665 research outputs found

    A VHDL Core for Intrinsic Evolution of Discrete Time Filters with Signal Feedback

    Get PDF
    The design of an Evolvable Machine VHDL Core is presented, representing a discrete-time processing structure capable of supporting control system applications. This VHDL Core is implemented in an FPGA and is interfaced with an evolutionary algorithm implemented in firmware on a Digital Signal Processor (DSP) to create an evolvable system platform. The salient features of this architecture are presented. The capability to implement IIR filter structures is presented along with the results of the intrinsic evolution of a filter. The robustness of the evolved filter design is tested and its unique characteristics are described

    Architectural Solutions for NanoMagnet Logic

    Get PDF
    The successful era of CMOS technology is coming to an end. The limit on minimum fabrication dimensions of transistors and the increasing leakage power hinder the technological scaling that has characterized the last decades. In several different ways, this problem has been addressed changing the architectures implemented in CMOS, adopting parallel processors and thus increasing the throughput at the same operating frequency. However, architectural alternatives cannot be the definitive answer to a continuous increase in performance dictated by Moore’s law. This problem must be addressed from a technological point of view. Several alternative technologies that could substitute CMOS in next years are currently under study. Among them, magnetic technologies such as NanoMagnet Logic (NML) are interesting because they do not dissipate any leakage power. More- over, magnets have memory capability, so it is possible to merge logic and memory in the same device. However, magnetic circuits, and NML in this specific research, have also some important drawbacks that need to be addressed: first, the circuit clock frequency is limited to 100 MHz, to avoid errors in data propagation; second, there is a connection between circuit layout and timing, and in particular, longer wires will have longer latency. These drawbacks are intrinsic to the technology and for this reason they cannot be avoided. The only chance is to limit their impact from an architectural point of view. The first step followed in the research path of this thesis is indeed the choice and optimization of architectures able to deal with the problems of NML. Systolic Ar- rays are identified as an ideal solution for this technology, because they are regular structures with local interconnections that limit the long latency of wires; more- over they are composed of several Processing Elements that work in parallel, thus exploit parallelization to increase throughput (limiting the impact of the low clock frequency). Through the analysis of Systolic Arrays for NML, several possible im- provements have been identified and addressed: 1) it has been defined a rigorous way to increase throughput with interleaving, providing equations that allow to esti- mate the number of operations to be interleaved and the rules to provide inputs; 2) a latency insensitive circuit has been designed, that exploits a data communication protocol between processing elements to avoid data synchronization problems. This feature has been exploited to design a latency insensitive Systolic Array that is able to execute the Floyd-Steinberg dithering algorithm. All the improvements presented in this framework apply to Systolic Arrays implemented in any technology. So, they can also be exploited to increase performance of today’s CMOS parallel circuits. This research path is presented in Chapter 3. While Systolic Arrays are an interesting solution for NML, their usage could be quite limited because they are normally application-specific. The second re- search path addresses this problem. A Reconfigurable Systolic Array is presented, that can be programmed to execute several algorithms. This architecture has been tested implementing many algorithms, including FIR and IIR filters, Discrete Cosine Transform and Matrix Multiplication. This research path is presented in Chapter 4. In common Von Neumann architectures, the logic part of the circuit and the memory one are separated. Today bus communication between logic and memory represents the bottleneck of the system. This problem is addressed presenting Logic- In-Memory (LIM), an architecture where memory elements are merged in logic ones. This research path aims at defining a real LIM architectures. This has been done in two steps. The first step is represented by an architecture composed of three layers: memory, routing and logic. In the second step instead the routing plane is no more present, and its features are inherited by the memory plane. In this solution, a pyramidal memory model is used, where memories near logic elements contain the most probably used data, and other memory layers contain the remaining data and instruction set. This circuit has been tested with odd-even sort algorithms and it has been benchmarked against GPUs and ASIC. This research path is presented in Chapter 5. MagnetoElastic NML (ME-NML) is a technological improvement of the NML principle, proposed by researchers of Politecnico di Torino, where the clock system is based on the induced stretch of a piezoelectric substrate when a voltage is ap- plied to its boundaries. The main advantage of this solution is that it consumes much less power than the classic clock implementation. This technology has not yet been investigated from an architectural point of view and considering complex circuits. In this research field, a standard methodology for the design of ME-NML circuits has been proposed. It is based on a Standard Cell Library and an enhanced VHDL model. The effectiveness of this methodology has been proved designing a Galois Field Multiplier. Moreover the serial-parallel trade-off in ME-NML has been investigated, designing three different solutions for the Multiply and Accumulate structure. This research path is presented in Chapter 6. While ME-NML is an extremely interesting technology, it needs to be combined with other faster technologies to have a real competitive system. Signal interfaces between NML and other technologies (mainly CMOS) have been rarely presented in literature. A mixed-technology multiplexer is designed and presented as the basis for a CMOS to NML interface. The reverse interface (from ME-NML to CMOS) is instead based on a sensing circuit for the Faraday effect: a change in the polarization of a magnet induces an electric field that can be used to generate an input signal for a CMOS circuit. This research path is presented in Chapter 7. The research work presented in this thesis represents a fundamental milestone in the path towards nanotechnologies. The most important achievement is the de- sign and simulation of complex circuits with NML, benchmarking this technology with real application examples. The characterization of a technology considering complex functions is a major step to be performed and that has not yet been ad- dressed in literature for NML. Indeed, only in this way it is possible to intercept in advance any weakness of NanoMagnet Logic that cannot be discovered consid- ering only small circuits. Moreover, the architectural improvements introduced in this thesis, although technology-driven, can be actually applied to any technology. We have demonstrated the advantages that can derive applying them to CMOS cir- cuits. This thesis represents therefore a major step in two directions: the first is the enhancement of NML technology; the second is a general improvement of parallel architectures and the development of the new Logic-In-Memory paradigm

    A high performance ASIC for electrical and neurochemical traumatic brain injury monitoring

    Get PDF
    Traumatic Brain Injury (TBI) can be defined as a non-degenerative, non-congenital brain trauma due to an external mechanical force. TBI is a major cause of death and disability in all age groups and the leading cause of death and disability in working people and among young adults. This Thesis presents the first application specific integrated chip (ASIC) for monitoring patients suffering from TBI. The microelectronic chip was designed to meet the demands of processing physiological signals for an alternative method of TBI monitoring. It has been studied that by monitoring electrical (ECoG) and chemical (glucose, lactate and potassium) signals, the report of spreading depolarisation (SD) waves could be a good indicator for an upcoming secondary brain injury. The ultimate aim of this Thesis has been to support the idea of a “behind-the-ear” micro-platform, which could enable the monitoring of mobile (or mobilized) patients suffering a TBI who, currently, are not monitored. Switched-capacitor (SC) circuits have been adopted for the implementation of both current and voltage analogue front-ends (AFEs). Advanced techniques to minimise noise and improve the noise performance of the circuit were employed. Moreover, a digitally enabled automatic transimpedance gain control circuit, suitable for current analogue front-ends, was developed and tested in order to provide an automated way to adjust the gain and to counterbalance for the drop in sensitivity of the biosensors due to drift. Measured results confirming the operation of the TBI ASIC and its sub-circuits are reported. Finally, a novel circuit that mimics the Butler-Volmer dynamics is presented. The basic building blocks arise from the combination of Translinear (TL) Circuits and the Non- linear Bernoulli Cell Formalism (NBCF). The developed electrical equivalent circuit has been compared to an ideal model, which was developed in MATLAB. The robustness of the microelectronic system was evaluated by means of Monte Carlo simulations.Open Acces

    A novel genetic algorithm for evolvable hardware

    Get PDF
    Evolutionary algorithms are used for solving search and optimization problems. A new field in which they are also applied is evolvable hardware, which refers to a self-configurable electronic system. However, evolvable hardware is not widely recognized as a tool for solving real-world applications, because of the scalability problem, which limits the size of the system that may be evolved. In this paper a new genetic algorithm, particularly designed for evolving logic circuits, is presented and tested for its scalability. The proposed algorithm designs and optimizes logic circuits based on a Programmable Logic Array (PLA) structure. Furthermore it allows the evolution of large logic circuits, without the use of any decomposition techniques. The experimental results, based on the evolution of several logic circuits taken from three different benchmarks, prove that the proposed algorithm is very fast, as only a few generations are required to fully evolve the logic circuits. In addition it optimizes the evolved circuits better than the optimization offered by other evolutionary algorithms based on a PLA and FPGA structures

    FPGAs in Industrial Control Applications

    Get PDF
    The aim of this paper is to review the state-of-the-art of Field Programmable Gate Array (FPGA) technologies and their contribution to industrial control applications. Authors start by addressing various research fields which can exploit the advantages of FPGAs. The features of these devices are then presented, followed by their corresponding design tools. To illustrate the benefits of using FPGAs in the case of complex control applications, a sensorless motor controller has been treated. This controller is based on the Extended Kalman Filter. Its development has been made according to a dedicated design methodology, which is also discussed. The use of FPGAs to implement artificial intelligence-based industrial controllers is then briefly reviewed. The final section presents two short case studies of Neural Network control systems designs targeting FPGAs

    Accelerating FPGA-based evolution of wavelet transform filters by optimized task scheduling

    Get PDF
    Adaptive embedded systems are required in various applications. This work addresses these needs in the area of adaptive image compression in FPGA devices. A simplified version of an evolution strategy is utilized to optimize wavelet filters of a Discrete Wavelet Transform algorithm. We propose an adaptive image compression system in FPGA where optimized memory architecture, parallel processing and optimized task scheduling allow reducing the time of evolution. The proposed solution has been extensively evaluated in terms of the quality of compression as well as the processing time. The proposed architecture reduces the time of evolution by 44% compared to our previous reports while maintaining the quality of compression unchanged with respect to existing implementations. The system is able to find an optimized set of wavelet filters in less than 2 min whenever the input type of data changes

    Design of electronic systems for automotive sensor conditioning

    Get PDF
    This thesis deals with the development of sensor systems for automotive, mainly targeting the exploitation of the new generation of Micro Electro-Mechanical Sensors (MEMS), which achieve a dramatic reduction of area and power consumption but at the same time require more complexity in the sensor conditioning interface. Several issues concerning the development of automotive ASICs are presented, together with an overview of automotive electronics market and its main sensor applications. The state of the art for sensor interfaces design (the generic sensor interface concept), consists in sharing the same electronics among similar sensor applications, thus saving cost and time-to-market but also implementing a sub-optimal system with area and power overheads. A Platform Based Design methodology is proposed to overcome the limitations of generic sensor interfaces, by keeping the platform generality at the highest design layers and pursuing the maximum optimization and performances in the platform customization for a specific sensor. A complete design flow is presented (up to the ASIC implementation for gyro sensor conditioning), together with examples regarding IP development for reuse and low power optimization of third party designs. A further evolution of Platform Based Design has been achieved by means of implementation into silicon of the ISIF (Intelligent Sensor InterFace) platform. ISIF is a highly programmable mixed-signal chip which allows a substantial reduction of design space exploration time, as it can implement in a short time a wide class of sensor conditioning architectures. Thus it lets the designers evaluate directly on silicon the impact of different architectural choices, as well as perform feasibility studies, sensor evaluations and accurate estimation of the resulting dedicated ASIC performances. Several case studies regarding fast prototyping possibilities with ISIF are presented: a magneto-resistive position sensor, a biosensor (which produces pA currents in presence of surface chemical reactions) and two capacitive inertial sensors, a gyro and a low-g YZ accelerometer. The accelerometer interface has also been implemented in miniboards of about 3 cm2 (with ISIF and sensor dies bonded together) and a series of automatic trimming and characterization procedures have been developed in order to evaluate sensor and interface behaviour over the automotive temperature range, providing a valuable feedback for the implementation of a dedicated accelerometer interface

    Digital signal processing for segmented HPGe detectors preprocessingalgorithms and pulse shape analysis

    Get PDF
    MINIBALL is an versatile spectrometer consisting of 24 longitudinally six-fold segmented HPGe detectors, build for the efficient detection of rare Îł decays in nuclear reactions of radioactive ion beams. MINIBALL was the first spectrometer equipped with digital electronics. Pulse shape analysis algorithms to determine the interaction position of Îł -rays were implemented on a Digital Signal Processor and validated in an experiment using a collimated Îł -ray source. Emphasis was placed on the properties of the different digital signal processing algorithms, the consequences for the implementation and the applicability for position determination. The next generation of Îł -ray spectrometers will consist of highly segmented HPGe detectors equipped with digital electronics, resulting in a more than ten-fold increase in complexity compared to current spectrometers. To enable the construction of a Îł -ray tracking spectrometer, new and powerful digital electronics will be developed. Preprocessing algorithms, giving the Îł -ray energy and generating event triggers, were implemented on a VME module equipped with fast A/D converters and tested with different detectors and sources. Emphasis was placed on the detailed simulation and understanding of the algorithms as well as the influence of electronics and detector onto the energy resolution
    • 

    corecore