SO

)

@
&
7j/\/ n - 3\1@}

Universita degli Studi dell’Insubria

DIPARTIMENTO DI SCIENZE E ALTA TECNOLOGIA
Corso di Dottorato in Informatica e Matematica del Calcolo

PH.D. THESIS

Preconditioned fast solvers for large
linear systems with specific sparse
and /or Toeplitz-like structures and

applications
Candidato: Relatori:
Fabio Durastante Prof. Daniele Bertaccini

Prof. Stefano Serra Capizzano

XXX Ciclo

“Lo scopo della Matematica e di determinare il
valore numerico delle incognite che si
presentano nei problemi pratici. Newton, Euler,
Lagrange, Cauchy, Gauss, e tutti i grandi
matematici sviluppano le loro mirabili teorie
fino al calcolo delle cifre decimali necessarie”

Giuseppe Peano

“Non esistono problemi dai quali si puo
prescindere. Non c’é niente di pit penoso di
coloro i quali suddividono il pensiero
dell'uvomo in un pensiero da cui non si puo
prescindere e in uno da cui si puo prescindere.
Fra costoro si celano i nostri futuri carnefici.”

Una partita a scacchi con Albert Einstein,
Friedrich Diirrenmatt

Contents

Contents

List of Figures

List of Tables

List of Algorithms

1 Introduction

1.1
1.2

Sparsity, Structure and Sequence of Matrices
Applications and Computational Framework

2 Some lterative Methods and Preconditioners

2.1

2.2

2.3
2.4

Krylov Iterative Methods

2.1.1 The Conjugate Gradient: CG

2.1.2 Generalized Minimal Residual: GMRES

2.1.3 Flexible GMRES (FGMRES): GMRES With Variable
Preconditioning

2.1.4 The Bi-Lanczos Algorithm: BiCG, BiCGstab and
BiCGstab(l)

2.1.5 Which Krylov Subspace Method Should We Use?

Sparsity and Structure

2.2.1 Toeplitz and Generalized Locally Toeplitz Matrix
Sequences

Multigrid Preconditioners

Approximate Inverse Preconditioners

2.4.1 On the Decay of the Entries of A

2.4.2 Inversion and Sparsification or INVS

11

13
16
17

19
22
25
33

44

4 FABIO DURASTANTE

2.4.3 Incomplete Biconjugation: AINV 89
Part I Sparse Structure and Preconditioners

3 Interpolatory Updates of Approximate Inverse Precondition-

ers 101
3.1 Interpolated Preconditioners 103
3.2 Numerical Examples 111
4 Approximation of Functions of Large Matrices 121
4.1 Computing Function of Matrices 122
4.2 The Updating Technique 124
4.3 Numerical Examples 129
4.3.1 Roleof g and 7 130
4.3.2 Approximating W(A) 131
4.3.3 Approximating W(A)v 134
4.3.4 Choosing the Reference Preconditioner(s) 137

4.3.5 W(A)v With Updates and With Krylov Subspace
Methods 140

5 Sparse Preconditioner for Mixed Classical and Fractional PDEs143

5.1 Matrix approach 144
5.1.1 The Short-Memory Principle 150
5.1.2 Multidimensional FPDEs 152

5.2 Solution Strategies 153
5.2.1 Approximate Inverse Preconditioners 154
5.2.2 Updating Factorizations for the Approximate In-

verses 155

5.3 Numerical Examples 156

6 Fractional PDEs Constrained Optimization 167

6.1 Theoretical Results 169
6.1.1 The 1D Case 169
6.1.2 The 2D Case: Riesz Space Fractional Diffusion 172
6.1.3 The Semilinear Case 174

6.2 Algorithms 175
6.2.1 Discretization of the FPDEs 176
6.2.2 Preconditioners for FPDEs 179

6.2.3 Optimization Routine: the L-BFGS Algorithm 180

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 5

6.3 Numerical examples 181
6.3.1 Constrained Optimization Results 181
6.3.2 Accelerating Convergence 182

Part II Toeplitz—Like Structure and Preconditioners

7 Optimizing a Multigrid Runge-Kutta Smoother 195

7.1 The Model Problems and the GLT Spectral Analysis 196

7.1.1 The 1D Model Problem 197

7.1.2 The 2D model problem 202

7.1.3 Further Discretizations 203

7.1.4 The Convection-Diffusion Equation 204

7.2 The Optimized Multigrid Preconditioner 205

7.2.1 Runge-Kutta Smoothers 205

7.2.2 Projection and Restriction Operators 211

7.2.3 Few Observations on the Optimization Procedure 213

7.2.4 Optimizing the Spectral Radius 215

7.3 Numerical Examples 216

7.3.1 The 2D Case 219

8 Structured Preconditioners for Fast Solution of FDEs 223

8.1 Linear Multistep Formulas in Boundary Value Form 225

8.2 Structured Preconditioners 229

8.3 Numerical Examples 236

9 Future Perspectives 245

A A Brief Introduction to Fractional Calculus 247

A.1 Definition of Some Fractional Operators 249

A.1.1 Physical meaning of the fractional operators 254

A.2 Fractional Partial Differential Equations 255

A.2.1 Sobolev spaces of fractional order 257

A.3 Some Classical Discretization Formulas 262
A.3.1 Finite Differences for Riemann-Liouville Fractional

Derivatives 262

A.3.2 Finite Differences for Riesz Fractional Derivatives 266

Bibliography 271

2.1
2.2

2.3

2.4

3.1
3.2

4.1

4.2
43

5.1
5.2

53
6.1

6.2

List of Figures

Representing sparse matrix: pattern and matrix graph. 60
Representing sparse matrix: city plot. 60
Example 2.1. Cityplots of the A matrix (on the left) and of

A1 on the right. 79
AINV(A, ¢) for the HB/sherman1 matrix at various ¢. 93
Memory occupation for the Z! matrices. 106
Finite element mesh for the experiments. 112
Behavior of the error for exp(A) as 7 and g vary. The 50 x 50

matrix argument A has the expression in (4.11) with o = =
0.5 (left), @ = g = 1.2 (right). The x—axis reports the number
of diagonals the function g selects while the y—axis reports
the error with respect to the Matlab’s expm(A). AINV is used

with the tolerance 7 given in the legend. 131
Accuracy w.r.t. N for exp(A)v 137
Selection of the reference preconditioner(s) 140

Decay of the Fourier coefficients as in Propositions 5.1 and 5.2148
Decay of the inverse matrix relative to the various discretiza-

tions, n =300 and a = 1.7 151
Preconditioners for FPDE — Example 1 — Solution 159

Left column: coefficients and desired state from equation (6.28).
Right column: coefficients and desired state from equation
(6.29). 183
Desired state (on the left) and result of the optimization
procedure (on the right) for Problem (6.14) with coefficients

from equation (6.30), 2a = 2 = 1.8 and regularization
parameter A = le — 6. 184

7.1

7.2

7-3

7:4

7-5

8.1

8.2

FABIO DURASTANTE

Distribution of the eigenvalues of A for the cases a(x) = 1
and a generic a(x). 198
Stability region for the three formulation of the Runge-Kutta
algorithm for the (1D) model problem with coefficient func-

tion a(x) = 1+ 0.6 sin(407tx). 211
Amplification factor for different coarsening strategies. 213
Isoline of the function f(«, ¢) = log,,(maxg x) [P2(z(6, ¢, x;7))|?)

for various a(x). 214

Convergence for (1D) transport with standard Runge-Kutta
formulation using the standard and the weighted objective
function. 217
Multigrid algorithm in the form illustrated in [45] for the
CFLpyax = 17.658213 and CFLq = 8.829107, applied to a
nonconstant coefficient problem like the one in equation (7.3).218
Convergence for (1D) transport with standard Runge-Kutta
formulation, objective functions for both variable and fixed
coefficients. 219
Behaviour with finer and finer grids for the GMRES(50) and
BiCGstab algorithms. Coefficients in equation (7.33). The size
of the discretization grid is given by (2F — 1) x (25 — 1) over
the [0, 2]? x [0, 5] with 80 time steps. The unpreconditioned
version is used as comparison. 222

Lemma 8.1. Clustering on the eigenvalues (on the left) and
on the singular values (on the right) for the preconditioner
k(Jm) " for J,, from Problem (8.1) and k = [m/5]. 235
Experiment 1. Spectra of both the matrix of the system and
of the preconditioned matrices with a = 2 and 2 step GBDF
formula with m = 97 and s = 128. 238

Non locality for left- and right-sided Riemann-Liouville
fractional derivative. 251

39

List of Tables

Interpolatory update - 1 - GMRES
Interpolatory update - 2 - GMRES
Interpolatory update - 2 - GMRES(50)
Interpolatory update - 2 - BiCGstab
Interpolatory update - 3 - GMRES
Interpolatory update - 3 - GMRES(50)
Interpolatory update - 3 - BiCGstab
Interpolatory update - 4 - GMRES
Interpolatory update - 4 - GMRES(50)

3.10 Interpolatory update - 4 - BiCGstab

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Execution time in seconds for log(A)

Errors for the computation of exp(A)

Timings in seconds for exp(A)

Execution time in seconds and relative errors for exp(A)
Iterates average and execution time in seconds for log(A)v
Error for exp(A)v

Error and timings in second for exp(A)v

Accuracy w.r.t. N and timings for exp(A)v

Error and timings in second for log(A)v

4.10 Error and timings in second for log(A)v
4.11 Errors and execution time for exp(A)v

5.1
5.2
53
5-4
5-5
5.6
57

Preconditioners for FPDE — Ratio of fill-in
Preconditioners for FPDE — Example 1 - GMRES(50)
Preconditioners for FPDE — Example 1 — BiCGstab
Preconditioners for FPDE — Example 1 - GMRES
Preconditioners for FPDE — Example 2 - GMRES(50)
Preconditioners for FPDE — Example 2 - GMRES
Preconditioners for FPDE — Example 2 — BiCGstab

113
114
115
115
117
117
118
119
119
120

132
133
133
134
135
135
136
138
139

139
142

155
158
158
160
160
160
161

10 FABIO DURASTANTE

5.8 Preconditioners for FPDE — Example 3 — BiCGstab

5.9 Preconditioners for FPDE — Example 3 - GMRES

5.10 Preconditioners for FPDE — Example 3 — BiCGstab(2)
5.11 Preconditioners for FPDE — Example 4 — Direct solution

6.1 FPDEs Constrained Optimization — FADE problem

6.2 FPDEs Constrained Optimization — Riesz problem 1

6.3 FPDEs Constrained Optimization — Riesz problem 2a
6.4 FPDEs Constrained Optimization — Riesz problem 2b
6.5 FPDEs Constrained Optimization — Semilinear problem

7.1 Optimized Runge-Kutta parameters for a test coefficient
function

7.2 Optimization parameters for the standard Runge-Kutta w.r.t.

coarsening strategy

7.3 Comparison of the optimization procedure with the case of
variable and constant coefficients.

7.4 Multigrid preconditioner for the GMRES algorithm

8.1 Structured preconditioners for FDEs
8.2 Structured preconditioners for FDEs — Experiment 1
8.3 Structured preconditioners for FDEs — Experiment 2

162
163
164
165

185
187
188
189
190

210

213

215
220

237
242

243

2.1
2.2
2.3
2.4
2.5
2.6

2.7
2.8

2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20

2.21

2.22
2.23
2.24
2.25

List of Algorithms

Lanczos algorithm

Conjugate Gradient method

Preconditioned Conjugate Gradient method
Arnoldi

GMRES

Restarted GMRES or GMRES(m)

GMRES with left preconditioning

GMRES with right preconditioning

FGMRES: GMRES with variable preconditioning
Lanczos Biorthogonalization or Bi-Lanczos
Bi-Conjugate Gradients, or BiCG

Conjugate Gradient Squared Method (CGS)
BiCGstab method

BiCGStab(2)

Circulant matrix—vector product

Multigrid cycle (MGM)

Setup phase of MGM preconditioner

V—cycle preconditioner

Sparse product algorithm.

Positional fill level inversion of a sparse triangular matrix
or INVK

Inversion of triangular matrices with numerical drop or
INVT

Biconjugation

Left Looking Biconjugation for Z

Practical left-looking biconjugation

Practical left-looking biconjugation stabilized

88
90
92
95
97

1

Introduction

“Ogni problema della matematica applicata e
computazionale si riconduce alla fine a
risolvere un sistema di equazioni lineari”

P. Zellini, La matematica degli dei e gli algoritmi
degli uomini

The innermost computational kernel of many large—scale scientific
applications and industrial numerical simulations, in particular where
systems of partial differential equations or optimization problems are
involved in the models, is often a sequence of large linear systems that
can be either sparse or can show some kind of structure. This thesis deals
with specific methods for addressing their solution, while keeping in
mind and exploiting the originating setting.

Computing the solution of these linear systems typically consumes
a significant portion of the overall computational time required by the
simulation hence we focus our attention on the efficiency of the proposed
techniques.

Recent advances in technology have led to a dramatic growth in the
size of the matrices to be handled, and iterative techniques are often
used in such circumstances, especially when decompositional and direct
approaches require prohibitive storage requirements. Often, an iterative
solver with a suitable preconditioner is more appropriate. Nevertheless,
a preconditioner that is good for every type of linear system, i.e., for
every problem, does not exist.

Let us consider the linear system

Ax =D, (1.1)

where A is a real n X n matrix, b is the known vector and x is the vector
of the unknowns. In the following, we concentrate on iterative solvers as
methods for computing an approximate solution of the algebraic linear
system (1.1). Recall that an iterative solver is a strategy that generates a

14 FABIO DURASTANTE

sequence of candidate approximations x® k=0,1,...,forthe solution
starting from a given initial guess x\). The iterative methods we consider
involve the matrix A only in the context of matrix—vector multiplications.
Thus, the structure and/or the sparsity of the underlying matrices is
used to design an efficient implementation.

Lack of robustness and sometimes erratic convergence behavior are
recognized potential weakness of iterative solvers. These issues hamper
the acceptance of iterative methods despite their intrinsic appeal for
large linear systems. Both the efficiency and robustness of iterative
techniques can be substantially improved by using preconditioning. Pre-
conditioning transforms the original linear system into a mathematically
equivalent one, i.e., having the same solution and, under appropriate
conditions, an iterative solver can converge faster. In this context it is
appropriate to quote Saad in [244],

“In general, the reliability of iterative techniques, when dealing with various
applications, depends much more on the quality of the preconditioner than on
the particular Krylov subspace accelerators used.”

The main original contribution of this thesis can be summarized as

follows: new preconditioning techniques, the related spectral analysis of

the preconditioned matrices, the analysis of the computational cost, and

few numerical experiments, confirming that the proposed techniques

are effective and competitive with respect to the existing ones.
Consider the linear algebraic system

Ax =Db, x,becR", AcR"™", (1.2)

Often we look for a mathematically (but not computationally!) equiv-
alent linear system with more favorable spectral properties for its
matrix A

Ax =D, x,beR", AecR™, (1.3)

in order to speed up the convergence of the iterations of a given iterative
solver. The linear system (1.3) is the preconditioned version of (1.2)
and the matrix (or the matrices) that transform (1.2) in (1.3), usually
implicitly, is (are) called preconditioner (preconditioners).

This thesis opens with Chapter 2 that represents an introduction
to both classes of iterative solvers considered here: Krylov subspace
methods and multigrid methods (MGM). Then, by taking into account
the structures introduced in Section 2.2, we focus on some of the
standard preconditioners from which our new contributions spring
forth, see Sections 2.3 and 2.4.

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 15

In Part I we introduce our proposal for sparse approximate inverse
preconditioners for either the solution of time-dependent Partial Dif-
ferential Equations (PDEs), Chapter 3, and Fractional Differential Equa-
tions, containing both classical and fractional terms, Chapter 5. More
precisely, we propose a new technique for updating preconditioners
for dealing with sequences (see Section 1.1) of linear systems for PDEs
and FDEs, that can be used also to compute matrix functions of large
matrices via quadrature formula in Chapter 4 and for optimal control of
FDEs in Chapter 6. At last, in Part II, we consider structured precondi-
tioners for quasi—Toeplitz systems. The focus is towards the numerical
treatment of discretized convection—diffusion equations in Chapter 7
and on the solution of FDEs with linear multistep formula in boundary
value form in Chapter 8.

Chapter 3 contains excerpts from Bertaccini and Durastante [33] and
Durastante [106]. My main contribution in this works lies in the
extension with higher order interpolation formulas of the original
techniques from Benzi and Bertaccini [20] and Bertaccini [31]. I
have worked both on the theoretical statements and on the writing
of the codes.

Chapter 4 contains excerpts from Bertaccini, Popolizio, and Durastante
[41]. For this paper my main contribution has been the coding
and the development of the strategy for selecting the reference
preconditioner(s), in order to build the sequence of updated
preconditioners.

Chapter 5 contains excerpts from Bertaccini and Durastante [35]. My
main contribution in this work has been the idea of extending the
use of approximate inverse preconditioners to treat sequences of
matrices with structural decay of the entries, coming from the
discretization of Fractional Differential Equations on Cartesian
meshes. Operatively, I have worked on both the building of the
theory and the writing of codes.

Chapter 6 contains excerpts from Cipolla and Durastante [81], the the-
oretical analysis needed to construct the sequence of discrete
problems is the product of both authors and has been done in an
equally distributed way. My main contribution concerns the appli-
cation to this case of both the techniques and the preconditioners
developed in Chapters 3 and 5.

Chapter 7 contains excerpts from Bertaccini, Donatelli, Durastante, and
Serra-Capizzano [32]. For this work my main contribution was
the construction of the optimized Runge—Kutta smoother, based

16 FABIO DURASTANTE

on the spectral analysis made with the tools in [126]. I have also
worked on the implementation of the prototype of a multigrid
V—cycle preconditioner.

Chapter 8 contains excerpts from Bertaccini and Durastante [34]. My
main contribution in this work regards the theoretical framework,
namely the application of the GLT Theory to the classical pre-
conditioners in Bertaccini [27-30] and Bertaccini and Ng [38],
and to the extension of the considered techniques for treating
the numerical solution of discretized space-fractional differential
equations.

1.1 Sparsity, Structure and Sequence of Matrices

We focus our attention on iterative methods based on the matrix—vector
product kernel. One of our main goals is exploiting cases in which this
operation can be performed efficiently and at a cost that is below O(12)
for an n X n matrix. Both sparsity and structure or sparsity, whenever
present, can help for this; see Section 2.2.

Several preconditioning strategies have been developed during the
years, see, e.g., the survey [19] and the book [211]. In the following
Parts I and II, both the approaches have been used and, whenever
possible, ideas and instruments coming from one setting have been
applied to the other.

Another important issue is that whenever we face a problem that
comes from the discretization of, e.g., a differential model or from the
solution of an optimization problem, we do not have just one linear
system, but we should think about a sequence of linear systems (and then
sequence of matrices) parametrized by the underlying discretization
step(s). Some important properties for our computational tasks can be
interpreted only in term of matrix sequences. All over the thesis we will
distinguish mainly between two kinds of sequences:

. A, us1 with A, € R%*dn or A, e C%>dn that are sequences of
n—00

matrices of growing dimension d,, — oo,
. {AD} with A®) e R4nxdn or AK) e CHnxdn with a fixed value of d,,.

Generally speaking, we focus on the first kind of sequences, i.e., se-
quences of matrices of growing dimension, for dealing with spectral
properties and discussing features that the discrete problem inherits
from the continuous, through classical asymptotic arguments; see, e.g.,
Section 2.2.1 and Part II.

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 17

1.2 Applications and Computational Framework

In this thesis, the design of the preconditioners we propose starts from
applications instead of treating the problem in a completely general
way. The reason is that not all types of linear systems can be addressed
with the same tools. In this sense, the techniques for designing effi-
cient iterative solvers depends mostly on properties inherited from the
continuous problem, that has originated the discretized sequence of
matrices. Classical examples are locality, isotropy in the PDE context,
whose discrete counterparts are sparsity and matrices constant along the
diagonals, respectively; see Section 2.2. Therefore, it is often important
to take into account the properties of the originating continuous model
for obtaining better performances and for providing an accurate conver-
gence analysis. In Parts I and II, we consider linear systems that arise in
the solution of both linear and nonlinear partial differential equation of
both integer and fractional type. For the latter case, an introduction to
both the theory and the numerical treatment is given in Appendix A.

The approximation of functions of large matrices is treated in Chap-
ter 4. Functions of matrices are ubiquitous in the solution of ordinary,
partial and fractional differential equations, systems of coupled differ-
ential equations, hybrid differential-algebraic problems, equilibrium
problems, measures of complex networks, and in many more contexts;
see again Chapter 4.

All the algorithms and the strategies presented in this thesis are
developed having in mind their parallel implementation. In particular,
we consider the processor-co—processor framework, in which the main
part of the computation is performed on a Graphics Processing Unit
(GPU) accelerator. We recall that GPU-accelerated computing works
by offloading the compute—intensive portions of our numerical linear
algebra codes to the GPU, while the remainder of the code still runs
on the CPU. Particularly, it is possible to implement efficiently matrix—
vector multiplications, and these are the numerical kernel of both the
iterative methods the preconditioners considered in Chapter 2.

2

Some Iterative Methods and Preconditioners

“Reason cannot permit our knowledge to
remain in an unconnected and rhapsodistic
state, but requires that the sum of our
cognitions should constitute a system. It is thus
alone that they can advance the ends of
reason.”

I. Kant, The Critique of Pure Reason.

In the thesis, we concentrate on the solution of linear system A x = b,
where A is (if not otherwise stated) a real nonsingular square matrix, b
is the known vector, and x is the vector of the unknowns.

In order to find an approximation for x, we could use direct methods.
However, often numerical approximation of many problems, in particu-
lar of partial differential equations, produces sparse and/or structured
matrices A. Direct methods may not be the best choice when A is large
and sparse and/or structured because

they can destroy the underlying sparsity /structure during the resolution
process.

We could be interested in approximations with a lower accuracy than
the one provided by, e.g., Gaussian Elimination with pivoting. This
could be due to the low precision of the data or to the truncation
error introduced by the approximation process generating the linear
system(s).

They cannot use the information given by the initial guess for the
solution x. The former is often available (and precious) in many classes
of problem:s.

All these issues can be fulfilled by iterative methods.

Observe that differently from direct methods, iterative methods do
not terminate after a finite number of steps. They require some stopping
criteria in order to become algorithms. We terminate the underlying

20 FABIO DURASTANTE

iterations when an estimate for the || - || norm of the (unknown!) relative
error

is less than a user-prescribed quantity ¢, i.e.,

le® _ X% — x|

Il Xl

and the iteration count k is less than a maximum allowed N. Very often,
the estimate of the error is based on the residual r'*):

< é&

10 =b - Ax®,

a quantity that is easy to compute. Unfortunately, by using the following
straightforward identities

Ae® =—® bl < IA] ||x]I,
we derive the following upper bound for the norm of the relative error

e
[l

where x(A) = ||A|| ||A7Y|| is the condition number of the matrix A. There-
fore, if at step k we experience that

[l
bl *

< k(A)

[l
bl

<¢€

and stop the iterative method, then our computed approximation x*
can be quite far from x if k(A) is large, i.e., the relative error can be x(A)
times greater than the desired accuracy, «.

For what concerns the use of preconditioning, there are three basic
equivalent systems we can consider. Thus let us allow for an invertible
matrix M, whose properties will be defined later on in specific problem
context. With the following transformation, we have a left preconditioning
(with M):

M 'Ax=M"'b, A=M714, (2.1)

a right preconditioning:

AMlu=b, A=AMT1,
x = M lu, (2.2)

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 21

or a split preconditioning scheme, respectively, for which we use the
matrix M in the factored form M = MMy, supposed well defined:

-1 1y _ Af-1 i ag-1 -1
M1 A]\/ll2 u —M1 b, A —M1 AM2 , (2.3)
X = Mz_ u.

What kind of transformation are we looking for? Potentially, M should
be invertible, approximating A in some way, if A is sparse, then it would
be nice to have a sparse M as well in order to reduce the computational
cost of the matrix-vector products that may be needed for computing
M~!v with an auxiliary iterative method or a suitable direct solver. Our
selection would be fine if we achieve a faster and cheaper convergence
to the desired accuracy of our iterative method with respect to what
happens when applying it directly to (1.2). The first problem is that
some of the requirements above are mutually contradictory and a
reasonable compromise is mandatory.

The first thought could be trying M = A. In this way, the product
M™1A is (A and then M are supposed invertible) A™'A = I and then we
could obtain the solution without iterating. This trivial approach has
two flaws: (a) the time needed for computing the inverse of A is usually
(much) higher than solving (1.2) with, say, the popular sparse Gaussian
elimination (see, e.g., [134]) and, (b) the inverse of a sparse matrix is
dense, in general.

Theorem 2.1 (Gilbert [129]). The inverse of a sparse matrix can be dense.

We have to account the time for computing our transformation
and the time needed for the application to the iterative solver of our
preconditioner M~!. We stress that applying the preconditioner does
not require computing the matrix-matrix product, a procedure that is
too expensive to be taken into account. In all the considered cases, it is
enough to compute matrix—vector products. Summarizing the above,
we can express the time required to calculate the solution Ty, of the
linear system Ax = b with a preconditioned iterative method as:

Ty = setup T Nit X T, (2.4)

where Tseryp is the time for computing our transformation, Nj; is the
number of iteration of the iterative solver needed to obtain the solution
within the required tolerance and Tj; is the time needed for each iteration,
supposed constant for simplicity.

The main issue is that we need to find a balance between having M
as a good approximation for A, i.e., in principle, minimizing ||M 1A - ||

22 FABIO DURASTANTE

or |[M — Al in some norm, and a reasonable setup time (Tsetup) for
building (possibly implicitly) the preconditioner M and the Tj;!, time
needed for the iterations, having in mind to reduce T}, with respect
to the other approaches. Otherwise we are wasting computational
resources.

In the sequel we recall some notions concerning Krylov subspace
methods, Section 2.1, we define the aspects of sparsity and structure we
are interested in, Section 2.2, and we introduce the two general classes
of preconditioners, Sections 2.3 and 2.4, of which our proposals are
special instances.

2.1 Krylov Iterative Methods

The idea of projection techniques is based on the extraction of an approxi-

mate solution for
Ax =D,

A € R™" through the projection of the approximations in a specific
subspace of R". If & is the search subspace or the subspace of candidate
approximants and is of dimension m, then in general m constraints
should be imposed in order to have a hope to extract a unique solution.
Usually, these constraints are imposed by m independent orthogonality
conditions. This requires defining another subspace of R", &, the
subspace of constraints. This construction is shared by other mathematical
frameworks and it is called the Petrov-Galerkin condition.

We say that a projection technique onto the subspace ¥ is orthogonal
to £ when the candidate approximate solution (x) for the underlying
linear system is determined by imposing

XeH,and b - AX LY,

where L means “orthogonal to”, i.e., when the scalar product of the
vector b — AX against any vector in & is zero.
Specifically, following the nomenclature in [244], we call here a
projection method orthogonal it X = &, and then oblique if it is otherwise.
In order to include the information on an initial guess x0 we
should extract X in the affine subspace x) + ¥ and then the problem
reformulates as finding X such that

xexV+%, b-AXLZL. (2.5)

Most standard techniques use a sequence of projections. A new pro-
jection uses a new pair of subspaces X and & at each iteration and an

1 The Ty increases as a consequence of the loss of sparsity of the fictitious product M~ A.

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 23

initial guess x() as the most recent approximation obtained from the
previous approximation step. Note that projection forms a unifying
framework for many iterative solvers, including many of the classical
stationary methods, e.g., if we take X = £ = Span{e; }, where e; is the
ith unitary vector of R", then we obtain the Gauss-Seidel method. The
projections are cycled for i = 1, ..., n until convergence.

When X = &£ the Petrov-Galerkin conditions (2.5) are called the
Galerkin conditions.

Now, let us consider a very illustrative matrix representation of the
above projection techniques.

LetV =[vq,...,Vm] an n X m matrix whose columns are the vectors
vi,i = 1,...,m which form a basis of X and W = [wy,...,wy,] an
n X m matrix whose columns are the vectors wy, ..., w,, which form
a basis of Z. If the candidate approximation for the solution of the
underlying linear system is

x=x9+v y, (2.6)

then the orthogonality conditions for the residual vector r with respect
to vectors v;
Y = WI(b-A%) =0

lead to the following system of equations:
WIAVy=WT (O, (2.7)

where 10 = b — Ax is the initial residual. If the matrix WT AV is
nonsingular, then we can use the matrix-vector notation for writing the
approximate solution X as

x=x0+v (W AV) WO,

Usually, the matrix M = WT A V is not formed explicitly but algorithms
can compute the product w = Mv for any vector v and this is enough
for all iterative methods considered here.

We note that if m is small compared to n (supposed always large
here) and M = WT AV is nonsingular, then we could compute X by
solving the m x m linear system My = WTr® by, e.g., a direct method.
However, M, the “projected version” of A can be singular even if A is
not. An example of this issue is given by the nonsingular A defined as

Az(? i) (2.8)

24 FABIO DURASTANTE

By taking V = W = [ey, ..., e,], where the e;s are the canonical basis
vectors of R™, we end with a null m X m matrix M because W AV is
made of all zeros.

There are at least two very important cases where M is nonsingular.

Proposition 2.1 (Saad [244]). If A, X and & satisfy one of the two conditions

(a) A is symmetric and definite and K = &£, or
(b) A is nonsingular and AX = Z,

then M = WT AV is nonsingular for any choice of the bases of ¥ e <£.

A Krylov subspace J,,, for the matrix M, with m € N, related to a non
null vector v is defined as

In(M,v) = Span{v, Mv, M?v,...,M" v} (2.9)

We note two important properties that characterize the Krylov subspace
methods.

Remark 2.1.

* The Krylov subspaces are nested, i.e., T, (M, v) € Fy11(M, v). A Krylov
subspace method is an algorithm that at step m > 1 uses Krylov subspaces
for K, and for Z,,.

* The property T(M,v) € Tp1(M,v), m =1,2,... (and T,,(M,v) = R"
for m > n because Ty, is a subspace) of the Krylov subspaces implies that
any method for which a Petrov-Galerkin condition holds, in exact arithmetic,
terminates in at most n steps. In practice one wants the methods to produce the
desired approximation to the solution of the underlying linear system within a
number of iteration much fewer than n.

By choosing &, and &£, as different Krylov subspaces, we can have
different projection methods. Here we mention only the ones that will
be used in the following chapters.

In particular, we consider Krylov subspace iterative algorithms
derived from the Lanczos and Arnoldi famous algorithms.

The first one was introduced in 1950 by Lanczos [178] for estimating
eigenvalues of sparse symmetric matrices. It generates a sequence
of symmetric tridiagonal matrices whose eigenvalues, under suitable
hypotheses, converge to those of M.

The second is due to Arnoldi [6], and was published in 1951 with the
idea of extending the above Lanczos strategy to nonsymmetric matrices.
It is based on the Hessenberg reduction of the matrix M.

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 25

2.1.1 The Conjugate Gradient: CG

The Conjugate Gradient (CG) algorithm is one of the most used, well
known, and effective iterative techniques for solving linear systems
with Hermitian and (positive or negative) definite matrices. CG is an or-
thogonal projection technique on the Krylov subspace 7,,(M, 1) (2.9),
where 19 = b — Mx© is the initial residual. In theory, the underlying
algorithm can be derived in at least two different ways:

. by the minimization of a quadratic form, see, e.g., the seminal paper by
Hestenes and Stiefel [157] and Golub and Van Loan [134];

. by the tridiagonal reduction of the original matrix generated by the
Lanczos algorithm; see Saad [244].

Here we will derive the Conjugate Gradient algorithm as a Krylov
subspace method, i.e., by imposing that the approximate solution x")
belongs to the affine subspace x©0 + %, where %, is chosen to be a
Krylov subspace, while the residual t™) = b — Ax(" is orthogonal
to another Krylov subspace, the subspace of constraints; see [244]. We
proceed through the Lanczos Algorithm 2.1, that, under our hypotheses,
transforms the underlying linear system generating a sequence of linear
systems of increasing size, whose matrices are tridiagonal, i.e., the only
nonzero entries are on the main, sub and super diagonals.

Algorithm 2.1: Lanczos algorithm
Input: A € R"™", v; € R" such that ||vq]; =1
Output: V,, = [v1,...,Vy], Ty = trid(B, a, B) € R™™
forj=1,...,mdo
Wi =Avj—fjvj1;
aj=<W;,Vj>;
W]' = W]' - a]' V]' ’
Bir1 = llwill2;
if fj+1 = 0 then
return;
end
Viel = Willwjlh ;
10 end

[

N

© O N o U B W

A sequence {x')}, converging to the solution of the linear system
Ax = b, can be generated by a sequence of m orthonormal vectors
{v1,...,vy}, m < n,such that

x) — xO ¢ Span{vy,...,v;}, j <n,

26 FABIO DURASTANTE

where x? is an initial guess for x and x/) is such that the residual
1) = b — Ax) is minimum in some norm to be specified later. The
Lanczos algorithm, introduced in 1950 for computing eigenvalues of
symmetric matrices, see [178], neglecting rounding errors, generates a
sequence of orthonormal vectors {vy, ..., v;} by the three term relation

Bj+1Vi+1 = Avj —a;jvj — Bivj_1. (2.10)
After j steps we obtain
Span{vi,...,v;} = Span{vy, Avy, ... ,Aj_1v1} =X;(A,v1).
If V; is the n X j matrix whose columns are v1, ..., v;, then we obtain:
x) — x(0) = V]-y(j), y(j) cR/,
ViVi=1;, AV;=VTj+iej, e; =(0 -~ 01);.

where
f']' = (A - OéjI)V]' - ﬁ]’V]'_l.

The matrix T; is symmetric tridiagonal
a1 P
B2 ax PBs
T; = . (2.11)

Pj
pi ajl

If, at the mth iteration, m < n, we have ||f,|| = 0, then we find that

AVy = VT = Ty =VEIAV,,

i.e., A can be considered reduced to the tridiagonal T},. By the previous
steps and from (10) we find

Ax=b = A(x—x?) =b - AxO =0,
= VIAV,ym = VIO = Ty, = VIO,
and therefore
ym =T VIO = x =xO 4 v, T-1(VIHO), (2.12)
From (2.12), we build the sequence {x!/)} approximating x:

X = 5O | V]»Tj‘l(V].Tr(O)). (2.13)

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 27

We do not need to store vectors vj, j < i — 1. Indeed, at step m, a
factorization L,,U,, for T,, can be generated dynamically:
1 ' B2
Ay 1 -

B
Mm |

A 1]

From (2.13)and T;' = U, 'L, !
x™ = xO 4 v, U L1 VI,
by posing
Pm = Vmu;:qll Zy = L;}(Vn];r(()))’

we express
x™ =xO 4 p,z,.

Thus py,, the last column of P,,, can be computed from the previous
one:

Vin _,Bmpm—ll A Bm

= , =a. — A ,
- — m m mﬁm

Pm =

by observing that z,, = (z;,—1 Cm)T, where C,, is a scalar, and
KM = D) e

that is the candidate approximation generated by updating the one of
the previous step. Note that the residual vector 1) = b — Ax"™ is in
the direction of v,,;1, because (see [244])

" = b — Mx"™ = —ﬁmﬂ(e;T;il Vngr(o))vmﬂ. (2.14)
Moreover, the following result holds.

Proposition 2.2. The vectors p1, ..., pm, Where Py, = [p1,...,Pml, are
"A-orthogonal” or conjugate, i.e., < Ap;,p; >=0,1 # j.

As a consequence of (2.14), we provide a version of CG from Lanczos
Algorithm 2.1.
Let us express the solution and residual vectors at step jth as

28 FABIO DURASTANTE

The mutual orthogonality of t/)s give us the a jS:
0 =< r(j+1),r(j) >=< r(]) - a]Mp],r(]) >,

< r(]),r(]) >
< ij,r(f) >‘

aj = (2.15)
The nextsearch direction, p;+1,is alinear combination of rU*D and pj.ie.,
pj+1 = U+ 4 Bp;j- Therefore, < Ap]-,r(f) >=< Apj,pj — Bj-1Pj-1 >=<
Apj, p; > that can be substituted in (2.15). Moreover, from the previous
relations

‘B < r(j+1)’Mp]- > < r(j+1)’ (r(j+1) — r(])) >
'™ <pj,Mpj> «a;<pjMp;>
< 14D 44D 5

(2.16)

<10 10 >

we obtain the Conjugate Gradient method (Algorithm 2.2).

The CG algorithm, like the other Krylov subspace methods, has the
nice property that the matrix A itself need not be formed or stored,
only a routine for matrix-vector products is required in order to use the
algorithm. This is the reason why Krylov subspace methods are often
called matrix-free.

We need store only four vectors x, w, p, and r. Each iteration requires
a single matrix—vector product to compute w = Ap, two scalar products
(one for p’w and one to compute ||r||?), and three operations of the
form a x +y, where x and y are vectors and «a is a scalar. It is remarkable
that the iteration can progress without storing a basis for the entire
Krylov subspace thanks to the existence of a three-term relation for the
symmetric and tridiagonal matrix in the Lanczos process. In particular,
the symmetric Lanczos algorithm can be viewed as a simplification
of Arnoldi’s algorithm from the following section, when the matrix is
symmetric.

It is clear that the CG-type algorithms, i.e., algorithms defined
through short-term recurrences, are more desirable than those algo-
rithms which require storing the entire sequences of vectors as is going
to happen with the GMRES algorithm in the following section. The
former algorithms require less memory and operations per step. An
optimal Krylov subspace projection means a technique which mini-
mizes a certain norm of the error, or residual, on the Krylov subspace
independently from the starting vector. Such methods can be defined

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS

29

Algorithm 2.2: Conjugate Gradient method

Input: A € R SPD, Maximum number of iterations Ny,

Initial Guess x(©)
Output: X, candidate approximation.
10— |Ib - AxO, r =10, p «1;

[

po < X%
fork=1,..., Ny do

N

3

4 if k = 1 then

5 | per

6 end

7 else

8 B < P1/po;

9 p<—r+pp;
10 end

11 w — Ap;

12 O Pl/pTw,'

13 X < X+ ap,

14 r<—r—Qaw,

5| p1 e el

16 if <Stopping criteria satisfied> then
17 ‘ Return: X = x;
18 end

19 end

from the Arnoldi process. However, it was shown by Faber and Man-
teuffel that the latter cannot happen if A is non-Hermitian; see, e.g., [138,

Chapter 6].

Now, let us consider what CG does by analyzing its convergence.

Theorem 2.2. Let x* be such that Ax" = b, A be symmetric and positive
definite. If Py, is the set of polynomials of degree at most m, then the mth
iteration of Conjugate Gradient produces an approximation x'™ such that

I =x"la = min [lp(4) (x = xO)lla
p(0)=1
<|lx* = x©@ min ma zZ)|,
I =x”lla | min_max p(z)
p(0)=1

where the A—norm || - || 4 is defined as || - ||a =< A-,- >,

(2.17)

30 FABIO DURASTANTE

Corollary 2.1. If A is symmetric and positive definite and the eigenvalues of
Aaresuch that0 < A1 < ... < A, we have

I =x"la _ [VRa(A) ~ 1 "
Ix* = x4~ \Vka(A) + 1

where ky(A) = Ay /Ay is the 2-norm condition number of A.

(2.18)

A detailed proof for Corollary 2.1 can be found in [244, Sections 6.10
and 6.11].

Corollary 2.2. Under the same hypotheses of Corollary 2.1, the Conjugate
Gradient terminates after n iterations in exact arithmetic.

Theorem 2.3. Let A be Hermitian and positive definite. Let m an integer,
1 <m < nand c > 0 a constant such that for the eigenvalues of A we have

0</\]SAZS/\3S...SAn—m+1SC<...SA71.

Let us suppose that the Conjugate Gradient method (Algorithm 2.2) in exact
arithmetic is used. Then, fixed a ¢ > 0 we have

* _ 3o(k)
k* = argmin{k : —||x Xl < e}
k

is bounded from above by

min{[%\/c/—/\llog(%) +m+1w,n}. (2.19)

For the matrices that naturally occurs in applications, this is a
situation that is usually far from being common or realistic. Thus, to
put ourselves in the hypothesis of Theorem 2.3, we can consider the
preconditioned Conjugate Gradient method (PCG). Since we are dealing
with a matrix A that is symmetric and definite, we should preserve
this for the preconditioned system (1.3). Therefore, we may search
for a preconditioner M that is still symmetric and positive definite.
With this choice, we can form the Cholesky factorization (see, e.g.,[133])
for M = LLT, with L a lower triangular factor, and apply the split
preconditioning from (2.3). However, this is not the only possible choice
to preserve symmetry. Even in the case of left preconditioning (2.1),
in which M~'A is not symmetric, this can be achieved. For obtaining
this observe that M~!A is self-adjoint with respect to both the inner

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 31

products < -,- >y and < -, - >a:
< MAx,y >m= < Ax,y >=< x, Ay >=< x, MM Ay >
=< x,M_lAy >M,
<M 'Ax,y >4= < AM7'Ax,y >=< x, AM"' Ay >
=< X,M_lAy >4 .

(2.20)

Therefore, we can modify the original CG from Algorithm 2.2, by
substituting the usual Euclidean product with the M—-inner product
and observing that this has not to be computed explicitly, since

<2 2D srim < MDD MED 5y =< £ 00 5

Therefore the substitution of the inner product can be implemented as
summarized in Algorithm 2.3. Similarly one can observe that for the

Algorithm 2.3: Preconditioned Conjugate Gradient method

Input: A € R SPD, Maximum number of iterations Ny,
Initial Guess x¥, M € R™" SPD preconditioner

Output: X, candidate approximation.

10 b - Ax©, 20 — MO p© 2O,

for j =0,..., Ny do

[y

N

3 aj <10, 20>/ 4p0i) p(i;

) XD — XD + a;pt);

5) — 1) — a; Apl);

6 if <Stopping criteria satisfied> then
7 Return: x = xU+D:

8 end

9 20Ut M14U+D.

10 ﬁ] — <r(j+1)rz(j+1)>/<r(f),z(j)>;

. pU*D — 20D 4+ gp);

12 end

right preconditioning (2.2) the matrix AM~! is not Hermitian with either
the Euclidean or the M—inner product. On the other hand, we can retain
symmetry (Hermitianity if A and M have complex entries) with respect
to the M~ !~inner product. With these observations Algorithm 2.3 can be
restated consequently. This reformulation is mathematically equivalent
to Algorithm 2.3; see [244] for the details and the construction.

32 FABIO DURASTANTE

The condition under which Theorem 2.3 holds can be extended
from a single matrix with a given spectrum, to the case of a sequence of
matrices, in the sense of Section 1.1. As we hinted in there, when we
deal with linear systems that come from real problems we never work
with a single matrix A, but with a sequence {A, }, € R™" (or, possibly,
C™), whose dimension grows with respect to some discretization
parameter. To encompass these general cases under the same theory
and recognize the same convergence behavior given in Theorem 2.3, we
need to introduce the concept of proper cluster.

Definition 2.1 ([132, 279] — Cluster (proper)). A sequence of matrices
{An}ns0, Ay € C™", has a proper cluster of eigenvalues at p € Cif,Ve > 0,
the number of eigenvalues of A, not in the e—neighborhood D(p,) = {z €
C| |z = p| < €} of p is bounded by a constant r that does not depend on
n. Eigenvalues not in the proper cluster are called outliers. Furthermore,
{An }n is properly clustered at a nonempty closed set S C C if for any ¢ > 0

9:(n,9) = #{Aj(A)) : 4; ¢ D(S, &) =| JD(p, &) p = 0(1), n — +oo,
peS

in which D(S, €) is now the e—neighborhood of the set S, and we have denoted
by q.(n,S) the cardinality of the set of the outliers.

Thus, under the presence of a properly clustered spectrum, we can
restate the convergence result Theorem 2.3 with a constant ratio 41/c
that is independent from the size of the matrix, and thus a number
of iterations needed for achieving a tolerance ¢ that is independent
from the size of the matrix. Observe that since every A, has only real
eigenvalues, the set S of Definition 2.1 is a nonempty closed subset of R
separated from zero. We have obtained what is usually called an optimal
rate of convergence.

Remark 2.2. Some requirements in Definition 2.1 can be relaxed. To ensure
the optimal rate of convergence of a Krylov method for symmetric matrices
the cluster should be proper. However, a somewhat “fast convergence” can be
obtained also if the number of eigenvalues not in the cluster is bounded by a
function of the size o(n) for n — +o0. Another limiting case of this approach,
as we will see in the following sections, is represented by non—Hermitian matrix
sequences. Generalizations for dealing with these cases are also available, even
if the role of the eigenvalues, in this case, is not anymore so crucial. We will
come back on these convergence properties in Sections 2.1.2 to 2.1.4.

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 33

2.1.2 Generalized Minimal Residual: GMRES

Generalized Minimum Residual, or GMRES is a projection method
approximating the solution of linear system Ax = b on the affine
subspace x0 + g (A,v1), being x0 the starting guess for the solution.
The Petrov—Galerkin condition for GMRES can be written as & =
AT (A, 1), with r© = b- A x©. GMRES, at each iteration, determines
xU*D such that ||tU*V||, is minimum. To build it we need to introduce
the Arnoldi algorithm: an orthogonal projection method on ¥,,(A, v1) =
Im(A,v1) for general non—-Hermitian matrices. It was introduced in
1951 as a way to reduce a matrix in Hessenberg form and this is the main
use of it here. Moreover, Arnoldi suggested in [6] that the eigenvalues
of the Hessenberg matrix generated from a n X n matrix A, after a
number of steps less than 7, can give approximations for the extremal
eigenvalues of A. Later, the underlying algorithm was discovered to be
an effective (cheap under appropriate assumptions) and powerful tool
for approximating eigenvalues of large and sparse matrices. A shift-
and-invert strategy is needed if one is searching other eigenvalues; see,
e.g., [248] and references therein.

Algorithm 2.4: Arnoldi

Input: A € R, vi € R" such that ||vq]; =1
Output: V,, = [vy,..., V], Hy € ROPF1DXm
forj=0,...,mdo

[y

2 hi,j <—<AV]',V1' >,i=1,...,j,'
j .

3 W — AV] - Zizl hi,j Vi,

4 | hjyi— |lwillz;

5 if h]‘+1,]' = 0 then

6 exit;

7 end

8 | Vi Wilhj;

9 end

At each step in Algorithm 2.4 A is multiplied by v; and the resulting
vector w; is orthonormalized against all previous vectors v; by a Gram-
Schmidt-like process. The process stops if w; computed in Line 3 is the
zero vector.

Note that we need to store the (usually dense) matrix n X m V,,
whose columns are given by vy,. . ., v, ateach step m, and the (m+1)xm
upper Hessenberg matrix H,, = (h; ;) with m? + 1 nonzero entries.

34 FABIO DURASTANTE

Theorem 2.4. If Algorithm 2.4 does not terminate before step m, then vectors
V1, V2, ..., Vy form an orthonormal basis for the Krylov subspace

Hm(A,v1) = Span{v1, Avy, ..., A1 Vi }.

Theorem 2.5. Let V,,, an n X m with columns vy, ..., vy, H,, = (hij) the
(m + 1) X m upper Hessenberg matrix whose entries are computed in the

Arnoldi Algorithm 2.4 and H,, the m X m submatrix extracted from H,, by
deleting its last line. Then

AV, =V, Em + Wy, e; = Vu+1 Hu, (2.21)
where e, is [0,...,0,1]7 € R™ and
VEAVm =H,,. (2.22)

Theorem 2.6. The Arnoldi Algorithm 2.4 stops at step j < n if and only if
the minimal polynomial of vy has degree j. In this case the subspace X; is
invariant for A.

Let us write the GMRES algorithm starting from its properties:

Vi = [v1,...,Vp] is the orthonormal basis of ¥,,(M, v1) and H,, is
the m X m Hessenberg submatrix extracted from H,, by deleting the
(m + 1)th line. At step m, the candidate solution x(") will be the vector
minimizing the residual in the 2-norm:

K]l = [Ib = Ax"™|l2. (2.24)
From the previous relations, we find

b-Ax"™ = b-AXY+V,y)

= O_Av,y
= Vin (an;+lr(0) - ﬁm}’)

= Vus(Ber — Hyy)

where g = ||V, e; = [1,0,..., 0];2“. To minimize the expression

IBer — Huyl, yeR" (2.25)

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 35

we need to solve a linear least squares problem (m + 1) X m. Its approxi-
mate solution at step m is given by

K = 5O 17, ym)

wherey = y) € R” minimizes (2.25). We use modified Gram-Schmidt
orthogonalization in GMRES Algorithm 2.5.

To solve the least squares problem (2.25), it is useful to transform
the upper Hessenberg matrix into an upper triangular one by Givens
plane rotations Q; (see, e.g., [134]) that is

Q — Qm—l Co Ql c R(m+1)><(m+1)

H}Yin IBer — Huylk = myin 1Qpe1 — QHuyll>
= myin g™ — Ryl
where g(’”) e R+l R e RUn+txm y € R™. It can be easily checked

that the last component of g™ is the norm of the residual r™); see Saad
and Schultz in [249]. By observing that

||per — Em}’”% = [[Qpe1 - Qﬁm}’H%
= lg" = Ruylp

T (m)|2

= lej,,.8™ P + 118" — Ryl

we retrieve
y(M) — R;}g(m)’

where R,, € R™ ™ is the upper triangular matrix extracted by deleting

the last line from R,, and g™ is the vector whose entries are the first
m of g(’”). The plane rotations Q;, j = 1,...,m — 1, can be applied, for
each iteration of GMRES, at the mth matrix H,,. This gives also the
residual norm without computing explicitly ¥ = b — A x".

GMRES stops at step jth if and only if i1 ; = 0. In this case (and in
exact arithmetic), the computed solution x'/) can be considered exact
because b — Ax/) = 0 and x = x!) € H;(A, v1). It is the only possible
forced stop for GMRES, and is a Lucky Breakdown differently to what
we will see for bi-Lanczos, BiCG, BiCGstab,etc.. Note that, for the same
reasons of CG, GMRES terminates in at most n iterations in exact
arithmetic. Nevertheless, GMRES can stagnate until the last step, i.e.,

36 FABIO DURASTANTE

Algorithm 2.5: GMRES
Input: A € R b € R", Maximum number of iteration m, Initial
Guess x(¥)
Output: X candidate approximation.
1 10— b-AXO;
2 B 1O

3 v — /g

4 forj=1,...,mdo

5 Wi — Avj;

6 fori=1,...,jdo

7 hi,j —<Wj, Vi >;
8 Wi — W; —h;;Vj;
9 end

w0 | hj, e [[wills

11 if 1j41,; = 0 or <Stopping criteria satisfied> then
12 m=7jp,

13 break;

14 end

15 Vitl = Willlwill;

16 end

17 Compute y™ such that
Il = [Ib = Ax|> = [|er - H,,ylh = minyess;
18 Build candidate approximation X;

there can be no significant residual error reduction until the nth step;

see [138] for more details and considerations on convergence issues.
There are various possibilities to modify GMRES for overcoming

the memory issues we mentioned.

Among the most common GMRES variants we recall (see, e.g., Saad

[244, Section 6.5]):

Quasi-GMRES: instead of the orthogonalization procedure Arnoldi, we
keep in memory at most a fixed number k of vectors v,;,_x+1,..., Vy. In
this way, H,, becomes a banded Hessenberg matrix.

Restarted GMRES (see Algorithm 2.6): after a maximum number of
iterations k, usually from 10 up to 50, if GMRES has not reached
convergence, then we set 10 = ¢m) 50 = x(m) and we return to the
beginning of the cycle.

The limit of these strategies is that we must pay something for the

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 37

loss of information due to partial orthogonalization, in the case of the
Quasi-GMRES, or to restarting in the case of Restarted-GMRES. The
price we pay can be summarized as follows: the possibility of stagnation
of the algorithms when the matrix of the underlying linear system is
not positive definite, less robustness, and the absence of the nice and
complete convergence theory of GMRES.

Proposition 2.3. If A is positive definite, i.e., x' Ax > 0, ||x|| > 0, then
GMRES(m) (and then GMRES that can be considered GMRES(m) with
m = oo) converges for all m > 1.

If) = b — Ax), then at step jth of GMRES, we have

KO = (T - Aqja (AN
= min [(I-AqA) V|,
q(z)e j-1

where q;(z) is a polynomial of degree at most j — 1 in z.

Theorem 2.7. If A can be diagonalized, i.e., if we can find X € R™" non
singular and such that

A=XAXT, A=diag(dy, ..., An), 2(X) = X[1IX 72,
2(X) = || X|l2 | X7 |2 condition number of X, then at step m, we have

il < %o (3O ® - A, 2.26
7]z < x2(X)||x IIzP(Z)eg:nllrF}(O):“gIl,{;?fnlp(i)l (2.26)

where p(z) is the polynomial of degree less or equal to m such that p(0) = 1
and the expression in the right—hand side in (2.26) is minimum.

Let us focus now again on the natural case of a sequence of matrices
of growing size {A, },, with A,, € R™".

Thus, we can consider a linear system with a matrix A, having a
spectrum o(A,) clustered around a certain point (Definition 2.1) in the
complex plane far from the origin?. It is natural to partition 0(A,) as
follows

0(An) = 0c(An) U oo(An) U o1(An),

where 0.(A;) denotes the clustered set of eigenvalues of A,, and o¢(A,)U
01(A;) denotes the set of the outliers. Here we assume that the clustered
set 0.(A,) of eigenvalues is contained in a convex set Q).

If the spectrum of A is not clustered and we consider the use of a preconditioner with a
given matrix sequence P;, then the following analysis will focus on, e.g., K, = P;, 1A, or
K, =A,P; .

FABIO DURASTANTE

Algorithm 2.6: Restarted GMRES or GMRES(m)

@ 9 o U s~ W

10
11
12
13
14
15
16

17

18
19
20
21
22

23

Input: A € R, b € R"”, Maximum number of iteration m,

Initial Guess x(©)
Output: X candidate approximation.
10 b - Ax©;

B — [xO;
vy —;
forj=1,...,mdo
Wi — Avj;
fori=1,...,jdo
hi,]' —< Wi, Vi >;
Wi —W;—hjvj

end

hivij < [[will;
if hjy1,; = 0 or <Stopping criteria satisfied> then
m=j;
exit;
end
Viel = Willwll;
end

Compute y'"™ such that
K™l = [[b— Ax"™|l, = ||Ber — H,, yll» = minyern;
if <Stopping criteria not satisfied> then
10— ¢(m),
x©) x(m).
Goto 2;
end
Build candidate approximation X;

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 39

Now, let us consider in more detail the sets
Go(An) = {)A\l, /A\z, ceey /A\]'O} and Gl(An) = {;\1,;\2, ceny ;\jl}

denoting two sets of jo and j; outliers, respectively. The sets 0g and o4
are defined such that, if A; € 5¢(A;), then we have

1<1-——|=<¢, Vzeq,

j

while, for A j € 01(An),

0< <1, VzeQ,

12
/\]

respectively.
Under the above assumptions, we can state the following bound.

Theorem 2.8 (Bertaccini and Ng [39]). The number of full GMRES itera-
tions j needed to attain a tolerance ¢ on the relative residual in the 2-norm
IPll/ @, for the linear system A,x = b, where A, is diagonalizable, is
bounded above by

log(p) log(p)

min {jo + 71+ log((¢) — log(#a(Xx)) Z log(Cf)} n} , (227)

where

’ (a/d ++/(a/d)? - 1)k + (a/d ++/(a/d)? — 1)_k

p = , (2.28)

(c/d ++/(c/d)? - 1)k + (c/d ++/(c/d)? - 1)_k

and the set Q) € C* is the ellipse with center c, focal distance d and major semi
axis a.

We stress that
a+ Va2 —d?

c+Ve2—d?2
In particular, when the major axis is parallel to the imaginary axis, is

centered in (c,0), c > 0, and has length 2a, while the minor axis 2b,
respectively, we have a > b and

p=p=

a ++/a2 — a2 - a+b

c+\/c2+|a2—b2| c+\/c2+a2—b2'

p=

40 FABIO DURASTANTE

In practice for our model problems, we use this expression to approxi-
mate p in the bound (2.27).

According to Theorem 2.8, the outliers do not affect the asymptotic
convergence rate of the GMRES method, but rather they introduce

a latency effect of jp + j; iterations plus the term Zfozl log(c;)/ log(p);
see (2.27).

We stress that the condition number of X,,, the matrix that diag-
onalizes A,, cannot be neglected in the above bound, otherwise the
eigenvalues alone can give highly misleading information on the conver-
gence process, see [140]. On the other hand, if X,, has a huge condition
number (e.g., growing exponentially with the size of the matrix), then
the underlying bound is useless.

Remark 2.3. Following [138], let us consider some GMRES issues for A
highly nonnormal and/or A non definite. In these two cases, the results based on
the Chebyshev polynomials cannot be used any more and we have to reconsider
the bound (2.26) on the residual and its sharpness.

Nondefinite matrices. If the eigenvalues are clustered around the origin,
then finding a minimizing polynomial that has value 1 on the origin and is
less than 1 everywhere on some closed curve around the origin containing the
eigenvalues, is impossible by the maximum principle. Therefore, the convergence
analysis becomes less useful and the bound is not sharp at all. Similarly, it is
impossible to build a polynomial having value 1 on the origin and having small
absolute value in all the scattered eigenvalues, unless we let the polynomial
degree grow. But in this way we retrieve a slow convergence?.

Nonnormal matrices. the bound depends on the condition number of the
eigenvector matrix X, if it is large, then the convergence analysis can produce
again a nonsharp bound.

We can say more: any convergence curve is possible; see the next the-
orem proposed in Greenbaum, Pték, and Strako$ [139] and Greenbaum
and Strakos [140].

Theorem 2.9 (Greenbaum, Ptdk, and Strakos [139]). Given a non-
increasing positive sequence { fi tr=o,... n—1 With f,—1 > 0and a set of nonzero
complex numbers {A;}i=12,. . n C C, there exists a matrix A with eigenvalues
A, Ao, ..., Ay and a right-hand side b with ||b|| = fo such that the residual
vectors ¥ at each step of the GMRES algorithm applied to solve Ax = b with
xO = o, satisfy ||F0|| = i, Vk=1,2,...,n—1.

A high polynomial degree implies that the underlying Krylov subspace has large
dimension, possibly approaching the degree of freedom of the problem or even more
and therefore more iterations are required by GMRES.

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 41

Remark 2.4. Observe that the assumption f,—1 > 0 in the above theorem
means that GMRES reaches the solution exactly at iteration n, and both the
dimension of the Krylov space and the degree of the minimizing polynomial is
n. The result can be modified to obtain every iteration/residual graph.

In case of GMRES or GMRES(m), or any other solver for non-
Hermitian linear systems, the same three preconditioning options (left-,
right—, split-) are available, even though we will see that the mathemat-
ical equivalence between them is lost. Moreover, if the preconditioner
is ill-conditioned, then these differences become substantial.

Let us build a GMRES algorithm for the solution of (2.1), i.e., GMRES
using the Krylov subspace %,,(M~'A, 1Y) or the left-preconditioned
Krylov subspace, i.e.,

Kn(MA, 1) = Span {r“”, MALO, (M A" r<0>} .

This is obtained simply by using the Arnoldi Algorithm 2.4 with the
modified Gram-Schmidt process and is summarized in Algorithm 2.7.
Observe that in this algorithm all the residual vectors and their norms
are computed with respect to the preconditioned residuals. Therefore,
to enforce a stopping criterion based on the (unpreconditioned) residual,
in theory we need to multiply the preconditioned residuals by M and
store them separately from the preconditioned ones. Alternatively, at

each step, compute and use the true residual rgl)le = b - Ax"), which

has the same cost as the previous approach (one more matrix-vector

product per iteration), and compare it in norm with ¢ ||r$l)le II.

Let us build GMRES for the solution of (2.2), i.e., GMRES using
the Krylov subspace %,,(AM™1,1©), the right-preconditioned Krylov
subspace:

%m(AM_l, r(o)) = Span {r(o),AM_lr(O), - (AM_I)m_1 r(o)} .

Similarly to GMRES Algorithm 2.5, we derive Algorithm 2.8.

Line 16 of Algorithm 2.8 forms the approximate solution of the
linear system as a linear combination of the preconditioned vectors z®
fori=1,...,m. Since these vectors v(") are obtained by using the same
preconditioner M1 e, M1 me(m), we do not need to store them.
On the other hand, if we use a nonconstant preconditioner, as is the
case of performing few iterations of another method instead of a fixed
approximation M for A, then we need to store all the z(V's explicitly for
providing the candidate approximation. In this way we derive Flexible
GMRES/FGMRES; see Section 2.1.3.

42 FABIO DURASTANTE

Algorithm 2.7: GMRES with left preconditioning
Input: A € R, Maximum number of iterations m, Initial Guess
x©, M € R"™" preconditioner
Output: X candidate approximation.
1 10— M1(b - AxO); /* Arnoldi process */
2 B [t
vl = r(O)/ﬁ,-
forj=1,...,mdo
w — M1AzD);
fori=1,...,jdo
hij «—<w, vi) >
W & W — hi,]'V(i);
end
10 | hjyi e [[wll;
11 V(j+1) — W/h

O© 0 NN o U1 AW

j+1,j;
12 end
13 Vi — [vD, ..., v(™]; /x Build the Krylov subspace basis */
14 y" — argminy ||fe; — Huyll;
15 XM — xO 4 me(m),-
// Convergence check and possibly a restart
16 if <Stopping criteria satisfied> then
17 ‘ Return: X = x(");
18 else
19 x0) — x(m). /* Restart */
20 goto 1;
21 end

If our preconditioner M is a positive definite matrix, or if M can be
factored as M = LU, then we can use split-preconditioning. In this case
we need to work with the following system equivalent to Ax = b:

L'Au =L, x=U"u

We initialize the algorithm with the residual r® = L1(b — Ax(®)
and, to assemble the candidate approximate solution, we multiply the
linear combination me(’“) by U~L. Note that, also in this case, the
residual vectors and their norms are computed with respect to the
preconditioned residuals. Therefore, to enforce a stopping criterion
based on the (unpreconditioned) residual, we need to multiply the

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS

Algorithm 2.8: GMRES with right preconditioning

@ 9 o U s W

10

11
12
13
14
15
16

17
18
19
20
21

22

Input: A € R, Maximum number of iterations m, Initial Guess
x0 M e Rm*n preconditioner
Output: X candidate approximation.
0 — p - AxXO; /* Arnoldi process */
B [It?2;
v = 10,
forj=1,...,mdo
720 — M-y,
w — Az();
fori=1,...,jdo
hij —<wW, vi) >
W — W — hi,jv(i);
end
hivi,j < [[wll2;

VU W/his j;

end
Vi — [vD, ..., v(™]; /% Build the Krylov subspace basis */
y" « argminy [|Ber — Huyll2;
x(M) — x©0) 4 pf-1 me(m),-
// Convergence check and possibly a restart
if <Stopping criteria satisfied> then
Return: x = x(");
else
x0) x(m). /* Restart */
goto 1;
end

43

44 FABIO DURASTANTE

preconditioned residuals by L (instead of M for the left preconditioned
GMRES) and store them separately from the preconditioned ones.
Alternatively and more computationally reliable, at each step one can

compute and use the true residual rgl)le = b — Ax), which has the

same cost as the previous approach (one more matrix-vector product
per iteration), and compare it in norm with €||r(0) ||. Observe that if

there is no concern about preserving the SPD protggrty, or starting the
theoretical analysis from a single preconditioner M used in a factored
form, then we can use any two invertible matrices M; and M; instead
of L and U in the above discussion.

So what kind of preconditioning (left/right/split) approach is
appropriate? In principle, for a fixed preconditioner M, the spectra of
the eigenvalues of the three associated linear systems (2.1), (2.2) and (2.3)
are exactly the same (but the eigenvectors are different). One should
expect them to behave at least similarly, even if a convergence analysis
based only on the eigenvalues can be misleading for non—-Hermitian

problems.

Proposition 2.4 (Saad [244]). The approximate solution obtained by left or
right preconditioned GMRES is of the form

xM =xO 45, ((MTAM O
:X(O) + M_lsm_l(M_lA)I'(O)

where s,,—1 is a polynomial of degree m — 1 that minimizes the residual
norm ||b — Ax"™||, in the right preconditioning case (Algorithm 2.8) and the
preconditioned residual norm |M(b — Ax™)||> in the left preconditioning
case (Algorithm 2.7).

Therefore the two preconditioning approaches differ for only a
multiplication by M~! in the optimized quantity, while the residuals
are taken in the same affine space. In many practical situations the
difference in the convergence behavior of the two approaches is often
not substantial if M is not ill-conditioned.

2.1.3 Flexible GMRES (FGMRES): GMRES With Variable
Preconditioning

Saad [245] introduced in 1993 the Flexible GMRES (FGMRES), a general-
ization of GMRES that allows changing the preconditioner at each step.
This is exploited to use few iterations of another iterative method as a
preconditioner. The first paper describing a Krylov subspace method

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 45

with a variable preconditioning strategy was the one by Axelsson and
Vassilevski [10] that introduced the Generalized Conjugate Gradient method
(GCG). FGMRES can be expressed as a particular case of the GCG, but
with an implementation producing a more efficient computational
scheme, e.g., see [284]. In this framework we will see that iterative
solvers such as SOR, SSOR, see, e.g., [87, 223], and multigrid or domain
decomposition methods, e.g., [136], can be used as a preconditioner with a
remarkable parallel potential.

It is natural to consider preconditioners based on iterations of other
iterative methods, possibly of another Krylov subspace method. The
latter case provides an inner—outer Krylov method, that can be viewed as
having a polynomial preconditioner with a polynomial that changes
from one step to the next and is defined implicitly by the polynomial
generated by the (inner) Krylov subspace method.

What we need to do is change the preconditioner at every step of the
standard GMRES algorithm with right preconditioning, i.e., in Line 5
of Algorithm 2.9 we compute

and store them for updating the x\" vector in Line 16. This is the simple
modification producing the Flexibile GMRES (FGMRES) described in
Algorithm 2.9. As remarked in [261, 262], the FGMRES is defined not
only by the fact that we use a sequence of preconditioners {M].‘l} i
i.e., we change it from one iteration to the next, but also because the
solution is obtained directly from the new preconditioned basis Z,,.
We neglect the basis V,, that we need to store anyway to perform the
orthogonalization steps inside the Arnoldi process. Thus, the difference
between FGMRES and the usual GMRES algorithm is that the action of
AM].‘1 on a vector v of the Krylov subspace is no longer in the space
generated by the columns of V},;1. Therefore, the subspace Span(Z,,) is
not necessarily a Krylov subspace. Nevertheless, the basis Z,, and V41
can be related by an expression similar to the one in equation (2.23):

AZy = Vyi1Hy,. (2.29)

Moreover, if we denote, as usual, by H,, the m X m matrix obtained by

H,, by deleting its last row and by ¥;,1 the (j + 1)th w vector before the
normalization, then we find (see also the similarities with (2.23))

We now have the tools to state and prove an optimality property of
FGMRES as well.

46 FABIO DURASTANTE

Algorithm 2.9: FGMRES: GMRES with variable preconditioning

Input: A € R, Maximum number of iterations m, Initial Guess
x©), {M; € R™"},; preconditioners

Output: X candidate approximation.

1 10« p— AXO); /* Arnoldi process */

2 e [Ifl;

V(l) = r(O)/‘gl-

forj=1,...,mdo

z0) M]._lv(j);

g B W

\7Y <—Az(j);
fori=1,...,jdo
hij «—<w, vi) >

=2}

9 W — W — hi,jv(i);
10 end
1 | hjj e w2

12 V(j+1) — W/h]qu,]','

13 end
14 Ly — [z(l),...,z(m)],' /* Build the Preconditioned subspace
basis */
15 YU arg miny ||fe; — Hy, y|l2;
16 XU — x(O) 4 Zmy(m);
// Convergence check and possibly a restart
17 if <Stopping criteria satisfied> then

18 ‘ Return: x = x(");

19 else

20 x(©) — x(m). /* Restart x/
21 goto 1;

22 end

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 47

Proposition 2.5 (Saad [245]). The candidate approximate solution x\"™)
obtained at step m of Algorithm 2.9 minimizes the residual norm ||b — Ax"™ ||
over the affine subspace x©) + Span(Z,,,).

Note that, differently from the GMRES and right—preconditioned
GMRES, the nonsingularity of A no longer implies the nonsingularity
of the H; matrices.

Proposition 2.6 (Saad [245]). Assume that p = ||fO||, # 0 and that j — 1
steps of FGMRES (Algorithm 2.9) have been successfully performed. In
addition, let H; be nonsingular. Then, x(™) is exact if and only if h j+1,i = 0.

Details on FGMRES using as a variable preconditioner a second
Krylov subspace method can be found in [260].

2.1.4 The Bi-Lanczos Algorithm: BiCG, BiCGstab and BiCGstab(1)

In addition to his famous algorithm, generalized in the algorithm called
bi—Lanczos [179], Lanczos suggested a Krylov projection algorithm
for linear systems Ax = b for nonsymmetric real or non-Hermitian
matrices; see Algorithm 2.10. It produces two sequences of vectors that
are bi-orthogonal, i.e.,

{vit, {w;}, vj,w; e R,

such that < v;,w; >=0,i # j, <v;,w; ># 0. vj, w; are determined to
satisfy the three-term recurrence
Oj+1Vj+1 = AVj — ajvj = B;Vj-1,
ﬁ]‘+1w]'+1 = ATW]' - Oé]'W]' - (5jo_1, (2.31)
and f;, 6; should be such that < v;, w; >= 1 for all j; see, e.g., [244] and
Algorithm 2.10. At step j under appropriate conditions, vy, ..., v, and

W1, ..., Wy form two orthonormal bases, one for each of the Krylov
subspaces

Hm(A,v1) = Span{vy, Avy,..., A" v,

and
%m(AT/ Wl) = Span{wll ATWI/ ceey (AT)m_lwl}'

Let us summarize some properties that will be used in the sequel;
see [179, 244, 289] for more details.

Theorem 2.10. If 6,,41 > 0, then at step m for bi-Lanczos, we have:

i

ii.
iii.

48 FABIO DURASTANTE

Algorithm 2.10: Lanczos Biorthogonalization or Bi-Lanczos

Input: vi, w; € R” such that < vi, w; >=1, A e R, m e N
such thatm <n
Output: V = [vy,...,v;], W =[wy,...,wj] € R”Xf,j <m,
T; € R/

1 10,01 <0;

wo < (0,...,0)T,vog < (0,...,0)T;

forj=1,...,mdo

aj —< AV]',W]' >,

‘AI]'H — AV]' - OéjW]' - ﬂ]‘V]'_1 ;

W]'_,_l «— ATW]' - OéjW]' - (SjW]'_l ;

SN U A W N

A " 2,
7 Oj41 |< Vitl, Wj+1 >| .
8 if 5]'+1 = (0 then

9 | return

10 end

11 Bi+1 <Yt Wir1)>/5;41 ;
12 Vit1 < Vin/oja ;

13| Wjsl < Wint/Bia;

14 end

<vj,w;>=0,i#jie,vi,...,Vj, Wi,...,W; are a bi-orthogonal set of
vectors;
Vi, ...,V isa basis for Ky (A, v1) and wy, ..., Wy, for FKn(AT, w1);

IfVip=1[v1 ... viul, Wy, = [W1 ... Wy,], then we have:
WLAV,, =Ty,
(a1 P2 \
o az Ps
Ty = . (2.32)
.. .. 57/’1
\ Om Qm)

If at step m we find 6,41 = 0, then we have the desired basis for the
subspace X,,(A, v1). On the other hand, if f,,+1 = 0 with 0,41 # 0, then
the basis of (AT, wy) is determined, bi—Lanczos stops, but we do not
have enough info for ¥,,(A, v1). This event is called serious breakdown
(Wilkinson [289]) and it is a pathology shared by all algorithms derived
from bi-Lanczos. The reader is referred to [57, 58] for algorithmic

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 49

Algorithm 2.11: Bi-Conjugate Gradients, or BiCG
Input: A € R, b € R", Maximum number of iterations Npax
Output: X candidate approximation.

1 10 b - AXO;

choose 19 such that < @, +O* >% 0 ;

p© 1O, pOr (0~

forj=1,..., Ny do

aj <r(j),r(j>*>/< ApD) plirs ;

N

S U s W

XD — x4+ a;p);
8 if <Stopping criteria satisfied> then

9 ‘ return x = xU*D

10 end

| AU e O - ATl
12 ﬁ] — <r(]’+1),r(j+1)*>/<r(j),r(j)*> ;

13 P(]+1) «— r(j+1) + IBJP(]) ;
w | P i 4 gl
15 end

way to avoid breakdowns by jumping over the singular denominators
exploiting the block bordering method for orthogonal polynomials.

From the previous proposition we obtain that the operator T}, is
the oblique projection of A on the Krylov subspace *,,(A, v1) orthog-
onal to (AT, wy). Similarly, T} represents the projection of AT on
FK(AT, w1) orthogonal to &, (A, v1). We stress that bi—Lanczos explicitly
needs the transpose matrix AT,

The vector x\") generated by bi-Lanczos is searched in the affine sub-
space xO +%,,(A, v1) and its residual is parallel to v, 4+1 and orthogonal
to Span{wy, ..., wy, }. From Theorem 2.10, we have:

X — X0 = vy 30D e i
= AVy™ =b - AXQ =10 = WAV, y™ = W0
L 1y W) 12 (360)
= x" =xO + v, T, (Wir®).

Let L, U,, be the LU factorization for T,. By defining P,, = V,, U;}
and P;, = W,, L., pi,---,Pm, P, - -, Py column vectors of P, and of

50 FABIO DURASTANTE

P;,, respectively, we can express x\" as follows:

xm™ = x4y, Ty T0)
= xXO v, u L 1vi«O
= xO4+p,L VIO
= xmD 4 Am—1Pm—1-

The sequences p}‘ and p; are A-orthogonal, i.e., < p’lf,Ap]- >= (for
i # j. Therefore, we derive the Bi-Conjugate Gradient Algorithm 2.11,
or BiCG for short, by the bi-Lanczos simply generalizing the steps
we did for the Lanczos” algorithm to get CG two times: one for each

directions p;, p*. Note also that the residual vectors r'/), rij) are parallel
Pj, P; P

to vj+1, w41, respectively, and D, m), ril), ceey ri’”) are such that

< r(i),rg,j) >=0jj, i #7],1,] < m,where 0jj=1,04;=0, 1# 7.
BiCG can become unstable for two reasons:

1. possible breakdown of its bi-Lanczos core;
. breakdown of the LU factorization (without pivoting) for T,,.

. . +1
The first issue can occur for a breakdown of bi—Lanczos because rim) = 0

but r*) £ 0 or ||wyll = 0 with |lvy4]] # 0. In practice,
Span{wi, ..., Wy} is invariant for AT but Span{vy, ..., vy} it is not
for A.

There exist look-ahead techniques to overcome this issue; see [56,
59, 120], but they are computationally expensive and are more useful
when bi—Lanczos is used for computing (some) eigenvalues of a given

matrix. The look-ahead techniques destroy the tridiagonal structure of

Tyn. Therefore, often it is simpler to choose a different rgo) and start

again.

The computationally most expensive operations of bi-Lanczos—based
algorithms are the two matrix-vector product per each iteration and
some vector sums and scalar products. For BiCG we need approximately

m(2nnz(M) + 8n)

flop for m iterations, where nnz(M) are the nonzero entries of A. Note
that, as for all methods in this section and differently from GMRES, the
vectors that must be kept in memory do not depend on the iteration
number m.

BiCGStab and BiCGStab(l), introduced by Van der Vorst [284, 285],
can be considered as transpose-free variants of BiCG. However, BiCGStab
is so popular that it is better to describe it in some detail.

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 51

In order to use it as an iterative solver for the linear system Ax = b,
the key idea of BiCGStab is expressing the residual and direction vectors
at step m directly as polynomials in the matrix A

' = p, (A, pu = g (AN, (2.33)

where p,,,(z), gm(z) are polynomials of degree m in z that assume value
1 for z = 0. Similarly,

£ = (AT, ph = (AT, (2.34)

From BiCG Algorithm 2.11, by using (2.33), (2.34) we find

< (A1, p (AT >
< Agu(A)O, g,,(AT)E” >
< p%(A)r(O),rio) >

= : (2.35)
< Ag?, (A, 1 >

&y =

The parameter f3,, is derived similarly. Sonneveld [266] observed that,
by using (2.35), we can directly build, at each step of BiCG, the vectors

" = p2 (A, p, = Ag? (A, (2.36)

In this way, we can skip the construction of r,E’”), P, where p,,(2), g (z)
are the same polynomials used for (2.33) and (2.34). The recurrence
relations for the polynomials (2.36) are

Pm+1(z) = Pm(z) - amZQm(z)/
Gm+1(z2) = pm(2) = Buqm(2). (2.37)

If we write the vectors ¥ and Pm, Qm as

™ = LAY, pu = g (A, g = Pt (A)gm (AN,

then we can adapt the recurrence relations (2.37) in order to get ") and
x(") as in BiCG'’s algorithm and thus we obtain the so—called Conjugate
Gradient Squared, or CGS; see Algorithm 2.12 ([55, 244, 266] for more
details). Here we will not spend much time on CGS because it is less
robust than BiCGstab.

Van der Vorst in [285] observed that vector ™ can be expressed not
only by squaring p,,(z), but also with the product of p,,(z) and s,,(2),

52 FABIO DURASTANTE

Algorithm 2.12: Conjugate Gradient Squared Method (CGS)
Input: A € R, b € R", Maximum number of iterations Npax,
Initial Guess x(?.

Output: X candidate approximation.
1 10 b - AxO;
0)

Choose an arbitrary r,” vector;

N

Po — Up < I'(O),'
forj=1,..., Ny do

i 0 ,
aj — <> <aph) £05;

S U A W

q —u') - a;Ap';

XU xD + a;j(uD + q);

8 D) —) — a;(uD + q);

9 if <Stopping criteria satisfied> then

N

10 ‘ return x = xU+D
11 end
H 0 .
12 ﬁ] — <r(]+1),l‘£)>/<r(]),r£0)>"

13 u(j+1) «— r(j+1) + ﬁ]q(]),

u | p e w4 Bi(qV + gipV));
15 end

where the latter is a polynomial of degree m, called stabilizing polynomial,
written as m linear factors in z, ¢,,1(z) := (1 — Wy, z). Therefore,

1 = 5, (A)pm(A)r?,

and s,,(z) can be defined recursively as

Sm+1(z) = (1 — wnz)sm(z) = gm1(2)sm(2), (2.38)
where w,, is a scalar, determined at each iteration to minimize ||7;;41||2-
Therefore
Sm1(2)pm+1(z) = (1= wmz)sm(z)pm+1(2)

= (1- wmz)(sm(z)Pm(Z) - amzsm(z)qm(z)),
sm(z2)qm(z) = sm(2)(Pm(2) + Bu-19m-1(2))
= Sm(z)Pm(Z) + ﬁm—l(l - wm—lz)sm—l(z)qm—l(z)/

with p,,(z) being the polynomial of the residual of BiCG algorithm.
Then, from (2.37), we find p,+1(2) = pm(z) — amzqm(z). By writing the

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 53

Algorithm 2.13: BiCGstab method

Input: A € R, b € R", Maximum number of iterations Npax,
Initial Guess x(©).

Output: X candidate approximation.

0 — b - AxXO.

choose #? such that < r@,#% >+ (;

Po < I'(O) ;

[

N

3
g forj=1,..., Ny, do

5 aj — <r(]'),f-(0)>/<Apj,i\.(O)>’-

6 Sj «) — ajApj;

7 if <Stopping criteria satisfied> then
8 XUt e x0) + aipj;

9 return x = xU+D

10 end

11 Wj <Asj8j>[<As;,Asj> ;

12 xU+D — x() 4 ajpj + wjs; ;

i3 | V) 5 - wAsj;

14 if <Stopping criteria satisfied> then
15 ‘ return x = xU+D

16 end

17 Bj « aj<r(j+1),i'(0)>/a)].<r(j),f-(0)> ;

8 | pjs1 < 1+ Bi(p; - wjAp));

19 end

direction vector p,, as

Pm = Qm(A)Sm(A)r(O)/
we obtain the recurrence relations for ¥V and Pm+1:

) = (1 - ij)(r(m) — amApm),
Pt = "D 4B, (I - wpA)pu.

The computation of the scalar parameter 3, in BiCG requires .

< pm+l) rimﬂ) >

Pm =

7

< ¢m) (M

54 FABIO DURASTANTE

while in BiCGstab the previous expression is obtained by using

o =<t 1Y >=< p (AN, 5, (AN >=< 5,,(A)pu(AX, 1 >,

1
Pmsl @y < rD (0D S

= :}ﬁm:

(m)

A pm-i-l

Wm Pm

(2.39)
Pm Ay < 1My

The (2.39) is obtained by considering that () = pm(A)r(O) is orthogonal

to all vectors of the form (AT)irgo) for i < m. From the previous relations
we find:

< r(m), rim) > = < Pm(A)r(o)/ Pm(AT)n(eO) >=
= < (A0, (AT >=

50
= < pu(An?, T—’gsm(AT)riO) >=
j

_
Tg/l pml

where

m . m .

pm(@) = Y Tz, su(z)=) 602

i=0 i=0

From (2.38) we compute
0 _ 0 0 _
6m+1 - _a)jém’ Tl = a]'T(’)n°

Finally,
Om Pm+1 Om (r(m+1)’r£0))

fm = -

Om Pm O (pm) ({0

From BiCG algorithm we have

<xm 4" < P9, p(ADHIEY >

<APw/Pin > < Agu(AN®, g, (AT >
< pu(A, 5, (AN >

< Agu(AXO, 5, (AN >

< s(A)pm(Ar®, 10 >

< Asp(A)g (AN, 10 >

< ¢m), rio) > Pm

= : (2.40)
< Apm,rgo) > < Apm,rgo) >

Xy =

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 55

By setting
an(z)= > vz,
i=0

we obtain the second line in (2.40) by observing that 79, = ¥ and

considering the orthogonality of p,,(A)r® and (AT)irgo), i < m. The
stabilization scalar w,, is chosen for minimizing the residual norm of

r(mHh) = (I- wmA)Sm(A)pmH(A)r(O)-
By writing

we have
D = ([= 0, A)sy. (2.41)

Therefore, minimizing the norm of (2.41), we find

< ASy,Sm >
< Asy, Asy >

Wy =

Moreover, the update of the candidate approximation x"+1 can be
computed from r"*V as

By substituting 1" = b — Ax("™ in the previous expression, we finally
obtain

—A (x(m+1) — x(m)) = ¢+ _ y(m) — — 0 Apm — WmASsy,
= x(m+D = 5 m) 4 XPm + WS-

Note that, if w,, isrelatively small or zero, then we can have instability.
In this case, it is better to stop the algorithm because the update of the
vectors is not reliable. Otherwise, if we continue, then we would get a
stagnating convergence; see [285]. A similar behavior can be observed

if | < x(m), rio) > | is very small or zero. In this case it is much better to

start again by providing a new ¥ such that < 1@, ¥ > 0.
We have seen that BiCGstab can break down also for nonsingular
matrices. Fortunately, there are some variants that can help.

BiCGstab(l): choose a polynomial of degree I greater than one, g, 1(2),
in (2.38);

56 FABIO DURASTANTE

BiCGStab(1)°R: choose a polynomial g,, ;(z) of degree | > 1 in order to
determine implicitly a more stable basis for %, (AT,).

Here we discuss briefly only the first attempt. The second often brings
less impressive improvements to the convergence; see [264, 265]. More-
over, in our experience, a more effective convergence improvement in
difficult problems is much better faced with preconditioning.

Let us recall the update of the residual vectors in BiCGstab: at step
m, we have r'"*D from r" by the linear term (I — w,, A):

f" = (1= 0 A)s i (A)pmsr (A, (2.42)

The matrices we are interested in here are not Hermitian, thus their
eigenvalues can be complex. The polynomials that minimize the 2
norm of (2.42) can have complex roots; see [284]. Unfortunately, the
polynomial in (2.42) can only have real roots because it is a product
of linear (real) factors. We can overcome this issue by increasing the
degree of the polynomial in the right-hand side of (2.42). By providing
the polynomial in A for 1"+ (2.42) as a product of quadratic factors,
we obtain BiCGstab(2), Algorithm 2.14. At each iteration, it provides
two BiCG steps instead of one. As in [264, 284], in order to simplify the
notation, the indices of the vectors are not displayed in BiCGstab(2)’s
Algorithm 2.14.

Note that one of the two BiCG’ steps is not used to build the
approximations at the current step, but only to build the second order
polynomial ¢, »(z) in the update for r'"*1. Therefore, in BiCGstab(2),
t"*D is updated from r'"™ as follows:

r) = 5 S (M)p (M),

where s, 2(z), pm2(z) are polynomials in z given in the form of the
product of quadratic factors.
Similarly to BiCGstab, BiCGstab(2) becomes unstable when one of

the scalars w1, wy or |(r™, r£0))| is numerically zero.

The use of polynomials made of factors of degree 2 can be easily
generalized giving BiCGstab(l), where, at each iteration, one performs |
steps of BiCG; see [263, 264] for more details. However, we experienced
that | = 2 in BiCGstab(l) usually is enough.

For one iteration of BiCGstab we need 2 matrix-vector products,
4 scalar products and 6 updates of vectors. On the other hand, one
iteration of BiCGstab(2) requires slightly less than approximately twice
the above. On the other hand, often BiCGstab and BiCGstab(2) require

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS

57

Algorithm 2.14: BiCGStab(2)

[y

a1 =~ W N

© o N o

10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Input: A € R, b € R", Maximum number of iterations Nmax,
Initial Guess x©.

Output: X candidate approximation.
0 =p-A,xO0

choose 1 such that r©, rgo)) #0

u =0,po=1,a=0,w =1
for j =1: Nyux do
P1 = (I', r£0))/ ,8 = %/ Po = P11,
u=r-pu;
v =Au;
y =), a=po/y;
r=r-—av,
X=X+au;
if <Stopping criteria satisfied> then
X=X+au;
return x = x
end
s = Ar;
p1=(s,2"), B = ap1/po, po = p1;
Vv=s—fv;
w=Av;
_ (0) _ :
Y = (W,I‘*),CY - PO/V,
u=r-—fu;
r=r—av;
S=8—aw;
t=As;
w1 = (I‘, S)/ U= (Sr S)r V= (Srt);
w2 = (1‘, t)/ T= (t/t);
T=1-v}/u, wr = (w2 —vwr/p)/T;
w1 = (w1 —vw2)/ ;
X =X+ wir + w38 + au;
r=r—wis— wrt;
if <Stopping criteria satisfied> then
return x = x
end
uUu=u— wiv— wrw,
end

58 FABIO DURASTANTE

more or less the same number of matrix—vector products to converge to
a prescribed tolerance.

We cannot give a convergence analysis for BiCG, CGS, BiCGstab and
BiCGstab(l). Nevertheless, some hints can be given. In particular, if:

the matrix A of the underlying linear system is not very ill-conditioned;

A can be diagonalized with a matrix of eigenvectors not too ill-
conditioned and the eigenvalues are clustered far away from the origin,

then BiCGstab often requires approximately the same order of matrix—
vector products as BiCG and BiCGStab(2), to converge to a prescribed
tolerance. Otherwise, the convergence behavior of the iterative methods
mentioned can be very different. It is interesting to note that BiCGstab(l),
for [> 1, is often more robust than BiCGstab.

2.1.5 Which Krylov Subspace Method Should We Use?

After this brief review of the main Krylov iterative methods for the
solution of linear systems, we can give some clarifications and comments
on the various methods we decided to use in the subsequent chapters.

For generic real and symmetric or Hermitian definite (positive
or negative) problems, we use PCG (Algorithm 2.3) with suitable
preconditioning, see, e.g., Chapter 4 in which it is employed in the
context of evaluating the matrix—vector product of a matrix function
against a generic vector.

For nonsymmetric-real and non-Hermitian linear systems the choice
is more delicate and problem dependent. If the sequence of matrices has
no special properties to enable fast matrix—vector multiplication, then
GMRES/GMRES(m) (Algorithms 2.5, 2.6, and 2.8) is an appropriate
choice if it converges in few iterations, as is the case of sequences with
clustered spectrum (Definition 2.1). On the other hand, we exploit
it in Chapters 3, 5, 7 and 8 whenever we need to test theorems and
results on the convergence behavior of the preconditioned systems,
since for these methods we possess a clear and profound convergence
analysis; see again Section 2.1.2. On the other hand, when what we
need is a fast and reliable solution, i.e., after we have consolidated
the theoretical results regarding convergence issues, we move towards
the use of the BiCGstab (Algorithm 2.13) for obtaining better timings,
and this happens in all the subsequent chapters. As we have discussed
in Section 2.1.4, there are cases in which the standard BiCGstab can
break down also for nonsingular matrices, under such conditions we
resort to the BiCGstab(2) (Algorithm 2.14); see, e.g., Chapters 5 and 8. In
conclusion, we use FGMRES (Algorithm 2.9) when a preconditioner is

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 59

available which needs an auxiliary iterative method for its application,
as is the case in Chapter 8, in which we apply it as an inner—outer Krylov
method, in conjunction with GMRES(m) as inner method. In conclusion,
only the methods BiCG (Algorithm 2.11) and CGS (Algorithm 2.12)
are not explicitly employed, since they have been introduced only for
deriving the BiCGstab and to describe its main features.

2.2 Sparsity and Structure

Usually, we will talk about and distinguish between dense and sparse
matrices, since in numerical linear algebra the computations made with
them need to be faced in different ways and present indeed different
costs. A first operative notion of sparse matrix, independent of the kind
of problem, is the one given by Wilkinson by negation in [290]:

“The matrix may be sparse, either with the nonzero elements concentrated on a
narrow band centered on the diagonal or alternatively they may be distributed
in a less systematic manner. We shall refer to a matrix as dense if the percentage
of zero elements or its distribution is such as to make it uneconomic to take
advantage of their presence.”

The above is a heuristic starting point that gives the idea: a sparse matrix
is not dense. If we think about a sequence of matrices A, € RAnxdn
where d, is, e.g., a function of a discretization parameter from a PDE
model, then we can give a rigorous definition.

Definition 2.2 (Sparse matrix). A matrix A, of a given sequence of matrix
in R9>dn is sparse if the number of nonzero entries of A, nnz(A), is O(d,,).

A useful tool in sparse matrix computation is graph theory.

Definition 2.3. (struct(A,)) Given a sparse matrix A,, ¢ R"™", consider
the graph G(Ay), called the structure of A, or G(A,) = struct(A,), defined
by the vertex set V and edge set E:

V={i:1=1,...,n},
E={(i,j): i # jand (A,); # 0}.

A graphical representation of both G(A,) and the sparsity pattern
of a matrix A,, i.e., a 2D plot in which the axes represent the rows
and columns of A and for each nonzero entry of A, a point is plotted,
is given in Figure 2.1. Observe that in this discussion the size of the
nonzeros entries of the matrix A, does not play a role. This can be a
limitation, as we will see in the following, see, e.g., Section 2.4.1, because
in many cases we need to handle matrices that are indeed dense, but in

60

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500

nz = 2480

(a) Sparsity Pattern

FABIO DURASTANTE

PR
/‘f’liflﬂ#g\)
f"i@/ﬂ&@?\ MO

AT
SO TRSS
%

(b) Matrix Graph

Figure 2.1. Representing sparse matrix: pattern and matrix graph.

which many of the entries are of negligible magnitude. Sometimes these
matrices are called numerically sparse or localized by thresholding, because
by dropping the entries which fall below a threshold magnitude, they
can be approximated by a sparse matrix. Another useful graphical
tool is the city plot, based on adding a 3™ dimension to the sparsity
pattern, either with a color scale or a true zeta axis, on the basis of the
magnitude of the elements, see Figure 2.2. Observe also that both sparse

0.4

0.3

0.2

0.1

A\
AN
&ﬂ\g"ﬁt\

SN

P AN A
=K ,
K[

(a) City Plot

E

(b) City Plot Pattern

Figure 2.2. Representing sparse matrix: city plot.

and localized matrices sometimes exhibit a distribution of their entries
in some particular form or have particular properties. We will come
back to this point by considering specialized preconditioners for certain
structured matrices; see Section 2.2.1 and Part II.

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 61

2.2.1 Toeplitz and Generalized Locally Toeplitz Matrix Sequences

Toeplitz matrices arise in a wide set of contexts. They appear in the
finite difference discretization (with uniform mesh) of differential oper-
ators [186]; in integral equations; in the treatment of queue and related
problems [80], image deconvolution, deblurring and filtering [152]; in the
numerical computation of Padé coefficients [54]; time series treatment [109]
and many other fields.

This topic has attracted great interest in recent years. Analysis of
this linear space of matrices can be performed with tools from functional
analysis and the classical tools of numerical linear algebra [48-50, 141].
A large number of results are available regarding this topic.

References for the related topics in Fourier series can be found in
[107, 173, 295] and will not be covered here.

Definition 2.4 (Toeplitz Matrix). A Toeplitz matrix is a matrix of the form

[tO t_l . e tz_n tl_n-
t to t1 ... ty,
T, = 51 to - , (2.43)
th—o f_1
tn]_ tn_z . e t]_ tO]

i.e., its entries are constant along the diagonals. A subset of this linear space of
matrices is given by the matrices for which exists an f € LY([—m, 1t]), such
that

1

T
fe = — 0)e k040, k=0,+1,+2,...,
k ZHLﬂ Je

the ty are the Fourier coefficients of f. In this case we write T, = T,,(f) where
f is the generating function of the matrix T, (f).

This class of matrices takes their name from Otto Toeplitz (1881—
1940) in light of his early work on bilinear forms related to Laurent
series [276]. Here we focus only on the fundamental properties needed
for the iterative solution of linear systems

Tu(f)x=b, x,b € R", (2.44)

As one may suspect, many properties of a Toeplitz matrix generated by
a function f are connected with the properties of f itself.

62 FABIO DURASTANTE

Proposition 2.7.

. The operator T, : L [-mt,] — C™" defined by equation (2.43) is linear and
positive, i.e., if f > 0then Ty(f) = Ty(f)E ¥ nand x"T,(f)x >0V x € C".
. Let f € L'[-m, n] be such that f is real valued, my = essinf(f) and
My = esssup(f). If my > —o0 thgn me < Ai(Tu(f)) V] = 1, Lol and if
My < oo then My > A (T, (f)) ¥j =1,...,n. Moreover, if f is not a real
constant and both the strict inequalities hold, then

mysg <)\]‘(Tn(f)) <Mf Vj =1,...,n.

Let us recall another tool, useful to study the spectrum of the
underlying matrices: the asymptotic distribution of the eigenvalues and
of the singular values of the matrices {T,(f)}.

Definition 2.5 (Asymptotic eigenvalue distribution). Given a sequence
n—+oo

of matrices { X, }n € Co>dn withd, = dimX,, — oo monotonically and
a u-measurable function f : D — R, with u(D) € (0, 00), we say that the
sequence { X}, is distributed in the sense of the eigenvalues as the function
f and write { Xy, }n ~a f if and only if, for any F continuous with bounded
support, we have

R - 1
Jim g 200D = | resana,

where A ;(-) indicates the jth eigenvalue.

Definition 2.6 (Asymptotic singular values distribution). Given a se-
n—+00

quence of matrices { Xy }n € Cnxdn with d,, = dim X,, —> oo monotoni-
cally and a u-measurable function f : D — R, with u(D) € (0, o0), we say
that the sequence { X}, is distributed in the sense of the singular values as the
function f and write {X,}, ~s f if and only if, for any F continuous with
bounded support, we have

1Y 1
fim 30 2P0 = 5 |, Fasonar.

where o (+) indicates the jth singular value.

The core result of this class is the Grenander and Szegd Theo-
rem [141], with the related results in [8, 222], that prove the relations
in Definitions 2.5 and 2.6 for the matrix sequence {T,,(f)} and f the

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 63

generating function (the symbol) with restriction on the boundedness
of f. A stronger result is the one obtained by Tyrtyshnikov [278] and
Tyrtyshnikov and Zamarashkin [280].

Theorem 2.11 (Eigenvalue and singular value distribution). Given the
generating function f, {T,(f)} is distributed in the sense of the eigenvalues
(Definition 2.5) as f, written also as T, (f) ~a f, if one of the following
conditions hold:

. Grenander and Szeg6 [141]: f is real valued and f € L=,

. Tyrtyshnikov [278] and Tyrtyshnikov and Zamarashkin [280]: f is real valued
and f € L.

Moreover, T, (f) is distributed in the sense of the singular values (Definition 2.6)
as f, written also as T, (f) ~s f, if one of the following conditions hold:

. Avram [8] and Parter [222]: f € L™,
. Tyrtyshnikov [278] and Tyrtyshnikov and Zamarashkin [280]: f € 1.

We now discuss briefly the computational complexity of the opera-
tion T, (f)v for a generic vector v € C". In principle, a matrix-vector
product with the matrix T, (f) that is dense in general, costs O(n?)
flops. However, T, (f) depends only on 2n — 1 parameters. Therefore,
we expect that the cost of the operation can be sensibly reduced. In the
sequel, we briefly recall that the Toeplitz structure of T allows reducing
the cost of this operation up to O(n log(n)) flops. To obtain this, we
need to introduce another algebra of matrices that we will use also for
preconditioning, the circulant matrices.

Definition 2.7 (Circulant Matrix). A circulant matrix C, € C"™" isa
Toeplitz matrix in which each row is a cyclic shift of the row above that is

(Cn)i,j = ¢(j-i) mod n’
[co C1 cr ... e Cp-1]

Cn-1 Co C1

C2

o C1
| C1 cee Cp—2 Cp— co |

64 FABIO DURASTANTE

Proposition 2.8 (Characterization of Circulant matrices). The matrices in
of the algebra of circulant matrices € are characterized by being simultaneously
diagonalized by the unitary matrix F,

1)
(Fu)i = —=e5m, jk=1,...,n.

Vi

Therefore,
€ ={C, € C"™" | C, = FI!DF, : D =diag(do,d1,...,dn-1)}. (2.45)

The unitary matrix F, in Proposition 2.8 is indeed the Fourier matrix
F,. Therefore, the product C,y can be formed with Algorithm 2.15.
The cost of computing the matrix—vector product is reduced to the cost

Algorithm 2.15: Circulant matrix—vector product
Input: First row of the circulant matrix ¢ = [co,c1,...,cn-1], ¥
Output: x = Cy
1 f« Fny,'
2 A «—\/nF,c; // We are computing the eigenvalues of C,
2l — [, fada, oo, fuldnl;

4 X« Fliz;

W

of computing matrix—vector products with the Fourier matrix. This
can be achieved by using the implementation of the DFT (Discrete
Fourier Transform) algorithm* by Cooley and Tukey [83], also known
as Fast Fourier Transform, or FFT, that performs the computation in
O(n log(n)) operations with an accuracy of O(e log(n)).

We recall that:

Theorem 2.12. Let w = exp(if), - < O < mmand W be an n X n
{w }—circulant matrix. Then, the following Schur decomposition for W holds
true:

W = QFFIAF,Q, (2.46)

where Q = diag(1, o™"/", ..., w~""V/"), A is a diagonal matrix containing
the eigenvalues of W and F,, is the Fourier matrix.

There exist many low—cost implementation of the DFT algorithms based on different
approaches, like the one based on divide et impera like the Cooley and Tukey [83], Bruun [67]
and Guo, Sitton, and Burrus [144], the one by Winograd [291] based on the factorization of
the polynomial x”* — 1 or the Good-Thomas [135, 274] working on the Chinese remainder
Theorem. For an up—to—date implementation of the DFT refer to the FFTW library [121]
at http:/ /www.fftw.org/.

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 65

Note that circulant matrices are simply the {1}-circulant matrices
and thus Theorem 2.12 gives also the Schur decomposition in Proposi-
tion 2.8.

We can compute the product T,,v in O(n log(n)) operations simply
by embedding the T, matrix in a circulant matrix of size 2n in the

following way:
\'4 Ty Ep||Vv]| _|Twv
rlof=le Rl ln] e

where E,, is defined to make C»,, circulant, and therefore is

[0 th-1 ... tr t1]
tl—n 0 tn—l ce tz
En = tl—n 0
t_z “ e . tn_]_
= t_o R 0 |

Applying Algorithm 2.15 to Cy,,, and therefore computing the matrix-
vector product T, v in this way, requires O(n log(n)) operations.

Remark 2.5. Observe that Algorithm 2.15 is efficient only if we have to
compute a single product with T,, or C,. If the product has to be computed
repeatedly, as is exactly our case, then we should modify it by using as input
directly the eigenvalues of Ca,, or C,, and gain an FFT application for each
iteration.

Multilevel operators of this kind appear naturally from multidimen-
sional problems discretized with uniform meshes. Among the most
popular examples we can find discretizations of system of ODEs, see,
e.g., [28, 40], of the system of PDEs, see e.g., [69, 76, 190]; regularization
problems, see, e.g., [44, 151, 167].

Let us start with two particular examples of a multilevel operator:

BTTB the block Toeplitz matrix of size nm with Toeplitz blocks of size
m,ie., Tym(f)e CHmmm,

Ty T T T
™ 7O :
Tum(f)=| ooTO Col (249
L T
T, Ty T, T

66 FABIO DURASTANTE

that has an overall Toeplitz structure and in which each block T,(J)
forj=1-mn,...,0,...,n —1is a Toeplitz matrix of size m itself,

BCCB the block Circulant matrix of size nm with Circulant blocks of
size m, i.e., Cy, ,, € C"XM,

[C(O) C(l) C(z) C(”—l)-
o o s e e o
oo o i e '
cr=2 b O o

C = ' , (2.
n,m C(z) (2.49)
m
: . ' C(O) C(l)
° m m
e ity b

that has an overall Circulant structure and in which each block
C%) for j =0,...,n —11is a Circulant matrix of size m itself.

In the general case we can give the following definition,

Definition 2.8 (Multilevel Toeplitz and Circulant Matrix). Given a
number of levels m € N we define the set of n—admissible multiindices
k = (ky,...,ky) and | = (ly,...,1,,) where n = (ny,...,ny) and the
following inequalities hold

OSk]', ljé?l]'—l, j=1,2,...,m.

The m—-level Toeplitz matrix T, € CNUXNU with N(n) =]—[;”:1 nj is
therefore defined as the matrix

Tn = [tki],
while the m—level Circulant matrix Cy is obtained whenever
tk—1 = t(k=1) mod n
where, by definition, we have
k modn= (ks modny,..., k,; mod ny).
We can again associate the m—level Toeplitz matrix with a generating

complex—valued function f of m real variables which is 2n—periodic
in each of them.

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 67

Definition 2.9 (m—level generating function). Given f : Q,, — C that is
2n—periodic in each variable on Q,, = [—7, 7]|™ and f € I}, we can consider
the multiindices k = (k, . . ., k;,) and associate it to its Fourier series

fx) = Z trekix . L etkmxm

kezm

In this way we have the coefficients t; needed for the construction
of the multilevel matrices of Definition 2.8.

We can now formulate the same question about asymptotic distribution
of m—level Toeplitz matrices we answered for the 1-level case with
Theorem 2.11. The case with f € L* can be recovered from the original
work of Grenander and Szegd [141], for which a detailed account is in
the work of Sakrison [250]. The case of .2 and L! generating functions
is obtained in Tyrtyshnikov [278] and Tyrtyshnikov and Zamarashkin
[280].

For the multilevel case no structured decomposition of the inverse
is known, i.e., we do not have any generalization of the Gohberg and
Semencul [130] formula and, in general, we need to resort to iterative
methods. Therefore, from here on we concentrate on some examples
of efficient preconditioners for the iterative methods in Section 2.1 to
solve Toeplitz, multilevel Toeplitz and Toeplitz-like systems.

Note that it is even more important to reduce the computational cost
of matrix-vector products with multilevel Toeplitz matrices. For the
BTTB case we can apply the same embedding strategies we have used for
the T,,(f) matrix, i.e., we embed the T}, ,,(f) into a BCCB matrix Cyj, 2
and extend the vector v we want to multiply to a vector of size 4nm.
We can diagonalize the BCCB matrix Cy;, 25, with the multilevel Fourier
matrix Fz, 2 = Foy ® Fa,, and compute the product. This procedure
has the cost of O(nm log(nm)).

We can now devote our attention to the theory of Generalized Locally
Toeplitz (GLT) sequences. This is an apparatus devised by Garoni and
Serra-Capizzano [124, 125] and Serra-Capizzano [254, 255], stemming
from the seminal work by Tilli [275], for computing the asymptotic
spectral distribution, in the sense of Definitions 2.5 and 2.6, of the
discretization matrices arising from the numerical discretization of
integro—differential continuous problems; e.g., in our case Partial Differ-
ential Equations (Chapter 7) and Fractional Partial Differential Equations
(Chapter 8).

We start by recalling some preliminaries needed to build the def-
inition of GLT matrix sequences [254], and we will introduce them,
as we have anticipated, as a generalization/modification of the no-

68 FABIO DURASTANTE

tion of Locally Toeplitz matrix sequences taken from [275]; see [254,
Remark 1.1].

Let us start from the definition of approximating class of sequences,
that will be the tool needed for the computation of the asymptotic
spectral /singular value distribution of our matrix sequences.

Definition 2.10 (a.c.s.). Given a sequence of matrices {X,}, € Con>

we say that the sequence of matrix sequences {{Bym}n : m € N} is an
a.c.s.

approximating class of sequences for { Xy, }n, and write {{By,m }n} — {Xu }n
for m — +oo, if and only if there exist functions w(m), c(m), and ny,
independent of n, such that

Xn = Bn,m + Nn,m + Rn,m/ (2-50)

with ||Nymll2 < w(m) and rank(R,, ;) < c(m)n, Vn > ny,, with c(m),
m—+oo

w(m) — 0.

The notion of approximating classes of sequences (a.c.s.) was first
introduced in [253]. This notion lays the foundations for all the spectral
approximation results for matrix-sequences we will use in the following.
Definition 2.10 states, roughly speaking, that {{B,»}» : m € N} is
an a.c.s. for {X, }, if, for large values of m, the sequence {By » }n
approximates { X, }, in the sense that X,, is eventually equal to B,
plus a small-rank matrix, where “small” is weighted with respect to the
matrix size d,,, plus a small-norm matrix. It turns out that the notion of
a.c.s. can be interpreted as a notion of convergence in the space of matrix—
sequences € = {{A, }, : {An}n is a matrix-sequence}. Therefore, one
can define a topology 7acs on the space € such that {{By m }n}m is
an a.c.s. for {A, }, if and only if {{B,m}n}m converges to {A,}, in
(€, 74.c5.) in topological sense; see [122, 126].

We have already recalled two out of the three important classes of
matrices, namely circulant matrices (Definition 2.7), and Toeplitz matrices
2.4, which are used as building blocks for LT and GLT matrix—sequences.
What is left are the diagonal sampling matrices. Given a function a defined
on [0, 1], the diagonal sampling matrix of size n generated by a is

defined as o
D,(a) = diag (a (i)) :
n)) iz

Definition 2.11 (LT Sequences). A sequence of matrices {A, }n, where
A, € C™%dn s said to be Locally Toeplitz (LT) with respect to a symbol
k(x,0) = a(x)f(0), witha : [0,1] > Cand f : [-n,n] — C, if f is

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 69

Lebesgue-measurable and the class {{LT)'(a, f)}, : m € N}, given by

LT,T(&Z, f) = Dm(a) ® TLn/mJ(f) S Onmodm;

with D,,(a) defined above, is an a.c.s. for {Ay,}n. In this case we write
{An}n "“LTk:a@f-

Itis understood that LT} (a, f) = O, being O,, the n Xn zero matrix,
when n < m and that the term O, moqm is not present when #n is an
integer multiple of m. Moreover, the tensor (Kronecker) product, “®”,
is always applied before the direct sum, “®”.

We now introduce the formal definition of GLT matrix sequences in
the unilevel setting and we recall their most important features.

Definition 2.12 (GLT sequence). Let {X,}, € C* be a matrix sequence
and k : [0, 1] X [-mt,] — C a measurable function. We say that {X,, }, isa
Generalized Locally Toeplitz (GLT) sequence with symbol k if the following
condition is met:

Ve>0{XVY, ~raie® fie, i=1,...,N,, (2.51)
such that

Zf\fl ai ¢ ® fi o — kin measure over [0,1] X [-71t,] when ¢ — 0,

({zN X0}) sanacs. of (Xadu for e =0,

and write {X, }n ~cLT k where we have adapted the definition of a.c.s. by
using a real parameter ¢ instead of the integer m.

We recall some properties of the GLT sequences in the following
proposition; see [126] for more details. These properties represent a
formulation equivalent to the original definition.

Proposition 2.9 (GLT sequences properties).

GLT1 {An}n ~cLT X = {An}n ~o X. Moreover, if {A, }n is a sequence of
Hermitian matrices = {A, }n ~1 X;

GLT2 {A,}n ~crr x and A, = X, + Y, with each X,, Hermitian, norm
bounded [| Xy |2 = O1), and ||[Ynll2 = 0= {An}n ~1 X

GLT3 {Tu(f)}n ~crr fif f € U'[-1,], {Dn(a)}n ~crr @ ifa : [0,1] —
C is continuous (also Riemann-integrable) and {Z, }, ~crt 0 if and

only if {Z} ~o 0;
GLTy4 The set of GLT matrices is a *-algebra:
If{An}n ~crr & and {By }n ~cr1 & then

70 FABIO DURASTANTE

* {A}}n ~cir X,
* {aA, +BBy}n ~crr ax + BE forall a, p € C,
¢ {Aan}n ~GLT K&.

GLT5 {Bnm}tm ~cLT Xm, {{Bnmtn} is an a.c.s. for {An}n, xm — Xx in
measure = {A, }n ~GLT X.

GLT6 If {A,}n ~crr x and x # 0 a.e. then {A}},, ~crr 1.

GLT7 If {An}n ~crr « and each A, is Hermitian, then {f(Au)}n ~GrLr
f(x) for every continuous function f : C — C.

2.3 Multigrid Preconditioners

Multigrid methods (MGM) are classes of algorithms for solving linear
systems, using a hierarchy of smaller linear systems. They are an
example of a class of techniques called multiresolution methods, very
useful in problems exhibiting multiple scales of behavior. For example,
many basic relaxation methods exhibit different rates of convergence for
short— and long-wavelength components of the errors, suggesting these
different scales be treated differently, as in a Fourier analysis approach
to multigrid. MGM can be used as solvers as well as preconditioners.

The main idea of multigrid is to accelerate the convergence of a basic
iterative method, which generally reduces short-wavelength error when
used for differential operators, by a correction of the fine grid solution
approximation, accomplished by solving a coarse problem. The coarse
problem, while cheaper to solve, is similar to the fine grid problem in
that it also has short— and long-wavelength errors. It can also be solved
by a combination of relaxation and coarser grids. This recursive process
is repeated until a grid is reached where the cost of a direct solution
there is negligible compared to the cost of one relaxation sweep on the
fine grid. This multigrid cycle typically reduces all error components
by a fixed amount bounded well below one, independent of the fine
grid mesh size. The typical application for multigrid is in the numerical
solution of some special classes of PDEs. In particular, the former
has been shown to be effective for elliptic (linear) partial differential
equations in multiple dimensions. Multigrid preconditioners can be
effective and cheap for some combinations of specific problems and
computing architectures.

Here we focus on the analysis of the so—called algebraic multigrid
(AMG) giving the priority first to the algebraic properties of the linear
systems and then to the underlying geometry.

For an extensive treatment of the multigrid solvers we suggest
the books by Briggs, Henson, and McCormick [63], Ruge and Stiiben

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 71

[242], and Trottenberg, Oosterlee, and Schuller [277] and the references
therein.

While in the geometric context grids are easily interpreted in terms
of the discretization of the underlying PDEs, for the AMG grids can be
intended simply as an index set that cannot be explicitly corresponding
to any geometrical grid. Therefore, let us suppose having a sequence of
coarser and coarser grids {C }x

) D...00, D01 D...D20Q, (2.52)

where the coarsest grid is characterized by the index 0 while ! represents
the finest grid, with the agreement that to a coarser grid corresponds a
smaller index set. For each level of the grid, i.e., for each index k, we
have the associated linear operators

. Sl(cl), SI(cZ) : R™>" — R jteration matrices of the smoothers. They can
be either equal or different (one for the restriction phase and one for
the prolongation).

. Ay @ R — R™ restriction of the matrix of the linear system.
3. I’k‘_1 : Qp — 4, restriction operator.

4. I]l{‘_1 : Q1 — Q, prolongation operator.

ny is the number of unknowns of the system at level k and the original
linear system we want to solve Ax = b reads as A;x; = f;. Moreover, we
can introduce a parameter y indicating what type of cycle has to be
employed at the coarser level and the number of cycles that needs to be
carried out at the current level. The underlying idea of this parameter
is making the cycle performing more work on the coarser level, thus
exploiting the possibilities of doing more work in reduced dimension.
When y = 1 the cycle is usually called a V—cycle, while for y > 1 a
W—cycle. With this notation, we can express the outline on one cycle of
the multigrid Algorithm 2.16.

While in geometric multigrid the restricted matrix could be the
discretization of the underlying differential problem on the coarser
grids, in a general algebraic context this is no more possible, i.e., an
automatic way to restrict the operator is needed. Usually, the Galerkin
condition is selected. This corresponds in defining the sequences of
restricted matrices as

IF =N, A =T ALY, Vk=1-1,...,0, (2.53)

assuming to have full rank restriction and prolongation operators. These
choices are convenient in many ways, e.g., if the starting matrix A is

72 FABIO DURASTANTE

Algorithm 2.16: Multigrid cycle (MGM)
Data: Multigrid structure {A¢},_, [, {Sl(cl)}gzl, {SI(<2)}I(2=Z’ {1130,
and {II’{‘_1 }221, bkgzl, initial guess u'/).
Output: Approximation u*1 to the solution of x;.
Input: u(]H) MGM(Ay, by, xg), k,vi,v2,7)
// Presmoothing
1 V1 steps of presmoother S, W) applied to Akx(]) = by;
// Coarse Grid Correctlon

2 Compute the residual r(j) = bk — AxX;).,)

(J) _ Ik 1 (])

Restrict the residual .,

if Kk = 1 then
Direct solver for A;_je
Ise
fori=1,...,7do
e;{J_)l = MGM(Ak_l, Yr—1, 0, k — 1, V1,7V2,)/)
9 end
10 end

-~ W

() .
k-1

® 9 o W
()

kK k
(]) (])
12 Update the approx1mat1on X X

11 Prolong the error e

(.
+e;

// Postsmoothing

13 V2 steps of postsmoother S| @) applied to A kx(] = by with initial

guess x(])

symmetric and positive definite then all corresponding restrictions are.
Moreover all intermediate coarse grid correction operators,
— k 1 7k+1
My =1-1 A L7 Ag, (2.54)
become automatically orthogonal projectors.
As it stands, we can express one application of the multigrid cycle
as an iteration with a classical stationary scheme, i.e., we can express

an iteration matrix M; that fully describes one sweep of multigrid
recursively as

{Mozo, k=0,

= (S (Ie = IF (T = MY DAL I A) (S2)2 k> 1.

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 73

A multigrid method is simply the fixed point iteration with matrix M;.
Thus, we can characterize the convergence by imposing p(M;) < 1. We
can start investigating the convergence of this method by selecting an
appropriate smoothing and coarsening strategy.

Theorem 2.13 (Mandel [198] and McCormick [200]). Let A € R™" be
symmetric and positive definite. Assume that the prolongation operators I l’{‘_l
have full rank and that the Galerkin condition (2.53) holds. Furthermore, given
the orthogonal projector I (2.54), if

Ver 361 >0 : [ISPerl? < llexll? — ollTTkexl?, (2.55)

independently of ex and k, then the multigrid method based on the cycle in
Algorithm 2.16, with y =1 (V—cycle), vi = 0 and vo > 1 (no presmoother),
has a converge factor bounded above by Y1 — 01 with 61 < 1. Otherwise, if
the following condition holds

Ve A6, >0 : (1S exll} < llecl - olITLS| ecl}, (2.56)

independently of ex and k, then the multigrid method based on the cycle in
Algorithm 2.16, with y = 1 (V—cycle), v1 > 1 and v, = 0 (no postsmoother),
has a converge factor bounded above by 1/vi-5, with 6, < 1.

Remark 2.6. If we have a multigrid cycle (Algorithm 2.16) with both a pre—
and post—smoother satisfying relations (2.55) and (2.56), then we can give an
estimate of the convergence factor as \1-01/1-5,.

Theorem 2.13 states that it is the balance between the smoothing
and the coarsening that makes the convergence possible. In the case of
PDEs, the interplay between these two components can be interpreted
in terms of the frequencies of the error, i.e., condition (2.55) means
that the error ey that cannot be efficiently reduced by the orthogonal

projector Iy needs to be uniformly reduced by Slgl). On the other hand,
on the components on which I is effective, i.e., that are in the range
of]’j_l, the smoothing operator is allowed to be ineffective. Therefore,
while the geometric multigrid usually relies more on the availability of a
smoother that is tuned on the problem, algebraic multigrid is usually more
focused on finding a suitable matrix-dependent coarsening strategy.
More specifically, in geometric solvers, all coarser levels are predefined
and we select the smoothing so that this coupling is effective. On the
other side, for the AMGs, we fix a simple smoothing procedure and
explicitly construct an operator-dependent coarsening strategy. In real
applications the line of demarcation between these two approaches

74 FABIO DURASTANTE

is indeed blurred, often the two kinds of information tend to be used
jointly. Let us stress that the hypotheses (2.55) and (2.56) are not very
easy to verity, since they mix together properties of the coarsening
strategy, through the orthogonal projector I1j, and of the smoother. We
would like to have some easier to verify sufficient conditions, to imply
hypothesis (2.55). To obtain them we need to define the following scalar
product
<x,y >4=< D 'Ax,y >, with A, D SPD,

where we will usually assume that D = diag(A). Then, the following
two conditions can be used

da>0: ||S,((2)ek||12¢1 < ”ek”fl — 0(||ek||1242, (smoothing condition)
d8>0: ||erk||124 < ,8||ek||1242, (approximation property)

having 61 = ¢/g. Similarly for hypothesis (2.56) we have, again with
0p = o/, the conditions

da>0: ||S]({1)ek||i < ||S]((1)ek||l‘7;l — a||ek||i2, (smoothing condition)
48 >0: ||erk||124 < ﬁ||ek||1242. (approximation property)

Smoothing conditions are usually the easiest part to be obtained. On the
other hand, the approximation property can range from trickier to very
hard or impossible. A way to further relax the approximation property
is reducing the requirements of Theorem 2.13 for a proof only for the
convergence of the two—grid method, i.e., the case with [= 2,y = 1.
Moreover, since the two relations can be obtained in the same way, we
restrict our statement to the case in which smoothing is performed only
after each coarse grid correction step, i.e., we will consider having only

the smoothing matrix S](CZ).

Theorem 2.14 (Brandt [52]). Let Ak be a positive definite matrix and let
us consider a multigrid cycle (Algorithm 2.16) with y = 1 and | = 2 in

which we identify the two levels with k and K, respectively and S,(cl) =0,

i.e., no pre—smoother is used. If Sl(cz) satisfies the smoothing property, then the
interpolation operator | Ik< has full rank and for each ey we have

A8 >0: rr;in”ek — Ilk<e1<||,% n ,3||ek||124,

with B independent from ey, then p > a. Moreover, the two-grid method
converges with a convergence factor \'1 — a/.

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 75

Extending these convergence properties to the full V—cycle case
is in practice impossible by using merely algebraic arguments, i.e.,
without recurring when possible to the underlying geometric properties.
Nevertheless, it often turns out that two level convergence can be
extended, at least approximatively, to the V—Cycle in a way independent
of the problem size. Since we are mostly interested in using AMG as a
preconditioner, for us this is enough, even if a further analysis in this
direction would be very desirable, see [242, 269, 277] for discussions
on these issues. There exist several classical proofs of convergence
for multigrid methods applied to a wide number of elliptic partial
differential equations, see, e.g., [7, 11, 51, 102, 147]. We focus the
remaining part of this section on properties for some classes of matrices
working in the widest possible generality. For proving the convergence
of the two-grid methods in the symmetric positive definite case other
ways are indeed possible. One can consider, e.g., [137], in which a
general class of stationary iterative methods is introduced for solving
SPD systems, of which the two—grid is an example. In this respect, we
just mention that for structured matrices, some simplifications of the
theory can be obtained using a function approach, both in a Toeplitz
setting [78, 114, 115] and in a GLT setting [97, 99, 256].

Multigrid preconditioners have been applied mostly in elliptic PDE
settings, with both structured and unstructured grids. We will not focus
explicitly on any of these applications, considering instead the common
ground and making explicit the main points that are used in the various
applications.

From another perspective, the multilevel method we have described
in Algorithm 2.16, provides an approximate inverse of A, by suitably
combining some approximate inverses of the hierarchy of matrices that
represent A in increasingly coarser spaces from (2.52). Therefore, we
can devise two distinct phases of our preconditioning routine, based
on the general multigrid algorithm. They are a setup phase, summarized
in Algorithm 2.17, and an application phase in which the preconditioner
is applied to the residual vectors of our Krylov subspace method as
zZ= Ml_lr, see Sections 2.1.1 to 2.1.4.

For this second phase we can identify two basic approaches, i.e., the
additive one and the multiplicative one:

additive case: ateach level, the smoother and the coarse-space correction
are applied to the restriction of the vector r to that level, and the
resulting vectors are added;

multiplicative case: at each level, the smoother and the coarse-space
correction are applied in turn, the former on a vector resulting

76 FABIO DURASTANTE

Algorithm 2.17: Setup phase of MGM preconditioner
Input: A € R™", Set of indices/grid Q

1 Al — A, Ql — Q;

2 Set up SI((D and SI(CZ);

fork=1,1-1,...,1do

3

4 Generate (Q;_1 from Qy;

5 Define I’k‘_1 and put I]’(‘_1 = (I,’{C_l)T;
6 ComputelAk_l = Ig_lAkl,lf_l;

7 Set up Sl(c_)1 and S,(c_)l;

8 end

from the application of the latter and/or vice versa.

An example of multiplicative preconditioner, where the smoother
(or possibly the smoothers) is applied before and after the coarse-space
correction, is the symmetrized multiplicative preconditioner or, more
generally, the V—cycle preconditioner summarized in Algorithm 2.18.

Application of this kind of preconditioners to the PDE setting are,
e.g., in [79, 95, 216, 224, 234, 283] and many others, we refer again to
the review [269] for some other cases where multigrid is a competitive
option.

2.4 Approximate Inverse Preconditioners

The so—called Approximate inverses or Approximate Inverse Preconditioners
are preconditioners approximating directly A~ and not A, as usual.
They have been intensively studied recently, in particular in the past
twenty years; see the review [19] and, e.g., the more recent [36] and
references therein. They do not require solving a linear system to be
applied and often have very interesting parallel potentialities. On the
other hand, they usually face a computational cost sensibly higher with
respect to, e.g., incomplete LU techniques.

We recall that incomplete LU factorizations (ILU) are derived by
performing Gaussian elimination incompletely on the matrix A of the
system. A dropping strategy for specific entries in predetermined non-
diagonal positions and /or whose moduli are smaller than a prescribed
quantity is implemented; see [244, Sections 10.3 and 10.4] for further
details on the construction, also in Section 2.4.2 few details on how this
dropping strategies work are given in the context of inversion algo-
rithms for the incomplete LU factors. Moreover, existence and stability

il A

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 77

Algorithm 2.18: V—cycle preconditioner
Input: Vector v € R, MGM preconditioner from
Algorithm 2.17
Output: Vector w = M 'v
1 V] <V
/* Recursively traverse levels downward: smoothing then
residual restriction */
> fork=1,1-1,...,2do
3 Vi S,El)vk, (v1 times);
4 | Tk < Vi — Aryi
5| Ve« [lrg
6 end

7 Yo < S(()l)vo, (v1 times);
/* Recursively traverse levels upward: residual
prolongation then smoothing */
s fork=1,...,1do
o | vk —yr+I v
10 Iy < Vi — ArYi;
11 Iy Sl(f) r¢, (Vo times);
12 Yk < Yk + 1y,
13 end
14 W <y,

of these algorithms is mostly based on having a matrix A of the linear
system that is either an M—matrix or an H-matrix.

Definition 2.13 (M-matrix). A matrix A € R™" is called a non—singular
M-matrix if

a;; >0v¥i=1,2,...,n;

ai,j <0Vi ij, i,j =1,2,...,n;

det(A) # 0;

the entries of the inverse of A are positive.

Definition 2.14 (H-matrix). Let A = (a;;j) € R"™", B such that B =
(bi,]') e R, bi,i =a;;Vi=1,...,n and bi,]' = —|ai,]-|for 1 #] Aisan
H-matrix if B is an M—matrix.

However, ILU can have very poor performances for important
applications, where A is not an M- or an H-matrix and/or that require

78 FABIO DURASTANTE

a parallel implementation, since they require, at each step, the solution
of two triangular systems, that is a recognized serial bottleneck.

One possible remedy is to try to find a preconditioner that does not
require solving a linear system. For example, the original system can be
preconditioned by a matrix M which is a direct approximation to the
inverse of A, thus requiring just matrix-vector multiplications for its
application.

There exist several completely different algorithms for computing
a sparse approximate inverse, with each approach having its own
strengths and limitations.

Usually, two main basic types of approximate inverses exist, depend-
ing on whether the preconditioner M, approximating A1, is expressed
as a single matrix or as a product of two or more matrices. The latter
type of preconditioners are known as factorized sparse approximate in-
verses and they are of the form M = WD~ ZT or M = W ZT, where
Z and W are lower triangular matrices and D is diagonal, assuming
that M admits a LU factorization. Within each class, there are several
different techniques, depending on the algorithm used to compute the
approximate inverse or approximate inverse factors. At present, there
are three approaches that are more used:

Residual norm minimization [163-165],
inversion and sparsification of an ILU [104], and
incomplete bi-conjugation [21, 22, 24].

However, before discussing the last two in the way they have been
modified in [36], some results regarding the entries of the inverse of a
given matrix are essential.

2.4.1 On the Decay of the Entries of A~}

At the beginning of the discussion on preconditioners, in Theorem 2.1
it was observed that the inverse A~! of a sparse matrix A has often sig-
nificantly more entries than A. Nevertheless, under suitable conditions,
the magnitude of the elements of the inverse can play a fundamental
role. Prior to analyzing this problem, consider an example that guides
us.

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 79

Example 2.1. Consider the tridiagonal symmetric positive definite matrix

(2 -1 0 .. 0\
12 -
A=10 0
T I
\0 ... 0 -1 2/

Instead of representing A~! with its pattern, we observe its cityplot; see
Figure 2.3. Even if the elements of the inverse are all different from zero, note

Figure 2.3. Example 2.1. Cityplots of the A matrix (on the left) and of A~! on
the right.

the presence of a decay, i.e., a decreasing of their absolute value away from the
main diagonal of the matrix.

Let us start investigating this decay in the inverse matrices in order
to use it, whenever it exists, for preconditioning strategies.
The first result that can help is due to Demko, Moss and Smith.

Theorem 2.15 (Demko, Moss, and Smith [89]). Let A and A~' be in
B(1%(S)) (that is defined just after the present statement). If A is positive
definite and m-banded then we have:

(AT} iy = bl < CAV,

where:

1 (K(A) — 1)2/m
- Vr(A)+1 ’

8o FABIO DURASTANTE

and

_1a-1
C=]A ||max{1, 7% (A)

ww}

If A fails to be positive definite but is still m-banded, quasi-centered, bounded,
and boundedly invertible then:

(A < A

i,j=1
where 1
1= K(A)—=1\"
U@y +1)
and

Ci1=(m+ 1)/\1_m||A_1||K(A) max {1, %

1+x(A)]
ol

To prove this statement some preliminary work is needed. Let us
start with a general complex, separable, Hilbert space H, and let %(H)
denote the Banach algebra of all linear operators on H that are also
bounded. Now if A € %B(H) then A can be represented as a matrix with
respect to any complete orthonormal set. In this way, A can be regarded
as an element of B(I%(S)), where S = {1,2,..., N}. In this space, the
usual matrix product defines the action A over the space. A can be

considered as a matrix representing a bounded operator in B(1%(S)).
Recall that A is m-banded if there is an index [such that

ai,j:O, ifj%[i—l,i—l-i—m].

Then A is said to be centered and m-banded if m is even and the [above
can be chosen to be m /2. In this case the zero elements of the centered
and m-banded are:

m

>

Remark 2.7. Selfadjoint matrices are naturally centered, i.e., a tridiagonal
selfadjoint matrix is centered and 2-banded.

aij =0, if |i — j| >

Now let R, denote, as usual, the polynomial of degree less than or
equal ton.If K € C and f is a fixed complex—valued bounded function
on K, then we define the norm

1fllx = sup [f(2)]

zekK

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 81

and the relative approximation error for the set of polynomial R, to an
f over the set K as

en(K) = inf ||f —pllk.
peR,

To proceed, a result due to Tchebychev [271], and Bernstein [26] is
needed; see [202] for a modern presentation.

Lemma 2.1. Let f(x) =1/xandlet0 <a <b. Setr =b/a and:

Vr-1

l/7=c7(r)=\ﬁ+1

then: (\/_)2
1++r)y .
en([a,b])=7q !

Proposition 2.10 (Demko, Moss, and Smith [89]). Let A be a positive
definite, m-banded, bounded and boundedly invertible matrix in 1>(S). Let
[a, b] be the smallest interval containing o(A). Set r = b/a, q = q(r) as in
the Lemma 2.1, and set Co = (1 +r)?/(2ar) and A = g*/™. Then,

|A™Y = (|by j])i j=1n < CAIT]

where:
C =C(a,r) =max{a~!, Co}.

Now following the authors of the result above, we report an extension
of the latter for a more generic type of matrix A. Before doing this, the
quasi—centered matrix definition is needed. A is said to be quasi—centered
if the central diagonal is contained within the nonzero bands of the
matrix, i.e., A € B(I%(S)) is invertible only if A is quasi—centered. Note
also that this is not true for A € I*(Z).

Proposition 2.11 (Demko, Moss, and Smith [89]). Let A be m-banded,
bounded and boundedly invertible on 1%(S). Let [a, b) be the smallest interval
containing 6(AAH). Then, setting r = b/a, q = q(r) as in Lemma 2.1, and
A1 = g™, there is a constant C1 depending on A so that

(AT} Ly = 1bigl < CiAy

If A is quasi—centered, then Cy can be chosen as C1 = (m + 1)||A|[A{" C(a, 7).

The proof of Theorem 2.15 is given by two previous propositions.
Observe that Theorem 2.15 does not apply to the sequence of matrices
from Example 2.1, since their condition number grows like O(1?), i.e.,

82 FABIO DURASTANTE

the spectral condition number is unbounded. Being familiar with the
physics of the problem, this has to be expected, since we are trying
to approximate the Green’s function for d?/dx?. Therefore, even if the
matrix satisfies a bound of the kind of Theorem 2.15, it deteriorates
as n — +oo.

In many cases understanding the behavior of the decay is important
not only from the main diagonal but also when more complicated pat-
terns appear. A useful result in this sense is given in Canuto, Simoncini,
and Verani [71] for Kronecker sums of symmetric and positive definite
banded matrices, i.e.,

S:In®M+M®In,

where [, is the identity matrix in R"*", a structure very frequently en-
countered when dealing with the discretizations of PDEs on a Cartesian
grids, see, e.g., [186], or other tensor product structures.

Theorem 2.16 (Canuto, Simoncini, and Verani [71]). Let M € R™"
be a symmetric and positive definite matrix of bandwidth b. For k,t €
{1,2,...,n%}, let

j=L Yl +1, i=t—nlt-n],
and 1, m such that
m = Lk_l/nJ +1, I =k- Yll_k_l/nJ.

If Apin and Ayqy are the extreme eigenvalues of M, and A1 = Apin + 1w, Ay =
Amax + ZC(),R = + 0(2 - 1 ZUit]’l a = |/\l|+|A2|//\2_/\] and ﬁ - |Amax - Aminl,
then the following results hold

1. If i # land j # m, then

_ Led [R2 O\ 1) T
‘(S 1)k,t| = E@f ((R2 1)) () daw;

2. Ifeitheri =1or j =m, then

+00 2 ;+;
|(S_)k,t|S%% R (1) b b
— (R2=1)* /A2, + @2

3. Ifbothi =1and j = m, then

4 if*“’ 1 1
|(S)k’t| = 2m —oo Az + a)zdw B 2/\min.

min

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 83

Another result that is very useful and that is pivotal for several
results in both Chapters 5 and 8 is the following.

Theorem 2.17 (Jaffard [166]). The sets of invertible matrix (A),x €
B(I*(K)), K = Z,N, such that either

|apnkl < CA+[h—k[)™, (2.57)

or
|an k| < Cexp(=ylh - k|) (2.58)
are algebras, denoted by Qs and 6, respectively.

Observe that this result does not require any particular sparsity
pattern for the underlying matrix, and is based only on the values
assumed by the entries.

Remark 2.8. In Theorem 2.17 we used the hypothesis A € B(I1*(K)). We
stress that the fact that the single matrix A of finite dimension is invertible does
not ensure that the operator over 12(K) is invertible with a bounded inverse.
This kind of feature is not easily proven in general and require the use of tools
from C*—algebras.

Decay conditions for general matrices remain an open problem.

Not all of the entries of such inverses, though nonzero, have the
same weight. The same principle adopted for the ILU factorizations
in [244] can be applied when investigating the strategies that generate
the approximate inverses with some degree of dropping.

2.4.2 Inversion and Sparsification or INVS

The inversion and sparsification of an existing ILU decomposition is a
strategy used often to get approximate inverse preconditioners. Three
immediate positive aspects are that the latter is produced in factorized
form: the availability of reliable packages producing ILU factorizations,
and the inherent parallel potentialities after the ILU decomposition; see,
e.g., van Duin [104] and [36].

Let us focus on the approach by van Duin [104] as reconsidered
in [36] and here called INVS (from INVersion and Sparsification) for
brevity. The strategy is based on performing a sparse inversion technique
on the triangular factors of an existing incomplete factorization in the
form M = LDU, where D is a diagonal matrix and L and U are lower
and upper triangular with ones on the main diagonal, respectively. The
latter factorization can be obtained with a slight modification of the
classical ILU techniques, see, e.g., [108, 189, 244, 246]: let M = L U;

84 FABIO DURASTANTE

be a ILU preconditioner and let D be the main diagonal of U;. D is
nonsingular otherwise M is a singular preconditioner. Then, by posing
U = D~'U;, we deduce the following

M=LDU—->M'=u'D L' =wD 12T

are the factorizations for M and for its inverse. However, as proved
in Theorem 2.1, Z and W can be dense lower triangular matrices. In
order to get a sparse incomplete factorization for A~! and therefore of
M™1, a sparsification process for Z and W can be based on threshold
and position or both, similar to what is seen for ILU decompositions,
generating the sparse lower triangular matrices Z and W. After having
obtained sparse approximations Z, W' for the matrices L~! and U™,
use them to get the explicit preconditioner’ for A™! of the form

M1=0"'pti-1=wp 17T,

We call it the INVS.
To produce the underlying inversion, start writing U as®
n—1
u=I+ Z eiuiT.
i=1

By observing that ¥V j < k, we find ekuze]'u]r = 0, since the jth entry of
uy is zero Vj < k, rewrite U as

u= (I+eu). (2.59)

i=n-1

The inverse of the factors in (2.59) is straightforward”:

(I+eiu) L eiu;,
Explicit preconditioner: no linear systems should be solved to apply it but, if used with a
Krylov subspace method, then just matrix-vector multiplications with Z, WT and D!
are required.

As usual we are using e; notation for the vectors of the canonical basis, while u; is the ith
row of the matrix U with the element u;(j) = 0 for j < i.

The inverse of the factors in (2.59) can be computed directly by the fact that U is upper
triangular, and using again that ¥ j < k, we find ekuZe]-u]r = 0, which gives the needed

result: (I — eiuiT)(I + e,-ul.T) =]. Otherwise, it can be computed by a straightforward

application of the Sherman-Morrison formula for the inversion of (A +uv'); see Sherman
and Morrison in [259] for details.

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 85

and then

—_

e
U'=|[(I-eu). (2.60)

i

Il
—_

Now, since U™ is also an upper triangular matrix, the above expression
can be rewritten as a sum

Ul=1+) e], (2.61)

where ﬁ;.r, the strict upper triangular part of the ith row of u-t is
obtained as

i =-u/ l_l (I-emu). (2.62)

The expression for L™! can be obtained similarly.

Remark 2.9. From (2.62) we observe that no G; is needed for the calculation
of G; for i # j, so the whole inversion process can be executed in parallel on a
distributed memory machine, i.e., computer systems with many processors in
which each processor has its own private memory.

Algorithm 2.19: Sparse product algorithm.
Input: U € R™" strict upper triangular matrix
fori=1,...,n—1do

[y

2 ﬁiT — —uZ,T;

3 j « first nonzero position in ﬁ;tr ;

4 while j < n do

5 o — —ﬁl.Tej;

6 ﬁiT = ﬁl.T + au]T; // As a sparse operation.
] < next nonzero position in ﬁiT ;

8 end

9 end

A straightforward implementation of the formula (2.62) is in the
Algorithm 2.19, that has the flaw of generating dense matrices, recall
Theorem 2.1. To sparsify using some dropping strategy, similarly to
what is done usually for the ILU factorization, see the modifications
needed in Algorithm 2.19.

86 FABIO DURASTANTE

Pattern drop. A fixed pattern S for the matrix is given, so ﬁl.T(k) is only
calculated when (i, k) € S.

Neumann drop. 8 We start from rewriting formula (2.60), namely the
Neumann series expansion for the formula (2.59):

n—1 n—2 n—1
-1 _ L T T cqq 1
u-=I- Z eju; + Z epu; Z eju;, |+
j1=1 j2=1 j1=j2+1
2.6
n-3 n-2 n—1 (3)
T T T
- Z 9]311]3 Z e]211]2 Z e]lujll + PPN
j3=1 j2=j3+1 j1=j2+1

by truncating this exPression at a number of extra term m we

obtain the dropping U,,. The main issue of this approach is that

the update uz can be computed m times in the worst case for ﬁ;rr.

Positional fill level. Similarly to ILU(P), define a level of fill initialized

for U as: ;
] 0 ifu; (j) #0,
levi, = { +oo iful(j) =0,

and the function to update the levels of fill is
lev; x = min(lev; ; +1,lev; k).

In this way, Algorithm 2.19 becomes Algorithm 2.20.

Positional fill level II. Instead of using the level of fill of the approximate
inverse matrix, we can choose the level of fill of the original sparse
triangular factor. This choice changes only the initialization step
in Algorithm 2.20:

lev: « leViL,I]- if u;‘r(]) #0,
Y| 4o iful () =0.

Threshold drop. Algorithm 2.19 can be implemented with the same
elementary operators as the incomplete LU factorization with
thresholding from [246], and quoting from [36]:

* inthe copy-in phase, Step 2, we initialize the set of nonzero entries
for the current row ;;

* in the update phase in Step 7 we also insert the relevant indices
into the set to ensure that the retrieval of the next nonzero at
Step 11 is performed efficiently;

8 Note that the first two terms are available without cost.

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 87

Algorithm 2.20: Positional fill level inversion of a sparse triangular
matrix or INVK

SN U1 W =

N

10
11
12
13
14

Input: U € R™ " strict upper triangular matrix, initial pattern of

the matrix lev; ;.

forj=1,...,n—1do

0« -ul;

j « first nonzero position in ﬁ;tr ;
while j < n do

if lev; ; < p then

a — —a] ej;

T T.

i j’

lev; x = min(lev; ; +1,lev; x);
else

~T(:

G; (j) < 0;

end

j < next nonzero position in ﬁ;tr ;

end

0 — 0 +ad

end

¢ at the end of the inner loop, we perform a copy—out operation

bringing the row 1i; into its desired final state, copying the largest
entries up to the maximum allowed number of nonzeros.

From the above discussion, in Algorithm 2.21 we are looking
again to implement efficiently the following two operations:

1. select and remove the lowest ranked element from a set;
. add an element to the set.

As highlighted in [36] this can be achieved efficiently on a set
with an order relation. This item can be implemented by means
of a Partially Ordered Set Abstract Data Type S; see [162]. With this
kind of data structure both the insertion of a new element and the
deletion of the lowest ranked element (where the rank is given
within respect to the chosen order) can be performed with a cost
of O(log(]S|)), where |S| is, as usual, the cardinality of the set S.
Observe that the copy—out operations in both factorization and
inversion can be implemented by making again use of a partially
ordered set, or by keeping the p largest entries in the current row.

A parallel implementation, exploiting the GPU architecture of this
algorithm, is proposed in [36].

88 FABIO DURASTANTE

Algorithm 2.21: Inversion of triangular matrices with numerical
drop or INVT

Input: U € R™" strict upper triangular matrix
1 forj=1,...,n—-1do

2 | 0] «-ul;

3 j location of first nonzero in ﬁl.T ;

4 while j < n do

5 a — -] ej = -1 (j);

6 if |a| > € then

7 ‘ ﬁl.T — ﬁl.T + ocu].T;

8 else

9 ‘ ﬁlT(]) < 0;

10 end

11 j location of next nonzero in ﬁ;tr ;

12 end

13 Drop elements in #1; as necessary to achieve the desired
number of nonzeros.;

14 end

With the appropriate implementation for this data structure, we
are now in a position to report the estimate of the cost of building an
approximate inverse as in Algorithm 2.21 that was obtained in [36].

Theorem 2.18 (Bertaccini and Filippone [36]). Let nnz, be the average
number of nonzeros per row for u, nnzg for G and that the bounds

S| < ynnzy, (2.64)

nnzg < pfnnz,, (2.65)

hold true, where |S| is the maximum size of the set of the nonzero entries
in any of the G; before the application of the drop rule at Step 13. Then, the
computational cost of Algorithm 2.21 is given by

O(ypn -nnz%l(l + log(y nnzy))). (2.66)

The above result relies on two crucial assumptions about the size
of both the constant f and y: we need small constants to achieve
a good asymptotical cost. Assumption (2.65) is the easiest to justify:
from the discussion at the beginning of Section 2.4, we know that we
desire preconditioners with a number of nonzeros of the same order as

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 89

the coefficient matrix A, hence § = 1. Observe that we can enforce the
number of nonzeros at Step 13, thus the assumption above is reasonable.

On the other hand, assumption (2.64) is a bit more complex: it relies
on the behavior of the profile of u and . We can consider hypoth-
esis (2.64) plausible whenever we are in presence of the conditions
discussed in Section 2.4.1. Since the latter is indeed equivalent to an
exponential decaying argument for the entries of the inverse of the
Cholesky factor; see also the applications in Sections 4.2 and 5.2.1. We
stress that also enforcing the dropping rules at 6 and 13 in Algorithm 2.21
helps in keeping |S| under control.

The cost of INVK and INVT has also been analyzed in the original
paper [104], obtaining for approximate inversion of the upper factor
the estimate

nnzyy
n 4

Cinvrt = O (nnza

where nnz;; is the number of nonzeros above the main diagonal in U
and likewise nnz; for the sparsified version U.

In [36], was noted that the upper bound for the first term nnzy
is given by the product nfnnz, while the second term is nnz,. This
estimate is then equivalent to the reported one in (2.66), under the mild
assumption that log(y nnz,) is bounded by a small constant.

2.4.3 Incomplete Biconjugation: AINV

Let us focus on another approach for preconditioning, based on efficient
approximations to the inverse of the underlying matrix. In particular,
approaches that do not necessitate apriori information on the sparsity
pattern of A™! are considered here. This kind of procedure have been
developed in different forms in many papers; see, e.g., [22, 60, 61, 170].

Factorized Approximate Inverse preconditioners for general sparse
matrices can be efficiently constructed by means of a generalization of
the Gram—-Schmidt process known as biconjugation.

An approximate inverse preconditioner in factorized form (AINV), was
proposed by Benzi et al. in 1996, see [22] and later extended in [24] and
in [21]. The main idea comes from an algorithm first proposed in 1948
in [119], a variation of the root—free Cholesky decomposition of A.

AINV strategy is based on the observation that if a matrix A € R™*"
is nonsingular, and if two vector sequences {z;,i =1...n} and {w;,i =
1...n} A-biconjugate are given, i.e., z] Aw; = 0 if and only if i # j,

90 FABIO DURASTANTE

then we can express a biconjugation relation as follows:

P1 0 0
0 p2 ... 0

Z'AW=D=| (2.67)
0 0 ... pu

where p; = zl.TAwi # 0. Thus, W and Z must be nonsingular, since D is
nonsingular. Therefore, in matrix form,

A=Z"DW
from which it readily follows that
Al =wD" 17T, (2.68)

If W and Z are triangular, then they are the inverses of the triangular
factors in the familiar LDU decomposition of A (see, e.g., [134]), as can
be easily seen by comparing the two expressions

A=LDU, and A =Z"TDW,

Algorithm 2.22: Biconjugation
(0) (0)

1 W, ez e 1<i<mn;
2 forz =1,...,ndo
3 forj=1i,i+1,...,ndo
; p§z—1) a! w(1)’ qﬁl n Tz Ez 1),
5 end
6 forj=i+1,...,ndo
p(z 1)
] w® gD _ (0)W(i1);
Jj Jj (-1 | 1
Pi
q(j—l)
8 72 20D _ (].—)z(.l_l);
J] (i-1) |1
q;
9 end
10 end

1 1 1 ,
11 zi<—z§Z) wi<—wgl) pi<—p§l) 1<i<un;

Observe that there are infinitely many biconjugate sequences {w}
and {z} satisfying the above relations. To find one of them, it is enough

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 91

to apply a biconjugation procedure to an appropriate pair of nonsingular
matrices W®, Z© € R™" From a computational point of view, one
can start with W(© = Z(© = [, thus obtaining Algorithm 2.22, where aT

is the ith row of A and a’ ;18 the ith column of A4, i.e., the ith row of AT.

If the procedure reaches complet1on without breakdowns, i.e., all the
diagonal entries are nonzero, then the resulting matrices W and Z will
be triangular. Thus, for symmetric positive definite matrices, the process
does not break down. Another interesting feature of Algorithm 2.22 is
that the process for building W can proceed independently of Z.

To turn Algorithm 2.22 into a practical approximation procedure,
and therefore for a possible preconditioner, we need to “sparsify” the
resulting W and Z by dropping elements in the vectors w; and z;. In
principle this could be done at the end of Algorithm 2.22, but this would
mean storing the (dense) matrices W and Z until the end. In practice,
the sparsification is done at each update for the vectors w and z.

Similar to the case of the incomplete factorization of ILU type, it
is possible to prove that the incomplete inverse factorization exists (in
exact arithmetic) when A is an H-matrix; see [22].

Proposition 2.12 (Benzi, Meyer, and Tiima [22]). Let A be an H-matrix
and let A be the associated M—matrix. If p; and p; denote the pivots computed
by the inverse factorization Algorithm 2.22 applied to A and to A, respectively,
then p; > p;. Furthermore, if p; denote the pivots computed by the incomplete
inverse factorization algorithm applied to A, then p; > p;.

We stress that, despite the many similarities, there is a noticeable
difference with the case of incomplete factorizations. It is well known
that if A is an M-matrix, then the incomplete factorization induces a
regular splitting A = LU - R, i.e., p(I - UT'L71A) < 1, while this is
not necessarily true for the incomplete inverse factors produced by
biconjugation; see [24].

Example 2.2. Consider the symmetric matrix HB/bcsstkoz from the Harwell—
Boeing collection [103]. Producing M~ = ZD~'ZT with a drop tolerance
of € = 0.1. The estimated spectral radius for this splitting is p(I - M~1A) =
1.44 > 1, and so the splitting is not convergent.

In theory, AINV can suffer of breakdown when the coefficient
matrix is not an H-matrix. But the process as modified in [21] will not
break down for symmetric and positive definite matrices. The modified
method was called Stabilized AINV, or SAINV.

The procedure in Algorithm 2.22 is a right looking variant, i.e., when
a vector z; is finalized, it is used to update all the vectors z;, j > 1.

92 FABIO DURASTANTE

An alternative formulation is the left looking variant as suggested
in [36], i.e., all the updates to z; involving z;, j < i, are performed in
a single iteration of the outer loop. We show the procedure for Z in
Algorithm 2.23, W can be handled in the same way. As usual, in exact
arithmetic, the numerical behavior of the two algorithms is the same.
Nevertheless, the distribution of the computational work in the two
variants is indeed different. We observe that the left-looking variant
groups together all the updates to a given column. We perform more
(sparse) dot products, using the “true” z;, i.e., before sparsification.

As observed in [36], these features can be beneficial from a numerical
point of view, since:

1. The dot products at 5 and 8 in Algorithm 2.23 are computed with the
full vector z;, before the application of the drop tolerance.

2. The dropping rule on z; entries is applied only at the end of the update
loop, whereas in the right-looking version is applied at each update.

From the experiments in [36], the left-looking variant seems to suffer
less from pivot breakdown.

Algorithm 2.23: Left Looking Biconjugation for Z

(0) :) .
1.2 <€y p1° < aLy,
> fori=2,...,ndo

(0) .
3 Z, = <€

4 forj=1,...,1—1do
(-1 al Z(]—l) .

5 bi <.z
I
6 Z(.]) - Z(.]_l) [E Z(.]_l) ;
: : G- |
Pj
7 end

i-1 i-1
D D

9 end

Recall that even if A is sparse, then there is no guarantee that Z is
sparse too; see again the discussions made in Section 2.4.1 about the
decay of the entries of the inverse of a matrix.

Example 2.3. As an example of the fill-in for the Z matrix in the AINV
Algorithm, we consider the application to the HB/sherman1° matrix (2.4) of
the Harwell-Boeing Collection for various drop tolerances.

9 Information concerning this matrix can be found in [86].

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS 93

HB/shermanl
0 \ 0
100 \ \ 100 b4
200 \ 1 200
300 - \A\ 1 300
400 | \ \\\ 1 400 |
500 | \ ™ 1 500 |
NN\
600 . S 1 600
\ \
700 | \-\\ \ 1 700 | - ,K. 1
800 f \ \ 800 f .
900 | ~ 900 | \4
1000 1000
0 200 400 600 800 1000 0 200 400 600 800 1000
nz = 3750 nz = 4336

Droptol 1le — 2 Droptol 1e — 3
T " 18 i3 i

100 100

200 200
300 300
400 r 400 r
500 r 500 |
600 600 [
700 700
800 800

900 r 900 r

1000
0

N 1000
200 400 600 800 1000 0 200 400 600 800 1000

nz = 25954 nz = 114017

Figure 2.4. AINV (A, ¢) for the HB/sherman1 matrix at various ¢.

Consider again Algorithm 2.23. In an actual implementation, the
vector z; could be stored in full format during the execution of Loop 4,
and there can be two different ways to apply the dropping rule:

. at Statement 6 the update of z; is only performed for a sufficiently large
value of p;/p;;

. after the Statement 8 a dropping rule is applied to z; thereby sparsifying
it for final storage.

Observe that the application of the first dropping rule based on p;/p;
was discouraged in the paper that introduces right-looking AINV
for symmetric systems [22], while in the experiments in [36] with
the left-looking approach, the dropping rule was applied, without
adverse numerical effects. Moreover, it seems to provide a performance
advantage. Observe that in the dropping rule applied to z;, both the
usual threshold comparisons and the limitation on the maximum

94 FABIO DURASTANTE

number of nonzeros where allowed in [36].

A key observation made in [36] is that the execution of Statement 5
in Algorithm 2.23 computes the dot product between a;. and z; even if
in most cases this product can be exactly zero because of the (mis)match
between the position of nonzeros in a;. and z;. Thus, we are performing
quadratic cost operations without any contribution to the result. To
avoid this, in [36], they propose executing Loop 4 only when is necessary.
This is equivalent to letting each step j be the lowest index among those
not processed yet such that row a; . has at least one nonzero element in

)) i—1
a column corresponding to a nonzero entry in ZEJ).

To achieve this goal, an extra copy of the pattern of a in a column-
oriented format is retained, and, quoting again [36], we do the following:

. at the beginning of the loop 4, z; < e;. Therefore, the set of indices {;}
is initialized with Ry, = {i:a;; # 0}, the set of row indices of nonzero
entries in column i of matrix A;

. at each iteration in Loop 4, choose j to be the smallest index in the set
that is greater than the last one visited;

. at Step 6, whenever an entry z;(k) becomes nonzero, add the row indices
R, corresponding to the nonzeros of column k in matrix A to the set
of indices to be visited.

Moreover, for easing the implementation, we can keep copies of the
input matrix A both in a row—oriented and column-oriented storage
format. This allows building Z and W at the same time, and within the
same outer loop: we access the rows and columns of AT by accessing
the columns and rows (respectively) of A. On the other hand, the inner
loop results to be separate between Z and W in any case. It runs on
a subset of indices specific to each of the triangular factor. The result
is Algorithm 2.24; see again [36]. The implementation makes use of a
dense work vector Z to compute z; and w;. The indices of the nonzero
entries are kept in a heap hp. Another heap rhp is used to hold the
indices of the rows with at least one nonzero in a column matching a
nonzero entry in Z, thus giving the set of rows for which we have to
compute the scalar products.
The computational cost is estimated in the following result.

Theorem 2.19 (Bertaccini and Filippone [36]). Let nz, be the average
number of nonzeros per row in A and nz, for z; let the bounds

S| < ynz, (2.69)
nz, < fnz,, (2.70)

PRECONDITIONED FAST SOLVERS FOR SOME LARGE LINEAR SYSTEMS

95

Algorithm 2.24: Practical left-looking biconjugation

/* For a sparse matrix A let C,, = {j:a;;# 0} the set of

column indices in row i, and similarly let
Ra, = {i:a;;j#0}
/* For