490 research outputs found

    Smart working technologies in industry 4.0 : contributions to different manufacturing activities and workers’ skills

    Get PDF
    A Indústria 4.0 é considerada a quarta revolução industrial porque utiliza uma ampla integração de tecnologias de informação e de operação na fabricação industrial. Apesar dessa perspectiva tecnológica, diversos estudos vêm evidenciando a importância de considerar o fator humano para o desenvolvimento de um sistema de manufatura inteligente. Nesse sentido, a dimensão denominada como Smart Working precisa ser melhor investigada, uma vez que entender como as tecnologias afetam os trabalhadores e as habilidades desses são cruciais para o bom desempenho das fábricas. Em razão disso, o objetivo desta dissertação foi entender como as Smart Working Technologies (SWT) podem contribuir para as atividades e as habilidades dos trabalhadores da manufatura. Para tanto, primeiramente foi realizada uma análise abrangente da literatura para identificar as SWT e seus impactos nas capacidades dos trabalhadores em suas atividades de manufatura. Deste modo, foram analisados 80 artigos que relacionam as SWT em oito atividades de manufatura. Posteriormente, foi selecionada uma das SWT mais relevantes conforme a literatura, os robôs colaborativos, para identificar os efeitos das tecnologias nas habilidades dos trabalhadores. Deste modo, foram analisados 138 casos de aplicação reportados por uma das empresas fornecedoras líderes mundiais, bem como três entrevistas com empresas adotantes da tecnologia. Os resultados apontam que existem 15 SWT que podem ser implementadas nas atividades de manufatura e relacionadas às capacidades dos trabalhadores. Além disso, os resultados também apontam que podem existir quatro efeitos das SWT nas habilidades dos trabalhadores. Estes achados demonstram que de acordo com a estratégia da empresa uma SWT pode impactar de diferentes formas os trabalhadores.Industry 4.0 is considered the fourth industrial revolution because it uses a broad integration of information and operating technologies in industrial manufacturing. Despite this technological perspective, several studies have highlighted the importance of considering the human factor to develop a smart manufacturing system. In this sense, the Smart Working dimension needs to be further investigated since understanding how technologies affect workers and their skills are crucial for factories' good performance. Therefore, the objective of this dissertation was to understand how Smart Working Technologies (SWT) can contribute to the activities and skills of manufacturing workers. To this end, firstly a systematic literature review was carried out to identify SWTs and their impacts on workers' capabilities in their manufacturing activities. Thus, 80 articles relating to SWT in eight manufacturing activities were analyzed. Subsequently, one of the most relevant SWTs according to the literature, collaborative robots, was selected to identify the effects of technologies on workers' skills. In this way, 138 application cases reported by one of the world's leading supplier companies were analyzed, as well as three interviews with companies that adopted the technology. The results show that there are 15 SWT that can be implemented in manufacturing activities and related to workers' capabilities. In addition, the results also point out that there may be four effects of SWT on workers' skills. According to the company's strategy, these findings demonstrate that an SWT can impact workers in different ways

    Assembly of the Inner Tracker Silicon Microstrip Modules

    Get PDF
    This note describes the organization of the mechanical assembly of the nearly 4000 silicon microstrip modules that were constructed in Italy for the Inner Tracker of the CMS experiment. The customization and the calibration of the robotic system adopted by the CMS Tracker community, starting from a general pilot project realized at CERN, is described. The step-by-step assembly procedure is illustrated in detail. Finally, the results for the mechanical precision of all assembled modules are reported

    Directly Printable Flexible Strain Sensors for Bending and Contact Feedback of Soft Actuators

    Get PDF
    This paper presents a fully printable sensorized bending actuator that can be calibrated to provide reliable bending feedback and simple contact detection. A soft bending actuator following a pleated morphology, as well as a flexible resistive strain sensor, were directly 3D printed using easily accessible FDM printer hardware with a dual-extrusion tool head. The flexible sensor was directly welded to the bending actuator’s body and systematically tested to characterize and evaluate its response under variable input pressure. A signal conditioning circuit was developed to enhance the quality of the sensory feedback, and flexible conductive threads were used for wiring. The sensorized actuator’s response was then calibrated using a vision system to convert the sensory readings to real bending angle values. The empirical relationship was derived using linear regression and validated at untrained input conditions to evaluate its accuracy. Furthermore, the sensorized actuator was tested in a constrained setup that prevents bending, to evaluate the potential of using the same sensor for simple contact detection by comparing the constrained and free-bending responses at the same input pressures. The results of this work demonstrated how a dual-extrusion FDM printing process can be tuned to directly print highly customizable flexible strain sensors that were able to provide reliable bending feedback and basic contact detection. The addition of such sensing capability to bending actuators enhances their functionality and reliability for applications such as controlled soft grasping, flexible wearables, and haptic devices

    Research And Development Of Industrial Integrated Robotic Workcell And Robotrun Software For Academic Curriculum

    Get PDF
    Robotic automation is consuming the laborious tasks performed by workers all over industry. The increasing demand for trained robotic engineers to implement and maintain industrial robots has led to the development of various courses in academia. Michigan Tech is a FANUC Authorized Certified Education Training Center for industrial robot training. This report discusses the research and development of an integrated robotic workcell consisting of three Fanuc robots, Allen Bradley programmable logic controller (PLC), Mini-Mover belt conveyor and Fanuc iR-vision system. The workcell allows students to explore an environment similar to industry and intended to be used for laboratory hands-on activities in two robotic courses: Real-time Robotic Systems and Industrial Robotic Vision System. To complement hands-on activities and to meet the need of educating robotics to those without access to physical robots, an open source robotic simulation software RobotRun has been created in collaboration with a faculty member and students from Computer Science department. The features and a few training examples on the software have also been presented

    Development Of Automatic Floor Tile Laying Machine [TH8531. E99 2007 f rb].

    Get PDF
    Proses pemasangan jubin lantai merupakan kerja penyudah yang lazimnya dilakukan secara manual. Proses ini digambarkan secara terperinci termasuk aliran kerja pemasangan jubin lantai, ketebalan mortar, corak pemasangan jubin, peralatan, kecacatan pemasangan, kos dan kadar kerja. Floor tile laying process is a finishing job usually done manually. This process is described in detail including the tile laying work flow, thinset thickness, tiles pattern, tools, tiles installation defects, costs and work rate

    Α Behavior Trees-based architecture towards operation planning in hybrid manufacturing

    Get PDF
    In modern manufacturing, the capability of process scheduling and task allocation is a major feature for the proper organization of complex production schedules. More particularly, the case of human-robot collaboration within assembly lines is considered as a quite challenging field, where an efficient process scheduling can reduce products’ delivery times, increasing in parallel its quality. The purpose of this paper is to propose an approach focusing on operation planning for Human-Robot Collaborative processes that consist of many tasks and multiple resources, such as the assembly of large-scale parts. The implementation of the Human-Robot Operation Planning (HROP) module is presented, which aim at the allocation of multiple operations between multiple and different types of resources. This development’s main pillar is a dynamic decision-making logic that combines both constraints, that exclude resources from the evaluation, as well as mathematical criteria, that provide finally a specific solution. The HROP particularity is that it is developed under the Behavior Trees (BT) architecture. For the validation of the proposed approach, a case study under a real industrial environment of the automotive industry is presented, based on the assembly of large-scale parts, such as buses, in a hybrid cell of both human operators and multi-type robots

    Directly Printable Flexible Strain Sensors for Bending and Contact Feedback of Soft Actuators

    Get PDF
    This paper presents a fully printable sensorized bending actuator that can be calibrated to provide reliable bending feedback and simple contact detection. A soft bending actuator following a pleated morphology, as well as a flexible resistive strain sensor, were directly 3D printed using easily accessible FDM printer hardware with a dual-extrusion tool head. The flexible sensor was directly welded to the bending actuator’s body and systematically tested to characterize and evaluate its response under variable input pressure. A signal conditioning circuit was developed to enhance the quality of the sensory feedback, and flexible conductive threads were used for wiring. The sensorized actuator’s response was then calibrated using a vision system to convert the sensory readings to real bending angle values. The empirical relationship was derived using linear regression and validated at untrained input conditions to evaluate its accuracy. Furthermore, the sensorized actuator was tested in a constrained setup that prevents bending, to evaluate the potential of using the same sensor for simple contact detection by comparing the constrained and free-bending responses at the same input pressures. The results of this work demonstrated how a dual-extrusion FDM printing process can be tuned to directly print highly customizable flexible strain sensors that were able to provide reliable bending feedback and basic contact detection. The addition of such sensing capability to bending actuators enhances their functionality and reliability for applications such as controlled soft grasping, flexible wearables, and haptic devices
    corecore