49 research outputs found

    Transformerless Inverter Topologies for Single-Phase Photovoltaic Systems:A Comparative Review

    Get PDF
    In photovoltaic (PV) applications, a transformer is often used to provide galvanic isolation and voltage ratio transformations between input and output. However, these conventional iron-and copper-based transformers increase the weight/size and cost of the inverter while reducing the efficiency and power density. It is therefore desirable to avoid using transformers in the inverter. However, additional care must be taken to avoid safety hazards such as ground fault currents and leakage currents, e.g., via the parasitic capacitor between the PV panel and ground. Consequently, the grid connected transformerless PV inverters must comply with strict safety standards such as IEEE 1547.1, VDE0126-1-1, EN 50106, IEC61727, and AS/N ZS 5033. Various transformerless inverters have been proposed recently to eliminate the leakage current using different techniques such as decoupling the dc from the ac side and/or clamping the common mode (CM) voltage (CMV) during the freewheeling period, or using common ground configurations. The permutations and combinations of various decoupling techniques with integrated voltage buck-boost for maximum power point tracking (MPPT) allow numerous new topologies and configurations which are often confusing and difficult to follow when seeking to select the right topology. Therefore, to present a clear picture on the development of transformerless inverters for the next-generation grid-connected PV systems, this paper aims to comprehensively review and classify various transformerless inverters with detailed analytical comparisons. To reinforce the findings and comparisons as well as to give more insight on the CM characteristics and leakage current, computer simulations of major transformerless inverter topologies have been performed in PLECS software. Moreover, the cost and size are analyzed properly and summarized in a table. Finally, efficiency and thermal analysis are provided with a general summary as well as a technology roadmap.</p

    Transformerless Microinverter with Low Leakage Current Circulation and Low Input Capacitance Requirement for PV Applications

    Get PDF
    The inevitable depletion of limited fossil fuels combined with their harmful footprint on the environment led to a global pursuit for alternative energy sources that are clean and inexhaustible. Renewable energies such as wind, biomass and solar are the best alternative energy candidates, with the latter being more suitable for GCC countries. Besides, the energy generated from photovoltaic (PV) modules is one of the elegant examples of harnessing solar energy, as it is clean, pollutant-free and modular. Furthermore, recent advances in PV technology, especially grid-connected PV systems revealed the preeminence of using multiple small inverters called (Microinverters) over using the conventional single inverter configuration. Specifically, the break-even cost point can be reached faster and the system modularity increases with microinverters usage. Nonetheless, due to microinverter’s small ratings designers prefer transformerless designs because transformer removal achieves higher efficiency and power density. However, the transformer removal results in loss of galvanic isolation that leads to dangerous leakage current circulation that affects system safety. Another issue with microinverters is that since they are installed outside their bulky DC-Link electrolytic capacitor lifetime deteriorates the system reliability because electrolytic capacitor failure rate increases as temperature increases. Moreover, the DC-Link capacitor is used to decouple the 2nd order power harmonic ripples that appear in single-phase systems. Thus, the objective of this thesis is to design an efficient transformerless microinverter that has low leakage current circulation and low input capacitance requirement with a minimum number of active switches. In other words, the objective is to increase the safety and the reliability of the system while maintaining the high efficiency. Eventually, the configuration selected is the transformerless differential buck microinverter with LCL filter and it is modeled with passive resonance damping and active resonance damping control

    Modulation for the AVC-HERIC Inverter to Compensate for Deadtime and Minimum Pulsewidth Limitation Distortions

    Get PDF

    Reducing The Levelized Cost of Energy of Residential PV Inverters Through Dynamic Hardware Allocation

    Get PDF
    Renewable energy, such as wind and solar are becoming an integral part of world energy production. Photovoltaic (PV) systems are projected to constitute a large portion of the energy generation portfolio. Achieving a low-cost residential PV system will enable the wide adoption of solar energy throughout the USA. Although innovation in several areas is required to achieve this goal of a low-cost residential PV system, inverter reliability innovation is one key area that is essential. Present string inverters\u27 lifetime is less than 15 years. Increasing their lifetime to 50 years will reduce the cost of operation and maintenance, increase energy yield, and drive down the levelized cost of energy (LCOE) for residential PV systems. Present-day solutions for increasing the inverter reliability focus on topologies that use the more-reliable film capacitors instead of electrolytic. However, following the elimination of electrolytic capacitors, further improvement of inverter lifetime requires consideration of the overall system architecture including power devices. In this dissertation, a new topological and control scheme that allows dynamic hardware allocation (DHA) has been developed to address this challenge. In the proposed architecture, a common set of modules consisting of a pool of identical hardware resources dynamically shifts operation between active power filtering (APF) and line frequency inverter operation. Each module is used either as a buck type APF (with embedded energy storage) or a ZVS inverter phase leg, in each case controlled through a low-frequency current reference. The benefit of this approach is multifold. First, inverter lifetime and reliability are increased because the pooled hardware resources are re-assigned in the event of a single failure of any element. Second, the modular nature of the system facilitates the use of high-reliability components, and allows for simple repair or maintenance through the replacement of individual modules instead of requiring a complete inverter replacement. Third, the cycle-by-cycle operation of the DHA allows the use of a smaller total semiconductor area in the power stage compared to a traditional system

    Common-mode voltage cancellation in single- and three-phase transformer-less PV power converters

    Get PDF
    Electrical Energy generation is an issue that is continuously cause of concern around the world. Many efforts have been done in this sense to cover the requirements of the constantly growing in the electrical energy demand. But not only the electrical energy demand is growing but also clean electrical energy demand. In this sense, many countries are taking advantage from the renewable energy generation systems, considering mainly wind and solar energy. Solar energy systems provide a high percentage of the total energy production, according with the latest report of the International Energy Agency (IEA) regarding Photovoltaic Power System Program (PVPS), the cumulative installed PV power at the end of 2009 it was around 20.3 GW out of which 6.188 GW were installed in 2009. From the total PV power installed in 2009, 6.113 are grid connected systems. The growing of the PV systems is due to the new technologies and developments that have permitted to reduce costs in the total design and installation of a PV source. As the major percentage of the total PV energy installed is from grid connected systems, this thesis work deals with the analysis and proposals in the transformerless grid-connected PV systems which can provide higher efficiencies regarding PV system with transformer. In this sense, when there is not transformer between the electrical grid and the power converter, a problem regarding leakage ground currents appears, this is the main issue in this thesis work. The main research task in this thesis work is to analyze and evaluate the operation of the different transformerless topologies presented in the bibliography and then to provide some solutions to minimize the leakage ground current phenomenon in order to comply with the standard requirements

    Design and Evaluation of High Efficiency Power Converters Using Wide-Bandgap Devices for PV Systems

    Get PDF
    The shortage of fossil resources and the need for power generation options that produce little or no environmental pollution drives and motivates the research on renewable energy resources. Power electronics play an important role in maximizing the utilization of energy generation from renewable energy resources. One major renewable energy source is photovoltaics (PV), which comprises half of all recently installed renewable power generation in the world. For a grid-connected system, two power stages are needed to utilize the power generated from the PV source. In the first stage, a DCDC converter is used to extract the maximum power from the PV panel and to boost the low output voltage generated to satisfy the inverter side requirements. In the second stage, a DC-AC inverter is used to convert and deliver power loads for grid-tied applications. In general, PV panels have low efficiency so high-performance power converters are required to ensure highly efficient PV systems. The development of wide-bandgap (WBG) power switching devices, especially in the range of 650 V and 1200 V blocking class voltage, opens up the possibility of achieving a reliable and highly efficient grid-tied PV system. This work will study the benefits of utilizing WBG semiconductor switching devices in low power residential scale PV systems in terms of efficiency, power density, and thermal analysis. The first part of this dissertation will examine the design of a high gain DC-DC converter. Also, a performance comparison will be conducted between the SiC and Si MOSFET switching devices at 650 V blocking voltage regarding switching waveform behavior, switching and conduction losses, and high switching frequency operation. A major challenge in designing a transformerless inverter is the circulating of common mode leakage current in the absence of galvanic isolation. The value of the leakage current must be less than 300mA, per the DIN VDE 0126-1-1 standard. The second part of this work investigates a proposed high-efficiency transformerless inverter with low leakage current. Subsequently, the benefits of using SiC MOSFET are evaluated and compared to Si IGBT at 1200 V blocking voltage in terms of efficiency improvement, filter size reduction, and increasing power rating. Moreover, a comprehensive thermal model design is presented using COMSOL software to compare the heat sink requirements of both of the selected switching devices, SiC MOSFET and Si IGBT. The benchmarking of switching devices shows that SiC MOSFET has superior switching and conduction characteristics that lead to small power losses. Also, increasing switching frequency has a small effect on switching losses with SiC MOSFET due to its excellent switching characteristics. Therefore, system performance is found to be enhanced with SiC MOSFET compared to that of Si MOSFET and Si IGBET under wide output loads and switching frequency situations. Due to the high penetration of PV inverters, it is necessary to provide advanced functions, such as reactive power generation to enable connectivity to the utility grid. Therefore, this research proposes a modified modulation method to support the generation of reactive power. Additionally, a modified topology is proposed to eliminate leakage current
    corecore