808 research outputs found

    Parallelized Particle and Gaussian Sum Particle Filters for Large Scale Freeway Traffic Systems

    Get PDF
    Large scale traffic systems require techniques able to: 1) deal with high amounts of data and heterogenous data coming from different types of sensors, 2) provide robustness in the presence of sparse sensor data, 3) incorporate different models that can deal with various traffic regimes, 4) cope with multimodal conditional probability density functions for the states. Often centralized architectures face challenges due to high communication demands. This paper develops new estimation techniques able to cope with these problems of large traffic network systems. These are Parallelized Particle Filters (PPFs) and a Parallelized Gaussian Sum Particle Filter (PGSPF) that are suitable for on-line traffic management. We show how complex probability density functions of the high dimensional trafc state can be decomposed into functions with simpler forms and the whole estimation problem solved in an efcient way. The proposed approach is general, with limited interactions which reduces the computational time and provides high estimation accuracy. The efciency of the PPFs and PGSPFs is evaluated in terms of accuracy, complexity and communication demands and compared with the case where all processing is centralized

    Computation-Communication Trade-offs and Sensor Selection in Real-time Estimation for Processing Networks

    Full text link
    Recent advances in electronics are enabling substantial processing to be performed at each node (robots, sensors) of a networked system. Local processing enables data compression and may mitigate measurement noise, but it is still slower compared to a central computer (it entails a larger computational delay). However, while nodes can process the data in parallel, the centralized computational is sequential in nature. On the other hand, if a node sends raw data to a central computer for processing, it incurs communication delay. This leads to a fundamental communication-computation trade-off, where each node has to decide on the optimal amount of preprocessing in order to maximize the network performance. We consider a network in charge of estimating the state of a dynamical system and provide three contributions. First, we provide a rigorous problem formulation for optimal real-time estimation in processing networks in the presence of delays. Second, we show that, in the case of a homogeneous network (where all sensors have the same computation) that monitors a continuous-time scalar linear system, the optimal amount of local preprocessing maximizing the network estimation performance can be computed analytically. Third, we consider the realistic case of a heterogeneous network monitoring a discrete-time multi-variate linear system and provide algorithms to decide on suitable preprocessing at each node, and to select a sensor subset when computational constraints make using all sensors suboptimal. Numerical simulations show that selecting the sensors is crucial. Moreover, we show that if the nodes apply the preprocessing policy suggested by our algorithms, they can largely improve the network estimation performance.Comment: 15 pages, 16 figures. Accepted journal versio

    Introduction to State Estimation of High-Rate System Dynamics

    Get PDF
    Engineering systems experiencing high-rate dynamic events, including airbags, debris detection, and active blast protection systems, could benefit from real-time observability for enhanced performance. However, the task of high-rate state estimation is challenging, in particular for real-time applications where the rate of the observer’s convergence needs to be in the microsecond range. This paper identifies the challenges of state estimation of high-rate systems and discusses the fundamental characteristics of high-rate systems. A survey of applications and methods for estimators that have the potential to produce accurate estimations for a complex system experiencing highly dynamic events is presented. It is argued that adaptive observers are important to this research. In particular, adaptive data-driven observers are advantageous due to their adaptability and lack of dependence on the system model

    Vision Science and Technology at NASA: Results of a Workshop

    Get PDF
    A broad review is given of vision science and technology within NASA. The subject is defined and its applications in both NASA and the nation at large are noted. A survey of current NASA efforts is given, noting strengths and weaknesses of the NASA program

    Novel MARG-Sensor Orientation Estimation Algorithm Using Fast Kalman Filter

    Get PDF
    Orientation estimation from magnetic, angular rate, and gravity (MARG) sensor array is a key problem in mechatronic-related applications. This paper proposes a new method in which a quaternion-based Kalman filter scheme is designed. The quaternion kinematic equation is employed as the process model. With our previous contributions, we establish the measurement model of attitude quaternion from accelerometer and magnetometer, which is later proved to be the fastest (computationally) one among representative attitude determination algorithms of such sensor combination. Variance analysis is later given enabling the optimal updating of the proposed filter. The algorithm is implemented on real-world hardware where experiments are carried out to reveal the advantages of the proposed method with respect to conventional ones. The proposed approach is also validated on an unmanned aerial vehicle during a real flight. Results show that the proposed one is faster than any other Kalman-based ones and even faster than some complementary ones while the attitude estimation accuracy is maintained

    Human Motion Capture Algorithm Based on Inertial Sensors

    Get PDF
    On the basis of inertial navigation, we conducted a comprehensive analysis of the human body kinematics principle. From the direction of two characteristic parameters, namely, displacement and movement angle, we calculated the attitude of a node during the human motion capture process by combining complementary and Kalman filters. Then, we evaluated the performance of the proposed attitude strategy by selecting different platforms as the validation object. Results show that the proposed strategy for the real-time tracking of the human motion process has higher accuracy than the traditional strategy

    Autonomous flight and remote site landing guidance research for helicopters

    Get PDF
    Automated low-altitude flight and landing in remote areas within a civilian environment are investigated, where initial cost, ongoing maintenance costs, and system productivity are important considerations. An approach has been taken which has: (1) utilized those technologies developed for military applications which are directly transferable to a civilian mission; (2) exploited and developed technology areas where new methods or concepts are required; and (3) undertaken research with the potential to lead to innovative methods or concepts required to achieve a manual and fully automatic remote area low-altitude and landing capability. The project has resulted in a definition of system operational concept that includes a sensor subsystem, a sensor fusion/feature extraction capability, and a guidance and control law concept. These subsystem concepts have been developed to sufficient depth to enable further exploration within the NASA simulation environment, and to support programs leading to the flight test

    FPGAs in Industrial Control Applications

    Get PDF
    The aim of this paper is to review the state-of-the-art of Field Programmable Gate Array (FPGA) technologies and their contribution to industrial control applications. Authors start by addressing various research fields which can exploit the advantages of FPGAs. The features of these devices are then presented, followed by their corresponding design tools. To illustrate the benefits of using FPGAs in the case of complex control applications, a sensorless motor controller has been treated. This controller is based on the Extended Kalman Filter. Its development has been made according to a dedicated design methodology, which is also discussed. The use of FPGAs to implement artificial intelligence-based industrial controllers is then briefly reviewed. The final section presents two short case studies of Neural Network control systems designs targeting FPGAs

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    FLEXIBLE LOW-COST HW/SW ARCHITECTURES FOR TEST, CALIBRATION AND CONDITIONING OF MEMS SENSOR SYSTEMS

    Get PDF
    During the last years smart sensors based on Micro-Electro-Mechanical systems (MEMS) are widely spreading over various fields as automotive, biomedical, optical and consumer, and nowadays they represent the outstanding state of the art. The reasons of their diffusion is related to the capability to measure physical and chemical information using miniaturized components. The developing of this kind of architectures, due to the heterogeneities of their components, requires a very complex design flow, due to the utilization of both mechanical parts typical of the MEMS sensor and electronic components for the interfacing and the conditioning. In these kind of systems testing activities gain a considerable importance, and they concern various phases of the life-cycle of a MEMS based system. Indeed, since the design phase of the sensor, the validation of the design by the extraction of characteristic parameters is important, because they are necessary to design the sensor interface circuit. Moreover, this kind of architecture requires techniques for the calibration and the evaluation of the whole system in addition to the traditional methods for the testing of the control circuitry. The first part of this research work addresses the testing optimization by the developing of different hardware/software architecture for the different testing stages of the developing flow of a MEMS based system. A flexible and low-cost platform for the characterization and the prototyping of MEMS sensors has been developed in order to provide an environment that allows also to support the design of the sensor interface. To reduce the reengineering time requested during the verification testing a universal client-server architecture has been designed to provide a unique framework to test different kind of devices, using different development environment and programming languages. Because the use of ATE during the engineering phase of the calibration algorithm is expensive in terms of ATE’s occupation time, since it requires the interruption of the production process, a flexible and easily adaptable low-cost hardware/software architecture for the calibration and the evaluation of the performance has been developed in order to allow the developing of the calibration algorithm in a user-friendly environment that permits also to realize a small and medium volume production. The second part of the research work deals with a topic that is becoming ever more important in the field of applications for MEMS sensors, and concerns the capability to combine information extracted from different typologies of sensors (typically accelerometers, gyroscopes and magnetometers) to obtain more complex information. In this context two different algorithm for the sensor fusion has been analyzed and developed: the first one is a fully software algorithm that has been used as a means to estimate how much the errors in MEMS sensor data affect the estimation of the parameter computed using a sensor fusion algorithm; the second one, instead, is a sensor fusion algorithm based on a simplified Kalman filter. Starting from this algorithm, a bit-true model in Mathworks Simulink(TM) has been created as a system study for the implementation of the algorithm on chip
    corecore