222 research outputs found

    A real-time FPGA-based implementation of a high-performance MIMO-OFDM mobile WiMAX transmitter

    Get PDF
    The Multiple Input Multiple Output (MIMO)-Orthogonal Frequency Division Multiplexing (OFDM) is considered a key technology in modern wireless-access communication systems. The IEEE 802.16e standard, also denoted as mobile WiMAX, utilizes the MIMO-OFDM technology and it was one of the first initiatives towards the roadmap of fourth generation systems. This paper presents the PHY-layer design, implementation and validation of a high-performance real-time 2x2 MIMO mobile WiMAX transmitter that accounts for low-level deployment issues and signal impairments. The focus is mainly laid on the impact of the selected high bandwidth, which scales the implementation complexity of the baseband signal processing algorithms. The latter also requires an advanced pipelined memory architecture to timely address the datapath operations that involve high memory utilization. We present in this paper a first evaluation of the extracted results that demonstrate the performance of the system using a 2x2 MIMO channel emulation.Postprint (published version

    Design and implementation of an OFDMA-TDD physical layer for WiMAX applications

    Get PDF
    [Abstract]: This work describes the design, implementation, and performance evaluation of an orthogonal frequency division multiple access (OFDMA) time-division duplexing (TDD) physical layer (PHY) compliant with the worldwide interoperability for microwave access (WiMAX) standard using a costeffective software-defined radio (SDR) platform containing field programmable gate array (FPGA) and digital signal processor (DSP) modules. We show that the proposed SDR architecture is capable of supporting the wide variety of configuration options described in the WiMAX standard while fulfilling the stringent requirements of WiMAX OFDMA TDD PHYs. The architecture allows for the implementation of all TDD functionalities in the downlink and the uplink at both the base station and the mobile station. The proposed design is shown to efficiently use the available FPGA and DSP resources. We also carried out specific experiments that take into account the frame and the downlink map messages detection over ITU-R wireless channel models to illustrate the performance of the proposed design. Finally, we discuss the utilization of the proposed hardware architecture to implement the wirelessMAN-advanced air interface.This work has been partially supported by Indra Sistemas S.A., the Spanish Ministry of Defence with the technical direction of PEC/ITM under grant DN8644-COINCIDENTE, MINECO of Spain under grant TEC2010-19545-C04-01 and Xunta de Galicia, Spain, under grant 2012/287. The authors wish to thank J. M. Camas-Albar from Indra Sistemas S.A. for his help.Xunta de Galicia; 2012/28

    Real-time validation of a SDR implementation of TDD WiMAX standard

    Get PDF
    [Abstract]: This paper focuses on the validation of an innovative software- defined radio architecture for a WiMAX system based on commercially available field-programmable gate array and digital signal processor modules. We provide a realtime implementation of a standard-compliant time-division duplex physical layer including a mobile and a base station as well as downlink and uplink communications, thus obtaining a full-featured physical layer. Additionally, a set of different configurations are supported as described in the standard and in the WiMAX Forum. The main contribution of the paper consists in a reproducible and repeatable validation of the implementation in representative scenarios. At the same time, a characterization of the performance exhibited by the system is provided based on bit error rate measurements carried out using a custom-made, real-time channel emulator.This work has been partially supported by Indra Sistemas S.A. and the Spanish Ministry of Defence with the technical direction of PEC/ITM under grant DN8644-COINCIDENTE. The authors wish to thank J. M. Camas- Albar from Indra Sistemas S.A. for his help. This work has been additionally funded by Xunta de Galicia, Ministerio de Ciencia e Innovación of Spain, and FEDER funds of the European Union under grants with numbers 10TIC003CT, 09TIC008105PR, TEC2010-19545- C04-01, and CSD2008-00010.Xunta de Galicia; 10TIC003CTXunta de Galicia; 09TIC008105P

    Review of Recent Trends

    Get PDF
    This work was partially supported by the European Regional Development Fund (FEDER), through the Regional Operational Programme of Centre (CENTRO 2020) of the Portugal 2020 framework, through projects SOCA (CENTRO-01-0145-FEDER-000010) and ORCIP (CENTRO-01-0145-FEDER-022141). Fernando P. Guiomar acknowledges a fellowship from “la Caixa” Foundation (ID100010434), code LCF/BQ/PR20/11770015. Houda Harkat acknowledges the financial support of the Programmatic Financing of the CTS R&D Unit (UIDP/00066/2020).MIMO-OFDM is a key technology and a strong candidate for 5G telecommunication systems. In the literature, there is no convenient survey study that rounds up all the necessary points to be investigated concerning such systems. The current deeper review paper inspects and interprets the state of the art and addresses several research axes related to MIMO-OFDM systems. Two topics have received special attention: MIMO waveforms and MIMO-OFDM channel estimation. The existing MIMO hardware and software innovations, in addition to the MIMO-OFDM equalization techniques, are discussed concisely. In the literature, only a few authors have discussed the MIMO channel estimation and modeling problems for a variety of MIMO systems. However, to the best of our knowledge, there has been until now no review paper specifically discussing the recent works concerning channel estimation and the equalization process for MIMO-OFDM systems. Hence, the current work focuses on analyzing the recently used algorithms in the field, which could be a rich reference for researchers. Moreover, some research perspectives are identified.publishersversionpublishe

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    An FPGA implementation of OFDM transceiver for LTE applications

    Get PDF
    The paper presents a real-time transceiver using an Orthogonal Frequency-Division Multiplexing (OFDM) signaling scheme. The transceiver is implemented on a Field- Programmable Gate Array (FPGA) through Xilinx System Generator for DSP and includes all the blocks needed for the transmission path of OFDM. The transmitter frame can be reconfigured for different pilot and data schemes. In the receiver, time-domain synchronization is achieved thr ough a joint maximum likelihood (ML) symbol arrival-time and carrier frequency offset (CFO) estimator through the redundant information contained in the cyclic prefix (CP). A least-squares channel estimation retrieves the channel state information and a simple zero-forcing scheme has been implemented for channel equalization. Results show that a rough implementation of the signal path can be impleme nted by using only Xilinx System Generator for DSP

    Efficient DSP and Circuit Architectures for Massive MIMO: State-of-the-Art and Future Directions

    Full text link
    Massive MIMO is a compelling wireless access concept that relies on the use of an excess number of base-station antennas, relative to the number of active terminals. This technology is a main component of 5G New Radio (NR) and addresses all important requirements of future wireless standards: a great capacity increase, the support of many simultaneous users, and improvement in energy efficiency. Massive MIMO requires the simultaneous processing of signals from many antenna chains, and computational operations on large matrices. The complexity of the digital processing has been viewed as a fundamental obstacle to the feasibility of Massive MIMO in the past. Recent advances on system-algorithm-hardware co-design have led to extremely energy-efficient implementations. These exploit opportunities in deeply-scaled silicon technologies and perform partly distributed processing to cope with the bottlenecks encountered in the interconnection of many signals. For example, prototype ASIC implementations have demonstrated zero-forcing precoding in real time at a 55 mW power consumption (20 MHz bandwidth, 128 antennas, multiplexing of 8 terminals). Coarse and even error-prone digital processing in the antenna paths permits a reduction of consumption with a factor of 2 to 5. This article summarizes the fundamental technical contributions to efficient digital signal processing for Massive MIMO. The opportunities and constraints on operating on low-complexity RF and analog hardware chains are clarified. It illustrates how terminals can benefit from improved energy efficiency. The status of technology and real-life prototypes discussed. Open challenges and directions for future research are suggested.Comment: submitted to IEEE transactions on signal processin

    Design and evaluation of OFDM radio interfaces for high mobility communications

    Get PDF
    [Resumo] Nas dúas últimas décadas, as modulacións multiportadora emerxeron como una solución de baixa complexidade para combatir os efectos do multitraxecto en comuniacións sen fíos. Entre elas, Orthogonal Frequency Division Multiplexing (OFOM) é posiblemente o esquema de modulación máis estudado, e tamén amplamente adoptado como alicerce de estándares da industria como WiMAX ou LTE. Sen embargo, OFDM é sensible a canles que varian ca tempo, unha característica dos escenarios con mobilidade, debido á aparición da interferencia entre portadoras (ICI). A implementación de equipamento hardware para o usuario final faise normalmente en chips dedicados, afnda que entornos de investigación, prefírense solucións máis flexibles. Unha aproximación popular é a coñecida como Software Defined Radio (SOR), onde os algoritmos de procesado de sinal se implementan en hardware reconfigurable como Digital Signal Processors (OSPs) e Field Programmable Gate Arrays (FPGAs). O obxectivo deste traballo é dobre. Por un lado, definir unha arquitectura para implementacións de tempo real de capas físicas basadas en OFDM usando como referencia O estándar WiMAX, probada Dunha plataforma composta por OSPs e FPGAs. Por outra banda, estudar os efectos da selectividade en tempo no sinal OFDM, definindo métodos de estimación de canle que teñen en conta a ICI, e evaluándoos tanto en simulación como con medidas experimentais. Seguíronse dúas aproximacións para caracterizar o comportamento de formas de onda OFDM baixo condicións de mobilidade, unha basada nun emulador de canle que traballa en tempo real, e outra en inducir grandes ensanchamentos Doppler no sinal mediante a extensión da duración do símbolo OFOM.[Resumen] En las dos últimas décadas, las modulaciones multiportadora han emergido como una solución de baja complejidad para combatir los efectos del multitrayecto en comunicaciones iDalámbricas. Entre ellas, Orthogonal Frequency Division Mulriplexing (OFDM) es posiblemente el esquema de modulación más estudiado, y también ampliamente adoptado como fundamento de estándares de la industria como WiMAX o LTE. Sin embargo, OFDM es sensible a canales que varían con el tiempo, una característica de los escenarios coo movilidad, debido a la aparicióo de la interferencia entre portadoras (ICI). La implementación de equipamiento hardware para el usuario final se hace normalmente en chips dedicados, aunque eo entornos de investigación, son preferibles soluciones más Hexibles. Una aproximación popular es la conocida como Software Defined Radio (SDR), donde los algOritmos de procesado de señal se implementan en hardware reconfigurable como Digital Signa! Processors (DSPs) y Field Programmable Gate AIrays (FPGAs). El objetivo de este trabajo es doble. Por un lado. definir una arquitectura para implementaciones de tiempo real de capas ¡lSicas basadas en OFDM usando como referencia el estándar WiMAX, probada en una plataforma compuesta por DSPs y FPGAs. Por otro lado, estudiar los efectos de la selectividad en tiempo en la señal OFDM, definiendo métodos de estimacióo de canal que tengan eo cueota la ICI, y evaluándolos tanto en simulación como con medidas experimenta1es. Se han seguido dos aproximaciones para caracterizar el comportamiento de formas de onda OFDM bajo condiciones de mobilidad, una basada en un emulador de canal que trabaja en tiempo real. y otra en inducir grandes ensanchamientos Doppler en la señal mediante la extensión de la duración del símbolo OFDM.[Abstract] In Ihe last two decades, multicarrier modulations have emerged as a low complexity solulion to combal the effects of Ihe multipalh in wireless communicalions. Among Ihem, Orthogonal Frequency Division Mulliplexing (OFOM) is possibly Ihe mosl sludied modulation scheme, and has a1so been widely adopted as Ihe foundation of induslry standards such as WiMAX or LTE. However, OFOM is sensitive lo time selective channels, which are featured in mobility scenarlos, due lO Ihe appearance of Inler-Carrier Interference (ICI). Implemenlation of hardware equipmenl for Ihe end user is usually implemenled in dedicaled chips, bul in researeh environments, more flexible solutions are preferred. One popular approach is the so ealled Software Defined Radio (SOR), where the signal processing a1gorithms are implemented in reconfigurable hardware sueh as Digital Signal Processors (DSPs) and Field Prograrnmable Gate Arrays (FPGAs). The aim of Ibis work is two-fold. On the one hand, to define an architeclure for Ihe implementation of real-time OFOM-based physical layers, using as a reference Ihe WiMAX standard, and it is tested on a platform composed by DSPs and FPGAs. On the olher hand, to study Ihe effeets of !he time seleetivity on !he OFOM signal, defining channel estimation me!hods aware of !he ICI, and ils evaluation bo!h in simulation as well as experimental measuremenls. Two approaches have been followed to assess the behavior of OFOM waveforms under mobility conditions, one based on a real-time channel emulator, and the other on inducing large Doppler spreads in !he signal by extending the duration of Ihe OFDM symbols

    System capacity enhancement for 5G network and beyond

    Get PDF
    A thesis submitted to the University of Bedfordshire, in fulfilment of the requirements for the degree of Doctor of PhilosophyThe demand for wireless digital data is dramatically increasing year over year. Wireless communication systems like Laptops, Smart phones, Tablets, Smart watch, Virtual Reality devices and so on are becoming an important part of people’s daily life. The number of mobile devices is increasing at a very fast speed as well as the requirements for mobile devices such as super high-resolution image/video, fast download speed, very short latency and high reliability, which raise challenges to the existing wireless communication networks. Unlike the previous four generation communication networks, the fifth-generation (5G) wireless communication network includes many technologies such as millimetre-wave communication, massive multiple-input multiple-output (MIMO), visual light communication (VLC), heterogeneous network (HetNet) and so forth. Although 5G has not been standardised yet, these above technologies have been studied in both academia and industry and the goal of the research is to enhance and improve the system capacity for 5G networks and beyond by studying some key problems and providing some effective solutions existing in the above technologies from system implementation and hardware impairments’ perspective. The key problems studied in this thesis include interference cancellation in HetNet, impairments calibration for massive MIMO, channel state estimation for VLC, and low latency parallel Turbo decoding technique. Firstly, inter-cell interference in HetNet is studied and a cell specific reference signal (CRS) interference cancellation method is proposed to mitigate the performance degrade in enhanced inter-cell interference coordination (eICIC). This method takes carrier frequency offset (CFO) and timing offset (TO) of the user’s received signal into account. By reconstructing the interfering signal and cancelling it afterwards, the capacity of HetNet is enhanced. Secondly, for massive MIMO systems, the radio frequency (RF) impairments of the hardware will degrade the beamforming performance. When operated in time duplex division (TDD) mode, a massive MIMO system relies on the reciprocity of the channel which can be broken by the transmitter and receiver RF impairments. Impairments calibration has been studied and a closed-loop reciprocity calibration method is proposed in this thesis. A test device (TD) is introduced in this calibration method that can estimate the transmitters’ impairments over-the-air and feed the results back to the base station via the Internet. The uplink pilots sent by the TD can assist the BS receivers’ impairment estimation. With both the uplink and downlink impairments estimates, the reciprocity calibration coefficients can be obtained. By computer simulation and lab experiment, the performance of the proposed method is evaluated. Channel coding is an essential part of a wireless communication system which helps fight with noise and get correct information delivery. Turbo codes is one of the most reliable codes that has been used in many standards such as WiMAX and LTE. However, the decoding process of turbo codes is time-consuming and the decoding latency should be improved to meet the requirement of the future network. A reverse interleave address generator is proposed that can reduce the decoding time and a low latency parallel turbo decoder has been implemented on a FPGA platform. The simulation and experiment results prove the effectiveness of the address generator and show that there is a trade-off between latency and throughput with a limited hardware resource. Apart from the above contributions, this thesis also investigated multi-user precoding for MIMO VLC systems. As a green and secure technology, VLC is achieving more and more attention and could become a part of 5G network especially for indoor communication. For indoor scenario, the MIMO VLC channel could be easily ill-conditioned. Hence, it is important to study the impact of the channel state to the precoding performance. A channel state estimation method is proposed based on the signal to interference noise ratio (SINR) of the users’ received signal. Simulation results show that it can enhance the capacity of the indoor MIMO VLC system
    corecore