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Parallelized Particle and Gaussian Sum Particle
Filters for Large-Scale Freeway Traffic Systems

Lyudmila Mihaylova, Senior Member, IEEE, Andreas Hegyi, Amadou Gning, and René K. Boel

Abstract—Large-scale traffic systems require techniques that
are able to 1) deal with high amounts of data and heterogenous
data coming from different types of sensors, 2) provide robustness
in the presence of sparse sensor data, 3) incorporate different
models that can deal with various traffic regimes, and 4) cope with
multimodal conditional probability density functions (pdfs) for the
states. Often, centralized architectures face challenges due to high
communication demands. This paper develops new estimation
techniques that are able to cope with these problems of large traffic
network systems. These are parallelized particle filters (PPFs)
and a parallelized Gaussian sum particle filter (PGSPF) that are
suitable for online traffic management. We show how complex
pdfs of the high-dimensional traffic state can be decomposed
into functions with simpler forms and how the whole estimation
problem solved in an efficient way. The proposed approach is
general, with limited interactions, which reduce the computational
time and provide high estimation accuracy. The efficiency of the
PPFs and PGSPFs is evaluated in terms of accuracy, complexity,
and communication demands and compared with the case where
all processing is centralized.

Index Terms—Freeway traffic state estimation, high-
dimensional systems, multimodality, parallelized Gaussian sum
particle filters (PGSPFs), parallelized particle filters (PPFs).

I. INTRODUCTION

MANAGEMENT of traffic systems and of large traffic
networks has been subject to intensive studies, based

on advanced models [19], [31], [33], sensor data fusion [9],
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[12], and control [15], [35], [36]. The traffic systems require
reliable online control [13], [25] to limit the effect of congestion
to improve traffic safety and flow. One of the strategies is to
integrate intelligence in the traffic systems [4] and advanced
estimation methods that allow predicting future traffic behavior.
The estimated traffic variables can then be used as if they were
true traffic state variables in the feedback control loop.

Urban and freeway road traffic systems require processing of
traffic data in a distributed way and transmission of the data
to traffic control centers. These data are often used for traf-
fic monitoring, control, and information dissemination. Traffic
measurements from the sensors are corrupted by noise; some
data may be missing; and often, the data are aggregated over
a longer time period, or the detectors are located at large
distances to each other. In this paper, we present parallelized
particle filters (PPFs) and a parallelized Gaussian sum particle
filter (PGSPF) that can cope with the aforementioned prob-
lems and are suitable for large networks due to their parallel
implementation.

Various traffic state estimators have been investigated in the
literature. In [39], an extended Kalman filter (EKF) is proposed
for traffic vehicular flow estimation. This approach is evaluated
for real traffic data in [37] and [38]. In [28], a particle filter
(PF) is designed to estimate the traffic state (speed and density)
based on sparse flow and speed measurements, and the PF is
compared with an unscented Kalman filter (UKF). The EKF
and UKF performance is compared for traffic state estimation
in [17] with different filter settings and sensor configurations.

For general nonlinear systems with non-Gaussian noises, PFs
are among the most powerful approaches. The only potential
disadvantage of particle filtering, compared with other methods,
is the higher computational time. To reduce this computational
time, different approaches for parallelized and distributed PFs
are proposed in the literature [8], [10], [18], [21], [27], [32].
They can be classified in two groups: i) algorithms transmitting
particle values and their weights between the processing units
(PUs) or ii) algorithms communicating a parametric approx-
imation of the conditional density. Most of these implemen-
tations are for sensor-network-related problems and have the
tendency to minimize communications.

In [32], two distributed PFs are proposed with Gaussian
mixture approximation of the posterior state density function.
The parameters of the Gaussian mixture model are estimated
using an expectation maximization algorithm, and then, the
mixture parameters are exchanged, instead of particle weights.
In other implementations, e.g., [5], the focus is on improved
distributed resampling steps, and the emphasis is on increasing
speed and reducing complexity.
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However, particles have to be exchanged between the PUs,
which can be particularly expensive in terms of communica-
tions when the number of particles is high.

Other related multiple particle filtering works are reported in
[10], [14], and [20]. The method of [8] maintains a separate
filter on each sensor node. Each PF has the same set of prior
distributions. Under the assumption that the measurement er-
rors are independent, the likelihood function can be represented
as a product of the local likelihood functions. Each local
likelihood function is updated at the sensor node based on local
measurements.

In [8], methodologies for performing distributed particle
filtering in a sensor network are presented based on likelihood
factorization and on training of parametric models to approxi-
mate the likelihood factors. Distributed initialization of the state
probability distribution of multiple targets is considered in [6].

In [10], a decomposition of the state space into separate
subspaces is proposed, and different PFs are run in each of
the subspaces. The PF performance strongly depends on the
partitioning of the state space. In [20], two distributed PFs are
proposed in cluster-based underwater sensor arrays.

In [34], a centralized mixture Kalman filter is employed
to simultaneously detect the discrete traffic state (free-flow or
congested) and track the traffic speed. The algorithm relies on
a switching-mode model including several modes. Other works
on Gaussian mixture model filtering have been proposed for
positioning and navigation in [1] and [2] and for vehicular
traffic in [29].

There are situations where the approach with Gaussian mix-
tures is preferred [2] for solving nonlinear estimation problems,
and these are the cases when the following occur: 1) The system
and/or measurement noises can be represented using Gaussian
mixtures; 2) the measurement likelihood function is multimodal
and can be approximated by a Gaussian mixture; 3) the state
probability density function (pdf) of the traffic is multimodal,
and then, the Gaussian mixture model filter and the Gaussian
Sum PF [24] are the right choice.

Our observations of the likelihood of the traffic states in
PFs [28] for vehicular traffic are that it exhibits multimodal
behavior and this is another motivation for developing GSPFs
to vehicular traffic problems.

The main contributions of this work can be summarized as
follows: A solution to traffic estimation problems is proposed
with parallelized and centralized particle and Gaussian sum
PFs. The data are sparse: they are coming only from sensors
at boundaries between traffic segments. Two parallelized PFs
are derived with an importance sampling function affording
parallelization-based on partitioning of the complex traffic
network into simpler subnetworks. In the PFs, this is done
by factorizing the complex state pdf into simpler functions.
These state predictions are needed for online traffic manage-
ment, and most of the required calculations can be locally
performed, within the subnetworks, and measurement updates
are performed only on some boundaries. This leads to efficient
algorithms in terms of accuracy, reduced communications, and
computational complexity per PU. We demonstrate the effi-
ciency of the parallelized approaches over a testing example, in
which the traffic network consists of a freeway link partitioned

into two parts. We compare the accuracy, the computational
complexity, and the communication needs for the parallel
filters.

The remaining part of this paper is organized as follows:
Section II presents the theoretical background for the central-
ized Bayesian estimation. Section III gives the general formu-
lation of the particle filtering approach. Section IV formulates
the state space representation for the purposes of designing
parallelized filters. Section V presents two parallelized PFs,
whereas Sections VI and VII outline the centralized GSPF and
the parallelized GSPF, respectively. The developed filters are
tested over an example with traffic congestion, as described in
Section VIII. Results are shown in Section IX, and conclusions
are drawn in Section X.

II. BAYESIAN ESTIMATION

Consider the discrete-time nonlinear non-Gaussian system
model

xk = f(xk−1,vk−1) (1)

zk = h(xk,nk) (2)

where xk ∈ X is the system state vector belonging to a high-
dimensional state space X and has to be estimated in time
k = 1, 2, . . . ; zk ∈ Z represents the measurement obtained
at time k and Z is the measurement space; and vk and nk

are mutually independent noise vectors, i.e., the system noise
and the measurement noise, respectively. The noises are also
independent of the random initial state x0.

Since the system and the measurements are stochastic, the
exact state cannot be inferred from the measurements, and only
the pdf p(xk|z1:k) of the state xk can be determined, given

all past and current measurements z1:k
∆= {z1, . . . , zk}. Hence,

the goal of the state estimation problem is to determine the
conditional (posterior) pdf p(xk|z1:k) at each time step k.

The posterior pdf can be recursively determined according to
the prediction and update steps.

1) Prediction (prior):

p(xk|z1:k−1) =
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (3)

2) Update (posterior):

p(xk|zk) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)

=
p(zk|xk)p(xk|z1:k−1)∫

p(zk|xk)p(xk|z1:k−1)dxk
(4)

where p(xk|xk−1) is the state transition pdf, and p(zk|xk) is
the measurement likelihood function. Equation (4) represents
the Bayes’ rule.

III. GENERAL FORMULATION OF PARTICLE FILTERING

A state space trajectory x0:k = {x0,x1,x2, . . . ,xk} ∈ X is
defined, which represents the evolution of traffic state x ∈ X
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during the time interval from 0 to k. To circumvent the
integration that is necessary for the evaluation of the de-
nominator of the right-hand side of (4), in particle filtering,
the pdf p(x0:k|z1:k) is approximated by a random measure
{xi

0:k, wi
k}N

i=1, where {xi
0:k, i = 1, . . . , N} is a set of support

points with weights {wi
k, i = 1, . . . , N}. Here, {xi

0:k}N
i=1 de-

note the particles, and N is the number of the particles. The
posterior state pdf at k is approximated as

p(x0:k|z1:k) ≈
N∑

i=1

wi
kδ

(
x0:k − xi

0:k

)
. (5)

Each particle with the respective weight {xi
0:k, wi

k} can be
considered as a hypothesis that the real state trajectory is xi

0:k

with belief wi
k. This hypothesis is updated in two steps.

1) State update: When k is increased by one, a new value is
appended to xi

0:k to form xi
0:k+1, according to state (1),

using the assumption that the previous state was xi
k and a

given sample drawn from vi
k ∼ p(vk).

2) Measurement update: When a measurement arrives, its
likelihood function is calculated and used for the update
of weights wi

k+1, i = 1, . . . , N .

In both steps, the principle of importance sampling plays a
crucial role, which can be explained as follows (cf. [3]):

A. Importance Sampling

Suppose that we want to approximate the pdf p(x), which is
difficult to sample from, but for which a test pdf π(x) ∝ p(x)
exists that can be evaluated for a given x. Let xi ∼ q(x), i =
1, . . . , N be samples that are drawn (sampled) from another pdf
q(x), which is called importance density or proposal distribu-
tion. Then, an approximation of the pdf p(x) is given by

p(x) ≈
N∑

i=1

wiδ(x − xi), with wi ∝ π(xi)
q(xi)

,
∑

i

wi = 1

where wi is the normalized weight of the ith sample.
Given this principle, the weights in (5) are defined to be

wi
k ∝ p

(
xi

0:k|z1:k

)
q
(
xi

0:k|z1:k

)
where proposal distribution q(x) can be arbitrarily chosen;
nevertheless, the choice of q(x) is a relevant step. It can be
shown [3] that, if q(x) is chosen to factorize as

q(x0:k|z1:k) = q(xk|x0:k−1, z1:k)q(x0:k−1|z1:k−1)

then the weights are recursively determined by

wi
k ∝ wi

k−1

p
(
zk|xi

k

)
p

(
xi

k|xi
k−1

)
q
(
xi

k|xi
k−1, zk

) . (6)

This expression can be easily evaluated for a given triple of
xi

k−1, xi
k, and zk since it contains the known measurement and

the state model in the numerator and the user-defined proposal
distribution q in the denominator.

TABLE I
SYSTEMATIC RESAMPLING

A frequently used proposal distribution is the transition prior:

q
(
xk|xi

k−1, zk

)
= p

(
xk|xi

k−1

)
.

Using this in (6) results in a simple weight update rule, i.e.,

wi
k ∝ wi

k−1p
(
zk|xi

k

)
.

B. Degeneracy and Resampling

It has been proven that the variance of the weights can only
increase over time. This means, in general, that, after a few
iterations, all but one weight will be (close to) zero, which
is called the degeneracy problem. Consequently, one particle
will represent the entire pdf, which is, of course, undesirable.
To prevent this, the particles are regularly resampled, i.e.,
particles with small weights are eliminated, and new particles
are created at or around those with large weights (such that the
approximation in (5) still holds). To decide when to resample,

the effective number of particles N̂ eff = 1/
∑N

i=1(w
i
k)2 is com-

pared to some predefined threshold N threshold.
There exist several efficient resampling algorithms of compu-

tational complexity O(N) that typically map the newly created
particles to existing ones with high weights, such as residual
resampling [26] and systematic resampling [3].

In this paper, we will use systematic resampling as given by
the algorithm “RESAMPLE” in Table I, and the generic (cen-
tralized) particle filtering algorithm is described by algorithm
“PF” (see Table II).

IV. STATE SPACE PARTITIONING FOR PARALLELIZATION

When recursive Bayesian filtering methods are applied to
large traffic networks, the computational complexity may be-
come too high for running in real time on a single PU. One way
to tackle this problem is the parallelization of the filters.

The basic idea for the parallelization is to utilize the pos-
sibility that a traffic network can be simulated in parallel. A
natural way to parallelize the simulation of traffic is to divide
the traffic network into several subnetworks (corresponding
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TABLE II
GENERIC PARTICLE FILTER ALGORITHM

Fig. 1. Example of partitioning a traffic network into subnetworks for paral-
lelized simulation/particle filtering.

to geographical regions), where each PU is responsible for
one subnetwork and the relevant variables of the neighbor-
ing segments are communicated (as illustrated in Fig. 1).
The state of the traffic network and the measurements can
be correspondingly partitioned into S subvectors xs

k, s =
1, . . . , S, with xk = [(x1

k)T, (x2
k)T, . . . , (xS

k )T]T, and zk =
[(z1

k)T, (z2
k)T, . . . , (zS

k )T]T. For each state subvector xs
k ∈ X s,

s = 1, . . . , S, we have X = {X 1 ×X 2 × · · · × XS}, and also
for each measurement vector zs

k ∈ Zs, s = 1, . . . , S, where
Z = {Z1 ×Z2 × · · · × ZS}.

System (1) and (2) can now be described by

xs
k = fs

k

(
xs

k−1, x̆
s
k−1,v

s
k−1

)
(7)

zs
k = hs

k (xs
k,ns

k) (8)

where s = 1, . . . , S, and vector x̆s
k−1 collects all neighboring

state variables that act as an input to subnetwork s. Note that
not all states of the neighboring networks are communicated
(only the states that serve as an input to subnetwork s).

Note also that, for (8), it is assumed that the measurements,
taken in a subnetwork, depend only on the state in that subnet-
work. This assumption holds for traffic systems since detectors
typically measure traffic variables at one given location.

In addition, we assume independence of the state noises
between subnetworks and independence of measurement noises
between the subnetworks:

p(xk|xk−1) =
S∏

s=1

p
(
xs

k|xs
k−1, x̆

s
k−1

)
(9)

p(zk|xk) =
S∏

s=1

p (zs
k|xs

k) . (10)

V. APPROACHES OF PARALLELIZATION

1) First Approach: A PF With Shared Particles: In this
approach, the PUs of different subnetworks share the same
particles xi

k, and the particles are partitioned into subparticles
xs,i

k corresponding to subnetwork s. The PU corresponding to
subnetwork s is responsible for the calculations for subparticles
xs,i

k . This approach is functionally equivalent to the centralized
approach, as previously presented, given that (9) and (10) hold.

In the state update step, subparticles xs,i
k are now drawn from

the distribution q(xs
k|xs,i

k−1, x̆
s,i
k−1, z

s
k), which is based on local

information only (including neighboring states). Now, choos-
ing the proposal distribution q(xs

k|xs
k−1, x̆

s
k−1, z

s
k) such that

[cf. (9)]

q
(
xk|xi

k−1, zk

)
=

S∏
s=1

q
(
xs

k|xs,i
k−1, x̆

s,i
k−1, z

s
k

)
(11)

and using (9) and (10) and that

p
(
xs,i

k |xs,i
k−1

)
=

N∑
j=1

p
(
xs,i

k |xs,i
k−1, x̆

s,j
k−1

)
p

(
x̆s,j

k−1|xs,i
k−1

)
(12)

p
(
x̆s,j

k−1|xs,i
k−1

)
=

{
1, if i = j
0, otherwise

(13)

the weight update (6) can be rewritten as

wi
k ∝wi

k−1

S∏
s=1

ws,i
k−1,

∑
i

wi
k = 1 (14)

ws,i
k−1 =

p
(
zs

k|xs,i
k

)
p

(
xs,i

k |xs,i
k−1, x̆

s,i
k−1

)
q
(
xs,i

k |xs,i
k−1, x̆

s,i
k−1, z

s
k

) . (15)

The consequence of (14) and (15) is that the state and
measurement update can be locally performed (divided over S
processors), except for the weight update.

For each time step k in the PF, the following communication
has to take place.

1) The state variables x̆s,i
k−1 at the boundaries have to be sent

to subnetwork s.
2) The weight update factors ws,i

k−1 can be locally calculated,
and only the results need to be communicated to a central
PU to determine wi

k.
3) The centrally calculated weights wi

k are normalized,
and sent back to the local PUs (after resampling, when
necessary).

4) Resampling requires communication to a central PU,
where all weights ws,i

k are collected and wi
k are calculated
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TABLE III
PARALLELIZED PF1 (SHARED PARTICLES)

according to (14). For the residual resampling [26] and
the systematic resampling [3] methods, it is not neces-
sary to communicate the particles themselves since these
methods use only weights as the input and produce as
a result new particles as a selection from the existing
old particles (with some particles selected several times
and others not at all). Therefore, after resampling only,
the selected indices are communicated back to the PUs.
For the resampling algorithms that create particles at
new locations in the state space, such as regularization
[11] and the MCMC scheme [7], the particles themselves
also have to be communicated, and consequently, more
communication is necessary.

The pseudocode for this PPF1 is given in Table III.
2) Second Approach: A PF With Separate Particles: In this

approach, the particles of the different subnetworks are not
shared, and only the neighboring traffic states are commu-
nicated over the boundaries to each subnetwork s. We can
represent the predictive state pdf in the form

p
(
xs,i

k |xs,i
k−1

)
=

∫
x̆s,j

k−1

{
p

(
xs,i

k |xs,i
k−1, x̆

s,j
k−1

)
p

(
x̆s,j

k−1|xs,i
k−1

)}
dx̆s,j

k−1. (16)

Applying Monte Carlo sampling to the product
p(xs,i

k |xs,i
k−1, x̆

s
k−1)p(x̆s

k−1|xs,i
k−1) with a proposal distribution

q(x̆s
k−1|xs,i

k−1) results in the approximation

p
(
xs,i

k |xs,i
k−1

)
≈

∑
j

p
(
xs,i

k |xs,i
k−1, x̆

s,j
k−1

)
p

(
x̆s,j

k−1|xs,i
k−1

)
q
(
x̆s,j

k−1|xs,i
k−1

) .

(17)

Note that, since the pdf of the communicated state variable is
independent of xs,i

k−1 (by assumption)

p
(
x̆s,j

k−1|xs,i
k−1

)
= p

(
x̆s,j

k−1

)
. (18)

TABLE IV
PARALLELIZED PF2 (SEPARATE PARTICLES)

Using this relation and taking only one sample from x̆s,ji

k−1 ∼
p(x̆s

k−1) for each i, and choosing q(x̆s,j
k−1|xs,i

k ) = p(x̆s,j
k−1), (17)

simplifies to

p
(
xs,i

k |xs,i
k−1

)
≈ p

(
xs,i

k |xs,i
k−1, x̆

s,ji

k−1

)
. (19)

In this approach, the weights are locally updated since there
are no centralized particles [cf. (14)], i.e.,

ws,i
k = ws,i

k−1

p
(
zs,i

k |xs,i
k

)
p

(
xs,i

k |xs,i
k−1, x̆

s,ji

k−1

)
q
(
xs,i

k |xs,i
k−1, x̆

s,ji

k−1, z
s
k

) . (20)

This form means that, for the PF, the first x̆s,ji

k−1 needs to

be sampled from p(x̆s
k−1), and then, xs,i

k according to the
importance density q(xs,i

k |xs,i
k−1, x̆

s,ji

k−1, z
s
k). The parallelized PF

algorithm with separate particles (called PPF2) is given in
Table IV.

In this approach, there is no central PU, and there is only
communication between the neighboring PUs. The communi-
cation takes place in each time step when the neighboring state
variables x̆s,ji

k−1 are sent to subnetwork s, after these quantities

are drawn from x̆s,ji

k−1 ∼ p(x̆s
k−1). In this approach, resampling

does not require communication since it can be locally per-
formed at each PU.

The advantages of this approach over the PF approach with
shared particles are given here.

1) It requires fewer particles since the dimension of the state
space for each particle is reduced by factor S (assuming
that all subnetworks have the same number of states).

2) For each subnetwork, a different number of particles
can be used. This can be an advantage when a different
accuracy is required for the different subnetworks.

A disadvantage of this approach is that an approximation is
introduced in the interaction (joint pdf) of the local states with
the states in neighboring subnetworks [as given by (18)].

VI. GAUSSIAN SUM PARTICLE FILTER FOR

TRAFFIC FLOW ESTIMATION

The GSPF [22], [24] is a recently developed filtering tech-
nique in which the state filtering and prediction probability
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density functions are approximated by finite mixtures of
Gaussian components. When the object model and observation
model noises are non-Gaussian, they can also be represented as
Gaussian mixtures. The GSPF is essentially a bank of Gaussian
PFs [23]. The GSPF reduces the estimation problem solution to
updating a Gaussian mixture, where the mean, covariance, and
weights are updated upon the receipt of each new observation.

The filtering state pdf can be approximated as follows:

p (xk|z1:k) =
G∑

g=1

wk,gN (xk;µxk,g,Σxk,g) (21)

by G Gaussian mixture components, having a vector mean and
a covariance matrix µxk,g and Σxk,g , respectively. In (21), wk,g

are the normalized weights, i.e.,
∑G

g=1 wk,g = 1.
The predictive state pdf can be given by (from [24, eq. (7)])

p(xk|z1:k−1)

=
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1

≈
∫ G∑

g=1

wk−1,gN (xk−1;µk−1,g,Σxk−1,g
)

× p(xk|xk−1)dxk−1

=
G∑

g=1

wk−1,g

∫
N (xk−1;µk−1,g,Σxk−1,g

)

× p(xk|xk−1)dxk−1. (22)

According to [24, Th. 2, p. 2603], for an additive noise in the
system model, the predictive state pdf p(xk|z1:k−1) approaches
the sum

p(xk|z1:k−1) ≈
G∑

g=1

w̄k,gN (xk−1; µ̄k,g, Σ̄xk,g
) (23)

where w̄k,g are the normalized weighting coefficients, and µ̄k,g

and Σ̄xk,g
are the mean and covariance matrix for the predictive

state pdf, respectively, to distinguish them from those of the
filtering pdf (21). The integral on the right-hand side of (22) is
approximated by a Gaussian sum.

The whole centralized GSPF algorithm with the prediction
and measurement update steps for time k = 1, . . . , K (here K
indicates the time steps) is given in Table V.

The output state estimate x̂k = E[xk|z1:k] and its covariance
Σ̂xk

= E[(xk − x̂k)(xk − x̂k)T ] are calculated from the fol-
lowing Gaussian mixtures:

x̂k =
G∑

g=1

wk,gµk,g (24)

Σ̂xk
=

G∑
g=1

wk,g

[
Σxk,g

+ (x̂k − µk,g)(x̂k − µk,g)
T
]

(25)

respectively.
It should be noted that, whereas the resampling step in the

PFs is performed with respect to particles, the resampling step
in the GSPF is for the Gaussian mixing components. During
the resampling step of the GSPF, mixands with insignificant
weights are discarded, e.g., with residual resampling, whereas

TABLE V
CENTRALIZED GAUSSIAN SUM PARTICLE FILTER

mixands with significant weights are duplicated. Notice that
the resampling procedure applied to the GSPF slightly differs
from the described in [24] because of the fact that we are not
representing the system noise as a Gaussian mixture.

VII. PARALLELIZED GAUSSIAN SUM PARTICLE FILTER

FOR TRAFFIC FLOW ESTIMATION

The parallelized GSPF approach communicates only the
statistics (mean and covariance) of the states on the boundaries.
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TABLE VI
PARALLELIZED GAUSSIAN SUM PARTICLE FILTER

The PGSPF is presented in Table VI. The implemented PGSPF
is similar to PPF2, with separate particles. Only estimates of the
boundary conditions are transmitted between the boundaries of
each subnetwork. To sample from (31), a Gaussian mixture is
used, similarly to [30].

In contrast with PPFs, where particles or statistics are trans-
mitted between central processing unit (CPU), the parallelized
GSPF requires transmission of the parameters of the GSPF (the
mean, variance, and weights of each Gaussian component).

VIII. TESTING SCENARIO

In this section, we apply the developed parallelized filters
to a traffic problem consisting of state estimation for a traffic
freeway link composed of two sublinks. The purpose of this
example is to compare the estimation accuracy, computational
load, and communication requirements for the centralized and
parallelization approaches.

Fig. 2. In the METANET model, a freeway link is divided into segments. The
main variables of the model are the following: The average outflow of a segment
qm,i(k), average speed vm,i(k), average density ρm,i(k), and segment length
Lm.

The next section describes the freeway model of the traffic
states.

A. Freeway Model: The Metanet Model

Consider a freeway link m that is subdivided into Nm

segments, each with length Lm and λm lanes, and a discrete
time step with length T (in hours). Traffic dynamics is described
in terms of the aggregated variable speed vm,i(k) (in kilometers
per hour), flow qm,i(k) (in vehicles per hour), and density
ρm,i(k) (in vehicles per kilometer per lane), where i is the
segment index. The relevant variables are shown in Fig. 2.

The METANET model equations are given by the fundamen-
tal relationship between speed, density, and flow

qm,i(k) = ρm,i(k)vm,i(k)λm (33)

the law of conservation of vehicles

ρm,i(k + 1) = ρm,i(k)

+
T

Lmλm
(qm,i−1(k) − qm,i(k)) + ξρ

m,i(k) (34)

and a heuristic relationship of the speed dynamics

vm,i(k + 1) = vm,i(k) +
T

τ
(V (ρm,i(k)) − vm,i(k))

+
T

Lm
vm,i(k) (vm,i−1(k) − vm,i(k))

− ηT

τLm

ρm,i+1(k) − ρm,i(k)
ρm,i(k) + κ

+ ξv
m,i(k) (35)

V (ρm,i(k)) = vfree,m exp
[
− 1

am

(
ρm,i(k)
ρcrit,m

)am
]

(36)

where ξρ
m,i(k) and ξv

m,i(k) are random variables representing
the random (unmodeled) dynamics in the speed and density
evolution. Although (34) is an exact relationship and, therefore,
a modeling error is not present, we include the random variable
ξρ
m,i(k) to allow a state filter to correct the number of vehicles

in the network. This noise model formulation is the same as in
[17] and [39]. Furthermore, vfree,m is the free-flow speed in
segment m, ρcrit,m is the critical density (the density at or above
which traffic becomes unstable), and τ , η, am, and κ are the
model fitting parameters without direct physical meaning.
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An extension was introduced to be able to express the differ-
ent anticipation behavior of the drivers at the head and the tail
of a traffic jam (i.e., a shock wave) [16]. The parameter η in
(35) is replaced by the density dependent ηm,i(k) according to

ηm,i(k) =
{

ηhigh, if ρm,i+1(k) ≥ ρm,i(k)
ηlow, if ρm,i+1(k) < ρm,i(k).

B. Boundary Conditions

Variables qm,0, vm,0, and ρm,Nm+1 are boundary variables,
which incorporate the influence of upstream and downstream
segments from the considered link. Usually, qm,0 and vm,0

can be directly measured; in practice, density ρm,Nm+1 is not
directly measured and must be estimated. Even though qm,0

and vm,0 can be directly measured, the measurements will be
corrupted by errors. Therefore, we will consider all boundary
variables as extra states of the system, and we will estimate
them from the measurement data, similarly to the other state
variables. This approach is also recommended in [39]. The
dynamic evolution of the boundary variables is described by
a random walk qm,0(k + 1)

vm,0(k + 1)
ρm,Nm+1(k + 1)

=

 qm,0(k)
vm,0(k)

ρm,Nm+1(k)

+

 ξq
m,0(k)

ξv
m,0(k)

ξρ
m,Nm+1(k)


(37)

where ξq
m,0(k), ξv

m,0(k), ξρ
m,Nm+1(k) are stochastic variables.

C. Measurements

The most frequently used traffic measurement devices typ-
ically measure speed and flow. For the segments that are
equipped with sensors, the measurement equations are given as
follows:

yq
m,i(k) = qm,i(k) + nq

m,i(k) (38)

yv
m,i(k) = vm,i(k) + nv

m,i(k) (39)

where nq
m,i(k), and nv

m,i(k) are the measurement noises for the
flow and the speed, respectively. Note that, in practice, traffic
systems provide measurements with a larger sampling time than
the model time step. Typically, the measurement sampling time
step is 1 or 5 min, whereas the model time step is 10 s. Including
this fact in the development of a PF is straightforward, but for
the sake of simplicity, we assume that, for each model time step,
a measurement is available.

D. State-Space Representation

To bring (33)–(37) into the state-space representation re-
quired by the various filters, state xk is defined as1 xk = [ρ1(k),
. . . , ρN (k), v1(k), . . . , vN (k), v0(k), q0(k), ρN+1]T, and the
measurement vector zk = [yq

m,i(k)T , yv
m,i(k)T ]T collects the

1Link index m is omitted in the rest of this section, assuming that all the
variables introduced hereafter refer to the same link.

Fig. 3. (Left) shock wave and (right) forward wave scenario used for the
evaluation of the filters. The travel direction is from segment 1 to 10. The
colors indicate the speed. Note the difference in color bar scales: The shock
wave scenario includes a wider range of speed since it also contains congested
traffic.

flow and speed measurements from (38) and (39) for the seg-
ments equipped with sensors.

E. Experiment Design

1) Layout: The network for the testing example consists of
a two-lane freeway link of ten segments of 1 km each. For the
two parallel approaches, this link is divided into two sublinks
(“subnetworks”) consisting of the first and last five segments,
respectively.

2) Scenario: Two different scenarios are used to eval-
uate the filters: one with downstream propagating waves
(in free-flow) and one with an upstream propagating shock
wave, as shown in Fig. 3. These scenarios are defined
by selecting the upstream and downstream boundary con-
ditions. The motivation to select these two scenarios is
to have both conditions where information propagates for-
ward and where information propagates backward over
the sublink boundaries. The state and measurement noises
are taken to be Gaussian (although any other distribution
could be taken) with state noise variances, var(ξv

m,i(k)) =
0.5 (km/h)2, var(ξρ

m,i(k)) = 0.5 (veh/km/lane)2, measurement
noise variances var(nv

m,i(k)) = (2 km/h)2, and var(nq
m,i(k) =

(150 veh/h)2.
3) Parameters: The following model parameters are used:

T = 10 s, τ = 18 s, a = 1.867, ηhigh = 65 km2/h, ηlow =
30 km2/h, κ = 40 veh/km/lane, ρcrit,m = 33.5 veh/km/lane,
vmin = 7 km/h, and vfree,m = 102 km/h.

For the experiment investigating the information exchange
over the subnetwork boundaries, it was assumed that segments
1 and 10 are measured (the two ends of the complete link),
and only the segments of the downstream sublink (sublink
2) are measured for the shock wave scenario. In this way,
the upstream sublink gets information about the incoming
backward propagating shock wave only from the downstream
sublink and not from the measurements, and the performance
of the upstream link will depend on the information from the
downstream neighbor link.

Similarly, for the forward wave scenario, only the upstream
sublink is measured (and segment 10) to investigate the com-
munication over the sublink boundary in case of a forward
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propagating wave (corresponding to downstream propagating
information).

4) Filter Setup: The PFs are set up according to the algo-
rithms in Sections III and V. For the proposal distribution,
the transition prior is used, and the PF, PPF1, and PPF2 are
investigated for different numbers of particles in the range N ∈
{20, 50, 100, 200, 500, 1000}. The performance of the GSPF
and PGSPF presented in Sections VI and VII has also been
evaluated with a different number of particles and Gaussian
mixture components G = 1, 3, 8, 16, 24, 32, but due to space
limitations, we present results only with N = 100. The resam-
pling threshold is chosen to be N threshold = 0.3. The state noise
vi

k, which is sampled during the operation of the filters, is taken
to have the same realization for the three different filters for
better comparability.

5) Performance Measures: The performance of the filters is
evaluated by the following three performance measures:

1) Estimation accuracy. For each filter, the root mean square
error (RMSE) is determined of the expected value of the
particles x̃k = E(xi

k) relative to the state vector x̂k in
the reference scenarios. The RMSE is determined for the
speed and the density separately, according to

JRMSE,ρ =
∑

i

∑
k

√
(ρ̂i,k − ρ̃i,k)2

KNm

where ρ̂i,k and ρ̃i,k are the density components of the real
state and the expected state, respectively, of the particles
for segment i at time k; K is the number of simulation
steps; and Nm is the number of segments within the traffic
link. JRMSE,v is similarly calculated.

2) Communication. The communication needs of the filters
are evaluated on the basis of the number of communicated
real numbers (doubles) for a complete run of the simu-
lation. Depending on the filter, this communication may
include the communication of the measurements to the
PU, the communication of boundary states and weights
between the PUs, and the communication of the weights
to and from the central PU.

3) CPU time. As a measure for the computational demand,
the time that each filter needs for a complete run is
determined.

IX. RESULTS AND DISCUSSION

A. Performance Evaluation of the Centralized PF,
Parallelized PF1, and Parallelized PF2

Fig. 4 shows results for the estimation accuracy as a function
of the number of particles for the centralized PF (top), PPF1
from Table III (middle), and PPF2 from Table IV (bottom).
In these experiments, the shock wave scenario was used. The
experiments were repeated ten times, and the figure presents
the averages and standard deviations of these experiments.
For all filters, the performance gets better (lower error) when
the number of particles increases. The performance of the
centralized filter and the performance of approach 1 are similar

Fig. 4. RMSE as a function of the number of particles for the (top) centralized
filter, (middle) approach 1, and (bottom) approach 2 (for segment 1 of the
considered traffic link). The dots connected by the solid line indicate the mean,
and the vertical lines with the “+” signs the standard deviation over ten Monte
Carlo experiments. Note the logarithmic scale of the horizontal axis.

TABLE VII
NUMBER OF COMMUNICATED DOUBLES FOR ONE TIME CYCLE

(FROM k TO k + 1) FOR EACH APPROACH AS A FUNCTION OF THE

NUMBER OF PARTICLES N

TABLE VIII
CPU TIME (IN SECONDS) FOR THE CENTRALIZED PF, PPF1, AND PPF2,

FOR ONE TIME CYCLE (FROM k TO k + 1) FOR ONE PARTICLE

because the two filters are functionally equivalent, and the same
noise realizations are used.

Interestingly, the average performance of approach 2 is sig-
nificantly better for all numbers of particles. From this, it can
be concluded that the improvement following from the fact that
the same number of particles covers a smaller state space (i.e.,
a state space with lower dimensions) is more important than
the deterioration following from the approximation of the pdfs
made at the boundaries of the sublinks.

The communicated doubles for the three types of PFs are
given in Table VII and the CPU time in Table VIII. The exper-
iments have been performed on a personal computer with Intel
Pentium 4 CPU, 3.40 GHz, 2 GB of random-access memory,
and with MATLAB environment.
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TABLE IX
CPU TIME (IN SECONDS) FOR EACH APPROACH

FOR ONE TIME CYCLE (FROM k TO k + 1)

The number of communicated doubles can be analytically
calculated based on the relationships given here. For PPF1,
the corresponding analytical expression is nz + 6N , where nz

is the number of measurements and “6” comes from 2 + 4
(where 2 is (speed and flow) and 4 is the 2 × 2 weights
communicated to the central PU and back to the local PUs). For
PPF2, the analytical expression is nz + 2N , with “2” indicating
the speed and flow linked with N particles.

For both parallelization approaches, the CPU time required
by one of the PUs corresponding to one sublink is clearly less
than the CPU of the centralized filter. However, based on the
number of floating-point operations, it would be expected that
the parallelized filters have a computational demand around
50% of the centralized filter since the same operations are
executed by two PUs, instead of one. The difference between
the expectation and the simulation results can be explained by
the overhead CPU time that is needed by all filters during code
execution, such as the time needed to call the state transition
functions, which is called the same number of times for all PUs.
For larger problems, it can be expected that the CPU time will
not be dominated by this common overhead, and the efficiency
improvement will be higher (see Table IX).

B. Performance Evaluation of the Centralized and
Parallelized GSPFs

The performance of the developed PGSPF and centralized
GSPF is studied with a different number of Gaussian mixture
components and a different number of particles, compared with
the baseline centralized PF and with PPF1 and PPF2 over
the same scenarios as in Section IX-A. To have a thorough
comparison of the filters, we choose GN , which is the product
of Gaussian mixture components with the number of particles
in the GSPF and PGSPF to be different: less, equal, and more
than the number of particles in the PF. In Figs. 5–8, we are
showing RMSE results from the shock wave scenario. The
results presented are with N = 1000 for the centralized PF
and N = 50 for the centralized GSPF and PGSPF. The speed
and density RMSEs (for segment 1) are shown in Figs. 5 and
6, respectively, for the centralized GSPF, compared with the
centralized PF, and the respective RMSEs for the PGSPF are
given in Figs. 7 and 8. In terms of accuracy, both the centralized
GSPF and PGSPF, with G > 3 Gaussian mixture components,
outperform the centralized PF.

The communicated doubles for each approach as a function
of the Gaussian mixture components and for N = 100 particles
are shown in Table X, and they are less than the communicated
doubles of PPF1 and PPF2 reported in Table VII. As evident
from Tables VII and X, the GSPF approaches outperform the
centralized PF and the parallelized PFs. In sublink 1, PGSPF
is sending nz + (2 + 4)G, where we have 2 for the boundary
conditions (mean values, for the speed and flow for G mixture

Fig. 5. Speed RMSEs obtained with the centralized PF (N = 1000 particles,
centralized GSPF with N = 50 particles, and a different number of Gaussian
mixture components. The results are with the shock wave traffic scenario shown
in Fig. 3 (left) for segment 1 and ten Monte Carlo runs.

Fig. 6. Density RMSEs obtained with the centralized PF (N = 1000 parti-
cles, GSPF with N = 50 particles, and a different number of Gaussian mixture
components. The results are with the shock wave traffic scenario shown in
Fig. 3 (left) for segment 1 and ten Monte Carlo runs.

Fig. 7. Speed RMSEs obtained with the centralized PF (N = 1000 particles,
PGSPF with N = 50 particles, and a different number of Gaussian mixture
components. The results are with the shock wave traffic scenario shown in
Fig. 3 (left) for segment 1 and ten Monte Carlo runs.

components) and 2 × 2 are for the covariance matrices of the
speed and flow for G components. Sublink 2 sends nz + (1 +
1)G, which corresponds to the boundary density and covariance
of this density.
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Fig. 8. Density RMSEs obtained with the centralized PF (N = 1000 par-
ticles, PGSPF with N = 50 particles, and a different number of Gaussian
mixture components. The results are with the shock wave traffic scenario shown
in Fig. 3 (left) for segment 1 and ten Monte Carlo runs.

TABLE X
NUMBER OF COMMUNICATED DOUBLES FOR EACH APPROACH AS A

FUNCTION OF NUMBER G OF GAUSSIAN MIXTURE COMPONENTS,
WITH N = 100 PARTICLES, FOR ONE TIME CYCLE (FROM k TO k + 1)

TABLE XI
CPU TIME FOR EACH APPROACH IN SECONDS (FOR FIVE SEGMENTS) AS A

FUNCTION OF NUMBER G OF GAUSSIAN MIXTURE COMPONENTS FOR

ONE TIME CYCLE (FROM k TO k + 1) FOR ONE PARTICLE

The CPU time results are presented in Table XI per particle,
with a different number G of Gaussian mixture components. To
have a better understanding of the CPU time of the developed
filters, we also show the results in Table IX, with N = 1000
particles for the centralized PF, PPF1, and PPF2, and with
approximately the same overall number of particles GN =
16 ∗ 60 = 960. Comparing the results from Table XI with the
results from Tables VIII and IX, one can see that the CPU time
of the GSPF and PGSPF is smaller than the CPU time of the
centralized and parallelized PFs.

The computational complexity of the centralized PF is pro-
portional to the product of the number of particles N and the
number of segments Nm, i.e., NNm, whereas the computa-
tional complexity of the centralized GSPF is proportional to
NNmG. The experiments show that the GSPF and PGSPF
provide high estimation accuracy with a smaller number of
particles, compared with centralized PF.

With the GSPF, having N = 100 particles and G = 8
Gaussian mixture components, we can achieve comparable
accuracy to a PF working with N = 1000 particles.

In large-scale road networks, other unknown variables need
to be estimated, such as turn fractions and inflows. It is straight-
forward to include these additional variables in the estimation
problem, as done in [39]. According to the analytical expres-
sions for the computational complexity and communication
needs (previously presented), the developed approaches are
scalable in the sense that the computational demand and the
communication demand remains constant per PU as long as the
subnetwork size remains constant. An exception is the commu-
nication of PPF1 to the central PU, which linearly grows with
the number of subnetworks. However, the main performance
gain remains since it is due to the parallelization and to the
efficient representation of the state pdf of the proposed filters.

X. CONCLUSION

This work has proposed a new approach to deal with high-
dimensional nonlinear estimation problems. The developed
techniques have provided state estimates that are necessary for
online traffic control. The complex probability density function
of the huge traffic network has been represented by local
probability density functions in a simpler form. A contribution
of this work has also been in the way the proposal distrib-
ution was defined, which affords parallelization of this high-
dimensional estimation problem. PPFs and PGSPFs have been
developed. The state prediction is locally performed within
traffic segments, and only estimates for the boundary traffic
states are transmitted on certain locations (where the sensors
are positioned). The approaches are evaluated with a freeway
state estimation problem for two scenarios (with and without
congestions) and compared to a centralized PF and a centralized
GSPF. The two proposed PPFs are with shared and separate
particles, respectively.

The estimation accuracy and computational load per PU of
PF approach 1 (with shared particles) for parallelization are
equal to those of centralized PF with the same number of
particles, whereas approach 2 for PF parallelization (separate
particles) significantly outperforms centralized PF with the
same number of particles. Thus, the main conclusion is that,
despite the approximation used in approach 2, the performance
of the PF transmitting estimates of the boundary states is
superior to parallelized PF1 with shared particles. Naturally, the
communication needs of the parallelized approaches are higher
than those of the centralized PF, but the communication demand
should not be a problem for the current data networks.

The accuracy of both centralized and parallelized GSPFs is
much higher than the accuracy of the PFs for a comparable
number of components. Another advantage of the parallelized
GSPF is that they require transmission of the estimated bound-
ary states and their covariances via the boundaries, which pro-
vides decomposition by region and by node and substantially
decreases the computational load and communication demands.
The proposed parallelized particle filtering approaches have
potential and can be extended to solve other high-dimensional
problems, e.g., in video processing.
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