20 research outputs found

    Algorithms for automated diagnosis of cardiovascular diseases based on ECG data: A comprehensive systematic review

    Get PDF
    The prevalence of cardiovascular diseases is increasing around the world. However, the technology is evolving and can be monitored with low-cost sensors anywhere at any time. This subject is being researched, and different methods can automatically identify these diseases, helping patients and healthcare professionals with the treatments. This paper presents a systematic review of disease identification, classification, and recognition with ECG sensors. The review was focused on studies published between 2017 and 2022 in different scientific databases, including PubMed Central, Springer, Elsevier, Multidisciplinary Digital Publishing Institute (MDPI), IEEE Xplore, and Frontiers. It results in the quantitative and qualitative analysis of 103 scientific papers. The study demonstrated that different datasets are available online with data related to various diseases. Several ML/DP-based models were identified in the research, where Convolutional Neural Network and Support Vector Machine were the most applied algorithms. This review can allow us to identify the techniques that can be used in a system that promotes the patient’s autonomy.N/

    Nonlinear Stochastic Dynamic Systems Approach for Personalized Prognostics of Cardiorespiratory Disorders

    Get PDF
    This research investigates an approach rooted in nonlinear stochastic dynamic systems principles for personalized prognostics of cardiorespiratory disorders in the emerging point-of-care (POC) treatment contexts. Such an approach necessitates new methods for (a) quantitative and personalized modeling of underlying cardiovascular system dynamics to serve as a virtual instrument to derive surrogate (hemodynamic) signals, (b) high-specificity diagnostics to identify and localize disorders, (c) real-time prediction to provide forecasts of impending disorder episodes, and (d) personalized prognosis of the short-term variations of the risk, necessary for effective treatment decisions, based on estimating the distribution of the times remaining till the onset of an anomaly episode. The specific contributions of the dissertation work are as follows: 1. Quantitative modeling for real-time synthesis of hemodynamic signals. Features extracted from ECG signals were used to construct atrioventricular excitation inputs to a nonlinear deterministic lumped parameter model of cardiovascular system dynamics. The model-derived hemodynamic signals, personalized to an individual's physiological and anatomical conditions, would lead to cost-effective virtual medical instruments necessary for personalized POC prognostics. 2. Random graph representation of the complex cardiac dynamics for disorder diagnostics. The quantifiers of a random walk on a network reconstructed from vectorcardiogram (VCG) were investigated for the detection and localization of cardiovascular disorders. Extensive tests with signals from PTB database of PhysioNet databank suggest that locations of myocardial infarction can be determined accurately (sensitivity of ~88% and specificity of ~92%) from tracking certain consistently estimated invariants of this random walk representation. 3. Nonparametric prediction modeling of disorder episodes. A Dirichlet process based mixture Gaussian process was utilized to track and forecast the evolution of the complex nonlinear and nonstationary cardiorespiratory dynamics underlying of the measured signal features and health states. Extensive sleep tests suggest that the method can predict an impending sleep apnea episode to accuracies (R^2) of 83% and 77% for 1 step and 3 step-ahead predictions, respectively.4. Color-coded random graph representation of the state space for personalized prognostic modeling. The prognostic model used the stochastic evolution of the transition pathways from a normal state to an anomalous state in the color-coded state space network to estimate the distribution of the remaining useful life. The prognostic model was validated using the data from ECG Apnea Database (Physionet.org). The model can predict the estimated time till a disorder (apnea episode) onset to within 15% of the observed times 1-45 min ahead of their inception.Industrial Engineering & Managemen

    Classification of De novo post-operative and persistent atrial fibrillation using multi-channel ECG recordings

    Get PDF
    Atrial fibrillation (AF) is the most sustained arrhythmia in the heart and also the most common complication developed after cardiac surgery. Due to its progressive nature, timely detection of AF is important. Currently, physicians use a surface electrocardiogram (ECG) for AF diagnosis. However, when the patient develops AF, its various development stages are not distinguishable for cardiologists based on visual inspection of the surface ECG signals. Therefore, severity detection of AF could start from differentiating between short-lasting AF and long-lasting AF. Here, de novo post-operative AF (POAF) is a good model for short-lasting AF while long-lasting AF can be represented by persistent AF. Therefore, we address in this paper a binary severity detection of AF for two specific types of AF. We focus on the differentiation of these two types as de novo POAF is the first time that a patient develops AF. Hence, comparing its development to a more severe stage of AF (e.g., persistent AF) could be beneficial in unveiling the electrical changes in the atrium. To the best of our knowledge, this is the first paper that aims to differentiate these different AF stages. We propose a method that consists of three sets of discriminative features based on fundamentally different aspects of the multi-channel ECG data, namely based on the analysis of RR intervals, a greyscale image representation of the vectorcardiogram, and the frequency domain representation of the ECG. Due to the nature of AF, these features are able to capture both morphological and rhythmic changes in the ECGs. Our classification system consists of a random forest classifier, after a feature selection stage using the ReliefF method. The detection efficiency is tested on 151 patients using 5-fold cross-validation. We achieved 89.07% accuracy in the classification of de novo POAF and persistent AF. The results show that the features are discriminative to reveal the severity of AF. Moreover, inspection of the most important features sheds light on the different characteristics of de novo post-operative and persistent AF.</p

    Advanced Signal Processing in Wearable Sensors for Health Monitoring

    Get PDF
    Smart, wearables devices on a miniature scale are becoming increasingly widely available, typically in the form of smart watches and other connected devices. Consequently, devices to assist in measurements such as electroencephalography (EEG), electrocardiogram (ECG), electromyography (EMG), blood pressure (BP), photoplethysmography (PPG), heart rhythm, respiration rate, apnoea, and motion detection are becoming more available, and play a significant role in healthcare monitoring. The industry is placing great emphasis on making these devices and technologies available on smart devices such as phones and watches. Such measurements are clinically and scientifically useful for real-time monitoring, long-term care, and diagnosis and therapeutic techniques. However, a pertaining issue is that recorded data are usually noisy, contain many artefacts, and are affected by external factors such as movements and physical conditions. In order to obtain accurate and meaningful indicators, the signal has to be processed and conditioned such that the measurements are accurate and free from noise and disturbances. In this context, many researchers have utilized recent technological advances in wearable sensors and signal processing to develop smart and accurate wearable devices for clinical applications. The processing and analysis of physiological signals is a key issue for these smart wearable devices. Consequently, ongoing work in this field of study includes research on filtration, quality checking, signal transformation and decomposition, feature extraction and, most recently, machine learning-based methods

    Knowledge discovery on the integrative analysis of electrical and mechanical dyssynchrony to improve cardiac resynchronization therapy

    Get PDF
    Cardiac resynchronization therapy (CRT) is a standard method of treating heart failure by coordinating the function of the left and right ventricles. However, up to 40% of CRT recipients do not experience clinical symptoms or cardiac function improvements. The main reasons for CRT non-response include: (1) suboptimal patient selection based on electrical dyssynchrony measured by electrocardiogram (ECG) in current guidelines; (2) mechanical dyssynchrony has been shown to be effective but has not been fully explored; and (3) inappropriate placement of the CRT left ventricular (LV) lead in a significant number of patients. In terms of mechanical dyssynchrony, we utilize an autoencoder to extract new predictive features from nuclear medicine images, characterizing local mechanical dyssynchrony and improving the CRT response rate. Although machine learning can identify complex patterns and make accurate predictions from large datasets, the low interpretability of these black box methods makes it difficult to integrate them with clinical decisions made by physicians in the healthcare setting. Therefore, we use visualization techniques to enable physicians to understand the physical meaning of new features and the reasoning behind the clinical decisions made by the artificial intelligent model. For electrical dyssynchrony, we use short-time Fourier transform (STFT) to transform one-dimensional waveforms into two-dimensional frequency-time spectra. And transfer learning is used to leverage the knowledge learned from a large arrhythmia ECG dataset of related medical conditions to improve patient selection for CRT with limited data. This improves prediction accuracy, reduces the time and resources required, and potentially leads to better patient outcomes. Furthermore, an innovative approach is proposed for using three-dimensional spatial VCG information to describe the characteristics of electrical dyssynchrony, locate the latest activation site, and combine it with the latest mechanical contraction site to select the optimal LV lead position. In addition, we apply deep reinforcement learning to the decision-making problem of CRT patients. We investigate discrete state space/specific action space models to find the best treatment strategy, improve the reward equation based on the physician\u27s experience, and learn the approximation of the best action-value function that can improve the treatment policy used by clinicians and provide interpretability

    Techniques for ventricular repolarization instability assessment from the ECG

    Get PDF
    Instabilities in ventricular repolarization have been documented to be tightly linked to arrhythmia vulnera- bility. Translation of the information contained in the repolar- ization phase of the electrocardiogram (ECG) into valuable clinical decision-making tools remains challenging. This work aims at providing an overview of the last advances in the pro- posal and quantification of ECG-derived indices that describe repolarization properties and whose alterations are related with threatening arrhythmogenic conditions. A review of the state of the art is provided, spanning from the electrophysio- logical basis of ventricular repolarization to its characteriza- tion on the surface ECG through a set of temporal and spatial risk markers

    Desarrollo de nuevos marcadores y clasificadores de bajo coste computacional para identificar afecciones cardiacas en registros ECG

    Full text link
    [ES] Las enfermedades cardiovasculares son una de las principales causas de mortalidad y morbilidad en el mundo. Entre las arritmias más comunes en adultos destaca la Fibrilación Auricular (FA), presentando una tendencia de crecimiento muy significativa, sobre todo en población de edad avanzada o con trastornos de obesidad. En el otro extremo, nos encontramos con la Miocardiopatía Arritmogénica (MCA), considerada una enfermedad rara con una prevalencia de 1:2000-5000 pero con gran afectación entre familiares directos, causante de muerte súbita cardiaca (MSC), y con un diagnóstico clínico complicado. Más allá de la FA o la MCA, existe una amplia variedad de patologías derivadas de una disfunción en la activación y conducción eléctrica del corazón. Para todas ellas, el electrocardiograma (ECG) continúa figurando como la primera y principal técnica de diagnóstico clínico, siendo una herramienta fundamental de cribado y detección de patologías relativamente económica y ampliamente accesible. Sin embargo, el diagnóstico preciso a partir de la interpretación del ECG requiere de médicos experimentados, siendo ésta una tarea que consume recursos, tiempo y que además está sujeta a la variabilidad entre observadores. Respecto a las afecciones cardiacas más comunes, conseguir un diagnóstico de forma automática que sea fiable, utilizando tanto 12 como un número reducido o único de derivaciones, sigue presentándose como un desafío. Este aspecto cobra especial relevancia con el uso cada vez más extendido de dispositivos portátiles o wearables, los cuales están ganando un gran interés para la detección temprana y preventiva de enfermedades cardiacas, registrando normalmente un número reducido de derivaciones ECG. Dicho uso masivo les confiere un gran potencial para facilitar el cribado y seguimiento de distintas afecciones en una amplia variedad de escenarios, a pesar de registrar señales de peor calidad en comparación con equipos certificados para uso clínico. El principal reto con estos dispositivos es encontrar un equilibrio adecuado entre la sensibilidad y la especificidad en la detección de ritmos cardiacos susceptibles de ser patológicos. En consecuencia, es indispensable diseñar e implementar algoritmos precisos adecuados para dispositivos móviles o portátiles capaces de detectar distintas afecciones cardiacas en registros de ECG. Respecto las afecciones cardiacas menos comunes como el caso de la MCA, es necesario incrementar la sensibilidad en la detección durante los cribados intra-familiares realizados tras una MSC. Para ello, sería posible explorar biomarcadores propios a esta enfermedad obtenidos mediante técnicas de procesado de señales ECG, además de modelos de clasificación que hagan uso de ellos, contribuyendo así a reducir el número de casos de muerte súbita. En base a lo descrito anteriormente, la presente tesis estudia las posibilidades de diagnóstico basadas en técnicas de aprendizaje y clasificación automática en dos escenarios principales. El primero aborda la detección de la FA, así como un amplio abanico de otras patologías cardiacas comunes, donde proponemos y validamos distintos modelos de clasificación de bajo consumo computacional. Todo esto, utilizando extensas bases de datos de acceso abierto, y haciendo énfasis en enfoques de derivación única, ya que son los más utilizados en dispositivos móviles e inteligentes. El segundo escenario se centra en la detección de MCA mediante las 12 derivaciones estándar del ECG, donde proponemos y validamos nuevos biomarcadores y modelos de clasificación que tratan de incrementar la sensibilidad de los cribados intra-familiares realizados tras una MSC. Para ello, utilizamos una base de datos específica de la Unidad de Cardiopatías Familiares del Hospital Universitario y Politécnico La Fe de València.[CA] Les malalties cardiovasculars són una de les principals causes de mortalitat i morbiditat en el món. Entre les arrítmies més comunes en adults destaca la Fibril·lació Auricular (FA), presentant una tendència de creixement molt significativa, sobretot en població d'edat avançada o amb trastorns d'obesitat. En l'altre extrem, ens trobem amb la Miocardiopatia Arritmogènica (MCA), considerada una malaltia rara amb una prevalença de 1:2000-5000 però amb gran afectació entre familiars directes, causant de mort sobtada cardíaca (MSC), i amb un diagnòstic clínic complicat. Més enllà de la FA o la MCA, existeix una àmplia varietat de patologies derivades d'una disfunció en l'activació i conducció elèctrica del cor. Per a totes elles, l'electrocardiograma (ECG) continua figurant com la primera i principal tècnica de diagnòstic clínic, sent una eina fonamental de cribratge i detecció de patologies relativament econòmica i àmpliament accessible. No obstant això, el diagnòstic precís a partir de la interpretació del ECG requereix de metges experimentats, sent aquesta una tasca que consumeix recursos, temps i que a més està subjecta a la variabilitat entre observadors. Respecte a les afeccions cardíaques més comunes, aconseguir un diagnòstic de manera automàtica que siga fiable, utilitzant tant 12 com un número reduït o únic de derivacions, continua presentant-se com un desafiament. Aquest aspecte cobra especial rellevància amb l'ús cada vegada més estés de dispositius portàtils o wearables, els quals estan guanyant un gran interés per a la detecció precoç i preventiva de malalties cardíaques, registrant normalment un nombre reduït de derivacions ECG. Aquest ús massiu els confereix un gran potencial per a facilitar el cribratge i seguiment de diferents afeccions en una àmplia varietat d'escenaris, malgrat registrar senyals de pitjor qualitat en comparació amb equips certificats per a ús clínic. El principal repte amb aquests dispositius és trobar un equilibri adequat entre la sensibilitat i l'especificitat en la detecció de ritmes cardíacs susceptibles de ser patològics. En conseqüència, és indispensable dissenyar i implementar algorismes precisos adequats per a dispositius mòbils o portàtils capaços de detectar diferents afeccions cardíaques en registres de ECG. Respecte les afeccions cardíaques menys comunes com el cas de la MCA, és necessari incrementar la sensibilitat en la detecció durant els cribratges intra-familiars realitzats després d'una MSC. Per a això, seria possible explorar biomarcadors propis a aquesta malaltia obtinguts mitjançant tècniques de processament de senyals ECG, a més de models de classificació que facen ús d'ells, contribuint així a reduir el nombre de casos de mort sobtada. Sobre la base del descrit anteriorment, la present tesi estudia les possibilitats de diagnòstic basades en tècniques d'aprenentatge i classificació automàtica en dos escenaris principals. El primer aborda la detecció de la FA, així com un ampli ventall d'altres patologies cardíaques comunes, on proposem i validem diferents models de classificació de baix consum computacional. Tot això, utilitzant extenses bases de dades d'accés obert, i fent èmfasi en enfocaments de derivació única, ja que són els més utilitzats en dispositius mòbils i intel·ligents. El segon escenari se centra en la detecció de MCA mitjançant les 12 derivacions estàndard de l'ECG, on proposem i validem nous biomarcadors i models de classificació que tracten d'incrementar la sensibilitat dels cribratges intra-familiars realitzats després d'una MSC. Per a això, utilitzem una base de dades específica de la Unitat de Cardiopaties Familiars de l'Hospital Universitari i Politècnic La Fe de València.[EN] Cardiovascular diseases are one of the leading causes of mortality and morbidity worldwide. Atrial Fibrillation (AF) stands out among adults' most common arrhythmias, presenting a very significant growth trend, especially in the elderly population or those with obesity disorders. At the other extreme, we find Arrhythmogenic Cardiomyopathy (ACM), a rare disease with a prevalence of 1:2000-5000 but great affectation among direct relatives, causing sudden cardiac death (SCD), and with a complicated clinical diagnosis. Beyond AF or ACM, there is a wide variety of pathologies derived from dysfunctions in the activation or electrical conduction of the heart. For all of them, the electrocardiogram (ECG) continues to appear as the first and foremost clinical diagnostic technique, being a fundamental tool for screening and detecting pathologies that is relatively cheap and widely accessible. However, accurate diagnosis based on ECG interpretation requires experienced physicians, as this task consumes resources, time and is subject to variability between observers. For the most common cardiac conditions, achieving a reliable diagnosis automatically, using either 12 or a smaller or single number of leads, remains a challenge. This aspect is especially relevant with the increasingly widespread use of portable or wearable devices, which are gaining significant interest for the early and preventive detection of heart disease, typically recording a reduced number of ECG leads. Such massive use gives them great potential to facilitate screening and monitoring different conditions in different scenarios, despite registering signals of lower quality compared to equipment certified for clinical use. The main challenge with these devices is finding the right balance between sensitivity and specificity in detecting pathologic heart rhythms. Consequently, designing and implementing accurate algorithms suitable for mobile or portable devices capable of detecting different cardiac conditions in ECG recordings is essential. Concerning less common cardiac conditions such as the case of ACM, it is necessary to increase the sensitivity in detection during intra-family screenings carried out after an SCD. Hence, it would be possible to explore specific biomarkers to this disease obtained through ECG signal processing techniques, as well as classification models that use them, thus contributing to reduce the number of cases of sudden death. Based on the previously described, this thesis studies the diagnostic possibilities based on machine learning and classification techniques in two main scenarios. The first deals with detecting AF and a wide range of other common cardiac pathologies, where we propose and validate different classification models with low computational consumption. All this, using extensive open access databases, and emphasizing single-lead approaches, since they are the most used in mobile and smart devices. The second scenario focuses on detecting ACM using the standard 12-lead ECG, where we propose and validate new biomarkers and classification models that try to increase the sensitivity of intra-family screenings carried out after an MSC. For this task, we used a specific database of the Familial Cardiopathies Unit of the Hospital Universitario y Politécnico La Fe de València.Jiménez Serrano, S. (2023). Desarrollo de nuevos marcadores y clasificadores de bajo coste computacional para identificar afecciones cardiacas en registros ECG [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19682

    Towards a better understanding of the precordial leads : an engineering point of view

    Get PDF
    This thesis provides comprehensive literature review of the electrocardiography evolution to highlight the important theories behind the development of the electrocardiography device. More importantly, it discusses different electrode placement on the chest, and their clinical advantages. This work presents a technical detail of a new ECG device which was developed at MARCS institute and can record the Wilson Central Terminal (WCT) components in addition to the standard 12-lead ECG. This ECG device was used to record from 147 patients at Campbelltown hospital over three years. The first two years of recording contain 92 patients which was published in the Physionet platform under the name of Wilson Central Terminal ECG database (WCTECGdb). This novel dataset was used to demonstrate the WCT signal characterisation and investigate how WCT impacts the precordial leads. Furthermore, the clinical influence of the WCT on precordial leads in patients diagnosed with non-ST segment elevation myocardial infarction (NSTEMI) is discussed. The work presented in this research is intended to revisit some of the ECG theories and investigate the validity of them using the recorded data. Furthermore, the influence of the left leg potential on recording the precordial leads is presented, which lead to investigate whether the WCT and augmented vector foot (aVF) are proportional. Finally, a machine learning approach is proposed to minimise the Wilson Central Terminal

    Signal processing for automatic heartbeat classification and patient adaptation in the electrocardiogram

    Get PDF
    Las enfermedades cardiovasculares son en la actualidad la mayor causa de muerte individual en los países desarrollados, por lo tanto cualquier avance en las metodologías para el diagnóstico podrían mejorar la salud de muchas personas. Dentro de las enfermedades cardiovasculares, la muerte súbita cardíaca es una de las causas de muerte más importantes, por su número y por el impacto social que provoca. Sin lugar a duda se trata uno de los grandes desafíos de la cardiología moderna. Hay evidencias para relacionar las arritmias con la muerte súbita cardíaca. Por otro lado, la clasificación de latidos en el electrocardiograma (ECG) es un análisis previo para el estudio de las arritmias. El análisis del ECG proporciona una técnica no invasiva para el estudio de la actividad del corazón en sus distintas condiciones. Particularmente los algoritmos automáticos de clasificación se focalizan en el análisis del ritmo y la morfología del ECG, y específicamente en las variaciones respecto a la normalidad. Justamente, las variaciones en el ritmo, regularidad, lugar de origen y forma de conducción de los impulsos cardíacos, se denominan arritmias. Mientras que algunas arritmias representan una amenaza inminente (Ej. fibrilación ventricular), existen otras más sutiles que pueden ser una amenaza a largo plazo sin el tratamiento adecuado. Es en estos últimos casos, que registros ECG de larga duración requieren una inspección cuidadosa, donde los algoritmos automáticos de clasificación representan una ayuda significativa en el diagnóstico. En la última década se han desarrollado algunos algoritmos de clasificación de ECG, pero solo unos pocos tienen metodologías y resultados comparables, a pesar de las recomendaciones de la AAMI para facilitar la resolución de estos problemas. De dichos métodos, algunos funcionan de manera completamente automática, mientras que otros pueden aprovechar la asistencia de un experto para mejorar su desempeño. La base de datos utilizada en todos estos trabajos ha sido la MIT-BIH de arritmias. En cuanto a las características utilizadas, los intervalos RR fueron usados por casi todos los grupos. También se utilizaron muestras del complejo QRS diezmado, o transformado mediante polinomios de Hermite, transformada de Fourier o la descomposición wavelet. Otros grupos usaron características que integran la información presente en ambas derivaciones, como el máximo del vectocardiograma del complejo QRS, o el ángulo formado en dicho punto. El objetivo de esta tesis ha sido estudiar algunas metodologías para la clasificación de latidos en el ECG. En primer lugar se estudiaron metodologías automáticas, con capacidad para contemplar el análisis de un número arbitrario de derivaciones. Luego se estudió la adaptación al paciente y la posibilidad de incorporar la asistencia de un experto para mejorar el rendimiento del clasificador automático. En principio se desarrolló y validó un clasificador de latidos sencillo, que utiliza características seleccionadas en base a una buena capacidad de generalización. Se han considerado características de la serie de intervalos RR (distancia entre dos latidos consecutivos), como también otras calculadas a partir de ambas derivaciones de la señal de ECG, y escalas de su transformada wavelet. Tanto el desempeño en la clasificación como la capacidad de generalización han sido evaluados en bases de datos públicas: la MIT-BIH de arritmias, la MIT-BIH de arritmias supraventriculares y la del Instituto de Técnicas Cardiológicas de San Petersburgo (INCART). Se han seguido las recomendaciones de la Asociación para el Avance de la Instrumentación Médica (AAMI) tanto para el etiquetado de clases como para la presentación de los resultados. Para la búsqueda de características se adoptó un algoritmo de búsqueda secuencial flotante, utilizando diferentes criterios de búsqueda, para luego elegir el modelo con mejor rendimiento y capacidad de generalización en los sets de entrenamiento y validación. El mejor modelo encontrado incluye 8 características y ha sido entrenado y evaluado en particiones disjuntas de la MIT-BIH de arritmias. Todas las carácterísticas del modelo corresponden a mediciones de intervalos temporales. Esto puede explicarse debido a que los registros utilizados en los experimentos no siempre contienen las mismas derivaciones, y por lo tanto la capacidad de clasificación de aquellas características basadas en amplitudes se ve seriamente disminuida. Las primeras 4 características del modelo están claramente relacionadas a la evolución del ritmo cardíaco, mientras que las otras cuatro pueden interpretarse como mediciones alternativas de la anchura del complejo QRS, y por lo tanto morfológicas. Como resultado, el modelo obtenido tiene la ventaja evidente de un menor tamaño, lo que redunda tanto en un ahorro computacional como en una mejor estimación de los parámetros del modelo durante el entrenamiento. Como ventaja adicional, este modelo depende exclusivamente de la detección de cada latido, haciendo este clasificador especialmente útil en aquellos casos donde la delineación de las ondas del ECG no puede realizarse de manera confiable. Los resultados obtenidos en el set de evaluación han sido: exactitud global (A) de 93%; para latidos normales: sensibilidad (S) 95% valor predictivo positivo (P^{+}) 98%; para latidos supraventriculares, S 77%, P^{+} 39%; y para latidos ventriculares S 81%, P^{+} 87%. Para comprobar la capacidad de generalización, se evaluó el rendimiento en la INCART obteniéndose resultados comparables a los del set de evaluación. El modelo de clasificación obtenido utiliza menos características, y adicionalmente presentó mejor rendimiento y capacidad de generalización que otros representativos del estado del arte. Luego se han estudiado dos mejoras para el clasificador desarrollado en el párrafo anterior. La primera fue adaptarlo a registros ECG de un número arbitrario de derivaciones, o extensión multiderivacional. En la segunda mejora se buscó cambiar el clasificador lineal por un perceptrón multicapa no lineal (MLP). Para la extensión multiderivacional se estudió si conlleva alguna mejora incluir información del ECG multiderivacional en el modelo previamente validado. Dicho modelo incluye características calculadas de la serie de intervalos RR y descriptores morfológicos calculados en la transformada wavelet de cada derivación. Los experimentos se han realizado en la INCART, disponible en Physionet, mientras que la generalización se corroboró en otras bases de datos públicas y privadas. En todas las bases de datos se siguieron las recomendaciones de la AAMI para el etiquetado de clases y presentación de resultados. Se estudiaron varias estrategias para incorporar la información adicional presente en registros de 12 derivaciones. La mejor estrategia consistió en realizar el análisis de componentes principales a la transformada wavelet del ECG. El rendimiento obtenido con dicha estrategia fue: para latidos normales: S98%, P^{+}93%; para latidos supraventriculares, S86%, P^{+}91%; y para latidos ventriculares S90%, P^{+}90%. La capacidad de generalización de esta estrategia se comprobó tras evaluarla en otras bases de datos, con diferentes cantidades de derivaciones, obteniendo resultados comparables. En conclusión, se mejoró el rendimiento del clasificador de referencia tras incluir la información disponible en todas las derivaciones disponibles. La mejora del clasificador lineal por medio de un MLP se realizó siguiendo una metodología similar a la descrita más arriba. El rendimiento obtenido fue: A 89%; para latidos normales: S90%, P^{+}99% para latidos supraventriculares, S83%, P^{+}34%; para latidos ventriculares S87%, P^{+}76%. Finalmente estudiamos un algoritmo de clasificación basado en las metodologías descritas en los anteriores párrafos, pero con la capacidad de mejorar su rendimiento mediante la ayuda de un experto. Se presentó un algoritmo de clasificación de latidos en el ECG adaptable al paciente, basado en el clasificador automático previamente desarrollado y un algoritmo de clustering. Tanto el clasificador automático, como el algoritmo de clustering utilizan características calculadas de la serie de intervalos RR y descriptores de morfología calculados de la transformada wavelet. Integrando las decisiones de ambos clasificadores, este algoritmo puede desempeñarse automáticamente o con varios grados de asistencia. El algoritmo ha sido minuciosamente evaluado en varias bases de datos para facilitar la comparación. Aún en el modo completamente automático, el algoritmo mejora el rendimiento del clasificador automático original; y con menos de 2 latidos anotados manualmente (MAHB) por registro, el algoritmo obtuvo una mejora media para todas las bases de datos del 6.9% en A, de 6.5\%S y de 8.9\% en P^{+}. Con una asistencia de solo 12 MAHB por registro resultó en una mejora media de 13.1\%en A, de 13.9\% en S y de 36.1\% en P^{+}. En el modo asistido, el algoritmo obtuvo un rendimiento superior a otros representativos del estado del arte, con menor asistencia por parte del experto. Como conclusiones de la tesis, debemos enfatizar la etapa del diseño y análisis minucioso de las características a utilizar. Esta etapa está íntimamente ligada al conocimiento del problema a resolver. Por otro lado, la selección de un subset de características ha resultado muy ventajosa desde el punto de la eficiencia computacional y la capacidad de generalización del modelo obtenido. En último lugar, la utilización de un clasificador simple o de baja capacidad (por ejemplo funciones discriminantes lineales) asegurará que el modelo de características sea responsable en mayor parte del rendimiento global del sistema. Con respecto a los sets de datos para la realización de los experimentos, es fundamental contar con un elevado numero de sujetos. Es importante incidir en la importancia de contar con muchos sujetos, y no muchos registros de pocos sujetos, dada la gran variabilidad intersujeto observada. De esto se desprende la necesidad de evaluar la capacidad de generalización del sistema a sujetos no contemplados durante el entrenamiento o desarrollo. Por último resaltaremos la complejidad de comparar el rendimiento de clasificadores en problemas mal balanceados, es decir que las clases no se encuentras igualmente representadas. De las alternativas sugeridas en esta tesis probablemente la más recomendable sea la matriz de confusión, ya que brinda una visión completa del rendimiento del clasificador, a expensas de una alta redundancia. Finalmente, luego de realizar comparaciones justas con otros trabajos representativos del estado actual de la técnica, concluimos que los resultados presentados en esta tesis representan una mejora en el campo de la clasificación de latidos automática y adaptada al paciente, en la señal de ECG

    The Application of Computer Techniques to ECG Interpretation

    Get PDF
    This book presents some of the latest available information on automated ECG analysis written by many of the leading researchers in the field. It contains a historical introduction, an outline of the latest international standards for signal processing and communications and then an exciting variety of studies on electrophysiological modelling, ECG Imaging, artificial intelligence applied to resting and ambulatory ECGs, body surface mapping, big data in ECG based prediction, enhanced reliability of patient monitoring, and atrial abnormalities on the ECG. It provides an extremely valuable contribution to the field
    corecore