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Techniques for ventricular repolarization instability
assessment from the ECG

Pablo Laguna, Juan Pablo Mawz, Esther Pueyo

Abstract—Instabilities in ventricular repolarization have been
documented to be tightly linked to arrhythmia vulnerability.
Translation of the information contained in the repolarization
phase of the ECG into valuable clinical decision-making tools
remains challenging. This work aims at providing an overview
of the last advances in the proposal and quantification of
ECG-derived indices that describe repolarization properties and E
whose alterations are related with threatening arrhythmogenic ,
conditions. A review of the state-of-the-art is provided, spanning Tob s
from the electrophysiological basis of ventricular repolarization
to its characterization on the surface ECG through a set of Fig. 1. Left panel, the standard 12-lead ECG. The ECG corresponds to a
temporal and spatial risk markers. healthy subject. Central panel: a vectorcardiographic loop and its projection

. . . onto the three orthogonal planes. Right panel: the orthogonal vectorcardio-
Index Terms—Electrophysiological basis of the ECG, ECG giaphic leads. Adapted from [3].

waves, ECG intervals, repolarization instabilities, spatial and
temporal ventricular repolarization dispersion, cardiac arthyth- g facilitates inter-subject and serial comparison of measure-
mias, biophysical modeling of the ECG, ECG signal processing, . . The conventional lead systems are the 12-lead system
repolarization risk markers, T wave alternans, QT variability. L i !
typically used for recordings at rest, and the orthogonal lead
system, whose three leads jointly form the vectorcardiogram
(VCG), and which can be either directly recorded or derived
Since its invention by Willem Einthoven (1860-1927) thgrom the 12 standard leads, see Fig. 1. There is a large
electrocardiogram (ECG) has become the most widely-usgiliography dealing with the basis of electrocardiography [1]
tool for cardiac diagnosis. The ECG describes the eleCtri%d basis combined with Signa| processing [3] In addition to
activity of the heart, as recorded by electrodes placed @&sting ECG, several other lead systems, depending on the
the body surface. This activity is the summed result of ﬂ]ﬁ”pose of the exploration, can be found. To name some,
different action potentials (APs), concurring simultaneouslye refer to intensive care monitoring, ambulatory monitoring,
from all excitable cells throughout the heart as they triggefress test, high resolution ECG, polysomnographic recordings,
contraction. The trace of each heartbeat in the ECG sigra}.
consists on a sequence of characteristic deflections or wavesfhe ECG can be viewed as spatio-temporal integration of
whose morphology and timing convey useful information tthe APs associated with all of the cardiac cells [3], [4] (see
identify disturbances in the heart’s electrical activity. Fig. 2). Fig. 3 shows a cardiac cycle, illustrating the most
The timing of successive heartbeats [1] or wave shape palievant ECG waves. The T wave is the one that reflects ven-
terns, the coupled relationship between parameters associgi@giar repolarization. Instabilities in ventricular repolarization
with those patterns, their evolution over time, their responsggve been documented to be tightly linked to arrhythmia
to heart rate changes, their spatial distribution, etc, M@gyelopment [5], thus justifying the interest in the analysis
provide useful information about the underlying physiologicalng review of methods dealing with T wave characterization
phenomena under study, which become the driving forces @i quantification. The present paper follows from a previous
ng methodological developments of ECG signal processipgiew on cardiac repolarization analysis by the same authors
The lead system, or body locations where the electrod[eeél
are located for ECG acquisition, are usually standardized.
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I. INTRODUCTION
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the research for disease cures, and so overcoming several difficulties which
led this paper to be ruled out several times during writing. Sudden cardiac death (SCD) is a major cause of death
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representation of tissue properties and its correspondence into
the ECG [12] is also presented, which can be useful when
global myocardium property distributions are in need for
ECG interpretation and risk identification. In section IlI-A
basic concepts of ECG signal processing are described. In
section 1lI-B ECG features characterizing the spatial varia-

N il tion of repolarization are reviewed. Section IlI-C explores
—ra “’jl ”1 PR ‘ , ECG measurements and morphological markers describing
.2 “ .6 . p 2.2 2. 2.6 2. . ye . . . . .
Time (sec) temporal variability of ventricular repolarization, including the

Fig. 3. ECG of two cardiac cycles and most relevant intervals and waveslynamics of QT dependence on heart rate (HR). Section IlI-D
introduces T wave alternans and other novel ECG indices
in developed countries, where 1 out of 1000 subjects digegrating spatial and temporal dynamics of ventricular repo-
every year due to SCD [7]. This is about 20% of all deathigrization. Challenges and future perspectives on ECG-based
which underscores the importance of its prevention [8]. Venepolarization assessment are presented in section 1V. Finally,
tricular arrhythmias, such as ventricular tachycardia (VT) @onclusions are presented in section V.
ventricular fibrillation (VF), are the cause of most SCDs [9],
whereas only a small percentage of cases of SCD are due to
bradycardia. II. ELECTROPHYSIOLOGICAL BASIS OF REPOLARIZATION
Three main factors have been identified to have a major role INSTABILITIES
in the initiation and maintenance of arrhythmias: substratg, Repolarization waveforms
triggers and modulators. A vulnerable myocardium is the o ) )
substrate for arrhythmogenesis, meaning that when triggeringt) Membrane currents and AFEstablishing a relationship
factors appear, they can lead to malignant arrhythmias pot&¢fween ECG and AP properties can prove fundamental for
tially ending in SCD. Increased dispersion of the repolarizatiéh Petter understanding of the mechanisms underlying cardiac
properties among different ventricular myocardial cells @rrhythml_as. The AP assoqat(_ad with each cardiac cell is the
regions has been identified as a characteristic of a vulneraBfigult of ion charges moving in and out of the cell through
substrate [10]. Other factors can modulate the arrhythmogeMRitage-gated channels. A representative AP of a ventricular
substrate or the triggers by altering the electrophysiologicBOcyte is presented in Fig. 4a. Phases 0-4 in the AP can
properties of the heart. An important modulator is the aut§® appreciated, with different currents through ion channels
nomic nervous system (ANS) [11]. an_d electrogenic transporters contributing to each_ of them
Therapeutic choices designed to treat cardiac arrhythmifsig- 4b). Some of those currents are notably differently
and eventually prevent SCD, are highly conditioned by trXPressed across the ventricles.
factors (substrate, triggers and modulators) that contribute tdn the last years, mathematical models have been proposed
their generation. Implantable cardioverter defibrillators (ICD$9 describe electrical and ionic homeostasis in human ventric-
are designed to apply an electric shock to the heart in tHEr myocytes. A relevant model of human ventricular AP was
presence of VT or VF and restore its sinus rhythm. AntiaRroposed by lyer et al. [13], reproducing diverse aspects of the
rhythm|c drugS, by acting on some of those factorS, preve?%Cita.tioncontraCtion COUpling. One of the most Wldely used
the occurence of arrhythmias, thus reducing the probability gfodels is the one proposed by ten Tusscher & Panfilov [14].
SCD. The use of these therapies (or a combination of thek@ter, another model of human ventricular AP was proposed
must be assessed in terms of safety for the patient and cé¥t-Grandi et al. [15], which was subsequently modified to
effectiveness. This justifies the importance and necessity asicurately reproduce arrhythmic risk markers recorded in
developing strategies to identify high-risk patients who woul@xperiments [16]. The O’Hara et al. model is the most up-
benefit from a specific therapy. to-date model of a human ventricular myocyte [17].
Repolarization analysis based on the ECG is a low-cost, a)
non-invasive approach that has been shown to be useful
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for risk assessment [6] and can be applied to the general action Potential o mvp—2 Time
population. Currently, challenges in this matter involve better 0 4
understanding of the electrophysiological bases responsible I |
for or secondary to the development of an arrhythmogenic e
substrate. When this better knowledge is paired with better Teat Current
understanding of the transformation from cellular electrical  b) To '\ L
activity to surface ECG, then better targeted ECG-based risk i A e
stratification markers may become available. Currents I o

In section II-A of this paper, the ionic and cellular bases KS—/\/—f
of ECG repolarization patterns under physiological conditions Ta J J\,

are presented and in section II-B, under pathological con- 4 a) Act ot . i indication of i
s H H H 4. A ction potential of a ventricular myocyte, with indication of its
ditions as the basis for tr_anS|at|0n of cellular Slg_nature_s (IJfases. b) lonic currents underlying the different AP phases are illustrated.

the surface ECG. In section II-C a method for biophysical



ECG time intervals will be described. In section Il1I-B2 meth-

HUMAN HEART SIMULATION X .
nse ods used to evaluate electrocardiographic T wave morphology
J‘_‘* Restiution EIRE changes, as a reflection of amplified heterogeneities in AP
e L Aa % g 2 — Ao repolarization, will be presented.
"(i 2| |® In addition to spatial heterogeneities, increased temporal
"}J PEX repolarization heterogeneities have been as well linked to
o proarrhythmia. A phenomenon associated with temporal re-
IECG / Tas“t IPseudO-ECG polarization heterogeneity is abnormal APD adaptation in
response to cycle length changes, which has been suggested
J /\ to play a role in the genesis of arrhythmias [21]. Evalua-
Task 1 . . . . .
f ECG repolarization adaptation to HR changes will
o tion o . : .
Am,s/\,\..;mc /L be presented in section 1lI-C1. Another phenomenon is AP
Aa Aa Aa variability, measured as fluctuations in the duration of the AP,

which has been closely linked to SCD under different con-

Fig. 5. Outline of a simulation, where the recorded ECG, the simulateg; iahili i
Pseudo-ECG, the real myocardium and a simulated setup, are used(atﬁotrlonS [22]. QT variability quantified from the surface ECG

comparison of simulated and recorder markers (see section 11-D2). In this c&&1 be considered as an approximation to the study of such
a 2D tissue slice with a particular cell type distribution across the ventriculphenomenon and it will be explored in section I1I-C2. Section

wall is used. Crossed arrow shovys a desirable t_)ut unaccessible connecqiﬂnDl will examine T wave alternans (TWA), which have been
Tasks 1, 2 and 3 represent the different comparison tasks that can be done. .. . . S
Reproduced from [20]. shown to be proarrhythmic in different investigations [23].
TWA is considered as a manifestation of spatial or temporal
2) Intrinsic heterogeneities:Differences in repolarizing dispersion of repolarization [24]. AP alternans, defined as
currents have been documented between anterior, inferior aénges in AP occurring on an every-other-beat basis, can
posterior walls of the left ventricle, and also between apde a basis for TWA. Ischemia, extrasystoles or a sudden
and base [18]. Transmural differences exist as well, withR change may cause discordant (spatially unsynchronized)
endocardial, midmyocardial and epicardial cells having beeaifternans and unidirectional block, thus setting the stage for
described. Most mathematical models of human ventriculeentricular arrhythmias like VF [24].
electrophysiology account for such heterogeneities. IntrinsicVentricular dispersion properties at different HRs are usually
ventricular heterogeneities are essential for cardiac functignantified by the so-called dynamic APD restitution curves
under normal physiological conditions. (APDR). These curves, see Fig. 13 left panel, express the APD
3) Genesis of ECG repolarization waves and intervals:as a function of the RR interval (inverse of HR) for different
The T wave of the ECG reflects heterogeneities in ventriculeggions within the myocardium. In experimental, clinical and
repolarization, see Fig. 2. Its formation depends both on themputational studies, it has been shown that an increase
sequence of ventricular activation and on the heterogeneitissAPDR dispersion is associated with greater propensity to
in AP characteristics throughout ventricular myocardium [19%uffer from VT/VF, the most common sequence to SCD [25],
The QT interval of the ECG, measured from QRS onset {86]. Other studies have reported differences in transmural
T wave end, has been used in most repolarization studibsterogeneity at different cycle lengths between end-stage
It represents the time needed for ventricular depolarizatif@iling and non-failing human ventricles [27]. When com-
plus repolarization and it is closely related to the AP duratigmared to non-failing hearts, end-stage failing hearts presented
(APD) of ventricular cells. significantly decreased transmural APD gradients between
From the knowledge of the electrical activity at the cellulaihe subendocardium and subepicardium. All these evidences
and tissue levels, one can approach the issue of simulatirighlight the challenge of identifying surface ECG surrogates
ECG signals based on a specified spatial distribution of cetif this APDR dispersion present at cellular and tissue levels.
within the myocardium and considering a particular excitatiohome of those will be reviewed in sections 111-D2 and [11-D3,
pattern. 1D, 2D or 3D tissue models can be generated, whiwgether with their capacity for arrhythmia prediction.
geometry, anisotropy, connectivity, propagation velocity etc, Cardiac arrhythmias can be caused by abnormalities in
need to be taken into account. Additionally, modeling dfnpulse formation, impulse conduction, or both, as further
the torso leads to more accurate simulation of surface EQIBtailed in the following section.
signals. One schematic example of this process can be seen i) Abnormalities of impulse generation:
Fig. 5. a) Automaticity: Abnormal automaticity occurs when
cells other than those in the sino-atrial (SA) node undertake its
function. Certain forms of VT arise due to such abnormalities.
Under pathological conditions, the SA node cells may reduce
1) Pathological heterogeneitiedVlany cardiac pathologies their rate of spontaneous depolarization or even lose their
accentuate intrinsic heterogeneities in ventricular repolarizaroperty of automaticity.
tion. Pathological states associated with enhanced repolar- b) Afterdepolarizations and triggered activityf, under
ization heterogeneities include ischemia, Brugada syndromm@rmal SA node functioning, other cells develop rates of firing
long QT syndrome (LQTS) or heart failure. In section llI-Bfaster than those of the SA node, new APs are initiated in those
methods to quantify dispersion of repolarization from surfaglls and their adjacent ones. This triggered activity can be the

B. Abnormal repolarization and cardiac arrhythmias



result of the formation of early afterdepolarizations (EADSIMP at the surfaceS is usually called(equivalent) surface
second depolarizations occurring during AP repolarizatiospurce model
or delayed afterdepolarizations (DADs, occurring after ABominant T wave formalismin [29], van Oosterom pointed
repolarization). A good number of investigations have pointemit that using equation (2) to obtain body surface T waves
to EADs playing a role in the initiation and perpetuation of th&om the electrical activity in the heart is equivalent to evaluate
polymorphic VT known as Torsades de Pointes (TdP) [28].a linear system for each time. The surface of the heart can
3) Abnormalities of impulse conductionAbnormal im- be divided intoM contiguous regions (called nodes), where
pulse conduction may lead to reentry, where a circuitoemch node is treated as a single lumped source. Considgring
wavefront reexcites the same tissue indefinitely. Unidirectionslirface leads, equation (2) can be approximated, at any instant
conduction block and slow conduction are required for reentty by

to occur. VF is an example of re-entrant arrhythmia.
[21(8), . an ()] =x(t) = A[¢a(t),...om()] ()

C. Biophysical modeling of the ECG where x(t) is a column vector with thel, potentials, and

In this section we describe a modeling approach thé IS @ L x M transfer matrix, invariable for a given lead
considers the myocardium as a volume conductor with pg@nfiguration and patient, and accounting for the geometry and
surfaces uniformly bounding the whole ventricular tissue, al&gnauctivity of the volume conductor, as well as for the solid
known as Uniform Double Layer (UDL) [29], giving raise to@ngles under wh|ch_each node cgntnbutes to the p(_)tent|als in
the Dominant T wave concept [12]. This is derived from aff(!)- In the rest of this work, we will use,, (¢) to describe the

analysis of the electrical properties of the ventricle treatégPolarization phase of the equivalent TMP of a given region

as a homogeneous syncytium by means of the bidomath Note that the sum of th&/ elements of each row of matrix

approach [30]. This approach assumes that the myocardfalmust be zero (i.eAe; = 0, wheree, and is anM x 1

tissue is formed by two separate domains, the intracellular a¥feftor of ones an@ is a L x 1 vector of zeros). This property
the extracellular spaces, sharing the same volume [31]. BSIFOWS that a T wave in the surface ECG is only possible if
domains behave as regular volume conductors and, therefdhe (t) differs between regions. As stated in [29], eq. (3) allows
two potentials are defined at each point. to link the shape of the T wave in ea(?h lead to the different
The bidomain model is commonly employed in large-scalEMPs: If we further assume that the differefi, (1) have the
simulations with different applications. Here our interest i§2Me shape and only differ in the time of repolarization time
in obtaining the potential recorded at the body surface [Sdﬁg? Py 18, b (t) = d(t — ppn), wherepy, is defined as
This results in an inhomogeneous volume conductor probldhf time with maximum downslope of the TMR?), then, as
constituted by the torso with the ventricular cavities. In thB"oPosed in [34],
frequency range of interest(1000 Hz), the potentiak(t) x(t) = A [d(t— pr),....d(t - p]w)]T. @)
recorded at a given unipolar ECG can be written as
This approximation essentially assumes that the TMP downs-
x(t) = —/ ¢i (Vodm(v,t) - V,Z(v)) dv (1) lope shape is approximately constant across the heart surface.
H Expressing théR7 of each node as [34]
where ¢,,,(v,t) is the transmembrane potential (TMP) (dif- _
ference of potential between the inside and the outside of the pm =P+ Apm, ©)
cell), ¢; is the inner domain conductance tensor, &gz (v) wherep_ S-M_ p,, /M, whenAp,, < 7 the TMP shapel(t)
is the transfer impedance function, which relates current dipalen be expanded in series aroynds
¢iVydm(v,t) in the volume dv with its contribution to

the potential in the unipolar lead. These contributions are At — pm) =d(t —P) — Apm dcjl(T)
integrated over the heart volunié, coordinated byw. When T lr=t—p
both domains have the same anisotropy ratio, equation (1) is n Ap2, d*d() +o(Ap3) ©6)
equivalent [32] to the surface integral 21 dr? —— Pm)-
2(t) = _/ ¢ dm(s,t) (VoZ(s) - dS) ) Since Ae; D(t — p) = 0 and neglecting higher order terms,
S the model (4) can be approximated as
whereS is the surface, coordinated By enclosing the active x(t) ~ —A Ap d(t —7) @

regions of the heart (endocardium, epicardium and septum).

Although the cardiac tissue does not satisfy well the conditiomth Ap = [Ap1, Aps, ..., Apar]T, or in discrete time

of equal anisotropy, it has been shown for 2D cardiac tissue X ~ wit? ®)

[33] that the approximation essentially holds, except in the d

neighborhood of the activation site. wherew; = —A Ap is anL x 1 vector of the so-callettad
According to (2), the potentiak(¢) can be obtained by factors X is anL x N matrix with the sampled signals at the

integrating only over the surfacg Therefore, we can replacesurface leads and th& x 1 vectort, is a sampled version

the active sources in the heart by a dipole layer&rwith of ¢4(t) = d(t — p). The vector—t,; was given the name

a moment proportional t@,, (t) without affectingz(¢). This of dominant T waveby van Oosterom [35]. Note that if the

equivalence, linking the potential measured in a lead with tlg@proximation in (7) holds, all T waves measured on different



leads are just a scaled versiontgf Methods to estimaté; use in section 1lI-B2, we can note that equation (10) now
andw, can be found in [34], [35]. becomes
This approximated modeling to derive the T wave can T T
be adapted to situations with increased dispersion of the X~ vy + Ausvy (16)
RTs, as it happens in patients with increased vulnerability lll. ECG REPOLARIZATION RISK MARKERS
to ventricular arrhythmias [36]. In that case, the second orddr ECG processing for repolarization analysis
contribution in (6) becomes relevant and the following second- prior to computation of ECG repolarization indices, the
order approximation of (4) can be used: following four processing steps are commonly applied:
. 1 5 5 B 1) ECG filtering and preconditioning:This includes re-
x(t) = —A Ap d(t —p) + oA Ap d(t=7) (9 moval of muscle noise, powerline interference and baseline
wander [3]. The ECG signal recorded in leais denoted by
X ~ wit] + wot? (10) x;(n) after filtering, while for the multi-lead filtered signal the
vectorx(n) = [z1(n) ... xz(n)]7 is used.

1 2 ]
wherew; = ;A Ap” is a set of second-ordéead factors 5y pg getection:Beat detection provides a series of

and Ap® = [Ap},Apj,.... Ap},]7. One example of the gamplesy; and its related RR intervalBR; = n; —n;_1,i —

d(t — pp), m =1,..,.M and the T waves generated with the) 5 c,rresponding to the detected QRS complexes.
methodology is depicted in Fig. 6. For this model to be used, 3y \yayve delineation: Automatic determination of wave
we need to estimate boty and the lead vectore; andws, 4 ndaries and peaks is performed (see Fig. 3). The most rele-
from the orlglna! dat_aX. ) ) ) vant points for repolarization analysis are the QRS boundaries,
Lead factor estimationOne simple option to estimate theT wave boundaries and T wave peak. Commonly computed
dominant T wavet, is as the average of all the T wavegeng|arization intervals, evaluated for each béaare the

weighted by their integral [35], QT interval QT;, between QRS onset and T wave end), RT
t5 = ¢ e XTX (11) interval (RT;, between QRS fiducial point and T wave peak),
o ) _ T wave width () and T wave peak-to-end(,).
and multiplying equation (8) by, we obtain Different delineation approaches have been proposed in the
Xe; literature. Multiscale analysis based on the dyadic wavelet

transform, allowing representation of a signal’'s temporal fea-

which is a close exoression for the first order approximati tHres at different resolutions, has proved useful for QRS detec-
P bp %on and ECG delineation [41]. Multi-lead delineation, either

lead factorw, . The scalar, (11) s defined as in [34]'An0ther|1%?sed on selection rules applied to single-lead delineation

alternative is to estimate the dominant T wave as the fi L lts or based on VGG bprocessing. has shown improved
principal component (PCA) of the T waves by doing a PCA . P 9 P
accuracy and stability [42].

decomposition in time [37] of the T wave matriX. This can . o . )
be done equivalently by singular value decomposition (SV 4) Segmentatpn_.A repolarization segmentation yvlndow
;» usually containing the ST-T complex, can be defined. The

tgel ’

[38], [39 beginning of the window can be set at fixed or RR-dependent
T L T offsets from the QRS fiducial point or the QRS end. An align-
X=UAV" = Z WAV, (13)  ment stage can be applied if synchronization is required. If an
=1 N-sample window}V;, beginning at sample) is defined for
resulting in eachith beat to contain its repolarization phase, the extracted

repolarization segment for thigh beat andith lead can be
denoted as;; ;(n) = z;(n¥+n),n =0,..., N —1. For multi-

which if A\; > X\, can be proved [34] to be equivalentead analysis, thé x 1 vectorx;(n) = [z;1(n), . ..,z (n)]"

to T wave averagesc, is defined as in [34]. This SVD- contains samples in the different leads.

based estimate can be shown to be optimum in the sense

tg = 02)\1V{ , Wi = ul/CQ (14)

i i _ T . o .
of minimizing the Frobenius norm; = X —wity lp- B. ECG markers of spatial repolarization dispersion
The second order approximation can be done as in [34] by
minimization of the norme; = || X —wit] — wytl] . In this section a review of ECG indices proposed in the

However, other alternatives exist by realizing that minimizinfiterature to assess spatial heterogeneity of ventricular repo-
€2 reduces to minimizing; by considering nowX — w1t}) larization is presented.

as theX in ¢; and wot! as thew;t?. In such a case 1) Dispersion of repolarization reflected on ECG intervals:
becomes proportional to the first eigenvalue Xf  wit), QT dispersion Q7;), computed as the difference between the
which sincew;t’ is already the first component & then maximum and minimum QT values across leads, was proposed
it becomes evident that’ can be estimated by the secondo quantify ventricular repolarization dispersion (VRD) [43].
eigenvector ofX as: However, the relationship betweed7,; and VRD resulted
controversial [44], as has been shown to mainly reflect the
different lead projections of the T wave loop rather than any
wherec, andcg are just proportionality factors interchangeablether type of dispersion. As a resulp;l; has not been further
between the dominant T wave and lead factors [34]. For latewnsidered as a VRD index.

‘Eg = Cg)\gvg y Wo — 112/63 (15)
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Fig. 6. Superposition of transmural potentiale® — p,,) of each node (left A), the histogram dfp (left B) and the generated T waves for a large/low
range of R7, pm (right A/B). Reproduced from [40].

In [45] isolated-perfused canine hearts were used to r
QT4 and T wave width;l},. VRD values were computed
changing temperature, cycle length and activation se
VRD, evaluated directly from recovery times of epic of N iy
potentials, was compared 6, and Q7; and shown to L “3‘”"’%" pufTJ x%%:gﬁ%é&?ﬁ

{ pseudo-loop ) ,

4
pseudo-loop

AN
AN
i

strongly correlated with},, but not with Q7T,. T,, was a

confirmed as a VRD measurement in a rabbit heart

where increased dispersion was generated by d-sot: b :
premature stimulation [46]7,, is a complete measur uz(my)
disPerSion as evidenced on the ECG. When addressing %7 R-to-T Angle (left) between repolarization and depolarization phases.
problem of evaluatind, in recordings under ischemia [47],The Principal component-to-T angle (right) between a fix reference and the
which largely increases repolarization dispersion, the T ong@golarization, Adapted from [46].

estimation can largely be affected by the ST elevation, making

T, estimation unreliable and then beiffy. a possibly better where U; is the [L x L] matrix whose columns are the
option. Even if7},. does not only reflect transmural dispersiogigenvectors of the-th beat interlead autocorrelation matrix
but may include also other ventricular heterogeneities (e{omputed in the whole PQRST complex). Then, a 30-ms
apico-basal) [48], [49], it is still a marker of VRD that can bevindow (Vs samples) is defined centered on the QRS fiducial
guantified from the ECG. pointn;. The T wave peak positiom; ;, iS estimated as the

Since ECG wave onsets and ends have interlead variabil ,si_ti%n in the_Sg—'ff c%mbplex with maximuiiw;(n)|. Then,
due to the different projections of the cardiac electrical activit e n XTerr, IS defined by

3D complejo
QRS £y /
/ * /. U4mV)

-4 T/

and also individual lead measures are more easily affected by 1 Nemsl
noise, multi-lead criteria are some times preferred [50]. In this Terr, = N cos Z(w;(n), wi(nir)). (18)
way the estimated interval value includes electrical activity RS =0

recovered at the complete space represented by the lead |segnly tracking of the ventricular transmural gradient in
T wave onset can be measured as the earliest reliable T wgye same recording is needed, it is possible to estimate the
onset across leads and T wave end as the latest reliablgyrddient of repolarization with respect to a fixed reference,
wave end across leads, obtained either by applying rules,ssuming that the direction of depolarization does not change
proposed in [50] to quantifyf,, or by VCG-based methodsith repolarization heterogeneity. The proposed index is called
[51]. Total angle principal component-to; T}, [46] see Fig.7. The
2) Dispersion of repolarization reflected on T wave mor€férenceu can be taken to be the unitary vector in the first
phology: Several indices have been proposed to descriBEncipal component direction, yielding
the T wave shape. They lie on the assumption that larger Tor. = Z(w,wip(nir)). (19)
dispersion in repolarization times results in a more complex ' T
T wave shape. Some of these descriptors rely on PCA toTotal morphology dispersior],,, is an index computed
extract information from the T wave shape [52]. The totdly selecting the first three principal components of the ECG
cosine R-t0-T,T., is defined as the cosine of the angléassumed to be the dipolar components) and reconstructing
between the dominant vectors of depolarization and rep#€ signal in the original leads after discarding the rest
larization phases in a 3D loop and has been evaluatedOfo components. Splitting the eigenvectr matrix &5 =
compare repolarization in healthy subjects and hypertropHiti.s Ui —s| and applying
cardiomyopathy patients [53]. If the original ECG hiaseads . . T
(x;(n) in vector notation), it is transformed ta;(n) = xi(n) = UisUisxi(n), (20)
[wii(n) wiz(n) ... wi_’L(n)}T, as the "dipolar” signalk;(n) is obtained. This signal is again pro-
cessed by SVD, but now defined only from the spatial correla-
tion of the ST-T complex, obtaining the transformation matrix
wi(n) = UTx(n), (17) U;. Now the matrix is truncated to its first two columbg ,



(defining the main plane of variation of the repolarization) anghich in the framework of this review can be justified in the
again a signal is reconstructed in the original lead®gt) = light of equations (16) and (9): the largas is with respect

U, 2U7,%;(n). Note thatU, » = [¢;; - ¢i,L]T1 where to \; (largerT?), the larger is the second order term in the
¢;, are 2 x 1 reconstruction vectors, which can be seen @pproximation (9) and, thus, the larger t#7 dispersion
the direction into which the SVD-transformed signal has t&p, therefore providing extra support for this measure as a
be projected to get each original leadstp(n). For each pair VRD index and illustrating an example of physiologically-

of leads!; andi, the angle between both directions is driven method development. The geometrical interpretation
of T/ refers to the roundness of the loop (also denoted in
a1, (i) = L(iyg, s Pig,) € [0, 1807, (21) some works ag} ;). It has been shown that’ is higher in

ina th hol i | patients with LQTS than in healthy subjects [52]. Also the
measuring the morphology di erence between dadmdlz nonplanarity of the ventricular repolarization can be measured
(a small angle is associated with similar shape in both IeadggT3 L= Ais/Ai [A7].

The non-normalizedl,,,, index is computed by averaging
these angles for all pairs of leads,

s i

Finally, some T wave shape indices such as T wave ampli-
tude (7,), the ratio of the areas at both sides of the T peak

1 L (Tks) and the ratio of the T peak to boundary intervals at both
Two, = —F+—— Z aq, 1, (%) (22) sides of the T peaklg,) (Fig. 3) have been proposed as risk
LL-1) Iy,la=1 markers [54], grounded on the evidence that increased VRD
l1#l

resulted in taller and more symmetric T waves [55].
reflecting the average repolarization morphology dispersionThe value of these makers to characterize VRD during
between leads. In the original definition ®f, eache, , was the first minutes of acute ischemia induced by percutaneous
multiplied by its corresponding eigenvalue, having a differeoronary intervention (PCl) has also been studied [47]. It was
geometrical interpretation [53]. observed that changes in PCA-based morphology descriptors
Other descriptors have been proposed, based on the #gre very dependent on the occluded artery, suggesting that
tribution of the eigenvalues of the inter-lead repolarizatioforphology changes are very affected by the direction of the
correlation matrixf{xi = ZTIZ’_‘(} x;(n)xT(n). Let us denote equivalent injury current. Most of the studied indices presented
the eigenvalues a3, j, j = 1...L , sorted in descending  large inter-individual variability, pointing to the necessity of
order. The energy of the dipolar components is given B{sing patient-adapted indices of relative changes.
the sum of three first eigenvalues, while the sum of the
rest of eigenvalues represents the energy of the non-dipglar

i . i ECG markers of temporal repolarization dispersion
components. Th& wave residuumT is defined as

ECG indices proposed in the literature as markers of tempo-
L L ral heterogeneity of ventricular repolarization are reviewed in
Tur, = Z Aig/ Z Aij- (23)  this section together with their links to ventricular arrhythmias.
j=4 i=1 The meaning of temporal is taken as it goes beyond a single
and can be interpreted as the relative energy of the non-dipd%at and includes information present in the evolution of the
components [44], [53]. This is based on the hypothesis thatififiéx across several beats.
normal conditions, the ECG can be explained by the first threel) QT adaptation to HR changesthe QT interval is to a
components (dipolar components). When local repolarizati@heat extent influenced by changes in HR [56]. A variety of
heterogeneities are present, the dipolar model does not hbiig-correction formulas have been proposed in the literature to
any longer and this is reflected in larger eigenvalues corfe@mpare QT measurements at different HRs [57]. Prolongation
sponding to the non-dipolar components, thus increasjpg ©f the QT interval or of the corrected QT interva)1:) have

values. been recognized in some studies as markers of arrhythmic risk
T Wave UniformityT,,, andT wave ComplexityZ}., defined [58]. However, it is today widely acknowledged that QT or
as QT. prolongation per se are poor surrogates for proarrhythmia

. . . [28]. The most popular formula to correct the QT interval for
B B - the effects of HR is Bazett's formulaQ. = QT /v RR),
T, )\1,1/2‘:)\14 o Te = Z;)\i’j/;)\i’j =1=Tus byt evidences of large overcorrection at low HR and under-
= = = (24) correction at high HR have led to other formulas such as the

are two other indices based on the same approach, aiming titericia formula Q7. = QT/RR'/?), with beter clinical
quantify the morphology of the ST-T complex loop [52].73 acceptance today. N

value close to one indicates that the ST-T complex loop is very!mportantly, under conditions of unstable HR, the QT hys-
narrow and lies most of the time in the direction defined Higresis lag after HR changes needs to be taken into considera-
the first eigenvector of the SVD decomposition. On the oth#PN- The QT interval requires some time to reach a new steady
hand, T, close to one means that the loop is mainly containédate following a HR change, with important information for

under various conditions. In [60] the ventricular paced QT
Tc’i =Ni2/Ni1, (25) interval was shown to take between 2 and 3 minutes to follow



a change in HR, with the adaptation process presenting timelude e.g. delineation and modeling errors. The first (linear)
phases: a fast initial phase lasting for a few tens of secorglshsystem describes the influence of previous RR intervals on
and a second slow phase lasting for several minutes. In [58hch QT measurement, while the second (nonlinear) subsystem
QT adaptation was analyzed after a provoked HR changeisirepresentative of how the QT interval evolves as a function
after physical exercise and the QT hysteresis lag was of sonfethe weighted average RR measuremeRE, obtained at
minutes. the output of the first subsystem.

The ionic mechanisms underlying QT interval rate adapta-
tion have been investigated with the techniques described in v(k)
section II-A and II-C [61]. The time for 90% QT adaptationin = Xe=(k) [ p | zm(k)[ g( o] é Yor (k)
simulations was of 3.5 min, in agreement with experimental
and clinical data in humans, see Fig. 8. APD adaptation was

shown to follow similar dynamics to QT interval, being fastefid: 9- Block diagram describing thét[z, QT or or [RR, Te] relationship
| onsisting of a time invariant FIR filter (impulse resporgeand a nonlinear

in 'midmyocardial Cel_ls (2-'5 min) than in gndgcardial aNEinction g, (., a) described by the parameter vectorv(k) accounts for the
epicardial cells (3.5 min), with these times being in accordanaetput error. Reproduced from [63].

with experimental data in human and canine tissues [61], [62].
Both QT and APD adapt in two phases: a fast initial phase
with time constant of around 30 s, mainly related to the L- Yor(k) = g(zar(k), a) + v(k), (26)
type calcium and the slow delayed rectifier potassium curre(ifere
and a second slow phase of 2 min driven by intracellular

The global input-output relationship is thus expressed as:

T T

T
sodium concentration§ a];) dynamics. The investigations in ze(k) = [1 Zﬁ(k)] - [1 h XRR(k)} 27)
[61] support the fact that protracted QT adaptation can provitie the above expressions,
information of increased risk for cardiac arrhythmias. xer(k) = [zer(k)  e(k—1) ... zm(k—N+1)]7, (28)
A Simulation Clinical is the history ofRR intervals,h = [ho ... hN,l]T is the
0| mean tog=1365 1 impulse response of the FIR filter and-) is the regression
g w217 7 function parameterized by vecter = [ag al]T (see [63]
5 s i o224 s S SN for a list of used regression functions). Identification of the
o M M unknown system is performed individually for each patient
B ™ e fme (m using a global optimization algorithm. According to the results
9 & ;z Lo in [63], the QT interval requires nearly 2.5 minutes to foIIovy
< r - g — HR changes, in mean over patients, although both the duration
8 g and profile of QT hysteresis are found to be highly individual.
c T ey T Timewmy As previously commented for the results reported in [61], the
R 111 e e adaptation process is shown to be composed of two distinct
Lauctal | HRacc, mean = SEM: 136 + 16 s | HRdec, mean + SEM: 189 + 25 s phases; fast and slow.
Clinical [ AT st ~10s The methodology described in [63] has been subsequently
e AR extended in [64] to describe temporal changes in QT depen-

dence on HR, i.e. to account for possibly different adaptation
Fig. 8. A: left: simulated QT interval adaptation in human pseudo-ECG fggharacteristics along each recording. The linear and nonlinear
cycle length (RR) changes from 1000 to 600 ms and latter back to 1000 ras; ; i
right: QT adaptation in human ECG recordings from 50 or 110 beats/mni%r?;lbs.yStems used _'[O mOd.eI WE/RR rel.atlonShlp are then
in increments or decrements of 20, 40, and 60 beats/min. Time requife@nsidered to_be t!me'va”_ant- An adaptive approach based on
for 90% QT rate adaptationtdp) is presented. B: simulated pseudo-ECGg¢he Kalman Filter is used in [64] to concurrently estimate the

corresponding to first (dotted line) and last (solid line) beats after RR decre{abﬁ‘;\s i
(left) and RR increase (right). Gpo values for simulated pseudo-ECGs an tem parameters. It has been shown that QT hyStGFESIS can

clinical human ECGs. HR Acc, acceleration; Dec, deceleration; TP06, humidnge from a few seconds to several minutes depending on the
ventricular cell model developed in [14]. Reproduced from [61]. magnitude of HR changes along a recording.

In view of previous findings, it is well motivated to intro- The clinical value of investigating QT interval adaptation to
duce a method to assess and quantify QT adaptation to spohtR-as a way to provide information on the risk of arrhythmic
neous HR changes in Holter ECGs, in [63] applied to recordemplications has been shown in a number of studies in
ings of post-myocardial infarction (MI) patients. The methothe literature, as for instance [65]. In [66] 24-hour Holter
investigates QT dependence on HR by building weightedcordings of post-MI patients are investigated by using the
averages of RR intervals preceding each QT measuremeneéthod described in [63]. The authors concluded @&f RR
The relationship between the QT interval and the RR intervahalysis can be used to assess the efficacy of antiarrhythmic
is specifically modeled using a system composed of a FIR filtérugs.
followed by a nonlinear biparametric regression function (see2) QT variability: Other factors apart from HR contribute
Fig. 9). The input to the system is defined from the resampléal QT modulation and their study has been suggested to
beat-to-beatRR; interval series (denoted byg:(k), where provide clinically relevant information [67]. In addition to
k is discrete time), the output is the resampled; interval ANS action on the SA node, the direct ANS action on
series {or(k)), and additive noise(k) is considered so as toventricular myocardium also alters repolarization and, thus,



the QT interval [68]. Elucidation of the direct and indirectrophic cardiomyopathy patients was also found using standard

effects of ANS activity on QT may help assessing arrhythmiéme and frequency domain variability indices. Additionally,

susceptibility [69]. higher levels of repolarization variability (either in shape or
QT variability (QTV) refers to beat-to-beat fluctuations ofluration) were found in LQTS patients [73], [74].

the QT interval and can be quantified in the time or the |, hatients presenting for electrophysiological testing, QTVI
frequency domain. QTV is usu.ally adjusted by HR va_rlablht)évaS significantly higher in the subgroup of those who had
(HRV) to assess direct ANS influence on the ventricles. Wy,orted SCD or documented VF [80]. In [81] increased QTVI
[70] QT variations out of proportion to HR variations Wergas shown to be an indicator of risk for developing arrhythmic
assessed by considering the following log-ratio index: events (VT or VF) in post-MI patients. The association be-
QT,/QT? tween increased repolarization variability and risk for VT/VF
HRU/HR?J’ (29)  was glso shown in [80] fpr post-Ml patients with severe left
) ventricular (LV) dysfunction. In [75] an index quantifying
where QT;, and QT’, denote mean and variance of the QT ;1onomic control of HR and RTe was shown to separate

series andH R, and HR, denote mean and variance Ofymniomatic LQTS carriers from asymptomatic ones and
the HR series. In [71] QTV was evaluated by standard tim& ntrols.

domain indices like SDNN, RMSSD or pNN50, applied to o o
the QT series; also, QTV was evaluated in the frequenc Investigating the causes and modulators of the clinically
domain by computing the total power as well as the power ﬂ%fs.erv.ed, and eventually measured, temporal and spatial vari-
different frequency bands. Other studies have assessed beafjity in ventricular repolarization is a challenging goal. The
beat variations in the shape or duration of ECG repolarizatid#s€ Of combined experimental and computational approaches
In [72] repolarization morphology variability was computed bffa" Pe a useful tool for such investigations [82]. In [83], [84]
measuring the correlation between consecutive repolarizatfdfd [8°] it was hypothesized that fluctuations in ionic currents
waves: in [73] a wavelet-based method was proposed to qugﬁysed by stochasticity in ion channel behavior contribute to
tify repolarization variability both in amplitude and in time;var_iability in .c.ardiac repo.larization, particularly under pathq—
in [74] time domain measures that quantified variability of thi@9ical conditions. Also it was postulated that electrotonic
QT interval and of the T wave complexity were Computednteractlons through intercellular coupling act to mitigate spa-
with complexity assessed using PCA. tiotemporal variability in repolarization dynamics in tissue, as
Other approaches to assess repolarization variability J&¥mpared to isolated cells. The approaches taken in [83], [84]
parametric modeling [42], [75], [76]. While in [76] Porta eta}nd [35] combine e>.<per|m$antal and computgtlonal mvestlgg—
al. investigate variability of the RT interval, in [42] AlmeidalionS in human, guinea pig and dog. Multiscale stochastic
et al. explore QTV, and in [75] the variability from the rmodels of ventricular electrophysiology are used, bridging
peak to the T wave end (RTe) is considered. The use of g channel numbers to whole organ behavior. Results show
instead of QT avoids the need to determine the end of theli2t under physiological conditions: i) stochastic fluctuations
wave, which is usually considered to be problematic. Howevdf, ion channel gating properties cause significant beat-to-
due to the fact that the RT interval is shorter than the queat variability in APD in isolated cells, whereas cell-to-cell
interval, its variability is much reduced and, more importantiflifférences in channel numbers also contribute to cell-to-cell
the information provided by RT variability and QTV has beeré‘PD differences; ii) in tlssue,_ electrotonl_c mt_eractpns_ mask
shown to be different in certain populations, such as in patiedf¢ effect of current fluctuations, resulting in a significant
with cardiovascular diseases [77]. In relation to this, recefifecrease in APD temporal and spatial variability compared
studies in the literature have shown that the interval betwelh isolated cells. Pathological conditions resulting in gap
the apex and end of the T wave possesses variability thafygctional uncoup!mg or a decrease in repolarlzatlon reserve
independent from HR and which can provide clinically useflfncover the manifestation of current noise at cellular and
information to be used for arrhythmic risk stratification [78]§|ssue level, resulting in enhanced ventricular variability and
The methodology described in [42] considers a linear pal‘3t_)normalities in repolarization such as afterdepolarizations
metric model to quantify the interactions between QTV an@d alternans.
HRV, being applicable under steady-state conditions. The typeAlso it is worth noting that temporal QT interval variations
of environments for analysis is, thus, substantially differembay differ between recording leads due to the presence of
from those considered in section 11I-C1, in which QT intervabcal repolarization heterogeneity in the ECG signals. Lead-
adaptation was investigated after possibly large HR changspecific respiration effects or other types of noises can also
In [42] as much as 40% of QTV was found not to be relatedave an effect. Respiration may influence QTV through APD
to HRV in healthy subjects. However, it should be noted thatodulation in ventricular myocytes [86], in particular during
nonlinear effects were not considered in the analysis. respiratory sinus arrhythmia [87] and by measurement artefacts
Increased repolarization variability has been reported undersingle ECG leads due to cardiac axis rotation, which can
conditions predisposing to arrhythmic complications. Usinige compensated for by using careful methodological designs
the above described QTVI index, elevated variability hashere the rotation angles introduced by respiration are taken
been reported in patients with dilated cardiomyopathy and imo account [51]. Ventricular repolarization is also modulated
patients with hypertrophic cardiomyopathy, as compared willy e.g. mechanoelectrical feedback in response to changes in
age-matched controls [79]. In [71] increased QTV in hypexentricular loading [88].

QTVI =log,,|
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D. ECG markers for characterization of spatio-temporal reischemia, although different locations have been noticed as a
polarization dispersion function of the occluded artery [95]. Recent works have also
1) T wave alternansTWA, also referred to as repolariza—focused on the delay of the alternant wave with respect to the
tion alternans, is a cardiac phenomenon consisting on ad ¥/ave, defining a physiological range for this delay [96].
periodic beat-to-beat alternating change in the amplitude orAS TWA is a transient phenomenon, it must be quantified

shape of the ST-T complex, see Fig. 10. locally, which is usually done using an analysis window with a
fixed width in beats. The time course of TWA can be tracked
M by moving the analysis window. In stress tests, changes in

TWA amplitude are usually determined by changes in HR.
Therefore, the TWA time course is usually related with HR
changes. In stress tests, a set of rules involving the HR at which
TWA appears and the episode duration has been proposed to
Fig. 10. An example of T wave alternans. The alternating behavior betwe@gtermine the outcome of the TWA test [97]. The time course
two different T wave morphologies is particularly evident when all T waveef TWA magnitude with respect to the onset of ischemia and
are aligned in time and superimposed, as displayed on the middle panel flnerfusion has been studied in the first minutes of acute
In (c) the alternanting waveform is amplified. Adapted from [89]. . . . L .
ischemia, both in a human model (with ischemia induced by

Although macroscopic TWA had been sporadically reporteiCl) [95] and in animals [98]. However, at present, whether
since the origins of electrocardiography, it was not until themporal patterns in TWA can be clinically useful for risk
generalization of computerized electrocardiology that it wasratification is unknown [99].
possible to detect and quantify subtle TWA at the level of The TWA magnitude distribution among the different leads
several microvolts [90]. Since then, TWA has been shown lave been studied during acute ischemia [95] and in post-
be a relatively common phenomenon, usually associated wiih patients [100], showing different patterns according to
electrical instability. Therefore, it has been proposed as #we affected region of the myocardium, with higher amplitude
index of susceptibility to ventricular arrhythmias. TWA measured in leads close to the diseased areas.

The presence of TWA has been widely validated as a marker a) Single-lead alternans detectio general model for
of SCD risk. A comprehensive review on physiological basid WA analysis represents the ST-T complex of tirebeat in
methods and clinical utility of TWA can be found in [91],t elth lead as
while the ionic basis of TWA has already been presented igu(n) — Si,l(n)“l‘lai,l(n)(_l)i+vi,l(n)7n =0,...,N—1 (30)
section I1-B1. 2

In most patients, increased HR is necessary to elicit TWihere s; ;(n) is the average ST-T complex,; ;(n) is the
Accordingly, measurement and quantification of TWA usuallglternant wave, and;;(n) is a noise term. Assuming that
require the elevation of HR in a controlled way (usually byoth s;;(n) and a;;(n) vary smoothly from beat to beat,
pacing or most commonly during exercise or pharmacologidile average ST-T complex can be easily cancelled out just
stress tests). It is interesting to note that unspecific TWA hhg subtracting to each beat the ST-T of the previous beat
been found at high HR in healthy subjects [92]. Thus, in ordet;(n) = z;;(n) — z;—1,(n), which is, according to the

S | P VACIV 0 200 400 600
Q! v v time (ms)
(a) ®)

to be considered as an index of increased risk of SCD, itnsodel y;;(n) = a;;(n)(—1)" + w;;(n), with w;;(n) =
usually considered that TWA should be present at HR belaw;(n) — v;—1;(n).
110-115 bpm. As described before, an analysis window must be defined

From the signal processing viewpoint, TWA analysis shoufdr TWA analysis, assuming that the TWA wave is essentially
be considered a joint detection-estimation problem [90]. Th®nstant within the beats included and shifting the window to
presence or absence of this phenomenon (i.e., a detectioner the whole available signal. Let us consider a window
problem) is often the only information considered and mosf K beats. For each possible position of the window (e.g.,
studies consider just the presence of TWA, regardless of When centered at thg¢th beat) the TWA analysis algorithm
magnitude, as a clinical index. However, the magnitude ofust decide whether TWA is absemnt;((n) = 0 for everyn)
the observed TWA (i.e., an estimation problem) may also log presentd; ;(n) # 0) in the signal. This is usually done by
relevant, as it has been shown that increasing TWA magnitudemputing a detection statistic; ; quantifying the likelihood
is associated with higher susceptibility to SCD [93]. Patterns tfat there is indeed TWA in the signal and comparing it to
variation in the TWA magnitude can be seen in three domairgome threshold. Besides, algorithms usually provide either an
the distribution of alternans within the ST-T segment, the timestimatea,; ;(n) of the alternant wave present in each lead of
course of TWA and the distribution of TWA in the differentthe signal or a global TWA magnitudé; ;, as, for instance, the
recorded leads. RMS ofa;,;(n). Note that the time course and lead-distribution

The distribution of alternans within the repolarization inef TWA is given by the variations of;; and A;; with the
terval is normally overlooked, as a global measurement fbeat and lead indices, respectively.
the whole ST-T segment (e.g. the maximal or the averageThe reader can find in [90] a comprehensive methodological
TWA amplitude) is usually given. However, some authoneview of the techniques that have been proposed for TWA
have quantified the location of TWA, finding that it was moréeetection and estimation. According to the TWA analysis
specific for inducible VT when it was distributed later in thepproaches, the authors classify all schemes as equivalent
ST-T segment [94]. Early TWA has been associated with acute one of these signal processing techniques: the short-term
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. . . N—-1
Fourier transform (STFT), count of sign-changes and nonlinea . R il
fltering. Where 5, = TINT > Y |yia(n) = aju(n)(=1)"] is an

. . n=0 icWj
Methods of the first class are based on the classiGaliimation of the noise standard deviation. It can be proved

windowed Fourier analysis, applied to beat-to-beat series gt yhe probability of a false alarm with this scheme does
synchronized samples within the ST-T complex. Evaluating they jepend on the noise level. This TWA detector has also

STFT at 0.5 cycles per beat, we obtain the TWA componeglep, tested and successfully applied on invasive EGM signals
at then-th sample. [103].

oo

L ; Although all these methods are usually applied on a lead-
zj(n) = Z zig(n)w(i - j) (=1)" (31) by-lead basis, works using a multi-lead strategy suggest that
] e ) . _ improved performance can be achieved by jointly processing
As shown in [90], this process is equivalent to apply a lineafj| the available leads, taking advantage of the different inter-
high-pass filter to the beat-to-beat series with subsequent 814 correlation of TWA and noise components [104].
modulation. The width of the analysis windaw(i) expresses b) Multi-lead alternans detectionMethodological ap-
the compromise between accuracy and tracking ability of thesaches for multi-lead alternans detection have been pre-
algorithm. The linearity of the STFT makes these methods §@nted in the literature, which integrate all the available

be quite sensitive to artifacts or impulsive noise in the beakays in such a way that the alternans is reinforced, making
to-beat series. The widely ussgectral method101] belongs subsequent TWA detection more robust.

to this class. It estimates additional frequency components tqpse present here two multi-lead approaches [104], one based
have an estimation of the noise level. For detectioTVeA 4, rcA (multi-~CA) [105] and another one based on PCA
ratio is defined anq_compareq toa thlreshold. This makes t{}ﬁum_pcg [89]. Both approaches follow a general scheme
methqd less ;ensmve to variations in the noise level, thysose main stages are: preprocessing, signal transformation,
reducing the risk of false alarms. . TWA detection, signal reconstruction and TWA estimation

The second class includes methods quantifying TWA afFig. 11). The difference betweemulti-PCA and multi-mCA

cording to the analysis of sign-changes in the detrended bgatihe way to perform the signal transformation (and recon-
to-beat series [90]. These methods are quite robust aga@l?ﬁction).

impulsive noise and artifacts, but are easily affected by the

presence of other non-alternant components. The amplitude =2, X | i

information is also lost when using these techniques. -

Methods in the third class use nonlinear time domain

approaches instead of the linear filtering or Fourier-based

techniques. Themodified moving average methastimates

the ST-T complex patterns for the odd and even beats, using a

recursive moving average whose updating term is modified by

a nonlinear limiting function [102]. TWA is then estimated aFig.- 11.  Block diagram of the general TWA multi-lead analysis scheme.

each beat as the difference between the odd and even estim%@lﬁf bold line are the ones used in the single-lead scheme, in which
= X. Adapted from [104].

ST-T complexes. The main difference with respect to linear, . i "
techniques arises when there are abrupt changes in the wavd@1al preprocessingAfter determining QRS positions and

due to noise, artifacts or abnormal beats: then the nonlind§M0Ving baseline wander, the ECG signal can be low-pass

function keeps the effect on the TWA estimate boundeflitéred and decimated to a sampling frequency FQ>30,

However, the method is sensitive to noise level changes, t4S removing off-band noise while keeping TWA frequency

it does not consider adaptation to the noise level. components [106]. In each_ beat, an interval of 350 ms (the
The Laplacian likelihood ratio (LLR) uses a statisticaP -1 complex, corresponding to th®¥ samples referred in

model approach, considering a signal model similar to (3(§0)) is selected for TWA anaIyS|§. In vector notation, the ST-

where the noise term is modelled as a zero-mean Laplacia/fOMPplex presented in eq. (30) is denoted as

random variable with unknown variance. Thgeneralised x,—[x, . ... x; |7, x;;=[2:,(0),..., 2., (N-1)]T (34)

likelihood ratio test(GLRT) and the maximum likelihood

estimate (MLE) are used, respectively, for TWA detectionvhere for each beat, matrix X; is built with the ST-T

and estimation at each position of the analysis window [90jomplexes from all leadsx(;, I=1,...L).

The assumption of a heavy-tailed noise distribution makes thel he data matriXX is then constructed by concatenating the

method more robust to outiers in the beat-to beat series. TRatricesX; for the K beats in the analysis window,

MLE of the alternant wave is the median-filtered demodulated X=[Xo X; ... Xg_1] (35)

beat-to-beat series [95]

4 TWA / no TWA
lea
o ]
Y
d,

_ and finally the matrixX(™) is constructed as
dj,l (’I’L) = mediaﬂ{yi,l(n)(_l)z}iewj, (32) X(m) = [X’m Xm-i—l cee X'rn-l—K—l} (36)

where W; is the analysis window centered at bgatThe

GLRT statistic is which is equivalent taX, but shifting the analysis window.

[ beats forward.
7, = \/5 ST )] = Jwian) — azu) (=17 |, (33) Signal transformation:The aim of thls} stage is to apply a
05, iew; linear transformation to the signdl= Y~ X that improves the

n=0
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detectability of TWA by exploiting the information availableAs shown in [105], (40) can be rewritten as
in the multi-lead ECG (see Fig. 12). WAy (2)w
e(w,2) = —=2——

: T
Input signal Transformed signal after PCA Transformed signal after TCA W RX' W

0 V" . . . . .
e et S es i where Ry is defined in (37) andAy (2) is the spatial

(41)

T1

‘\/*"“WW . ’ ’ . .
WWN\WV c At correlation of(X(Q) -X ) which can be estimated as

V3 |
N I 7 ,‘MWMW” Axl(z):ﬁ(X@)LX’) (X@)LX’)T. (42)

. A 2 WPWMMTS (K -1

) EWWJ\WW v ) | "‘WWTG The weight vectow minimizing (41) is the generalized eigen-

- vector associated with the smallest generalized eigenvalue of

_ZCWM/WNW b e bt the matrix pair(Ay (2), Ry ) [105]. Generalizing this result,

-12 1T5 2 .
JMLN’\/L/VW\JW i 1%%@1@@ MWTS the complete transformation matriX can be defined as the
s 9 1 1 1z 13 8 9 10 11 12 138 5 5 10 1 12 13 matrix whose columns are the generalized eigenvectors of

fme ) fime (3) fime (5) (Ax (2),Ryx) ordered in ascending order of magnitude of
Fig. 12. @(a) Eight independent I€ads of a real 12-lead EQG where TWA fair associated eigenvalues. In this way, the first row of the
200 1V was artificially added. TWA is invisible to the naked eye due to nois T . .
and artifacts. (b) Signal in (a) after PCA transformation. TWA is now visibl ranSf_Orm_ed data matrﬁ(_’ = T _X contains the most periodic
in the transformed lead T2 through exaggerated oscillations in the amplitugembination of leads (i.e. it is the transformed lead where
of the T wave. (c) Signal in (a) afterCA transformation. TWA is clearly T\WA - if present - is more eas“y detectable). Fig. 12(C) shows
visible in transform lead T1. Reproduced from [104]. . . .

the 7CA transformation of the signal in (a).

In order to obtain a suitable transformation matixthe TWA detection:After transforming the signalsingle-lead
average ST-T complexes are canceled out by subtracting TA&A detection is performed individually on each row of the
previous complex from each compleX; = x;; — x;-1,. transformed signal applying the LLR method [95] described
These detrended beat$, are used to build the matricés  in equation (33). As a result, the decision for Ieadill be
and X' as in (35) and (36). Note that’ andX(™ now d = 1if TWA is present in thelth transformgd [ead, gnd
contain K — 1 beats. The transformation matri can be d = 0 otherwise. The multi-lead TWA detection is positive

obtained as described in the following paragraphs. Note tHhfletection is at least positive in one transformed lead (‘OR’
considering the identity transformation matrix, the multi-leafllock in Fig. 11), and negative otherwise. _
scheme reduces to a single-lead scheme, handling each feigdal reconstructionTo allow a better clinical interpretation,
independently throughout the detection/estimation process.it IS important to have TWA measureq in the 0r|g|na_1l .Iead set.
Principal Component AnalysisThe detrended signat;l is For that purpose, a reconstructed signal in the original leads

a zero-mean random vector whose spatial correlation can 4 be obtained, taking only those transformed leads where
estimated as 1 TWA was detected to be present. A matfix is obtained

Ry = mXXT (37) Dby replacing with zeros the columns & corresponding to
leads without TWA ¢, = 0), thus discarding non-alternant

The PCA transformation matrix is obtained by solving theomponents. The reconstructed signal is then obtained as
eigenvector equation for matriR

R,Y =TA (38)

X = Y.Y. (43)

TWA estimation and clinical indiceI'he MLE for Laplacian

whereA is t_he diagona! eigenvalue mgtrix, where eigen\{alu%ise (32) can be applied individually to each reconstructed
are sorted in descending order, andis the corresponding lead | to estimate the TWA waveforma,,(n). A global

orthono_rmal .eigenvector. matrix. The. t.ransformation deﬁne:ﬂnplitude of TWA (4;,) can finally be defined as the RMS
by matrix Y is then applied to the original data mattik to

; . of &j’l(n).
obtain the transformed matrix From these values clinical indices need to be derived,
Y =YTx (39) particularly when long term recordings are processed [107].

. o Some indices reflect the average amplitude of TWA and others
whoselth row (/th transformed lead) contains thé principal quantify the maximum TWA amplitude in specific segments
component of. Fig. 12(b) shows the PCA transformation ofynger study. An index of the former type is described as index

the input signal in (a). _ _ . ~ of average alternans (IAA) and their corresponding versions
Periodic Component Analysisthe aim of this technique is after restriction to a specific interval for a HR value X are
to find a linear combination of the available leagls” = gescribed as HRrestricted indices of average alternans{)JAA

wa; enhancing the 2-beat periodicity corresponding to TWA|| of them proposed in [107]. IAA was computed as the
(equivalent to a frequency of 0.5 cycles per beat). The desirggerage of all/,;; measured in 128-beat data windows during
weight vector is obtained by minimizing the 24-hour period, thus reflecting the average TWA activity.
fol ‘ vy 2 For instance, a 24-hour ECG presenting TWA for 5% of the

e(w,2) = =0 i+2 5 ' (40) time with an amplitude of 60uV would have an IAA=3

Zfigl uV. 1AA x values (X={70, 80, 90, 100, 110 beats/min)

’

i
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were computed in a similar way, but considering only thosk ~ w;t%, the T wave for lead and beat, is:

Vaix measured in segments with average HR ranging from M

X-10 to X beats/min. Therefore 1Af reflects the average wi(t) = —ta(t) Z Alm App (7). (45)
TWA activity at HR between 80 and 90 beats/min in 24 —

hours. Clinical studies where these multi-lead techniques h
already being applied can be found in [107] and [108].

. L . M
Finally, a note of caution: in stress test recordings, thexiﬂ’l(t)_%l(t):_td(t)z Apm [Bpm(i+1) = Apm (4)]

ag)(/e computing the difference between two consecutive T waves

running/pedaling rate can overlap with the alternans rate when —

the HR doubles the running/pedaling rate [109], e.g a cadence M

of 65 rpm could create alternans-like artifacts at a HR of 130 = —ta(t) D Aim [pm(i+1)—@m(i)+5m] (46)

bpm due to the synchronous body movements, which could =t

be erroneouly interpreted as electrical alternans [110]. ~ Where the assumption is made that the dominant T wave does

ot change between the two beats. Repeating the process on
Fcessive couples of beats and averaging the results, the
owing expression is obtained:

c) T wave alternans in view of the biophysical modeling:
ECG repolarization alternans, as mentioned before, can re Ll],
from AP instability, which can be measured as fluctuations IR M
the duration of the AP. This phenomenon can be introduced in = E[z; 1 () — x;,(t)] = —ta(t) Z Al Om- (47)
the biophysical modeling already introduced in section 1I-C to m=1
gain insight into how this AP duration fluctuation is reflectedTherefore, under this model, TWA depends & (alternans
on the T wave morphology and thus improve interpretation #t the myocytes’ repolarization times), but also on the domi-
design of TWA detection [111]. nant T wavet,(t). If regional alternans is considered, # 0

In the model in (5),pm = 7 + Apm, the dispersion oply for several podes, while in the case 01_‘ global altgrnans
heterogeneityAp,, can be made explicitly dependent on this would occur in each node. In both sm_Jatlons, and given
th beat and further split into a set ofo,,,, TWA also depends on the matrix and thus varies

for different subjects and leads [111].
5 2) Repolarization dispersion by T-peak to T-end interval
Apm (i) = Im + ©m (i) + (fl)lg, (44) dynamics: In section II-B1 we already mentioned that the
APDR curve, and the increase in its dispersion, is related

where,, describes the spatial variation of the repolarizatio}? 9reater propensity to suffer arrythmias (Fig. 13), there-
times for a given subject (at a given HR),, () reflects the fore providing potentially relevant information for ventricular
slight, physiological beat-to-beat differences in repolarizatigf™ythmic risk stratification [25], [115]. Heterogeneities in

times and’,,, accounts for alternans in the repolarization time§'€ ventricle lead to non-uniform restitution properties, which
occurring between even and odd beats in node makes APDR curves present spatial variations [116].

The value ofd,, can be estimated for a given beat by solv- Quantification of APDR dispersion requires invasive tech-

ing the inverse electrocardiographic problegm, (i) can be nigues [117]. A method has been proposed in [20] to indirectly

. ) . stimate dispersion in the dynamic APDR slopes by evaluatin
seen as a noise term and approximated by a set of indepen ﬁg{Pelationsphip between t}}[/Ep and theRR ir?terva}; under ’
zero-mean normal random variables, with standard deviati8 ¢

o.,. For simplicity, in the short term, the standard deviation ﬁ!ferent stationary conditions. THE,. interval reflects differ-

is considered to be invariant with time and across myocard{%‘gﬁisc:ﬂ;:‘i:ri':)?];orvf\:/?‘ri?eplEg%‘eogtﬁg’igfu'zc?;z?afg (E\fferent
regions. The term,, Is also assumed to be constant Withi%easures tragsmu.ral dispersion of re olaFr)ization [48]§Etother
the analysis window [111]. p p ,

. o studies claim that’,. includes additional heterogeneities, such
Note that changes in HR affect the terms in this model [111]¢ apico-basal ones [49]

When HR increases, the APD shortens anahoves closer to For ECG segments of stable HRs, the indsx (see Fig.
the onset of the beat, but it is also known that the T Wae borom-left) is defined as:

becomes more symmetrical with increased HR, including its

area, while its amplitude decreases [112]. This would suggest e AT (48)

modifying Ap,, (7). However, other studies have shown that “ TTARR

the T-peak to T-end interval is mostly independent frofhere “ECG,” indicates stable ECG segments, as required
HR at rest [112], even if contradictory results have als@ the dynamic protocol, at two differer®R intervals, A at
been published [113], and that the maximal difference amofige left hand side of (48) refers to a difference of restitution
APDs measured in isolated Langendorff- perfused rabbit heagfpes occurring at two regions, while bathat the right hand
[114] did not change significantly throughout the range @fide refer to beat interval differences associated with &¥o
paced steady-state cycle lengths, suggesting a minor effegfels [20].
of the HR onAp,,(i). Possibly the two effects coexist: () For ECG segments of unstable HR, computation of the
a small reduction of the spatial dispersion of repolarizatigRdex A« includes a methodology to compensate for he
with increasing HR and (ii) a modification with HR of thenysteresis lag afteRR changes. The model used to estimate
shape of the TMP in phases 2 and 3 [111]. T,. hysteresis is the same presented in Fig. 9 but replacing the
According to the first order approximation in equation (821" interval with theT), interval. TheRR andT,. series of
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potential at a sensor position (Fig. 5, bottom-right) [120]. The
corresponding estimation is:
——pECG aTgéyn
[0 =
ORR

(51)

APD [ms,

where T4 represents thd’,. interval measured from the

N 1 M pseudo-ECG under the dynamic protocol (see Fig. 14).

IS0 I | z

RR [ms] ! 'i"(l?ne [ms] » 0

Fig. 13. Left panel: Dynamic restitution curves of two cells representing )

APD as function of RR. Right panel: Representation of Tie interval in )

terms of APDs and delay of activation timeA AT"). Adapted from [20]. ‘ -
50 70

10ms 20 100 250 350 385 420 450ms

’

S

g2 & 8
Voltage [mV]

each recording are interpolated and resampled to a samplin¢=
frequency off, = 1 Hz. The lengthN of vectorh was set E e
to 150 samples that correspond to 150 seconds, which widelyg oo

exceeds thd),. memory lag [20]. Details on the optimization g

algorithm used for parameter identification can be found in 3 [ i i ‘ i Ly

[118] = 0 100 200 300 400 500 1000
. Time [ms]

After h and gx(.,a) have been optimized;w(n) can be Fig 14, Top panel: simulated sequence of isochronic voltage representation
used as a surrogate of the runnidg? series that would during steady-state pacing at 1000 ms. The position of the two cells corre-
generate a ruly statonary period in the runing repolarizatigf T, [ 7 0% 8 e sk PO o be T
interval Tye. [Tpe(i), 2ra(i)] represents the),. interval and Reproduced from [20].
the surrogate for th& R interval afterZ,,. hysteresis compen-
sation. The estimate of restitution dispersion derived in (48) The value of the indexAa for risk stratification has
for stable HR segments can be replaced with the followirggen explored in different populations, as in patients who
equation: developed TdP after sotalol administration [121], in patients

with hypertrophic cardiomyopathy [122] and in patients with

(49) heart failure [123], where the prognostic value & could

ZRR=ZRR be corroborated in retrospective studies, and with the provided
with g, being the nonlinear function represented in Figuréformation being complementary to that obtained from other
9. The above expression has the advantage of avoiding thpolarization or autonomic indices measuring TWA (IAA
need for stationary ECG segments. The superindex “ECGparameter) or heart rate turbulence (HRT).
indicates that the quantification is done by compensating for3) Repolarization dispersion by biophysical model param-
the 7,,, memory lag. This estimate is a robust alternativeter estimation:VRD can account for heterogeneities in the
to Aa  (see Fig. 5 bottom-left). In (49), the derivative iAP shape across the ventricular wall, but mainly reflects dif-
evaluated at the mean, value, Z.., of the analyzed ECG ferences in the APD. Taking the biophysical model presented
recording. in section II-C as a starting point, a method has been proposed

Electrophysiological modeling and simulation has been us8t [34] to quantify this dispersion. One of the goals is to
N ECss A Fee how that VRD can be quantified by estimating the standard
to evaluateAa =~ and Aa  as measurements of APDRS q Yy 9

slope dispersion at tissue level (see Fig. 5, right) [20]. Elefiéviation of the time instants,, (namedsy). This dispersion

trical propagation in a left ventricular 2D tissue has bedRcludes two sources, one from the fact that AP activation
simulated using a human ventricular AP model [14] anffmes are not synchronous at all nodes (see Fig. 6) and the
numerical integration as described in [119]. The 2D tissue sli@&1€r one from the fact that APD is different at different sites
covers base to apex and endocardial to epicardial distam_(gg,des)._Smce it is known that the dl_sper5|_on in activation time
as illustrated in Fig. 5, top right panel. For details about tHBStants is much smaller than the dispersion in the APDs, the
simulation see [20]. APDR curves are computed foIIowingarlance inp, is assumed to be a valid surrogate for the

dynamic pacing at differenRR intervals. Simulated APDR dispersion of the repolarization times. _
slope dispersion is denoted k", which is computed as: In [34] a procedure is developed based on a stochastic model
for p,,. The RT associated with the:th node, introduced in

3APD7£ B aAPD,‘ﬁ’; (50) equation (5), can be expressed as explicitely depending on beat
ORR ORR i

where APD,,;, corresponds to the cell with the minimum N s N .
APD among those which are repolarizing at the T wave pm (@) = P(0) + Bpm (i) = p(i) + Vm + Pm(0) (52)
peak instant (time instant when the maximum repolarizatiovhere (i) is the averageR7, which may be different for
gradient sum occurs) andP D, is the APD of the last cell each beat, andAp,, (i) < p(i) is the dispersion with respect

to repolarize. Estimations @dka®™ are computed from pseudo-to the average value (note th@%:1 Apm, (1) = 0). Although
ECGs using (48). Each pseudo-ECG evaluates the extracellddath terms are expected to depend on HR, the discussion in

oo _ 0T _ O9r(zer,2)

028k | spn= 2 O0Zrm

AaSIM —
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[34] is limited to the case of stationary HR. In this conditioncan be seen as the covariance of ttie row of matrix A
Apnm, (i) is split into two termsy,,, and ¢, (i), as shown in with the spatial dispersiod,,, which are not coherent, and
(52). On the one hand},, describes the spatial variation ofin addition equation (59) is normalized by the variance of the
the R7s considering the sequence of repolarization, startimjements in thé row of A, the V-index can be defined as:
from the apex of the ventricles. On the other hapg(¢) ¢ l

: SIS : _ stdws (D))
accounts for the slight, physiological beat-to-beat differences Vi = m ~ Sy- (60)
in R7s. As it will be later discussed, it is reasonable to ] )
consider that, in generalp,.(i) < ¥,,. If the distribution This V-index turns out to be mdepepdent b&nd represents
of the RT's is affected by a pathological condition, this willtn€ VRD measurement proposed in [34};, needs to be
be reflected in the model by a changedn, thus this is the €Stimated by calculating the lead factors and wy, which
main index to be measured, whilg,,(i) can be seen as acan be done as explained in section II-C.

noise termaffecting the measurements at every beat and can' NiS modeling has several approximations and assumptions

be assumed to be independentmfand normally distributed that may question to what extent relevant clinical information
with varianceo? (i) (see [34] for details). Also independence'®Y be missed when computing theindex. In [124], with

of (i) for different sites £2) and beats4 is assumed. If the aim to check for this, known dispersion was simulated in
Ui(k) is constant among beats (specially in stable HR agtissue model. The biophysics-basédndex was computed

short time windows), the dependence on hieziin be dropped and the results compared to the simulated dispersion. It has
and Ap,, (4) m/\/(ﬁm, o2). been proved that when the assumptions are relatively well

Linking the above described modeling with the lead factoratisfied, theV-index is a good approximation, but when the
w, andws, we have: independence assumption between nodes and time is lost,
M LM high bias appears between estimation and reality. In some
_ _ 2 circumstances this can be overcome with some modifications
wi(h) ZAl’mApm’ wa(l) 2 zAl’mApm' (53) of the V-index presented in [124].
Clinical application of the index has already been explored
in [125], where increased dispersion of the repolarization
1 M times, as measured by thkindex, was found in patients with
Blwi(1)]==Y AymUm, vartwi ()] =02y A?,. (54) Chagas disease, being significantly correlated with the risk of
m=1 m=1 death in a univariate survival analysis. Already in the initial
Proceeding similarly withw,(l) and using the fact that Study [34] it was shown that the index increases with sotalol
ZM_ A;,. =0, we have: administration, known to increase VRD. Later in [126], the
m=1 1M index was studied under moxifloxacin administration, showing
Elws(1)] = B Z Ay 93, (55) a higher relative increase than the corrected QT interval.
m=1 The modeling here presented has been subsequently ex-
tended to analyze and correlate other T wave features with
VRD, including the QT interval, T wave variability and others
4 M [40]. The V-index is the one that results in the highest
_ 7 Al2,m i ai Z A12,m,192 (56) correlation to VRD. The QT interval is also highly correlated,
m=1

m=1 m=1

BY aver%ging in time, the mean and variancewg{!) can be
calculated as:
M

M
vartus()] = § S A2, varlag?)

with the drawback that it requires precise delineation of the T

. d, which i bl tic technical blem.
where the equality[Ap;,] = Uy, + 697,02 + 307, has been wave end, which 15 a problematic technical problem

used. Defining the following ratio: o .
9 9 E. Summary of repolarization risk markers.

M 2 2 L . .
varw(l) _ Uio T 2m=1 Al Um (57) The repolarization markers presented all along this review
varfw (1)) 2 fozl A? are summarized in the table | together with references to their

and doing some additional algebraic calculations [34] physiological background and clinical evaluation.

M Mo M TABLE |
g Aﬁm 92 = E o Alzym SUMMARY OF RISK MARKERS, REFERENCES TO THEIR PHYSIOLOGICAL
m=1 m=1

m=1 M BACKGROUND AND CLINICAL EVALUATION .* AND REFERENCES THEREIN

2

59 Marker class Physiological background Clinical evaluation
M M A2 M 92 B1. Repolarization intervals [45], [46], [127] [47]
+ Z Al2 _ Z Zhm! Y92 Z _m/ (58) B2. T wave morphology [46], [52], [55] [47], [53], [54], [128]
=\ e M "M CL. QT adaptation to HR 1591, 601, [62], [61] 1631, 1651, [66]
- - C2. QT variability [84], 681, [69], [82] [70], [71], [72], 173]
C [83], [85], [42], [76] [75], [77[], []79], [80]
81
the ratio can be calculated as D1. T-wave alternans [O1T, 921, [95], [98] [O1T, [93], [107]
vafwo ()] 05 5,  C M [23], [24] [108]
— ==t syt = (59) D2. Tpe dynamics [129], [130], [116], [117] [121] [122], [123]
varwi (I)] 2 My M A2 [25], [48], [26], [20], [27]
) D3. Repol. dispersion [29], [32], [34], [36] [125], [126]
Given that variability across time is supposed to be muclpiophysical model

smaller than the spatial dispersief] < s3 and thanC;/M
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IV. CHALLENGES AND FUTURE PERSPECTIVES sessment of a marker’s ability to track variations in arrhythmic

risk (e.g. when monitoring the effects of drug treatments or

In the previous sections, a catalog of techniques for agw evolution of cardiac diseases) as well as determination
sessment of ventricular repolarization instability have begf the time frame for arrhythmic complications that may
presented, with emphasis in the description of recent EGgad to SCD. Also, risk stratification would benefit from the
processing developments. development of novel non-invasive ventricular repolarization
It must be acknowledged, however, that most of the ECaarkers, for which a better understanding of the interaction

features presented here are only currently used in the contegfween substrate, triggers and modulators involved in SCD
of research studies and have not yet bridged the gap i§Gundamental. Multi-scale computational modeling combined
clinical routine. For instance, the left ventricular ejectioRyith signal processing of cardiac electrical signals offer a
fraction is commonly the only metric considered to predigiowerful tool to gain insight into SCD mechanisms and can

the benefit from an ICD. In other studies evaluating drugtefinitely help in the development of personalized non-invasive
induced ECG changes, the QT interval, or the heart ratginical markers.

corrected QT interval, is considered as the only marker to
assess pro-arrhythmicity, despite its well-known limitations.
Considering the six phases for the assessment of a novel risk
marker, presented by Hlatky et al. (1. Proof of Concept, 2. In this work, a review of technologies developed to quantify
Prospective validation, 3. Incremental value, 4. Clinical utilityentricular repolarization dispersion from the ECG is pre-

5. Clinical outcome and 6. Cost-effectiveness) [131], most 6&nted. The review focuses on so-called physiologically-driven
the risk indices presented in this review have at most be@del-based signal processing approaches. Some methods are
evaluated in studies that can be framed in phases 1 ordgyveloped from basic descriptive ECG considerations, while
performed in small, specific populations. For a risk marker @hers come from either simplified or detailed biophysical
become part of established clinical protocols, it must proveodeling of the ventricular myocardium. While some of the
not only to be capable of quantifying increased instabilitpresented methods aim at capturing stationary features, others
or risk, but its capacity has to be large enough to changeovide information regarding the dynamics of repolarization,
clinical management procedures. This must be proved in larggpically following HR variations. In any case, the final objec-
scale prospective trials, considering the cost-effectiveness rdtie of the presented methodologies is its clinical impact and
(including not only the cost of the test, but also the cost dis requires companion clinical studies where to assess their
patient management associated with its results). Bridging th#lity. We firmly believe that combining clinical, experimental
gap from scientific research to the clinics is the main challenged technological development plus the use of physiologically-

V. CONCLUSIONS

in this area. driven model-based signal processing approaches is a right
Considering that between 45-50% of SCD occur in theath to pursue the limits of SCD prediction from the ECG.
general population (without known heart disease) [132] one REFERENCES
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