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Abstract

Cardiac resynchronization therapy (CRT) is a standard method of treating heart

failure by coordinating the function of the left and right ventricles. However, up

to 40% of CRT recipients do not experience clinical symptoms or cardiac function

improvements. The main reasons for CRT non-response include: (1) suboptimal

patient selection based on electrical dyssynchrony measured by electrocardiogram

(ECG) in current guidelines; (2) mechanical dyssynchrony has been shown to be

effective but has not been fully explored; and (3) inappropriate placement of the

CRT left ventricular (LV) lead in a significant number of patients.

In terms of mechanical dyssynchrony, we utilize an autoencoder to extract new predic-

tive features from nuclear medicine images, characterizing local mechanical dyssyn-

chrony and improving the CRT response rate. Although machine learning can identify

complex patterns and make accurate predictions from large datasets, the low inter-

pretability of these ”black box” methods makes it difficult to integrate them with

clinical decisions made by physicians in the healthcare setting. Therefore, we use

visualization techniques to enable physicians to understand the physical meaning of

new features and the reasoning behind the clinical decisions made by the artificial

intelligent model.

xxxv



For electrical dyssynchrony, we use short-time Fourier transform (STFT) to trans-

form one-dimensional waveforms into two-dimensional frequency-time spectra. And

transfer learning is used to leverage the knowledge learned from a large arrhythmia

ECG dataset of related medical conditions to improve patient selection for CRT with

limited data. This improves prediction accuracy, reduces the time and resources re-

quired, and potentially leads to better patient outcomes. Furthermore, an innovative

approach is proposed for using three-dimensional spatial VCG information to de-

scribe the characteristics of electrical dyssynchrony, locate the latest activation site,

and combine it with the latest mechanical contraction site to select the optimal LV

lead position.

In addition, we apply deep reinforcement learning to the decision-making problem of

CRT patients. We investigate discrete state space/specific action space models to find

the best treatment strategy, improve the reward equation based on the physician’s

experience, and learn the approximation of the best action-value function that can

improve the treatment policy used by clinicians and provide interpretability.
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Chapter 1

Introduction

About 6.2 million adults in the US have heart failure (HF), and the prevalence of HF

will increase by 46% from 2012 to 2030 [5, 6]. Despite the fact that survival after

the onset of HF in older adults has improved, HF was the underlying cause of 83,616

deaths in 2018 [7]. The total cost for HR was estimated to be $30.7 billion in 2012

[6]. Cardiac resynchronization therapy (CRT) is a well-established treatment for HF

in patients with left ventricular (LV) systolic dysfunction and evidence of cardiac

dyssynchrony [8].

Cardiac resynchronization therapy can be achieved by LV stimulation through a lead

within a tributary of the coronary sinus. The cardiologist guides the lead into the

correct chamber of the heart and checks its position under fluoroscopy guidance. The
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lead is then connected to the CRT monitor on the surface of the chest. The appropri-

ate electrical energy and pacing timing are then tested [9]. A CRT positive response

includes the alleviation of HF symptoms, improvement of LV function, decreases in

hospitalization and morbidity, and increases of exercise capability and quality of life

score [9].

However, 30-40% of the CRT patients did not respond to CRT with an improved

clinical symptom (assessed by NYHA class, quality-of-life score, and 6-minute walk

distance) and/or cardiac function (assessed by LV end-systolic volume [LVESV], LV

end-diastolic volume [LVEDV] and left ventricular ejection fraction [LVEF]) [10, 11,

12, 13, 14]. The main reasons for CRT non-response were reviewed in [9, 15, 16]

and included: (1) The selection of patients based on electrical dyssynchrony is not

optimal; mechanical dyssynchrony is also important. (2) The presence of extensive

LV scar tissue (irrespective of the location) may hamper response to CRT [17, 18].

(3) The CRT LV lead may not be placed in an appropriate position in a significant

number of patients; pacing at the latest viable contracting site is essential [19, 20, 21].

In this work, we developed novel and clinically interpretable algorithms for knowledge

discovery from mechanical dyssynchrony and electrical dyssynchrony for CRT patient

selection. This includes the development of novel algorithms for feature extraction and

description, evaluation of the algorithms using real-world data sets, and comparison

of performance with the clinical guidelines and existing state-of-the-art algorithms.
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1.1 Motivation

Motivation in this research endeavor is determined by three critical points. First,

the existing clinical guidelines are not effective enough to select patients based on

clinical records and electrocardiograms(ECG) alone, and 30-40% of patients who have

a pacemaker installed through thoracotomy do not get the corresponding therapeutic

benefit. We see an opportunity to reduce patient suffering and reduce healthcare

costs. Second, current advances in computing technologies such as computer vision,

multi-modality fusion, and data interpretation permit the opportunity to achieve

tangible solutions. Third, most machine learning solutions for patient selection are

”black boxes”, for example, deep learning. In many practical applications, especially

in the medical field as an aid tool, it is imperative to have a reasonable explanation

that can be understood by physicians; this may include providing information such

as what was learned, what is the value of individual sources, why a decision was

made, what evidence process was used, and what confidence the system had in its

decision. This work introduces methods that help answer these questions, as well as

visualizations that help physicians better understand machine learning solutions and

their behavior on different data instances.

3



1.2 Background

1.2.1 Introduction to CRT

1.2.1.1 Heart Failure

As the population ages, the prevalence of heart failure (HF) continues to rise. Over

6 million Americans ≥ 20 years of age (2.2%) had heart failure, according to the

National Health and Nutrition Examination Survey (NHANES) data from 2013 to

2016. It is worth noting that 5.7 million people had heart failure between 2009 and

2012 [5]. Moreover, it will increase 46% from 2012 to 2030, which means there will

be more than 8 million people ≥ 18 years of age with HF [5]. From 2004 to 2014,

the number of hospital discharges for HF decreased from 1,042,000 to 900,000 [5]. In

2015, there were 2,671,000 physician office visits, and 481,000 emergency room visits

due to the HF [5].

Even though the survival in older adults with HF has improved [22], the overall 1-year

case-fatality rate after hospitalization for HF remains as high as 22% [? ]. Compared

with 2005 (58,933), the number of the underlying cause of deaths attributable to HF

increased by 27.7% in 2015 (75,251) [5]. In 2015, the overall any-mention age-adjusted
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death rate for HF was 87.9 per 100,000 [5]. The cost of HF was estimated to be $30.7

billion in 2012, and it will increase to $69.8 billion by 2030 [6].

The cost of treating HF comorbidities and exacerbations in youths totals nearly $1

billion in inpatient costs and maybe rise [16]. The associated cost burden of HF is

anticipated to constitute a large portion of total pediatric healthcare costs.

1.2.1.2 What is CRT

Cardiac resynchronization therapy (CRT) is a standard treatment for HF by coor-

dinating the function of the left and right ventricles [23]. The inclusion criteria for

CRT have been continually improving. For now, CRT is indicated for patients who

have a low LVEF (typically ≥ 35%), sinus rhythm, left bundle-branch block (LBBB)

pattern, QRS duration ≥ 150ms on ECG and New York Heart Association (NYHA)

class II, NYHA class III and ambulatory IV symptoms on Guideline Determined

Medical Therapy [24, 25].

During the installation of CRT, the doctor installs a pulse generator under the skin of

the collarbone and connects it to the insulated wire (lead or electrode) inserted from

the subclavian vein, armpit, or cephalic vein. Under the guidance of fluoroscopy, the

cardiologist secures each lead to the correct chamber of the heart and appropriate

position.
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CRT defibrillators (CRT-D) can also terminate dangerously fast heart, life-

threatening rhythms, which integrates the function of an implantable cardioverter-

defibrillator (ICD). CRT and CRT-D have become increasingly extensive treatment

options for HF patients [26].

1.2.1.3 How to evaluate CRT outcomes?

The effectiveness of CRT has been widely demonstrated in many clinical trials [27, 28,

29, 30]. The CRT positive outcomes include improved LV functions, HF symptoms,

increased exercise capability and quality of life score, fewer HF hospitalizations, and

lower mortality rates [9, 31].

However, 30− 40% of the patients, who meet the standard indications, did not show

any benefit after CRT installation with an improvement of clinical symptoms (NYHA

class, quality of life score, and 6-min walk distance) and/or cardiac function (LVESV,

LVEDV, and LVEF)[9].

The reasons for the presence of ‘non-responders’ are shown below: [9, 15, 32]: (1) The

selection of CRT patients relies on only 3 ECG parameters, QRS duration, LBBB,

and sinus rhythm, which is not optimal. The QRS duration is less important than

mechanical dyssynchrony, which is critical to the CRT response [33, 34, 35]. Also, the

left ventricles without mechanical dyssynchrony will not respond and often deteriorate
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following CRT [9, 36, 37] (2) A higher overall LV scar burden may also obstruct

the response to CRT, particularly transmural scar [18, 38, 39]. (3) Moreover, it is

crucial for CRT response that the LV lead should be placed away from the scar area

[18, 39, 40] and at or close to the site with the latest activation [41, 42, 43]. (4)

During the CRT implantation, guidance is necessary on fluoroscopy venograms to

navigate the LV lead to the optimal position. Because even if the implanters knew

the accurate latest activating viable site before CRT implantation, it is hard to place

the LV lead in the optimal site without the navigation by a coregistration between

myocardial images and fluoroscopy venograms [44, 45].

1.2.2 Nuclear imaging to guide CRT

1.2.2.1 Myocardial imaging techniques

Myocardial imaging techniques, including echocardiography, computational tomogra-

phy (CT), magnetic resonance imaging (MRI), and nuclear imaging, play an impor-

tant role in improving patient selection and LV lead placement for CRT by detecting

scar and the latest activated segment[44, 46, 47].

† Echocardiography
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Several studies have shown that the dyssynchrony predictors from echocardio-

graphy have the potential to guide CRT patient selection [12, 48, 49, 50, 51?

]and lead position [20, 44, 47, 49, 52]. The TARGET study, a prospective

randomized controlled clinical trial, showed a significant improvement in CRT

response, clinical status, and lower rates of combined death and heart failure-

related hospitalization under the guidance of placing the LV lead to the latest

activated segment and away from the scar [44]. However, two prospective mul-

ticenter studies (PROMISE-CRT [53] and PROSPECT [27]) showed a modest

predictive accuracy for CRT patient selection by any single echocardiographic

predictor. Echocardiography is widely available, easy to use, relatively low cost,

and away from ionizing radiation or nephrotoxicity [54]. However, it has high

inter-operator variability, which is the major limitation of echo-guided CRT and

one of the main reasons for the modest accuracy in predicting CRT response in

the PROSPECT trial [27].

† CT

Computational tomography (CT) can evaluate LV dyssynchrony [55], visual-

ize the coronary veins [56], and detect scar location and burden [57], which

can be used to guide left ventricular lead placement in CRT [38, 58]. The

prospective DIRECT study showed that the CT-driven dyssynchrony metrics

and regional mechanical contraction analysis had the potential to predict 2-year

major adverse cardiac events, but not 6-month CRT response [55]. However, the
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current single-energy source CT scanners cannot accurately depict extracellular

myocardial fibrosis through late contrast enhancement [38]. In a prospective

study, using pre-implant dual-source CT in 54 patients scheduled for CRT,

Truong et al.[55] measured time-to-maximal wall thickness and inward motion

to determine 1) CT global and segmental dyssynchrony and 2) concordance

of the lead location to regional LV mechanical contraction; they demonstrated

that the wall motion dyssynchrony parameters of both global and opposing

anteroseptal-inferolateral walls predicted 2-year major adverse cardiac events

(MACE), and LV lead location concordant to regions of maximal wall thickness

was associated with less MACE. Due to the small sample size and MACE rate,

the results should be explained with caution [55]. Nevertheless, dual-source CT

has not been widely used, and the number of studies is very limited.

† MRI

Cardiac magnetic resonance imaging has the unique advantage of its ability to

accurately and reproducible measure LV function [59, 60], measure myocardial

viability [61], and assess mechanical dyssynchrony [62]. Thus cardiac MRI can

be an alternative technique for the noninvasive evaluation of LV function and

dyssynchrony [54]. However, MRI has security risks for patients with devices,

and it is time-consuming and involves significant user interaction [9, 63].
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1.2.2.2 Nuclear imaging for guiding CRT

Nuclear imaging is a unique technique for evaluating LV functions, dyssynchrony, and

site with the latest contraction due to its ability to characterize myocardial perfusion

and mechanical dyssynchrony with high repeatability and reproducibility. Nuclear

imaging techniques have great potential in guiding CRT patient selection and LV

lead placement. The widespread use of nuclear imaging and its high reproducibility

makes it a more attractive approach [9].

Nuclear imaging to detect myocardial viability

Both 201thallium chloride and 99technetium-labeled SPECT tracers have been used

to measure myocardial viability in single-photon emission-computed tomography

(SPECT). Scar tissue is defined by 50–60% tracer uptake at rest as a threshold for

myocardial viability [54].

Studies have found that LV scar burden and location provided by SPECT-MPI have

essential predictive values in predicting CRT response [18, 42]. A study showed that

a higher scar burden quantified by technetium (99mTc) tetrofosmin SPECT-MPI neg-

atively impacted CRT response and might inhibit the CRT response in the LV lead

region [64]. Adelstein et al.[65] found that in long-term follow-up ischemic cardiomy-

opathy (ICM) patients with lower scar burden detected by rest–redistribution Tl201
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experienced similar positive clinical and LV functional outcomes after CRT. How-

ever, Xu et al. [66] found that the mismatch between scar region and LV pacing

position could not predict a negative response to CRT; it is worth noting that the

lack of association might be due to the small number (n=17) of patients who had

poor concordance between LV lead position and scar. A study of CRT recipients

with ICM showed that the concordance between LV lead location and scar region or

reversible ischemia was an independent predictor of HF hospitalizations and all-cause

mortality [67]. Also, Ypenburg et al. [64]found that even if the LV lead was placed

in a transmural scar region (¡50% tracer uptake by SPECT with 99mTc tetrofosmin)

with the latest mechanical activation, it would deteriorate CRT response. The main

limitation of SPECT-MPI is the low spatial resolution, which may lead to the loss

of information or, conversely, overestimation of scarring in thin-walled dilated hearts

[54, 68].

Compared with SPECT-MPI, PET has a higher spatial resolution and can more

accurately estimate nonviable myocardium with considerable sensitivity and dynamic-

imaging capabilities, which has been suggested as a suitable option for LV viability

and dyssynchrony measurement [68, 69]. Positron Emission Tomography 18Fluorine-

deoxyglucose (18FDG) is a glucose analog and reflects cardiac glucose utilization,

which is commonly used as a tracer to assess the viability of myocardium [9].

Lehner et al. [70] found that there was a significantly lower scar burden in positive
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CRT responders than in non-responders at 6-month follow-up by 18FDG-PET and

echocardiography. Uebleis et al. [71] integrated the gated 18FDG-PET and CT

imaging to improve the detection of scar and dyssynchrony, which demonstrated

that the global scar burden and the LV pacing site were critical factors referred for

predicting CRT response.

Nuclear imaging to detect mechanical dyssynchrony

The phase analysis technique has been well established to measure LV mechani-

cal dyssynchrony from ECG-gated SPECT/PET MPI [72]. First, the gated short-

axis slices are reconstructed and reoriented from planar studies. Second, the three-

dimensional maximal-count myocardial perfusion distribution is extracted from the

short-axis slices by the sampling of the myocardial wall. Third, all the samples

are input into the phase analysis algorithm: the LV systolic dyssynchrony (LVSD)

phase angles are calculated by the 1-harmonic Fourier approximation, and LV dias-

tolic dyssynchrony (LVDD) phase angles are calculated by the 3-harmonic Fourier

approximation. The Fourier approximation measures the change of counts in the left

ventricular myocardium throughout 8 or 16 frames in a cardiac cycle; the resulting

phase angles start with 0◦ corresponding to the peak of the R wave and stop at 360◦

corresponding to one R-R interval, as shown in Figure 1. Finally, the polar map

of the LV phase is generated based on the 3D phase angle distribution in the LV

myocardium [72, 73].
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Figure 1.1: Processing steps of the 1-harmonic and 3-harmonic phase
analysis to measure the LV systolic and diastolic dyssynchrony. The in-
put is gated PET/SPECT short-axis images. First, the myocardial wall is
sampled by detecting the regional maximal count in each slice. The my-
ocardial count curves for each region are approximated by the 1-harmonic
function for systolic dyssynchrony and the 3-harmonic function for diastolic
dyssynchrony. The phase angles of the systolic and diastolic approximation
represent the onset of mechanical contraction and the onset of mechanical
relaxation, respectively. Then the systolic and diastolic phase polar map
and phase histogram are generated.

Figure 1.1 Processing steps of the 1-harmonic and 3-harmonic phase analysis to mea-

sure the LV systolic and diastolic dyssynchrony. The input is gated PET/SPECT

short-axis images. First, the myocardial wall is sampled by detecting the regional

maximal count in each slice. The myocardial count curves for each region are ap-

proximated by the 1-harmonic function for systolic dyssynchrony and the 3-harmonic

function for diastolic dyssynchrony. The phase angles of the systolic and diastolic

approximation represent the onset of mechanical contraction and the onset of me-

chanical relaxation, respectively. Then the systolic and diastolic phase polar map

and phase histogram are generated.

The phase analysis algorithm is a fully automated method with a sufficient temporal
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resolution of 15 ms for a heart rate of 60/min [74], high inter- and intra-observer

reproducibility [75], high repeatability [76], and high robustness when dealing with

perfusion defects [77, 78].

Six indices from phase analysis have been reported to represent global LV mechanical

dyssynchrony commonly [72, 79, 80]:

1. Peak phase, which is the most frequent phase angle among LV myocardium.

2. Phase standard deviation (PSD), which is the standard deviation of the phase

distribution.

3. Phase histogram bandwidth (PBW), which includes 95% of the samples in the

phase histogram width.

4. Phase histogram skewness, which indicates the symmetry of the histogram.

5. Phase histogram kurtosis, which shows the degree of peakedness of a distribu-

tion.

6. Phase entropy (PE) was calculated by the total number of samples and the pro-

portion of the samples with their phase angle over the total number of samples

in the phase histogram, which indicates the “disorder” of the histogram.

LV systolic dyssynchrony has been frequently used to select CRT patients and rec-

ommend the optimal LV lead positions [9, 81]. Besides LVSD, LVDD also plays an
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important role in HF patients [82]. Wang et al. [80] found that the LV systolic and

diastolic parameters from gated SPECT MPI, including PSD, PBW, and PE, had

great prognostic values for dilated cardiomyopathy patients.

Besides the features of LV dyssynchrony, right ventricular (RV) dyssynchrony might

also have great potential for guiding CRT. Wang et al. [11] first evaluated the RV

dyssynchrony measured by phase analysis of FDG-PED imaging, and compared the

results with the RV dyssynchrony from echocardiography, which showed a great cor-

relation. Zhou et al. developed an RV phase analysis tool that cooperated with

LV phase analysis for measuring interventricular mechanical dyssynchrony by gated

SPECT MPI. The difference between the LV and RV contraction delays represented

the interventricular contraction delay, which was compared with the interventricular

conduction delay classified by ECG to validate the concordance of interventricular

mechanical and electrical dyssynchrony. In 61 enrolled patients with bundle branch

block (BBB), there was an agreement rate of 86.9% [13].

Nuclear imaging to detect wall thickening Gated nuclear MPI is a dynamic

imaging modality, which can identify the motion of the LV wall with relative hypop-

erfusion. Similar to myocardial perfusion, regional myocardial motion and thickening

can be quantitative to thickening scores [83]. Cooke et al. [84] developed a count-

based method to assess systolic wall thickening from the regional LV count changes

during the cardiac cycle from gated SPECT MPI, which had been quantitatively and
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clinically evaluated. Several other researchers conducted related clinical validation

studies. Nowak et al. found that the quantitative analysis of 99mTc-MIBI SPECT

was significantly affected by heterogeneity in regional myocardial systolic wall thick-

ening. The mean uptake was significantly higher in the lateral wall (84% ± 5%)

than in the septal wall (65% ± 10%), anterior wall (71% ± 11%), and posterior wall

(71% ± 11%) (P ¡0.01) [85]. Huang et al. (Huang et al., 2006) proposed a wall mo-

tion model to measure mechanical dyssynchrony and identify the maximum delay for

guiding LV lead placement in CRT patients. Moreover, Sharir et al. [83] analyzed

the relationship between myocardial thickening and LV remodeling by resting gated

SPECT MPI in patients with a history of myocardial infarction, and demonstrated

that both global and local abnormal thickening were independently correlated to the

LV function.

Nuclear imaging to guide CRT patient selection Current guidelines indicate

that CRT should be used for patients with LVEF ≤ 35%, sinus rhythm, LBBB with a

QRS duration greater than or equal to 150 ms, and NYHA class II, III, or ambulatory

IV, symptoms on GDMT [25]. In addition to these criteria, several studies have shown

that LV myocardial viability and mechanical dyssynchrony from nuclear imaging have

significant values in CRT patient selection.

Adelstein et al. [65] analyzed the difference between 190 ICM CRT recipients with

scar burden, 380 non-ICM CRT recipients, and 50 CRT patients with unsuccessful

16



LV lead implementation and found that ICM patients had significantly worse survival

and less LVEF improvement than non-ICM patients (P ¡0.01). Moreover, the results

showed that the ICM patients with low scar burden (summed rest score [SRS] < 27)

had better CRT response than ICM patients with a high scar burden (SRS ≥ 27).

Therefore, the scar burden assessed by SPECT MPI is useful for guiding CRT patient

selection.

The systolic PSD and PBW characterizing global mechanical dyssynchrony has been

widely used to select appropriate CRT patients [78]. In a prospectively single-center

study, Friehling et al. [37] evaluated the difference in LV synchrony after CRT imple-

mentation by phase analysis of gated SPECT MPI. The presence of baseline dyssyn-

chrony, myocardial scar burden, and LV lead concordance was used to predict the

change in LV synchrony. After a 9.6±6.8 months follow-up, the patients with a neg-

ative CRT response showed significant deterioration in synchrony, compared with

patients with a positive CRT response or no change (p=0.003). So, the phase analy-

sis of gated SPECT MPI could be used to predict a change in LV synchrony and CRT

response after CRT, which could guide CRT patient selection, as shown in Figure 1.2.

Furthermore, in a retrospective study, Henneman et al. [2] found that the baseline

PSD and PBW could improve the prediction of CRT response: a cutoff value of 43◦ for

PSD yielded a sensitivity and specificity of 74%, and 135◦ for PBW yielded a sensitiv-

ity and specificity of 70%. Other studies found greater accuracy for predicting CRT

response by different baseline threshold levels of dyssynchrony from SPECT-MPI,
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Figure 1.2: An example of mechanical dyssynchrony to guide CRT patient
selection and LV lead placement by Emory Cardiac Toolbox V4.0. A: The
phase polar map and histogram of a 59-years old patient before CRT im-
plementation. This patient had NYHA class IV, LBBB, QRSd = 160 ms,
LVEF = 24%, PSD = 53◦, and PBW = 202◦. PSD and PBW both meet
the cut-off value of CRT patient selection in multiple studies [1, 2, 3]. In
addition, the mid-inferolateral segment had the highest mean phase angle
(201◦) (red square in A), suggesting that the LV lead should be in the mid
inferolateral segment. B: The phase polar map and histogram of the same
patient after CRT implementation. This patient’s lead was placed at the
lateral vein under the guidance of mechanical dyssynchrony and had a super
response (LVEF = 49%, PSD = 19◦, PBW = 51◦) after CRT implementa-
tion.

such as a cutoff value of 21◦ for PSD with 90% sensitivity and 74% specificity, and

a cutoff value of 112◦ for PBW with 72% sensitivity and 70% specificity [1]; a cutoff

value of 43◦ for PSD with 86% sensitivity of and 80% specificity, and a cutoff value of

128◦ for PBW with 86% sensitivity and 80% specificity [3]. However, a prospective
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study found that baseline PBW and PSD could not predict LV reverse remodeling

[86]. In addition, in a prospective international clinical study, Peix et al. found that

the difference between baseline and six months post-CRT dyssynchrony was signif-

icantly related to the CRT response, instead of the LV baseline dyssynchrony itself

[87].

Nuclear imaging to identify the optimal LV lead position

Current guidelines recommend the LV lead to be located in posterior and lateral

walls, which enables the selection of the best pacing site [88, 89]. However, this

non-individual recommendation of LV lead positions might cause suboptimal or in-

appropriate placement in a large number of patients [9].

The LV lead position is essential for CRT response, which should be placed away

from the scar and at or near the latest activated site, as shown in Figure 1.2. In a

retrospective study, Boogers et al. [41] analyzed the concordance between the site of

the latest mechanical activation assessed by SPECT MPI and the LV lead position

on fluoroscopy and evaluated this concordance with CRT response, which was defined

as a decrease of ≥ 15% in LVESV assessed by echocardiography. Consequently, most

of the latest activated sites were in the posterior (42.4%) and lateral (23.3%) walls.

LV leads in 52 patients were placed at the latest activated sites, and 79% of them

had favorable CRT responses. However, only 26% of 38 patients with discordant LV

lead positions had positive CRT responses. This study showed that patients with
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a concordant LV lead position had a significantly better CRT response than those

without a concordance.

In a prospective study, Friehling et al. [37] found that 96% of patients with an

acceptable scar and concordant LV lead position had a favorable CRT response and

long-term outcome. Similarly, Uebleis et al. [71] found that the CRT responders had

lower phase entropy and myocardial scar burden than non-responders.

Zhou et al. [81] developed an automatic method to identify the latest contracting

viable LV segments from ECG-gated SPECT MPI for guiding CRT LV lead place-

ment. The automatic assessment was validated by the percent agreement with the

segments visually recommended by two experts from the short-axis images and polar

maps of viability and phase. The agreement rate of these two methods could be as

high as 97.2% for selecting the optimal LV pacing sites, and the rate of inter-operator

reproducibility could achieve 88.8%. Furthermore, because the latest activated seg-

ment may not be achieved due to the sparse and personalized anatomy structure of

the veins, Zhang et al. [43] proposed a novel hierarchical recommendation method

for LV pacing site based on the concordance between the lead position and the lat-

est activated viable site. The apical, septal, and segments with more than 50% scar

were excluded first. Afterward, the 1st level of LV pacing site recommendation is

the latest contracting viable segment; the 2nd level of recommendation is the late

contracting viable segments within 10◦ of the latest contraction delay; the 3rd level
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of recommendation is the viable segments adjacent to the 1st recommendation. Ac-

cording to the results of this hierarchical recommendation method, the CRT response

rates were 75.6% in the patients with recommended LV lead locations (n = 41) and

51.9% in the patients with non-recommended LV lead locations (n = 27) (P = 0.043),

respectively. The response rates were 66.2% in the patients with LV lead in neither

the apex nor scar segments (n = 68) and 27.3% in either apex or scar segments (n =

11) (P = 0.014), respectively. It should be noted that the response rates for 3 recom-

mendation levels were similar (76.9% [1st level, n=13], 76.9% [2nd level, n=13], and

73.3% [3rd level, n=15] [P = 0.967]), which indicated that pacing at any of the three

recommendations resulted in a similar CRT response rate. In addition, over a median

follow-up of 49 months, the recommendation group had lower all-cause mortality and

fewer composite events compared with the non-recommendation group and the apex

or scar group.

Nuclear imaging to guide LV lead placement

Integrated multi-modality cardiac imaging can visualize the concordance between

LV lead position and the latest activated viable region for navigating CRT LV lead

placement [54].

Most CRT implanters use fluoroscopy venograms to visualize coronary venous struc-

tures and guide the lead placement during implantation of CRT [90]. The optimal

LV pacing site from nuclear imaging may not contain any suitable venous branch for
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Figure 1.3: 3D SPECT and fluoroscopy image fusion to guide the selection
of target venous site and navigate the CRT left-ventricular lead placement
[4]. The major veins were manually identified by operators on the pre-CRT
fluoroscopic images, reconstructed to a 3D structure, and fused with SPECT
MPI epicardial surface. The middle part of the anterior vein was the targeted
LV lead position, which overlapped with the recommended LV lead segment
(the white segment). The LV lead was placed under the guidance of this 3D
fusion model to the target venous site (red arrows), as shown in the post-
CRT fluoroscopy images. The QRS duration decreased from 168 to 140 ms
immediately after the CRT device was turned on. After a 1-month follow-
up, the LVEF increased from 32% to 57% assessed by echocardiography.

the LV lead placement [9]. Moreover, implanters may not be able to accurately com-

bine the venous anatomy with the latest activated viable segment. Such inaccurate

correspondence may result in undesired or inappropriate LV lead placement, as a 20

mm difference in the LV lead position may affect the CRT response [91]. As shown

in Figure 3, a 3D fusion method was developed to integrate LV venous anatomy re-

constructed from fluoroscopy venograms with LV epicardial surface extracted from

SPECT MPI for navigating CRT LV lead placement. This method was evaluated
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against the manual fusion between SPECT MPI and CT venograms. For each pa-

tient, both CT and fluoroscopic veins were rendered on the SPECT LV epicardial

surface. The overall distance-based mismatch error between the fluoroscopic and CT

veins was 4.6± 3.6 mm, and the segment-based kappa agreement rate was 0.87 (95%

CI: 0.82-0.93) [4].

Another potentially more direct method to guide CRT lead placement is integrating

the venous anatomy from CT venograms with LV epicardial surface from nuclear

images. Imaging CRT was the first prospective double-blinded randomized clinical

trial to integrate CT venography, 99mTc SPECT MPI, and speckle-tracking echocar-

diography radial strain for guiding CRT LV lead placement. It targeted the optimal

coronary sinus branch closest to the non-scarred myocardial segment with the lat-

est mechanical activation. It demonstrated that multi-modality imaging-guided LV

lead placement could improve the CRT response (74% vs. 58%, p=0.02) (Sommer

et al., 2016). Tada et al. proposed a novel method using fusion images between CT

venograms and MPI to target LV lead position for the optimal CRT, which was ap-

plied in 4 HF patients and evaluated by symptomatic (NYHA) and echocardiographic

functional parameters (LVESV and LVEF). All patients were identified as responders

to CRT [92].

Larg multi-center nuclear image-guide clinical trials
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In a prospective study conducted by Peix et al. [87], 195 sequential patients were en-

rolled in a non-randomized, multicenter trial titled Value of intraventricular synchro-

nism assessment by gated-SPECT myocardial perfusion imaging in the management of

heart failure patients submitted to cardiac resynchronization therapy (VISION-CRT).

All patients met the standard criteria for CRT: NYHA class II, III or ambulatory IV

heart failure for at least three months before enrolment; LVEF ≤ 35% from ischemic

or non-ischemic causes; QRS duration ≥ 120 ms, with the morphology of LBBB;

sinus rhythm. The primary outcome was any improvement of the following: ≥ 1

NYHA class, LVEF by ≥ 5%, reduction in ESV by ≥ 15%, and ≥ 5 points in Min-

nesota Living with Heart Failure Questionnaire (MLHFQ). The LV dyssynchrony and

viability were quantified from gated SPECT MPI to predict clinical outcomes at 6

months follow-up. It was reported that the baseline dyssynchrony was not associated

with the primary outcome in univariable (OR 0.7, 95% CI 0.33-1.5) or multivariable

analyses (OR 0.66, 95% CI 0.25-1.76). However, the changes in dyssynchrony showed

a significant correlation with the occurrence of the primary outcome (OR 1.04, 95%

CI 1.01-1.07, P = .007; OR = 1.04 per 1◦ decrease in LV PSD). Thus, the change

of LV mechanical dyssynchrony measured by PSD from gated SPECT MPI was a

valid marker of CRT clinical outcome. Also, the subgroup analysis showed that the

patient with on-target (OR 1.55, 95% CI 0.63-3.84) or acceptable lead placement that

the lead was placed in segments within 10◦ of the latest viable contracting segment

(OR 1.53, 95% CI 0.71-3.28) was also associated with the primary outcome, but not
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significant. The reason for this problem might be that the electrophysiologists in-

volved in the study who were provided the LV lead position, although blinded to the

gated SPECT MPI results, had access to scar distribution from echocardiography.

Moreover, this clinical trial was not a randomized trial, and even though all patients

were analyzed prospectively, the decision as to whether the position of the lead was

placed on the target was determined retrospectively.

Zou et al. conducted the other large prospective, multicenter, randomized, controlled

study titled SPECT Guided LV Lead Placement for Incremental Benefits to CRT

Efficacy (GUIDE-CRT) [10]. The GUIDE-CRT trial enrolled 194 consecutive patients

with sinus rhythm with QRS duration ≥ 120 ms, LVEF ≤ 35%, and NYHA functional

class II to IV from 19 centers across China. All patients were randomly assigned to

the guided group or control group. In the guided group, the LV lead was placed in

the optimal segment that was identified among the middle and basal segments with

the largest mean phase angles and scar burden < 50%, assessed by gated SPECT

MPI; or in the segments adjacent to the optimal segment and with scar burden <

50%. Then, those segments were displayed on a 3D LV surface and integrated with

2D fluoroscopy venograms to provide the navigation map. In the control group, all

patients underwent standard CRT guidelines for LV lead placement. In consequence,

the guided group had a significantly higher on-target rate for the LV lead placement

(85.5% vs. 62.4%; p = 0.002), and the patient with LV lead placed in on-target

segments had a better CRT response rate than the patients with LV lead placed in
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non-recommended segments (57.1% vs. 35.0%; p = 0.025).

1.2.3 Application of artificial intelligence in guiding CRT

The above clinical studies and trials showed that many clinical parameters were as-

sociated with CRT response, including the presence or degree of baseline medical

records, ECG parameters, and nuclear test results. Moreover, dichotomizing utiliza-

tion such as QRS duration may suboptimally stratify response [14, 93].

Traditional statistical analysis methods have extensively investigated predictors con-

tributing to CRT patient selection. However, due to the complexity and the inter-

correlation among these predictors, it is a great challenge to build an effective model

to interpret them and make clinical decisions.

Machine learning (ML) is a computational discipline designed to recognize complex

patterns and make the most accurate predictions from large amounts of data. ML has

been applied within cardiology to generate clinical reports and quantitative diagnosis,

and predict risk in nuclear cardiology [94, 95]. Motwani et al. [96] employed a Log-

itBoost algorithm by the open-source Waikato Environment for Knowledge Analysis

(WEKA) platform to predict all-caused morality in 10,030 patients with suspected

coronary artery disease (CAD) based on 25 clinical features and 44 coronary com-

puted tomographic angiography parameters. The AUC of ML showed significantly
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high accuracy. Arsanjani et al. [97] found that compared to the analysis of experts,

a boosted ensemble ML algorithm (LogitBoost) (accuracy: 87.3) could significantly

improve the diagnostic performance of CAD by computational integration of quanti-

tative perfusion and clinical data in 1,181 SPECT MPI studies.

ML has been used in CRT data analysis in a very limited number of studies. Schmitz

et al. [98] established a classification model for CRT patient selection using identified

genetic variants and clinical records. Peressutti et al. [99] proposed an ensemble

learning classification model to identify CRT ‘super-responders’ based on LV motion

analysis on cardiac MRI. Kalscheur et al. [100] applied ML methods for predicting all-

cause mortality and heart failure hospitalization in 595 CRT patients from the COM-

PANION trial (Comparison of Medical Therapy, Pacing, and Defibrillation in Heart

Failure). The authors evaluated several supervised ML models, which were trained

from the data with labeled outcomes, based on 49 preimplant features obtained from

clinical history, ECG data and basic echocardiographic features. The Random Forest

method had the most accurate prediction (AUC 0.74; 95% CI, 0.72–0.76), and the

sensitivity, negative predictive, specificity, and positive predictive are 52%, 38%, 80%,

and 88%, respectively. In addition, Cikes et al. [101] applied an unsupervised ML

method (multiple kernel learning and k-means clustering) without labeled outcomes

or classes to categorize subjects by similarities in clinical parameters, LV volume and

deformation traces at baseline into four mutually exclusive groups. The treatment

effect of CRT-D on the primary outcome (all-cause death or HF event) and on volume
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response was compared among these groups. Among the four groups with significant

differences in the majority of baseline clinical characteristics, biomarker values, mea-

sures of left and right ventricular structure and function, and the primary outcome

occurrence, two groups included a higher proportion of known clinical characteristics

predictive of CRT response. They were associated with a substantially better treat-

ment effect of CRT-D on the primary outcome than observed in the other groups.

This method may provide a clinically meaningful classification of a phenotypically

heterogeneous HF cohort.

Deep learning is a more complicated ML method. It has been used to extract in-

formation from heterogeneous data and predict information with very high accuracy

[102]. Wang et al. [103] employed a V-net-based deep learning method to extract

LV myocardial contours and quantify LV functions on gated SPECT MPI. The Dice

similarity coefficient (DSC), which was used to measure the performance of image seg-

mentation models, was 0.907 ± 0.039 (endocardium), 0.926 ± 0.021 (myocardium),

and 0.965 ± 0.011, respectively. The correlation coefficient of the LV volume be-

tween the ground truth and the proposed method was 0.939 ± 0.103. Betancur et

al. [104] developed a deep convolutional neural network to predict obstructive disease

from SPECT MPI polar maps as compared with the current standard quantitative

method (total perfusion deficit) (sensitivity: 82.3% vs. 79.8% [per-patient prediction

of obstructive disease], 69.8% vs. 64.4 [per-vessel prediction of obstructive disease]).

Compared to ML, deep learning is scalable and performs better with a larger amount
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of data [105]. The application of an unsupervised ML method in classifying hetero-

geneous HF provides a clinically interpretable method to select CRT responders.

1.2.3.1 Reinforcement learning

Reinforcement learning is particularly well suited for complex tasks similar to clin-

ical decision-making because the agents trained in the model can act on train-

ing with an incomplete amount of data and perform sequential steps to optimize

rewards[106, 107, 108, 109, 110]. However, training a prediction model requires a large

amount of correct sample data for supervised learning, which may lead to incorrect de-

cisions even though the prediction task can be accomplished by imputation[111, 112].

Furthermore, reinforcement learning agents’ rewards can be sparsely defined based

on expert or domain knowledge [108].

1.2.4 Challenges and future of nuclear imaging to guide CRT

Nuclear imaging for guiding CRT has shown great potential in clinical studies, due

to its ability to automatically and accurately characterize myocardial perfusion, and

mechanical dyssynchrony, and identify the optimal LV lead positions. However, there

are still major challenges in nuclear imaging for guiding CRT:
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† The technical limitation of low spatial resolution in PET/SPECT MPI makes

it difficult to measure non-transmural scars. In addition, the phase analysis

technique relies on gated image acquisition. However, during ECG-gated image

acquisition, only 8 or 16 frames are commonly detected in a cardiac cycle, which

can influence the assessment of regional wall motion and thickening [9, 54].

† It is important to explore better technical/ clinical predictors. The commonly

used parameters, PSD and PBW were reported to have significant predictive

values in a number of studies; however, a recent large multi-center trial showed

that the baseline LV PSD and PBW were not predictive in the CRT response

[87].

† Mechanical and electrical dyssynchrony should be analyzed together to improve

CRT patient selection. It had been shown that QRSd could be used to differ-

entiate LBBB patients between with or without mechanical dyssynchrony, but

LBBB was not always accompanied by mechanical dyssynchrony [113].

1.3 Dissertation Outline and Contributions

This section outlines my work on mechanical dyssynchrony and electrical dyssyn-

chrony for CRT patient selection. A high-level summary of each chapter along with

corresponding novel contributions is presented.
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Chapter 2 presents LV shape parameters derived from gated SPECT MPI and

finds that these parameters have the promise to improve the prediction of the super-

response to CRT. Also, the left ventrical mechanical dyssynchrony (LVMD) param-

eters were compared in patients with ischemic cardiomyopathy(ICM) and dilated

cardiomyopathy(DCM) patients, and found that LVMD parameters were better than

clinical guidelines for predicting CRT response for different etiologies.

Chapter 3 presents an autoencoder to discover new predictors from LVMD SPECT

MPI and has resulted in statistically significant improvement in the performance of

the CRT patient selection. The visualization and statistical analysis presented in

the chapter further enhance the clinical explainability of the autoencoder-extracted

parameters.

Chapter 4 proposes an end-to-end ECG classification framework using a 2D CNN

classifier. By utilizing the STFT to transform one-dimensional waveforms into two-

dimensional frequency-time spectrograms, our framework integrates a generalized pre-

trained two-dimensional CNN model for predicting whether a patient corresponds

to CRT. The proposed approach outperforms existing clinical guidelines as well as

popular machine learning models.

Chapter 5 introduces a novel approach for determining the latest activation position

of the heart using VCG and combining it with the latest contraction position measured

by SPECTMPI. This innovative method aims to suggest an optimized position for the
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placement of the CRT LV lead through electromechanical dyssynchrony concordance.

Chapter 6 utilizes deep reinforcement learning to tackle the challenge of determining

optimal treatment decisions for patients undergoing CRT. We explore models with a

discrete state space and specific action space to identify the most effective treatment

policy, improve the reward equation based on the insights of experienced physicians,

and leverage Deep Q-learning and PPO networks to approximate the best action value

function. These efforts aim to improve the treatment policy utilized by clinicians

and provide interpretability. Future research should examine the learned policies

for each patient and explore alternative modeling approaches, such as model-based

reinforcement learning.
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Chapter 2

Mechanical dyssynchrony from

gated SPECT MPI for CRT

patient selection

2.1 Introduction

Existing clinical guidelines for determining whether CRT is feasible and effective are

based on very few medical characteristics. For now, CRT is indicated for patients who

have a low LVEF (typically ≥ 35%), sinus rhythm, left bundle-branch block (LBBB)

pattern, QRS duration ≥ 150ms on ECG and New York Heart Association (NYHA)
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class II, NYHA class III and ambulatory IV symptoms on Guideline Determined

Medical Therapy [24, 25].

This chapter demonstrated four new shape parameters for CRT patient selection, of

which end-systolic eccentricity (ESE) provides incremental value over existing clinical

and nuclear imaging variables [114]; compared the predictive and prognostic values of

left ventricular mechanical dyssynchrony (LVMD) measured by gated SPECT MPI

and the concordance of LV lead with the sites of the latest contraction or relaxation

position in dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM) pa-

tients [115].

2.2 Shape parameters for CRT patient selection

2.2.1 Introduction

Ventricular remodeling is characterized by a group of molecular, cellular, and in-

terstitial changes, which occurs after cardiac injury and is clinically manifested by

changes in size, shape, and function [116, 117, 118]. In addition, a remodeled ven-

tricle is associated with the development and progression of ventricular dysfunction,

arrhythmias, and poor prognosis [119]. Studies have found that LV shape is re-

lated to cardiac function; the normal elliptical LV shape would change to a spherical
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shape due to the development of eccentric hypertrophy or post-myocardial infarction

(MI)[120, 121]. Some shape parameters, such as LV shape index, eccentricity, and

elongation, have been reported to have predictive value for congestive heart failure,

diabetes, and patients with significant cardiac structural and functional abnormalities

[120, 122, 123, 124].

ECG-gated single-photon emission computer tomography (SPECT) myocardial per-

fusion imaging (MPI) can assess LV structure by the tracer counts of myocardial

perfusion, instead of geometric changes in the myocardium, which is more objec-

tive and reproducible. Gimelli et al. [125] found that the LV eccentricity measured

by gated SPECT MPI predicted the presence of multivessel coronary artery disease

(CAD). The left ventricular shape parameters also have a close relationship with

LV volumes and function in HF patients [126, 127], even in healthy subjects [123].

Moreover, the LV shape index has been applied to detect the presence of adverse

LV remodeling in patients with structural and functional cardiac alterations due to

diabetes mellitus [122]. However, very few works have been proposed in the literature

for CRT considering LV shape measured by gated SPECT MPI [128].

Super-responders are the patients who have a significant improvement in functional

capacity, quality of life, HF symptoms, left ventricular function, and reverse remod-

eling after CRT [129]. Several studies found that LV shape characteristics, such

as smaller LV, less LV end-diastolic diameter, and greater LV strain, measured by
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echocardiography, were associated with super-response to CRT [129, 130]. Gated

SPECT MPI, which is widely accepted in the clinic, has been validated to effectively

access LV shape, due to its high repeatability and reproducibility in the evaluation

of myocardial perfusion, global and regional ventricular function, and mechanical

dyssynchrony for patients with CRT. This study is a post hoc retrospective analysis

of the shape variables in patients obtained from the IAEA VISION-CRT trial. It is

aimed to evaluate the clinical role of LV eccentricity measured by gated SPECT MPI

in the prediction of super-response to CRT.

2.2.2 Methods

2.2.2.1 Patient Population

The VISION-CRT trial was a prospective multicenter trial that enrolled subjects

from 10 cardiological centers in 8 countries (Brazil, Chile, Colombia, Cuba, India,

Mexico, Pakistan, and Spain). The complete study design and primary results of

VISION-CRT were previously published[87, 128, 131]. The inclusion criteria were

as follows: symptomatic HF patients over 18 years old with NYHA functional class

II, III or ambulatory IV HF for at least 3 months before enrollment, despite optimal

medical treatment according to the current guidelines; LVEF ≤ 35% from ischemic or

non-ischemic causes, measured according to the usual procedure at the participating
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center for inclusion, whereas LVEFs used for analysis came from the nuclear core

lab; sinus rhythm with LBBB configuration defined as a wide QRSd (≥ 120 ms).

Exclusion criteria were as follows: right bundle branch block, pregnancy or breast-

feeding, acute coronary syndromes, coronary artery bypass grafting, or percutaneous

coronary intervention in the last 3 months before enrolment and within 6 months

of CRT implantation. The CRT devices were implanted by standard procedures.

The LV lead was implanted in the posterolateral coronary vein, depending on vein

availability.

Definitions of all clinical variables were outlined before the start of VISION-CRT.

Subjects underwent a detailed clinical and gated SPECT MPI evaluation just before

recruitment to the study. All patients provided written informed consent, and all

procedures were done according to the Declaration of Helsinki.

Clinical parameters and gated SPECT MPI were assessed before CRT (baseline) and

at 6± 1 month after (follow-up). The patients were classified as ”super-responders”

to CRT if they had a relative increase of LVEF ≥ 15% as measured by gated SPECT

MPI at follow-up. Others were classified as non-super-responders.
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2.2.2.2 SPECT MPI Assessment

Gated SPECT MPI was performed around 30 min post injection using 20 to 30 mCi

of 99mTc-sestamibi or tetrofosmin of 740 to 1110 MBq. All the images were acquired

in gamma cameras using 180◦ orbits with a complimentary 8 or 16 frames ECG

gating. Image reconstruction and reorientation were completed by Emory Recon-

struction Toolbox (ERToolbox; Atlanta, GA) using the ordered subset expectation

maximization (OSEM) method with three iterations and ten subsets and filtered by a

Butterworth filter with a power of 10 and a cut-off frequency of 0.3 cycles/mm. The

resulting short-axis images were sent to Emory Cardiac Toolbox (ECTb4, Atlanta,

GA) for automatized accessing of LV function, including LVEF, left ventricular end-

systolic volume (LVESV), left ventricular end-diastolic volume (LVEDV), LV shape;

end-systolic eccentricity (ESE) and end-diastolic eccentricity (EDE), and LV me-

chanical dyssynchrony; and phase standard deviation (PSD) and phase bandwidth

(PBW). End-systolic volume index (ESVi) and end-diastolic volume index (EDVi)

(in milliliters per square meter) are obtained by dividing LVESV and LVEDV by the

body surface area (BSA), respectively. Moreover, the latest contracting viable sites

could be identified by Emory Cardiac Toolbox as a recommendation of the optimal

LV lead position [41]. Concordance is defined as the agreement between CRT LV lead

position recorded and the recommended site.
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2.2.2.3 Shape Parameters Measured by Gated SPECT MPI

Measurement techniques of myocardial shape variables have been well established.

They calculate the 3-dimensional LV shape parameters from gated SPECT MPI [127].

Eccentricity is a measure of the elongation of LV, which is derived from an ellipsoid

fitted from the LV endocardial surface according to Eq. 2.1, where x and y are the

minor axes, and z is the major axis of the ellipsoid [125].

Eccentricity =

√
1− x× y

Z2
(2.1)

Based on the assumption that the minor axes have the same length (x = y), the

ellipsoid can be considered as a spheroid, as shown in Figure 2.1. The LV eccentricity

is closer to 0 if the shape of LV is closer to a sphere and closer to 1 if the shape of

LV is closer to a line.

Statistical Analysis

Differences between the super-responders and nonsuper-responders were compared by

the Student t test for continuous variables, expressed as mean ± standard deviation,

and Pearson χ2 test for categorical variables, expressed in number and percentage.

The univariate binary logistic regression analysis was applied to estimate potential
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Figure 2.1: The best-fitted ellipsoid based on the LV endocardial sur-
face from a gated SPECT MPI study measured by Emory Cardiac Toolbox
(ECTb4, Atlanta, GA).

predictors for super-responders. The multivariable binary logistic regression was per-

formed to analyze the independent predictors of super-responders, and the variables

with P < 0.05 in the univariate analysis were included. Moreover, the incremental

values of shape parameters were evaluated by comparing the receiver operator char-

acteristic (ROC) curve of binary logistic regression from the clinical variables alone,

from the combination of clinical variables with ESE or EDE, and from the combina-

tion of clinical variables with all shape parameters. P < 0.05 was considered to be

statistically significant. Statistical analysis was performed by the Python Statsmodels

package [132].
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2.2.3 Results

2.2.3.1 Baseline Characteristics

A total of 199 patients underwent CRT, but complete data of clinical assessment,

baseline SPECT MPI, and clinical 6-month follow-up data were obtained in 177 pa-

tients. Among these patients, 11 of them died before the follow-up, and one patient

had an extremely small ESV (8 mL), which was an outlier caused by the low resolu-

tion of gated SPECT MPI when measuring a small heart. Finally, 165 patients were

included in the statistic analysis in this research (Figure 2.2).

The baseline characteristics of the study population are shown in Table 2.1. For all

the patients, the age was 60.3±10.9 years, and 98 (59.4%) patients were male. Fifty-

one (30.9%) patients had a previous history of CAD. Hypertension (58.8%), smoking

(16.4%), and diabetes (24.8%) were also shown in the baseline data.

After 6-month follow-up, 72 of the 165 patients (43.6%) were considered as a super-

responder to CRT, and 93 of the 165 patients (56.4%) were considered as non-super-

responders. Significant differences of ESE and EDE (0.6 ± 0.1 vs. 0.5 ± 0.2, P =

.014; 0.5± 0.2 vs. 0.6± 0.2, P = .045) were noted between the two groups, as well as

other clinical variables, including ACE inhibitors or ARB (65 patients [90.3%] vs. 71
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Table 2.1
Baseline characteristics and left ventricular parameters of the enrolled

patients

Variables
All

(n=142)
DCM

(n=92, 64.8%)
ICM

(n=50, 35.2%)
P

value

ACEI/ARB 136 (82.4%) 65 (93%) 71 (76.3%) .034
Age 60.3± 10.9 61.2± 9.9 59.6± 11.6 .354
BSA 1.8± 0.2 1.8± 0.2 1.8± 0.2 .984
CAD 51 (30.9%) 14 (19.4%) 37 (39.8%) .008
Diabetes mellitus 41(24.8%) 16 (22.2%) 25 (26.9%) .613
Gender 98 (59.4%) 40 (55.6%) 58 (62.4%) .469
Hypertension 97 (58.8%) 39 (54.2%) 58 (62.4%) .367
MI 35 (21.2%) 7 (9.7%) 28 (30.1%) .003
NYHA .014

II 46 (27.9%) 27 (37.5%) 19 (20.4%)
III 101 (61.2%) 35 (48.6%) 66 (71.0%)
IV 18 (10.9%) 10 (13.9%) 8 (8.6%)

Race .362
African 17 (10.3%) 8 (11.1%) 9 (9.7%)
Asian 6 (3.6%) 1 (1.4%) 5 (5.4%)
Caucasian 23 (13.9%) 10 (13.9%) 13 (14%)
Hispanic 87 (52.7%) 35 (48.6%) 52 (55.9%)
Indian 32 (19.4%) 18 (25.0%) 14 (15.1%)

QRS duration 160.9± 25.1 162.9± 22.5 159.4± 26.9 .378
Smoking 27 (16.4%) 14 (19.4%) 13 (14.0%) .466
SPECT variables

Concordance 40 (24.2%) 15 (20.8%) 25 (26.9%) .474
EDVi 143.1± 56.7 132.4± 54.5 151.4± 57.0 .034
ESVi 106.9± 52.4 101.6± 52.8 111.0± 51.7 .252
EDE 0.5± 0.2 0.6± 0.2 0.5± 0.2 .085
ESE 0.6± 0.2 0.6± 0.1 0.5± 0.2 .014
LVEF 27.7± 10.3 25.8± 10.3 29.2± 10.1 .035
LVEDV 257.6± 104.7 239.6± 103.7 271.6± 103.4 .052
LVESV 192.7± 96.2 184.3± 98.9 199.2± 93.6 .330
PBW 152.4± 73.5 145.7± 74.4 157.6± 72.4 .306
PSD 48.8± 19.7 47.6± 20.6 49.6± 19.9 .520
Scar 24.5± 14.4 20.0± 11.6 27.9± 15.4 < .001

Data are expressed as mean ± SD or number (percentage)
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Figure 2.2: Study flow chart. CRT cardiac resynchronization ther-
apy, SPECT gated single-photon emission-computed tomography, MPI my-
ocardium perfusion imaging.

[76.3%], P = .034), CAD (14 [19.4%] vs. 37 [39.8%], P = .008), myocardial infarction

(7 [9.7%] vs. 28 [30.1%], P = .003), EDVi (132.4 ± 54.5 vs. 151.4 ± 57.0, P = .034),

NYHA (P = .014), LVEF (25.8 ± 10.3 vs. 29.2 ± 10.1, P = .035), and myocardial

scar (20.0% ± 11.6% vs. 27.9% ± 15.4%, P < .001). However, the concordance was

not statistically significant to distinguish super-response and non-superresponse (P =

.474). If the significance level was set at 0.1, EDE (0.6± 0.2 vs. 0.5± 0.2, P = .085)

could also be statistically significant. Representative examples of super-responders

and non-super-responders are depicted in Figure 2.3.

Prediction of Super-Response to CRT
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Figure 2.3: Illustrations of the end-systolic frames of a super-responder
and a non-super-responder. (a, b) are the baseline and follow-up vertical
long axis (VLA) and horizontal long axis (HLA) images of a 57-year-old male
as an example of a super-responder. (c, d) are the baseline and follow-up
VLA and HLA images of a 54-year-old male as an example of a non-super-
responder.

In the univariate analysis, ACEI or ARB (OR 2.88, 95% CI 1.15–7.18, P = .024),

CAD (OR 0.37, 95% CI 0.18–0.75, P = .006), EDVi (OR 0.99, 95% CI 0.99-1.0, P =

.036), myocardial scar (OR 0.96, 95% CI 0.94–0.98, P .001), myocardial ischemia (OR

0.25, 95% CI 0.10–0.61, P = .002), LVEF (OR 0.97, 95% CI 0.941.00, P = .037), and

ESE (OR 12.59, 95% CI 1.56101.35, P = .017) were associated with super-response.

However, the baseline mechanical dyssynchrony (PSD, P = .518; PBW, P = .304)

and concordance (P = .369) were not significantly associated with super-response. In

the multivariate analysis, ESE was also an independent predictor (OR 35.71; 95% CI,

1.66–766.03; P = .006). The results of the univariate and multivariate analysis are
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Table 2.2
Univariate and multivariate logistic regression analyses of super-responders

defined by a relative increase in LVEF ≥ 15%

Univariate analysis Multivariate analysis

Variables OR 95% CI P value OR 95% CI P value

ACEI/ARB 2.88 1.15-7.18 .024 5.27 1.73-16.00 .003
CAD 0.37 0.18-0.75 .006 0.83 0.28-2.45 .730
Concordance 0.72 0.35-1.49 .369
EDVi 0.994 0.99-1.00 .036 0.98 0.98-0.99 .001
ESVi 1.00 0.99-1.00 .252
EDE 4.89 0.79-30.44 .089
ESE 12.59 1.56-101.34 .017 35.71 1.66-766.03 .001
Gender 0.75 0.40-1.41 .377
LVEF 0.97 0.94-1.00 .037 0.87 0.83-0.92 <.001
LVEDV 1.00 0.99-1.00 .055
LVESV 1.00 0.99-1.00 .329
MI 0.25 0.10-0.61 .002 0.25 0.07-0.91 .036
NYHA 0.72 0.43-1.20 .212
PSD 1.00 0.98-1.01 .518
PBW 1.00 0.99-1.00 .304
QRS duration 1.01 0.99-1.02 .376
Scar 0.96 0.94-0.98 .001 0.97 0.94-1.00 .005

shown in Table 2.2.

In the ROC analysis of LV shape parameters, the area under the curve (AUC) of

clinical variables alone (sensitivity 0.65, specificity 0.78, AUC 0.8), the combination

of clinical variables with EDE (sensitivity 0.65, specificity 0.8, AUC 0.8), the com-

bination of clinical variables with ESE (sensitivity 0.68, specificity 0.82, AUC 0.82),

and the combination of clinical variables with both ESE and EDE (sensitivity 0.67,

specificity 0.81, AUC 0.83) increased sequentially, as shown in Figure 2.4.

Furthermore, sequential models indicated that the addition of ESE (likelihood 6.41,
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Figure 2.4: Receiver operating characteristic curves of clinical characteris-
tic with or without ESE and EDE.

P = .011) was more strongly associated with CRT super-responders. However, the

addition of EDE to a model of clinical characteristics did not provide a significant im-

provement in association with CRT super-responders. Moreover, due to the collinear-

ity of ESE and EDE (Pearson’s correlation coefficient 0.81, P < .001), EDE reduces

the performance of the model of ESE plus clinical characteristics (LH 1.55, P = .213),

as shown in Figure 2.5.

2.2.3.2 Discussion

This study demonstrates that the LV shape parameter ESE is a promising variable

derived automatically from gated SPECT MPI to predict super-responders of CRT.

Moreover, it provides incremental value over clinical and nuclear imaging variables.

In patients treated with CRT, presenting a super-response is associated with excellent
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Figure 2.5: Incremental adjusted additive value of eccentricity in the pre-
diction of super-responders of CRT.

long-term outcomes [133]. The identification of these patients can improve our under-

standing of pathophysiologic mechanisms linked to reverse remodeling and provide

better tools to select the best candidates for CRT.

LV remodeling is associated with progressive worsening of LV function and increased

cardiovascular morbidity and mortality in various cardiovascular diseases [116, 118].

The most common causes are represented by conditions with an elevated LV hemo-

dynamic load or after myocardial infarction, resulting in an increase in LV chamber

volume, muscle mass, and fibrous tissue contents [121, 123]. Several reports have

suggested that descriptors of LV shape enhance the ability to discriminate normal

from pathological LV because the occurrence of abnormal LV eccentricity takes place
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even before the change in LV systolic function becomes apparent [134, 135].

The degree of LV enlargement and dysfunction is known to be directly related to

the risk of death [136]. However, in gated SPECT and echocardiography, the mea-

surement method of sphericity is different. In two-dimensional echocardiography, LV

geometry is calculated from manual measurements, which is subject to variability

and depends on the experience of the operator. The three-dimensional measurement

of ventricular shape by gated SPECT MPI derives automatically and it has been

demonstrated to be highly reproducible [127]. Two similar shape variables, end-

systolic shape index (ESSI) and end-diastolic shape index (EDSI), were also tested

in our research. The left ventricle shape index, defined as the ratio of the maxi-

mum 3D short- and long-axis dimensions of the left ventricle at the end-systolic or

end-diastolic frame, is measured by gated SPECT MPI and has a great correlation

with ESE (Pearson correlation coefficient, 0.98) and EDE (Pearson correlation co-

efficient, 0.99), respectively. ESSI was a significant independent predictor of CRT

super-responders (OR, 0.036, 95% CI 0.00–0.77, P = .033). EDSI could also predict

CRT super-responders (OR, 0.063, 95% CI 0.00–1.70, P = .10). In addition, ESSI

had an incremental value to predict CRT responders, but EDSI did not. Therefore,

no matter how the LV shape is defined, it has great potential to predict CRT super

responders.

The improvements in LVEF and the reductions in LVEDV are generally modest for
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patients with heart failure who undergo CRT. But some part of patients had a dra-

matic response to CRT (super-responders). Bulava et al. [137] were the first to

describe this phenomenon in a 72-year-old woman with ischemic cardiomyopathy,

whose LVEF increased from 15% to 60% at 1-year follow-up after CRT. Rickard et

al. [138] identified the super-responders as an absolute LVEF improved by ≥ 20%.

Killu et al. [139] defined the patients with an absolute change in LVEF of > 15%

as super-responders. Ypenburg et al. [140] used the decrease in LVESV ≥ 30% as

the definition of super-responders. Both of them seem reasonable because LVESV,

as a volumetric assessment, is an objective measure that provides information on LV

reverse remodeling and predicts long-term clinical outcomes [129]; compared to the

improvement in LVESV, LVEF is the most widely used variable in echocardiogra-

phy and can present the LV function while providing prognostic benefit. Antonio et

al. [129] proposed a definition of super-responders: if patients have a reduction of

one or more NYHA functional classes, a two-fold increment or an absolute change

in LVEF of > 45%, and decrease in the LVESV > 15%. However, this definition of

super-responder has limitations, because (1) reduction of one NYHA functional class

is a subjective evaluation of the improvement of CRT, which might have a placebo

effect in our non-randomized clinical trial; (2) two-fold increment or absolute change

in LVEF of > 45% might be too strict to the super-responders.

In our study, the super-response was defined as a relative increase in the LVEF ≥

15%. In general responders (an increase in LVEF ≥ 5%), the ESE (0.6 ± 0.1 vs. 0.5
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± 0.2, P < .001) and EDE (0.6 ± 0.2 vs. 0.5 ± 0.2, P = .025) also had differences

between responders and non-responders. Both of them were independent predictors

for general CRT responders in univariate analysis, but not significant in multivariate

analysis. Additionally, a combination of a relative increase in LVEF ≥ 15% or a

decrease in LVESV ≥ 30% was analyzed. In our study, 74 (44.8%) patients had the

combined outcome and were classified into super-responders. Significant differences

were found between all end-systolic and end-diastolic eccentricity (ESE: 0.6 ± 0.1 vs.

0.5 ± 0.2, P = .005; EDE: 0.6 ± 0.2 vs. 0.5 ± 0.2, P = .037). Both of them were

independent predictors of super-responders in univariate analysis (ESE: OR 18.07,

95% CI 2.14–152.32, P = .008; EDE: OR 6.94, 95% CI 1.08–44.83, P = .042). Due

to the collinearity of ESE and EDE, we preferred multivariate analysis in separate

models and got a similar result of ESE (OR 12.16, 95% CI 0.95–156.32, P = .055),

as shown in Table 3. Although the P value was greater than 0.05, the OR was large,

which means a strong association between ESE and super-responders. Moreover, the

lead concordance had no predictive value between super-responders (P = .369) and

general responders (P = .895).

We also found that scar percentage has a moderate correlation with ESE (Pearson

correlation coefficient, −0.36); other clinical characteristics and nuclear imaging vari-

ables had a weak correlation with ESE. The relationship between LV shape and LV

size is probably complicated, and LV shape may also depend on other factors. All

findings have demonstrated that ESE has incremental value over significant clinical
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and nuclear imaging variables, including angiotensin-converting enzyme inhibitors

(ACEI) or angiotensin II receptor blocker (ARB), CAD, MI, LVEF, and scar burden

in predicting CRT super-responders.

There were several limitations in this study. First, this was a post hoc analysis of

the VISION-CRT trial that was not a randomized trial. Second, the information

provided by the short follow-up period was limited; the prognostic value of LV shape

parameters needs further investigation. Third, this study enrolled a relatively small

number of patients from multi centers with the inherent limitation of such a study

design. Fourth, in the design of the VISION-CRT trial, some variables were not

included in the data acquisition, such as heart rate that can influence LVEF [141].

Further investigation with a longer follow-up period is needed to assess LV shape

parameters in CRT super-responders.
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2.3 Predictive values of left ventricular mechani-

cal dyssynchrony for CRT response in heart

failure patients with different pathophysiology

2.3.1 Introduction

There are 30% to 40% of cardiac resynchronization therapy (CRT) recipients who

do not benefit from CRT [9, 142]. LV mechanical dyssynchrony (LVMD) parameters

measured by phase analysis from gated single-photon emission computed tomography

(SPECT) myocardial perfusion imaging (MPI) provide repeatable and reproducible

information about the presence of intraventricular synchronism [75, 76]. They have

been found to be independent predictors for CRT patient selection [2, 143] and have

been proven to have prognostic value [144, 145]. Moreover, the concordance of LV

lead on or adjacent to the late contracting viable segments measured by gated SPECT

MPI was associated with CRT response, heart failure rehospitalization, and all-cause

mortality [43]. In dilated cardiomyopathy (DCM) patients, systolic and diastolic

LVMD were independent predictors for CRT response, and pacing the LV lead in

the segments with the latest contraction and relaxation would improve the CRT re-

sponse rate [146]. For ischemic cardiomyopathy (ICM) patients, the systolic phase
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bandwidth (PBW) as an LVMD parameter has been identified as an independent

predictor of ventricular arrhythmia after CRT implantation [143]. However, compar-

ative studies on the predictive value of LVMD for CRT in HF patients with different

pathophysiology are still limited. This study aimed to compare the predictive and

prognostic values of LVMD measured by gated SPECT MPI and the concordance of

LV lead with the sites of the latest contraction or relaxation position in DCM and

ICM patients.

2.3.2 Methods

2.3.2.1 Patient population

CRT recipients were consecutively enrolled in a retrospective database at the First

Affiliated Nanjing Medical University Hospital from May 2009 to August 2020. Study

subjects selected retrospectively had DCM: a presence of LV dilation and LV systolic

dysfunction in the absence of other etiological factors that might cause LV dysfunc-

tion by echocardiography according to the recent criteria or CAD that causes global

systolic dysfunction [147]; or ICM: epicardial coronary artery stenosis greater than

50% or previous history of coronary revascularization or myocardial infarction [67].

A total of 92 DCM and 50 ICM patients who met the above criteria were included in

the study as shown in Figure 2.6. All patients met standard indications for CRT at
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Figure 2.6: Study flow chart. CRT, cardiac resynchronization therapy;
AF, atrial fibrillation; RBBB, right bundle branch block; MPI, myocardial
Perfusion Imaging; DCM, dilated cardiomyopathy; ICM, ischemic cardiomy-
opathy.

the time of implantation: LVEF < 35%, QRS duration 120 milliseconds with sinus

rhythm, NYHA functional class greater or equal to II, and optimal medical therapy

for at least three months before CRT implantation. Exclusion criteria were as fol-

lows: atrial fibrillation, right bundle branch block, pregnancy or breastfeeding, and

those being upgraded from right ventricular pacing. This study was approved by the

Institutional Ethical Committee of the First Affiliated Hospital of Nanjing Medical

University.
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2.3.2.2 Echocardiography

Echocardiography was performed at baseline before CRT implantation and at the

6-month CRT clinical follow-up. LV function was assessed twice by two experienced

ultrasound experts, who were blinded to the clinical data before and six months after

CRT implantation, and the mean value was used as the final record. LVEF was calcu-

lated using the 2-dimensional modified biplane Simpson method. Echocardiographic

response to CRT was defined as an increase in LVEF by 5% or more.

2.3.2.3 SPECT MPI assessment

Gated SPECT MPI was performed around 60 minutes after injection using 20-30mCi

of 99mTc-sestamibi. All the images were acquired in a dual-headed camera (Car-

dioMD, Philips Medical Systems) with a standard protocol with 20% energy window

around 140 KeV,180◦ orbit, 32 steps with 25 seconds per step, 8-bin gating, and 64

planar projections per gate. Image reconstruction and reorientation were performed

by Emory Reconstruction Toolbox (ERToolbox; Atlanta, GA) using the ordered sub-

set expectation maximization (OSEM) method with three iterations and ten subsets

and filtered by a Butterworth low-pass filter with an order of 10 subsets and a cutoff

frequency of 0.3 cycles/cm.
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The resulting short-axis images were sent to an interactive tool for automatized ac-

cessing LV contour parameters by an automatic myocardial sampling algorithm that

searched the maximal count circumferential profiles in each cardiac frame. Further-

more, the onset of mechanical contraction and relaxation throughout the cardiac cycle

were obtained by multi-harmonic Fourier approximations [148]. Then, the LVMD was

represented by phase distribution of systolic and diastolic dyssynchrony for the en-

tire left ventricle, and quantitative parameters of LVMD were calculated as PSD and

PBW [72, 148].

2.3.2.4 CRT implantation and LV lead position

The right atrial and ventricular leads were positioned under fluoroscopic guidance

by a transvenous approach. The LV lead location was determined by coronary ve-

nous angiography cine images in the left anterior oblique (LAO) and right anterior

oblique (RAO), and then correlated to the 13-segment polar map of the systolic and

diastolic dyssynchrony [67, 90]. LV lead located on or adjacent segment of the latest

contraction or relaxation segment was classified as being concordant to the systolic

phase or diastolic phase (one-match), respectively, as depicted in two ICM examples

in Figure 2.8.
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Figure 2.7: Illustrative examples of the systolic match and diastolic match.
Polar maps of patient 1 with ICM showing the LV lead located on the latest
contraction segment (green in A), not on or adjacent to the latest relaxation
segment (red box in B). This patient is classified as a systolic match. The
LV lead of Patient 2 is located on the latest relaxation segment (green box
in D) and not on or adjacent to the latest contraction segment (red box in
C).

2.3.2.5 Statistical analysis

The differences between the DCM and ICM were compared by the unpaired t-test

for continuous variables, expressed as mean ± standard deviation, and χ2 test for

categorical variables expressed in number and percentage. The systolic and diastolic
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LVMD within all patients, DCM patients, and ICM patients were compared by paired

t-test. Univariate binary logistic regression analysis was performed on all clinically

relevant variables to estimate potential predictors for CRT response. Due to the

collinearity between LVMD parameters, and in order to avoid model overfitting, they

were entered one by one with those selected variables that were found significant in

the univariate analysis in a stepwise fashion into the multivariate logistic regression to

obtain the optimal models. Kruskal-Wallis H-test was used to analyze the difference

in CRT response rate among three groups in DCM and ICM patients, respectively.

Differences in survival over time were analyzed by the log-rank Kaplan-Meier survival

analysis. P < 0.05 was considered to be statistically significant. Statistical analysis

was performed by the Python Statsmodels package [132] and IBM SPSS Statistics

software version 26 (SPSS Inc, Chicago, Illinois).

2.3.3 Results

A total of 142 patients (DCM, 92; ICM, 50) who underwent SPECT MPI before CRT

implantation were included in this study. The baseline characteristics of the included

patients were shown in Table 2.3. For all patients, the age was 64.6 ± 14.5 years,

and 71.1% (n=101) patients were male. The baseline QRS duration (157.9 ± 23.3),

medical therapy records, and LV functions were also shown in the baseline table. The

differences between systolic and diastolic LVMD in all patients, DCM patients, and
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Table 2.3
Baseline characteristics and left-ventricular parameters of the enrolled

patients.

Variables
All

(n=142)
DCM

(n=92, 64.8%)
ICM

(n=50, 35.2%)
P

value

Age 64.6 ± 14.5 60.3 ± 11.9 72.5 ± 15.3 <.001
Male 101 (71.1%) 68 (73.9%) 33 (66.0%) .424
Hypertension 65 (45.8%) 33 (35.9%) 32 (64.0%) .002
DM 38 (26.8%) 20 (21.7%) 18 (36.0%) .102
QRS duration 157.9 ± 23.3 155.6 ± 24.3 162.0 ± 20.7 .124
NT-proBNP 3841.6 ± 4441.7 3765.2 ± 3761.2 3982.2 ± 5474.4 .783
NS-VT 85 (59.9%) 56 (60.9%) 29 (58.0%) .878
NYHA 0.319

II 60 (42.3%) 38 (41.3%) 22 (44.0%)
III 66 (46.5%) 46 (50.0%) 20 (40.0%)
IV 16 (11.3%) 8 (8.7%) 8 (16.0%)

Medication
ACE inhibitors 79 (55.6%) 57 (62.0%) 22 (44.0%) .06
ARB 28 (19.7%) 20 (21.7%) 8 (16.0%) .548
Diuretics 134 (94.4%) 88 (95.7%) 46 (92.0%) .603
β-blocker 135 (95.1%) 89 (96.7%) 46 (92.0%) .401

LVEF by echo 29.2 ± 7.2 28.8 ± 6.9 30.0 ± 7.7 .348
LVEDV 289.8 ± 129.6 310.8 ± 139.7 251.1 ± 97.4 .008
LVESV 238.7 ± 118.9 259.0 ± 126.6 201.5 ± 92.2 .006
Scar burden 27.7 ± 13.6 26.4 ± 12.0 30.1 ± 15.9 .128
Systolic PSD 43.8 ± 22.4 42.5 ± 21.9 46.2 ± 23.1 .356
Systolic PBW 163.9 ± 91.8 152.0 ± 87.0 185.8 ± 96.2 .036
Diastolic PSD 54.4 ± 23.2 53.3 ± 23.9 56.3 ± 21.9 .458
Diastolic PBW 191.4 ± 90.0 179.3 ± 89.7 213.6 ± 86.1 .03
LV lead in scarred
myocardium

1.8 ± 0.4 1.8 ± 0.4 1.9 ± 0.3 .027

Diastolic match 103 (72.5%) 63 (68.5%) 40 (80.0%) .203
Systolic match 60 (42.3%) 30 (32.6%) 30 (60.0%) .003
LVMD concordance .004

both-match 42 (29.6%) 18 (19.6%) 24 (48.0%)
one-match 79 (55.7%) 57 (61.9%) 22 (44.0%)
neither match 21 (14.8%) 17 (18.5%) 4 (8.0%)

ICM patients were all significant (all P<0.001).

In the univariate analysis for DCM patients, QRS duration (95%CI, 1.0-1.05,
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P=0.014), NT-proBNP (95%CI, 0.0-0.61, P=0.026), non-sustained ventricular tachy-

cardia (NS-VT) (95%CI, 0.1-0.64, P=0.004), Scar burden (95%CI, 0.93-1.0, P=0.029),

all LVMD parameters (systolic PSD, 95%CI, 0.96-1.0, P=0.017; systolic PBW,

95%CI, 0.99-1.0, P=0.009; diastolic PSD, 95%CI, 0.95-0.99, P=0.003; diastolic PBW,

95%CI, 0.99-1.0, P=0.003), LVMD concordance (95%CI, 0.13-0.5, P<0.001), and LV

lead in scarred myocardium (95%CI, 1.09-8.18, P=0.033) were statistically signifi-

cant predictors of CRT response. However, for ICM patients, only diabetes melli-

tus (DM) (95%CI, 0.05-0.62, P=0.007), QRS duration (95%CI, 1.0-1.07, P=0.044),

NS-VT (95%CI, 0.08-0.94, P=0.039), LVEDV (95%CI, 0.98-1.0, P=0.009), LVESV

(95%CI, 0.98-1.0, P=0.009) were statistically significant predictors of CRT response,

as shown in Table 2.4.

In the multivariate models for DCM patients, QRS duration, NT-proBNP, 3 LVMD

parameters (systolic PBW: 95% CI, 0.98-1.00, P=0.041; diastolic PSD: 95% CI, 0.94-

1.00, P = 0.041; diastolic PBW: 95% CI, 0.98-1.00, P = 0.028) and LVMD concor-

dance (P<0.003 for all) were significant independent predictors of CRT response. For

ICM patients, DM and LVESV were significant independent predictors of CRT re-

sponse; however, all LVMD parameters and LVMD concordance were not significant.

The results of the multivariate analysis were shown in Table 2.5, Table 2.6, Table 2.7,

and Table 2.8.

Patients were divided into three groups based on the latest contraction or relaxation
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Table 2.4
Univariate logistic regression analyses of DCM and ICM patients

DCM ICM

Variables OR 95% CI P value OR 95% CI P value

Age 1 0.96-1.03 .962 1.03 0.97-1.1 .294
Male 0.81 0.31-2.1 .66 1.07 0.33-3.45 .914
Hypertension 0.77 0.32-1.82 .546 0.44 0.13-1.47 .182
DM 1.07 0.39-2.94 .894 0.17 0.05-0.62 .007
QRS duration 1.02 1.0-1.05 .014 1.03 1.0-1.07 .044
NT-proBNP 0.02 0.0-0.61 .026 0.15 0.0-9.53 .371
NS-VT 0.25 0.1-0.64 .004 0.28 0.08-0.94 .039
NYHA

II .037 .191
III 1.68 0.34-8.35 .526 2.14 0.41-11.16 .366
IV 0.504 0.108-2.361 .385 0.66 0.13-3.47 .630

LVEF by Echo 0.97 0.92-1.04 .404 1.02 0.94-1.09 .678
LVEDV 1 1.0-1.0 .438 0.99 0.98-1.0 .009
LVESV 1 1.0-1.0 .422 0.99 0.98-1.0 .009
Scar burden 0.96 0.93-1.0 .029 0.97 0.93-1.0 .075
Systolic PSD 0.98 0.96-1.0 .017 0.98 0.95-1.0 .064
Systolic PBW 0.99 0.99-1.0 .009 1 0.99-1.0 .107
Diastolic PSD 0.97 0.95-0.99 .003 0.97 0.95-1.0 .056
Diastolic PBW 0.99 0.99-1.0 .003 1 0.99-1.0 .171
LVMD concordance

both-match .000 .364
one-match 127.50 10.48-1551.48 .000 5.00 0.45-55.63 .190
neither match 11.93 2.49-57.28 .002 3.00 0.27-33.49 .372

LV lead in scarred
myocardium

2.99 1.09-8.18 .033 3.9 0.38-40.37 .254

segment at the LV lead location: patients whose LV lead was concordant or adjacent

to the latest contraction and relaxation segment (both-match: DCM, n=18; ICM,

n=24), and patients whose LV lead was concordant or adjacent to the latest con-

traction or relaxation segment (one-match: DCM, n=57; ICM, n=22), and patients

whose LV lead was neither concordant nor adjacent to the latest contraction or re-

laxation segment (neither: DCM, n=17; ICM, n=4). The intra-group comparison
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Table 2.5
Stepwise multivariate analysis for DCM and ICM patients including

systolic PSD

DCM ICM

Variables OR 95% CI P value OR 95% CI P value

DM 0.17 0.04-0.73 .017
QRS duration 1.03 1.00-1.06 .049
NS-VT 0.48 0.13-1.77 .272
NT-proBNP 1.00 1.00-1.00 .0
LVESV 0.99 0.98-1.00 .019
NYHA (II) .388
NYHA (III) 1.40 0.15-12.70 .765
NYHA (IV) 0.53 0.08-3.88 .539
LVMD concordance

both-match .001
one-match 531.97 12.73-22233 .001
neither match 19.34 3.07-121.85 .020

LV lead in scarred
myocardium

2.54 0.53-12.09 .243

Systolic PSD 0.97 0.94-1.00 .063 1.00 0.97-1.03 .990

revealed that the CRT response rate of DCM patients (94%, n=18) was much higher

than ICM patients (62%, n=24) in the both-match group (P=0.016). There was no

significant difference in the one-match group (P=0.363) and neither group (P=0.521)

between DCM and ICM patients, as shown in Figure 2.8. For the inter-group com-

parison, Kruskal-Wallis H-test revealed that CRT response was significantly different

in the three groups of DCM patients (P <0.001) but not in ICM patients (P = 0.383).

During the mean follow-up time of 39±24 months (IQR 19-55), 10 (10.87%) DCM

patients and 9 (18%) ICM patients died. Kaplan-Meier survival curves showed signif-

icantly longer survival in DCM patients with the concordance between LV lead with

the latest contraction and relaxation position (P = 0.050), as shown in Figure 2.9.
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Table 2.6
Stepwise multivariate analysis for DCM and ICM patients including

systolic PBW

DCM ICM

Variables OR 95% CI P value OR 95% CI P value

DM 0.16 0.04-0.69 .014
QRS duration 1.03 1.00-1.06 .043
NS-VT 0.55 0.15-2.04 .371
NT-proBNP 1.00 1.00-1.00 .011
LVESV 0.98 0.98-1.00 .014
NYHA (II) .403
NYHA (III) 1.38 0.15-12.72 .776
NYHA (IV) 0.54 0.07-3.98 .547
LVMD concordance

both-match .001
one-match 635.05 12.08-28642 .001
neither match 20.76 3.23-133.30 .001

LV lead in scarred
myocardium

2.48 0.50-12.40 .268

Systolic PBW 0.99 0.98-1.00 .041 1.00 0.99-1.01 .689

However, there is no significant difference of survival time in ICM patients based on

the concordance between LV lead and the latest contraction or relaxation position,

as shown in Figure 2.10.

2.3.4 Discussion

The main finding of the present study was that systolic PBW, diastolic PSD and PBW

were strong predictors of CRT response only in DCM patients. Furthermore, Kaplan-

Meier analysis showed that the concordance of LV lead to the latest contraction and

relaxation position were independent predictors of death from any cause and had
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Table 2.7
Stepwise multivariate analysis for DCM and ICM patients including

diastolic PSD

DCM ICM

Variables OR 95% CI P value OR 95% CI P value

DM 0.18 0.04-0.80 .024
QRS duration 1.07 1.00-1.05 .068
NS-VT 0.45 0.12-1.66 .231
NT-proBNP 1.00 1.00-1.00 .013
LVESV 0.99 0.98-1.00 .017
NYHA (II) .373
NYHA (III) 1.69 0.19-14.98 .638
NYHA (IV) 0.61 0.08-4.26 .622
LVMD concordance

both-match .001
one-match 571.74 11.57-28252 .001
neither match 18.07 2.88-113.28 .002

LV lead in scarred
myocardium

2.49 0.51-12.9 .257

Diastolic PSD 0.97 0.94-1.00 .041 1.00 0.97-1.03 .882

Table 2.8
Stepwise multivariate analysis for DCM patients including diastolic PBW

DCM ICM

Variables OR 95% CI P value OR 95% CI P value

DM 0.16 0.04-0.67 .013
QRS duration 1.03 1.00-1.06 .051
NS-VT 0.50 0.13-1.86 .304
NT-proBNP 1.00 1.00-1.00 .013
LVESV 0.99 0.98-1.00 .013
NYHA (II) .460
NYHA (III) 1.59 0.17-14.81 .683
NYHA (IV) 0.64 0.09-4.79 .666
LVMD concordance

both-match .001
one-match 659.19 13.59-31972 .001
neither match 19.85 3.14-125.31 .011

LV lead in scarred
myocardium

2.07 0.41-10.54 .380

Diastolic PSD 0.99 0.98-1.00 .028 1.00 0.99-1.01 .621
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Figure 2.8: The CRT response rate in DCM or ICM patients among dif-
ferent groups.

significantly longer survival than LV lead only located in one latest position or none

in DCM patients. Whether it is DCM or ICM, it is necessary to avoid placing the

LV lead in a non-latest contraction or relaxation position whenever possible.

2.3.4.1 Predictive value of LVMD for CRT patient selection

Research on selecting appropriate patients for CRT with LVMD measured by gated

SPECT MPI has been widely studied. In a study of 42 CRT patients, the receiver op-

erating characteristic curve analysis showed that the optimal cutoff value of PSD and
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Figure 2.9: The Kaplan-Meier event-free survival curve of DCM patients
(log-rank Chi-Square = 5.98, P = 0.050).

PBW were 43◦ (sensitivity and specificity of 70%) and 135◦(sensitivity and specificity

of 74%), respectively [2]. In a study with 324 consecutive patients with non-ICM

CRT patients, it was demonstrated that systolic PSD, adjusted to age, hypertension,

diabetes, aspirin, beta-blockers, diuretics, QRS, and EF, was an independent predic-

tor of all-cause mortality (HR: 1.97, 95% CI: 1.06 – 3.66, P = 0.033) [149]. However,

in a multi-center VISION-CRT clinical trial (n=195), it was found that the systolic

LVMD did not have a predictive value for CRT response, but they did not discuss

it based on different pathology [87]. Peix et al. [150] further analyzed part of the

data from this clinical trial and found that CRT recipients with more dyssynchronous

at baseline had significantly improved in non-ischemic patients with non-compaction
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Figure 2.10: The Kaplan-Meier event-free survival curve of ICM patients
(log-rank Chi-Square = 1.33, P = 0.514).

myocardium, whose PSD was reduced from 89.5± 14.2◦ to 63.7± 20.5◦ (P = 0.028).

For DCM patients, Henneman et al. [2] demonstrated that baseline systolic LVMD

could be used to predict CRT response by the cutoff value of 43◦ for PSD with 74%

sensitivity and specificity and 135◦ for PBW with 70% sensitivity and specificity.

Wang et al. [146] found that systolic and diastolic LVMD both have predictive value

for CRT patient selection in 84 DCM patients (systolic PSD: 95% CI 0.92-1.00, P

= 0.043; systolic PBW: 95% CI 0.99-1.00, P=0.038; diastolic PSD: 95% CI 0.94 –

1.00, P=0.032; diastolic PBW: 95% CI 0.99 – 1.00, P=0.024). Similar results were

found in our study that systolic PBW (95% CI 0.98-1.00, P=0.041), diastolic PBW

(95% CI 0.98-1.00, P=0.028), and diastolic PSD (95% CI 0.94-1.00, P=0.041) were
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independent significant predictors for CRT patient selection, except for systolic PSD

(95% CI 0.94-1.00, P=0.063), but its P-value is still very close to 0.05.

For ICM patients, the presence of transmural scar tissue, which may affect the mea-

surement of LVMD [151], often resulted in nonresponse to CRT [152]. However, few

studies have been done on the predictive value of LVMD for CRT in ICM patients. A

study found that the difference between stress LVMD and rest LVMD was an inde-

pendent predictor instead of rest LVMD for all-cause mortality in ICM patients [153];

however, not all CRT patients receive stress gated SPECT MPI. Our study demon-

strated that both systolic and diastolic LVMD were not independent predictive factors

for CRT response. This might be due to the presence of hibernating myocardium or

severely scarred and dysfunctional myocardium, which requires further evaluation

[153].

2.3.4.2 LVMD to guide CRT lead placement

The optimal LV lead position has been suggested to be the latest or adjacent to

the latest segment mechanical activation [43]. In a study with 90 CRT patients, the

patients with a concordant LV lead position (the LV lead placed in the site of the

latest mechanical activation measured by SPECT MPI) had significant improvement

in LV volumes and LV systolic function than the patients with a discordant LV lead

position (79% vs. 26%, P<0.01) [41].
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For DCM patients, the CRT response could be increased when the LV lead is placed

in the latest contraction and relaxation segment [146], which was proved in our study

among 92 DCM patients. For ICM patients, a study with 64 CRT patients found that

systolic PSD and PBW were significant factors to differentiate wide QRS duration (≥

150ms) with narrow QRS duration (120−150ms) among 47 DCM patients, and there

were no similar results in ICM patients (n=17) [42]. In our study, both systolic and

diastolic LVMD concordance between the latest activation segments and LV lead po-

sition was not independent predictive factors for CRT response. This finding was not

surprising because the scar location might affect the latest mechanical activation due

to the delayed electrical activation/conduction that might interfere with myocardial

scar [42]. Furthermore, It showed a weak predictive value for CRT response in ICM

patients by the concordance of the LV lead with the latest contraction or relaxation

position, which was totally different compared with DCM.

2.3.4.3 LVMD in different pathophysiology of heart failure

Compared with DCM patients, poor predictive performance in ICM patients is due

to the global scar burden, multiple scar segments, and regional ischemia, which may

affect the remodeling response to biventricular pacing [67]. The contractility of my-

ocardial scar tissue is impaired. Due to its electrophysiological inertia, it destroys the

depolarizing waves from the adjacent myocardium, thereby prolonging the activation
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time of the ventricles [67]. In addition, the presence of scar tissue means that the

availability of recruitable contractile cardiomyocytes is reduced to bolster myocardial

pump and LV hemodynamics [67]. Therefore, placing the LV lead on or adjacent to a

scar or ischemia may have a poor effect. These results indicate that routine ischemia

assessment before CRT device implantation may help identify CRT responders and

help guide the placement of LV lead.

2.3.4.4 Study limitations

The main study limitation was the small number of retrospective patients, which lim-

ited our findings’ statistical analysis and generalizability. Using two different imaging

modalities to identify the latest contraction or relaxation segments by SPECT MPI

and the location of LV lead by coronary venography limited the granularity that can

describe the location and consistency of LV lead. However, this definition method

has gained wide acceptance [64, 65, 67].

2.4 Conclusion

The role of MPI in heart failure is already known in light of the functional and phase

analysis parameters. This chapter demonstrates that LV remodeling can be assessed
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by shape parameters obtained with gated SPECT. In particular, in our sample, ESE

was confirmed to be an independent predictive variable for CRT super-response and

provides incremental value over existing clinical and nuclear imaging variables.

This study demonstrates that systolic and diastolic LVMD, and concordance between

LV lead with the latest contraction or relaxation segment were independent predictive

variables for CRT patient selection. Compared with ICM patients, systolic PBW,

diastolic PBW and PSD have better predictive and prognostic values for the CRT

response in DCM patients. Placing the LV lead on or adjacent to the latest contraction

and relaxation position can improve the clinical outcomes of DCM patients, but it

does not apply to ICM patients.
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Chapter 3

Clinically explainable new

mechanical dyssynchrony

parameters by autoencoder

3.1 Introduction

Left ventricular mechanical dyssynchrony (LVMD) of gated single-photon emission

computed tomography (SPECT) myocardial perfusion imaging (MPI) has shown sig-

nificant value for CRT patient selection and prognosis [1, 2, 3, 37, 143]. However,

existing statistical predictors characterizing LVMD such as phase standard deviation
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(PSD) and phase bandwidth (PBW) are easily affected by the outliers of phase mea-

surement and have been reported to have significant limitations, which may influence

the assessment of clinical values of LVMD [154, 155, 156], and therefore could not

predict the response to CRT in several studies [43, 86, 87].

Machine learning enables computers to learn and develop rules without having to be

instructed by human programmers at every step of the way [157]. Deep learning as

a powerful new tool combines many linear and nonlinear transformations to obtain a

more comprehensive and useful representation of data [158]. It has achieved break-

through applications in lesion detection and disease classification by absorbing the

image measurement engineering directly into a learning step while processing the data

in its natural form [158, 159, 160, 161]. Betancur et al. [104] presented the effective-

ness of using deep neural networks for feature extraction in gated SPECT MPI and

prediction of obstructive CAD. Xu et al. [162] demonstrated that unsupervised fea-

ture extraction by deep learning (single-layer network of K-means centroids, accuracy

93.65%) was as effective as a supervised method (fully convolution neural network,

accuracy 94.52%) in the classification of histopathology images. In this study, we

aimed to discover new predictors by deep learning from LVMD measured on gated

SPECT MPI for CRT patient selection.
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3.2 Methods

3.2.1 Patient population for training

One hundred and fifty-seven CRT patients with gated resting SPECT MPI were

enrolled at nine medical centers in China from July 2008 to July 2020. The enrollment

criteria included (1) LVEF measured by echocardiography ≤ 35%; (2) QRS duration

≥ 120 ms; (3) New York Heart Association (NYHA) functional class from II to IV;

and (4) optimal medical therapy for at least 3 months before CRT implantation.

Patients with atrial fibrillation or right bundle branch block were excluded.

All the patients had baseline characteristics, pre-CRT echocardiography, pre-CRT

resting gated SPECT MPI, and 6 months follow-up echocardiography. The study

was approved by the Institutional Ethical Committee of the First Affiliated Hospital

of Nanjing Medical University, and informed consent was obtained from all patients.

3.2.2 Evaluation of LV function by echocardiography

Echocardiography data of all patients were assessed by experienced ultrasound experts

blinded to any clinical data and MPI data before and 6 months after CRT. LVEF
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was measured by the 2-dimensional modified biplane Simpson method. An increase

in LVEF > 5% at 6-month follow-up echocardiography is considered as a positive

mechanical response to CRT [19, 163].

3.2.3 Gated SPECT MPI acquisition and quantification

Gated SPECT MPI was performed by SPECT systems with a low-energy, general-

purpose collimator within seven days before CRT implantation. Resting gated

SPECT scan was performed 60-90 minutes after injection of 25-30 mCi of 99mTc-

MIBI. Images were acquired by 1-day resting gated SPECT MPI protocol with a

dual-headed or triple-head camera by 180◦ orbits with a complimentary 8 frames

ECG-gating, according to the current guideline [164]. When the gated SPECT MPI

was acquired, the photoelectric window of 99mTc was set to a 20% energy window

centered over 140 keV. All the images were reconstructed by the OSEM method from

Emory Reconstruction Toolbox (ERTb2, Atlanta, GA) with 3 iterations, 10 subsets,

power 10, and a cutoff frequency of 0.3 cycles/mm. Short-axis images were generated

by Emory Cardiac Toolbox (ECTb4, Atlanta, GA) for automated measurement of

LV function and LVMD.

LVMD is measured by a phase analysis technique with the following three steps: (1)

extracting three-dimensional maximal count myocardial perfusion from the short axis
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slices by sampling the myocardial wall; (2) calculating the systolic phase angles by

the 1harmonic Fourier approximation, which measures the change of counts in LV

myocardium in an R-R cardiac cycle; and (3) generating polarmaps based on the LV

phase angles in the LV myocardium [72, 148].

3.2.4 Extraction of new parameters by autoencoder tech-

niques

Autoencoder (AE) is an unsupervised learning technique in which we use neural

networks to accomplish the task of representation learning [165]. Specifically, the AE

architecture forces the compressed knowledge to represent the original by copying the

input to the output, compressing the input to a latent space representation and then

reconstructing the output from this representation [165]. It has an input layer, an

output layer, and one or more hidden layers connecting them. The input layer and

the output layer have the same number of nodes. During the training process, AE

sets the target value equal to the input value and adjusts the model parameters by

applying backpropagation [166]. The network is arranged in two stages, the encoder

and the decoder. The encoder connects directly to the pixels of inputted images

through a linear layer and compresses the high-dimensional input images into the

hidden layer, which has a lower dimension than the input images and can be used as

features of the input images. The decoder attempts to reconstruct the input images
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from the generated features. The AE model learns to recognize key image features

and reconstruct the input by minimizing the error between the reconstructed output

and input image.

In this study, a multi-layer AE with one input layer, five fully connected hidden layers,

and one output layer was used to train the model, and the middle-most hidden layer

was used to represent the features of LVMD polarmaps. The overall process of the

AE model training, including the detailed architecture of our AE model, and the

process of predicting CRT response with AE-extracted parameters is illustrated in

Figure 3.1. The gradient is calculated through a mean squared error loss function,

and the parameters are updated by an Adam optimizer. Early stopping is used to

avoid overfitting when the loss stops decreasing. The AE model was implemented

in the Python programming language by the PyTorch deep learning toolkit (version

1.3.1) [167]. Model training was performed on graphical processor units (TITAN Xp,

NVIDIA, Santa Clara, California).

3.2.5 Statistical analysis

Discrete variables of the baseline characteristics were expressed in number and per-

centage and tested with the χ2 test. Continuous variables were expressed as mean

± standard deviation and tested with the Student t-test. The univariate logistic
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Figure 3.1: Training an autoencoder (AE) model from left-ventricular me-
chanical dyssynchrony (LVMD) (A) and building a prediction model (B) for
CRT response. In (A), the multi-layer AE model is applied to the systolic
phase polarmaps to extract compressed features and reduce the dimensions.
In (B), clinical variables, AE-extracted predictors, and conventional LVMD
parameters (phase standard deviation and bandwidth) are used to build the
prediction model for CRT response.

regression analysis was applied to estimate the predictive values of baseline clinical

variables, conventional LVMD parameters (PSD and PBW), and 32 AE-extracted

LVMD parameters for CRT response. To overcome the curse of dimensionality and

collinearity, only significant features in the univariate analysis were selected, and the

Pearson correlation coefficient (PCC) analysis was further applied to exclude the vari-

ables that were highly correlated with each other. Subsequent multivariate analysis

was performed to identify the predictive values for CRT response. Variables with P <

.05 were considered statistically significant. PCC was also used to determine whether
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there were significant correlations between the selected AE-extracted predictors and

clinical parameters, i.e., LVMD parameters (PSD and PBW), as well as to rank the

importance of all variables in the prediction of the CRT response. The Akaike infor-

mation criterion (AIC) and likelihood ratio (LR) test were used to determine whether

the prediction model with AE-extracted predictors is statistically significantly favored

over the model with significant clinical parameters. The predictive performances of all

significant variables were evaluated by the area under the curve (AUC) of the receiver

operating characteristic (ROC) of binary logistic regression. Statistical analysis was

performed by IBM SPSS Statistics software version 26 (SPSS Inc, Chicago, Illinois)

and Python Statsmodels package [132].

3.2.6 External validation

In order to confirm the generalizability of the method proposed in this paper, the

data from the multicenter VISION-CRT trial was used for external validation. The

complete study design and preliminary results of VISION-CRT were previously pub-

lished [87, 114, 131]. Because of the data error (n = 22), death of patients before

follow-up (n = 11), and extremely small heart (ESV = 8ml) as outliner (n = 1), 165 of

199 patients were selected as the external validation dataset for this study, which was

processed in the same way as in [114]. However, because of the mismatch of patient

IDs in the clinical records and SPECT MPI (n = 17), an external validation dataset
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of 148 cases (responders: n = 66, 44.6%) containing the complete records and SPECT

MPIs was finally obtained. Due to the lack of pre- and post-CRT echocardiographic

data, the CRT response in the external validation dataset was defined as a > 5%

increase in LVEF measured by gated SPECT MPI at 6-month follow-up compared to

pre-CRT SPECT MPI. This definition of CRT response was calculated in the same

way as the definition in the training dataset, except for the modality used to measure

LVEF (training dataset: echo, external validation dataset: gated SPECT MPI). Clin-

ical variables (e.g., gender, age, NYHA), ECG parameters (QRS duration, LBBB),

and LV measurements from gated SPECT MPI at baseline and 6-month follow-up

(e.g., LVEF, ESV) were included in this study.

3.2.7 Interpretability of AE-extracted feature

To determine the attributes’ contribution in the original systolic phase polarmap

image to the value of the AE-extracted LVMD predictors, a heatmap of weights was

used to map directly from the input LVMD polarmap to each AE feature extracted

from the hidden layers.

We inputted an image into our AE network and visualized the network diagram by

”unrolling” the pixel into a single column of neurons, as shown in Figure 3.1. The

AE model ”forces” the network to learn the features of the image itself. The weights
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of each neuron in the input layer are connected to each AE feature through multiple

hidden layers. We can explain these weights as forming templates of the output

features. If an image is largely sympathetic to a filter, the image will generate high

activation in a particular neuron in the input layer. Thus, the neurons in the hidden

layer reflect the presence of those features in the original image. In the output layer,

a single neuron, corresponding to the different AE features, is a weighted combination

of those previously hidden activations. Therefore, we visualized the weights in the

input layer corresponding to the neurons in the hidden layer that were selected as

AE-extracted features.

3.3 Results

A total of 157 patients underwent CRT, but complete clinical assessment data, base-

line SPECT MPI, and 6-month follow-up data were obtained in 130 patients. The

baseline characteristics are shown in Table 3.1. The average age was 62.3 ± 12.1 years,

91 (70.0%) patients were male, and 67 (51.9%) patients were classified as NYHA

functional class III. After a 6-month follow-up, 89 of the 130 patients (68.5%) were

considered CRT responders, and the rest were considered non-responders to CRT.

Significant differences between EDV (286.0 ± 102.5 vs 349.0 ± 156.8, P = .008) and

ESV (228.3 ± 97.3 vs 282.0 ± 147.6, P = .016) were noted between responders and

non-responders. However, the two groups had no significant differences in baseline
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Table 3.1
Baseline characteristics of the enrolled patients

Variables
All

(n=130)
Response

(n=89, 68.5%)
Non-response
(n=41, 31.5%)

P
value

Age 62.3± 12.1 63.4± 11.0 59.9± 13.8 .128
CKD 9 (6.9%) 6 (6.7%) 3 (7.3%) .801
DM 28 (21.5%) 18 (20.2%) 10 (24.2%) .759
QRS duration 151.5± 21.2 153.7± 19.7 146.7± 23.4 .084
LVEDV 305.9± 126.4 286.0± 102.5 349.0± 158.6 .008
LVESV 245.2± 118.2 228.3± 97.3 282.0± 147.6 .016
LVEF 21.5± 7.8 21.7± 7.5 21.1± 8.3 .680
Gender 91 (70.0%) 62 (69.7%) 29 (70.7%) .934
NYHA

II 43 (33.1%) 33 (37.1%) 10 (24.4%)
III 67 (51.5%) 46 (51.7%) 21 (51.2%)

IV 20 (15.4%) 10 (11.2%) 10 (24.4%)
SRS 18.4± 9.8 17.4± 8.8 20.5± 11.2 .090
PBW 203.5± 73.9 205.4± 73.7 199.4± 74.2 .666
PSD 60.1± 18.5 60.2± 17.7 59.8± 19.9 .913

Data are expressed as mean ± SD or number (percentage)

PSD and PBW.

All 157 pre-CRT LVMD polarmaps were used to train the AE model for feature

extraction. After the training, 32 features of LVMD were extracted from the hidden

layers of the autoencoder model as the AE-extracted LVMD predictors.

Twenty-seven of the 157 subjects did not have a follow-up on their CRT response,

so the AE-extracted predictors from phase polarmaps of the remaining 130 patients

were analyzed. Only 4 of the 32 AE-extracted features showed statistical significance

in the univariate analysis. As shown in Figure 3.2, these four AE-extracted LVMD
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predictors had a strong correlation with each other (all PCC > 0.99, P values <

.05), but they were not correlated with any clinical variables and conventional LVMD

parameters (PSD and PBW). Only one AE-extracted LVMD predictor, which has the

highest Pearson correlation with the CRT response (PCC = 0.20), was selected for

the subsequent statistical analysis to characterize the polarmaps of LVMD.

In the univariate analysis, LVEDV (OR 1, 95% CI 0.99-1.00, P = .013), LVESV

(OR 1, 95% CI 0.99-1.00, P = .023), NYHA (OR 0.56, 95% CI 0.32-0.99, P = .045),

and the AE-extracted LVMD predictor (OR 2.00, 95% CI 1.08-3.67, P = .026) had

significantly predictive values to CRT response, as shown in Table 3.2. Since there

was a strong correlation between LVEDV and LVESV (PCC = 0.98, P values = .032),

only the LVESV had a stronger correlation with CRT response than LVEDV (PCC

= 0.51 vs PCC = 0.47) was included in the multivariate analysis. In the multivariate

analysis, LVESV (OR 1.00, 95% CI 1.0-1.0, P = .013) and AE-extracted LVMD

predictor (OR 1.11, 95% CI 1.02-1.23, P = .021) had significant predictive values for

CRT response, as shown in Table 3.2.

In Figure 3.3, the fitting performance of the predictive model with the AE-extracted

LVMD predictor (AIC 162.04) was better than the model with PBW (AIC 164.68).

The AE-extracted LVMD predictor took incremental value over clinical variables (LR

5.52, P = .019) and clinical variables with PBW (LR 7.33, P = .007). In addition, the
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Figure 3.2: Pearson’s correlations between clinical variables, phase stan-
dard deviation (PSD), phase bandwidth (PBW), and AE-extracted left
ventricular mechanical dyssynchrony (LVMD) parameters. Only the AE-
extracted LVMD parameters, which were significant in the univariate analy-
sis, are displayed. There are strong correlations between these AE-extracted
LVMD parameters (all Pearson correlation coefficient [PCC] > 0.99, P val-
ues < .05), so PCC between the significant AE-extracted LVMD parameters
and the CRT response is further applied to select only one AE-extracted
LVMD predictor (LVMD AE # 31), which has the highest correlation (PCC
= 0.20) with the CRT response. This AE-extracted LVMD predictor is used
in the subsequent statistical analysis.

AUCs of the clinical variables (95% CI 0.57-0.78, AUC 0.66), clinical variables com-

bined with PBW (95% CI 0.60-0.80, AUC 0.69), clinical variables combined with the

AE-extracted LVMD predictor (95% CI 0.61-0.81, AUC 0.72), and clinical variables

combined with both PBW and the AE-extracted LVMD predictor (95% CI 0.64-0.83,
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Table 3.2
Univariate and multivariate logistic regression analysis

Univariate analysis Multivariate analysis (AE #30)

Variables OR 95% CI P value OR 95% CI P value

Age 1.02 0.99 - 1.06 .131
CKD 0.92 0.22 - 3.86 .904
DM 0.79 0.22 - 1.90 .592
LVEDV 1 0.99 - 1.00 .013
LVESV 1 0.99 - 1.00 .023 1.00 1.00 - 1.00 .013
Gender 0.95 0.42 - 2.14 .902
NYHA 0.56 0.32 - 0.99 .045 0.89 0.80 - 1.00 0.052
PBW 1 1.0 - 1.01 .664
PSD 1 0.98 - 1.02 .912
QRSd 1.02 1.0 - 1.04 .086
SRS 0.97 0.93 - 1.01 .091
LVMD AE #12 2.00 1.08 - 3.67 .026 1.11 1.02 - 1.23 .021
LVMD AE #31 1.77 1.07 - 2.94 .026
LVMD AE #8 1.38 1.04 - 1.84 .028
LVMD AE #28 1.31 1.03 - 1.68 .028

AUC 0.74) increased sequentially, as shown in Figure 3.4.

The well-trained model was also used in the external validation group to test the

performance of the AE-extracted LVMD predictor. The baseline characteristic and

statistical results have been previously published.35 It is worth noting that there is a

big difference in the distribution of patient features between the external validation

dataset and the training set. Examples include QRS duration (training set: response

[n=89, 68.5%] vs. non-response[n=41, 31.5%]: 153.7±19.7 vs. 146.7±23.4; external

validation set: response [n=66, 44.6%] vs. non-response [n=82, 55.4%]: 161.7±22.4,

160.0±27.4), PSD (training set: 60.2±17.7 vs. 59.8±.9; external validation set:
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Figure 3.3: Fitting performance and incremental values of the AE-
extracted LVMD predictor in the prediction of CRT response. Akaike in-
formation criterion (AIC) reflected the fitting performance of the model.
The larger the value, the better the fitting performance of the model. The
likelihood ratio test compared the goodness of fit of two nested models (two
models were connected by a red line) and reflected the incremental predictive
value of the newly added variables. AE-extracted LVMD had incremental
predictive value over both the clinic parameters (LR = 5.52, P = .019) and
the combination of clinical variables and PBW (LR = 7.33, P = .007).

46.8±21.0 vs. 50.6±19.6), and PBW (training set: 205.4±73.7 vs. 199.4±74.2; ex-

ternal validation set: 142.4±76.0 vs. 159.9±73.0). In the univariate analysis, MI

(OR 0.2, 95% CI 0.07-0.55, P=0.002), CAD (OR 0.3, 95% CI 0.14 – 0.65, P=0.002),

EDV (OR 1, 95% CI 0.99 - 1.00, P=0.013), ACEI or ARB (OR 3.44, 95% CI 1.3 –

9.13, P=0.013), scar score (OR 0.96, 95% CI 0.94 – 0.99, P=0.016) showed significant

predictive values to CRT response. The AE-extracted predictor showed significant

predictive value at the significance level of 0.1 (95% CI 0.95-2.12, P=0.092), and it

alone achieved an AUC of 0.57 (95% CI 0.48-0.66).
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Figure 3.4: Receiver-operating characteristic curves to predict the CRT
response.

Figure 3.5 illustrates four patient examples. According to the conventional LVMD

parameters (PSD > 21◦ and PBW > 112◦; 6 PSD> 43◦ and PBW > 128◦; 7 PSD

> 43◦ and PBW > 135◦[10]), A and C might be responders to CRT, and B and D

might be non-responders to CRT. However, post-CRT follow-ups showed that A and

B were CRT responders, and C and D were CRT non-responders; the AE-extracted

feature successfully predicted the CRT response for these patients.
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Figure 3.5: Illustrations of PSD and PBW vs AE-extracted LVMD predic-
tor for 4 patients (Patients A and B: CRT non-responders; Patient C and D:
CRT responders). The left graph for each patient is the systolic phase po-
larmap and the right graph is the weight heatmap. For the weight heatmap,
the higher saturation of the color indicates the higher absolute value of the
weights in the deep neural networks. Red and blue colors indicate positive
and negative values, respectively. The green dashed box indicates the half-
moon-shaped region, including part of the anterior wall, and the complete
lateral and inferior walls, excluding the septum and the apex.

3.4 Discussion

3.4.1 Limitations of conventional LVMD parameters

Early retrospective studies suggested a significant association between baseline LVMD

and CRT response[1, 2, 3, 37, 168]. Three studies proposed three different PBW

thresholds (112◦ vs. 128◦ vs. 135◦) for the prediction of CRT response, and they all

claimed to have good prediction results (sensitivity, 72% vs. 86% vs. 70%, specificity,

70% vs. 80% vs. 70%); it is worth noting that these thresholds were all defined from
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small sample populations (n=30, 32, 42, respectively) [1, 2, 3]. PSD had similar re-

sults in these three articles. However, the data from GUIDE-CRT clinical trial showed

that PSD and PBW were not associated with volumetric CRT response, referred to

as a reduction of ≥15% in LVESV [14, 43]. Another multicenter trial (VISION-CRT)

showed that baseline PSD and PBW were not associated with the CRT response,

which was defined by any improvement in one or more of the following: decrease of

≥ 1 in NYHA class, an increase of ≥ 5% in LVEF, a decrease of ≥ 15% in left ven-

tricular end-systolic volume (LVESV), or decrease of ≥ 5 points in Minnesota Living

With Heart Failure Questionnaire [87]. Gendre et al. [86] demonstrated that baseline

LVMD parameters, including PSD and PBW, could not predict the response to CRT

defined by a reduction of LVESV ≥ 15% or improve peak VO2 ≥ 10%, even though

the study was a single-center study with a small number of patients (n = 42). Zhang

et al. [43] also found similar results in a multicenter study with 79 CRT patients, in

which a reduction of LVESV ≥ 15% was used to define the volumetric response to

CRT. Existing global parameters (PSD and PBW) characterizing LVMD are easily

affected by the outliers of phase measurement [154, 155, 156]. PSD may be deceptive

for characterizing the widely distributed and multi-modal distributions in phase his-

tograms; PBW includes almost the entire distribution range of the histogram (95%)

[78, 156]. The statistical analysis relies heavily on pre-assumed relationships between

factors, and there are problems related to identifying appropriate data, processing in-

terconnected rather than independent factors, and even violating assumptions [169].
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A method that comprehensively considers the relationship between variables and ex-

tracts potential, new and more predictive features for CRT is needed.

3.4.2 Advantages and interpretability of AE model for fea-

ture learning

Compared with conventional statistical methods, data-driven feature learning through

deep learning has higher performance. The advantage of deep learning for feature

learning is a layered architecture similar to the human brain [170]. Through deep

learning, simple features are extracted from the raw data, and then more complex

features are learned through multiple layers. Finally, a considerable number of ro-

bust features are generated through multiple iterations of learning. Specifically, fea-

ture learning is classified into two categories, supervised learning and unsupervised

learning.

In supervised learning, labeled data are forwarded from the input to the output for

prediction. Backpropagation is used to optimize the parameters of the deep learn-

ing model by minimizing the cost function between the target value and the pre-

dicted value. Betancur et al. [104] proposed a deep convolutional neural network

for predicting the probability of obstructive coronary artery disease in the left an-

terior descending artery, left circumflex artery, and right coronary artery that had

95



better per-patient sensitivity (from 79.8% to 82.3%, p<0.05) and per-vessel sensi-

tivity (from 64.4% to 69.8%, p<0.01) than total perfusion deficit. Such end-to-end

supervised learning neural network avoids the tricky problem of determining which

components are needed to perform a learning task and how those components in-

teract, but also brings a lack of interpretability and requires a significant amount of

data. In unsupervised learning, unlabeled data are used to learn new features and

find new patterns on their own, which can yield undiscovered information that might

require human intervention to understand the hidden patterns and correlate them

with the domain knowledge. Cikes et al. [101] proposed an unsupervised approach to

analyze the phenotype of heterogeneous HF by integrating clinical variables and eight

echocardiographic descriptors (traces) extracted from full cardiac cycle echocardio-

graphic images. They emphasized that their unsupervised method was not trained

based on a priori knowledge, and the interpretability of their model was based on the

distribution of existing prior variables in different phenogroups.

Interpretable machine learning approaches based on complex mathematical formulas

are rendered black boxes by the complexity and scale of their structures [165, 171].

Some state-of-the-art models, including deep learning and ensemble models, limit the

clinical actionability of model predictions due to the ”black box” structure, which

further undermines their usefulness to clinicians [172]. Heatmap of the weights used

in this paper is a straightforwardly interpretable method that shows the relation-

ship from the input LVMD polarmap, mapped to each AE-extracted predictor from
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the hidden layer. The brightness signifies the weights associated with single filters’

activations (a specific template) from the hidden layer.

Typically, LV lead of the CRT is implanted in the lateral wall or a region adjacent to

the lateral wall, which can encompass the anterior or inferior walls of the left ventri-

cle (depending on coronary sinus venous anatomy). Thus, the ideal site for LV lead

placement could be in a half-moon-shaped region of the polar map, encompassing

anterior, lateral, and inferior walls, while excluding the septum. Studies have indi-

cated that LV lead placement in the apex is associated with increased risk of HF and

death [4, 90, 173], and thus that is also excluded from this half-moon of the polar

map. Therefore, ideal AE-extracted predictors of positive CRT response would align

on the half-moon-shaped of the polar map.

As shown in Figure 3.5, this weight heatmap is “responsible” for classifying the half-

moon shaped phase polarmap (roughly two thirds of a circle without the apex of

the LV), and its goal is to output a high value for half-moon shaped polarmap and

a low value for non-half-moon shaped polarmap. Suppose that we receive an input

phase polarmap like Figure 3.5-D, we can anticipate that the neurons responsible

for classifying half-moon shaped polarmap should have high values, because their

weights are such that high weights tend to align with pixels tending to be high in

half-moon shaped polarmap. For other non-half-moon shaped phase polarmap, such

as Figure 3.5-A, most of the pixels would not line up with a half-moon shaped polar
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map, so less overlap would negate high-valued pixels in those images by low weights.

The better the input image matches this half-moon shaped template, the higher the

AE score obtained. It can be observed that this half-moon shaped polarmap template

has higher weights in the bright anterior, lateral, and inferior myocardial walls, and

lower weights in the dark apical, septal, and anteroseptal walls, which is consistent to

clinical experience. Accordingly, when we design the CRT predictor based on LVMD,

we should put more focus on the anterior, lateral, and inferior myocardial walls.

3.5 Conclusion and future work

In this chapter, we proposed and externally validated the use of an unsupervised

learning algorithm, autoencoder, for feature learning from SPECT MPI to predict

CRT response. Our new AE-extracted predictor in this study is significantly different

from conventional LVMD parameters. This data-driven approach of unsupervised

learning requires only unlabeled training images, is able to learn non-linear relation-

ships and avoids the loss of important information in feature extraction. The model

has been tested in an external validation dataset, and the results seen here are re-

producible and have significant predictive value for CRT response. The performance

of AE-extracted predictors can be improved with increase of the patient sample size.

More importantly, unlike the global variables PSD and PBW, AE-extracted feature

assigns higher weights to anterior, lateral, and inferior myocardial walls of interest,
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which are consistent with the recommended pacing sites of the LV lead in clinical

practice.

Several limitations of this study should be acknowledged. First, this study enrolled a

relatively small number of patients from multiple medical centers with the inherent

limitation of such a study design. The performance and feasibility of the data-driven

system may be affected by the quality of the data. Second, the lack of post-CRT

SPECT MPI in the training set and the lack of pre- and post-CRT echocardiogra-

phy in the external validation dataset led us to use the same threshold (a > 5%

increase LVEF) but by different imaging modalities (training: echo vs external val-

idation: gated SPECT MPI) to define the CRT response. Although many studies

demonstrated a good correlation between LVEF measured by gated SPECT MPI and

echocardiography [174, 175, 176, 177], the different definitions of CRT response be-

tween the two trials may introduce bias in the prediction performance. Moreover,

some clinical parameters in the training dataset were not available in the external

validation dataset (e.g., CKD), and the distributions of the patient characteristics

(e.g., QRS morphology, QRS duration, PSD, and PBW) were substantially different

between the training and external validation dataset. Therefore, the performances of

the AE-extracted predictor were different between the two datasets.
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Chapter 4

Knowledge discovery in electrical

dyssynchrony from gated SPECT

MPI for CRT patient selection

chezhao@mtu.edu

4.1 Introduction

The current CRT guidelines for CRT patient selection primarily rely on ECG-based

criteria, namely QRS duration and morphology [178]. While QRS duration has
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demonstrated clinical value in predicting CRT response, it lacks the finesse to pre-

dict response on a patient-specific level accurately [178]. Multiple QRS cutoff values

have been considered in different trials and studies, and the electrical LBBB pattern

is widely accepted as a strong predictor of CRT response. Among LBBB patients,

CRT response improves as QRS duration increases; on the other hand, the bene-

fit of CRT starts to emerge in non-LBBB patients when QRS duration is ≥ 160 ms

[178, 179]. However, ECG is not always effective in measuring the presence or severity

of electrical dyssynchrony in all ventricular segments; and only significant myocar-

dial masses can affect QRS morphology and duration [180]. Moreover, QRS duration

alone is not specific enough to characterize exact electrical and mechanical activation

patterns [181]. Even in cases of LBBB, different and heterogeneous electrical and

mechanical activation patterns can exist despite similar QRS morphology and dura-

tion [182, 183]. Therefore, researchers are seeking more accurate and patient-specific

predictors beyond QRS duration and morphology.

Transfer learning is a powerful technique that leverages empirical knowledge gained

from solving one problem to solve a related but different problem. In medical research,

transfer learning has been widely adopted due to the limited availability of annotated

medical images and the high cost of obtaining annotations [? ]. The general process

of transfer learning involves pre-training a deep neural network on a large dataset and

then fine-tuning the network on a smaller target dataset. This approach enables the

transfer of knowledge learned from the source dataset to the target dataset, resulting
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in improved performance with less data [? ]. This allows the data of arrhythmia

patients in large public databases to be better generalized and used for CRT patient

selection.

In this chapter, we first represent the ECG signals obtained from the MIT-BIH dataset

with two-dimensional images by the short-time Fourier transform (STFT) technique,

using a transfer learning approach to extract the input image features from the convo-

lutional neural network (CNN) model (ResNet). Next, we fine-tuned the pre-trained

models to extract features from the ECG of CRT data. We used them as inputs

to classifiers such as logistic regression, support vector machine (SVM), and random

forest (RF) to classify CRT patients based on ECG data, respectively.

4.2 Methods

In this study, the 1-D ECG signal was reconstructed as a 2-D time-frequency spectro-

gram image for obtaining information on time, frequency and energy of the heartbeats.

Figure 4.1 shows the flowchart of the proposed method.
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Figure 4.1: Visualization of transfer learning in this work. The process is
divided into 4 steps: (1) Data preprocessing for both MIT-BIH arrhythmia
database and our own dataset to convert 1D ECG signals to 2D images (2)
deep convolutional neural network (CNN) is pretrained on the MIT-BIH
arrhythmia database for a selected pretraining objective, e.g. classification
of arrhythmia; (3) the pretrained weights are used as initial weights of a
new CNN; (4) this CNN is finetuned on our own database to predict CRT
response.

4.2.1 Data

The data used in this study is sourced from two separate databases. The first database

is the MIT-BIH Arrhythmia Database, which contains over 109,000 annotated ECG

recordings of 47 subjects at 360 Hz between 1975 and 1979 [184, 185]. Heartbeats are

annotated by two or more cardiologists independently. Fourteen original heartbeat

types are consolidated into five groups according to the Association for the Advance-

ment of Medical Instrumentation (AAMI) recommendation. This database is widely

used in the research community and is considered a benchmark for arrhythmia de-

tection algorithms. The data from the MIT-BIH database was used to pre-train the

deep learning models for transfer learning. Specifically, the weights of a pre-trained
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model on the MIT-BIH dataset were used to initialize the weights of the model for

training on our own dataset.

The second database used in this study was a record of 71 CRT patients from 9

Chinese medical centers. All the patients had an LV ejection fraction (LVEF) ≤ 35%,

QRS duration > 120 ms, New York Heart Association (NYHA) functional class II

to IV symptoms, and optimal medical therapy at least 3 months before CRT. All

the patients underwent resting gated SPECT MPI, echocardiography, and NYHA

function classification at baseline and 6 months after CRT. This data was used to

fine-tune and evaluate the performance of the deep learning models on new, unseen

data. This study complied with the Declaration of Helsinki and was approved by

local ethics committees. All patients gave written informed consent.

4.2.2 Evaluation of LV function by echocardiography

Echocardiography data of all patients were assessed by experienced ultrasound experts

blinded to any clinical data and MPI data before and 6 months after CRT. LVEF was

measured by the 2-dimensional modified biplane Simpson method. The present study

adopted a reduction of ≥ 15% in LVESV to define volumetric response to CRT, which

has been widely accepted as the boundary between responders and non-responders

[27, 44, 186].
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4.2.3 Preprocessing

Preprocessing of the MIT-BIH dataset and our own dataset is an essential step to-

wards achieving accurate results when training machine learning models for ECG

signal analysis. In this study, several preprocessing techniques were applied to the

raw ECG data to improve the quality of the data and extract relevant features.

The raw ECG data underwent several preprocessing steps, including a high-pass filter

to remove the baseline constant signal, and R-peak detection using a Chebyshev type

I fourth-order filter and Shannon energy filter [187, 188]. The ECG data were then

segmented into 1.2 RR intervals.

Next, the 1D ECG signals representing HF were transformed into 2D time-

frequency spectrograms using a short-time Fourier transform (STFT) with a Ham-

ming window[189, 190]. ECG signals are non-stationary data whose instantaneous

frequency varies over time, and the properties of these changes cannot be fully de-

scribed by using only frequency domain information. The STFT is an improved math-

ematical method derived from the discrete Fourier transform and used to explore the

instantaneous frequency and amplitude of localized waves with time-varying charac-

teristics. When analyzing a non-stationary signal, it is assumed to be approximately

stationary within the duration of the temporal window of finite support[191, 192].

106



The time-frequency spectrogram is given as follows:

X(τ, w) =

∫ ∞

−∞
x(t)w(t− τ)e−jwtdt (4.1)

where x(t) is the ECG signal which is sampled at 360 Hz, and w(t) is the Hanning

window function with 512 window size that helps to smooth the signal at the edges of

each time segment, reducing spectral leakage and improving the frequency resolution

of the transform. The signal preprocessing is performed by the Python library Scipy

[193]. A sample of some leads’ spectrogram is shown in Figure 4.2.

4.2.4 Resnet and Transfer Learning

This study used three CNN models, ResNet18, ResNet50, and ResNet101, to perform

transfer learning on the preprocessed MIT-BIH dataset. The ResNet models are deep

neural networks that use residual connections to address the problem of vanishing

gradients during training [194].

ResNet is a deep neural network architecture that was introduced by He et al. in

2015 [194]. It is a variant of the traditional CNN that addresses the problem of

vanishing gradients in deep networks. The ResNet architecture consists of residual

blocks, enabling the network to learn a residual mapping instead of a direct one. The

input to a ResNet block is a feature map x with dimensions H ×W × C, where H
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Figure 4.2: ECG spectrogram of sample data

and W are the spatial dimensions and C is the number of channels. The output of

the block is also a feature map y with the same dimensions. The residual function F

can be expressed as:

F(x;θ) = H(x;θ)− x

where θ are the learnable parameters of the residual function, and H is a set of

convolutional layers followed by batch normalization and ReLU activation.
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The output of the block is then computed as:

y = σ(F(x;θ) + x)

where σ is an element-wise activation function (e.g., ReLU or sigmoid). This formu-

lation allows the network to learn residual mappings that are easier to optimize than

the original mappings.

Transfer learning is a powerful technique in deep learning that enables us to leverage

pre-trained models to solve new tasks with limited data. In transfer learning, we

start by pre-training a model on a large dataset, typically using a supervised learning

approach. We then use this pre-trained model as a starting point for a new task

with a different input and output domain. The pre-trained model is fine-tuned on

the new task using a smaller dataset, which typically leads to better performance

than training a new model from scratch. In transfer learning, the pre-trained model

acts as a feature extractor, and the final layers of the model are modified to adapt

it to the new task. We can also freeze some or all of the layers in the pre-trained

model to prevent overfitting on the new dataset. This approach allows us to achieve

state-of-the-art performance on new tasks with limited labeled data.
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4.3 Results

The baseline characteristics of our are shown in Table 4.1. In order to evaluate the

performance of a prediction model, it is important to use appropriate evaluation

metrics. One commonly used metric is accuracy, which measures the percentage of

correct predictions over the total number of predictions made. Sensitivity measures

the proportion of true positives (i.e., correctly identified positive cases) among all

actual positive cases, while specificity measures the proportion of true negatives (i.e.,

correctly identified negative cases) among all actual negative cases. Mathematically,

these metrics can be defined as follows:

Accuracy =
TP + TN

TP + FP + TN + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

(4.2)

where TP represents true positives, FN represents false negatives, TN represents true

negatives, and FP represents false positives. Sensitivity and specificity can provide

insights into how well a model is able to detect positive and negative cases, respec-

tively. A high sensitivity indicates that the model can identify most positive cases,

while a high specificity indicates that the model can correctly identify most negative
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Table 4.1
Baseline characteristics of the enrolled patients

Variables
All

(n=71)
Response

(n=46, 64.8%)
Non-response
(n=25, 35.2%)

P
value

ACEI/ARB 58 (81.7%) 36 (78.3%) 22 (88%) .318
Age 61.8± 12.6 61± 13.1 63.2± 11.7 .487
Gender 56 (78.9%) 34 (73.9%) 22 (88.0%) .170
Height(cm) 167.1± 7.1 167.0± 6.7 167.4± 8 .832
Weight(kg) 67.8± 14.7 67.0± 13.6 69.4± 16.8 .505
CKD 5 (7.0%) 2 (4.3%) 3 (12.0%) .235
DM 15 (21.1%) 6 (13.0%) 9 (36.0%) .024
Hypertension 33 (46.5%) 22 (47.8%) 11 (44.0%) .762
Smoking 30 (42.3%) 20 (43.5%) 10 (40.0%) .781
Beta blocker 64 (90.1%) 40 (87.0%) 24 (96.0%) .228
Spironolactone 61 (86%) 38 (82.6%) 23 (92.0%) .284
Digoxin 14 (19.7%) 8 (17.4%) 6 (24.0%) .511
Diuretic 61 (86.0%) 40 (87.0%) 21 (84.0%) .737
QRS duration 172.0± 23.4 179.4± 19.8 158.4± 23.7 .000
LBBB 57 (80.2%) 44 (95.7%) 13 (52.0%) .000
LVEF(%) 26.9± 5.1 27.8± 5.1 25.2± 4.7 .035
LVEDV 286.1± 85.2 272.9± 86.4 310.4± 78.9 .076
LVESV 211.4± 74.5 199.1± 74.9 234.2± 69.6 .057
Scar 26.3± 12.1 23.2± 11.2 32.0± 11.8 .003

Data are expressed as mean ± SD or number (percentage)

cases. However, these metrics can be influenced by the threshold for classifying pre-

dictions as positive or negative. It is important to choose an appropriate threshold

that balances sensitivity and specificity for the specific application.

The results presented in Table 4.2 were obtained through 5-fold cross-validation in our

own ECG database. It can be observed that the prediction performance of various

models using only the small ECG database is not satisfactory when compared to

clinical guidelines, with the highest accuracy of 0.629, a sensitivity of 0.531, and a
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Table 4.2
Performance comparison of deep learning models

General methods Pretrained methods (transfer learning)

Models Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Guideline .6 .93 .038
SVM .58 (±.014) .8 (±.016) .333 (±.011)
Random Forest .58 (±.014) .91 (±.017) .125 (±.015)
ResNet-18 .613 (±.012) .529 (±.016) .71 (±.014) .684 (±.012) .6 (±.015) .778 (±.018)
ResNet-50 .612 (±.012) .53 (±.015) .73 (±.012) .721 (±.015) .783 (±.011) .792 (±.017)
ResNet-101 .629 (±.012) .531 (±.016) .732 (±.013) .693 (±.015) .674 (±.011) .748 (±.013)

specificity of 0.732. However, when transfer learning is utilized to learn from a large-

scale public database, significant improvements are observed in the performance of

the models with an accuracy of 0.721, a sensitivity of 0.783, and a specificity of 0.792.

4.4 Discussion

Recently, deep learning approaches have been widely used to improve the diagnosis

of ECG. Attia et al. [195] proposed a CNN model to identify patients with ventric-

ular dysfunction based on 12-lead ECG (AUC 0.93, accuracy 85.7%). In our work

[196], we proposed an end-to-end ECG signal classification method based on a CNN

model for the automatic identification of QRS morphology (five classes: normal beat,

LBBB, RBBB, ventricular ectopic beat, and paced beat) using the MIT-BIH arrhyth-

mia database [197]. Our CNN model achieved a classification accuracy of 0.9745, a

sensitivity of 0.97, and an F1-score of 0.97 in identifying five classes recommended by

the Association for Advancement of Medical Instrumentation.
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Transfer learning has proven to be a valuable technique to handle the insufficient

amount of annotated data that plagues trained classification models of ECG records,

particularly for the detection of cardiac arrhythmias and abnormalities. Van [198]

innovatively proposed transfer learning from the human ECG dataset to the equine

ECG database for classifying four types: normal, premature ventricular contraction,

premature atrial contraction, and noise. In the study by Weimann [199], different

ResNet models pre-trained on the Icentia11K5 data set with 11,000 patients, were

fine-tuned on the PhysioNet/CinC Challenge 2017 data set consisting of 8528 labeled

episodes to classify ECG signals into normal sinus rhythm, atrial fibrillation, and noise

(too noisy to classify). And the ResNet-34v2 model in the pre-training task for beat

classification achieved a performance of .794(±.018) in the final test. Similarly, in the

study by Srinivasan et al. (2020), a pre-trained Inception-v3 model was fine-tuned to

classify ECG signals into six different arrhythmia classes.

In medical image analysis, the STFT is often used to transform ECG signals into 2D

images for input into deep learning models. This allows the model to learn spatial pat-

terns in the signal in addition to temporal patterns [200, 201]. Moreover, it has been

shown that without additional manual preprocessing of ECG signals, the accuracy

of converting ECG signals into time-frequency spectrograms by short-time Fourier

transform as input to 2D-CNN (99.00%) to predict the type of ECG arrhythmias is

better than that of 1D-CNN (90.93%) [192].
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In this chapter, we present a method for screening CRT patients based on deep

learning techniques, demonstrating that pre-training from a large database of ECG

arrhythmias and subsequently fine-tuning it on a small local database of CRT patients

can significantly improve the performance of the target task, effectively reducing the

inability to obtain knowledge of the ECG signal of the arrhythmia due to the small

amount of data, and using this prior knowledge to help us to screen CRT patients

quickly and efficiently. In the process of the proposed method, the time-domain ECG

signal was transformed into a two-dimensional time-frequency ECG spectrum by a

short-time Fourier transform. The resulting ECG spectrogram is used as the input to

the proposed method. ECG arrhythmias were identified and classified using ResNet.

The results show that the average accuracy of the ECG signal based on the 2D

convolutional neural network can reach 72.1% for the selection of CRT patients. In

addition, we did a series of comparison experiments to achieve the best classification

performance with different parameter sets and structures of ResNet models. We found

that the classifier based on the proposed 2D-ResNet50 model has the highest accuracy

and the lowest loss when the learning rate is 0.001, and the batch size is 2000.
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4.5 Conclusion

In this study, we propose an end-to-end ECG classification framework using a 2D

CNN classifier. Using the STFT to transform one-dimensional waveforms into two-

dimensional frequency-time spectrograms, our framework integrates a generalized pre-

trained two-dimensional CNN model for predicting whether a patient corresponds to

CRT. The proposed approach outperforms existing clinical guidelines and popular

machine learning models.
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Chapter 5

Electromechanical dyssynchrony

concordance for guiding CRT LV

lead position

5.1 Introduction

Cardiac resynchronization therapy (CRT) is an established treatment for heart failure

patients with reduced left ventricular (LV) ejection fraction and electrical dyssyn-

chrony [25, 202]. The placement of the LV lead, a crucial component of CRT, is

known to affect the response to therapy [4, 90, 203]. The traditional method of LV
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lead placement relies on anatomical landmarks and visual inspection, which is one of

the reasons that may lead to sub-optimal outcomes in up to 30% of patients [9].

Electroanatomic mapping (EAM) has been proposed as a tool to guide LV lead posi-

tioning with detailed and accurate information about the spatial distribution of elec-

trical dyssynchrony [204]. However, EAM is an invasive procedure requiring catheter

insertion into the heart, and can be time-consuming, cumbersome, and may carry

some morbidity [205]. ECG is a non-invasive and widely available method for as-

sessing electrical dyssynchrony. While it may not provide as detailed information as

EAM, ECG is still a valuable tool for identifying patients who may benefit from CRT

and guiding the placement of CRT devices. Mechanical dyssynchrony assessed by

phase analysis of gated single-photon emission computed tomography (SPECT) my-

ocardial perfusion imaging (MPI) has shown promising results in predicting response

to CRT, but its integration with electrical dyssynchrony has not been fully explored

[72, 90, 206].

Vectorcardiograms (VCG) record the magnitude and direction of the electrical forces

generated by the heart over time; that is, the electricity at each time point is de-

scribed by a vector. Connecting the arrowheads of all the vectors together constitutes

a vector loop. Compared to 1D ECG, 3D VCG provides more intuitive 3D spatial

electrical signal information and presents a higher accuracy in determining and lo-

calizing ventricular preexcitation in cases where intraventricular electrical conduction
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disturbances and regional mobility are relevant [207]. Even though the number of

leads has been reduced from 12 in ECG to 3 in VCG, which causes some informa-

tion loss, it provides the orthonormality of the three leads and the availability of the

spatial and temporal relationships of these leads [208].

This chapter presents a novel method for identifying the latest electrical activation

position of the heart using a 3D VCG derived from a 1D ECG signal. This approach

is then combined with the latest mechanical contraction position of the heart, which

is measured using SPECT MPI, to determine the optimal position for placing the LV

lead in CRT.

5.2 Methods

5.2.1 Patient population

Seventy-one CRT patients from 9 Chinese medical centers. All the patients had

an LV ejection fraction (LVEF) ≤ 35%, QRS duration > 120 ms, New York Heart

Association (NYHA) functional class II to IV symptoms, and optimal medical therapy

at least 3 months before CRT. All the patients underwent resting gated SPECT MPI,

echocardiography, and NYHA function classification at baseline and 6 months after

CRT. This data was used to fine-tune and evaluate the performance of the deep
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learning models on new, unseen data. This study complied with the Declaration

of Helsinki and was approved by local ethics committees. All patients gave written

informed consent.

5.2.2 Evaluation of LV function by echocardiography

Echocardiography data of all patients were assessed by experienced ultrasound experts

blinded to any clinical data and MPI data before and 6 months after CRT. LVEF was

measured by the 2-dimensional modified biplane Simpson method. The present study

adopted a reduction of ≥ 15% in LVESV to define volumetric response to CRT, which

has been widely accepted as the boundary between responders and non-responders

[27, 44, 186].

5.2.3 Mechanical dyssynchrony

5.2.3.1 Measurement of mechanical dyssynchrony from SPECT MPI

Technetium-99 m methoxyisobutylisonitrile (99mTc-MIBI) was used to acquire rest-

ing ECG-gated SPECT MPI images. The gated SPECT scan was conducted after

60-90 minutes of injection with 25-30 mCi of 99mTc-MIBI at rest. The imaging
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process was carried out according to a one-day resting gated SPECT MPI protocol,

using a dual-head or triple-head camera system equipped with a low-energy, general-

purpose collimator. The pixel size was set to a 64× 64 matrix, and the zoom factor

was 1.0. The gated images were obtained with a photopeak window of the 99mTc

set as a 20% energy window centered over 140 keV. The electrocardiographic R-R

interval was divided into 8 frames per cardiac cycle, utilizing a 50% beat acceptance

window. For the 180◦ acquisition, a total of 60 or 64 planar projections of more than

20 seconds/projection were acquired from right anterior oblique 45◦ to left posterior

oblique 45◦. SPECT image reconstruction and reorientation were uniformly carried

out using the Emory Reconstruction Toolbox (ERToolbox; Atlanta, GA).

An automatic sampling algorithm was utilized to input ungated short-axis images by

searching for maximal count circumferential profiles in 3D to represent the regional

perfusion level. The polar map displayed the percentage of tracer uptake using a

13-segment model comprising one apical segment, six mid-segments, and six basal

segments. The apical segments include all five apical segments in the standard 17-

segment model, i.e., the anterior apical segment, the septal apical segment, the inferior

apical segment, the lateral apical segment, and the apex. A region with LV sample

uptake of less than 50% of maximum was defined as a myocardial scar, while regions

with> 50% scar were identified as scarred segments. A phase analysis technique based

on the 1-harmonic Fourier function was employed to approximate the regional uptake

count changes over the cardiac cycle and calculate the regional onset of mechanical
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contraction represented as a phase angle. The phase distribution polar map was

accordingly generated to visualize LV mechanical dyssynchrony.

5.2.3.2 The latest contraction position

The appropriate LV lead position is determined based on the polar maps of myocar-

dial viability and mechanical dyssynchrony. Regions including apical segments, septal

segments, and those with more than 50% scar (defined as regions below 50% of the

maximum resting perfusion on the viability polar map) are excluded. The recom-

mended area for LV lead placement is the segments where the top 4 phase angles

are within 10 degrees of the maximum phase angle, except for the excluded segments

[81].

5.2.4 Electrical dyssynchrony

5.2.4.1 Reconstruction of VCG

VCG can be derived from standard 12-lead ECG data based on the multiplication of

matrices according to V = M ·E, where V is a VCG matrix whose lines correspond to
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3 VCG leads, M is a transformation matrix, and E is a matrix whose lines are the in-

dividual ECG leads. Kors regression transformation [209], inverse Dower transforma-

tion [210], Kors quasi-orthogonal transformation and linear regression-based transfor-

mation are the most popular transformation methods for deriving VCG from standard

12-lead ECG. Kors regression transformation is a statistical method of mathematical

regression based on a large number of patients’ data. Inverse Dower transformation

is based on the mathematical pseudo-inversion of Dower’s method of deriving ECG

from VCG. Kors quasi-orthogonal transformation assumes that the X, Y, and Z leads

of VCG are similar to the V6, II, and the negative half of V2 leads of ECG, respec-

tively. The linear regression-based transformation uses least squares to obtain the

transformation coefficients by minimizing the MSE. Jaros et al. [211] compared these

methods and found that Kors regression transformation has the highest accuracy than

the other methods.

Differences between the CRT response and non-response group will be compared by

the Student t-test for continuous variables and Pearson χ2 test for categorical vari-

ables. The univariate analysis will be applied to estimate potential predictors for

CRT response. The multivariable will be performed to analyze the independent pre-

dictors and the variables with P < 0.10 in the univariate analysis will be included.

The predictive value of VCG parameters and their combination will be evaluated by

the receiver operator characteristic (ROC) curve analysis. P < 0.05 will be considered

to be statistically significant. In addition to traditional statistical methods, machine
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learning methods such as tree feature selection, support vector machines, and ran-

dom forests will also be used for feature selection, classification, model, and feature

verification.

5.2.4.2 The last activation position by electrical dyssynchrony

Reconstructed 3D VCG data were used to localize the LV latest electrical activating

site. As shown in Figure 5.1, the end of the red line represents the maximal T

vector, which indicates the end of the ventricular repolarization phase. Accordingly,

the location of the latest activating area can be represented as the direction of the

maximal T vector. The direction of the maximal T vector suggests the location of

the latest activating area at the end of the systolic, which can be used to recommend

the optimal LV lead positions for CRT. The rough activating area (anterior, lateral,

inferior, and septal) of the latest action potential can be inferred according to the

corresponding position relationship between the VCG and the 3D anatomy image of

the heart, as illustrated in Figure 5.2.
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Figure 5.1: Vectorcardiogram (VCG) illustration. Left panels, from top to
bottom: scalar representations of the X, Y, and Z leads and of the vector
magnitude (VM). Middle and upper right panels: 2D vector loops in the
frontal, transverse, and sagittal planes. Lower right panel: 3D vector loop.
Calibration: 0.5 mV/division. Colors mark the intervals between charac-
teristic time instants in the ECG. Orange: onset QRS–instant of maximal
QRS vector; green: instant of maximal QRS vector–end of QRS; red: end of
QRS–instant of maximal T vector; yellow: instant of maximal T vector–end
of T; blue: ECG signal outside the QRS-T complex.

5.2.5 Electromechanical dyssynchrony to guide LV lead po-

sition for CRT

The latest activating area (4 segments) from VCG and the latest contracting position

(17 segments) can be obtained from VCG and gated SPECT MPI, respectively. The

hierarchical recommendation strategies in our previous publications [80] and [43] will
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Figure 5.2: The corresponding position relationship between the ECG,
VCG, and SPECT MPI polarmap

be used to integrate the latest activating area and latest contacting position. Ex-

cluding apical, septal, and scarred segments, there were three levels of recommended

segments: (1) the latest contracting viable segments of the SPECT MPI that over-

lapped with the latest activating area of the VCG; (2) the viable segments adjacent

to the latest contracting segments and overlapped with the latest activating area; (3)

the latest contracting viable segments in the adjacent area of the latest activating

area; (4) the viable segments adjacent to the latest contracting segments and the

latest activating area. Figure 5.3 shows the correspondence between the two regions.
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Figure 5.3: The correspondence between the segments of VCG and SPECT
MPI polarmap

5.2.6 Identification of LV lead position by CT venography

after CRT

Within seven days of CRT implantation, all 71 patients underwent a standard protocol

of CT venography. Except for the apex, the LV surface was classified into basal or

midsegments in the anteroseptal, anterior, anterolateral, posterolateral, posterior, and

posteroseptal walls. CT venography was performed to retrospectively correlate the

LV lead position with the recommended segment by SPECT MPI.

5.2.7 Statistic analysis

Differences between the recommended group and non-recommended group were com-

pared by the Student t-test for continuous variables, expressed as mean ± standard
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deviation, and Pearson χ2 test for categorical variables, expressed in number and

percentage. The univariate binary logistic regression analysis was applied to estimate

potential predictors for CRT response. The multivariable binary logistic regression

was performed to analyze the independent predictors of CRT responders and the

variables with P < .05 in the univariate analysis were included. Two-sided P-value

< .05 was considered to be statistically significant.

5.3 Results

5.3.1 Baseline characteristics

Based on whether the recommended lead position for electromechanical concordance

is met or not, patients can be classified into two groups: recommended for CRT and

not recommended for CRT, as shown in Table 5.2. Only diabetes and whether the

CRT LV lead was on the lateral wall were significantly different between those two

groups. Also, as shown in Figure 5.4, the recommended group had a significantly

higher CRT response rate than the non-recommended group.

At the 6-month follow-up, the recommended group showed a significant improvement

in NYHA (Improvement by ≥ 1 class rate is 72% vs. 42.9%), LVESV (P-value:

< .0001 vs. .238), LVEDV (P-value: < .001 vs. .269), and LVEF(P-value: < .001 vs.
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Table 5.1
Baseline characteristics of the enrolled patients based on electromechanical

concordance

Variables
All

(n=71)
Recommended
(n=50(70.4))

Non-recommended
(n=21(29.6))

P
value

ACEI/ARB 58 (81.7) 42 (84.0) 16 (76.2) .660
Age(year) 61.8± 12.6 61.1± 13.1 63.3± 11.6 .504
Male(%) 56 (78.9) 40 (80.0) 16 (76.2) .968
BMI(kg/m2) 24.1± 4.2 24.2± 4.1 24.0± 4.6 .850
DM 15 (21.1) 6 (12.0) 9 (42.9.0) .010
Hypertension 33 (46.5) 20 (40.0) 13 (61.9) .091
Smoking 30 (42.3) 21 (42.0) 9 (42.9) .947
NYHA II/III/IV() 25(35.2)/32(45.1)/14(19.7) 20(40.0)/23(46.0)/7(14.0) 5(23.8)/9(42.9)/7(33.3) .149
Beta blocker(%) 64 (90.1) 46 (92.0) 18 (85.7) .708
Aldosterone antagonist(%) 61 (85.9) 42 (84.0) 19 (90.5) .732
Digoxin(%) 14 (19.7) 8 (16.0) 6 (28.6) .374
Diuretic(%) 61 (85.9) 42 (84.0) 19 (90.5) .732
QRS duration(ms) 172.0± 23.4 174.7± 23.6 165.5± 22.2 .130
LBBB(%) 57 (80.2) 42 (84.0) 15 (71.4) .374
LVEF(%) 26.9± 5.1 26.6± 4.8 27.6± 5.7 .462
LVEDV(ml) 286.1± 85.2 289.1± 86.6 279.0± 83.4 .654
LVESV(ml) 211.4± 74.5 214.0± 74.5 205.3± 76.1 .653
Scar burden(%) 26.3± 12.1 26.6± 12.8 25.5± 10.5 .724
LV lead position (Lateral)(%) 57(80.3) 45(90.0) 12(57.1) .004

Data are expressed as mean ± SD or number (percentage)

.200), which are commonly used indices to assess the effectiveness of CRT, compared

to baseline values. Additionally, compared to the non-recommended group, the rec-

ommended group demonstrated a significantly better patient therapeutic effect in the

improvement of NYHA (P-value: .020), changes/relative changes in LVESV (P-value:

.003/.009), LVEDV (P-value: .010/.024), and LVEF (P-value: .007/.005).

5.3.2 Electromechanical dyssynchrony concordance for CRT

patient selection

In univariate analysis, DM(OR .27, 95% CI .08-.87), P = .029), QRS< 150ms (OR

.03, 95% CI .00-.24, P = .001), LBBB(OR .05, 95% CI .01-.25, P < .001), LVEF(OR
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Figure 5.4: Comparison of the results of the recommended and non-
recommended groups

1.11, 95% CI 1.01-1.23, P = .04), scar burden(OR .94, 95% CI .89-.98, P = .008),

and adherence to recommended lead position based on electromechanical dyssyn-

chrony concordance (OR .19, 95% CI .07-.58, P = .003) were associated with CRT

response. In the multivariate analysis, QRS< 150ms(OR .02, 95% CI .00-.29, P =

.004), LBBB(OR .06, 95% CI .01-.64, P = .020), scar burden(OR .92, 95% CI .86-.99,

P = .025), and adherence to recommended lead position based on electromechanical

dyssynchrony concordance (OR .03, 95% CI .00-.31, P = .003) were also indepen-

dent predictors. The results of the univariate and multivariate analysis are shown in

Table 5.3
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Table 5.2
Pre- and post-CRT changes in cardiac function

Variables
All

(n=71)
Recommended
(n=50(70.4))

Non-recommended
(n=21(29.6))

P-value

NYHA Class, n(%)
baseline, II/III/IV 25(35.2)/32(45.1)/14(19.7) 20(40.0)/23(46.0)/7(14.0) 5(23.8)/9(42.9)/7(33.3) .149
Follow-up, I/II/III/IV 18(25.4)/35(49.3)/8(11.3)/10(14.1) 16(32.0)/26(52.0)/5(10.0)/3(6.0) 2(9.5)/9(42.9)/3(14.3)/7(33.3) .010
Improvement by ≥ 1 class 45(63.4) 36(72.0) 9(42.9) .020

LVEDV(ml)
Baseline 286.1± 85.2 289.1± 86.6 279.0± 83.4 .654
Follow-up 225.5± 1.1.1 216.7± 99.6 246.4± 104.1 .262
Change 60.6± 60.3 72.4± 62.3 32.6± 45.4 .010
Relative change,% .225± .200 .259± .191 .143± .200 .024
P-value < .001 < .001 .269

LVESV(ml)
Baseline 211.4± 74.5 214.0± 74.5 205.3± 76.1 .653
Follow-up 150.0± 88.4 140.0± 85.2 173.8± 93.3 .143
Change 61.5± 56.2 74.1± 56.3 31.5± 44.1 .003
Relative change,% .317± .259 .368± .237 .195± .273 .009
P-value < .0001 < .0001 .238

LVEF(%)
Baseline 26.9± 5.1 26.6± 4.8 27.6± 5.7 .462
Follow-up 37.5± 12.1 39.2± 11.9 33.5± 11.8 .070
Change 10.6± 9.7 12.6± 9.6 5.9± 8.4 .007
Relative change,% .397± .387 .480± .398 .200± .278 .005
P-value < .0001 < .0001 .200

Data are expressed as mean ± SD or number (percentage)

Moreover, as shown in Figure 5.5 and Figure 5.6, the electromechanical concordance

has improved the CRT response rates for both QRS duration ≥ 150ms (76.3% to

860%) and LBBB (77.2% to 85.7%) according to the recommendations on clinical

guidelines. In particular, in the case of non-optimal clinical guideline recommen-

dations, the improvement in CRT response rates based on electromechanical con-

cordance recommendations for LV lead placement was substantial (QRS duration <

150ms: 8,3% to 50%, non-LBBB: 14.3% to 53.3%).
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Table 5.3
Univariate and multivariate logistic regression analyses

Univariate analysis Multivariate analysis

Variables OR(95% CI) P-value OR(95% CI) P-value

Age .99(.95-1.03) .481
Male .37(.10-1.53) .175
BMI .96(.86-1.08) .516
Hypertension 1.17(.44-3.11) .758
DM .27(.08-.87) .029 1.59(.14-17.67) .706
Smoking 1.15(.43-3.11) .777
QRS< 150 .03(.00-.24) .001 .02(.00-.29) .004
LBBB .05(.01-.25) < .001 .06(.01-.64) .020
ACEI/ARB .50(.12-1.98) .317
Beta-blocker .28(.03-2.45) .249
Aldosterone antagonist 0.41(0.08-2.12) .289
Digoxin .67(.20-2.20) .505
LVEF 1.11(1.01-1.23) .04 1.18(.98-1.42) .075
EDV 1.00(1.00-1.00) .085
ESV .99(.99-1.00) .067
PSD .99(.97-1.02) .550
PBW 1.00(.99-1.01) .966
Scar burden .94(.89-.98) .008 .92(.86-.99) .025
Recommended position .19(.07-.58) .003 .03(.00-.31) .003

Underlining indicates that the significant level in the univariate analysis is less than 0.05.
Bold indicates that the significant level in the multivariate analysis is less than 0.05.

5.4 Discussion

The mode of action of CRT is to correct mechanical dyssynchrony by electrical ac-

tivation to restore the heart’s mechanical function and improve cardiac contractility,

which seems like an inefficient and circuitous approach [204].

EAM has been used to detect the latest activated region to guide LV and RV lead
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Figure 5.5: The improvement brought by electromechanical dyssynchrnony
concordance on the CRT patient selection with QRS duration

Figure 5.6: The improvement brought by electromechanical dyssynchrnony
concordance on the CRT patient selection with LBBB

position during CRT implementation[212, 213]. However, it is an invasive procedure

requiring catheter insertion into the heart and can be time-consuming, cumbersome,

and may carry some morbidity [205]. Electrocardiographic imaging (ECGi) is a novel

and non-invasive modality to measure electrical dyssynchrony [204], but more clinical

trial data, training of operators, and widespread availability of equipment are needed.
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Using VCG to measure the latest activation site of the heart is an innovative ap-

proach to guiding the placement of CRT leads. VCG provides a more comprehensive

and accurate assessment of cardiac electrical activity by capturing the direction and

magnitude of the cardiac electrical vectors [207]. In [214], The accuracy of ECG

and VCG in identifying the site of pre-excitation was compared in 41 patients with

Wolff-Parkinson-White syndrome. VCG was found to be a good predictor of the

localization of 3 accessory pathways (AP) identified by endo-cavitary electrophysio-

logic (right free ventricular wall, posterior, or left free ventricular wall) than ECG

(Sensitivity 96.5% vs. 77.1%, specificity 90.7% vs. 91.5%, positive predictive values

80% vs. 75%). Moreover, VCG can identify the AP location (anterior right, lateral

right, posterior right, posterior left, lateral left, or anterior left ventricle) with better

sensitivity (43.6% vs. 39.3%), specificity (92.1% vs. 87.4%), and positive predictive

values (51.5% vs. 33.3%) than ECG. Moreover, Rad et al. [215] found that the QRS

area measured by VCG can identify delayed left ventricular lateral walls.

Transthoracic echocardiography[44, 216], cardiac MRI [217, 218, 219], cardiac CT

[38, 220], and SPECT MPI [4, 14, 42, 73] have all demonstrated effectiveness in

assessing mechanical dyssynchrony, identifying the latest contraction position, and

placing the lead in the latest contraction position improved CRT response rate and

patient survival rate. It should be noted that in none of the randomized trials,

the position of the LV lead was studied in various positions and adjusted or op-

timized intra-individually according to intraprocedural echo parameters [221]. On
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the other hand, a study conducted by Badran et al. [222] demonstrated that 3D

echocardiography-guided LV lead placement did not provide any clinical advantage

compared to conventional techniques. At present, no mechanical dyssynchrony pa-

rameter is widely accepted or endorsed by guidelines for identifying CRT responders

[50]. This is also evident in the 2016 ESC guidelines for diagnosing and treating

acute and chronic heart failure, which do not recommend using echocardiographic

dyssynchrony as selection criteria for CRT [24].

Since the ECG indicators in clinical guidelines cannot provide sufficient detailed in-

formation to correct mechanical dyssynchrony of the heart, and mechanical dyssyn-

chrony has many unstable outcomes, combining electrical and mechanical dyssyn-

chrony, i.e., electromechanical dyssynchrony, is a rational and reasonable approach.

Albatat et al. [223] proposed an electromechanical model that combines cardiac MRI

with fiber orientation to obtain a 3D finite element mesh that extracts electrical and

mechanical components from the ionic and myofilament model, respectively. How-

ever, to save computational time, it is difficult to simulate endocardial scar burden

by coarse geometric meshes for cardiac imaging. Bunting et al. [224] proposed a

novel electromechanical wave imaging to characterize the electromechanical activation

based on ultrasound technology by measuring the transient initiation of myocardial

strain. However, the sample size (n=16) is too small, and more data are needed to

support this technique.
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5.5 Limitation

This was a multicenter, nonrandomized, retrospective study. The small number of pa-

tients is the largest limitation of this study. However, this study aimed to demonstrate

the feasibility of VCG as a novel technique to characterize electrical dyssynchrony in

HF patients and guide optimal LV lead with mechanical dyssynchrony. Moreover, the

method of using VCG to locate the direction of the latest activation position in this

paper is a crude calculation, but it does help us to further optimize the selection of the

LV lead position by choosing based on mechanical dyssynchrony. EAM technique will

yield more accurate recommended positions, but the method is invasive, and ECGi

may be a better choice for the recommended latest electrical signal position. More

experiments are needed in the future.

5.6 Conclusion

The present study introduces a novel approach for determining the latest activation

position of the heart using VCG and combining it with the latest contraction position

measured by SPECT MPI. This innovative method aims to suggest an optimized po-

sition for the placement of the CRT LV lead through electromechanical dyssynchrony

concordance.
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Chapter 6

Reinforcement learning to improve

multi-stage clinical decisions for

CRT delivery

6.1 Introduction

The approach of selecting CRT patients based on both mechanical and electrical

dyssynchrony lacks clear understanding. The process of clinical decision-making for

CRT patient selection involves utilizing available clinical records and examination

results to assess the next course of action. This presents a complex sequential problem
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that lacks a coherent decision-making strategy for reaching a definitive result step-

by-step. Most existing artificial intelligence methods for patient selection are based

on a form of machine learning called supervised learning, which entails obtaining all

clinical test data and ground truth labels at once and predicting the final definitive

outcomes. For physicians, this result is either a ”black box” or has a ranking of

feature importance that can be used for reference, but there is a lack of a coherent

decision-making strategy for how to get to that result step-by-step.

Reinforcement learning (RL) is a subtype of machine learning that encourages an

agent to make an optimal decision using a policy when interacting with an unknown

environment by maximizing the acquired rewards. The policy is a mapping from

obtained inputs to actions that can control the agent’s behavior. The agent also never

knows the correct answer, i.e., the ground truth, but instead receives an evaluation

signal to indicate how well the action is currently performing.

This chapter explores new approaches to the multi-stage classification tasks for CRT

patient selection using reinforcement learning. Moreover, we also propose novel re-

ward functions based on clinical experience to evaluate the benefits of CRT to patients.
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6.2 Background

Medical diagnosis is a process of mapping information from a patient, such as family

history, personal treatment history, current signs, and symptoms, to an accurate

diagnosis of a disease. As a complex task requiring thorough medical investigation

of the clinical situation, assimilating valid information from multiple complex data

sources, and making decisions, it imposes a significant cognitive burden on clinicians.

Diagnostic errors are reported to account for 10 percent of hospital deaths and 17

percent of adverse events [225]. The error-prone process in diagnosis and the necessity

to assist clinicians in a better and more efficient decision-making urgently call for a

significant revolution of the diagnostic process, driven by advanced big data analytics

and machine learning technologies that have brought about the era of automated

diagnosis [226, 227, 228].

Existing machine learning approaches to clinical diagnosis rely heavily on many anno-

tated samples and are usually formulated as supervised classification problems to infer

and predict possible diagnostic outcomes [229, 230, 231]. In addition, these end-to-end

approaches have limitations in tapping into the dynamic multi-step decision-making

and facing uncertainty in the actual diagnostic process, and only consider a limited

number of predictive labels in the immediate future [232].
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RL effectively avoids these problems and performs well in various traditional analysis

tasks in medical image examination, such as feature extraction, image segmentation,

and object detection/localization/tracking [233]. A series of studies by Sahba et al.

[234, 235, 236, 237], which deeply improved the RL model and applied it to extract

the boundaries of target objects in sequential images. Liu and Jiang [238] used the

DRL method, Trusted Region Policy Optimization (TRPO), to optimize joint surgical

gesture segmentation and classification by integrating temporal consistency into the

action design and reward mechanism of the RL model to reduce over-segmentation

errors.

Netto et al. [239] provided an overview of work on RL in medical image applications,

detailing specific applications of RL to lung nodule classification. The traditional

classification problem is modeled as a sequential decision problem applicable to RL.

Where each state is defined as a combination of multiple multi-dimensional feature

values, the action is a random transition between states. The ultimate goal is to

discover the shortest path from an existing pattern to a known malignant or benign

pattern target. Preliminary results show that the Q-learning approach can effectively

classify benign and malignant lung nodules directly from CT images of lung lesions

[240].

140



6.3 Reinforcement Learning

RL encourage an agent to learn an effective policy in sequential decision-making task

by trial-and-error interactions with its environment[241]. The most general framework

to formalize an RL problem is Markov decision process (MDP).

6.3.1 Markov decision process

The RL model is a descriptor of the environment that learns and infers how that

environment interacts with and provides feedback to the agent. Formally, an MDP

can be defined by a 4-tuple M = (S,A, P,R), where S is state space, and st ∈ S

denotes the state of an agent at time t; A is a set of actions for the agent, and at ∈ A

denotes the action of an agent performs at time t; P (s′, r|s, a) is the Markovian

transition function, which determines which state is the next (s′) under the current

state s and action a; reward function R is the feedback provided to the agent by the

environment in state s, after the agent takes action a.

The transition probability function denotes the probability of transitioning from state

s to the next state s′ after taking action a and then getting a reward r.

P (s′, r|s, a) = P[St+1 = s′, Rt+1 = r|St = s, At = a]
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P is used as a symbol of probability. So, the state-transition function can be defined

as a function of P (s′, r|s, a):

P (s′|s, a) = P[St+1 = s′|St = s, At = a] =
∑
r∈R

P (s′, r|s, a)

And the reward function R predicts the next reward based on one action a:

R(s, a) = E[Rt+1|St = s, At = a] =
∑
r∈R

r
∑
s′∈S

P (s′, r|s, a)

Policy (π: S×A→ [0, 1]), as the agent’s behavior function is a probability distribution

that maps an action a ∈ A to a state s ∈ S. When given an MDP system and a policy

π, the expected accumulated reward when starting the state s, the value function

Vπ(s), can be defined as:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑
k=0

γkRt+k+1 (6.1)

where the γ ∈ [0, 1] denotes the discounting factor penalizing the rewards in the

future. The state-value of a state s is the expected feedback in this state at time t:

Vπ(s) = Eπ[Gt|St = s]
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Similarly, the action-value (Q-value) of a state-action pair is defined as:

Qπ(s, a) = Eπ[Gt|St = s, At = a]

Moreover, since the RL system follows the target policy π, the probability distribution

over possible actions and the Q-values to recover the state-value is:

Vπ(s) =
∑
a∈A

Qπ(s, a)π(a|s)

6.3.1.1 Bellman Equations

The value function can also be defined recursively using the Bellman operator in MDP

system:

V (s) = E[Gt|St = s]

= E[Rt+1 + γRt+2 + γ2Rt+3 + · · · |St = s]

= E[Rt+1 + γ(Rt+2 + γRt+3 + · · · )|St = s]

= E[Rt+1 + γV (St+1)|St = s]

= R(s, π(s)) + γ
∑
s′∈S

P (s, a, s′)Vπ(s
′)

(6.2)
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Similarly for the Q-value to represent the optimal value of each state-action pair:

Q(s, a) = E[Rt+1 + γV (St+1)|St = s, At = a]

= E[Rt+1 + γEa πQ(st+1, a)|St = s, At = a]

(6.3)

Bellman Expectation Equations

The recursive update process can be further decomposed into equations built on the

state-value and action-value functions. Extend V alternatively by following the policy

π, the Bellman expectation equations can be defined as:

Vπ =
∑
a∈A

π(a|s)Qπ(s, a)

Qpi(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a), Vπ(s
′)

Vπ(s) =
∑
a∈A

π(a|s)(R(s, a) + γ
∑
s′∈S

P (s′|s, a), Vπ(s
′))

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a),
∑
a′∈A

π(a′|s′)Qπ(s
′, a′)

(6.4)

Bellman Optimality Equations

The goal of the MDP problem is to achieve an optimal policy π∗ that Vπ∗(s) ≥ Vπ(s)

for every policy π and every state s ∈ S. So, the optimal value of each state-action
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Algorithm 1 Q-learning

1: Initialize t = 0, Q-function Q(s, a), ∀s ∈ S, a ∈ A
2: repeat (for each episode):
3: Given state st, take action at based on Q (e.g., ϵ-greedy)
4: Q(s, a)← Q(s, a) + α[R + γmaxaQ(s′, a)−Q(s, a)]
5: s← s′

6: until s is terminal

pair is:

V∗(s) = max
a∈A

Q∗(s, a)

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a), V∗(s
′)

V∗(s) = max
a∈A

(R(s, a) + γ
∑
s′∈S

P (s′|s, a), V∗(s
′))

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a),max
a′∈A

Qπ(s
′, a′)

(6.5)

6.3.2 Deep Q-Network

Q-learning[242] is a big breakout in the early days of RL. In each episode, it works

as shown in Algorithm 1:

The deep Q-Network [106] aims to greatly improve and stabilize the training proce-

dure of Q-learning through two innovative mechanisms:

1. Replay buffer. All episode steps et = (st, at, rt, st+1) are stored in a replay

memory Dt = e1, e2, · · · , et. The experience in the buffer Dt comes from dif-

ferent policies. During the Q-learning updates, samples are selected from the
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buffer randomly, and thus one sample could be used multiple times. This replay

buffer method reduces the number of interactions, improves data efficiency, and

smooths over changes in the data distribution[106].

2. Target network. Instead of updating output Q every step, deep Q-learning

introduces a target Q-network Q̂, which is cloned and kept frozen, and only

periodically updated every C step. This modification makes the training more

stable because it overcomes short-term oscillations.

6.3.3 Policy Gradient

The goal of the policy gradient approach is to directly model and optimize the policy.

The policy is typically modeled with a parameterized function respect to θ, πθ(a|s) .

The value of the reward function depends on this policy, and various algorithms can

then be applied to optimize theta for the best reward.

J(θ) =
∑
s∈S

dπ(s)Vπ(s) =
∑
s∈S

dπ(s)
∑
a∈A

πθ(a|s)Qπ(s, a)

where dπ(s) is the stationary distribution of Markov chain of πθ (on-policy state

distribution under π). For simplicity, the parameter θ is omitted when the policy πθ

appears in the subscript of other functions; for example, dπ and Qπ should be dπθ
and

Qπθ
if written in full.
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Algorithm 2 Actor-Critic

1: Initialize s, θ, w at random; sample a πθ(a|s)
2: for t = 1 · · ·T : do
3: Sample reward rt R(s, a) and next state s′ P (s′|s, a)
4: Sample the next action a′ πθ(a

′|s′)
5: θ ← θ + αθQw(s, a)∇θ ln πθ(a|s)
6: δt = rt + γQw(s

′, a′)−Qw(s, a)
7: w ← w + αwδt∇wQw(s, a)
8: a← a′, s← s′

9: end for

6.3.3.1 Actor-Critic

In addition to learning policy, learning the value function is also of great importance

because learning the value function can help with policy updates, such as reducing

gradient differences in the vanilla policy gradient, which is where the actor-critic

approach comes into play.

Actor-Critic is a temporal difference version of policy gradient algorithm which con-

sist of two models: Actor decides which action should be taken and updates the

policy parameters θ for πθ(a|s), under the suggestion from the critic; Critic evalu-

ates the action given by the actor and updates the value function parameters w. The

pseudocode of the Actor-Critic is shown in Algorithm 2.
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Figure 6.1: Reinforcement learning to optimize CRT decisions

6.4 Problem Formulation

We defined an action space (composed of three decisions yes/no in the first three stages

and eight candidate LV pacing sites in the fourth stage) for the medical interventions

covering a state space (clinical factors in Figure 1). We will model the action space

into sequential decisions. The final output is four variables in the action space.

6.5 Novel reward functions for CRT patient selec-

tion

In a general RL setting, the reward function is represented in the form of an evaluative

scalar signal, which encodes a single objective for the learning agent. Researchers have

combined multiple metrics and tried different weights to find the best reward function
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based on the existing clinical guidelines, or the outcome of interest[108]. In this

study, an initial reward function based on the volumetric CRT response, illustrated

as follows, will be built:

fReward = C1 × sigmoid(Outcome of Primary Endpoint)

+ C2 ×Outcome of Secondary Endpoint

+ C3

(6.6)

where C1, C2(negative if the secondary endpoint occurred; otherwise, positive), C3

are hyperparameters. Expert knowledge based on the current standard guideline (see

[25]) and our experience with the weights of different CRT-related parameters will be

used to fine-tune these hyperparameters for the optimal reward function. Similarly,

the sigmoid equation here can be replaced by the activation function equations such

as tanh, relu, etc. activation function.

6.6 Experiments

6.6.1 Study design and participants

One hundred and fifty-seven CRT patients from nine medical centers in China and

one hundred and ninety-nine CRT patients of the multicenter VISION-CRT trial[87]
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were enrolled in this experiment. Eligible patients had had at least two encounters

with SPECT MPI and had at least one encounter with ECG (QRS duration geq 120

ms). Eighty percent of the eligible patients were randomly selected as the training

set for training the RL algorithm, and the remaining 20% were used as the test set to

evaluate the performance of the RL algorithm. In addition, due to the limited sample

of the dataset, we will repeat the cross-validation with 10 folds to ensure the stability

of the model.

For each patient, we had access to clinical records, including age, gender, race, and

smoking status, as well as ECG data, including QRS duration and LBBB, and SPECT

MPI data, including systolic and diastolic lVEF, ESV, EDV, PSD, PBW, phase kurt,

phase peak, phase skewness, respectively.

6.6.2 Overview of the reinforcement learning model

RL algorithms model the course of patients’ electronic health record (EHR) histo-

ries using an MDP with key elements, including state, action, and reward[241, 243].

In this setting, ”state” refers to the observed patient characteristics, including age,

gender, race, medical records, ECG test results, echo test results, and SPECT test

results. ”Action” refers to whether CRT is recommended for this patient. The re-

sult of an action is a numerical reward that represents an improvement in health
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outcomes compared to the previous encounter. In this work, we use the variation of

SPECT LVEF as the primary endpoint. Substituting Eq. 6.6, and trying different

normalization methods, we obtain the following formulas.

rewards = (LV EFpost − LV EFpre − c1)× c2 (6.7)

rewards = sigmoid(LV EFpost − LV EFpre − c1) (6.8)

rewards = tan(LV EFpost − LV EFpre − c1) (6.9)

where c1, c2 are hyperparameters.

6.6.3 Model evaluation

The evaluation of off-policy models is challenging because it is difficult to estimate

whether the rollout of a learned policy (used to determine actions at each state)

would eventually lead to improved CRT response. Furthermore, directly comparing

Q-values on off-policy data, as done in prior applications of RL to healthcare, can

provide incorrect performance estimates [243]. In this work, we propose to use the

method of Doubly Robust Off-policy Value Evaluation [244] to evaluate policies. We

also compute the mean Q-values of chosen actions in real CRT decisions. Using

both these estimates, and the predicted vs. real CRT outcomes, we can assess the
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potential improvement that our learned policy could bring in terms of an increase

in CRT response rate. We will compare these decisions proposed by the learned

(optimal) policy with those made by CRT experts to understand what are differences

and whether/how these new decisions by the learned policy bring new knowledge to

and benefit the CRT clinical practice. Figure 5 illustrates the training, test, and

validation process of the proposed RL model. We evaluated the effectiveness of RL-

recommended treatments by comparing their actual outcomes with those of CRT. And

also compared the effectiveness of patient selection according to clinical guidelines as

well as traditional ML classification algorithms.

6.6.4 Feature importance

When analyzing tabular data, local interpretable model-agnostic explanations

(LIME)[245], Shapley Additive exPlanations (SHAP)[246], and partial dependence

plots (PDP)[247] are all suitable methods for feature interpretation. LIME is often

considered the preferred choice for tabular features due to its ability to provide local

explanations, which allows for the explanation of predictions of individual instances

in the dataset. This is especially advantageous in certain applications, such as CRT

decision-making, where interpreting a single instance is important. While SHAP and

PDP are also useful for interpreting tabular features, they offer more global explana-

tions compared to LIME. These methods are particularly useful for identifying the
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most significant features across the entire dataset and understanding how they inter-

act with each other to influence the model’s predictions. However, for this CRT study,

we wanted patient-specific decision strategies rather than a generalized analysis of the

overall data.

LIME creates locally interpretable explanations for a single data point. LIME creates

a linear surrogate model that approximates the local behavior of the predictor for a

single prediction. By creating a perturbed dataset made up of local perturbations

around the decision in question, the importance of each feature in the black box

predictor can be inferred. The output from LIME is a vector of coefficients that

suggests how increasing or decreasing variables affect the prediction. As described in

Ribeiro et al. [245].

Figure 6.2 shows the attributions of the feature of LIME for the two CRT non-

responders. We can see that for the same variable LVEDV, patient A gets a positive

contribution to the CRT non-responder due to LVEDV ≤ 165.75; patient B gets a

contribution to the CRT non-responder due to LVEDV > 322.5; but combining other

factors, including ESV, Myocardial mass, PSD, PBW, etc., the model judges both

patients as non-responders. Note that the x-axis in the figure represents the degree

to which each state contributes to the output of the respective action in the positive

or negative direction.
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Figure 6.2: Feature attributions for two CRT non-responders by LIME

6.6.5 Results

Complete clinical assessment data, baseline SPECT MPI, and 6-month follow-up

SPECT MPI data were obtained in 230 patients. The demographic and clinic char-

acteristics of the analysis dataset are shown in Table 6.1. Overall, patients were 62.2
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years of age and comprised 140 males (60.9%). The performance of the RL algorithms

on the repeated 20 times of the 10-folds cross-validation is summarized in Table 6.2

6.7 Conclusion

In this study, we utilize deep reinforcement learning to tackle the challenge of deter-

mining optimal treatment decisions for patients undergoing CRT. We explore models

with a discrete state space and specific action space to identify the most effective

treatment policy, improve the reward equation based on the insights of experienced

physicians, and leverage Deep Q-learning and PPO networks to approximate the best

action value function. These efforts aim to improve the treatment policy utilized by

clinicians and provide interpretability. Future research should examine the learned

policies for each patient and explore alternative modeling approaches, such as model-

based reinforcement learning.
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Table 6.1
Baseline characteristics and left-ventricular parameters of the enrolled

patients.

Variables
All

(n=230)
CRT Responder
(n=130, 56.5%)

Non-responder
(n=100, 43.5%)

P-value
(T-test/χ2)

Age 62.2 ± 11.9 63.2 ± 11.7 60.9 ± 12.0 0.048
ACEI or ARB 187 (81.3%) 112 (86.2%) 75 (75.0%) 0.048
AE #12 2.9 ± 0.9 2.9 ± 0.9 2.9 ± 0.8 NaN
AE #28 7.3 ± 2.2 7.3 ± 2.3 7.4 ± 2.0 NaN
AE #31 3.3 ± 1.0 3.3 ± 1.1 3.4 ± 0.9 NaN
AE #8 5.8 ± 1.8 5.8 ± 1.9 5.9 ± 1.7 NaN
Age 62.2 ± 11.9 63.2 ± 11.7 60.9 ± 12.0 0.148
CAD 74 (32.2%) 31 (23.8%) 43 (43.0%) 0.003
DM 58 (25.2%) 28 (21.5%) 30 (30.0%) 0.190
QRS duration 159.2 ± 25.0 160.3 ± 23.0 157.8 ± 27.4 0.445
Gender 140 (60.9%) 76 (58.5%) 64 (64.0%) 0.473
LBBB 226 (98.3%) 127 (97.7%) 99 (99.0%) 0.808
NYHA 0.102

II 61 (26.5%) 40 (30.8%) 21 (21.0%)
III 136 (59.1%) 69 (53.1%) 67 (67.0%)
IV 33 (14.3%) 21 (16.2%) 12 (12.0%)

Race 0.001
African 15 (6.5%) 6 (4.6%) 9 (9.0%)
Asian 86 (37.4%) 63 (48.5%) 23 (23.0%)
Caucasian 21 (9.1%) 10 (7.7%) 11 (11.0%)
Hispanic 79 (34.3%) 33 (25.4%) 46 (46.0%)
Indian 29 (12.6%) 18 (13.8%) 11 (11.0%)

Diastolic PBW 172.7 ± 80.5 172.6 ± 82.5 172.9 ± 77.9 0.977
Diastolic PSD 53.0 ± 20.6 53.0 ± 21.4 53.0 ± 19.7 0.987
Diastolic Phase Kurt 8.2 ± 6.8 7.8 ± 6.0 8.7 ± 7.7 0.306
Diastolic Phase Peak 220.1 ± 40.3 220.3 ± 44.1 219.7 ± 34.7 0.904
Diastolic Phase Skewness 2.5 ± 0.8 2.5 ± 0.7 2.5 ± 0.8 0.688
EDE 0.6 ± 0.2 0.6 ± 0.1 0.5 ± 0.2 0.004
EDSI 0.8 ± 0.1 0.8 ± 0.1 0.8 ± 0.1 0.007
LVEDV 259.5 ± 118.9 245.0 ± 109.5 278.4 ± 127.6 0.035
ESE 0.6 ± 0.2 0.6 ± 0.1 0.6 ± 0.2 0.000
ESSI 0.8 ± 0.1 0.8 ± 0.1 0.8 ± 0.1 0.001
LVESV 196.6 ± 109.3 187.9 ± 101.9 208.0 ± 117.3 0.167
LVEF 27.2 ± 10.5 26.2 ± 9.9 28.5 ± 11.1 0.108
Systolic PBW 161.1 ± 77.5 161.5 ± 78.7 160.7 ± 75.9 0.940
Systolic PSD 50.7 ± 20.5 50.6 ± 20.5 50.8 ± 20.4 0.961
Systolic Phase Kurt 8.0 ± 7.1 7.1 ± 4.7 9.1 ± 9.2 0.036
Systolic Phase Peak 131.5 ± 37.4 132.4 ± 40.5 130.3 ± 33.0 0.680
Systolic Phase Skew 2.5 ± 0.8 2.4 ± 0.6 2.5 ± 0.9 0.228
Scar Score 18.2 ± 12.0 15.6 ± 11.1 21.6 ± 12.2 0.000
Stroke Volumne 62.9 ± 22.6 57.1 ± 19.6 70.3 ± 24.0 0.000
Myocardial Mass 217.3 ± 58.3 211.5 ± 55.3 224.8 ± 61.1 0.086
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Table 6.2
Results of RL algorithms compared to other methods

Model Accuracy Sensitivity Specificity AUC

Logit 0.72 ± 0.06 0.81 ± 0.06 0.60 ± 0.10 0.71 ± 0.06
Random Forest 0.66 ± 0.06 0.75 ± 0.08 0.54 ± 0.12 0.64 ± 0.07
MLP 0.52 ± 0.08 0.56 ± 0.43 0.45 ± 0.43 0.51 ± 0.06
RL (binary rewards) 0.64 ± 0.06 0.73 ± 0.09 0.50 ± 0.11 0.61 ± 0.06
RL (relu rewards) 0.61 ± 0.11 0.70 ± 0.13 0.51 ± 0.20 0.61 ± 0.11
RL (sigmoid rewards) 0.62 ± 0.08 0.89 ± 0.09 0.28 ± 0.16 0.58 ± 0.08

157





Chapter 7

Conclusion

This dissertation sequentially discusses mechanical dyssynchrony, electrical dyssyn-

chrony, electromechanical dyssynchrony, and the method of using reinforcement learn-

ing to combine multimodal features to guide the selection of CRT patients and find

the optimal LV lead position.

In the clinical setting, this work introduces shape index parameters based on statisti-

cal methods, as well as group analyses of ICM and DCM, which outperform traditional

clinical features recommended by clinical guidelines in the selection of CRT patients.

Additionally, an innovative approach is proposed for using three-dimensional spatial

VCG information to describe the characteristics of electrical dyssynchrony, locate the

latest activation site, and combine it with the latest mechanical contraction sites to
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select the optimal LV lead position. In many medical applications, interpretability is

necessary, and this work uses a heat map based on weight parameters to emphasize

the regions of interest in the heart and provide visual technology to enable physi-

cians to understand the physical meaning of new features and the reasons behind

the clinical decisions made by the artificial intelligent model. This was a multicen-

ter, nonrandomized, retrospective study. The small number of patients is the largest

limitation of this study.

Technically, an autoencoder technique is innovatively proposed to describe mechan-

ical dyssynchrony as a new medical feature. This feature significantly outperforms

traditional statistical features in selecting CRT patients and fills the gap in describing

mechanical dyssynchrony in regions. Additionally, the visualization strategy proposed

is beneficial for interpreting new features in the clinical setting. STFT technology

is used to transform one-dimensional waveforms into two-dimensional frequency-time

spectra. And transfer learning is used to leverage the knowledge learned from a large

arrhythmia ECG dataset of related medical conditions to improve the treatment of

bizarre medical conditions with limited data, such as CRT in this dissertation. This

can improve prediction accuracy, reduce the time and resources required to develop

machine learning models, overcome the class imbalance problem, and potentially lead

to better patient outcomes. Moreover, deep reinforcement learning is applied to the

decision-making problem of CRT patients. Discrete state space/specific action space

160



models are studied to find the optimal treatment strategy, improve the reward func-

tion based on the physician’s experience, and learn the approximate value of the best

action function, which can improve the treatment strategy used by clinical physicians

and provide interpretability to a certain extent. As a future step, it is important to

examine the learned policies on a patient-by-patient basis and study other modeling

strategies.

Several limitations of this study should be acknowledged. Firstly, this study recruited

relatively few patients from two multi-center, retrospective clinical trials, which has

inherent limitations in the study design. Secondly, in some experiments, the data

came from two different clinical trials (Chapters 4-6), and there were certain errors

in the collection and processing of the data by the experimenters. Some clinical

parameters were unavailable in the VISION-CRT dataset, such as CKD, and the

distribution of patient characteristics, such as QRS morphology, QRS duration, PSD,

and PWW, significantly differed between the two datasets. While efforts were made

to obtain a diverse and representative sample, the dataset may not fully reflect the

population and may have certain biases. Additionally, the size of the dataset may

be limited, which could affect the generalizability of the results. Another limitation

could be the choice of hyperparameters for the models used, as different values could

potentially lead to different performance outcomes. Finally, the evaluation metrics

used may not fully capture the real-world effectiveness of the proposed approach and

could benefit from further refinement.
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[60] Kühl HP, Spuentrup E, Wall A, Franke A, Schröder J, Heussen N, et al. As-
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2. Reservation of Rights

Licensor reserves all rights not expressly granted to you under this License. You acknowledge and agree that nothing in
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the Licensed Material subject to the license granted in Section 1.1. Your permission to use the Licensed Material is
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any way.

3. Restrictions on use 
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adapting, and/or omitting material that affect the meaning, intention or moral rights of the author(s) are strictly
prohibited. 

3. 2. You must not use any Licensed Material as part of any design or trademark.

3. 3. Licensed Material may be used in Open Access Publications (OAP), but any such reuse must include a clear
acknowledgment of this permission visible at the same time as the figures/tables/illustration or abstract and which
must indicate that the Licensed Material is not part of the governing OA license but has been reproduced with
permission. This may be indicated according to any standard referencing system but must include at a minimum
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Licensor and does not carry the copyright of another entity or third party (as credited in the published
version). If the credit line on any part of the Licensed Material indicates that it was reprinted or adapted with
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9. 2. EXCEPT FOR THE EXPRESS WARRANTY STATED HEREIN AND TO THE EXTENT PERMITTED BY
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REPRESENTATION OR WARRANTY. LICENSOR EXPRESSLY DISCLAIMS ANY LIABILITY FOR ANY CLAIM
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Terms and Conditions

Springer Nature Customer Service Centre GmbH Terms and Conditions

The following terms and conditions ("Terms and Conditions") together with the terms
specified in your [RightsLink] constitute the License ("License") between you as
Licensee and Springer Nature Customer Service Centre GmbH as Licensor. By clicking
'accept' and completing the transaction for your use of the material ("Licensed Material"),
you confirm your acceptance of and obligation to be bound by these Terms and
Conditions.

1. Grant and Scope of License

1. 1. The Licensor grants you a personal, non-exclusive, non-transferable, non-
sublicensable, revocable, world-wide License to reproduce, distribute, communicate to
the public, make available, broadcast, electronically transmit or create derivative
works using the Licensed Material for the purpose(s) specified in your RightsLink
Licence Details only. Licenses are granted for the specific use requested in the order
and for no other use, subject to these Terms and Conditions. You acknowledge and
agree that the rights granted to you under this License do not include the right to
modify, edit, translate, include in collective works, or create derivative works of the
Licensed Material in whole or in part unless expressly stated in your RightsLink
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Licence Details. You may use the Licensed Material only as permitted under this
Agreement and will not reproduce, distribute, display, perform, or otherwise use or
exploit any Licensed Material in any way, in whole or in part, except as expressly
permitted by this License.

1. 2. You may only use the Licensed Content in the manner and to the extent permitted
by these Terms and Conditions, by your RightsLink Licence Details and by any
applicable laws.

1. 3. A separate license may be required for any additional use of the Licensed
Material, e.g. where a license has been purchased for print use only, separate
permission must be obtained for electronic re-use. Similarly, a License is only valid in
the language selected and does not apply for editions in other languages unless
additional translation rights have been granted separately in the License.

1. 4. Any content within the Licensed Material that is owned by third parties is
expressly excluded from the License.

1. 5. Rights for additional reuses such as custom editions, computer/mobile
applications, film or TV reuses and/or any other derivative rights requests require
additional permission and may be subject to an additional fee. Please apply to
journalpermissions@springernature.com or bookpermissions@springernature.com for
these rights.

2. Reservation of Rights

Licensor reserves all rights not expressly granted to you under this License. You
acknowledge and agree that nothing in this License limits or restricts Licensor's rights in
or use of the Licensed Material in any way. Neither this License, nor any act, omission, or
statement by Licensor or you, conveys any ownership right to you in any Licensed
Material, or to any element or portion thereof. As between Licensor and you, Licensor
owns and retains all right, title, and interest in and to the Licensed Material subject to the
license granted in Section 1.1. Your permission to use the Licensed Material is expressly
conditioned on you not impairing Licensor's or the applicable copyright owner's rights in
the Licensed Material in any way.

3. Restrictions on use

3. 1. Minor editing privileges are allowed for adaptations for stylistic purposes or
formatting purposes provided such alterations do not alter the original meaning or
intention of the Licensed Material and the new figure(s) are still accurate and
representative of the Licensed Material. Any other changes including but not limited
to, cropping, adapting, and/or omitting material that affect the meaning, intention or
moral rights of the author(s) are strictly prohibited.

3. 2. You must not use any Licensed Material as part of any design or trademark.

3. 3. Licensed Material may be used in Open Access Publications (OAP), but any such
reuse must include a clear acknowledgment of this permission visible at the same time
as the figures/tables/illustration or abstract and which must indicate that the Licensed
Material is not part of the governing OA license but has been reproduced with
permission. This may be indicated according to any standard referencing system but
must include at a minimum 'Book/Journal title, Author, Journal Name (if applicable),
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Volume (if applicable), Publisher, Year, reproduced with permission from SNCSC'.

4. STM Permission Guidelines

4. 1. An alternative scope of license may apply to signatories of the STM Permissions
Guidelines ("STM PG") as amended from time to time and made available at
https://www.stm-assoc.org/intellectual-property/permissions/permissions-guidelines/.

4. 2. For content reuse requests that qualify for permission under the STM PG, and
which may be updated from time to time, the STM PG supersede the terms and
conditions contained in this License.

4. 3. If a License has been granted under the STM PG, but the STM PG no longer
apply at the time of publication, further permission must be sought from the
Rightsholder. Contact journalpermissions@springernature.com or
bookpermissions@springernature.com for these rights.

5. Duration of License

5. 1. Unless otherwise indicated on your License, a License is valid from the date of
purchase ("License Date") until the end of the relevant period in the below table:

Reuse in a medical
communications project

Reuse up to distribution or time period indicated in
License

Reuse in a
dissertation/thesis Lifetime of thesis

Reuse in a
journal/magazine Lifetime of journal/magazine

Reuse in a book/textbook Lifetime of edition
Reuse on a website 1 year unless otherwise specified in the License

Reuse in a
presentation/slide
kit/poster

Lifetime of presentation/slide kit/poster. Note:
publication whether electronic or in print of
presentation/slide kit/poster may require further
permission.

Reuse in conference
proceedings Lifetime of conference proceedings

Reuse in an annual report Lifetime of annual report
Reuse in training/CME
materials

Reuse up to distribution or time period indicated in
License

Reuse in newsmedia Lifetime of newsmedia
Reuse in
coursepack/classroom
materials

Reuse up to distribution and/or time period
indicated in license

6. Acknowledgement

6. 1. The Licensor's permission must be acknowledged next to the Licensed Material
in print. In electronic form, this acknowledgement must be visible at the same time as
the figures/tables/illustrations or abstract and must be hyperlinked to the
journal/book's homepage.
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6. 2. Acknowledgement may be provided according to any standard referencing
system and at a minimum should include "Author, Article/Book Title, Journal
name/Book imprint, volume, page number, year, Springer Nature".

7. Reuse in a dissertation or thesis

7. 1. Where 'reuse in a dissertation/thesis' has been selected, the following terms
apply: Print rights of the Version of Record are provided for; electronic rights for use
only on institutional repository as defined by the Sherpa guideline
(www.sherpa.ac.uk/romeo/) and only up to what is required by the awarding
institution.

7. 2. For theses published under an ISBN or ISSN, separate permission is required.
Please contact journalpermissions@springernature.com or
bookpermissions@springernature.com for these rights.

7. 3. Authors must properly cite the published manuscript in their thesis according to
current citation standards and include the following acknowledgement: 'Reproduced
with permission from Springer Nature'.

8. License Fee

You must pay the fee set forth in the License Agreement (the "License Fees"). All
amounts payable by you under this License are exclusive of any sales, use, withholding,
value added or similar taxes, government fees or levies or other assessments. Collection
and/or remittance of such taxes to the relevant tax authority shall be the responsibility of
the party who has the legal obligation to do so.

9. Warranty

9. 1. The Licensor warrants that it has, to the best of its knowledge, the rights to
license reuse of the Licensed Material. You are solely responsible for ensuring that
the material you wish to license is original to the Licensor and does not carry the
copyright of another entity or third party (as credited in the published version).
If the credit line on any part of the Licensed Material indicates that it was reprinted or
adapted with permission from another source, then you should seek additional
permission from that source to reuse the material.

9. 2. EXCEPT FOR THE EXPRESS WARRANTY STATED HEREIN AND TO THE
EXTENT PERMITTED BY APPLICABLE LAW, LICENSOR PROVIDES THE
LICENSED MATERIAL "AS IS" AND MAKES NO OTHER REPRESENTATION
OR WARRANTY. LICENSOR EXPRESSLY DISCLAIMS ANY LIABILITY FOR
ANY CLAIM ARISING FROM OR OUT OF THE CONTENT, INCLUDING BUT
NOT LIMITED TO ANY ERRORS, INACCURACIES, OMISSIONS, OR DEFECTS
CONTAINED THEREIN, AND ANY IMPLIED OR EXPRESS WARRANTY AS TO
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO
EVENT SHALL LICENSOR BE LIABLE TO YOU OR ANY OTHER PARTY OR
ANY OTHER PERSON OR FOR ANY SPECIAL, CONSEQUENTIAL,
INCIDENTAL, INDIRECT, PUNITIVE, OR EXEMPLARY DAMAGES,
HOWEVER CAUSED, ARISING OUT OF OR IN CONNECTION WITH THE
DOWNLOADING, VIEWING OR USE OF THE LICENSED MATERIAL
REGARDLESS OF THE FORM OF ACTION, WHETHER FOR BREACH OF
CONTRACT, BREACH OF WARRANTY, TORT, NEGLIGENCE,
INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT LIMITATION,
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DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE, BUSINESS
OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER OR NOT
THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. THIS LIMITATION APPLIES NOTWITHSTANDING ANY FAILURE
OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED HEREIN.

10. Termination and Cancellation

10. 1. The License and all rights granted hereunder will continue until the end of the
applicable period shown in Clause 5.1 above. Thereafter, this license will be
terminated and all rights granted hereunder will cease.

10. 2. Licensor reserves the right to terminate the License in the event that payment is
not received in full or if you breach the terms of this License.

11. General

11. 1. The License and the rights and obligations of the parties hereto shall be
construed, interpreted and determined in accordance with the laws of the Federal
Republic of Germany without reference to the stipulations of the CISG (United
Nations Convention on Contracts for the International Sale of Goods) or to Germany ́s
choice-of-law principle.

11. 2. The parties acknowledge and agree that any controversies and disputes arising
out of this License shall be decided exclusively by the courts of or having jurisdiction
for Heidelberg, Germany, as far as legally permissible.
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