kss,Xyz,Da,Nvrn,Str,P,Varint, &

 Ncorr,Kgvn,Nmod,Mat,W,L,Pr,Nty,LINfo,Iupd, &

 Iyield_code)

 !DEC$ ATTRIBUTES DLLIMPORT::ELESTF

 Implicit None

! ---

! Global Variables

! ---

 Integer(4), Intent(In) :: IWO,Lt,Ne,Mus,Inxl,Ksg, &

Nn,Mxdf,Nel,Ndf,Ntpe,Nip,Npr,Nmt,Ns,Nb,Nl,NPLax, &

 Ndim,Ndmx,Nvrs,Npmx,Kss,Nvrn,Iupd,Ncorr(NTPE,NEL),&

 KGVN(MXDF,NN),NMOD(NIP,NEL),MAT(NEL),NTY(NMT), &

LINFO(50,20)

 Integer(4), Intent(InOut) :: IYIELD_CODE(NIP,NEL)

 Real(8), Intent(In) :: Dtimei,Xyz(NDIM,NN),DA(NDF), &

STR(NVRN,NIP,NEL),W(120), L(4,120)

 Real(8), Intent(InOut) :: PR(NPR,NMT), &

VARINT(NVRS,NIP,NEL)

 Real(8), Intent(Out) :: P(NDF),Sg(Ksg)

End Subroutine ELESTF

 END INTERFACE

!===END

!===START

 POINTER (IDASSEMB, ETOS)

 INTERFACE

 Subroutine ETOS(UANZ,ARR,BRR,CRR,NI,NNZ)

 !DEC$ ATTRIBUTES DLLIMPORT::ETOS

 Implicit None

! ---

! Global Variables

! ---

 Integer(4),Intent(InOut) :: UANZ,NI,NNZ,ARR(UANZ), &

BRR(UANZ)

 Real(8),Intent(InOut) :: CRR(UANZ)

 End Subroutine ETOS

 END INTERFACE

!=============== ===END

 Allocate(IEE(MDFE),ES(KES),AG(NDF))

!

 IELSTDLL = LOADLIBRARY("./ELESTF.dll"C)

 IF(IELSTDLL == 0)THEN

 WRITE(IWO,*) " --- ELESTF.dll CAN NOT be FOUND ! "

 ELSE

 WRITE(IWO,*) " --- ELESTF.dll loaded ! "

 IDELST = GETPROCADDRESS(IELSTDLL, "ELESTF"C)

 IF(IDELST == 0)THEN

 WRITE(IWO,*) " Warning ! *** Subroutine ELESTF &

& Can Not be FOUND in ELESTF.dll ! "

 357

 ELSE

 WRITE(IWO,*) " ELESTF SUBROUTINE IS LOCATED! "

 END IF

 END IF

!

 IDASSDLL = LOADLIBRARY("./Assemb.dll"C)

 IF(IDASSDLL == 0)THEN

 WRITE(IWO,*) " --- Assemb.dll CAN NOT be FOUND ! "

 ELSE

 WRITE(IWO,*) " --- Assemb.dll loaded ! "

 IDASSEMB = GETPROCADDRESS(IDASSDLL, "ETOS"C)

 IF(IDASSEMB == 0)THEN

 WRITE(IWO,*) " Warning ! *** Subroutine ETOS Can &

 & Not be FOUND in Assemb.dll ! "

 ELSE

 WRITE(IWO,*) " ETOS SUBROUTINE IS LOCATED! "

 END IF

 END IF

 ALAR=1.D+45

 IEBE = 0 ; JEBE = 0 ; EBEA = 0.D0

 AG = 0.D0

 KL = 0 ;

 NZEBE = 0 ;

 DO NE = 1, NEL

 LT = LTYP(NE)

 IF(LT < 0) CYCLE

!

 ICONSO = 1

 IF((LT-2)*(LT-4)*(LT-6)*(LT-8)*(LT-10)*(LT-14)* &

(LT-16)==0) ICONSO = 0

!

 MUS = MRELVV(NE)

 Call ELESTF(IWO,LT,NE,MUS,INXL,ES,KES,DTIMEI,NN, &

MXDF,NEL,NDF,NTPE,NIP,NPR,NMT,NS,NB,NL, &

 NPLax,NDIM,NDMX,NVRS,NPMX,KSS,XYZ,DA,NVRN, &

STR,P,VARINT,NCORR,KGVN,NMOD,MAT,W,L,PR,NTY, &

 LINFO,IUPD, Iyield_Code)

 NDOF = LINFO(16,LT)

 NNE = LINFO(1,LT)

!

 CALL FMSPS2(IWO,NN,NE,LT,NDOF,NNE,MXDF,NTPE,NEL, &

KGVN,KGVN2,NCORR,ES,KES,MDFE,IEBE,JEBE,EBEA, &

 NEBE,NZEBE,IPOS,NDF,NDFR,ICONSO)

 END DO

!

 WRITE(IWO,'(1X,A14,1X,F6.2,A1)') 'SPARSE RATIO =', &

DFLOTJ(NZEBE)*2.D0/(DFLOTJ(NDFR) &

*(DFLOTJ(NDFR)+1.D0))*1.D2 ,'%'

!

 CALL ETOS(NZEBE,JEBE(1:NZEBE),IEBE(1:NZEBE), &

EBEA(1:NZEBE),NDF1,NNZ)

!

!--

! FIX REACTION BUG AND ASSIGN FIXITIES WITH THEIR PRESCRIBED

! VALUES

!--

! ADDING PENTALY TERM TO THE DIAGOAL OF A

 358

 IF (NUMFX > 0) THEN

 DO J = 1,NUMFX

 NUM = NFXDF(J)

 I = IPOS(NUM)

 K = JEBE(I+1)-1

 EBEA(K) = EBEA(K) + ALAR

 END DO

 END IF

! EXTRACTING THE DIAGONAL OF A

 BG = 0.D0

 DO I = 1, NDFR;

 K = JEBE(I+1)-1 ;

 BG(I) = EBEA(K) ;

 END DO

!--

! GET INITIAL VALUES OF DINOW, RG, BG, DG AND PG

!--

 ALLOCATE (RG1(NDF)) ! RG1 is a temp. vector to store RG

 RG1 = RG + P + PCOR ; ! Right hand side vector

 NCORR = IABS(NCORR) ;

!

 DO I = 1, NDFR;

 RG(I) = RG1(IRPOS(I))

 END DO

 BG0 = 1.D0

!

 DO I=1,NDFR

 IRR = IRPOS(I)

 IF(BG(I)>1.D20)THEN

 IDFX(IRR) = 2

! AG(I)=2.D0 !! CX

 BG0(IRR)=1.D0/DSQRT(BG(I))

 BG(I)=1.D0

 RG(I)=RG(I)*BG0(IRR)

 ELSEIF(BG(I)<-1.D10)THEN

 IDFX(IRR) = 3

! AG(I)=2.D0

 BG0(IRR)=1.D0/DSQRT(DABS(BG(I)))

 BG(I)=-1.D0

 RG(I)=RG(I)*BG0(IRR)

 END IF

 !

 END DO

! HERE, BG0 IS THE SCALING VECTOR.

!

! PERFORM SYMMETRIC DIGONAL SCALING WITH BG0

 DO I = 1, NDFR

! IF(NDFR/=NDF)THEN

 IRR = IRPOS(I)

! ELSE

! IRR = I

! END IF

!

! IF(AG(IRR)>1.9D0)THEN

 IF(IDFX(IRR) /= 0)THEN

 K1 = JEBE(I); K2 = JEBE(I+1)-1

 DO K = K1, K2

 EBEA(K) = EBEA(K)*BG0(IRR)

 359

 END DO

 EBEA(K2) = EBEA(K2)*BG0(IRR)

 DO J = I+1, NDFR

 K1 = JEBE(J); K2 = JEBE(J+1)-1

 DO K = K1, K2

 IF(IEBE(K).GT.I) EXIT

 IF(IEBE(K).EQ.I) EBEA(K) = EBEA(K)*BG0(IRR)

 END DO

 END DO

 END IF

 END DO

 Return

End Subroutine SPSMAT

!=========END SUBROUTINE SPMAT ================================

Subroutine FMSPS2(IWO,NN,NE,LT,NDOF,NNE,MXDF,NTPE,NEL,KGVN, &

KGVN2,NCORR,SG,KSG,MDFE,IEBE,JEBE,EBEA,NEBE,NZEBE, &

 IPOS,NDF,NDFR,ICONSO)

!**

! THIS SUBROUTINE COLLECT NON-ZERO ENTRIES FOR EACH NEW

! GENERATED ELEMENT STIFFNESS MATRIX, FORMING THE ELEMENT-LEVEL

! THREE VECTORS WHICH STORE NONZERO ENTRIES OF UPPER TRIANGULAR

! PART OF A.

! THIS SUBROUTINE IS LOCATED IN ELEMENT LOOP TO COLLECT ELEMENT

! STIFFNESS MATRIX ENTRIES.

! NE : CURRENT ELEMENT NUMBER

! NTOT : TOTAL FREEDOMS OF CURRENT ELEMENT (i.e. NDOF);

! KGVN : ELEMENT STEERING VECTOR

! KGVN2 : ELEMENT STEERING VECTOR(includes only free DOFs);

! NCORR : ELEMENT NODE & ELEMENT CORRELATION MATRICES;

! SG : COLUMN-WISE UPPER TRIANGULAR ELEMENT "STIFFNESS"

! MATRIX STORED IN ONE VECTOR.

! IEBEA : GLOBAL ROW INDEX;

! JEBEA : GLOBAL COLUMN INDEX;

! EBEA : CORRESPONDENT VALUE OF THE NONZERO ELEMENT

! STIFFNESS ENTRY;

! NZEBE : ACCUMULATED TOTAL NUMBER OF NONZERO ELEMENT-

! LEVEL ENTRIES (NOT ESTIMATED NUMBER (NEBE) ANY

! MORE WHEN RETURNED).

!**

 Implicit None

 Integer(4):: IL,I,J,K,IR,NA,ICOUNT,KSG,NN,NE,LT,NDOF, &

NNE,MXDF,NTPE,NEL,MDFE,NEBE,NZEBE,KGVN(MXDF,NN), &

 NCORR(NTPE,NEL),IEBE(NEBE),JEBE(NEBE),NDF, &

IPOS(NDF),NDFR,ICONSO,KGVN2(MXDF,NN),IWO

 Real(8):: SG(KSG),EBEA(NEBE)

 Integer(4), Allocatable :: IEE(:)

!--- STORING UPPER TRIANGLE OF ELEMENT STIFFNESS COLUMN BY

! COLUMN ---

!--- ASSUMING TO SOLVE SYMMETRIC PROBLEMS ----------------

 Allocate(IEE(MDFE))

!

 IL = 0 ; IEE = 0 ;

 DO J=1,NNE

 NA = IABS(NCORR(J,NE))

 L3: DO K=1,MXDF

 IR = KGVN(K,NA)

 IF(IR > 0)THEN

 IF(K.GT.4.AND.LT.NE.12)CYCLE L3

 IF(ICONSO == 0.AND.K > 3)CYCLE L3

 IF(K.EQ.4.AND.LT.EQ.12)CYCLE L3

 360

 IF(LT == 1.AND.K > 3)CYCLE L3

 IL = IL + 1

 IEE(IL) = KGVN2(K,NA)

 END IF

 END DO L3

 END DO

 !

 ICOUNT = 0

 DO J = 1, NDOF

 DO I = 1, J

 ICOUNT = ICOUNT + 1

 IF(DABS(SG(ICOUNT)) > 1.D-40)THEN

 IF(IEE(I)>0 .AND. IEE(J)>0)THEN

 IF (IEE(I).LE.IEE(J))THEN

 NZEBE = NZEBE + 1 ; IEBE(NZEBE) = IEE(I)

 JEBE(NZEBE) = IEE(J) ;

 EBEA(NZEBE)=SG(ICOUNT)

 ELSE

 NZEBE = NZEBE + 1 ; IEBE(NZEBE)=IEE(J)

 JEBE(NZEBE) = IEE(I) ;

 EBEA(NZEBE)=SG(ICOUNT)

 END IF

 END IF

 END IF

 END DO

 END DO

!

 Return

End Subroutine FMSPS2

!=========END SUBROUTINE FMSPS2================================

Subroutine FMGJDIAG2(NNZ,IEBE,JEBE,EBEA,IPOS,IRPOS,NDFR, &

NDF,IDOF,BG)

!**

! THIS SUBROUTINE IS TO CONSTRUCT GJ PRECONDITIONER FOR

! SYMMETRIC

! BG = IN INPUT, DIAGONAL OF A

! = IN OUTPUT, INVERTED DIAGONAL (GJ FORM)

!**

 Implicit None

 Integer(4):: J,K,K1,K2,IPOS(NDF),IRPOS(NDF),NDFR,NDF, &

IRR,IRRJ,NNZ,IEBE(1:NNZ),JEBE(1:NDFR+1),IDOF(NDF)

 Real(8):: BG(NDF),COEF,EBEA(1:NNZ)

!

 DO J = 2, NDFR

 K1 = JEBE(J) ; K2 = JEBE(J+1)-2

 IRRJ = IRPOS(J)

!

 IF(IDOF(IRRJ).EQ.1)THEN

 DO K = K1 , K2

 IRR = IRPOS(IEBE(K))

 !

 IF(IDOF(IRR).EQ.0)THEN

 BG(IEBE(K)) = &

BG(IEBE(K))-EBEA(K)*EBEA(K)/BG(J) ;

 END IF

 END DO

 ELSE ! IDOF(IRRJ)==0

 DO K = K1 , K2

 IRR = IRPOS(IEBE(K))

 !

(5)

(5)

(6)

(6)

 361

 IF(IDOF(IRR).EQ.1)THEN

 BG(J) = BG(J)-EBEA(K)*EBEA(K)/BG(IEBE(K)) ;

 END IF

 END DO

 END IF

 END DO

 !

 COEF = -4.D0

! COEF-SCALING FACTOR (NEGATIVE IS PREFERRED)

 DO J=1, NDFR

 IRRJ = IRPOS(J)

 IF(IDOF(IRRJ).EQ.0)THEN

! MODIFIED DIAGONAL WITH RELAXATION PARAMETER.

 BG(J)=COEF*DABS(BG(J))

 END IF

 BG(J) = 1.D0/BG(J) ;

 END DO

 !

 RETURN

 End Subroutine FMGJDIAG2

!=========END SUBROUTINE FMGJDIAG2 ============================

SUBROUTINE UDMATVEC3(NDF,NDF1,ICSC,JCSC,CSCA,NNZ,VIN,VOUT)

! ~~~~~ THIS ROUTINE IS USED IN SYMMETRIC ITERATIVE SOLVER~~~~~

! MATVEC3 - performs MATRIX-VECTOR PRODUCTS,

! 'VIN = A*VOUT',in ITERATIVE SOLVER,

! SPARSE IMPLEMENTATION FOR SYMMETRIC MATRIX

!**

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 INTEGER:: ICSC(NNZ),JCSC(NDF1)

 REAL(8):: CSCA(NNZ), VIN(NDF),VOUT(NDF)

!

 VOUT = 0.D0

 DO J=1, NDF

 IF(VIN(J).NE.0.D0)THEN

 K1=JCSC(J); K2=JCSC(J+1)-1 ;

 DO K=K1, K2

 IR=ICSC(K) ;

 VOUT(IR)=VOUT(IR)+CSCA(K)*VIN(J) ;

 END DO

 END IF

!

 TMP = 0.D0 ; K1=JCSC(J); K2=JCSC(J+1)-2 ;

 DO K = K1, K2

 IR = ICSC(K) ;

 TMP = TMP + VIN(IR)*CSCA(K) ;

 END DO

 VOUT(J) = VOUT(J)+TMP ;

 END DO

!

 Return

 END SUBROUTINE UDMATVEC3

!=========END SUBROUTINE UDMATVEC3 ============================

Subroutine SPSNEQ(IWO,NDIM,NDFR,NDF,MXDF,NN,KGVN,NTPE, &

NEL,NCORR,LINFO,NF,MF,TF,DXYT,LTYP,IPOS,IRPOS,NEQ, &

 KGVN2,IPOS1,IRPOS1,IDOF,IDFX,RG,REAC,ITERP,FRACLD, &

 DA,PORINS,ValSML,NUMFX,NFXDF)

! This subroutine is to find NEQ by avoiding the fixities with

! prescribed zero displacement or excess pore pressure

! COUNT FREE DOFS AND ASSIGN IDENTITY FOR FREE AND FIXED DOFS

! IDOF = 1 FOR DISPLACEMENT DOFS (INCLUDES NON-ZERO

! PRESCRIBED VALUES)

(6)

(6)

 362

! = 0 FOR PORE PRESSURE DOFS (INCLUDES NON-ZERO

! PRESCRIBED VALUES)

! = 99 FOR FIXED DOFS

! IDFX = 1 FOR FIXED DOFS

! = 0 FOR FREE DOFS

! NEQ = number of equations for unknown variables only

! (free DOFs)

! KGVN2(MXDF,NN)

! = Modified steering vector accroding to NEQ DOFs

! IPOS1(NDF)

! = Position in recalculated DOFs (= NEQ)

! IRPOS1(NDF)

! = Position in Global total DOFs(including fixities)

! NUMFX= No. of DOFs with non-zero prescribed values

! NFXDF(NUMFX)

! = Arrays containing NUMFX DOFs

!--

 implicit none

 integer(4),intent(in):: IWO,NDIM,NDFR,NDF,MXDF,NN,NTPE,NEL, &

KGVN(MXDF,NN),LINFO(50,20),NF,MF(50000), &

 LTYP(NEL),ITERP,NCORR(NTPE,NEL),IPOS(NDF),IRPOS(NDF)

 integer(4),intent(inout):: TF(7,50000),IPOS1(NDF),IRPOS1(NDF)

 real(8),intent(in):: FRACLD,DA(NDF),REAC(NDF),PORINS(NN), &

ValSML

 real(8),intent(inout):: DXYT(7,50000),RG(NDF)

 integer(4),intent(out):: NEQ,KGVN2(MXDF,NN),IDOF(NDF), &

IDFX(NDF),NUMFX,NFXDF(30000)

! ---

! Local Variables

! ---

 integer(4):: J,K,NA,NDOF,LT,NNE,IJ3,IJ4,NE,MN1,NUM,ICONSO, &

MN,ICOUNT,IC

 real(8):: ALAR

 NEQ = NDFR

 KGVN2 = KGVN

 ALAR=1.D+45

 IDOF = 1 ! Initialize for all FREE DOFs

 IDFX = 0 ! Initialize for all FIXED DOFs

 IC = 0 ! Initialize counting prescribed displacement or

! excess pore pressure

 NFXDF = 0

 DO NE = 1, NEL

 LT = LTYP(NE)

 IF(LT < 0) CYCLE

!

 ICONSO = 1

 IF((LT-2)*(LT-4)*(LT-6)*(LT-8)*(LT-10)*(LT-14)* &

(LT-16)==0) ICONSO = 0

 NDOF = LINFO(16,LT)

 NNE = LINFO(1,LT)

 JNO = LINFO(6,LT) ! TOTAL PORE PRESSURE DOFS

 L1: DO J=1,JNO

 NA = IABS(NCORR(J,NE))

 K = KGVN(NDIM+1,NA)

 IDOF(K) = 0 ! IDOX = 0 FOR PORE PRESSURE DOFs

 363

 END DO L1

 IJ3 = 0

 L2: DO J=1,NNE

 NA = IABS(NCORR(J,NE)) ; MN1 = 1 ;

 L3: DO K=1,MXDF

 NUM = KGVN(K,NA) ;

 IF(NUM.EQ.0)CYCLE L3

 IF(NUM>NDF)CYCLE L3

 IF(K.GT.4.AND.LT.NE.12) CYCLE L3

 IF(ICONSO == 0.AND.K > 3)CYCLE L3

 IF(K.EQ.4.AND.LT.EQ.12) CYCLE L3

 IF(LT == 1.AND.K > 3)CYCLE L3

 !

 ! IF(LT==12.AND.K > 4)IDOF(NUM)=2

 !

 !IJ3 = IJ3 + 1

 IF(NCORR(J,NE)>0) CYCLE L3

 ! AG(NUM) = 1.D0

 IF(K.NE.1) MN1=MN

 L4: DO MN = MN1, NF

 IF(MF(MN).NE.NA) CYCLE L4

 IF(TF(K,MN).EQ.0)THEN

 RG(NUM) = REAC(NUM)

 CYCLE L3

 END IF

 !IJ4 = IJ3*(IJ3+1)/2

 !ES(IJ4) = ES(IJ4) + ALAR

 ! IDFX(NUM) = 1

 IDOF(NUM) = 99

 !

 IF(TF(K,MN).EQ.1)THEN

!--

! ZERO DISPLACEMENT FOR NEWTON-RAPHSON'S ITERATION WHEN ITERP>0

!--

 IF (DABS(DXYT(K,MN)) > ValSML) THEN

 IF(ITERP==0)THEN

 !IJ4 = IJ3*(IJ3+1)/2

 !ES(IJ4) = ES(IJ4) + ALAR

 IC = IC+1

 NFXDF(IC) = NUM;

 IDOF(NUM) = 1 ; IDFX(NUM) = 2

 RG(NUM) = &

 RG(NUM)+ALAR*DXYT(K,MN)*FRACLD

 IF (K == NDIM+1) THEN

! PORE PRESSURE DOF

 IDOF(NUM) = 0; IDFX(NUM) = 3

 END IF

 END IF

 ELSE

 NEQ = NEQ-1

 KGVN2(K,NA) = 0

 END IF

!=====(NEWTON-RAPHSON METHOD)============================END

! RG(NUM) = RG(NUM)+ALAR*DXYT(K,MN)*FRACLD ! - 'RG'

 CYCLE L3

 ELSE

 IF(TF(K,MN) .EQ. 2)THEN

 DXYT(K,MN) = DXYT(K,MN) - DA(NUM)

 NEQ = NEQ-1

 364

 KGVN2(K,NA) = 0

 ELSEIF(TF(K,MN) .EQ. 3)THEN

 IC = IC+1

 NFXDF(IC) = NUM ;

 IDOF(NUM) = 0 ; IDFX(NUM) = 3

 DXYT(K,MN) = &

DXYT(K,MN)-DA(NUM)-PORINS(NA)

 END IF

 IF (DABS(DXYT(K,MN)) > ValSML)

RG(NUM)=RG(NUM)+ALAR*DXYT(K,MN)

 DXYT(K,MN)=0.D0

 TF(K,MN)=1

 EXIT L3

 END IF

 END DO L4

 END DO L3

 END DO L2

 END DO

!------------

NUMFX = IC

!

! WRITE(IWO,'(A,I9)')'Number of unknown equations, NEQ =',NEQ

ICOUNT = 0 ; IPOS1 = 0; IRPOS1 = 0

 DO J = 1,NN

 L5: DO K = 1,MXDF

 NUM = KGVN2(K,J) ;

 IF(NUM.EQ.0)CYCLE L5

 IF(NUM>NDF)CYCLE L5

 IF(K.GT.4.AND.LT.NE.12) CYCLE L5

 IF(ICONSO == 0.AND.K > 3)CYCLE L5

 IF(K.EQ.4.AND.LT.EQ.12) CYCLE L5

 IF(LT == 1.AND.K > 3)CYCLE L5

 IF(IPOS(NUM) == 0) THEN

 KGVN2(K,J) = 0 ; IDOF(NUM) = 99

 CYCLE L5

 END IF

 ICOUNT = ICOUNT+1

 KGVN2(K,J) = ICOUNT

 IPOS1(KGVN(K,J)) = ICOUNT ; IRPOS1(ICOUNT) = KGVN(K,J);

 END DO L5

 END DO

 Return

!

end subroutine SPSNEQ

!=========END SUBROUTINE SPSNEQ ===============================

 365

F.2. List of variables used in subroutine UDSOL

Type(DIALOG),Intent(INOUT)::

Dlg_iter handle for convergence history plotting dialog

Integer(4),Intent(IN)::

NN total number of nodes

MXDF maximum possible number of variables at any node

NEL total number of elements

NDF Total number of d.o.f.

NTPE maximum number of nodes in any element in the mesh

NIP total number of integration point in the element

NPR number of properties per material (16)

NMT maximum allowable number of different material

zones (25)

KES size of element stiffness matrix ES

NS number of stress/strain components

NB number of columns in B matrix (=NDIM × NDMX)

NDIM number of dimensions to problem

NDMX maximum number of displacement nodes in any

element

NVRS number of stress components and parameters

NPMX maximum number excess pore pressure nodes in any

element in current analysis

INXL index to array LINFO

MDFE maximum number of d.o.f. in any element

 366

KSS size of solid element stiffness matrix SS (upper

triangular)

NVRN number of stress-strain components

NL number of area coordinates

MAXIT program given maximum number of iteration for user

iterative solver, MAXIT can be adjusted by user.

ITERP Newton-Raphson nonlinear iteration number

IUPD switch for updating geometry

0 – coordinates are not updated

1 – coordinates are updated

KGVN(MXDF,NN) list of indexes of first d.o.f. associated with each node

to global arrays P, DI and DA.

NMOD(NIP,NEL) list of switches to indicate state of stress of integration

points for MPT(Material Property Type) 5 (0 – elastic,

1 – first yield, 2 – continuous yield)

LTYP(NEL) list of element type numbers

MRELVV(NEL) , User element numbers for program element numbers

MAT(NEL) list of material zone numbers of elements

NTY(NMT) material type numbers of different material zones

IDNA(NEL) Currently, identifier array for elements with non-

associated plastic flow material properties and yielding

integration points.

0 – other elements including the elements with non-

associated plastic flow material, but without yielding

integration points.

 367

1 – elements with non-associated plastic flow material

properties.

NEL_NA Currently, the total number of elements with non-

associated plastic flow material properties and yielding

integration points (for non-symmetric solver)

MINFO(6,30,20) To supplement the array LINFO, it gives the unique

number for each of the variables of a node.

LINFO(50,20) details (i.e. number of vertex nodes, midside nodes and

d.o.f. of each node) of different element types

MF(50000) list of nodes with fixities

NF counter of nodes with fixities (i.e., nodes with one or

more d.o.f. which have prescribed values)

Integer(4),Intent(INOUT)::

IHND_PIC handle for convergence plotting area

NCORR(NTPE,NEL) list of element nodal links (i.e. list of nodes associated

with each element)

TF(7,50000) list of fixity codes

IPOS(NDF) The recalculated number d.o.f. correspondent to global

d.o.f. (for sparse solver)

IRPOS(NDF) IRPOS(1:NDFR) stores correspondent global number

of d.o.f. (for sparse solver)

IYIELD_CODE(NIP,

NEL)

List of elements with their yielding information at

integration points

NPLax plane strain / axisymmetric / 3-D analysis option

1 axisymmetric

 368

0 otherwise (plane strain / 3-D analysis)

NDFR Recalculated total number of d.o.f. due to removed

elements, if there is no removed elements, NDFR =

NDF (for sparse solver)

Integer(8),Intent(IN)::

MFZ allocated array size for array ELPA

Real(8),Intent(IN)::

DTIMEI time increment

FRACLD load ratio for current increment

TOLD tolerance for relative residual norm convergence

criterion defined by program, TOLD can be adjusted

by user.

TOLT tolerance for true residual norm convergence criterion

defined by program, TOLT can be adjusted by user.

XYZ(NDIM,NN) nodal coordinates

DA(NDF) global vector of cumulative displacements

P(NDF) global incremental load vector

PCOR(NDF) correcting load vector

REAC(NDF) global reactions vector (at nodes with described

displacements)

STR(NVRN,NIP,NE

L)

cumulative strains at integration point

VARINT(NVRS,NIP current values of variables Sx, Sy, Sz, Txy (Tyz, Tzx),

 369

,NEL) U, E and Pc for all integration points

W(120) Weighting factors for integration points

PORINS(NN) insitu stage hydrostatic pore water pressure

PR(NPR, NMT) table of material properties

L(4,120) list of area coordinates of integration points for

different element types

DXYT(7,50000) list of prescribed displacements and excess pore

pressures at nodes

Real(8), Intent(Out) ::

DI(NDF) Returned global vector of incremental displacements

 370

(blank)

