
Programmable Architectures for the
Automated Design of Digital FIR Filters using

Evolvable Hardware

Benjamin lain Hounsell

A thesis submitted for the degree of Doctor of Philosophy.
The University of Edinburgh.

September 2001

Abstract

Continuing increases in both the size and complexity of digital signal processing (DSP) systems

places a considerable demand on the design engineer to develop hardware architectures capable

of fulfilling the growing functional requirements expected of modem DSP devices. Automated

circuit design techniques provide the design engineer with a tool to more effectively generate

high performance signal processors capable of meeting demanding specifications.

Evolvable hardware (El-lW) is a relatively new approach to automated circuit design which

utilises advances in reconfigurable hardware technology and the power of modem micro pro-

cessors to generate circuits based on the principles of natural selection and evolution. This

thesis investigates the suitability of software-biased and hardware oriented programmable plat-

forms, configured via EHW, and tailored for the automated design of high performance DSP

circuits. Performance criteria such as timing, area and circuit robustness are considered.

A number of benchmarked DSP circuits were initially considered. It was shown that by using

larger functional logic macros as building blocks El-lW is more successful at generating circuit

solutions than if only gate primitives are used. In addition, the circuits generated are of com-

parable or better performance than equivalent circuits developed using a standard digital design

methodology. Results also indicated that for more complex DSP functions to be generated,

EHW platforms must use larger functional blocks, constrained for a specific application.

Finite Impulse Response (FIR) filters were identified as the key function of many DSP applica-

tions, and the multiplication unit was targeted as the performance critical component. A novel

Programmable Arithmetic Logic Unit (PALU) was therefore developed as a functional building

block suitable for automated digital filter design using EHW. The PALU replaces coefficient

multiplication with a series of bit-shifts, additions and subtractions. Two distinct arrays of

PALU were developed based on conventional FPGA and PLA re-configurable hardware archi-

tectures. Results show that a PLA architecture with 2 levels of hierarchical interconnect and

column-based fixed tap outputs provides a platform most suited to automated filter design using

the EHW technique. The PLA was also shown to be be robust to faults covering up to 25% of

the array when configured using EHW.

Declaration of originality

I hereby declare that the research recorded in this thesis and the thesis itself was composed and

originated entirely by myself in the Department of Electronics and Electrical Engineering at

The University of Edinburgh.

Benjamin Hounsell

111

Acknowledgements

Firstly, I would like to thank my Supervisor Dr Tughrul Arsian for his excellent support and

guidance during the last 3 years.

Considerable thanks to Dr Alan Murray, Dr Alister Hamilton, Dr Gerard Alan and Dr Ahmet

Erdogan for their worthwhile discussions and invaluable feedback throughout.

Grateful thanks to Applied Materials whose kindly provided the financial support for my thesis.

Finally, many thanks to all those in the Department of Electronics and Electrical Engineering

at the University of Edinburgh who made the last 3 years both rewarding and enjoyable.

IV

Contents

Declaration of originality 	 iii
Acknowledgementsiv
Contents . v
List of figuresix
List of tables . xii
Acronyms and Abbreviations . xiii
Nomenclature . xv

1 Introduction

	

1.1 	Automated Circuit Design1
1.1.1 	Evolvable Hardware2
1.1.2 Evaluating Circuits Through Evolvable Hardware4

	

1.2 	Finite Impulse Response Filters4

	

1.3 	Contribution 5

	

1.4 	Thesis Outline6

2 	Evolutionary Algorithms for Automated Digital Circuit Design 8
2.1 Introduction 8
2.2 An Overview of Evolutionary Algorithms 8

2.2.1 	Evolutionary Programming 9
2.2.2 	Evolutionary Strategies 10
2.2.3 	Genetic Programming 11
2.2.4 	Genetic Algorithms 12

2.3 Genetic Algorithms in Evolvable Hardware 13
2.3.1 	Initialisation 15
2.3.2 	Selection 16
2.3.3 	Crossover and Mutation 18
2.3.4 	Fitness Function 19

2.4 Applying Evolvable Hardware to Automated Circuit Design 20
2.4.1 	Gate Level and Functional Level Circuit Evolution 21
2.4.2 	Digital Circuit Design using Extrinsic Evaluation 21
2.4.3 	Digital Circuit Design using Intrinsic Evaluation 22
2.4.4 	Encoding Digital Circuits Using Evolvable Hardware 24

2.5 Summary 25

3 Generating DSP Circuits on the Virtual Chip EHW Platform 	 27
3.1 	Introduction27
3.2 The Virtual Chip Evolvable Hardware Platform28

3.2.1 Encoding a circuit within the chromosome28
3.2.2 Connecting Cells Within the Chromosome30

	

3.2.3 	The Genetic Operators31

	

3.2.4 	Circuit Evaluation with the Virtual Chip36

V

Contents

3.3 Implementation and Results 	 .
3.3.1 Genetic Algorithm Performance Using Primitive and Functional Com-

ponent Libraries
3.3.2 Analysis of Timing and Area Performance

3.4 Phased Evolution in the Virtual Chip
3.4.1 Implementation and Results
3.4.2 Limitations of Virtual Chip EHW Platform

3.5 	Summary

4 FIR Digital Filtering with Multiplierless Architectures
4.1 	Introduction
4.2 	FIR Filter Theory

4.2.1 	Linear Phase FIR Filters
A ' 	 TT1 	r-. 	i 	... l. 	.-.-.., -... 	 ImpiLrnIILaLIuI1

4.3.1 	Direct Form FIR Structure
4.3.2 Transposed Direct Form FIR Structure

4.4 Reduced Complexity FIR Filter Design
4.4.1 	Canonic Signed-Digit Encoding
4.4.2 	Primitive Operator Filters
4.4.3 	VLSI Implementations
4.4.4 Design Adaptation and Fault Tolerance

4.5 Overview of Programmable Platforms
4.5.1 Performing Multiplication on PLDs using Distributed Arithmetic
4.5.2 Dedicated Programmable Logic Devices

4.6 	Summary

5 Developing a Programmable Framework for Filter Design using EHW
5.1 	Introduction
5.2 Overview of EHW Platform

5.2.1 	Programmable Arithmetic Logic Unit
5.3 Implementing the Genetic Algorithm

5.3.1 	Analysis of Genetic Algorithm
5.4 	Summary

6 Reconfigurable platforms for FIR filter implementation using EHW 	 92
6.1 Introduction 92

6.2 Benchmark Filter Design 93

6.2.1 	Experimental Setup 93

6.3 Field Programmable Gate Array (FPGA) Topology 95

6.3.1 	Interconnecting CLBS for an FPGA-based FIR Filter 95

6.3.2 	Configuring the FPGA-based FIR Filter 101
6.3.3 	FPGA-based FIR filter Parameters 102

6.3.4 	Investigation of Genetic Operator Parameters 103

6.3.5 	Performance Comparison of FPGA Topologies 105

6.3.6 	Graphical Representation of FPGA-Based FIR Filter 110

6.4 Programmable Logic Array (PLA) Topology 113
6.4.1 	Interconnecting PALUs for an PLA-based FIR Filter 113

0.11

40
43
46
49
52
53

56
56
57
59
60
61
62
63
64
66
68
69
70
72
76
77

78
78
78
79
81
90
91

vi

Contents

6.4.2 	Configuring the PLA-based FIR Filter 117
6.4.3 	PLA-Based FIR Filter Parameters 119
6.4.4 	Investigation of Genetic Operator Parameters 120
6.4.5 Performance Comparison of PLA Topologies 121
6.4.6 Graphical Representation of PLA-Based FIR Filter 124

6.5 Comparison of PLA and FPGA-Based Filter Platforms 124
6.5.1 	Further Investigations 126

6.6 	Summary 128

7 Translating the Co12 PtA Topology into Hardware 	 130
7.1 	Introduction 130
7.2 Synthesis and Performance Analysis of PLA-Based Filter 131

7.2.1 	Comparative analysis with RTL 'ideal' model 131
7.2.2 	Synthesis Details133

7.3 Fault Tolerant Characteristics of PLA-Based EHW Platform136
7.3.1 	Introducing Faults into the PLA-Based FIR Filter 137
7.3.2 	Analysis 138
7.3.3 	Population Initialisation After Fault Detection 141

7.4 	Summary 143

8 Summary and Conclusions 	 145
8.1 	Introduction 	 145
8.2 Summary

	 145
8.3 Conclusions 	 147
8.4 Achievements 	 150
8.5 Future Work 	 151
8.6 Final Comments 	 151

References 	 153

A VHDL Code for DSP Circuits 	 163
A.! VHDL gate-level description of 2-bit multiplier 163
A.2 7-bit pattern recognizer (one's voter) 163

A.2.1 	3-bit pattern recognizer 164
A.3 A behavioural model of a two tonne discriminator 164
A.4 Schematic of 2x2-bit Parallel Multiplier Evolved by Miller et.al . and Associ-

ated VHDL Code 165
A.5 Schematic of 30-bit Parallel Multiplier Evolved by Miller et.al . and Associ-

ated VHDL Code 166

B Further Details of FPGA and PLA-Based EHW Platforms 	 168
B.1 Postscript Templates of FPGA Interconnect Topologies for Graphical Repres-

entation 168
B.1.1 Elements of Postscript That Are Common to FPGA Interconnect Tem-

plates 168
B.1.2 Postscript Template for Alternating Feed-Forward Array (AFFA) FPGA

Interconnect Topology 172

vu

Contents

B. 1.3 Postscript Template for Continuous Feed-Forward Array (CFFA) FPGA
Interconnect Topology 173

B.1.4 Postscript Template for Continuous Feed-Forward Loop Array (CLFFA)
FPGA Interconnect Topology 173

B.2 	Postscript Templates of PLA Interconnect Topologies for Graphical Represent-
ation .. 175
B.2.1 Elements of Postscript That Are Common to PLA Interconnect Templates 175
B.2.2 Postscript Template for Route I PLA Interconnect Topology 179
B.2.3 Postscript Template for Route 2 PLA Interconnect Topology 179
B.2.4 Postscript Template for Route 3 PLA Interconnect Topology 180
B.2.5 Postscript Template for Route 4 PLA Interconnect Topology 181

C Synthesis and Simulation Script for Generation of 6x5 PIA Core 	 182
C' 1 	F.-.. rb,-. 	 i-... (Dl A 	 1 ')
,,.i 	ju)- 	uVv ii JJ SILl 	 St,i IL nil uX.j A 	S -*iI¼, -5'-'-

C.2 VHDL Leapfrog Testbench for Netlist Simulation 6x5 PLA Core 183

D Publications 	 186
D.1 	Refereed Journals 186
D.2 Refereed Conferences 186
D.3 Refereed Workshops 186

vii'

List of figures

2.1 Example of 2-bit multiplexor represented using genetic programming tree struc-
ture. 11

2.2 Algorithmic flow of genetic algorithm14
2.3 Single-point crossover of two parent chromosomes, generating two offspring 18
2.4 Bit-flipping mutation example in bit-level chromosome encoding19
2.5 Comparison of a standard gate-level encoding with the novel macro-based en-

coding to describe a Fulladder with additional logic 25

3.1 Chromosome structure defining sections for specific circuit description 29
3.2 Generic style of macro and other logic elements provided to component library

for the evolution of arithmetic circuits 31
3.3 Example of macro-based encoding describing a macro element (fulladder) and

its connectivity 31
3.4 Example of broken element connectivity resulting from crossover 32
3.5 Four mutation operators used by the genetic algorithm 34
3.6 Graphical representation of the Virtual Chip environment, evolving a 2-bit mul-

tiplier within a population size of N........................ 37
3.7 Execution flow and coding format of the genetic algorithm and Virtual Chip

evaluation environment 38
3.8 Output response of 2-frequency discriminator from behavioural HDL model 42
3.9 Typical Number of Generations required by Genetic Algorithm to evolve DSP

circuit structures using primitive and functional component libraries 44
3.10 Circuit diagram of 7-bit pattern recogniser generated by genetic algorithm using

functional library 46
3.11 Circuit diagram of 7-bit pattern recogniser generated by genetic algorithm using

functional library with redundant elements removed 46
3.12 Circuit diagram of fully optimised 7-bit pattern recogniser generated by genetic

algorithm using functional library 47
3.13 Example of Phased Evolution For The Automated Design of a 30-bit Multiplier. 48
3.14 Example of unsuccessful evolution of 30-bit multiplier using single-step EHW

technique 50
3.15 Example of synthesised 30-bit multiplier generated using phased evolution

technique within the Virtual Chip EHW platform 52
3.16 Schematic of sub-circuit relating to functionality of output 2 of 30-bit multiplier. 53
3.17 Schematic of sub-circuit relating to functionality of output 5 of 30-bit multiplier. 53

4.1 Filter Specifications for passband ripple (1 + 6 1) and stopband attenuation 02).58
4.2 Convolution in frequency domain for (a) desired amplitude response; (b) fre-

quency response of input signal, (c) actual frequency response from FIR filter. 59
4.3 Impulse response of causal FIR filter shifted M times 60
4.4 Direct form FIR filter implementation . 62

ix

List of figures

4.5 Folded direct form FIR filter implementation (N even) 63
4.6 Multiply accumulate (MAC) operator 64
4.7 Transposed direct form FIR filter implementation 64

4.8 Folded transposed direct form FIR filter implementation 65

4.9 Example Shift-add Approach 67

4.10 Basic FPGA interconnect structures and CLB layout 71

4.11 Example of a PLA architecture from the Xilinx XC9500 series 72
4.12 Distributed arithmetic processor 74

4.13 Implementation of an N-tap FIR filter using distributed arithmetic 75

5.1 Architectural overview of El-lW platform for FIR filter implementation. 80

5.2 Programmable ALU for Multiplierless FIR Filtering 80

5.3 Schematic of EHW platform including units comprising genetic algorithm and
programmable platform (FPGAJPLA)....................... 82

5.4 Schematic of MEMControl unit for memory read/write control 83

5.5 Schematic of Fitness -Unit for calculating quality of PLA/FPGA configurations
for a given set of filter coefficients 85

5.6 Schematic of Selection Unit implementing two way tournament selection. . . 87

5.7 Schematic of Crossover-Unit which implements genetic operators crossover
and mutation in order to generate new offspring solutions 88

5.8 Overview of waveform produced by genetic algorithm in EHW platform. 	. . 90

6.1 Transfer function for 31-tap low-pass FIR Filter 94

6.2 Configurable logic block (CLB) for FPGA including routing to and from PALU. 96

6.3 Various routing topologies for interconnecting PALUs in FPGA structure. 	. . . 97

6.4 Various output topologies for FPGA structure 99
6.5 FPGA control of FIR filter input X(n); including position of input control

string within FPGA string encoding 100
6.6 Example configuration string for 4x4 FPGA-based FIR filter with LSIS, AFFA

and EOS 101

6.7 Example FPGA configuration of 5-tap primitive operator filter 102

6.8 Performance of various FPGA interconnect and coefficient output topologies to
autonomously generate a 31-tap low-pass FIR filter. L-shaped input sequence
(LSIS) employed 106

6.9 Performance of various FPGA interconnect and coefficient output topologies to
autonomously generate a 31-tap low-pass FIR filter. Base-line input sequence
(BLIS) employed 109

6.10 Example FPGA configuration of 31-tap low-pass filter 111
6.11 PALU re-use map from FPGA configuration of 31-tap low-pass filter 112
6.12 PLA architecture and interconnect overview 113

6.13 Various Interconnect Topologies for PLA 116
6.14 Layout of configuration string for programming PLA 118

6.15 Example PLA configuration of 5-tap primitive operator filter 119
6.16 Performance of PLA topologies to autonomously generate a 31-tap low-pass

FIR 	filter 122
6.17 Example PLA configuration of 31-tap low-pass filter filter 125

x

List of figures

6.18 Performance of Co12 and Row3 PLA topologies to autonomously generate a
20-tap Hubert transform FIR filter . 127

7.1 Example of reduced connectivity between PALUs132
7.2 Performance of Co12educed and Co126x16 PLA topologies to autonomously

generate a 31-tap low-pass FIR filter . 133
7.3 Logic area of PLA core as a result of synthesis for increasing operational speeds 134
7.4 Critical delay path through PLA architecture 135
7.5 Simulation waveform of 6x5 PLA Core VHDL netlist synthesised at 10MI-[z. 136
7.6 "Stuck-at-Zero" fault topologies covering PLA139
7.7 Analysis of Co1211x16 PLA architecture with increasing percentages of faulty

PALUs140
7.8 Schematic showing configuration of low-pass FIR filter on PLA with 13% faults 142
7.9 Fitness performance of filter evolved on PLA based on various methods of gen-

erating the initial population of configuration-strings 143

A.1 2x2-bit parallel multiplier evolved my Miller et.al 165
A.2 30-bit parallel multiplier evolved my Miller et.al 166

xi

List of tables

2.1 Boolean logic look-up table of 2-bit parallel multiplier 20

3.1 Primitive and functional logic elements available to genetic algorithm within
Virtual Chip EHW platform 30

3.2 Comparison of DSP Circuits Generated by Genetic Algorithm Using Different
Logic Library Implementations 41

3.3 Performance of arithmetic circuits in terms of circuit complexity and operation
speed 45

3.4 Performance of GA-Based Arithmetic Circuits in Terms of Area and Operation
Speed After Optimisation 45

3.5 Comparing 30-bit multiplier evolved using Virtual Chip EHW platform with
that of functionally equivalent circuits generated with Miller's EHW platform
and by using standard digital CAD techniques 50

3.6 Average Number of Generations Taken by Phased Evolution to Evolve Sub-
circuits For Each Output of 30-bit Multiplier 51

3.7 Success of Virtual Chip EHW platform to generate 4-bit multiplier using phased
evolution 54

4.1 Example of CSD encoded coefficients and their 2's compliment equivalent. 	66
4.2 Contents of LUT for K = 4 input data vectors 73

6.1 Non-zero coefficients required for response of 31-tap low-pass filter 93
6.2 Performance of FPGA connection topologies in generating the 31-tap low-pass

filter configured using genetic algorithm with and without crossover 104
6.3 Performance of FPGA connection topologies in generating the 31-tap low-pass

filter configured using genetic algorithm with variable mutation rates 104
6.4 Performance of PLA connection topologies in generating 31-tap low-pass filter

configured using genetic algorithm with and without crossover 120
6.5 Performance of PLA connection topologies in generating 31-tap low-pass filter

configured using genetic algorithm with variable mutation rates and no cros-
sover employed . 121

xii

Acronyms and Abbreviations

AAOS Alternating Arrow Output Sequence

AFFA Alternating Feed-forward Array

ALU Arithmetic Logic Unit

AOOS Alternating Orthogonal Output Sequence

ASIC Application Specific Integrated Circuit

BUS Base-line Input Sequence

BLOS Base-line Output Sequence

CFFA Continuous Feed-forward Array

CFFLA Continuous Feed-forward Loop Array

CSD Canonic Signed Digit

CLB Configurable Logic Block

DA Distributed Arithmetic

DSP Digital Signal Processing

EA Evolutionary Algorithm

EHW Evolvable Hardware

EOS Edged Output Sequence

EP Evolutionary Programming

ES Evolutionary Strategies

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

GA Genetic Algorithm

GP Genetic Programming

HDL Hardware Description Language

IC Integrated Circuit

[SB Least Significant Bit

USIS L-Shaped Input Sequence

LUT Look-up-table

MAC Multiply Accumulate

xlii

Acronyms and Abbreviations

MSB 	Most Significant Bit

MUX Multiplexer

PALU Programmable Arithmetic Logic Unit

PLA 	Programmable Logic Array

PLD 	Programmable Logic Device

POP 	Primitive Operator Filter

RTL 	Register Transfer Language

VHDL Very High Speed Integrated Hardware Description Language

xiv

Nomenclature

AAO Staps Number of CLBs available as potential taps using AAOS

AQOStaps Number of CLBs available as potential taps using AOOS

BLO Staps Number of CLBs available as potential taps using BLOS

Bi Output Bits

Di Boltzmann probability distribution

EQ Staps Number of CLBs available as potential taps using EOS

F Bit-wise fitness

F Distributed arithmetic multiplication function

H (w) FIR filter frequency response

HA() Actual amplitude response of FIR filter

Desired amplitude response of FIR filter

Ha(w)
Convolution of HA() with HD()

H (z) FIR filter transfer function

I Total number of bits required to determine FPGA input of X(n)

A Offspring population

IL Parent population

PAL U 7.1 Number of bits required to program 1 PALU

PM Bit-wise mutation probability

Q. Coefficient fitness score for evolvable hardware

Number of control bits required for routing MUX

se Control bits of left-shift operator for first column of PALUs

SFPGA Total bit length of configuration string for FPGA-based filter

Si Search Space using Virtual Chip

s(n) FIR filter sample response

SPLA Total bit length of configuration string for PLA-based filter

W Bit length required to encode 1 PALU

y(n) FIR filter difference equation

XK Input string description using distributed arithmetic

xv

Nomenclature

X (n) 	FIR filter input

Xwidth Number of PALU Columns

Ywidth Number of PALU Rows

xvi

Chapter 1
Introduction

1,1 Automated Circuit Design

The continued development of more complex electronic devices with increasing integrated

functionality translates into an increase in the size and complexity of the digital systems em-

ployed. This places a considerable demand on the design engineer to develop hardware archi-

tectures capable of fulfilling the growing functional requirements expected from these mod-

em electronic devices, such as mobile phones and personal digital assistants (PDAs). Digital

Signal processing (DSP) systems are extensively used in many electronic devices, performing

tasks from signal filtering to data compression and real-time video streaming. Performance

constraints such as operational speed, physical area, low power consumption, design portabil-

ity and device reliability, all of which contribute directly to design complexity, are increasingly

dominant factors when developing very large scale integrated (VLSI) silicon devices. This is

especially important for highly constrained portable electronic device such as mobile phones.

Automated circuit design techniques provide the design engineer with a tool to more effectively

generate high performance electronic processors capable of meeting these demanding specific-

ations. Circuit complexity, physical hardware constraints, and device flexibility and adaptation

are all aspects of circuit design which can benefit from the design automation paradigm.

A number of automated design techniques for specific types of DSP circuit have been proposed

and include the automated design of high speed multiplication-and-accumulation circuits [1]

and VLSI digital FIR filters [2]. To obtain functionality an expert system, or heuristic know-

ledge of the system under design is often required, or design parameters and algorithms must be

painstakingly developed which are often specific to the application. More recent developments

in circuit design automation have resulted in the emergence of an independent and expanding

field of research termed evolvable hardware (El-lW) which is based on a non-heuristic search

technique.

Introduction

1.1.1 Evolvable Hardware

Digital circuit design automation using EHW differs from traditional IC design techniques

which utilise a top-down or compartmentalised methodology in which complex systems are

broken down and designed as smaller sub-systems. EHW instead approaches the design prob-

lem as a flat component hierarchy, generating a black-box of the completed circuit. This is

achieved by using a number of circuit building blocks ranging from simple gate primitives to

more complex digital signal processing elements. The size of building block relates to the

level of design abstraction. When using gate primitives, the level of design abstraction can be

likened to a bottom-up design approach, as many gates must be instantiated in order to achieved

the desired circuit functionality. Tnis requires considerable design effort. When more complex

macro functions are employed, the design problem becomes more like a top-down approach,

because much of the functionality of the desired circuit can be described using fewer building

blocks and less design effort. Often in EHW the design abstraction is a combination of the

two. Designs are generated autonomously via a group of stochastic optimisation techniques

termed evolutionary algorithms (EAs). Evolutionary algorithms have been shown to be valu-

able in applications such as neural networks [3-5], task scheduling [6], VLSI routing [7,8] and

networking within telecommunications systems [9]. These are tasks where the computational

time needed to provide a solution grows exponentially with problem complexity, and is termed

NP-complete. The automated design of a number of digital circuits has also been shown to be

an NP-complete [10] problem. This has lead to the development of a number of signal pro-

cessing applications which utilise EHW design techniques. These include the development of

an adaptive control for a myoelectric hand [11], the generation of novel multiplier circuits [12],

and the exploitation of the physical properties of silicon in the design of a highly area efficient

tone discriminator [13]. The flexibility and wide applicability of EHW for a range of auto-

mated design applications stems from the non-heuristic evolutionary algorithm it employs. The

following three examples demonstrate how evolvable hardware can be applied to solve critical

development issues associated with modem DSP circuit design.

Example 1: Ongoing advances in silicon manufacture have resulted in the widespread adop-

tion of DSP hardware developed using deep sub-micron technologies. Commercially available

applications utilising transistor sizes of 0.18 microns are now common place. System-on-chip

(SoC) design methodologies have been developed to exploit the high transistor density inher-

ent in deep sub-micron devices. SoC therefore facilitates the integration of many smaller data

2

Introduction

processing tasks to form more complex signal processing applications, which often require

tens of millions of transistors on a single chip. The time required to both design and test the

complex functionality of SoC applications is regarded as the limiting factor in the products

time-to-market. Circuits generated through EHW have been shown to reduce circuit area, and

provide novel DSP architectures beyond those attainable through conventional design tech-

niques [14, 15]. Circuit test is considered an integral part of the design automation procedure.

However concerns over the complexity issues associated with rigorously evaluating and testing

the functional correctness of circuits developed using EHW presents a number of problems for

the automated design of complex DSP applications [16]. El-lW has therefore been cited as a

means of generating adaptive systems where the target function is not clearly understood such

that test vectors can be added over an extended period whilst the device is in operation.

Example 2: The integration of communication media, such as telecommunication and real-time

video images in mobile devices, require systems capable of rapid data manipulation and adapt-

ation to both the changing requirements of the user, and the changing environment in which

the device is deployed. Programmable, multi-purpose architectures are therefore required to

provide a number of signal processing tasks on demand. Micro-processors and programmable

DSP devices have traditionally been employed for such applications. However general purpose

Programmable Logic Devices (PLD 's) are now increasingly favoured as they are low cost and

can be configured to produce user-defined architectures, specific to a signal processing task.

PLD's allow the design engineer to down-load circuit configurations onto hardware an almost

unlimited number of times. This provides the designer with a means of both implementing a

signal processing device, and testing it, without the need to fabricate a full-custom IC. Applic-

ations using EHW have recently been introduced which exploit the programmability of PLD 's

by modifying device functionality in real time. For example, Tufte and Haddow have developed

a programmable digital signal filter implemented on a PLD and capable of self-configuring for

new tasks using EHW [17].

Example 3: Many DSP devices are deployed under hostile operating conditions for example

in commercial satellite communications where hardware deteriorates due to damage caused by

harmful radiation, and in other inhospitable environments where human intervention is diffi-

cult or impossible. These systems must therefore maintain functionality despite factors such

as severe temperature variation, radiation, and operational ware. However, architectures de-

veloped using conventional fault tolerant design methodologies restrict DSP performance as

3

Introduction

they reduce operational speed, and increase physical area [18]. EHW implementations of fault

tolerant applications reduces the physical resources required, either by designing built-in ro-

bustness into the architecture as in [19,20], or providing a single fixed-sized resource capable

of adapting the system should it become damaged [21,22]. In the latter case programmable

logic devices must be employed.

1.1.2 Evaluating Circuits Through Evolvable Hardware

Circuits generated through EHW are evaluated either extrinsically through software simulation,

or intrinsically, by which a circuit design is transfered directly onto silicon and then evaluated.

Intrinsic evaluation has become feasible due to advances in recent years in PLD technologies,

and has been applied to a wide range of DSP applications such as adaptive, online data com-

pression [23]. Both intrinsic and extrinsic evaluation approaches have their advantages, each

suited to different applications, a taxonomy of which is presented in Chapter 2. As a result a

wide range of programmable platforms have been developed which are specifically tailored for

automated circuit design using EHW, and are also discussed in Chapter 2.

1.2 Finite Impulse Response Filters

Finite impulse response (FIR) filters constitute a key function of most DSP applications and

are therefore typically embedded alongside other signal processing tasks which collectively

comprise the overall system. The performance and portability of hardwired FIR filters are

therefore important to the fast development of application specific DSP devices, such that an

existing FIR architecture can be ported into a new application with minimum re-design and test

overhead.

General purpose programmable DSP chips, such as the TMS320 series from Texas Instruments,

are generally not suitable for high speed FIR filtering, due to their single multiplier architec-

ture. However, their programmability makes them suited for filter applications where flexibility

of the filter for a range of applications is the primary design constraint. Programmable logic

devices such as those from Xilinx [24] are suitable for implementing dedicated, high perform-

ance FIR filters. Filter functionality can also be modified, although this requires implementing

a new circuit configuration on the PLD which must first be developed by the design engineer.

Both programmable DSPs and PLD devices contain considerable silicon redundancy as they

4

Introduction

provide additional functionality not required by an FIR filter architecture. An example of this

is the logarithmic and exponential functions present in most DSP chips. Optimal filter perform-

ance is often only achieved through custom ASIC design. However, this is at the expense of

increased design time and loss of flexibility in modifying the architecture once the device is

fabricated. Regardless of the platform on which the filter is implemented, the multiplier stage

is both the most complex and costly component to implement.

Evolvable hardware has already been applied to the design of FIR filters. Applications have

primarily focused on the optimisation of filter coefficients, which target the multiplication stage

of the filter used in coefficient generation. The multiplier is widely recognised to be the primary

performance constraint when implementing the FIR filter structure; hardware. Multipliers are

costly in terms of area, power, and signal delay. Several design techniques aim to reduce FIR

filter complexity, and improve filter performance by targeting the multiplier. EHW techniques

include the utilisation of coefficient encoding schemes designed to minimise the physical area

of the coefficient multiplication stage [25]. Coefficient optimisation and hardware minimisation

using EHW have also been investigated using 'multiplierless' filter architectures. This approach

replaces the multiplier with a series of addition and shift operations reducing filter area at the

cost of flexibility [2,26]. Both software simulation and intrinsic hardware evaluation have been

used to determine filter performance, and each optimisation approach has its benefits. Each

of the EHW platforms referenced have been designed to implement the optimisation technique

employed by the cited author. However, it is unclear which evaluation technique might be best

suited for the hardware optimisation of a wide range of FIR filter applications, and also which

programmable platform and filter optimisation approach might be most effective.

1.3 Contribution

The work presented in this thesis provides an investigation into a number of novel program-

mable architectures specifically developed to autonomously implement digital FIR filters using

evolvable hardware. Each programmable architecture is distinguished through a number of

unique characteristics, which include topologies for programmable interconnect, various input

and output configurations, and the level of programmable functionality available to the archi-

tecture.

This has led to the development of a novel programmable architecture capable of implementing

5

Introduction

digital circuits using various levels of component functionality, provided by two distinct digital

logic libraries. The architecture is therefore capable of examining the relationship between

the level of component functionality available, and the success of EHW to generate a circuit

solution which operates under realistic physical circuit constraints [27,28].

Particular emphasis has been placed on the coefficient multiplication unit of the FIR filter,

resulting in the development of two novel programmable architectures which replace explicit

multiplication with a distributed series of bit-shifts, additions and subtractions, which must be

successfully configured using EHW through an integrated evolutionary algorithm [29-32].

1.4 Thesis Outline

This thesis therefore focuses on the automated design of coefficient multiplication hardware in

digital FIR filters, designed using evolvable hardware. The objective of the research presented

in this thesis is identified in the following statement:

A programmable architecture tailored for evolvable hardware can be developed which is

highly suited to the autonomous implementation of digital FIR filters.

This thesis is organised as follows:

Chapter 2 introduces the concept of evolutionary algorithms and how they are applied to

evolvable hardware. The concepts of gate-level and functional-level evolution for automated

circuit design are also introduced. Extrinsic and intrinsic evaluation techniques are examined,

and example applications are identified for a range of DSP applications, including FIR filter

design.

Chapter 3 presents the first of three custom EHW platforms. This first platform is termed the

'Virtual Chip'. The architecture of the Virtual Chip, is discussed and a number of DSP circuits

are developed on the platform using both gate and functional-level evolution. Performance

comparisons between both approaches are made in terms of each circuits operational speed and

physical area. Further performance comparisons are made with functionally equivalent DSP

circuits generated using standard design methodologies, and similar DSP circuits developed

via EHW from other published works.

Chapter 4 presents an overview of FIR filter theory. A detailed examination of reduced corn-

Introduction

plexity FIR filter design techniques is also given, and includes an overview of multiplierless

filter architectures. The primitive operator filter (POF) design methodology is then identified

and its advantages, limitations and applicability for design automation using EHW evaluated.

Finally an overview of general purpose programmable logic devices is presented, particularly

focusing on how these devices perform multiplication and implement digital FIR filters.

Chapter 5 details the development of a Programmable Arithmetic Logic Unit (PALU) inspired

by the POF approach. The development of a custom built genetic algorithm is also presen-

ted, which together with the PALU forms the backbone of the final two EHW platforms to be

investigated.

Chapter 6 presents the final two programmable platforms, one inspired by the general purpose

FPGA architecture, the other by a standard PLA design. Both are tailored for FIR filter coeffi-

cient multiplication using primitive operator components, and designed to be configured using

EHW. Various interconnect and coefficient output topologies are examined for each of the two

platforms so as to determine the most effective programmable architecture for coefficient gen-

eration. An examination of the role of mutation and crossover in automated FIR filter design

is also presented. A complex and challenging FIR specification is introduced as a benchmark

and used to determine the performance of both the PLA and FPGA-based platform based on a

number of criteria.

Chapter 7 considers the design issues and compromises associated with translating the PLA

architecture into a synthesisable netlist. Physical issues such as timing, interconnect density and

drive strength are investigated. The netlisted PLA model is then compared with the original

PLA architecture and evaluated using the same performance criteria identified in chapter 6.

Finally, Chapter 7 investigates the ability of the PLA based El-lW platform to self repair in the

context of safety critical applications, or hostile environmental conditions.

Chapter 8 Conclusions obtained from each of the previous chapters are analysed, and the

thesis statement critically evaluated. Further improvements are suggested concerning the design

methodology behind all three EHW platforms, and the scope of the comparative analysis between

platforms critically appraised.

7

Chapter 2
Evolutionary Algorithms for

Automated Digital Circuit Design

2.1 Introduction

Ongoing advances in silicon technology continue to yielded faster and more powerful micro-

processors which have enabled design engineers to examine new methods of generating cir-

cuit structures. One such method has become known as evolvable hardware (El-LW), which

considers the automated design of electronic systems using both software simulation and pro-

grammable hardware technologies. This chapter presents a synopsis of evolutionary algorithms

(EAs), and introduces the reader to the basic concept of each class of EA, along with example

applications. The role of the genetic algorithm as the dominant approach taken in EHW is

discussed in detail, and its adaptation for automated circuit design presented. The concepts

of gate-level and functional-level evolution, reflecting the granularity of logic element used in

EHW to generate more complex circuit structures, is discussed. In addition, a detailed overview

of circuit applications generated using both gate-level and functional level EHW is presented,

and is segmented into EHW platforms which use either extrinsic or intrinsic approaches to cir -

cuit evaluation. Finally, the effects of component granularity, and the choice of encoding used

to describe a circuit architecture are discussed, and their influence on the success in autonom-

ously generating circuits using EHW presented.

2.2 An Overview of Evolutionary Algorithms

Evolutionary algorithms (EM) are a class of non-heuristic optimisation techniques which util-

ise the concept of Darwinian evolution to progressively generate a given solution for a specified

application. A chromosome describes a potential solution which intern expresses the solution's

phenotype, or functionality. The solution for a given application lies within a search space

which must be successfully navigated by the EA. A population of competing solutions concur-

rently investigate the search space, and are subject to selection and modification by the EA in

1.11

Evolutionary Algorithms for Automated Digital Circuit Design

order to both remove poorer solutions from the search, and generate better solutions than are

currently in the population. Solutions are modified through genetic operators termed mutation

and crossover. Mutation acts on an individual by altering it in some predetermined manner,

such that the resulting solution is potentially improved. Mutation is therefore analogous to a

copying infidelity. Crossover usually works by combining the characteristics inherent in mul-

tiple solutions, with the aim of generating new offspring solutions better than the original

solutions which created them. This process of evaluation, selection and modification through

genetic operators is iterative, where each iteration is termed a generation, and is continued un-

til an acceptable solution is found, or a specified number of generations have been performed.

The terminologies used within the field of evolutionary algorithms are designed to reflect the

conceptual similarity that exist between, natural evolution, EAs, and genetics.

2.2.1 Evolutionary Programming

Evolutionary programming (EP) was first developed my Lawrence J. Fogel in the early 1960's

as an alternate method of artificial intelligence. Fogel's initial experiments were on the sim-

ulated evolution of finite-state machines, originally proposed by Moore [33], and Mealy [34].

Fogel's research on this subject can be found in [35].

Genetic algorithms (GAs) traditionally operate on a solution phenotype by using genetic op-

erators to build together smaller sub-solutions or genotypes within the chromosome (as with

biological genetic models). However, EP differs from the GA approach as it operates entirely

on the phenotype, manipulating the behavioural characteristics of a solution in order to produce

new offspring. As a result the quality, or fitness, of a given solution cannot be disseminated

into smaller sub-solutions as with GAs, but is instead evaluated as a single entity, which must

provide the solution required. Crossover is therefore not used in EP, which instead relies solely

on mutation to affect the generation of new solutions. Competing solutions in a population

are selected probabilistically such that poorer solutions within the population have a small but

non-zero probability of selection. Selected individuals are then modified through one or more

mutation operators, each with a specified probability distribution. This process is repeated until

a new population of solutions is generated consisting of offspring solutions, and potentially a

number of the original "parent" solutions. The ratio of offspring to parent solutions is determ-

ined using one of a number of population selection rules detailed in Section 2.2.2 below.

Evolutionary programming primarily uses real numbered (floating point, or integer) represent-

Evolutionary Algorithms for Automated Digital Circuit Design

ations for encoding a solution in a chromosome. The choice of representation depends greatly

on the application domain, and both are factors which determine the type of mutation operator

required for the algorithm to generate solutions. EP has been applied to a wide range of tasks

including automated control systems [36,37], game theory [38,39], the optimisation of neural

networks weights and their structure [3-5], and route planning [40] to name but a few.

2.2.2 Evolutionary Strategies

The field of evolutionary strategies (ES) was originally developed in 1964 by Peter Bienert,

Ingo Rechenberg, and Hans-Paul Schwefel, as a means of minimising the total drag of three-

dimensional bodies in turbulent air flow. A number of revisions to the original algorithm have

occurred since 1964, and include an increase in population size from one parent solution gen-

erating one offspring solution, to p parents generating A offspring. The relationship between

p and A can be expressed by two population selection rules. The first, (p, A), denotes an ES

that produces A offspring from p parents, thereby completely replacing the parent population

with A offspring. In order to maintain the population size A must be > p. If A = it then the

ES simply resembles a random walk search. Therefore, the relationship between offspring and

parent solution in an ES is defined as 1 < p < A < 00. This approach is often termed gen-

erational. The second rule is termed (j + A) denotes an ES that produces A offspring from p

parents, and selects the new population from the union of both parent and offspring solutions.

ES utilise both crossover and mutation in order to generate new offspring solutions. Like evol-

utionary programming, ES predominantly use a real numbered encoding to describe a solution.

However, unlike most non-adaptive approaches using EP, evolutionary strategies vary the in-

dividual mutation distribution of each solution according to a step size a, based on a number

of individual parameters determined by a predefined "success" rule. For example, Rechen-

berg's well known method of determining a is named the 115 success rule [41]. This approach

increases a by a predefined value if the relative frequency of successful mutations over a spe-

cified number of generations is greater than 1.5. If this is not the case then a is decreased by

the same predefined amount. Detailed explanations of ES can be found in [42].

10

Evolutionary Algorithms for Automated Digital Circuit Design

2.2.3 Genetic Programming

Genetic programming (GP) is conceptually very similar to GAs, and was first described by

John R. Koza in 1989 [43]. However, there are a number of fundamental differences in the way

that GP both encodes and manipulates solutions compared to GAs. Genetic programming uses

tree-structures to evolve computer programs which describe a solution's functionality. This

approach stems from the initial use of the LISP programming language for genetic algorithms

presented by Cramer in 1985 [44]. Since then GP algorithms have been developed using a wide

range of computing languages such as C and C++. Genetic programming commonly encodes

each solution using a combination of two node classes, termed terminals and functions. Ter-

minals are either numeric constants or other inputs external to the evolving program. Functions

perform operations which take either terminal outputs, or outputs from other function nodes in

order to produce new outputs which form part of the evolving solution. An example of a simple

genetic program encoding the logic functions of a 2-bit multiplexor is presented in Figure 2.1.

Node functions include AND, OR and NOT boolean expressions; terminal nodes represent the

two inputs of the multiplexor, INO and IN1, and the control signal, cntrl.

out

OR

AND 	 (AND'

INO 	 rI IN1 	tcntrl

Figure 2.1: Example of 2-bit multiplexor represented using genetic programming tree struc-

ture.

Crossover and mutation operators are applied at selected nodes within the program tree after

11

Evolutionary Algorithms for Automated Digital Circuit Design

the selection of fit individuals. Again the type of mutation operator employed is application

specific, but usually results in the changing of a nodes functionality within specified parameters.

For example in Figure 2.1 above, the NOT gate node might be replaced by an AND function as

a result of mutation. Crossover acts on two selected parent programs by selecting nodes within

each parent which form 'branches' of the programs encoding. In Figure 2.1 if crossover were

to select the right AND node, shown in red, then the associated program branch would contain

the NOT function and terminals IN1 and cntrl. These branches of program are then used to

create a new offspring program which combines the selected parts of each parent. From this

procedure new solutions are generated. Another important difference of genetic programming

over traditional 'GAS is that the length of chromosome use to encode each program is not fixed

during evolution. This enables a GP program to grow autonomously in order to accommodate

variations in problem size and complexity. However, without careful control parameters, the

length of OP tree-structures can quickly become unwieldy.

Genetic programming has been applied to a wide range of applications including the design of

analogue electronic circuits [45,46], classification of medical data [47,48], and the automated

optimisation of chemical structures [49]. A more detailed account of genetic programming can

be found in [50,51].

2.2.4 Genetic Algorithms

The concept of the genetic algorithm (GA) was first proposed by John Holland in 1975 [52],

and was the first evolutionary algorithm to encode possible solutions using binary bit-strings.

The prominent role of crossover to generate new variations was also introduced as an integral

mechanism of the GA. Further work by Golderberg [53] supported Holland's notion of using

crossover to create useful building blocks, termed schemata, which combing to form a descrip-

tion of a given solution. Each chromosome generated by a GA describes specific aspects of

the solution it encodes. Mutation was therefore employed as a background operator, ensuring

new material is randomly inserted in to the population to avoid the search stagnating around a

sub-optimal solution.

The manner in which a GA both encodes and manipulates possible solutions within the search

space has made it extremely suitable as the primary engine behind evolvable hardware. For

example each building block (schemata) can be represented as one or more circuit components

with associated connectivity. This thesis therefore focuses on the use of genetic algorithms

12

Evolutionary Algorithms for Automated Digital Circuit Design

in evolvable hardware for the automated design of a performance driven FIR filter coefficient

multiplication circuit. Genetic algorithms and their associated terminologies when applied to

EHW are described in detail in the following section.

2.3 Genetic Algorithms in Evolvable Hardware

The automated design of digital circuits using EHW is not trivial. Each possible circuit solution

for a given task lies within a search space. The search space is defined by the number of differ-

ent component building-blocks available, the number of logic cells used to generate the circuit,

and the application for which the circuit is being evolved. Genetic algorithms, when applied

to EHW, perform a non-heuristic, search through a space of possible circuit configurations, in

order to find a solution which corresponds to a desired specification. Each circuit configuration

is encoded within a chromosome which expresses circuit functionality. The encoded chromo-

some is termed a phenotype as it comprises numerous smaller logic cells or genotypes. Many

possible circuit solutions are investigated concurrently, comprising a population of competing

chromosomes. Each chromosome is evaluated and assigned a fitness which is representative of

the quality of the circuit solution it describes. Selection mechanisms are then used to identify

the most successful chromosomes within the current population. The logic elements which

make up the circuits of the selected chromosomes are then modified via two genetic operators:

mutation and crossover, to produce a new set of offspring solutions potentially better than their

parents. This iterative process is repeated until an acceptable solution is found, or a specified

number of iterations has been completed, where each iteration is termed a generation. Fig-

ure 2.2 displays the algorithmic flow of a standard genetic algorithm for evolvable hardware.

Genetic algorithms traditionally utilise a binary representation of fixed length N, which en-

codes a solution in a specific chromosome. Each bit in the string is termed a loci. Groups of

loci of length L form schemata, which can be represented as 0, 1, or #, where # is a 'wildcard'

matching either 0 or 1. Schemata therefore define useful vectors in the search space (sub-blocks

of solution), which partly form the final solution. The larger the length of schema L, the greater

its contribution to the final solution. The order of a schema is defined by the number of non-#

loci in the string. For example, the string #10#1#0# is an order four schema, with defining loci

at locations 2, 3, 5 and 7. Strings such as "01001000" and "11011101" contain the defining loci

which describe the above schema. A schema's defining length is the distance between the first

13

Evolutionary Algorithms for Automated Digital Circuit Design

Initialise
Population

Evaluate Population 	 Fitness 	Yes
and Assign Fitness —>< Met Requirement

No

Miithficrn 	ki-1 	Crr_c,pr 	V I—I 	cplp-.t;cui

Figure 2.2: Algorithmic flow of genetic algorithm

and last positions of non-# loci. In the case of the example given above, the first non-# loci is

at 2, and the last at 7. The defining length of the above schema is therefore 5, despite an actual

schema length L of 8.

The choice of binary encoding depends greatly on the optimisation problem. If a binary repres-

entation is used to encode numerical parameters requiring optimisation, then empirical studies

have found that Gray encoding is generally superior to a standard power-of-two binary cod-

ing [54]. For example, if part of a chromosome encodes a value of 7, or "0111", in a 4-bit

standard binary string, then for the same string to express the value 8 all bits must change to

encode the string "1000". This requires significant manipulation of the bit-string on behalf of

both the crossover and mutation operators. However, as Grey coding only requires a one bit

change per decimal increment, 7 and 8 can be represented as "0100" and "1100" respectively.

Such a transition can easily be achieved through mutation.

Not all GA encoding schemes use bit-string representations, real-valued representations have

also been used to encode solutions within a chromosome, often when the problem requires

the optimisation of control parameters which are time or frequency dependent [54]. Gener-

ally, modified genetic operators are required from those used in binary representations in order

to provide an effective means of navigating the search space. A detailed review of genetic

algorithms and chromosome representations is beyond the scope of this thesis, however the

reader is referred to the following for more information [42,53,54].

14

Evolutionary Algorithms for Automated Digital Circuit Design

23.1 Initialisation

In order to begin the automated design procedure, a population of circuit chromosomes must

first be initialised; this determines each chromosomes original circuit configuration. A number

of initialisation techniques have been employed in EHW, many include heuristic knowledge of

the circuit to be generated [55]. This approach is termed population seeding, and can be effect-

ive in reducing the number of generations needed to determine an acceptable circuit solution.

One potential draw back of population seeding is that it can cause the search to become fixed

around a sub-optimal, or unsatisfactory solution. This is often caused when a population of

chromosomes prematurely converges around a single sub-optimal solution (circuit configura-

tion). Seeding the population can therefore tip the delicate balance that exists between exploit-

ation of promising solutions, and exploration of the solution search space. Aggressive selection

methods, high crossover rates, and population seeding are all methods of biasing the search to-

wards the current fittest solution in the population, thereby exploiting desirable characteristics

present in the chromosomes circuit encoding, which can then proliferate throughout the popu-

lation via crossover and mutation. This can therefore lead to the fixation of a population around

a sub-optimal solution. A population is said to have reached stasis when no improvement in

the fitness of a solution is experienced over an extensive number of generations.

Another requirement of population seeding is that specific knowledge of both the problem do-

main, and the platform on which the circuit is to be autonomously configured, is required. There

are a number of cases in EHW when this information is not available, or might limit the success

of the search; for example, evolving a parallel multiplier through EHW might be achieved by

seeding the initial chromosomes in the population with design rules from well known circuit

configurations such as the Booth multiplier. This might increase the speed in which a solution

is found, however, it could also severely limit the novelty of any new multiplier architectures

that might potentially be developed. In order to maintain the general applicability of EHW to a

wide range of automated circuit design applications the most common initialisation procedure

simply generates a random circuit configuration for each chromosome in the population. This

approach is termed random initialisation, and is an accepted way of eliminating many of the

undesirable effects associated with population seeding.

15

Evolutionary Algorithms for Automated Digital Circuit Design

23.2 Selection

Selection is the operator used within genetic algorithms for guiding the search towards a de-

sirable solution. The primary objective of the selection operator is to highlight better solutions

in a population. Selection therefore removes poorer solutions from the population, leaving the

remaining solutions available for modification through crossover and mutation operators. GAs

can be classified as either generational or steady-state. A steady-state GA usually produces

only one or two new solutions or offspring in each generation. Solutions from the current, or

parent, population are usually deleted, based on some distribution, to make room for the new

offspring solutions. Generational GM instead replace the entire parent population with an en-

tirely new population of offspring solutions each generation. This approach is denoted (p, A),

where ji represents the parent population, and A the new offspring population. Evolutionary

algorithms utilise one of four selection operators.

Proportionate selection identifies individual solutions based on the proportional fitness of that

individual with respect to the fitness of all other solutions in the current population. Therefore

a solution having twice the fitness of another solution is twice as likely to be selected. Multiple

copies of a fit solution can therefore be selected and used to form the next population. The most

simple form of proportionate selection is termed roulette-wheel selection, where each solution

in the population is assigned an area on the wheel which is proportional to its fitness. The

roulette-wheel is then spun a number of times equal to the population size. An individual is

then selected based upon where the conceptual 'marker' points. However, the basic propor -

tionate selection operator has two important disadvantages. If a population contains a solution

which is markedly superior to any other solution in the current population then a large area

of the roulette-wheel will be dominated by this individual. As a result the dominant solution

will most often be selected each time the wheel is 'spun'. This could lead to a reduction in

solution diversity, and potentially result in the convergence of the population around a sub-

optimal solution. The second disadvantage occurs when most of the solutions in the population

have very similar fitness. In this case, each solution posses a roughly equal proportion of the

roulette-wheel. This can have the effect of random selection, and the search then looses dir-

ection. Both these difficulties can be avoided using a scaling scheme such as that outlined by

Goldberg in [53].

Tournament selection does not suffer from the disadvantages highlighted using proportionate

selection. This is because selection is based on the absolute fitness of each solution in the

16

Evolutionary Algorithms for Automated Digital Circuit Design

population, as a tournament of t individuals are randomly chosen from the current population,

and the fittest solution selected. The approach therefore eliminates the negative selection bias

towards highly fit solutions, whilst ensuring that the fittest individuals are continually identified,

even when all solutions in the population have similar fitness. Tournament selection is also

amenable to fast implementation (for example in hardware) as only a few solutions are required

to be compared at a time without needing to calculate the average fitness of the population as

is the case with the proportionate selection approach. The most common size oft is two, and is

termed binary, or two-way tournament selection.

Ranking selection operates in a similar manner to proportionate selection except that solutions

are ranked in a ascending or descending order of fitness, depending on whether the problem

requires maximisation or minimisation. Each solution is then assigned a ranked fitness based

on its rank within the population. Individual solutions are then selected based on a selection

probability calculated using the ranked fitness score.

Boltzmann selection assigns a modified fitness to each solution based on a Boltzmann probabil-

ity distribution: Di = 1/ (1 + exp(F2 /T)), where T is a parameter analogous to the temperature

term in the Boltzmann distribution. T is reduced in successive generations. Because a large

value of T is initially used, almost any solution is equally likely to be selected, but, as the

generations progress, T becomes small and only good solutions are selected.

Elitism can be applied to any of the selection operators detailed in this subsection. Elitism

preserves solutions from the parent population and places them, untouched, into the new off-

spring population. This approach is used to maintain a specified number of superior solutions

which might be lost during a selection. Elitism is therefore commonly used in generational

Cu, A) genetic algorithms which normally remove older genetic material from the new popula-

tion. Improper use of Elitism can lead to fast convergence around sub-optimal solutions as elite

individuals may be present in the population for many generations if no better solutions are

found, biasing the search towards the elite individual. Retaining more than one elite solution

in the population at any one time can help maintain diversity, as does limiting the number of

generations an elite solution may be present in the population (its lifespan). Solution diversity

using Elitism can further be maintained by using larger population sizes and higher mutation

rates.

17

Evolutionary Algorithms for Automated Digital Circuit Design

2.33 Crossover and Mutation

Crossover and mutation are the operators through which new circuit solutions are generated.

Crossover swaps material between two circuit configurations at randomly chosen points along

the chromosome, producing new offspring. Chromosomes of fixed bit-length must therefore

cross at the same loci on both parents. The greater the number of crossover points, the higher

the degree of intermixing between the two parent solutions. The resulting offspring encode

two new circuit solutions, potentially better than the two parent solutions which generated

them. The probability that two selected solutions will crossover is termed the crossover rate.

One-point, two-point and uniform crossover are most commonly used. Uniform crossover

randomly swaps individual bits between the two parents with the same probability. Uniform

crossover is the most disruptive of the crossover operators, as larger schemata which make up

each parent are generally not expressed in the offspring solutions. Single point crossover is

used most dominantly in EHW applications which utilise genetic algorithms, and is illustrated

in Figure 2.3.

Patent 1:

Parent 2:

One Splice Point

Offspring 1: 	 I

Offspring 2:

Figure 23: Single-point crossover of two parent chromosomes, generating two offspring

Mutation is used to maintain diversity within the population. It operates directly after crossover

and is analogous to a copying infidelity as material is transfered from parent to offspring. Muta-

tion is invoked with relatively low probability so as not to prove deleterious to the search. For

this reason mutation is considered by Goldberg and others to be a background operator with

crossover cultivating useful schemata from both parent solutions, and mutation ensuring di-

versity in the population through operations such a bit-flipping [53]. Bit flipping is the standard

mutation operator used with bit encoded genetic algorithms, and is depicted in Figure 2.4. Each

bit in the string has a probability that it will ifip to its current inverse (i.e 0 to 1); mutation rates

are usually set such that on average one mutation occurs per chromosome (bit string). There-

fore a chromosome of bit length 100 would have a mutation rate of 0.01. Mühlenbein [42]

I1;3

Evolutionary Algorithms for Automated Digital Circuit Design

expresses this relationship more formally as

Pm = 	 (2.1)

Where Pm is the probability of a bit mutation within a chromosome of bit length N.

Chromosome before
Mutation:

Ct. rnnn o nm
_,11 tiLl

n
j,tiiii%., ai L%.'I

Mutation:

Figure 2.4: Bit-flipping mutation example in bit-level chromosome encoding

23.4 Fitness Function

Development of the fitness function in EHW is directly related to the circuit application. The

success of the GA in finding an acceptable circuit solution is therefore most influenced by

how accurately the fitness function describes a given circuit specification. When using EHW

for automated circuit design, fitness is often represented as a percentage of circuit functional-

ity. Correctness if therefore frequently calculated by summing the total number of correct bits

produced by the circuit under evaluation and comparing this to the desired output response.

For example, consider the look-up table for a 2-bit parallel multiplier as presented in Table 2.1.

BothAin and Bin are 2-bit input vectors, therefore the total number of 4-bit test vectors required

to ensure correct functionality are: Vt est = 2, where I is the total number of bits applied to

the circuit input. In this case 2 4 = 16 4-bit test vectors are needed to fully test the multiplier. A

total of 2 4 * 16 = 256 4-bit output vectors are therefore possible, from this the correct circuit

configuration which produces the desired sixteen 4-bit output vectors must be identified. Fit-

ness might then be calculated by comparing the number of correct output bit vectors, produced

by a given circuit solution, i, as shown in equation 2.2.

Fj = O s /V 	 (2.2)

19

Evolutionary Algorithms for Automated Digital Circuit Design

Ain Bin Multi out
00 00 0000
00 01 0000
00 10 0000
00 11 0000
01 00 0000
01 01 0001
01 10 0010
01 11 0011
10 00 0000
10 01 0010
10 10 0100
10 11 0110
11 00 0000
11 01 0011
11 10 0110
11 11 1001

Table 2.1: Boolean logic look-up table of 2-bit parallel multiplier

Where Oi is the number of correctly matching output bits for the current solution, and V is

the total number of bits which must be matched. The simple 2-bit multiplier example above

provides an indication as to both the size and complexity of the search space which must be suc-

cessfully navigated if EHW is to prove an effective tool for automatically designing industrially

useful DSP circuits.

2.4 Applying Evolvable Hardware to Automated Circuit Design

Circuits generated via evolvable hardware are evaluated by one of two methods: extrinsic eval-

uation (software simulation), and direct intrinsic evaluation by which a circuit is transfered

directly into silicon and then evaluated. Intrinsic evaluation has become feasible due to re-

cent advances in the past decade in programmable hardware technologies such as PLDs (Pro-

grammable Logic Devices) and FPGAS (Field Programmable Gate Arrays), both of which are

detailed in chapter 4.

With the advent of faster and larger FPGAS, resulting from advances in silicon technology,

and the move towards deep sub-micron technologies, designers are under increasing pressure

to provide high performance DSP circuits which take advantage of these new platforms. The

'LI]

Evolutionary Algorithms for Automated Digital Circuit Design

result are circuits which must operate under critical constraints imposed by high density, and

the domination of interconnect capacitance [56].

The successful generation of digital circuits through extrinsic and intrinsic evaluation has demon-

strated the great potential of EHW for automated circuit design. It has also raised a number of

questions as to how current EHW techniques can be further improved.

2.4.1 Gate Level and Functional Level Circuit Evolution

Evolvable hardware generates circuits by manipulating a number of 'building blocks' which the

EA has at its disposal. When applied to digital circuit design these building blocks generally

take the form of primitive gates; basic logic elements such as ANDs, NOTs, ORs and XORs.

EHW architectures which use primitive logic elements are said to perform gate-level evolution.

One problem with gate-level evolution is that encoding lengths can become unwieldy when

larger circuits are to be evolved. However, Thompson [13] argues that fine-grained building

blocks such as these enable EHW to develop novel architectures beyond the scope of conven-

tional design techniques. Despite this, evolving with primitive gates is thought to impede the

success of EHW frameworks in evolving all but relatively simple DSP circuits [57]. Miller et.

al. have demonstrated the evolution of 2-bit, 3-bit and 4-bit parallel multiplier circuits using

gate-level El-lW [12,58], reflecting some of the most complex DSP circuit currently generated

with the gate-level EHW approach. However, multiplier complexity greater then 4-bits has

not been achieved using gate-level evolution. An alternative to gate-level evolution is that of

functional-level evolution [59, 60]. Here larger logic elements, or macros, are used comprising

many primitive gates. An example of a functional-level component within a multiplier design

might be a fulladder, or half adder circuit. This approach is further investigated by Ersin in [61],

in which a number of macro units are utilised to evolve more complex arithmetic logic units.

Function-level evolution has been shown to produce DSP circuits which are of a level of func-

tionality sufficient to be of use to industry. These include online data compression for colour

printers [62] and the adaptive equalisation of digital communication channels [63].

2.4.2 Digital Circuit Design using Extrinsic Evaluation

Evolvable hardware for automated digital design favours software based, or extrinsic evalu-

ation, due to the simplicity of its implementation and the ease in which evolved circuits can be

21

Evolutionary Algorithms for Automated Digital Circuit Design

examined once a solution is found [64]. Using this approach only the final solution is down-

loaded onto a reconfigurable device, or fabricated on a custom IC. The majority of frameworks

which employ extrinsic evaluation use a technology independent net-list to model the digital

circuit undergoing evolution. Examples include the use of genetic programming to synthesis

logic functions using generic Multiplexer trees [64,65]. Drechsler and GUnther take this ap-

proach further by evolving logic functions using Multiplexer circuits which can be mapped onto

Multiplexer-based FPGAs [66].

Other extrinsic platforms are more closely based on programmable logic devices which are dis-

cussed in detail in Chapter 4. Arslan et.al . presents a novel FPGA-based architecture designed

to implement digital filters [67], whilst Miller and Thomson have developed a chromosome

representation which more closely models the architecture of Xilinx's now obsolete XC6200

series of FPGAs [68] for evolving novel 2-bit multiplier circuits. In addition, the multiplier

structures developed by Miller et.al and discussed in section 2.4.1 were implemented using a

second, more constrained FPGA-based circuit encoding. This produced significant improve-

ments over the XC6200 model, enabling the evolution of 3 and 4-bit multiplier circuits. The

use of FPGA-based architectures for EHW is an important issue which will be investigated in

more depth in Chapter 6.

One of the dominant limitations in using extrinsic circuit evaluation, which is common to all

of the approaches cited above, is that little or no information is processed in terms of how

accurately a system is modelled in terms of the circuits physical characteristics, such as timing.

This is because in most cases the additional detail required has not been integrated into the

software. This inhibits the development of high performance DSP circuits where timing and

area constraints are of great importance, and therefore must be accounted for in the EHW design

procedure.

2.4.3 Digital Circuit Design using Intrinsic Evaluation

Research on intrinsic circuit evolution has presented a whole new aspect of automated digital

circuit design as well as fundamental problems resulting from the effects of circuit evaluation

using the 'unconstrained' intrinsic approach.

Thompson's development of a two-tone discriminator using gate-level, unconstrained evolu-

tion [13] has shown that the evaluation of a circuit intrinsically in silicon can be affected by

22

Evolutionary Algorithms for Automated Digital Circuit Design

the physics of the device upon which evaluation takes place. Circuits evolved using this tech-

nique have been shown to be temperature, silicon, and voltage dependent. It is presently un-

clear why intrinsic evaluation exploits a given architecture's physical characteristics, or how

these negative effects can be minimised [19,69]. Layzell has since attempted to provide an

environment suitable for answering these fundamental questions by using a general-purpose

evolvable motherboard consisting of an array of programmable switches, connected to up to

6 plug-in daughterboards. Each daughterboard can theoretically perform any number of func-

tions, however, Lazell focuses on daughterboards containing arrays of operational amplifiers

and transistors [70]. Circuits evolved on the motherboard included a simple NOT gate, an amp-

lifier, and oscillator. Again each circuit exhibited dependence on the components on which

they were evolved, such that if new transistor components were inserted then the system must

be re-evolved to regain the desired functionality. Layzell also developed a software model of

the evolvable motherboard. Results presented in [70] show that extrinsic evaluation provides

solutions to each of the the circuits investigated, and could be used to configure the hardwired

motherboard with minimal re-evolution.

On solution to the problems inherent in intrinsic circuit evaluation has been presented through

the development of a Java-based tool for evolving gate-level circuits on Xilinx's XC4000EX/XL

series of FPGA devices [71]. The architecture, called GeneticFPGA, uses Java to interface to

the XC4000EX/XL bitstream, which then generates circuits on the fly. This EHW platform

avoids the problems associated with unconstrained intrinsic evaluation by driving all inputs

with flip-flops in a completely synchronous mode. In addition, evolution is constrained such

that only neighbouring connectivity is possible so as to avoid possible contentious circuit con-

figurations, such as feedback and same pin multiple source short circuits.

Tufte and Haddow implement the genetic algorithm directly on an Xilinx XC4044XL FPGA

such that the GA and the evolving circuit design are implemented together on the same device.

They coin this process Complete Hardware Evolution (CHE) [72]. Early work focused on the

automated design of Multiplexer circuits, however, more recent work uses the same approach

to autonomously evolve adaptive filter coefficients within a constrained filter architecture em-

bedded on the FPGA [17]. The CHE principle has also been demonstrated earlier by Kajitani

et. al in [60] and was used to implemented many of the practical applications detailed in [11].

Due to the limited commercial availability of analogue programmable devices, only a small

number of architectures suitable for evolvable hardware have been developed in the academic

23

Evolutionary Algorithms for Automated Digital Circuit Design

field. Whilst this thesis does not focus on analogue circuit design using EHW, a number of pro-

grammable devices have are now included for completeness which are capable of implementing

both analogue and digital circuits using EHW. Examples include the Palmo chip developed by

Hamilton et. al. in [73]. The device is constructed in mixed-signal VLSI and can process ana-

logue signals specified as pulse streams. Palmo can therefore be used to process mixed-signal

data effectively on a single programmable device. The Palmo chip has been shown to be a

useful platform for EHW design techniques, where the evolution of novel filter structures has

demonstrated [74]. Stoica et.al have developed a reconfigurable transistor array specifically de-

signed for evolutionary oriented circuit design [75]. The device can implement both analogue

and digital circuits and cxhibits robustness to extreme temperature variations when evolved

on-line.

2.4.4 Encoding Digital Circuits Using Evolvable Hardware

Gate-level evolution, using either extrinsic or intrinsic evaluation, presents a number of dif -

ficulties as circuit complexity increases. These difficulties become manifest in the encoding

schemes used to represent circuit functionality. Lengthy chromosomes are attributed to the

manner in which circuits are encoded using the gate-level approach [14]. As circuit complexity

increases, so too does the number of logic gates required to build it. This increase in gate count

relates directly to an increase in the chromosome length, as each logic gate must be encoded.

Because the majority of evolutionary algorithms require populations of chromosomes to find an

adequate solution, reducing chromosome length can greatly reduce the memory requirements

of many EHW applications. Limiting the manner in which logic gates can connect, and in-

creasing the building block size to accommodate function-level evolution are two methods of

limiting the length of circuit chromosomes in EFIW. Higuchi et.al . have demonstrated both

reduction methods successfully in [59]. As an example consider the two encoding approaches

used to describe the circuits illustrated in Figure 2.5. Both circuits are functionally identical,

however, the gate-level encoding would require a seven cell description to represent the circuit,

while the functional-level encoding would require only three. Although more cell connectivity

information is required to encode the fulladder cell described using the functional-level ap-

proach, the overall reduction in chromosome length justifies this. Again, it could be argued

that increased component granularity and reduced freedom of component connectivity might

reduce the novelty of circuits produced using EHW. Such an argument should however also take

into consideration the functional complexity of the application, and thus the size of the search

24

OutO

Gate-level Encoding

InO

ml

1n2

ln3

Macro-based Encoding

lr 	
OutO

nl

Evolutionary Algorithms for Automated Digital Circuit Design

Figure 2.5: Comparison of a standard gate-level encoding with the novel macro-based encod-
ing to describe a Fulladder with additional logic.

space, the memory resources available to the El-lW platform, and the designers requirement for

circuit novelty against speed of implementation. Chapter 3 will also show that functional-level

evolution requires fewer generations to attain functionally correct DSP circuits, than equivalent

circuits generated using gate-level evolution.

2.5 Summary

This chapter has introduced the concepts of evolvable hardware, and presented four derivative

classes. A detailed overview of genetic algorithms and associated genetic operators tailored for

EHW applications has been presented. This has highlighted the GAs suitability for automated

circuit design and demonstrated how genetic operators might be used to developed circuit ar-

chitectures for a given specification, often in the form of a boolean lookup table. The benefits

and limitations of both gate-level and functional-level approaches to automated circuit design

have been investigated through literature review. Gate-level evolution has provided a number of

novel DSP circuits with smaller area than that achieved using conventional design techniques,

however, a non-linear growth exists between the complexity of the circuit to be evolved and the

size and complexity of the search space in which an acceptable solution might be found. This

has limited the effectives of gate-level EHW to relatively simple DSP circuits. Functional-level

evolution has demonstrated the automated design of a number of much more complex DSP

applications, where the search space has been constrained for the specific DSP task. It has

however been stated that functional-level building blocks limit the novelty and performance

of circuits generated through EHW, although the author is unaware of any direct comparisons

25

Evolutionary Algorithms for Automated Digital Circuit Design

between gate-level and functional-level approaches

The merits of both extrinsic and intrinsic circuit evaluation using EHW have also been subject

to literature review. Applications requiring on-line adaptation must inevitably be implemented

directly in hardware and therefore suit the intrinsic approach. This technique has the disadvant-

age of restricting the DSP to one technology platform, and has been shown to produce unstable

circuits which are reliant on the specific physical characteristics of the device upon with the are

evolved; unless necessary constraints are set in place as part of the circuit encoding. Extrinsic

evaluation through software simulation provides the design engineer with a means of more ac-

curately assessing the circuit developed using EHW. However, physical circuit characteristics

such as timing are usually ignored in favour of area minimisation. The next chapter explores the

development of a more accurate software simulation environment for autonomously developing

DSP circuits, and provides a direct comparison of gate-level and functional level approaches to

circuit design for a number of DSP applications.

26

Chapter 3
Generating DSP Circuits on the

Virtual Chip EHW Platform

3.1 Introduction

Because of the need for high performance DSP applications, many modem designs must tar-

get DSM (deep sub-micron) technologies to achieve demands set by low area and fast data

throughput. As a result timing and area issues have become a dominant factor in the design

of performance DSP circuits and therefore should be accounted for by EHW platforms when

designing such applications.

The EHW platform presented in this chapter was developed to incorporate performance related

design criteria concerning the area, timing and correct functionality of DSP circuits. Also,

the platform was developed to ascertain the merits of both gate-level and functional-level ap-

proaches to the automated design of a high performance multiplier stage for FIR filter coef-

ficient multiplication. A number of other DSP applications are also investigated to provide a

wider basis for comparison. The work set out in this chapter therefore aims to achieve the

following:

• Investigate the use of a custom evolvable hardware platform, termed the Virtual Chip,

to produce novel, high performance DSP circuits, developed under area and timing con-

straints.

• Provide a performance comparison of circuits generated using functional-level evolution

with functionally equivalent circuits developed using gate-level evolution.

• Provide a basis for analysis by comparing those circuits generated by the Virtual Chip

with functionally equivalent circuits developed using standard CAD-based design meth-

odologies.

The results obtained in this chapter intend to establish the effectiveness of gate-level and

functional-level design approaches to automated circuit design using a genetic algorithm and

27

Generating DSP Circuits on the Virtual Chip EHW Platform

EHW platform common to both approaches as the basis for comparison. The effectiveness of

the DSP circuits produced using the Virtual Chip will also be compared with equivalent circuits

generated using other published EFIW platforms, and circuits developed using standard digital

design methodologies.

3.2 The Virtual Chip Evolvable Hardware Platform

The Virtual Chip has been designed to provide an automated digital circuit design environment.

'Within this platform a novel genetic algorithm encoding is used to evolve digital circuits. Eval-

uation is performed extrinsically through detailed simulation of circuit functionality and timing

characteristics. The Virtual Chip platform was designed to be a generic, flexible environment

for generating a wide range of digital circuits. Although this is not the underlying motivation

of this thesis, a flexible platform was required so that a range of DSP circuits could be evolved

in order to determine the effect of component granularity (gate-level vs functional-level evolu-

tion) on the effectiveness of an EHW platform to develop non trivial DSP circuits. This research

translates as the first stage in the development of the more complex DSP functionality needed

for FIR filter design.

3.2.1 Encoding a circuit within the chromosome

Genetic algorithms for evolvable hardware are used to develop chromosomes which then en-

code the functional description of a given circuit. As with many applications which utilise

genetic algorithms, the resulting circuit is termed a phenotype as it comprises numerous smal-

ler logic cells or genotypes. The terminologies used are designed to reflect the conceptual

similarity between genetic algorithms, natural evolution, and genetics.

The genetic algorithm presented in the Virtual Chip platform uses a permutation-based integer

encoding of fixed-length. As such a specified number of logic elements are presented to the

framework. From this, the desired circuit functionality must be generated. Using a fixed-

length encoding is standard practice and is one of the main restrictions within which a genetic

algorithm operates [53].

Specific sections of each chromosome are reserved for describing the inputs and outputs re-

quired for the desired circuit. Logic elements are referenced by position within the chromo-

Generating DSP Circuits on the Virtual Chip EHW Platform

some. Figure 3.1 displays the relative location of each encoded section. Circuit inputs are

Input I
Input 3 	Positional element 	 Output 1

S • S • • • S • • S • S • •

Input 2 	 Output 2

Input section 	Main circuit description 	Output
section

Figure 3.1: Chromosome structure defining sections for specific circuit description

encoded in the first section of chromosome. If a circuit has I inputs, then the first I logic ele-

ments in the chromosome will describe these inputs. This description includes the input pin

number in addition to which logic element the input pin is connected. Outputs are similarly

defined at the end of the chromosome, where position relates to the identification of an output

pin connected to a logic element. Total chromosome length, N, is then defined as the number

of logic elements summed with the number of circuit inputs. Therefore, if a circuit has two

outputs, what ever logic elements are at N and N-I are connected to output pin one and output

pin two respectively. The encoding ensures that the number of inputs and outputs described by

a chromosome remains consistent after operations such as crossover.

The GA comprising the Virtual Chip utilises a range of functional elements or macro blocks,

along with simple gate primitives with which to generate various DSP circuit structures. Macro

blocks particularly suited to more complex DSP circuits were chosen such as a halfadder and

fulladder. Other macro cells include small combinational logic blocks. In addition, through-

connects are provided to increase the flexibility of the circuit encoding. Table 3.1 lists all of

the logic elements available to the GA and indicates if the component constitutes a primitive or

functional logic element. Figure 3.2 clarifies a number of the component terminologies presen-

ted in Table 3.1, and displays examples of the type of logic element. Two component libraries

are therefore available, one representing gate-level evolution, the other function-level. A total

of 14 logic elements are included in the gate-level library, and 28 logic elements (primitive

logic elements are also included) in the functional library.

Each cell is connected within a flexible chromosome encoding which allows placement of any

29

Generating DSP Circuits on the Virtual Chip EHW Platform

Primitive Logic Elements Functional/macro Logic Elements
2-input NAND 3-input NAND
2-input XOR 3-input XOR
2-input XNOR 3-input NOR
2-input OR 3-input OR
2-input AND Common XOR
2-input NOR Common AND
BUFFER Common NAND
NOT Common OR
Pull-high Half-adder
Pull-low Fulladder
Through-connect Combinatoral NAND
Through-connect + float Combinatoral AND
Pull-high + float Combinatoral OR
Pull-low + float Combinatoral XOR

Table 3.1: Primitive and functional logic elements available to genetic algorithm within Virtual
Chip EHW platform.

cell (functional or primitive) into any position within the string. This provides the EHW plat-

form both the flexibility of standard gate level encodings, and the potential of building more

complex systems afforded by less flexible functional-level architectures.

3.2.2 Connecting Cells Within the Chromosome

Each genotype (logic element) in a circuit is allocated a specific position within the correspond-

ing chromosome. The type of logic cell at any given position is initially determined randomly,

however cells can be allocated different positions after initialisation through manipulation by

the genetic operators, detailed in section 2.5.3. Figure 3.3 demonstrates the chromosome en-

coding scheme used to describe connectivity of the fulladder cell depicted in Figure 2.5. It is

important to note that a cells connectivity is not restricted to its nearest positional neighbour.

Rather, cells are free to connect to any cell of higher position within the chromosome. This

form of 'over-the-cell' connectivity provides a much wider range of possible circuit configur -

ations. Feedback connections are not permitted as their effects are not desirable for most DSP

applications, with the exception of functions such as the Infinite Impulse Response (IIR) filter.

However, the chromosome encoding used does allow for feedback connectivity should such a

feature be required. Feedback is simply achieved by allowing logic cells to connect to cells at a

lower chromosome position than the current cell. Logic cells near the end of the chromosome

30

Generating DSP Circuits on the Virtual Chip EHW Platform

	

Common input 	Combinatoral ORed 	Pull-low cell 	with floating input output

	

Through Connect 	Through Connect 	Pull-high cell 	3-input logic cell
with floating input

_ H — -D-
Figure 3.2: Generic style of macro and other logic elements provided to component library for

the evolution of arithmetic circuits.

Macro-based Encoding
Position within Position of cell to which
chromosmome first 01P pin is connected

mO F 	I OutO 	 AinO

lnLJ FULL
I

1n2-1
ADDER ko.tl BinO

 7__~C
Bin'

1n3

I Location' I Location I 	I ~11,1d,
OutO mO Outi I I BinO I

Mof adder of NAND of NOR

/ 7
ID from library First 01P pin

	
UP pin of

of components 	of Fulladder 	connected cell

Figure 3.3: Example of macro-based encoding describing a macro element (fulladder) and its
connectivity.

may therefore loop back there output connections to earlier cell locations.

3.2.3 The Genetic Operators

The genetic algorithm utilised by the Virtual Chip use single-point crossover. Single point cros-

sover was used as it is the least disruptive means of combining circuit characteristics between

two parent solutions. Because of the complex interactions between logic elements which form

a circuit, the effects of crossover (and also mutation) can be highly disruptive to the search. This

is often caused by the breaking of connections between logic elements due to the recombina-

tion process, and the high degree of interdependence between logic elements, termed epistasis,

which is needed to achieve a desired circuit functionality. Figure 3.4 illustrates the effects of

31

Generating DSP Circuits on the Virtual Chip EHW Platform

	

Common input 	Combinatoral ORed 	Pull-low cell 	
Pull-low/high

output 	 with floating input

	

Through Connect 	Through Connect 	Pull-high cell 	3-input logic cell
with floating input

_ _ H

Figure 3.2: Generic style of macro and other logic elements provided to component library for
the evolution of arithmetic circuits.

Macro-based Encoding
Position within Position of cell to which

chroinosnwnw firs: 01P pin is connected

	

'W(0 	 AinO

IR 11)131_

R 	

I 	BIRO

IL) from library

of components

7
Firs: 01P pin UP Pin of
of Fulladder connected cell

Fulladder 	

(

Location Location
O utO tinO I 0lit

Macro ID 	i a,Jder of NAND of NOR

Figure 3.3: Example of macro-based encoding describing a macro element (fulladder) and its
connectivity.

may therefore loop back there output connections to earlier cell locations.

3.2.3 The Genetic Operators

The genetic algorithm utilised by the Virtual Chip use single-point crossover. Single point cros-

sover was used as it is the least disruptive means of combining circuit characteristics between

two parent solutions. Because of the complex interactions between logic elements which form

a circuit, the effects of crossover (and also mutation) can be highly disruptive to the search. This

is often caused by the breaking of connections between logic elements due to the recombina-

tion process, and the high degree of interdependence between logic elements, termed epistasis,

which is needed to achieve a desired circuit functionality. Figure 3.4 illustrates the effects of

31

Generating DSP Circuits on the Virtual Chip EHW Platform

recombination through crossover.

CHROMOSOME BEFORE CROSSOVER: (PARENT I)

r 	.iI. 	
r-[1-

t>01ADDIk 	S S

Splice Point

CHROMOSOME BEFORE CROSSOVER: (PARENT 2)

mom

Splice Point

CHROMOSOME AFTER CROSSOVER: (OFFSPRING)

T_

Head Parent 1 	 Tail Parent 2

Figure 3.4: Example of broken element connectivity resulting from crossover.

It should be noted that unlike bit-wise crossover described in section 2.2.3, the crossover oper-

ator detailed in this chapter works in a different manner because of the integer-based encoding

utilised by the Virtual Chip platform. Crossover therefore only splices each circuit encoding at

the beginning of a specific section of chromosome (schema), which then describes a individual

logic element and its connectivity. It is therefore not permissible to splice a chromosome mid-

way through the encoding of an individual logic element. For example, if the crossover location

of a parent chromosome were chosen to lie mid-way through the encoding of a Fulladder at

location .r, and the corresponding .r location on the second parent related to the encoding of a

2-input NAND gate, then the resulting offspring circuit might encode an invalid description of

a logic element, as the the physical characteristics of both the Fulladder and the NAND gate

are very different.

32

Generating DSP Circuits on the Virtual Chip EHW Platform

So as to minimise the negative effects of crossover, chromosome 'repair' is used to reconnect

any element connections broken during the operation. This is achieved using a nearest neigh-

bour connection rule. It can be seen that with the example offspring chromosome depicted in

Figure 3.4, the logic element at position x is no longer able to connect to the new logic element

now at position y. The repair algorithm instead attempts to connect element x to its nearest

neighbour at position x + 1. If this is unsuccessful then subsequent reconnection attempts are

made from x + 2 to N - 1, where N denotes the total number of logic elements present in

the chromosome. In the event that no logic elements are available for connection, the current

element is assigned as floating and further attempts at reconnection made during later crossover

operations. If feedback connectivity is enabled, the search for reconnection does not finish at

the last chromosome position, instead the search loops back to the start of the chromosome and

will continue until the logic cell immediately before the current element has been examined.

This is to prevent direct component feedback which can damage the circuit. Each logic element

in the resulting offspring chromosome is examined for broken connections after every crossover

event.

Mutation is invoked with relatively low probability so as not to prove deleterious to the al-

gorithm search. There are four circuit-specific mutation operators used within the genetic al-

gorithm presented. Each is depicted in Figure 3.5.

Each operator was specifically designed to enhance the genetic algorithm by providing it with

the ability to introduce both new logic elements and connections not obtainable using crossover.

Of these operators only cell replacement needs explanation. The result of this mutation is to

replace an existing logic element in the chromosome with one randomly selected from the

component library. This ensures than new solutions can be obtained through diversification

many generations after population initialisation.

The GAs mutation rate is a derivation of the chromosome bit-length relationship originally

proposed by Mühlenbein [42], and defined in equation (2.1). Where the number of bits used to

encode the chromosome, L, governs the mutation rate. Because the genetic algorithm presented

here uses a permutation-based integer encoding, a direct translation of MUhlenbeins relation-

ship is not possible. Instead the total number of logic elements encoded in the chromosome N

is used to represent L. Mutation therefore operates on each logic element with the same prob-

ability rate given above. If an element becomes subject to mutation, one of the four mutation

operators highlighted in Figure 3.5 is applied, each with an equal probability of selection (i.e.

33

Generating DSP Circuits on the Virtual Chip EHW Platform

Inter-chromosome cell swapping:
After mutation

Before mutation

Cell replacement:

Before mutation
	 After mutation

Old Cell
	

New Cell

I..A.PIIIIVIU0U mid

Before mutation
	 After mutation

Cell specific pin interchange

Before mutation
	

After mutation

~0_ Tj >0_]
Figure 3.5: Four mutation operators used by the genetic algorithm.

0.25).

The GA in the Virtual Chip uses two-way tournament selection for the reasons described in

section 2.3.2 of chapter 2. Whilst a number of selection methods could have been investigated,

an important focus of the research presented in this chapter was to determine the effectiveness

of both primitive and functional-level evolution in enabling the GA to find successful DSP

circuit solutions. The selection method employed therefore simply provided a common basis

for comparison.

Several constraints are imposed during initialisation of the genetic algorithm. Some are de-

signed to eliminate contentious circuit configurations, while others are a result of the evolu-

tionary algorithm employed. Initial global parameters are entered by the designer and are as

34

Generating DSP Circuits on the Virtual Chip EHW Platform

follows:

e Number of inputs and outputs required for the desired circuit;

Definition of input and output vectors upon which evaluation takes place, and which

describe circuit functionality;

. Number of logic elements within a chromosome used to create the circuit;

. The maximum number of possible fan-outs per cell output;

Definition of global clock speed for timing constraints;

• Population size, defining the number of circuit solutions concurrently evolving within the

search space.

A summary of the parameters applied to the genetic algorithm are as follows:

• Generational genetic algorithm

• Two-way tournament selection

• One-point crossover at 0.7 and chromosome repair applied

• Mutation using Mühlenbein derivation Pm = 1/L, with application specific operators

Population size fifty

So as to optimise cell connectivity within a fixed-length circuit encoding, each output pin on

a logic element is randomly allocated a fan-out ranging between one, and a user defined max-

imum. Fan-out describes the number of logic elements that an individual element may connect

with. The connectivity of any specific logic element is not restricted to its nearest positional

neighbour.

Circuit correctness is evaluated using the fitness scheme described in section 2.3.4, and cal-

culated using the fitness expression presented in equation in 2.2. Each circuit is firstly tested

through interaction with a HDL (Hardware Description Language), described in the following

section. A population of 50 was chosen as it is commonly used in other EHW applications and

represented the maximum number of solutions which could be evaluated without incurring a

prohibitive delay.

35

Generating DSP Circuits on the Virtual Chip EHW Platform

3.2.4 Circuit Evaluation with the Virtual Chip

Hardware description languages (HDLs) are predominantly used by design engineers when

developing performance circuits. VHDL (Very High Speed Integrated Hardware Description

Language) is one of two dominant HDLs for describing digital electronic systems [76]. VHDL

is a technology independent environment that describes the structure of a digital system by

describing electronic subsystems (logic elements) and how they are interconnected. In addition,

circuit descriptions can then be accurately simulated without the need for hardware prototyping.

VHDL is therefore a powerful tool for both circuit design and evaluation, and provides an ideal

environment for EHW techniques which utilise extrinsic evaluation. Few EHW platforms have

been developed which utilise HDLS for circuit evaluation, however one example can be found

in [77]. The technique cited however does not take into account the physical characteristics of

the circuit undergoing evaluation.

After successful testing a circuit can then be synthesised to provide a technology specific netlist,

ready for transfer onto silicon. A netlist describes the physical composition of a given circuit,

and includes details of the type of logic component used and how it is connected. Almost all

technology vendors provide models for logic elements within component libraries. The Vir-

tual Chip therefore evolves the structure of a circuit directly within the VHDL language. This

is performed within a specially designed testbench. It is this testbench which instantiates and

interconnects all the logic elements within a chromosome which encodes a specific circuit solu-

tion. Evaluation is performed by instantiating and simulating all the circuits described within a

population of chromosomes, as if they were being implemented within a single reconfigurable

chip. Simulation of each circuit was performed using Cadence's Leapfrog VHDL simulation

tool. Figure 3.6 illustrates a 2x2-bit multiplier evolving within the Virtual Chip environment.

As can be seen in Figure 3.6, each 2x2-bit multiplier has 4 inputs and 4 outputs. All inputs

and outputs are synchronised with flip-flops to account for propagation delays and ensure that

all output signals have reached a steady state. It is these flip-flops which, governed by a global

clock, set the timing constraints within which the evolving circuit must operate. A circuit with

incorrect timing will produce output signals offset with those desired and will therefore incur

low fitness.

Each 4-bit output grouping represents an individual circuit evolving within the virtual envir

onment. Each grouping is tagged according to the circuits ID within the evolving population.

Every circuit solution is therefore represented as a technology independent VHDL netlist. Netl-

36

Generating DSP Circuits on the Virtual Chip EHW Platform

Component Library

Input Vectors

VHDL Testhench

a hUT

/

Simulation Output Vectors

Synthesis

\'HD:UVER1L0GC,,. N,ti:,,

	

(IA)U

1 °

r 	Virtual Ch,;
	 --4

(DI

(II 2

Figure 3.6: Graphical representation of the Virtual Chip environment, evolving a 2-bit multi-
plier within a population size of N.

ists are direct interpretations of the circuit chromosome and define a circuit in terms of its logic

elements and inter-connectivity. Standard CAD tools can then be used to both optimise the

circuit and translate the generic netlist into a technology specific netlist suitable for implement-

ation in hardware.

Due to the implicit parallelisation of the Virtual Chip environment, the entire population is

compiled, and simulated as one entity. This differs from the majority of EHW platforms which

use extrinsic evaluation and evaluate each individual solution sequentially. As a result, within

the Virtual Chip environment, an entire population of fifty individuals, evolving fifty 2x2-bit

parallel multiplier circuits, can be simulated and evaluated in approximately five seconds. In

contrast, if each circuit were evaluated as an individual entity, it would take approximately two

37

DSP Circuits on the Virtual Chip EHW Platform

minutes to evaluate the same population. These figures were obtained on a standard Sparc Ultra

10 workstation with 640Mb of memory.

The Virtual chip is a fusion of C code and VHDL. The genetic algorithm itself is executed in

C and generates the VHDL required to instantiate each chromosome encoded circuit. After a

circuit has been successfully evolved it is then passed through a CAD tool for optimisation.

Figure 3.7 displays the execution flow and coding format of the Virtual Chip EL-LW platform.

C routine:

Initial circuit population

created

C routine: 	 Virtual Chip: C routine:

Com Generate circuit 	 pile Teatbench 	 Evaluate simulation:
structures within 	 and simulate

\W 	 circuit H L Tebench 	population H Assign fitness to circuit

C routines: 	
No 	 Fitness

Genetic operations: 	
et requirements

& Crossover

Selection, Mutation 	

Yes
CAD Tool:

Synthesise final circiut 	 End evolution

solution 	 Exit programme

Figure 3.7: Execution flow and coding format of the genetic algorithm and Virtual Chip eval-
uation environment.

3.3 Implementation and Results

The following section highlights the results obtained when using the Virtual Chip EHW plat-

form to autonomously generate three types of DSP circuit evolved with both timing, area and

functionality constraints. The quality of circuit solution based on the performance of the ge-

netic algorithm is further investigated through comparison of two component libraries. The

first library uses both the primitive and functional logic elements detailed in section 3.2.1, and

equates to functional-level evolution. The other component library uses only gate primitives,

and reflects gate-level evolution. The following suppositions were used to provide a basis for

analysis:

Generating DSP Circuits on the Virtual Chip EHW Platform

• The evolution of circuits using larger functional building-blocks directly translates into

an improvement in the number of successful circuit solutions uncovered by a genetic

algorithm

• The implementation of functional elements reduces the number of generations required

to identify a correct circuit solution;

• A circuit encoded to implement functional elements is shorter in length than an equivalent

circuit encoded to utilise only simple logic gates

• Circuit solutions generated using larger functional logic elements are not less competit-

ive in terms of area and timing, than those generated exclusively using gate level logic

elements

• The EHW platform presented provides circuit solutions of equal or better performance

compared with equivalent circuits developed using standard high level CAD-based design

methodologies.

Three DSP circuits were initially examined and consisted of a 2x2-bit unsigned parallel multi-

plier, 7-bit pattern recogniser (one's voter), and a 2-tone frequency discriminator. The multiplier

circuit was chosen as it is the traditional circuit used for multiplication of FIR filter coefficients,

and would provide a valuable indication as to the suitability of the Virtual Chip EHW platform

for such an application. Further more, each of the three DSPs represent benchmark applications

previously investigated within the field of evolvable hardware research [64,68,71,78]. They

also provide the foundation blocks for larger DSP applications. It should be noted that the cir-

cuits chosen represent some of the most complex arithmetic modules currently generated using

the EHW design paradigm.

The performance of the Virtual Chip in generating each of the three DSP circuits, using either

the functional or gate-level component libraries, is further compared with the same three DSP

circuits developed using standard design methodologies and written by hand in VHDL. Using

a standard HDL methodology, each of the three DSP circuits were developed in two stages.

Firstly, each circuit was described at the behavioural level using VHDL, the source code of

which is presented in Appendix A.l A.2 and A.3, for the multiplier, one's voter, and 2-tone

frequency discriminator respectively. Each VHDL circuit description was then passed through

Cadence's Build Gates circuit synthesis environment [79] in order to produce a netlist tailored

for a specific silicon technology. The same synthesis tool was used to synthesise each of the

39

Generating DSP Circuits on the Virtual Chip EHW Platform

circuit netlists generated by the Virtual Chip platform. The reader is referred to a more detailed

account of standard digital design and synthesis methodologies using HDLS in 1801.

The following terminologies are used to describe each of the three design approaches:

. Primitive library: Library of primitive logic elements used by Virtual Chip genetic al-

gorithm for automated circuit design.

Functional library: Library comprising primitive logic elements and larger macro com-

ponents (see section 3.2.1) also used by the Virtual Chip genetic algorithm.

Behavioural HDL: Conventional design and synthesis flow for digital circuit generation

from a behavioural description written in VHDL.

Each circuit architecture was evolved ten times, and terminated after 10,000 generations if

a fully correct solution (fitness of 1.0) had not been found. Evolution was halted as soon as a

correct solution was discovered. All three circuits were constrained by global timing parameters

to operate no slower than 10 MHz.

In order to provide a common basis for comparison, all circuits generated using either the

Primitive library, Functional library, or through Behavioural HDL were synthesised using the

same silicon technology vendor. A technology library describes the physical characteristics

(such as timing and area) of the logic components associated with a specific fabrication process.

Alcatel Microelectronics' 0.35 fLin CMOS MTC45000 technology was therefore used as the

common library platform for comparison, and is the default technology library used throughout

this thesis.

3.3.1 Genetic Algorithm Performance Using Primitive and Functional Compon-

ent Libraries

Table 3.2 displays the averaged GA performance obtained after 10 runs for each of the circuits

analysed. The results show that the functional library provides the genetic algorithm with a

significantly better success rate when generating correct 2x2-bit multiplier and 7-bit pattern

recogniser circuits. No complete solutions were found when using the primitive library to

generate the pattern recogniser. This result is supported by findings published by Levi et.al .

[711, and support the supposition that logic elements functionally more significant than gate

40

Generating DSP Circuits on the Virtual Chip EHW Platform

primitives enable the genetic algorithm to correctly generate more complex circuits.

Both the multiplier and pattern recogniser circuits generated using the functional library dis-

played a better average fitness, influenced by higher success rates. In addition, the genetic al-

gorithm required fewer generations to find a correct solution using the functional library when

compared to same circuits evolved using the primitive library. Due to the poor performance of

the primitive library in unsuccessfully generating the pattern recogniser, this comparison could

only be drawn from the 2x2-bit multiplier and 2-tone frequency discriminator circuits.

Column five in Table 3.2 provides an indication as to when, on average, the genetic algorithm

finally became 'stuck' on a sub-optimal circuit and was unable to find a better solution. Such

local optima are well known to hinder a GA search, resulting in periods of stasis where no

improvements on a current solution are found. Results indicate that neither component library

provided the genetic algorithm with consistent improvement through out every run, and in some

cases stasis was reached well before forced termination at 10,000 generations.

Component Library Success Average Average Average Logic
Rate Fitness Number 	of Generation Elements in

of 	Final Generations Before Final Chromosome
Solution if Successful Stasis

2x2-bit Multiplier
Primitive library 0.3 0.9750 3370.7 4082.4 30

Functional library 0.7 0.9922 2780.0 1187.0 15
7-bit Pattern Recogniser

Primitive library 0.0 0.8930 NA 4769.6 50

Functional library 0.43 0.9794 2407.5 6726.2 15
2-Frequency Discriminator

Primitive library 0.5 0.89480 9630.0 7812.8 100

Functional library 0.33 0.8672 7816.5 7770.5.2 30

Table 3.2: Comparison ofDSP Circuits Generated by Genetic Algorithm Using Different Logic
Library Implementations.

Figure 3.8 shows the output response of the discriminator circuit written in behavioural HDL.

The circuit was designed to respond to a change in input frequency with an integration time of

one complete impulse period. The input impulse frequencies were chosen to be 2.5 MHz and

833 kHz (one 4th and one 12th the operating frequency at 10 MI-[z). The fitness of an evolving

circuit was based upon how well the circuit matched the response of the behavioural model.

Thompson "evolved" a two-tone frequency discriminator successfully in [78]. Using his gate-

41

Generating DSP Circuits on the Virtual Chip EHW Platform

level approach circuit feedback was permitted. For this reason, feedback was also enabled on

the Virtual Chip.

Figure 3.8: Output response of 2-frequency discriminator from behavioural HDL model.

Table 3.2 shows that, when using the Functional library, the genetic algorithm performs slightly

better, on average, at finding successful solutions than when the Primitive library was imple-

mented. In addition, the number of generations required by the GA to generated a correct

solution is approximately 20% less using the functional library than that using the primitive

approach.

It should be noted that the number of logic elements required to encoded each chromosome

using the functional library was at least half that needed to encode chromosomes implementing

the Primitive library. The number of logic elements used for each component library, and for

each type of DSP circuit were empirically derived so as to obtain optimal performance and thus

a fair comparison of the actual chromosome length required. However, on average, functional

logic elements utilised by the GA are two to three time larger than gate primitives. The number

of logic elements needed to encode chromosomes using the Primitive library is therefore two

to three times larger than the number of logic elements employed using the functional library.

The chromosome lengths shown in Table 3.2 reflect this.

The success of the functional library over the Primitive library can be further justified by in-

vestigating the relative size of the search space produced by each approach. Both component

libraries are subject to the same fitness parameters, and both must correctly match the number

42

Generating DSP Circuits on the Virtual Chip EHW Platform

of output bits corresponding to the lookup table of each DSP circuit. However, the greater func-

tionality of logic elements available to the functional library means that fewer components are

required to successfully encode each circuit. This translates directly to a decrease in the search

space with respect to chromosome length, and can be formalised as follows:

S i =
	

(3.1)

Where S j is the search space for a given circuit architecture i, C is the number of different

logic elements available to the GA from the component library, and N is the number of logic

elements used to encode the circuit in a chromosome. For example, consider the search space

size associated with the 7-bit pattern recogniser. In this example 50 logic elements were used

to encode the pattern recogniser using the Primitive library. Table 3.1 shows that 14 distinct

logic elements are used in the primitive library. The search space is therefore calculated at:

1450 = Alternatively, the search space for the functional library can be calculated at:

2815 = 521 Whilst this calculation of search space size is crude, it adequately demonstrates

the potentially huge differences in the magnitude of search space resulting from a functional vs

gate-level approach to circuit evolution, and provides evidence that gate-level evolution restricts

the complexity of circuit which can be generated because of the prohibitively large search space

produced.

Figure 3.9 displays the average performance of the genetic algorithm when evolving all three

circuit architectures.

33.2 Analysis of Timing and Area Performance

Table 3.3 displays both timing and area statistics of the three arithmetic circuits under investiga-

tion. Each circuit is identified as having been generated using either the primitive library,func-

tional library, or behavioural HDL implementation. Timing slack is defined to be the duration

for which the slowest output of the circuit remained stable before the next data pulse arrives. It

should be noted that +INF denotes that timing constraints are well within specified limits. Cir-

cuit complexity is measured in equivalent NAND gates and represents the total physical area of

the synthesised circuit using 0.35pm CMOS MTC45000 technology. The complexity measure

therefore takes account of transistor area and interconnect dimensions.

Results show that on average the primitive library produces circuits of smaller complexity than

43

Generating DSP Circuits on the Virtual Chip El-fW Platform

Cl)
'U
z
I.-
LL

LEGEND

- Macro 2-bit Multi

- Macro Discriminator
- Macro Pattern Recog
- - Primitive 2-bit Multi

- - Primitive Discriminator
- Primitive Pattern Recog

0 500 10001 5002000250030003500400045005000550060006500700075008000850090009500

GENERATION

Figure 3.9: Typical Number of Generations required by Genetic Algorithm to evolve DSP cir-
cuit structures using primitive and functional component libraries.

both the behavioural HDL and Functional library. Timing is comparable in all cases. However

individual solutions generated using the functional library are very similar to the best circuits

generated using the primitive library, particularly for the 2x2-bit multiplier. In all cases, the

best solutions generated by the genetic algorithm are either comparable or better in performance

than those developed though standard behavioural HDL synthesis.

In addition to providing a technology specific circuit netlist, the synthesis procedure also provides

circuit optimisation by removing redundant logic elements. This is particularly useful for cir-

cuits generated using EHW as many redundant logic elements such as through connects (Fig-

ure 3.2) will be removed. Table 3.4 presents the area and timing performance of the best

solutions taken from each of the evolved circuit architectures examined. Where possible, both

primitive and Functional libraries have been presented.

Results presented in Table 3.4 show marked reductions in area for both the 2x2-bit multiplier

and 7-bit pattern recogniser circuits generated using the genetic algorithm. Comparison with

Table 3.3 demonstrates that both circuits are between 15% and 25% smaller in area than there

behavioural HDL equivalents. In all cases, the timing of circuits generated by the Virtual Chip

UJI

Generating DSP Circuits on the Virtual Chip EHW Platform

Implementation Circuit Average Best 	Area Corresponding
Complexity Timing (ns) in 	NAND Best 	Timing
in NAND Gates Gates (ns)

2x2 -bit Multiplier
Primitive library 10.99 93.0392 10.32 93.7459
Functional library 18.55 93.1228 10.67 94.0642
Behavioural HDL 12.68 93.5936 NA NA

7-bit Pattern Recogniser
Functional library 38.58 89.9210 27.33 90.8866
Behavioural HDL 20.00 91.75 NA NA

2-Frequency Discriminator
Primitive library 32.56 91.5315 6.67 0.93.6528
Functional library 54.59 89.8399 21.67 +INF
Behavioural HDL 75.04 +INF NA NA

Table 3.3: Performance of arithmetic circuits in terms of circuit complexity and operation
speed.

Implementation Best 	Area Corresponding
in 	NAND Best 	Timing
Gates (ns)

2x2-bit Multiplier
Primitive library 8.99 94.0752
Functional library 8.99 94.1303
Miller et. al. 8.66 88.9066

7-bit Pattern Recogn:ser
Functional library 1 16.66 1 92.3691

Table 3.4: Performance of GA-Based Arithmetic Circuits in Terms of Area and Operation
Speed After Optimisation.

is further improved after optimisation. Table 3.4 also draws a comparison with the 2x2-bit

parallel multiplier evolved by Vasselin, Miller and Fogarty in [81]. The multiplier developed

was implemented using fewer logic gates than a conventional design, a total of 7 two-input logic

gates is quoted. The design presented in [81] was then converted into VHDL and synthesised

using the same parameters identified above. Appendix A.4 displays the multiplier schematic

and associated VHDL code. It can be seen from Table 3.4 that Miller's multiplier is comparable

both in Timing and area to those evolved by the Virtual Chip. This provides a clear benchmark

as to the success of developing performance driven DSP circuits using EHW over conventional

design approaches.

45

Generating DSP Circuits on the Virtual Chip EHW Platform

Figure 3.10 and Figure 3.11 demonstrate the best 7-bit pattern recogniser solution obtained us-

ing the functional library before and after the removal of redundant logic elements. Figure 3.12

displays the 7-bit pattern recogniser analysed in Table 3.4 after full optimisation. These figures

provide an indication as to the degree of cell redundancy exploited by the genetic algorithm.

"a

nO

nO

as

Figure 3.10: Circuit diagram of 7-bit pattern recogniser generated by genetic algorithm using
functional library.

no
no

no
no

no
no

Figure 3.11: Circuit diagram of 7-bit pattern recogniser generated by genetic algorithm using
functional library with redundant elements removed.

3.4 Phased Evolution in the Virtual Chip

The sheer size of the search space involved in the automated design of digital circuits can

often result in the failure of an evolvable hardware framework in finding a suitable solution.

Results from section 3.3.1 have shown that limiting the size of logic components available to

the genetic algorithm, as with the primitive library, increases both the size of the search space,

and the number of iterations (generations) required to find an acceptable solution. In some

cases, as with the 7-bit pattern recogniser, this can prove to inhibitive.

As shown in Table 3.4, Miller et.al . have provided valuable research material from using EHW

46

Generating DSP Circuits on the Virtual Chip EHW Platform

n3
no

ni

n2

n5
M

n6

outO

Figure 3.12: Circuit diagram of fully optimised 7-bit pattern recogniser generated by genetic
algorithm using functional library.

and gate-level evolution to develop autonomously multiplier architectures with fewer logic

components than standard multiplier designs 1811. Multiplier architectures such as those de-

veloped by Miller's EHW platform are therefore particularly relevant to high performance SoC

signal processing applications, such as filter coefficient multiplication. However, the highly

non linear growth in search space size and complexity demonstrated by Miller prohibits the ef -

fectiveness of EHW in generating multiplier architectures with input vectors greater than 4-bits

long [12].

In addition to the number of logic elements required, and the desired circuit functionality, such

complexity is well represented in the fitness evaluation of such circuits. Inmost cases evaluation

consists of matching the output vectors of the circuit under analysis with the actual output

vectors required by the desired functionality. This has been the approached adopted in this

chapter for generating DSP circuits on the Virtual Chip. However, by reducing the number

of possible output vectors, and thus the required complexity of a circuit, it becomes possible

to develop circuits of complexity that were previously difficult, or unattainable. Figure 3.13

visualises this approach for the example of a more complex DSP circuit; a 30-bit parallel

multiplier. If the 30-bit multiplier were evolved as one unit the number of correct output bits

required to correctly describe the entire circuit would be:

B 1 =2'*O
	

(3.2)

Where Bi represents the number of correctly matched output bits required for the current cir-

cuit, I is the number of inputs, and 0 the number of output bits required to encode the vector.

47

Sub-circuits

STAGE ONE

Generating DSP Circuits on the Virtual Chip EHW Platform

Sub.drcuits

'I,

L1 Ai.O ulO O

h, Mal OUII Milo. M00. EVOLVED
Ai"

MULTIPLIER

BiaO AFTER 0u13

STAGE Two R1.1 SYNTHESIS

111n2I 	 lOutS

STAGE THREE

Figure 3.13: Example of Phased Evolution For The Automated Design of a 3x,3-bit Multiplier.

However, stage one of the example circuit shown in Figure 3.13 demonstrates that, through

phased evolution, the number of correct output bits required for each sub-circuit can be re-

duced to:

B=2'
	

(3.3)

This represents a marked difference in circuit complexity, and therefore a reduction in the size

of the search space.

Stage two in Figure 3.13 denotes the removal of redundant logic between the evolved sub-

circuit structures as they are combined to generate the required circuit. A benefit of evolving

partitioned circuits through phased evolution is to reduce the negative effects of the high degree

of epistasis, inherent in design-based EHW applications. Epistasis describes the degree of

inter dependency each element in the chromosome has on the other. It has been shown that a

very high degree of epistasis, as can be found in high performance digital circuits, begins to

favour random search over genetic algorithm techniques [82]. It might be assumed that simply

combining each sub-circuit would result in an overall circuit much larger than that developed

by either a design engineer, or an alternative EHW platform. Results will show however that

Generating DSP Circuits on the Virtual Chip EHW Platform

the high degree of common functionality between each of the sub-circuits generated, results in

large amounts of cell reuse between circuits and thus extensive minimisation is achieved during

stage two optimisation.

Stage three in Figure 3.13 represents circuit synthesis enabling the designer to investigate the

evolved circuit for different technologies, and confirm timing constraints are adhered to.

3.4.1 Implementation and Results

The following section details an example circuit evolved using the Virtual Chip EHW platform

and phased evolution. The example presented is that of an unsigned, 30-bit parallel multiplier

and was chosen as an incremental progression from the 2x2-bit multiplier developed in section

2. The 30-bit multiplier is also compared with a functionally equivalent design, generated

using the same standard behavioural level HDL-to-synthesis procedure described in section

3.3, and with a 30 bit multiplier evolved by Miller in [12]. Both the schematic of the 3x3-bit

multiplier presented in [12], and the corresponding VHDL code are shown in Appendix A.5.

So as to verify reproducibility, each of the phased outputs (six sub-circuits representing each of

the six circuit outputs) were evolved ten times. After evolution, specific sub-circuit solutions

were chosen at random, and combined to form the final completed multiplier. The circuit was

constrained to run no slower than 10 MHz, and the area of each sub-circuit was restricted by a

chromosome length of 15 logic elements. A total of 90 logic elements were therefore used to

encode the multiplier. However, many of these elements will be simple through-connects and

many will become redundant.

The completed circuit was then synthesised to remove redundancies and calculate cell area.

Table 3.5 displays timing and area information about the 30-bit multiplier evolved, along with

the CAD-based and Miller equivalent. To further test the performance of both multiplier cir-

cuits, each was synthesised to run at 100 MIHz. The results are also displayed in Table 3.5.

The results indicate that, despite a slight increase in circuit complexity of 2 NAND gates, the

evolved 30-bit multiplier operates equally as well at 100MHz as the hand designed, CAD

based circuit. It should be noted that equivalent performance was obtained at this higher fre-

quency, despite being evolved to operate at only 10MHz.

The following compares the phased evolution technique with that of the same Virtual Chip

platform without phased evolution. Through this, the difficulty faced by single-step EHW tech-

BE

Generating DSP Circuits on the Virtual Chip EHW Platform

Method of Circuit Generation Circuit Timing Slack at Timing Slack at
Complexity 10 MHz (ns) 10() MHz (ns)
in NAND gates

Phased Evolution 45.67 +INF 1.7266- 1.8151
Standard CAD synthesis tool 43.67 +INF 1.7395 - 1.7926
Miller et. al. 41.36 87.3771 6.3771

Table 3.5: Comparing 3x3-bit multiplier evolved using Virtual Chip EHW platform with that of
functionally equivalent circuits generated with Miller's EHW platform and by using
standard digital CAD techniques.

niques when evolving complex digital circuits becomes apparent. Figure 3.14 demonstrates the

unsuccessful evolution of a 30-bit multiplier under the same constraints as previously detailed.

In this case the total chromosome length was extended to 100 logic elements (both gate primit-

ives and functional logic blocks), greater than the total number of elements used for the phased

approach. Ten attempts were made to evolve a 30-bit multiplier in this way. In all cases the

trend is typical of that shown in Figure 3.14, indicating that many more than 10,000 generations

would be required to evolve a successful circuit. Although not substantiated, a figure of 30,000

to 40,000 generations is estimated at the current rate of progress observed.

08

07

0 6

U
Z
I-
IL. 04

Fitness in Population

AVERAGE

- HIGHEST

03

::i 	
'ii 	o.pt`

0 1 	iiiiii
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 950010000

GENERATION

Figure 3.14: Example of unsuccessful evolution of 3x3-bit multiplier using single-step EHW
technique.

50

Generating DSP Circuits on the Virtual Chip EHW Platform

Synthesis of Miller's evolved 30-bit multiplier shown in Figure 3.5 reveals that its circuit

area is on average 10% smaller than that of multipliers generated through phased evolution.

However, results presented by Miller et. a! in [12] shown that 20 million generations were re-

quired to generate the 30-bit multiplier cited using a single-step evolutionary approach. Whilst

is is difficult to make direct comparisons between different EI-PV platforms this result clearly

demonstrates the difficulty in generating the multiplier circuit.

In stark contrast to the single-step approach, phased evolution provides the GA with numerous

smaller complexity issues, and thus shorter evolution times. Table 3.6 displays the average

number of generations taken to evolve each successful sub-circuit (a maximum of ten sub-

circuits per output) for the 30-bit multiplier presented. It is clear that if each sub-circuit were

evolved in serial approximately 20,000 generations would be required to generate the multi-

plier circuit. However, modern networking and efficient processors provide simple methods for

executing the phased algorithm in parallel. In any case, by using phased evolution the number

of generations required to evolve a 30-bit multiplier in either serial or parallel is considerably

smaller than a standard one-step procedure, as demonstrated in Figure 3.14

Average Number of Generations to Evolve Sub-circuit
Output0 Output 1 Output2 Output3 Output4 OutputS

3838 3930 7734 3508 827 55

Table 3.6: Average Number of Generations Taken by Phased Evolution to Evolve Sub-circuits
For Each Output of 3x3-bit Multiplier

Many of the sub-circuits evolved were compared to the average number of generations taken.

Table 3.6 therefore reveals a good indicator of the circuit complexity required to produce the de-

sired output. Figure 3.15 displays an example of the best synthesised 3x3-bit multiplier evolved

through the phased evolution technique. Examination of the schematic demonstrates that the

most complex logic path results in the output of pin two. Figure 3.16 presents the section of

digital logic relating to the sub-circuit evolved for output two after logic minimisation.

Comparison with Figure 3.15 shows that sub-circuit 2 contains the most complex logic required

to achieve correct functionality. This is confirmed by the number of generations taken on aver-

age to evolve the sub-circuit.

Figure 3.17 illustrates the simplification of the sub-circuit relating to output five. The result-

ing circuit demonstrates the effectiveness of both logic optimisation, and the availability of

51

afll

OUQ

n2

oM

Generating DSP Circuits on the Virtual Chip EHW Platform

Figure 3.15: Example of synthesised 3x3 -bit multiplier generated using phased evolution tech-
nique within the Virtual Chip EH14 platform.

through-connect elements within the evolving component library (recall that each sub-circuit

had a fixed length encoding of fifteen logic elements). Although not shown, the original sub-

circuit representation of output five utilised a large number of through-connect and floating

input elements (shown in Figure 3.2), before the removal of redundancies.

3.4.2 Limitations of Virtual Chip EHW Platform

The minimum coefficient word-length for an FIR filter is generally 8-bits. Therefore the Vir -

tual Chip platform would be required to generate multiplier architectures considerably larger

then the 3x3-bit multiplier developed using phased evolution in section 3.4. Miller et.al . [12]

demonstrated the successful generation of a 4x4-bit multiplier using an array style chromosome

encoding. In order to make a further comparisons with Miller's work, and to develop the com-

plexity of DSP circuit, the automated design of a 4x4-bit multiplier was attempted using the

Virtual Chip platform and phased evolution. Timing and GA parameters remained the same as

those detailed in section 3.4 and circuits were generated using the functional library.

52

Generating DSP Circuits on the Virtual Chip EHW Platform

ni

Q

no

n5
n2

fl4

Out2

Figure 3.16: Schematic of sub-circuit relating to functionality of output 2 of 3x3-bit multiplier.

LO 	i 4

Figure 3.17: Schematic of sub-circuit relating to functionality of output 5 of 3x3-bit multiplier.

Table 3.7 demonstrates the results obtained for the automated design of each circuit correspond-

ing to a single output of the 4-bit multiplier. It can be seen that only 50% of the multiplier's

output circuits were evolved correctly. No successful solutions could be found for circuits

which correctly described outputs 2, 3, 4 and 5. As with the 30-bit multiplier discussed in

the previous section, a number of outputs were noticeably easier to generate using the genetic

algorithm. Both the average fitness of those output solutions which were successfully gener-

ated, and the average number of generations required by the GA to produce these solutions,

again provides strong indications as to non uniform distribution of circuit complexity within

the multiplier search space, defined by the lookup table.

3.5 Summary

This chapter has presented an EHW platform, termed the Virtual Chip, for the automated design

of performance driven DSP circuits. Within the platform a genetic algorithm was used to gen-

53

Generating DSP Circuits on the Virtual Chip EHW Platform

Multiplier Success Average Average Average
Output Rate Fitness Number 	of Generation

Generations Before Final
if Successful Stasis

Output 1 0.10 0.984809 8002 3823
Output 2 0.00 0.912326
Output 3 0.00 0.836372
Output 4 0.00 0.85 1562
Output 5 0.00 0.842014
Output 6 0.50 0.977431 3734.4 3389.8
Output 7 1.00 1.000000 1585.7
Output 8 1.00 1.000000 198.7

Thble 3.7: Success of Virtual Chip EHW platform to generate 4-bit multiplier using phased
evolution.

erate a number of benchmark circuits based on published research, including multiplier ar-

chitectures which would be required for FIR filter coefficient multiplication. All of the DSP

architectures were required to operate within specified timing constraints, and were also lim-

ited in area by the number of logic elements chosen to represent each circuit. Results show

that the genetic algorithm successfully generated more circuits solutions for each of the DSP

applications using a library consisting of both primitive and larger functional logic elements

than when only primitive logic elements were provided. The genetic algorithm also required

fewer generations to find a correct solution when a functional library was used. Considerably

fewer logic elements are required to describe circuits encoded using the functional library, res-

ulting in chromosome lengths much shorter than equivalent chromosomes encoded using the

primitive library. Chromosome length translates directly into search space size, and it has been

shown that a reduction in chromosome length, as a result of using a functional component lib-

rary, translates directly into a search space many orders of magnitude smaller than when only a

primitive library is used.

Both the timing and area of circuits produced using the genetic algorithm were analysed. Find-

ings indicate that the type of component library used by the genetic algorithm is largely inde-

pendent on circuit performance, in terms of both timing and area. This can be substantiated

as the GA produced circuits of comparable timing and area using either functional or primitive

component libraries. Results show that circuits generated using the Virtual Chip are of compar-

able or better performance in terms of timing and area than those generated using behavioural

HDL. By removing redundant logic elements, common in the circuit structures evolved, further

54

Generating DSP Circuits on the Virtual Chip EHW Platform

performance increases can be obtained.

In order to provide a mechanism for generating more complex DSP circuits using the Virtual

Chip platform, a phased approach to circuit evolution was presented, and involved the seg-

mentation of specific circuit outputs into individual circuit structures. A more complex 30-bit

multiplier was evolved using this approach. Analysis revealed that logic element reuse between

the multipliers sub-circuits is high, such that after the removal of redundant logic through syn-

thesis, surface areas are comparable to a functionally equivalent 30-bit multiplier generated

through standard HDL design techniques. This has been attributed to the high degree of com-

mon functionality between each sub-circuit. Phased evolution partitions circuit complexity and

in doing so reduces the search space into smaller landscapes, related to each sub-circuit. This

segmented approach therefore reduces the associated degree of epistasis inherent in the chromo-

somes circuit encoding; making it possible to evolve complex multiplier circuits more effect-

ively than a standard single-step EHW approach. Results also demonstrate the non-uniformity

in the complexity of the multiplier architecture related to individual output paths. However,

this approach was not successful in autonomously generating a more complex 4x4-bit parallel

multiplier circuit.

The failure of the Virtual Chip EHW platform and phased evolution to generate a 4x4-bit paral-

lel multiplier casts doubts on the success of using fine-grained component libraries to generate

the more complex multiplication tasks required for digital FIR filtering. Difficulties in evolving

multiplier circuits larger than 4-bits using fine-grained gate primitives which constitute gate-

level evolution, are also expressed by Miller et. al. in [12,81]. Functional-level circuit evol-

ution provides a possibility for generating more complex DSP applications. However, the size

of logic elements must be considerably larger than those presented in this chapter. The next

chapter therefore presents an alternative method of generating filter coefficients without ex-

plicitly using a multiplier architecture, and details the type of logic element which would be

required for implementation using evolvable hardware.

55

Chapter 4
FIR Digital Filtering with

Multiplierless Architectures

4.1 Introduction

When implementing digital signal processing (DSP) applications in hardware, great effort is

made to ensure the level of performance demanded by the consumer market on such devices.

Finite impulse response filters (FIRs) constitute the back-bone of most DSP applications and

are therefore typically embedded alongside other processing cores which comprise the system.

This is especially true when considering system-on-chip (S0C) applications. As a result con-

siderable design resources are poured into inovative realisations of the FIR filter algorithm in

hardware. The performance and portability of hardwired FIR filters are therefore of great im-

portance. Filter performance issues in this thesis centre around speed of processing, physical

area, design re-use and device reliability; all of which contribute directly to design complex-

ity. Design re-use is becoming increasingly important to the fast development of application

specific DSP devices, such that existing architectures can be ported into new applications with

minimum re-design and test overhead. General purpose DSPs, such as the TMS320 series from

Texas Instruments, do not provide sufficient throughput to implement high speed FIR filters,

due to their single multiplier architecture. General purpose FPGAs, such as those from Xii-

mx [24], are suitable for implementing dedicated filter architectures. However, the general

functionality of FPGAS result in complex configurable logic blocks (CLBs) which require a

high degree of interconnect. This restricts circuit throughput and increases the physical area of

the device.

This chapter presents the basic theory behind FIR filtering and demonstrates a number of ways

in which filters can be implemented, particularly in hardware. Various multiplierless filter

design methodologies and a range of hardware architectures and devices on which they can be

implemented are also presented; in addition to the major building blocks required to generate

multiplier-free digital filters in hardware.

56

FIR Digital Filtering with Multiplierless Architectures

4.2 FIR Filter Theory

Finite impulse response (FIR) theory is well documented and will not be covered compre-

hensively in this thesis. Instead, only that material relevant to the research outlined in chapter

one will be presented, in order to provide a better understanding and appreciation of the re-

search problem investigated. Detailed coverage of FIR system theory and design can be found

in [83,84].

An FIR filter can be described as a sum of N coefficients, resulting in an N - 11h order filter

given by the difference equation

y(n) = >h(j)x(n_i)
	

(4.1)

Where h(1) is a weight assigned to a given coefficient, and multiplied with the input sequence

x (n). It is these weights which describe the behaviour of the filter. By taking the z-transform

of equation (4.1) an HR system can be described by the transfer function

	

H(z) = 	j h (j) Z— ' (4.2)

H(z) therefore describes a filter with both N - 1 poles and zeros. Because all the poles of an

FIR filter lie within the unit circle at the origin of the z-plane, an FIR system can be described

as an all pole filter which is unconditionally stable. Stability is achieved because an FIR filter

is a non-recursive system, as is clearly evident from equations (4.1) and (4.2). As a result the

unit sample response for the FIR system is identical to the coefficients set h(s) such that

h, On ~ N—1
S(n)

= 	

(4.3)

	

0, 	otherwise

The frequency response H (w) of an FIR filter can be calculated from a given set of coefficient

weights, h() as follows:

H(w) = 	h()exp(—jnwt) 	 (4.4)

57

FIR Digital Filtering with Multiplierless Architectures

The set of coefficient weights, H(s), is therefore calculated relative to H(w) by integrating

equation (4.4) in the frequency domain.

Each set of filter coefficients is determined by the amount of signal shaping and the frequency

response of the input signal, both of which are required to achieve the desired output response.

This is specified through three criteria which constrain the filter as shown in Figure 4.1. The

maximum gain of the filter, represented in decibels (dBs), is determined by the stopband at-

tenuation given as 20log io (62), where 12 corresponds to the edge of the stopband. Passband

ripple is defined in dBs as 20log io (1 + 6) and governs the amplitude of the resulting output

response, HA (f), where f is the passband cut-off frequency. The transition band is calculated

by subtracting j from 12, and determines the steepness of the signal step between the passband

and stopband.

HAW

I

8 2

Transition band

Figure 4.1: Filter Specfi cations for passband ripple (1 + 6) and stopband attenuation (62).

In order to obtain a finite impulse response, a window function of M samples is used to trun-

cate the infinite time-domain sequence, c, into a limited range defined by M. This results in a

2M + 1 tap filter. Because only a finite number of coefficients are employed, the actual amp-

litude response, HA(W), will not match exactly with the desired amplitude response, HD(w).

HA () is therefore calculated by convolving the desired frequency response with the frequency

response of the window function, denoted as W(w), such that

H,, (w)= HD (W) * W(w) 	 (4.5)

FIR Digital Filtering with Multiplierless Architectures

An example of this convolution to obtain an actual frequency response is illustrated in Fig-

ure 4.2.

TI

(a)

TI1 (\

(b)

T-T 	(_\

(c)

Figure 4.2: Convolution infrequency domain for (a) desired amplitude response; (b) frequency
response of input signal, (c) actual frequency response from FIR filter.

A wide range of window functions are available, and each displays characteristics which effect

the passband, stopband and transition band which together relate to the frequency response of

the filter depicted in Figure 4.1. It is the job of the filter designer to determine which window

function best expresses the desired frequency response for a particular signal processing applic-

ation, whilst minimising the number of taps which directly translates into filter complexity.

4.2.1 Linear Phase FIR Filters

Linear phase characteristics in an FIR filter provide a means of maintaining the delay and phase

relationship between frequency components of the input pulse applied to the filter, thereby

minimising signal distortions. For an FIR filter to exhibit linear phase, the coefficient set must

59

FIR Digital Filtering with Multiplierless Architectures

posses conjugate-even symmetry around its centre weight. There are four ways of achieving

a linear phase FIR which depend on whether the number of taps, N, is odd or even, or if

the symmetry of the impulse response, c, is odd or even. Therefore if the impulse response

displays even symmetry then e = c_a , where c lies within the finite range -M to M

defined by the size of the truncation window. However, for an FIR to exhibit linear phases the

filter must be made physically realisable, such that impulse responses < co are not associated

with negative time. This case is not permissible, or non-causal, as it infers that the FIR filter

starts producing an output responses before any input stimulus is applied. In order to make

the filter causal and maintain linear phase, the entire finite impulse response sequence resulting

from window truncation is delayed by M samples. As a result, the impulse sample relating to

-M is delayed in cascade by M before coefficient multiplication. Figure 4.3 shows the effect

of delaying the centre impulse response, originally located at c o , by M, such that the impulse

response sequence now lies in the range CO to C2M.

n

-M 	 01234 	 M 	 2M

Figure 43: Impulse response of causal FIR filter shifted times.

The transfer function of a linear phase FIR filter can therefore be written as

H(z) = 	C Z — (M) 	 (4.6)
n=—M

4.3 FIR Filter Implementation

This chapter focuses on the implementation of filter architectures associated with the direct

form (DF) and transposed direct form (TDF) FIR systems. Both DF and TDF structures have

zC

FIR Digital Filtering with Multiplierless Architectures

been chosen as they represent the most widely used form of FIR architectures. In all forms of

FIR system M additions, M delays and M + 1 multiplications are required to implement the

filter, where M is the FIR filter length (number of taps).

In an FIR filter each impulse of the input, x (n), is expressed as a finite word-length of N-bits.

The length of bit encoding used to represent both the filter coefficients and the input signal is

important as it effects both the design of the filter response and the size and complexity of the

hardware needed to implement the system. Quantising the input signal generates noise and lim-

its the accuracy of the filter calculations. Within an FIR system word-lengths of 8 to 24-bits are

usual, and depend on the signal processing application. Few FIR filters are implemented with

I--*' precisions higher than 24-bits, as the hardware resources required filter become prohibitive.

Although of interest, the effects of quantisation noise are not examined in this thesis as they are

covered in depth in texts such as [83,84].

It should be noted that many other FIR structures exist which provide architectures suited to

particular DSP applications. For example the lattice FIR filter structure is extensively used

in digital speech processing and in the implementation of adaptive filters. All FIR structures

however require a multiplication stage in which the input x (n) is weighted by M filter coeffi-

cients. It is the positioning of the multiplier elements within the FIR design flow which forms

the primary difference between DF and TDF filter architectures.

4.3.1 Direct Form FIR Structure

The direct form implementation of equation 4.1 is illustrated in Figure 4.4. It can be seen that

X (n) is delayed in descending coefficient order from N - 1 before it is multiplied with the

relevant coefficient and then summed.

The number of multiplications can be reduced by a factor of two if the FIR exhibits linear phase.

The direct form FIR system can then be folded to produce the filter architecture displayed in

Figure 4.5. N additions and delays are still required to implement the design, however, the

number of multiplications is reduced from N to either N/2 for even symmetry or (N - 1) /2

for odd symmetry. This translates into a substantial reduction in hardware.

Because of the initial delay unit before each coefficient multiplication, both cases of the DF

structure are particularly suited to hardware implementation using a single multiplier archi-

tecture performing a MAC (Multiply ACcumilate) operation. The MAC operation continually

61

FIR Digital Filtering with Multiplierless Architectures

Figure 4.4: Direct form FIR filter implementation.

stores the result of each coefficient multiplication on every unit delay, until X (n) has been

passed through each filter tap. Figure 4.6 illustrates this concept. Using a single MAC in place

of multiple multiplier units in either folded direct form, or direct form structures greatly re-

duces the area of the filter and imposes no additional delays into the system as each addition of

the weighted input, W2 (n), is required before data is ready at the filter output. This approach

is therefore highly suited to low-power, low area DSP applications which do not require high

speed data processing. Each coefficient is simply multiplexed from its corresponding memory

location at the relevant time and passed to the multiplier unit. The resulting FIR filter can now

be implemented using 1 multiplier, 1 storage unit (shift register) and 1 adder.

4.3.2 Transposed Direct Form FIR Structure

The transposed direct form FIR structure differs from the direct form in that the input, x (n), is

fed into all multiplication units simultaneously. A cascade of delays and additions then connects

to each coefficient multiplier in order to impose the relevant delay. Figure 4.7 and Figure 4.8

displays the basic TDF and folded TDF structures respectively.

Both figures show that the TDF structure is capable of filtering data a factor of M faster than

the DF architecture. This is because of the parallelism of the multiplier array such that the

weighted calculation of W0 (n) incurs no delay, and is fed directly to the filter output. However,

unlike the direct form FIR a single MAC unit will incur significant latency delay if used in place

of M separate multipliers, as the benefits of multiplier parallelism will be lost.

62

FIR Digital Filtering with Multiplierless Architectures

Figure 4.5: Folded direct form FIR filter implementation (N even).

4.4 Reduced Complexity FIR Filter Design

Within an FIR system the multiplier is the primary performance constraint when implementing

either the direct form or transposed direct form structures in hardware. Multipliers are costly

in terms of area, power and signal delay. Several design techniques aim to reduce FIR filter

complexity and improve performance by targeting the multiplier unit.

The subset selection method relies on the design of non-uniformly spaced FIR filters [85] to

produce filters requiring fewer multiplications and additions [86]. However this is at the ex-

pense of increased signal delay. In addition, the desired filter is not guaranteed to be of minimal

complexity. Kim et.al . [87] is able to provide filters of minimal complexity by using mixed

integer linear programming (MILP); hardware area is reduced accordingly. This approach is

beneficial for programmable filters with time varying coefficients, where high sampling fre-

quencies are not required.

63

FIR Digital Filtering with Multiplierless Architectures

1(n) 	h(i)

Figure 4.6: Multiply accumulate (MAC) operator.

Figure 4.7: Transposed direct form FIR filter implementation.

4.4.1 Canonic Signed-Digit Encoding

Coefficient recoding is an effective means of reducing the circuit complexity and power con-

sumption of fixed-coefficient filters, prevalent in high performance, application specific archi-

tectures. By fixing the coefficient of each tap, dedicated multipliers can be implemented. Ded-

icated multiplication replaces the multiplier unit with a series of additions, subtractions and

bit-shifts which are specific to the coefficient multiplicand. Using this approach additions and

subtractions become the most costly operation, and fixed bit shifts are effectively resource free.

It is therefore interesting to note that the number of add operations required to realise a constant

coefficient multiplication is one less than the number of nonzero bits used to encode the coeffi-

cient. The canonic signed digit (CSD) code represents coefficients in a manner which minim-

ises the number of additions required to perform the multiplication, by reducing the number of

nonzero bits in the coefficient bit-string when compared to a 2's compliment encoding [88,89].

In order to achieve this, coefficients represented in CSD are encoded in strings of length W

such that: C = bw_i, bw_2 ... bo. Each b2 then takes on a value in the set {i, 0, 11 where 'f' is

reV

FIR Digital Filtering with Multiplierless Architectures

Z L.i_.J z 1 L'ii]

Z -1 	----------------- z_ 1 	z_ 1

	

(n) 	w(n) 	w(n)

	

h(N/2)i' h(1) 	h(0)(

X(n) 	 I
MULTIPLICATION UNIT

Figure 4.8: Folded transposed direct form FIR filter implementation.

used to denote a subtraction operation and '1' an addition. The position of the bit in the string

denotes its shift value. For example consider the fixed coefficient multiplication of -894 by the

filter input x (n), where the coefficient is encoded in CSD

y(n) = 010010000010 * x(m)

the multiplication may then be implemented as follows

y(n) = —(x(n)>> 1) + (x(m) >> 4) + (x(n) >> 10)

where >> denotes a right bit-shift by an integer, i, which relates to the nonzero bits position

in the string, and is equivalent to the scaling operation 2. FIR filter performance using CSD

is therefore governed by the word-length W and the number of nonzero bits in the coefficient

representation, L. Within a CSD encoded word no two nonzero bits are consecutive in the

string, hence then term canonic. As a result the CSD representation of each number is unique

such that a number contains the minimum possible nonzero bits. On average, numbers encoded

in CSD contain around 33% fewer nonzero bits than an equivalent 2's compliment encoding.

This can be demonstrated by comparing the 4 CSD encoded coefficients shown in Table 4.1

with their 2's compliment equivalents.

Importantly, the value of L directly effects hardware complexity as an extra addition per tap is

FIR Digital Filtering with Multiplierless Architectures

CSD Encoding Decimal Equivalent 2's Complement Encoding
101010000010 -1406 1101010000010
010001010101 -1109 1101110101011
010010000010 -894 1110010000010
10000010l000 2072 0100000011000

Table 4.1: Example of CSD encoded coefficients and their 2's compliment equivalent.

required each time L is incremented. Samueli [89] has shown that one nonzero CSD digit is

required for approximately each 20 dB of stopband attenuation. Techniques for optimisation of

CSD coefficients include localised search, gradient-based and branch-and-bound optimisation

algorithms [90-92]. However, genetic algorithms have also been employed to find the optimal

set of powers-of-two based coefficients which can then implement CSD [93,94], in addition to

GAs which explicitly optimise CSD encoded coefficients [25].

4.4.2 Primitive Operator Filters

Bull et.al . introduced the concept of primitive operator filters (POPs), which utilise directed

graphs to optimise filter coefficients using a combination of add, subtract and shift operations

in order to generate reduced complexity filter architectures which use a standard 2's compliment

coefficient encoding [2,95]. The POF approach therefore replaces the entire coefficient mul-

tiplication unit with a highly distributed architecture, tailored for a specific set of coefficients.

Bull describes the principle behind POF such that it: "exploits the redundancy which exist in the

direct-form structure The underlying principle relies on the fact that partial products formed

in any one coefficient-sample multiplication can be reused to assist in the formation of other

product terms"

Four POF algorithms were initially proposed each utilising one or more operations: add, add/sub,

add/shift, add/sub/shift. Bull demonstrated that algorithms which utilised shifts produced by

far the best results, typically a factor of two better than when non-shift based algorithms were

employed. Filters which utilise fixed shifts are favoured because they require no logic and

are therefore considerably smaller in area than either add or subtract units. An example of a

multiplierless POF graph with n-bit shift and addition is presented in Figure 4.9. Note that

the arbitrary coefficients used do not require additional re-coding as with the CSD approach,

and that an impulse response (logic '1') must first be applied to the design to ensure that the

MOO

FIR Digital Filtering with Multiplierless Architectures

coefficients on each tap are correct.

WO 	 Wi W2 W3 	W4

Figure 4.9: Example Shift-addApproach.

Arsian et.al . [96] investigated a number of configurable arithmetic macro structures designed

to perform coefficient multiplication using the POF design technique. These structures were

designed to be implemented on an FPGA and were shown to offer advantages both in terms

of speed and physical area. One limitation of the configurable architecture proposed by Arslan

lies in the single bus routing system used to connect the relevant macro structures; this bus

produces a bottle-neck which restricts communication between macro elements thereby redu-

cing throughput. In addition, the size and complexity of the configurable logic blocks (CLBs),

required to implement the macro structures, severely limited the scalability of the architecture,

as CLBs did not map efficiently into the corresponding filter coefficients.

POF is particularly attractive for autonomous filter design using EHW as it requires no initial

encoding scheme such as CSD, and uses only three simple building blocks. Also, whilst the

original work on POF utilised a heuristic search algorithm, Bull has demonstrated that POF

graph synthesis problem is NP complete making it a suitable candidate for optimisation using

evolutionary algorithms.

Redmill et.al presents a method of obtaining minimal coefficient sets (as with CSD) in addition

to optimising filter complexity in terms of the number of subtraction and addition operations

performed [97]. Redmill's approach combings a heuristic directed graph search with a genetic

algorithm. Wade et.al [26] employs a similar approach to POF by providing a GA with a

number of basic FIR sections such as delay elements and addition units. The GA then generates

the desired filter specification using these building blocks.

67

FIR Digital Filtering with Multiplierless Architectures

Bull et.al . have shown that FIR filters designed using POF are smaller in area than those de-

signed using the CSD approach [2,97]. An exhaustive investigation of POF and related filter

design approaches can be found in the Ph.D. thesis written by David Bull [98].

4.43 VLSI Implementations

Custom hardware design of the FIR filter algorithm provides greater performance than if im-

plemented on a general-purpose DSP architecture [99]. Both ASIC's and programmable logic

devices (PLD's) are used to develop custom FIR filter architectures. The choice of implement-

ation depends greatly on the specification of the filter. Selection criteria are dependent on the

filters sampling frequency, number of taps, word-length, and the need for programmable coef-

ficients.

It has been shown that the performance of an FIR filter can be improved by replacing the mul-

tiplier with a series of bit-shifts and additions/subtractions. Physical area, and signal delay

are both reduced if this approach it taken. However, multiplierless architectures rely on the

accumulation of partial products, which therefore generate a fixed set of coefficients. VLSI im-

plementations of multiplierless FIR filters range from circuits capable of sampling frequencies

from 313kHz to 120 MHz, and filter orders from 32 to 64-taps [100-103]. These utilise power-

of-two encodings and architectures tailored to a specific set of fixed coefficients. Coefficient

programmability provides a means of extending the life of a filter core through design re-use.

Whilst still tailored to the filter algorithm, these designs can be re-programmed for a range of

applications; at the expense of increased complexity. Khoo et.al . presented a multiplierless

filter architecture encoded using CSD and capable of implementing 32 programmable taps lim-

ited to a maximum of two nonzero CSD encoded digits[104, 105]. Woon Jin Oh et.al developed

a method of reducing the length of shifters for architectures implementing programmable CSD

coefficients [106]. This approach reduces area at the expense of increased computation to gen-

erate an appropriate subset within the CSD code for a specific set of coefficients.

Powell et.al . presents an investigation of the suitability of several VLSI architectures for high-

speed, general purpose, programmable coefficient digital fllters[107]. It was concluded that

the direct form filter implementation using powers-of-two coefficients is highly effective from

implementing hardware filters with 70 or fewer taps. However a generalised transversal filter

architecture (GTF) may be a better compromise between hardware efficiency and ease of im-

plementation when programmability and scalability are desired. In the GTF, tap weights are

FIR Digital Filtering with Multiplierless Architectures

applied to intermediate nodes which form a cascade of identical sub-filters. The output of each

sub-filter is then appropriately delayed and summed to produce the desired filter response.

A number of programmable architectures have also been developed which are specifically

tailored to implement FIR filters designed using EHW. Miller uses gate-level evolution com-

prising XOR, AND and multiplexer logic functions to generate novel filters that do not use

explicit coefficients [108]. Instead filters are evolved using one of two different fitness func-

tions. The first is based on computing the sum of the absolute differences between the actual

filter response and that desired, the other is defined by examining characteristics of the Discrete

Fourier Transform of the filter output. Whilst still mostly theoretical, this work demonstrates

future avenues for VLSI implementations of filter applications. Flockton and Sheeham present

a functional-level approach to the design analogue filters centred around a generalised building

block circuit [109] which uses a number of resistors, capacitors and operational amplifiers. The

architecture is demonstrated through the intrinsic evolution of a linear band-pass filter. This ap-

proach is noteworthy because of the ease in which multiple building blocks can be concatenated

to realise more complex filter functions.

4.4.4 Design Adaptation and Fault Tolerance

Multiplierless FIR filter architectures have been shown to produce high performance DSP in

terms of operational speed and area. The reduced complexity FIR filter design methodologies

discussed above provide inovative solutions conducive for high-performance hardware archi-

tectures. Whilst a number of programmable architectures have been cited which implement

these concepts, no platform yet exists in which both the filter design algorithm and the pro-

grammable architecture interact in real time. Such a platform would provide a means of online

filter adaptation resulting in an architecture optimally configured for the current set of coeffi-

cients.

Device reliability is perhaps the most costly of all performance issues discussed in this chapter.

It is costly as it directly impairs operational speed and increases physical area. Fault toler -

ant VLSI systems employ techniques such as check-pointing [110], concurrent error detection

[111] and redundancy. Karri et.al . present a means of rapidly prototyping fault tolerant VLSI

systems. Two approaches to the fault tolerant design of a 16-point FIR filter are examined. Ana-

lysis shows that designing reliability through controlled redundancy results in a VLSI design

with smaller area and faster throughput than the same filter generated using a self-recovering

FIR Digital Filtering with Multiplierless Architectures

architecture [112]. The effectiveness of FIR filters developed using EHW to withstand faults is

examined in detail in chapter 7.

4.5 Overview of Programmable Platforms

Programmable logic devices (PLDs) provide an alternative means of implementing DSP al-

gorithms in hardware beyond that of more traditional approaches which use either custom VLSI

hardware, generic microprocessors, or more specific DSP processors. Since the early 1990's

PLD technology has branched into two distinct logic structures termed field programmable gate

arrays (FPGAs) and programmable logic arrays (PLAs). Both architectures comprise an array

of identical configurable logic blocks (CLB5) which are used to implement a given algorithm

in hardware. A binary data string is used to configure every CLB in the array, thereby program-

ming the PLD with the desired functionality. One of the largest differences between FPGAs

and PLAs are the interconnect structures used to pass data between CLBs. Interconnect can be

highly distributed as with FPGAs, or can be more restricted to rows or columns of CLBs as is

the case with many PLA architectures. Figure 4.10(a) illustrates the basic interconnect topo-

logy of an FPGA. Each CLB is directly connected to each of its adjacent neighbours allowing

data to be passed and received in all four directions of the array (north, south, east and west).

Greater interconnectivity is further achieved by "fast" routing CLBs which are not directly ad-

jacent. This approach can be seen in figure 4.10(b), which forms a hierarchical routing structure

by grouping CLBs into 4x4 arrays. A CLB is then able to send or receive data from another

CLB 4 units away, bypassing the CLBs which lie in between, which in turn frees resources.

Greater levels of interconnect hierarchy can be achieved by increasing the array size of each

CLB grouping.

An example of a programmable logic array structure can be seen in Figure 4.11. The archi-

tecture shown represents that of the XC9500 family of PLAs from Xilinx [24]. It can be seen

that each identical function block (FB) is arranged and connected in columns, with connectivity

between FBs provided using an extended interconnect matrix. PLA routing is therefore simpler

than that required for an FPGA. This reduces the complexity of implementing circuits on PLAs,

but also limits the flexibility of the devices when compared to the FPGA.

Both FPGA and PLA architectures implement logic functions through a combination of look-

up tables (LUT5), which provide synchronous RAM, D-type flip-flops, and basic gate primit-

70

II 	II 	II 	4 	I
I i

CLB
I
CLB CLB

I
CLB

it ii
CLB

it
CLB

it
CLB

11
CLB

11 ii 11
CLB CLB

it
CLB

Ii
CLB

11
CLB

ii
CLB CLB CLB

If 	It 	It 	1$

FIR Digital Filtering with Multiplierless Architectures

(a) Basic nearest neighbour FPGA in- 	(b) Example 4-length FI'UA -last" mterconnect structure.

terconnect structure.

Figure 4.10: Basic FPGA interconnect structures and CLB layout.

ives (used for glue logic and signal multiplexing). Each of these functions is built into every

CLB/FB in the array which, when suitably programmed and interconnected, produce the de-

sired circuit functionality from the programmable device. The majority of logic functions are

achieved through the LUTs. Each LUT is capable of implementing any arbitrarily defined

boolean function in the form of logic truth tables, which store the bit patterns in the individual

CLBIFB. As these bit patterns are stored in RAM, they can be reloaded or newly written an

unlimited number of times. Circuit designs implemented on a PLD can therefore be modified

and corrected by programming new bit patterns into the LUT without actually changing the

hardware. More complex logic functions can be generated by spanning the truth table across

of number of LUTs. Each CLBs therefore passes combinatorial bit data to the interconnect

network, which can then be distributed within the array. A CLB can also store combinatorial

data in D-type flip-flops which can be passed directly to the interconnect network. Multiple

CLBs can therefore be configured to implement registers for storing binary words of arbitrary

length.

71

FIR Digital Filtering with Multiplierless Architectures

Figure 4.11: Example of a PLA architecture from the Xilinx XC9500 series.

4.5.1 Performing Multiplication on PLDs using Distributed Arithmetic

The majority of programmable logic devices such as those manufactured by Xilinx and Al-

tera do not have dedicated multiplier architectures (however this is now changing). Instead

multiplication is performed bit-serially across multiple CLB/FBs, an approach that requires

considerable logic and interconnect resources. This limitation can be over come by exploiting

the LUT-based approach to computation inherent in most PLDs, which favours a much more

efficient technique for data multiplication referred to as distributed arithmetic (DA). DA is most

commonly used as an efficient method of implementing the weighted sum of products, or dot

product algorithm, required for applications such as FIR filtering as shown in equation (4.1).

The DA approach is similar to that of POF such that one factor of each product term remains

constant. Each product term therefore consists of a single input variable and a constant coeffi-

cient. Input variables are normally represented as 2's complement binary numbers such that all

partial product terms are computed simultaneously in the same period that would be required

to implement a single partial product. Each input string of word length N can therefore be

72

FIR Digital Filtering with Multiplierless Architectures

described as

Xk = —bko + E b2 	 (4.7)

Where bkn is binary data (0 or 1), bkN - 1 is the LSB of the data word, and bkO is the signed

Most Significant Bit (MSB). The result of multiplying data vector, X, of length K, with con-

stant coefficient vector A, of length K can be written as

F = A1 X1 + A2X2 + A3X3 +AKXK 	 (4.8)

As an example, the LUT contents for a k = 4 data vector can be seen in Table 4.2. A total

of 21c = 16 possible input configurations must be referenced with the relevant partial product

terms stored in the LUT. if each input word in XK is N bits in length, then each partial product

term output by the LUT must be accumulated each time the next data bit, Xk n , is passed. The

DA multiplication function, F, therefore requires N LUT address reads, and N accumulates.

X4 X3 X2 X1 LUT content
0 0 0 00
0 0 0 1 A1
0 0 1 0 A2
0 0 1 1 A2+A1
0 1 0 0 A3
0 1 0 1 A3+A1
0 1 1 0 A3+A2
0 1 1 1 A3+A2+A1
1 0 0 0 A4
1 0 0 1 A4+A1
1 0 1 0 A4+A2
1 0 1 1 A4+A2+A1
1 1 0 0 A4+A3
1 1 0 1 A4+A3+A1
1 1 1 0 A4+A3+A2
1 1 1 1 A 4 +A3+A2+A1

Thble 4.2: Contents ofLUT for K = 4 input data vectors.

Figure 4.12 illustrates the basic DA processor required to implement the algorithm shown in

(4.2). When implemented on an FPGA the DA processor can be realised by storing all pos-

sible partial product results within a single LUT, usually spanning multiple CLBs as described

73

FIR Digital Filtering with Multiplierless Architectures

in [113]. The LUT is addressed bit serially such that each input variable is converted from an

n-bit parallel word into a serial data stream which is passed to the LUT. The bit-serial input

data, Xk n , references the LUT using the Least Significant Bit (LSB) first. Each partial product

output from the LUT is then summed with the previous accumulated result and shifted one bit

to the right and stored. Because all data paths in the DA processor are N bits wide, each right

shift (equivalent to a divide by two) causes the LSB to be discarded. However, double preci-

sion can be retained by passing the discarded LSB via Yi ower onto an auxiliary shift register.

This process is repeated until all the sign bits of input vector Xk are passed (simultaneously)

to the LUT. Once this occurs Sign control is read to determine the sign of the result present

on Yupper . If it is negative then a subtraction is performed. A minimum of N clock cycles are

therefore required to process the input data vectors. Therefore, if the data width of each input

word, N, is less than the number of input vectors, k, (N < k) then the DA processor is in fact

faster than a single parallel multiply accumulator (MAC).

xl ,

PSR
X2

PSR
X3

,

XK

Scaling Accumulator

LUT ::: ii:: 	
egister Store

2K Words

YJ
Sign control
	

Right shift

Yupper

Figure 4.12: Distributed arithmetic processor.

An FIR filter can therefore be implemented on an FPGA using the DA technique simply by

increasing the size of the LUT, thereby utilising greater RAM resources. Figure 4.13 illustrates

the extension of the DA processor to digital FIR filtering.

The initial input signal X (n) is firstly loaded in parallel and then converted serially to form a

cascade of serial shift registers (SR) which provide the necessary tap delays and order the input

74

FIR Digital Filtering with Multiplierless Architectures

X(n)

I PSR I

SR 1 	

LUT 	 Scaling

2 Words F1 Accumilator

SRN

Figure 413: Implementation of an N-tap FIR filter using distributed arithmetic.

data for correct bit serial addressing of the LUT. The MAC function of the scaling accumulator

then sums each partial product term output by the LUT to achieve the desired filtering function.

As a result filter complexity, defined by tap length, is limited by the memory resources available

to the programmable logic device.

A more detailed review of applying distributed arithmetic to DSP can be found in [114]. The

article, written by Stanley White, also provides a number of techniques designed to increase

the speed of DA multiplication, for example by partitioning input words into sub-words, which

requires greater memory, but introduces greater parallelism into the multiply accumulate opera-

tion. Another technique aims at reducing the size of LUT required by DA. This approach is able

to reduce memory resources to 12 k words by using a modified 2's complement representation

termed Offset Binary Coding (OBC). OBC instead casts the binary states '0' and '1' as '-1'

and '1' respectively. The input Xi of word length N can therefore be used to re-write equation

(4.2) as

—Xk = -bkO + E b2 + 2-(N1) 	 (4.9)

Where bkn is the complement of the bit bkn. This approach can considerably reduce the limit-

ations imposed by the memory resources available to the PLD, and enable the implementation

of more complex FIR filters. Linear phase FIR filters can be used to further reduce the num-

ber of LUT addresses by a factor of 2. This is achieved by bit serially adding the outputs of

symmetrical tap pairs, as with folded form filter implementations.

75

FIR Digital Filtering with Multiplierless Architectures

Marcos et.al presents a comparison between three classic FIR filter structures: direct form,

cascade and lattice, each implemented on an ALTERA 10K50 FPGA using DA [115]. Whilst

this work identified the limitations inherent in each structure, it also showed that the direct

form implementation was the most scalable, and translated well in to the DA processor. An in

depth overview on the implementation of transposed form FIR filters on Xilinx's latest range

of Virtex FPGA devices can be found in [116]. An extensive overview of distributed arithmetic

processors and programmable logic device architectures is presented in [117].

4.5.2 Dedicated Programmable Logic Devices

A number of recent PLD architectures have been developed which are dedicated to DSP ap-

plications, in addition to the dedicated programmable FIR filter architectures discussed earlier

in this Chapter. Chen and Rabaey developed a field-programmable multiprocessor IC termed

PALDDI (programmable arithmetic devices for high-speed digital signal processing). The device

comprises a number of identical arithmetic units connected in a similar way to the PLA archi-

tecture shown in Figure 4.11 and specifically designed for high speed signal processing applic-

ations. DSP architectures benchmarked on the PADDI include a low-pass biquadratic filter, a

3x3 linear convolver for image processing, and a RGB video matrix. The PADDI was shown

to out perform a commercially available FPGA series (XC3090) produced by Xilinx at the

time [118]. Rajagopalam and Sutton have recently presented an FPGA architecture dedicated

to high speed flexible multiplication for demanding DSP applications [119]. Each functional

block supports multiplication, addition and multiply-accumulate operations generated through

a modified carry-save adder and carry logic circuitry. Again, this dedicated FPGA architec-

ture out performs modern FPGA devices, such as those currently available from Xilinx and

Altera, which must implement multiplication though LUTs, and require extensive interconnect

between many fine-grained CLBs (in terms of CLB functionality) in order to configure the

desired DSP implementation.

An example of a coarse-grained field programmable logic device for DSP applications is presen-

ted in [120]. The platform consists of an Arithmetic Switching Network (ASN), similar in lay-

out to the FPGA. However, unlike the general FPGA architecture discussed earlier the ASN

comprises an array of adders, subtractors and multipliers. These arithmetic operations were

chosen so that the device could efficiently perform different classes of linear, non-linear, or-

thogonal and non-orthogonal transforms applicable to algorithms such as the Discrete Cosine

76

FIR Digital Filtering with Multiplierless Architectures

Transform (DCI), and Fast Fourier Transform (FFT).

4.6 Summary

This chapter has presented a basic overview of FIR filter theory, and underlined the relative

benefits of implementing an FIR system in direct form (DF) and transposed direct form (TDF).

A number of reduced complexity methodologies have been presented which target the multi-

plier stage of the FIR system, often replacing explicit coefficient multiplication units with a

distributed series of bit-shifts, additions and subtractions. This approach is embodied by the

primitive operator design methodology, which builds on logic elements used to produce pre-

vious coefficients in the current filter in order to generate the next coefficient in the set. The

disadvantage of this approach is that the FIR system developed is constrained to a specific set of

filter coefficients, which then binds the filter to an individual application and does not promote

design reuse. Whilst this chapter has identified a number of high performance programmable

architectures specifically designed to implement multiplierless filters, as well presenting more

general purpose PLDs, these platforms do not integrate design algorithms such as POF which

would enable the system to reconfigure adaptively. Chapter 5 therefore presents the under -

lying framework for an EHW platform specifically tailored for implementing programmable

multiplier-free FIR filters in hardware. Evolution is to be performed at a functional level con-

siderably higher than that used in the Virtual Chip. Instead, the POF design methodology is

adopted such that the GA is able to utilise a combination of additions, subtractions and bit-

shifts. The EHW platform aims to provide the flexibility of an adaptive programmable filter,

with the performance benefits inherent in a fixed coefficient architecture, resulting in a high

performance programmable platform dedicated for rapid prototyping of FIR filter algorithms.

77

Chapter 5
Developing a Programmable

Framework for Filter Design using

5.1 Introduction

Chapter 4 has shown that fixed coefficient multiplierless filter architectures are suitable for high

performance signal processing applications. However, they are not flexible and do not promote

design re-use. Whilst programmable multiplierless filters have been developed, they have not

yet been integrated with design algorithms such as the POF directed graph approach which

would make them adaptive.

This chapter presents the relevant building blocks identified in Chapter 4 to produce a dedicated

Programmable Arithmetic Logic Unit (PALU) capable of implementing programmable multi-

plierless FIR filters as part of an embedded array of PALUs. Filters are to be realised within

two competing programmable platforms, one inspired by the FPGA, the other by the PLA; each

made up of any array of PALUs. Both programmable platforms, presented in chapter 6, are de-

signed to accommodate the performance constraints discussed in the previous chapter which

centre around processing speed, physical area, component re-use and device reliability. The

genetic algorithm developed to autonomously configure the two programmable platforms for a

given set of filter coefficients is also presented.

Both the PALU and genetic algorithm form the back bone of an EHW platform which has been

designed to provide an adaptive, multiplierless hardware architecture, tailored to programmable

FIR digital filter applications, and autonomously configured using a genetic algorithm.

5.2 Overview of EHW Platform

A further two programmable platforms are to be presented which provide a means of autonom-

ously configuring the coefficient multiplication stage of an FIR filter using evolvable hardware.

Developing a Programmable Framework for Filter Design using EHW

Each of the two programmable architectures has been tailored for FIR filter design, program-

mability, and adaptation. Whilst the topology of each programmable platform is different, both

architectures utilise the same genetic algorithm, and the same programmable arithmetic lo-

gic units (PALUs), designed to implement reduced complexity multiplierless filters. Both the

PALU and the genetic algorithm have been developed in VHDL at the RTL (Register Transfer

Language) level, such that global parameters can be characterised and provide a scalable logic

core which can be ported into larger DSP applications. This approach can therefore be termed

as Complete Hardware Evolution, as defined by Tufte and Haddow in [72]. The designer must

then decide the data input width, data output width, and the maximum number of taps the plat-

form can support before the EHW platform is fixed in hardware. The latter will determine the

dimensions of the specific programmable platform.

The EHW platform developed is common to both the PLA and FPGA-based programmable

platforms and consists of three processing units as detailed in Figure 5.1. The system controller

programmes the current filter specification storing both the tap-length and coefficient variables,

these are passed to the platform by the user 'during operation. Tap-length is passed directly

to the programmable platform, whilst the coefficient variables are relayed to the genetic al-

gorithm which must then determine how best to configure the programmable logic. The GA

also verifies that the programmable platform is outputting the desired coefficients. Each tap

within the programmable platform is therefore output back to the GA unit. Communication

between processing units is fully synchronous.

5.2.1 Programmable Arithmetic Logic Unit

Each programmable platform is constructed from a number of identical programmable arith-

metic logic units (PALU's). Unlike the more macro-based approach taken by Arslan et.al [96],

a more granular structure is proposed. Each PALU is able to implement either a parallel n-bit

left-shift, addition or subtraction as shown in Figure 5.2, with a bit-width dependent on the

input data width of X (n). Therefore as with POF and CSD approaches, explicit coefficient

multiplication is removed.

A total of five control-bits are required to configure each PALU: 1-bit to determine the operation

of the adder/subtractor, 1-bit for each of the routing multiplexors, and 2-bits to control the

programmable shifter, which is capable of left-shifting from 0 to 3-bits. A PALU implementing

a shift-by-zero acts as a through-connect. Each PALU output then feeds into a synchronous

79

Developing a Programmable Framework for Filter Design using EHW

Figure 5.1: Architectural overview of EJIW platform for FIR filter implementation.

register to create a pipelined architecture which increases data throughput.

Figure 5.2: ProgrammableAL Ufor Multiplierless FIR Filtering.

Chapter 6 investigates a number of programmable logic topologies which utilise the PALUs

illustrated in Figure 5.2. A genetic algorithm will be used to determine the most suitable topo-

logy of PALUs in which to implement a reconfigurable FIR filter using evolvable hardware.

Developing a Programmable Framework for Filter Design using ERW

5.3 Implementing the Genetic Algorithm

The genetic algorithm presented in this Chapter was chosen to facilitate an investigation of the

main focus of research presented in this thesis, that being to develop the most suitable platform

for implementing a high-performance digital FIR filters using EHW. From this, the coeffi-

cient multiplication stage has been identified as the primary unit for design automation. The

genetic algorithm also provides a controlled comparison on the merits of each programmable

platform as it requires no specific knowledge of either the PLA or FPGA based architectures

under investigation. As a result the success of each programmable platform relies solely on the

ease in which the GA is able to navigate the search space and generate the desired set of filter

coefficients.

Evolutionary algorithms have been used to optimise coefficient sets for multiplierless filter ap-

plications, whilst optimising a number of addition/subtraction and shift resources [26,94,97].

The GA presented in this chapter extends this principle to the optimal configuration of custom-

built PALU's to obtain a set of desired filter coefficients within two dedicated programmable

architectures. Each programmable platform is configured using a configuration string of binary

data. The bit string is then used to determine the functionality of each PALU in the architec-

ture, and the flow of data between communicating PALUs, as constrained by each platforms

interconnect topology. The chromosome encoding therefore requires a binary representation

like that discussed in Chapter 2. The genetic algorithm therefore differs considerably from the

numeric-based chromosome encoding developed for the Virtual Chip EHW platform discussed

in Chapter 3. Each programmable platform is now modified entirely by the genetic algorithm

such that a population of configuration-strings are used to produce an optimal PALU configur -

ation for a given filter specification.

A number of programmable logic devices have been used to implement EAs in hardware

[17,121-1231. These algorithms are capable of running considerably faster than those imple-

mented on general purpose micro-processors, and are therefore suitable for applications which

require online adaptation as is often required with high performance digital filters. Evolutionary

algorithms are frequently mapped onto PLDs so that the fitness function can later be modified

for different optimisation problems. However, faster algorithms can be achieved when imple-

mented in dedicated VLSI hardware. Custom evolutionary algorithms implemented on ASICs

can be found in [124, 1251. In such cases the fitness algorithm is fixed for a specific applica-

tion. The custom ASIC approach has been implemented in this thesis so that the GA can be

Developing a Programmable Framework for Filter Design using EHW

embedded along side the programmable platform, making it highly suited to SoC single chip

DSP devices. Figure 5.3 displays a schematic of the generic VHDL EHW platform model used

to implement both the FPGA and PLA programmable architectures, and embedded genetic

algorithm.

MM

Programmable 	 -
va 	Wm

Platform 	 "--

(PLA I HA)

Figure 5.3: 5.3: Sc heinatic ofEHWplatforn including units comprising genetic algorithm and pro-
grammable platform (FPGAJPL4).

Each unit illustrated in Figure 5.3 is described briefly below. Units highlighted in blue indicate

VHDL models which may be synthesised into silicon, units in red use real valued numbers for

calculation, and therefore represent high-level behavioural VHDL descriptions.

Memory-Unit 1 and 2: These memory arrays store the population of configuration strings

required to program either the PLA or FPGA architectures. Each generation one memory unit

is triggered to be read-only, while the other is write-only. These read and write states are

determined by a logic high on the the inputs Read-Enable and Write-Enable respectively, and

are present on both memory arrays. This is to enable both the fitness assessment of the parent

MN

Developing a Programmable Framework for Filter Design using EHW

population, and the creation of a new offspring population. As a result the memory arrays

toggle between read-only and write only modes each evaluation cycle (generation) so that once

an offspring population is created it can be evaluated in the following generation. The address

of each configuration string in memory is passed via the Address input, whilst the data itself is

fed bit-serially through Input .String.

MEMControI: This unit governs which Memory-Unit is to be read from or written to in

each generation. The input signal RouteCnrrl determines when this transition occurs, and is

only toggled when each configuration string in the current population has been evaluated and

the resulting offspring strings written. Inputs Address_I and Address -2 are then multiplexed

between MemoryUnit_l and Memory Unit1, whereAddressi selects configurations strings to

be read into the programmable platform, and Address 1 points at the relevant memory location

to which the next offspring string will be written. String writing to memory is triggered by

the Write signal, set high by the Crossover Unit once an offspring string has been generated.

Child output then passes the new configuration string into memory. A circuit diagram of the

MEMControl unit is shown in Figure 5.4.

Ro,EC,WI

S-4
Child Owpm 	 LIJ1I Soft

Figure 5.4: Schematic of MEMControl unit for memory read/write control.

Pop Control: Determines when a configuration string should be read from memory, and which

Developing a Programmable Framework for Filter Design using EHW

unit has requested the bit string. Primarily this unit simply increments the read address in

memory of the next configuration string which is to program the PLAJFPGA. This is determ-

ined by the unit Population -Counter which passes the next address location to Pop-Control via

Pop -count. Both Selection -Unit and Elitism -Unit request configuration strings via Pop Control

using signals XoverEnable and Elite-Enable respectively. The corresponding memory loca-

tion for both units is signalled by Address location. Only when SelectCntrl is low (logic '0')

are both Address location and ActiveEnable recognised. When Select_Cntrl is high (logic '1')

then the EHW platform is in evaluation mode and addressing is achieved through Pop Count.

Population -Counter: While searching for an acceptable filter solution, the EHW platform has

two modes of operation: evaluation mode, when configuration stings are read from memory

and assigned a fitness score based on how effectively they configure the corresponding pro-

grammable platform, and evolution mode, when good solutions in the current population are

selected to form offspring configuration strings which are written into memory for the next

generation. These two modes are controlled by Select_Cntrl, which is high during evaluation

mode and low during evolution mode. An internal sequential counter is used to increment

Pop Count so that each configuration string in the current population can be accessed and eval-

uated. During this period Select_Cntrl is held high. Once the population limit is reached,

counting stops, SelectCntrl toggles low, and the evolution mode begins. Evaluation mode re-

sumes once the next generation of configuration strings is written, indicated by a single pulse

from Enable J21-IW, originating from the Crossover-Unit. Once this flag is received Pop Count

is reset and then continues to increment again.

Selection _Reg: Acts as a temporary memory store for the current configuration string program-

ming the PLA/FPGA. The string will remain in the shift register until the performance of the

platform has been evaluated. The output, EJTflVString, is enabled by Out select which ensures

that the register output is delayed by one clock cycle so that memory can be safely accessed and

read though Pop Control. Out-select is therefore also governed by Select_Cntrl as the memory

store is only required during the evaluation mode.

MIEM_Coefficients: This memory unit stores the coefficient set which defines the current filter

specification. Each tap output is therefore multiplexed and passed via Platform -Output to the

Fitness-Unit where it is evaluated with the corresponding desired coefficient, passed to the

Fitness-Unit via Current Coeff.

Developing a Programmable Framework for Filter Design using ERW

Fitness-Unit: The performance of both the PLA and FPGA-based platform is assessed directly

through the Fitness-Unit. This is achieved by determining the quality of each filter coefficient,

presented to the Fitness Unit, from the PLA/FPGA core via Platform -Output. The fitness of

each coefficient is then calculated by comparing it with the desired coefficient, stored in the

MEMCoefficients unit. The fitness scores of each coefficient are then summed to provide an

absolute fitness of the current configuration-string, formalised as follows:

T f fe /F. iff<F
Qx = (5.1)

Fe /f, otherwise

Where 0 is the final "fitness score",' is the total number of taps, f is the PLA/FPGA output of

the current tap and F2 is the desired current coefficient. The success of each PLA/FPGA archi-

tecture is therefore measured on the ability of the GA to successfully modify the configuration-

string over a number of generations, such that a set of coefficients are obtained which most

closely match those stored in MEMCoefficients. One benefit of employing this comparative

fitness measure was that it would be simple to implement in VHDL at the RTL level, and would

translate easily into hardware. Figure 5.5 displays the corresponding circuit diagram.

SysEnable_Min

StoredOutput

Summed Result

Division Out Divider 	 FAdd7e A_Out Store 	-
FitnessOutput

clock

Figure 5.5: Schematic of Fitness Un it for calculating quality of PLA/FPGA configurations for
a given set offilter coefficients.

SysEnablelvlin is used to reset the accumulated fitness score only after all the filter coefficients

have been evaluated for the current string, and a new configuration string is loaded into the

programmable platform.

Developing a Programmable Framework for Filter Design using EHW

MEM_Fitness: Is identical to Memory-Units 1 and 2 discussed previously except that real

numbered variables are passed from Fitness -Unit and as a result is implemented as a separate

core. MEMFitness therefore stores this accumulated fitness score, corresponding to each con-

figuration string, in memory to be passed via Fitness into the Selection Unit when requested.

Fit-Control: Is similar in functionality to Pop-Control in that it determines read/write access

to memory, in this case MEMYitness. When in evaluation mode (Select_Cntrl = '1') memory

address locations are determined by Pop Count such that the position of a fitness score in

MEMYitness translates directly to the position of the associated configuration string. SysEn-

able lviin acts as Write-Enable permitting FitnessOutput to be written into memory. When

in evolution mode Select-Enable and SelecLAddress provide read access and select the desired

memory location respectively. Both signals originate from Selection -Unit and are invoked when

performance comparisons between configuration strings are made.

Selection-Unit: Two-way tournament selection was chosen as the selection algorithm for the

EHW platform as it is the simplest to implement in hardware, compared to more complex

algorithms such as proportionate selection, and proved successful when used with the Virtual

Chip EHW platform in Chapter 3. A schematic of Selection-Unit can be seen in Figure 5.6

The Selection-Unit is first activated through Initialise, and thereafter via SelectActive. Initial-

ise is transmitted from Population -Counter once the maximum population count is reached

and Select_Cntrl goes low. Both these Control signals flag the Random Address-Unit and

have a period of two clock cycles. At each flagged clock cycle a randomly generated address

location is passed to MEMYitness via SelectAddress; Select-Enable is also set high in or-

der to permit the memory read. This process is synchronous, therefore both SelecLAddress

and Select-Enable activate one cycle after the Control flag is received. This one cycle delay

between Select Enable and Control is used to flag the remaining clock cycle when both sig-

nals are simultaneously high, so that during this period the first fitness score can be stored in

RegA and the corresponding address stored in Reg B; this control process is highlighted in red.

When the second fitness score is received the decision unit, highlighted in blue, compares the

two scores and indicates the winner through the signal Decision ('0' if fitness score on Reg A

is the greatest, otherwise '1'). The selection unit, highlighted in yellow, then passes the win-

ning configuration string location to SelectPos_Out. Only once the selection has been made is

Select -flag set high so that XoverJJnable can can be used to activate the Crossover-Unit.

Developing a Programmable Framework for Filter Design using EHW

Fitness

Initialise

Seket
	

Control

1 Select-Enable

----p DOW Uflft ..

REG A

Select_flag 	 Select-Enable

Decision
Select-Address

Selection Unit

Random-Address Select-Address

Unit
SeleciPos_Out

Mxarl
	Rag--Address

Select- flag 	 Xower_Enable

Select_CntrI

Figure 5.6: Schematic of Selection -Unit implementing two way tournament selection.

Elitism-Unit: Stores the address of the fittest solution in the current population, provided by

the input PopCount, so that it can be re-introduced into the new offspring population un-

changed. Only one elite individual is maintained each generation. On each clock event when

SysEnableMin goes high a new fitness score, received via FitnessOutput, is compared with

the highest fitness score currently stored within the Elitism-Unit. The location of the fittest

configuration string is then held in Elite-address until the start of the evolution mode when

the Elite-Enable flag is set high for one clock cycle only, allowing the configuration string to

be read from the current parent population and written, via the Crossover-Unit into the new

offspring population memory.

Crossover-Unit: The primary function of the Crossover-Unit is to generate new offspring

configuration strings through the genetic operators crossover and mutation. However. Cros-

sover-Unit can also be used as means of writing parent configuration strings directly from the

current memory population into the new memory population when crossover and mutation do

not occur, as is done when elitism is employed. Figure 5.7 illustrates the circuit diagram of the

Crossover-Unit.

87

Developing a Programmable Framework for Filter Design using EHW

Mik Jbk

Figure 5.7: Schematic of Crossover-Unit which implements genetic operators crossover and
mutation in order to generate new offspring solutions.

There are therefore two situations when a parent solution may be copied directly into the off-

spring population. The first is due to elitism, and the second is when the probability of crossover

for a given string is not sufficient.

The request for an elite string read/write is issued by the Elitism-Unit and passed into the Cros-

sover-Unit via the Elite-Enable flag. This flag is passed to two internal modules; AddressCount

and Decision Unit. AddressGounr serves to control which Memory-Unit acts as the parent

population (read-only), and which stores the offspring population (write-only) in each genera-

tion. An internal counter is used to increment the address location of the current Memory-Unit

in write mode. A count is triggered by either EnableA, Enable_B or Elite-Enable. Once the

counter reaches the total population size, then enough configuration strings have been written

to memory and the Enable_EHW flag is set high to switch the EHW platform into evaluation

mode. At the same time Route_Gntrl is toggled, setting the Memory-Unit containing the new

offspring configuration strings into read-only mode, and allowing the old memory population

to be over written by switching it to write mode.

The Decision Unit receives a copy of both the original parent string and potentially an asso-

Developing a Programmable Framework for Filter Design using EHW

ciated offspring string (if crossover and mutation occurred). With the Elite-Enable set, the

parent configuration string is output directly to Output-String, which then feeds into the current

offspring memory via MEMControl. Write is also set high to enable the memory write.

Each crossover operation, activated by the Xover_Enable flag, is determined randomly via the

Crossover-Unit's internal Random Generation module. A user defined crossover probability

is used to determine if crossover occurs, where the random number generator is bound in the

range 0 to 100 (representing a 0 to 100% chance of crossover). If no crossover occurs then the

EnableA flag is set, acting in the same manner as the Elite-Enable flag discussed earlier. If

the crossover probability is met then Mate-Enable is used to activate the Crossover module,

which performs one point crossover at a randomly selected locus along the bit string.

Because two parent strings are required to generate offspring, the Crossover-Unit must then

wait for a second configuration string to be passed to it from the SelectionUnit. The re-

quest is made via Next .String and extended by an additional clock cycle to generate the Se-

lectActive signal expected by the Selection Unit. The Crossover-Unit's wait state is signalled

by Splice-Enable which causes the Random Generation module to bypass probability se-

lection, enabling the next parent string to pass directly to the internal Crossover module. Once

both offspring strings are generated Mutate-Enable is set to activate the unit Mutation module,

which applies bit-flip mutation to each offspring string with uniform probability determined by

the user. Each offspring is then output in turn via WriteChild and passed to the Decision-Unit.

Enablei3 is set high to ensure that the offspring strings and not the parent are written into

memory, and that the address location is incremented.

In summary, the genetic algorithm embedded within the EHW platform is parameterised as

follows:

• (p,.\) generational genetic algorithm

Population size 100,

. User defined crossover and mutation rate

• 1\vo way tournament selection

• One elite solution maintained each generation.

Developing a Programmable Framework for Filter Design using EHW

5.3.1 Analysis of Genetic Algorithm

The completed GA was simulated using Cadence's Leapfrog VHDL simulation environment

with a crossover rate of 60% and a mutation rate equal to 1 / L, where L is the bit length. A pop-

ulation of four arbitrary configuration strings of 15-bits were stored in the GAs MemoryUnit,

and each was assigned an imaginary fitness corresponding to how well the string might have

configured an array of PALUs for a given filter specification. It is clear that considerably longer

bits strings would be required to actually configure an array of PALUs, however, such short

string lengths were chosen as it would be easy to note the effects of crossover and mutation.

Figure 5.8 presents the resulting simulation waveforms relating to the GAs Crossover-Unit.

The Crossover-Unit reflects the most complex aspect of the GA architecture, and adequately

demonstrates the global operation of the embedded genetic algorithm.

GbI

Ifl00l_ 00O1O!!njnhIIIfljmm00o I 	IlIII1IlGD000O0J_0000000011IIII1 1 	ittiitii000 	I 	tnxiiooiiooiio 	joio,onoionaio
Enu

wn r1 n
fl

in
Mails Cn01

E0ftw

rL
Add,.,. o 	 Id 2 	-I 3 	 IiI

O5l00l_S0019 xxxxxxxxxxxxxxx 	I !i000imxod I 100010000MODO 	 ,t,,icni,i,,00o

En.AèeB

0En.b4,

N..lS*a,9

_______ _______

MsI.E5.ld,________

SØAoE.___

_______ _______ _______

000000000000303 	1 0llllI11 111111110DOD000 	1l001 10011001I0
SlflQ2 r 10110000111000 	III 10000111 1
ChAd_A

00lIlll1lt. 110001011100110

W0leOld
oxxxxxoxxxxxxxo

fl /
L 	Ill I110011II1000

xxxxxxx.xxxxxxox 	1.1
C-1.1 Iii 2 	I 3 	 6

FW 	0 1 	 25 .873 1 	740261 1 	 14.002 	 1 	104471

0 1 14 13 	 -101

—After croosooer

After mutation

Figure 5.8: Overview of waveform produced by genetic algorithm in EHW platform.

Figure 5.8 clearly shows the activation of the Crossover-Unit through the signal XoverEnable

produced by the Selection Unit, and the writing of Output-String in to memory when both

Enable and Write are simultaneously high. The signal Address can also be seen to increment its

write location in memory each time an offspring string (Child-String) is available for writing.

The two initial configuration strings "000000000000000" and '1 111111 10000000" present on

90

Developing a Programmable Framework for Filter Design using EHW

Input .String are shown by Splice Yos (an internal signal in the Crossover module) to crossover

at bit 14, creating offsprings "01111110000000" and "100000000000000" on String-1 and

String-2 respectively. Mutation is then shown to occur with the correct probability on ChildA,

highlighted in red, and ChildB, highlighted in blue, before being passed to Child-String and

written to memory.

Further evidence that the genetic algorithm functions correctly is presented in detail in Chapter

6, through the successful evolution of digital FIR filters using the EHW platform developed in

this chapter.

5.4 Summary

This chapter has presented the development of a programmable arithmetic logic unit (PALU)

which constitutes the basic building block for an EHW platform developed to autonomously

implement FIR coefficient multiplication. The PALU developed is designed to replace explicit

coefficient multiplication with a distributed series of bit-shifts, additions and subtractions. An

array of PALUs comprise a programmable platform which is then autonomously configured us-

ing a genetic algorithm with a fitness function designed to reflect a given filter specification. The

GA is also employed to investigate the most suitable programmable platform for implementing

high-performance multiplierless digital filters. Two of the key genetic operator: crossover and

mutation (in addition to population size) can be parameterised in order to optimise the GA for

the filter application.

The basic El-lW framework identified in this chapter therefore comprises the GA and the FPGA

or PLA-based programmable platform, both of which are written in VHDL. A detailed overview

of communication between the GA and the programmable platform has also been presented,

and the GA has been shown through VHDL simulation to operate correctly. Chapter 6 details

an investigation into the most suitable programmable platform for digital FIR filter coefficient

multiplication using EHW.

91

Chapter 6
Reconfigurable platforms for FIR filter

implementation using EHW

6.1 Introduction

This chapter presents two programmable platforms, specifically designed to implement multiplier-

free coefficient multiplication for high performance, digital FIR filter applications. The first

programmable platform is inspired from a class of logic devices termed field programmable

gate arrays (FPGAs), the second is from a similar family of devices termed programmable lo-

gic arrays (PLA5). Both programmable platforms will utilise the PALU detailed in section 5.2.1

of chapter 5 for the automated design of digital FIR filters using evolvable hardware.

The genetic algorithm developed in chapter 5 is used to examine a number of performance cri-

teria which focus on the following: the success of each EHW platform in generating a specified

coefficient set, the number of PALU components utilised in each array, the degree of compon-

ent re-use required to produce new coefficient terms, and the ratio of left-shift, addition and

subtraction operations required to implement the filter. Both the PIA and FPGA-based plat-

forms are examined with a range of filter input, tap output and PALU interconnect topologies

in order to determined the most suitable programmable multiplierless architecture.

Both the FPGA and PLA-based EHW platforms were implemented using a hardware descrip-

tion language (HDL) at the RTL level so as to provide accurate hardware modelling of each

system. VHDL was chosen as it provided a simple means of creating arrays of PALU using

the GENERATE statement, a feature which does not exist in Verilog. The relevant circuit

layout of each programmable platform is also presented. Finally, the most successful program-

mable platform based on each of the performance criteria discussed is identified and selected

for translation into a synthesised hardware model.

92

Reconfigurable platforms for FIR filter implementation using EHW

6.2 Benchmark Filter Design

In order to investigate the suitability of each programmable input, output and interconnect to-

pology for automated filter design using EHW, a 31-tap low pass filter was selected to provide

the benchmark with which both the FPGA and PLA-based architectures will be compared. The

filter was taken from the industrial design of low-power filter cores for hearing aids, developed

in joint collaboration with Bernafon LTD and the university of Edinburgh detailed in[126]. The

corresponding coefficient set shown in Table 6.1 is highly challenging as it exhibits a large dy -

namic range with coefficient multiplicands scaling the filter input from 2' to 214, using word

lengths of only 16-bits. In addition the low-pass filters gain must be no less than -52 dB. All

Coefficient Taps Dec

W-15, W15 -59

W-13, W13 96

W-11, W11 -220

W-9, W9 461
W_7, W7 -876

W-5, W5 1606

W-3, W3 -3171
W_i , Wi 10326

WO 16384

Table 6.1: Non-zero coefficients required for response of 31 -tap low-pass filter

other coefficients are zero. Therefore 9 distinct taps are required for a folded form implement-

ation, using the approach detailed in section 4.3.2. The corresponding filter response is shown

by the blue line in Figure 6.1.

The filters transfer function was achieved by quantising the input impulse, X (n), and coefficient

word lengths to 16-bits. Because a number of negative coefficients are used, a 2's compliment

encoding is required. Each programmable platform must therefore be characterised to accom-

modate these specifications. This was achieved during RTL level parameterisation of both the

PLA and FPGA VHDL models.

6.2.1 Experimental Setup

Tests on both EHW platforms have therefore focused on the automated configuration of the

31-tap low-pass filter identified above. Each PLA and FPGA topology is investigated 10 times

93

-30

-40

-50
50 	100 	150 	200

EF

Output signal 	 -60

-70

-90

0.5

-0.5

-1
0

0.6

04

0.2

_0
C

> -0.2

-0.4

-0.6

p

Reconuigurable platforms for FIR filter implementation using EHW

Input signal
	

Transfer function

50 	100 	150 	200 	 0.3 	0.4 	0.5 	0.6
samples (n) 	 f/f S

Figure 6.1: Tranferfunctionfor 31-tap low-pass FIR Filter

using the genetic algorithm described in section 5.2. Ten randomly generated populations of

configurations-strings were created for each investigation: such that each PLA and FPGA topo-

logy evaluated is initially configured using the same set of configuration strings. This provides

a common basis for comparison between all input, output and interconnect topologies, and

between the FPGA and PLA architectures themselves. It is then the task of the genetic al-

gorithm to manipulated each PLAJFPGA topology and generate the correct set of filter coeffi-

cients detailed in Table 6.1.

Communication between both the FPGA and PLA-based programmable platforms and the ge-

netic algorithm is detailed in section 5.2 and illustrated in Figures 5.1 and 5.3. The entire

EHW platform, comprising either the FPGA or PLA-based programmable PALU topology,

the genetic algorithm and FIR filter coefficient parameters, is then simulated in detail using

Cadence's Leapfrog VHDL simulation environment, where the best configuration string and

corresponding coefficient fitness is written to file each generation.

A total of 6700 generations were performed by the GA for each of the 10 investigations, and for

every programmable topology. The limit on the number of generations reflects the maximum

ReconIigurable platforms for FIR filter implementation using El-lW

number of iterations each El-LW platform can execute in one second of simulated "real time".

One second was chosen as it was deemed the maximum period acceptable for adapting the filter

specification, either due to component damage, or to modifications to the filter application.

6.3 Field Programmable Gate Array (FPGA) Topology

The FPGA developed in this thesis has been tailored specifically for implementing reduced

complexity primitive operator filters, by replacing the FIR multiplication unit with a program-

mable series of bit-shifts, additions and subtractions. The PALU illustrated in Figure 5.2 there-

fore reflects the computational aspect of the CLB which is required to implement the coefficient

multiplication stage of an FIR filter.

6.3.1 Interconnecting CLBS for an FPGA-based FIR Filter

There are a number of simplifications which can be made to the nearest neighbour connection

topology highlighted in Figure 4.10(a). Because an FIR filter must be stable, no feedback

between CLBs can be permitted as this might cause the filter configuration on the FPGA to

become unstable. As a result each CLB will receive data from the south and east of the array,

and output data from the north and east. Data travelling westward across the CLB array is

therefore not permitted. This was also done to constrain the number of possible configurations

on the FPGA, thereby reducing the search space required to find an acceptable filter solution,

and lessening the burden on the genetic algorithm. Figure 6.2 illustrates the CLB element which

incorporates the FPGA-based FIR filter.

Programmable routing is performed by six 2:1 Multiplexor units, each governed by a single

control bit. CIO and C9 determine which of the two inputs HrzIN (east input), or VrtIN

(south input) are passed to the PALU. C'8 and CT then controls whether the output of the

PALU is fed into the final routing unit, or whether the CLBs original inputs are to be selected.

If this is done then the CLB performs a through connect operation. The output routing of

each CLB is determined by control bits Cl and CO (bits C6 - C2 are used to configure the

PALU). HrzOUT and VrtOut form the output of each CLB, which then connect to HrzIN

and V rtIN of the next CLB, determined by one of the the interconnect topologies detailed in

Figure 6.3.

95

Reconflgurable platforms for FIR filter implementation using EHW

Figure 6.2: Configurable logic block (CLB) for FPGA including routing to and from PAL U.

The three interconnect topologies, shown in Figure 6.3, were investigated based on nearest

neighbour connectivity to determine the most suitable interconnect sequence for implementing

FIR coefficient multiplication on an FPGA-based EHW platform.

• AFFA: Alternating feed-forward array. The flow of horizontal inputs fed to each CLB

alternates from east to west. Although westward data flow is permitted in this topology it

is still constrained such that no CLB feedback is possible. This interconnect topology was

designed to maximise linkage between PALUs by providing a maximally long critical

path through the PALU array.

• CFFA: Continuous feed-forward array. Similar to a systolic array such that each PALU

is clocked and data flows from the bottom left CLB of the FPGA to the top right.

• CFFLA: Continuous feed-forward loop array. The connection topology builds on the

CFFA by permitting connectivity between CLBs on the top row of the FPGA, with the

CLB of the next adjacent column on the bottom of the FPGA. Again this approach elim-

inates any contentious configurations resulting from feedback whilst providing high con-

nectivity.

Ywi

77

Ywi

Xwidth

77

Ywic

(a) Alternating feed-forward array topology (b) Continuous feed-forward array topology.

Xwidth

A 	B 	C

Reconfigurable platforms for FIR filter implementation using EHW

Xwidth

(c) Continuous feed-forward looping array to-
pology.

Figure 6.3: Various routing topologies for interconnecting PAL Us in FPGA structure

97

Reconfigurable platforms for FIR filter implementation using EHW

It is also important to determine the optimal placement of filter taps within the FPGA architec-

ture such that each FIR filter can be implemented successfully in hardware and with minimal

CLB resource. Four programmable output topologies for placing FIR coefficient taps have

therefore been investigated.

• EOS: Edged output sequence. All CLBs on the outer edge of the FPGA are potential

filter taps as shown in Figure 6.4(a). Each filter coefficient can therefore be generated

by programming the relevant output CLB. The disadvantage of this approach is that a

number of CLBs within the array must act as through connects to those CLBs on the

outside edge. The total number of CLBs available as potential tap outputs is therefore

EOStaps = (Ywidth * 2) + ((Xwidth2) - 4) 	 (6.1)

Where Xwidth and Ywidth represents the number of CLB columns and rows respect-

ively.

• AOOS: Alternating orthogonal output sequence. The topology shown in Figure 6.4(b)

enables filter taps to be output throughout the CLB array. This approach was intended

to reduce the need for CLB though connect which might arise in the EOS topology. The

total number of CLBs available as potential tap outputs is given by

AOOS taps = (Ywidth/2) * Xwidth 	 (6.2)

• AAOS: Alternating arrow output sequence shown in Figure 6.4(c) is a derivative of the

AOOS topology. However AAOS provides better localised connectivity between poten-

tial output CLBs, which more tightly couples the generation of partial products required

to produce subsequent tap outputs within the coefficient set. The total number of CLBs

available as potential tap outputs can be calculated as

AAOS taps = (Ywidth + 1) * (Xwidth/2) 	 (6.3)

Both AAOS and AOOS topologies provide the almost the same number of output CLBs.

• BLOS: Base-line output sequence. Whilst the topology shown in Figure 6.4(d) is highly

unrealistic in terms the high degree of control logic and interconnect that would be re-

quired to implement in hardware, it provides the genetic algorithm with a highly flexible

Reconfigurable platforms for FIR filter implementation using EHW

means of implementing the desired filter response as every CLB in the array is a potential

filter tap. The number of available CLBs is therefore

BLOSt aps = Ywidth * Xwidth
	

(6.4)

The number of bits required to encode the allocation of a CLB to a given tap is determined by

the number of CLBs which can potentially output a coefficient tap. For example, if a 4x4 array

of CLBs utilised the base-line output sequence, BLOS, then 4-bits would be required to encode

the relevant tap on each output CLB in the range 0 to 15.

(a) Edged output sequence topology. (b) Alternating orthogonal output se-
quence topology.

(c) Alternating arrow output sequence
topology.

(d) Base-line: All CLBs connected out-
put sequence topology.

Figure 6.4: Various output topologies for FPGA structure.

Reconuigurable platforms for FIR filter implementation using EHW

In addition to CLB interconnect and output topologies, the connectivity and control of the filter

input, X(n) must also be considered. Two signal input topologies are therefore presented.

Figure 6.5 illustrates the L-shaped input sequence (ISIS) as it would be in conjunction with the

CFFLA interconnect topology.

AO 	Al 	A2

c6 c5 c4 c3 c2 ci co

Output Routing 	 FPGACLB Control
(1-bit each)

Figure 6.5: FPGA control of FIR filter input X (n); including position of input control string
within FPGA string encoding.

Because all of the FPGA-based interconnect topologies presented in this thesis are feed-forward,

X (n) is connected via Multiplexor control only to CLBs on the far right column of the array,

and the bottom row. CLB inputs not directly connected to either a neighbouring CLB or X (n)

are pulled low (given a logic value of zero). The total of number control bits required to de-

termine the input connectivity of X (n) is then

I = 1092 Ywidth + (Xwidth - 1) 	 (6.5)

The second input topology is considered the base-line input sequence (BLIS). This configur-

ation connects all horizontal CLB inputs to X (m) via Multiplexor control. All north feeding

100

Recontigurable platforms for FIR filter implementation using EHW

CLB inputs therefore receive an input from either their nearest southerly neighbour, or from the

filter input response. The total number of input control bits required is therefore

I = 1 0921" width * Xwidth 	 (6.6)

6.3.2 Configuring the FPGA-based FIR Filter

Each FPGA-based filter architecture is configured via a binary configuration string. Each bit

string is compartmentalised into three regions of control, defining the FPGAs output routing,

input routing and individual CLB configuration as illustrated in Figure 6.6.

4-hits

]-bit 	 Il -bits

CLBI5 1 CLBI4 1 CLBI3 	 cLBO

- 	 - 	 - 	
-

	

Output Routing 	 Routing of input X(n) 	 FPGA CLR Control

Figure 6.6: Example configuration string for 4x4 FPGA -based FIR filter with LSIS, AFFA and
EOS.

The total length of configuration bit string can therefore be calculated as follows:

5FPGA = 10920 + I + (11 * Xwidth * Ywidth) 	 (6.7)

Where O is the total number of output bits governed by the output topology expressed by the

relevant equation from (6.1) to (6.4), I is the total number of control bits used to program the

filter input X(n.) determined by the current input topology defined in equation (6.5) or (6.6),

and 5FPGA is the total resulting bit length required to program the FPGA.

Figure 6.7 presents an example FPGA configuration of the 5-tap primitive operator filter ori-

ginally illustrated in Figure 4.9. A 4x4 CLB array is interconnected using the AFFA topology,

with filter taps connected to CLBs using the EOS. The input pulse is held constant at logic '1'

and connected to the FPGA via the L-shaped input sequence (LSIS) in order to produce the

desired coefficient set. The bit string required to configure the FPGA-based FIR filter is also

shown, and has been sectioned into the three regions of control discussed above. A number of

the control bits used to configure the CLBs shown in Figure 6.7 are in the "don't care" state,

'x'. This due to redundancies inherent in the CLB control encoding. For example when a CLB

acts as a simple though connect, as is the case with the CLB at position 0 in the array, then the

Reconligurable platforms for FIR filter implementation using EHW

control bits used to encode the PALU become redundant, as do control bits C 10 and ('9 which

govern the inputs to the PALU.

Chromosome Encoding

Coefficients: / 	7 Jo 21 33

Output: 0011,1010,0110.0111.0000

Input: 0,0,0.0,1.1,0

CLB Control

o : xxx0x II
xx0Ox xx 10

2 :xxx0xxxll
UI I IUUtJUI

4 :111100001
5 :001000010
o :011100001
7 :111000001
II :000100010
9 :011100001
10: xx0Oxxx0l
II: xx00xxx0l
12:011000010
13: xxx0xxxl I
14:011100001
IS: xxOxxxxO0

Figure 6.7: Example FPGA configuration oj'5-tap primitive operator filter

6.3.3 FPGA-based FIR filter Parameters

An 8X8 array of PALUs was chosen to implement the 31-tap filter presented in section 6.2.

64 PALU elements were deemed to be sufficient to provide enough partial product terms to

generate the 9 distinct coefficient taps that were required. The dimensions of the FPGA were

kept symmetrical so that each of the tap output topologies could optimally utilise the four

interconnect sequences. The word length of the filter input. X(n), the FPGA coefficient output

taps, and the PALU processing elements were parameterised to 16-bits and represented in 2's

compliment within the VHDL model. These parameters were set to match the specification

of the low-pass FIR filter. The FPGA filter input, X (n) is held constant at a value of one (i.e.

"0000000000000001" in 16-bits) so that each selected tap output can be compared directly with

the corresponding coefficient in the filter specification. A clock of 50MHz was used to control

the FPGA-based EHW platform so that approximately 6500 generations were performed within

the one second evolution window specified. A total of 831 configurations bits are therefore

required to implement the 8x8 FPGA-based filter when implemented with base-line input and

102

Reconhigurable platforms for FIR filter implementation using EHW

base-line output topologies (BLIS and BLOS respectively). This represents a search space of

2831 possible bit string configurations which must be successfully manipulated by the GA in

order to achieve the desired low-pass filter response.

6.3.4 Investigation of Genetic Operator Parameters

Both the crossover and mutation rates of the genetic algorithm developed in section 5.3 are

parameterisable, and are user defined before circuit evolution. A crossover rate of 0.6 (60%)

is generally recommended [53], and is consistent with the rate set for the Virtual Chip EHW

platform in Chapter 3. However, the parameterisation of genetic operators depends greatly

on the problem domain, and the manner in which the chromosome is encoded. These two

constraints differ significantly from the GA implementation required for the Virtual Chip. As

a result two crossover rates were initially examined. The first utilised a crossover probability

of 0.6, the second removed crossover altogether (probability 0.0). This was done in order to

determine the effectiveness of crossover as a search mechanism for determining an acceptable

FPGA filter configuration using a binary encoded chromosome.

All three FPGA interconnect topologies were evaluated when evolving the low-pass filter with

and without the crossover operator. This was to achieve a thorough indication as to the use-

fulness of the crossover operation. In order to maintain continuity over each evaluation, the

L-Shaped Input Sequence (LSIS), and Edged Output Sequence (EOS) were arbitrarily selected

as the I/O topologies. The probability of mutation was set according Muhlenbein's 1 over bit

length rule, defined in equation (2.1).

The fitness of each configuration string is calculated by the EHW platform using equation (5.1).

Each fitness score therefore lies in the range 0.0 to 9.0. This corresponds to how effectively each

FPGA topology was mapped to produce the 9 distinct filter coefficients required to implement

the desired low-pass transfer function shown in Figure 6.1; and represents a functional correct-

ness of 0 and 100% respectively. All other run-time parameters are specified above. Results

showing the average fitness of each low-pass filter evolved with and without crossover over 10

evolutionary runs are displayed in Table 6.2.

The average fitness of each filter coefficient set evolved on the three FPGA interconnect to-

pologies does not seem to be influenced by the presence or absence of crossover. In fact, the

fitness of the coefficients evolved using the GA without crossover is marginally higher than the

103

Reconfigurable platforms for FIR filter implementation using ERW

Connection
Topology

Average 	Fitness
with Crossover

Average 	Fitness
without Crossover

AFFA 8.54595 = 95.1% 8.6358 = 96.0%

CFFA 8.59490 = 95.5% 8.6124 = 95.7%
CFFLA 8.64150 = 96.0% 8.6501 = 96.1%

Table 6.2: Performance ofFPGA connection topologies in generating the 31-tap low-pass filter
configured using genetic algorithm with and without crossover

corresponding coefficient set generated when crossover was employed. This is almost certainly

due to the high level of epistasis inherent in the POF design problem, such that interactions

between PALU elements and interconnects (expressed as genes in the chromosome) are non-

linear and filter fitness cannot be directly attributed to the effects of an individual gene. Max-

imum epistasis then occurs when the fitness contribution of an individual gene depends on the

values of all other genes in the chromosome, resulting in a highly uncorrelated search space.

High degrees of epistasis therefore inhibit the effectiveness of crossover as a search mechanism

through chromosome recombination of two parent solutions. As the problem presented to the

GA becomes increasingly difficult (epistatic) crossover become less effective and the search

favours progress though mutation [82,127,128]. Crossover is therefore no longer applied to

filter coefficients evolved using the FPGA-based EHW platform.

In order to ascertain the influence of varying the mutation rate, Fm , equation (2.1) was modified

to produces two new probabilities of bit-flip mutation 2 and 3 times greater than that originally

used: Pm = 21N and Pm = 31N respectively. The same evolutionary runs as above were

performed, the results of which are presented in Table 6.3. Crossover was not employed.

Connection
Topology

Average Fitness at
Pm = 21N

Average Fitness at
Pm = 31N

AFFA 8.6538 = 96.0% 8.4132 = 93.4%

CFFA 8.5949 = 95.5% 8.2569 = 91.7%

CFFLA 8.7543 = 97.3% 8.6880 = 96.5%

Table 6.3: Performance ofFPGA connection topologies in generating the 31-tap low-pass filter
configured using genetic algorithm with variable mutation rates.

The results show very little difference between the average fitness of the filter coefficient sets

generated by the GA using the increased mutation probabilities. Only the CFFLA interconnect

topology produced a noticeably better solution (97.3%) when Pm = 21N. As a result the

104

Reconfigurable platforms for FIR filter implementation using EHW

original mutation rate Pm = 1/N will be maintained, as this will conform with excepted GA

practices.

63.5 Performance Comparison of FPGA Topologies

The performance of each FPGA input, output and interconnect topology was assessed based

on four criteria: The fitness of the filter coefficient set, the number of PALUs used, the de-

gree of PALU re-use (generation of partial product terms), and the total number of shift, add

and subtract operations required to implement the specified low-pass filter coefficient set. All

three interconnect topologies and all four FPGA tap output sequences were initially investig-

ated using the LSIS. The results of each performance criteria, averaged over ten evolutionary

investigations are shown in Figure 6.8.

Coefficient fitness: Analysis of the transfer functions produced by the evolved FPGA coeffi-

cients sets reveals that a fitness score of > 98.5% is required to produce an acceptable low-pass

characteristic, with a gain no less than -52 dB. An example of the minimum filter performance

criteria produced at 98.5% is provided by the green transfer function illustrated in Figure 6.1.

This highlights the small margin for error which can be accepted in order to successfully gener -

ate the highly constrained filter specification outlined in Table 6.1. Fitness variations of between

0.5 and 1% are therefore critical and highly challenging for EHW. The GA was able to produce

an acceptable coefficient set on each output topology except AOOS. In fact the AOOS output

topology produced the worst set of coefficients regardless of the interconnect topology. The

CFFLA interconnect topology provided the GA with the greatest PALU connectivity and as a

result produced on average the fittest coefficient sets across each of the output topologies (with

the exception of AOOS) It is therefore not surprising that CFFA interconnect, which exhibits

the least PALU connectivity as defined by shortest critical path through the FPGA, produced

on average the poorest results.

On average, the best coefficients sets produced by the GA were attained using a CFFLA-BLOS

interconnect and tap output combination. However, the fittest coefficient set was generated

using the CFFLA-OROS FPGA topology with a 99.1% coefficient match. No FPGA topology

was able to provide the GA with a means of producing a coefficient set that matched exactly

with the original. However, the very nature of FIR filter design allows for some compromise,

for example due to implementation factors such as coefficient quantisation error. The EHW

approach to FIR filter implementation therefore introduces some error, however, it can be seen

105

Reconuigurable platforms for FIR filter implementation using EHW

450

975

925

875

eas

to

Fm.cos Th4ohJ
98.5$

•A..64. F*4

Duo.. 00

0001.- C00* CFOIA.- *00*-. SOFA-. CORA- *00*- COOs.. 00016-. 0FF>. COOS.- CORn-
00$ £05 £05 AOOS 4006 0005 0.50$ 0.60$ *005 00.05 6.06 00.06

(a) Success of FIR filter based on fitness criteria.

100*- >0*. GLA- 100*- SOFA- (>RA. 000*.- 0*0*- SOFIA- 000*. SOfiA-
LOS 	EQS EQS 	4005 O 	00)05 *005 *405 *008 0MB 6.05 0006

Tso6gy

5_0o. 2._o. u -u-..
10 4500.6.

(b) PALU cell usage (coverage) required by FIR filter.

500

500

450

s00

s60

1oo

3250
C
0. 200

S50

500

5O

• 400

U500 0.1

00- 000*- 000LA- *00*- 0*0*- CFFI.A- *00*.- C"*- 0001*- AM- COOn- CORk-
005 0.05 E0S *005 6005 *005 *005 2.605 *006 OLOS BIOS 000$

TOgOtOgy

(C) PALU re-use exploited by FIR filter.

25

2O

575

'S

Os

*5_OS. S4

• *0059 *505

o #5_OS

flFWA- COWS- CVR.*- SAWn- COOn- CFR.fl- *00*.. CFF*- CFR.A. *FW*- COWS- CORn-
£06 EOS LOS 2.00$ *008 *005 0.00$ 0.80$ 1.90$ 6.06 6.06 6.05

TopoOgy

(d) Operations performed by PALU to implement FIR filter.

Figure 6.8: Performance of various FPGA interconnect and coefficient output topologies to
autonomously generate a 31-tap low-pass FIR filter L-shaped input sequence
(ISIS) employed.

Ipi,

Rcconfigurable platforms for FIR filter implementation using EHW

a

itooss Th.skoold
985%

• L1

ASEA- (PEA- CFFLA- SF55- (PEA- CEFLA- APES- (PEA- (FF15- APES- (EPA- COWLS-

EQS EQS EQS 5006 *005 90CM 5208 MOO 5205 0108 0108 0(08

Topo45y

(a) Success of FIR filter based on fitness criteria.

I
SEES- 0+5- 0+10- SOPS- (PEA- (P05- APES- (PEA- SEPIA- BEES (PEA 5500-
EQS EM EQS W 0008 W 2506 2505 2508 BUSS 0108 0105

Topolo

(b) PALU cell usage (coverage) required by FIR filter.

450

200

0.

II.

it

So

A..rogo 25-S

•Mln 25-so.

Du.o Ao-so.

AFF*- CFFA- CEFEA- APES. CEEl- CFR.A- APES- CCEA- CFFEA- APES- CFFA- CFFl.A-

EQS EQS EQS 40(45 A 	5055 MOS 5505 5505 4106 01(45 0106

Topology

(C) PALU re-use exploited by FIR filter.

215

25

2a5

20

I'S

A4-So. 50

	

'IS
	

•Ao.040M45

	

£ 10
	

Osoosgo OMits

2

20

APES- COO.- 050*- APES- SEES- CFR.A- APEA- SEES- SEPIA- SF55- CflA- SEPIA-
EM WS EQS SOOS 2005 200$ 5505 2506 2506 0105 01045 0106

Topology

(d) Operations performed by PALU to implement FIR filter.

Figure 6.8: Performance of various FPGA interconnect and coefficient output topologies to
autonomously generate a 31-tap low-pass FIR filter. L-shaped input sequence
(LSIS) employed.

106

Reconfigurable platforms for FIR filter implementation using EHW

that these are often minimal, and still provides acceptable solutions.

PALU utilisation: The average number of PALUs utilised within the FPGA remains relatively

constant at about 78% of the total FPGA area, regardless of interconnect or output topology.

PALU coverage therefore seems to have little influence over coefficient fitness. However, a

link can be established with the AOOS output topology, which implements the fewest PALUs

when averaged across all three interconnect topologies, and also exhibits the poorest filter coef-

ficients.

The AFFA interconnect topology promotes the greatest PALU utilisation regardless of the out-

put topology. This can be explained by the manner in which PALUs are connected within the

AFFA. Both the AFFA and CFFLA interconnect topologies produce the same critical delay

path in the FPGA which lies between the bottom left PALU and top right. This delay is then

equal to the number of PALUs in current the architecture (for the 8x8 array employed, this is

64). However, many more considerably shorter paths can be achieved between these two points

using the CFFLA. This is because all PALUs are routed in the same direction. However, the

AFFA is almost forced to implement more PALUs by virtue of its routing topology and close

PALU linkage. The AFFAs more constrained routing might be reduced by providing intercon-

nectivity between PALUs on the top and bottom rows, as with the CFFLA. However, this would

result in an architecture which exhibited feedback, a property which is not desired in linear FIR

filtering.

PALU re-use: Again there appears to be little correlation between the degree of PALU re-

use and coefficient fitness on any of the FPGA topologies. However, a relationship can be

established between PALU re-use and utilisation on FPGAs which utilise AFFA interconnect.

Both PALU re-use and utilisation are at there highest when the AFFA is employed, and is the

case for each output topology examined. This is again due to the high degree of linkage between

PALUs connected using the topology. The lowest degree of PALU-reuse is exhibited by the

CFFA interconnect sequence, regardless of the FPGA tap output topology. This is because,

of all three FPGA interconnect topologies examined, the CFFA provides the lowest linkage

between neighbouring PALUs, and also exhibits the shortest critical path ((Xwidth - 1) +

Ywidth PALUs).

PALU operations: In all of the FPGA topologies examined, the number of shift operations

selected by the GA is approximately 40% higher than the number additions. This is partic-

IDY

Reconflgurable platforms for FIR filter implementation using EHW

ularly desirable as shifts consume almost no power and have low area, and are the primary

means of partial product generation using multiplierless design techniques such as CSD and

POE Approximately twice as many PALUs implement addition than subtraction. Again this

is encouraging for an EHW platform based around the POF design because Bull has shown

subtraction to play a relatively minor role [2], which is reflected by the genetic algorithms

configuration of PALUs within the FPGA-based filter.

Figure 6.9 presents the following set of results obtained after the GA was again used to examine

three interconnect topologies and both FPGA output sequences, this time with the BLIS input

topology in place of the LSIS.

Coefficient fitness: The inclusion of the Base-Line Input Sequence (BUS) generates a number

of difference in the quality of filter coefficients produced by the GA on each of the FPGA to-

pologies, where the U-Shaped Input Sequence is substituted. The most noticeable difference is

the success of the AOOS output topology using BLIS when compared to USIS. The AOOS now

provides the GA with the only topology capable of producing an acceptable filter coefficient set

(> 98.5%) within the specified evolution time. This was achieved using CFF[A interconnect.

It can also be seen that all FPGA topologies which utilise AOOS produce coefficients with

significantly better fitness (as much as 4% between CFFLA-AOOS and CFFLA-BLOS) than

that attainable using other output sequences. Regardless of input or output topology the CFFA

again produces the poorest coefficient sets.

The generally poor performance of FPGA topologies configured using BUS can be attributed

to the increased complexity of the configuration string and a resulting increase in the epsistatic

representation of the chromosome. A further 59 bits are required to encode BLIS compared to

USfS, each relating to any given PALU in the array (see equations 5.9 and 5.10). This further

complicates the search space and can disrupt routing between horizontally connected PALUs,

due to the manner in which the BLIS is connected.

PALU utilisation: As with the LSIS input topology, the AFFA interconnect sequence continues

to promote the highest PALU utilisation when configured by the GA. On average fewer PALUs

are used to implement coefficient sets when interconnects are configured with base-line input

and output topologies. This is most likely due to the freedom of input and tap positioning

afforded by these approaches, thereby lessening the need for extensive PALU connectivity and

re-use required by the other input/output topologies.

101-11

II !fl I riri: • nririi
•8
0.

•IMn 8.-a.

Reconuiigurable platforms for FIR filter implementation using EHW

1.
8r8085•8 TISOShOId

878

82.8

8c
088.8.

8
	

•1.8808Fk

MW 08

828

8C

AFFA- CFF*- COFLA- AFFA- CFFA- CFFLA- AFFA- C000_ COFLA-

*005 *005 *005 0*05 AAOS 0000 BLOS 81.05 81.00

Topok)gy

(a) Success of FIR filter based on fitness criteria.

80

85

8O

2 is

70

55

50
AFFA- OFFA.- CFFLA. AFFA- CFFA_ CFFLA- AFFA- OFA- CFR.A-
000$ A005 000$ MOS M.OS AAOS 81.0$ BIOS 81.0$

lopohIgy

UMa UMQ*

AFFA- COFA- COFLA- AFFA- CFFA- CFFLA- AFFA- CFFA- COFLA-
000$ *000 0005 MOO MOO 000$ 84.00 BIOS BIOS

Togology

(c) PALU re-use exploited by FIR filter.

z
• 0.'Ag.

UA...g. 50*0.08.

AFFA- CFFA. CFFLA- AFFA- CFFA- COFLA- AFFA- CFFA- COFLA-
000$ A005 0005 000$ 000$ MOO 81.05 81.05 BIOS

Topobgy

(d) Operations performed by PALU to implement FIR filter.

Figure 6.9: Performance of various FPGA interconnect and coefficient output topologies to
autonomously generate a 31-tap low-pass FIR filter. Base-line input sequence
(BUS) employed.

109

Reconfigurable platforms for FIR filter implementation using EHW

PALU re-use: On average FPGA topologies utilising BUS re-use 50% fewer PALUs than

equivalent FPGA topologies implementing LSIS. This is again due to a reduction in dependency

(linkage) between neighbouring PALUs, resulting from the universal availability of the filter

input, X (n). It is unclear as to why the AFFA-AAOS FPGA topology promotes considerably

higher PALU re-use than the other output and interconnect topologies using BUS (in fact re-

use is also 50% greater than with the equivalent FPGA topology using LSIS). However, the

fact that AFFA interconnect again promotes such high levels of PALU re-use further supports

the observation that extensive PALU linkage (inherent in AFFA interconnect) translates to high

PALU re-use.

PALU operations: Similar trends between shifting, addition and subtraction can be seen

between output and interconnect topologies using BLIS as with those using LSIS.

63.6 Graphical Representation of FPGA-Based FIR Filter

In order to represent the results obtained in section 5.5.5 above, graphical software was de-

veloped to visualise the FPGA topologies implemented, and present the FPGA configurations

programmed by the genetic algorithm. To achieve this three postscript templates were gener-

ated reflecting each of the three interconnect topologies investigated. Horizontal connections

are coloured red, vertical connections green, and those connected to X (n) are coloured blue.

Each of these postscript templates can be found in Appendix B.

The functionality of each input, output and interconnect topology is coded in C, and the evolved

configuration bit string (originally created and then saved by the VHDL model of the FPGA-

based EHW platform) used as input to the C program. The selected configuration string is then

used to generate a graphical postscript representation of the FPGA, displaying PALU operations

and programmable interconnect. The C program generates postscript by appending additional

information about the FPGAs configuration to the relevant postscript interconnect template.

Each PALU operation is then scripted as a yellow coloured box containing the relevant sym-

bol: +, -, or Si to S4, relating to shift-left 1 bit to shift-left 4 bits respectively. Each PALU

also displays four coloured regions relating to its two inputs and two outputs (i.e. top region =

horizontal output, bottom region = horizontal input). A PALU which displays a yellow output

region is therefore outputting the result of its arithmetic operation. PALUs with output regions

the same colour as either the horizontal or vertical interconnect are denoted as acting through

connects. The horizontal and vertical numerical output of each PALU is also shown, and coef -

110

Reconfigurable platforms for FIR filter implementation using EHW

ficient tap outputs are marked according to the taps position in the coefficients set. In addition,

the corresponding output PALUs are highlighted. PALUs which serve no purpose are marked

out in grey. Figure 6.10 displays the graphical representation of the most successful low-pass

filter coefficient set evolved by the GA which was configured on the LSIS-CFFLA-EOS FPGA

topology.

I GENERATION:6600 I TOTAL CELL USAGE:59 = 92.2% I Shifters:31

I Adders:14 I Subtractors:14 I Cell re-use:354 I

	

. 	 .

	

T 	2 	
T24

	

KE-is 	 111j_ Uj

2

	

160 	 1 	 12

	

1[± 	

S

40

 lu

n1BD 1AI 17) 1 E= D 46

TAP A

	

2 	 2 	 11 	 7 	 12 	 28 	 447

81 044

461

--i --- 	 ua'° hF uF

- 	
- Cu 	ui 	irJ T 	uID - in '-

TAO A

	

5 	 3 	 4 	 3 	 1 	 7

CI 1 ci 1 0 uIu iEu1 01 0
TAI

	

o 	 4 	 3 	 4 	 1 	 128 	 2.17

4 	 41 •U ° - 	
128IUD

	

• 	 I. 	
A

_I 	 - 	ri 	=

IHO

- 	I 	• 	• j 1 	uflu 	••
TAPA 	TAP 1

	

1 	 62 	1

- 	
I 	 •fl 	

4 1 6

	

3 	 I• 	 I

Figure 6.10: Example FPGA configuration of 3 1-tap low-pass filter.

The graphical software described was further developed to gain additional information about

the contribution of each PALU in generating the desired coefficient set. The degree of PALU

re-use was therefore mapped onto the relevant FPGA interconnect template and represented as a

normalised RGB (Red, Green, Blue) colour scale, each in the range 0 to 255, where 255 repres-

ents the maximum of a given colour. A recursive tree search was used to trace the connectivity

111

ReconIigurabie platforms for FIR filter implementation using EHW

of each PALU acting as a tap output and noting the PALUs used as the trace progresses. It is

therefore possible for multiple tree searches to follow the same path, thereby using the same

PALUs. As a result the most extensively re-used PALU for any given FPGA configuration is

denoted in RGB as maximum red (255, 0, 0) and the lowest re-use in maximum blue (0, 0, 255).

PALUs that were not used are again marked out in grey. Figure 6.11 displays the corresponding

PALU re-use map of the LSIS-CFFLA-ORS FPGA topology shown in Figure 6.10.

U

fI
1.

Figure 6.11: PALU re-use map from FPGA configuration of 31-tap low-pass filter.

It is interesting to note that the majority of PALU activity lies along the left side of the array,

yet the majority of filter coefficients are output on the right of the array. This demonstrates

that the partial product terms, necessary for coefficient generation, most frequently stem from

terms generated by PALUs in the first few columns of the CFFLA interconnect topology. This

matches well with the systolic nature of CFFLA, and the fact the filter input is only available to

PALUs along the far right column and bottom row of the array.

112

Rcconulgurable platforms for FIR filter implementation using EHW

obsolete. As a result the PLA configuration bit string requires no compartmentalization other

than the identification of the left-shift-only PALUs present in the first column of the array. Each

PALU and associated interconnect is therefore described as a binary word, W, in the order of

PALU referencing shown in Figure 6.12; where PALU 1 denotes the LSB of the binary con-

figuration string. The bit length of a binary word encoding a given PALU is thus described

as

	

W = PALUcntri + 2R 	 (6.13)

Where PALUCThrI is the number of control bits required to program each PALU (5), and R

is the bit length of the control required to encode each P : 1 multiplexer in the programmable

interconnect array. The total length of each binary configuration string required to encode a

given PLA topology can then be described as

SPLA = (Xwidth * Ywidth * W) + (Ywidth * S) + PLAtaps 	(6.14)

Where Xwidth is the number of PALU columns, Ywidth is the number of PALU rows, W is

the bit length of control required for each PALU and its interconnect, S is the number of bits

used to determine the left-shift of PALUs in the first column, and PLA taps is dependent on the

output topology employed. Figure 6.14 describes the layout of the configuration string required

to program the PLA. The region encoding the control of PALUs in the first column is shown in

grey

PALU (Ywidth)

PALU (YwidthXwidth) 	 PALU (Ywidth+2) 	PALU (Ywidth+1)

___ - 	 S U

Bin ArnPALUcmd[... •..Bin AinPALUcnut Bin AinPALUcnu1I 	 LJ2PSLU

• yy y

2Rcbits 	5-bits 	 2R-bits 	5-bits 	2R -bits 	5-bits 	Se-bits 	 Se-bits 	S'-bits

Figure 6.14: Layout of configuration string for programming PM.

Figure 6.15 illustrates an example PLA configuration for implementing the primitive operator

filter shown in Figure 4.9 using Route 1 interconnect and Output 2 tap routing. PALU's and

interconnects which are not utilised are shaded in blue. As with the FPGA architecture, the

input pulse, X(n), is held constant at logic '1'.

It can already be seen that a great deal of redundancy is inherent in the PLA architecture, such

118

Reconfigurable platforms for FIR filter implementation using EHW

6.4 Programmable Logic Array (PLA) Topology

Like the FPGA-based architecture presented in section 6.3, the PLA described in this thesis has

been developed specifically to implement reduced complexity multiplier-free coefficient mul-

tiplication for digital FIR filtering. The PALU element illustrated in Figure 5.2 again provides

the backbone for the signal processing of X (n) using the POF approach. Importantly, the

PLA architecture is particularly suited to implementing the sum of products equation of (4.1)

(required for FIR filtering) because of its inherent 2D array structure [129].

6.4.1 Interconnecting PALUs for an PLA-based FIR Filter

PALU's are arranged in columns, each column connecting to an array of interconnect logic,

which in turn connects to the next column of PALU's. Every PALU in one column is thereby

connected to every PALU in the next column via the interconnect array. Whilst costly in terms

of physical area, this approach was initially taken to determine the most suitable ideal connec-

tion topology. Figure 6.12 provides an overview of the basic PLA-based FIR filter topology to

be implemented.

PAL.uIj 	
P:IMUX

H+
An

'H
P .

JAPALI

PALIJ 3

Din I 	 - — 	 SERIAL IN PARALLEL OUT SHIE RE(IISTER

HJ L10 fao 7a Aaj
0

419f a24

El

_j Ll
2 j6-

X(n)

J'7"

,

 1Z

'

LZ

/
Programmable Interconnect Array

	 PAI.0 	Coefficient Outputs

Figure 6.12: PLA architecture and interconnect overview.

Each interconnect array comprises a number of P : 1 Multiplexers which route the P outputs of

the previous PALU column, where P denotes the number of PALUs per column. Both inputs

of a given PALU are therefore connected to a separate P : 1 routing Multiplexer to provide

maximum connectivity. A total of 2 * P, P : 1 Multiplexers are required to construct each

113

Reconuigurable platforms for FIR filter implementation using EHW

programmable interconnect array. The number of PALUs in a column, Ywidth, and the number

of columns in the array, X width, are determined in VHDL by the user during parameterisation

of the PLA-based EHW platform. In addition to PALU routing, the interconnect array provides

each PALU with a direct connection to the filter input, X(n), and to logic '0'. This approach,

originally implemented on FPGA topologies using BLIS, has been shown to reduce the number

of PALU's utilised and re-used, thereby freeing up programmable interconnect resources. The

number of control bits required to route each MUX is therefore given by

	

= 1092 (P + 2) 	 (6.8)

Where the addition of 2 to P represents the inclusion of routing for X (n) and logic '0'.

PALUs are identified in numerical order, from the bottom left corner of the array to the top right

corner. Due to the column based 2D topology of the general PLA architecture, all PALUs in the

first, left-most, column are connect directly to X(n). As a result, the first column of PALUs are

left-shift only, as addition of X(n) could only yield a result twice that of X(n) (i.e. left-shift

by 1), and subtraction would simply produce logic '0'. Therefore in order to provide additional

functionality, all PALUs in the first column are capable of shifting between 0 and L - 2 bits,

where L denotes the bit-width of X(n). The number of control bits, S, required to determine

the shift factor is then given by

	

S = 1092(L - 2)
	

(6.9)

It is important to determine the most suitable method of connecting PALU's to achieve high-

performance FIR filtering using the PLA approach. As a result, four interconnect topologies

were investigated and reflect various degrees of interconnectivity between columns of PALU

as illustrated in Figure 6.13. These interconnect sequences vary from those investigated on

the FPGA in that they go beyond nearest neighbour connectivity. Hierarchical interconnect

has instead been investigated so as to maintain the column based form of the PLA architec-

ture shown in Figures 4.11 and 6.12, whilst reducing the degree of interdependence (linkage)

between PALUs, which has been shown to reduce the performance of filter coefficients gener-

ated on the FPGA. Additionally, routing sequences such as AFFA would simply turn the PLA

into an FPGA-based topology. Each interconnect is categorised as follows:

Route 1: Simplest interconnect sequence, and requires minimal routing. PALU's are only

114

Reconflgurable platforms for FIR filter implementation using EHW

connected to the next adjacent interconnect array (Figure ??). No feedback is therefore

permissible. Routing to PALUs in non-adjacent columns is possible only by PALUs in

intermediate columns performing a shift-by-zero. The number of control bits required

to route each P : 1 MUX as part of the programmable interconnect array is given in

equation (6.8).

. Route 2: 2-level interconnect; provides greater connectivity between PALU's in non-

adjacent columns through additional routing between alternate interconnect arrays as

shown in Figure ??. The number of control bits required to configure the routing multi-

plexers is therefore twice that of Route 1 and is given by

R e = 10922(P + 2) 	 (6.10)

. Route 3: Utilises 4-level interconnect along with both 2-level and adjacent array con-

nectivity, illustrated in Figure??. This approach provides extensive connectivity between

columns of PALU, intended to reduce linkage between adjacent PALU elements. However,

the number of control bits required to configure each P : 1 MUX remains at that given

in equation (6.10).

• Route 4: Comprises routes 1, 2 and 3 and additionally incorporates routing between

neighbouring PALU's in the same column (Figure ??). This routing topology requires

the most interconnect control for each routing Multiplexer. The number of control bits

can be represented as

R = 10922(P+3) 	 (6.11)

Optimal placement of filter taps within the PLA architecture is also important for generating an

efficient FIR filter structure capable of meeting the demanding performance criteria required of

many modern DSP applications. For this reason three output topologies for the placement of

filter taps have been investigated and are identified as follows:

• Output 1 employs row-based tap placement as shown in Figure ??. This topology is

suitable for a direct form filter implementation in that coefficients can be summed and

stored sequentially after each product term is generated in the correct order. To achieve

this tap outputs must be ordered such that tap N (in the coefficient set 1 to N) is produced

115

Reconfigurable platforms for FIR filter implementation using EHW

!IIIl•LlI 9104 M

MEN

M

0 ON 0 .M

wol 	WI 	 W2 	 WM4

(a) Routingi: Localised connect.

-S uuuu"

i1.. i.. i;._ i i.. i •
'iIuI

(b) Routing2: Localised and 2-level connect.

i!
IN

(c) Routing3: Localised, 2 and 4-level connect.

ISlNi1!1i
i 1II!iEIIPP9

M' '.

•

(d) Routing4: Localised 2 and 4-level with column connect.

Figure 6.13: Various Interconnect Topologies for PLA

116

Reconfigurable platforms for FIR filter implementation using EHW

on the final, far-right, column in the PLA, and earlier coefficients in the set are present on

columns progressively further from the final column. Note that taps are only connected

to the bottom row. However, since all PALU's are ideally connected, the choice of row is

irrelevant. A total of C clock cycles is required to process the filter input, X (n), where

C denotes the number of PALU columns and is the critical path. C therefore grows as

the number of taps required increases. For any given filter specification only N output

PALUs are therefore required.

• Output 2 employs column-based tap placement as shown in Figure ??. This topology is

most suited to a transposed direct form filter implementation as all filter coefficients are

present on the same clock edge. A total of C clock cycles is again required to process

X (n), however, C is no longer directly dependent on tap length, and could be consid-

erably smaller than that required to implement output 1 for complex filters with large

coefficient sets. So as to utilise all PALUs, taps are output on the final column of the

PLA such that coefficient 1 is output on the bottom row, with later coefficients output on

PALUs at progressively higher positions in the column. As with Output 1, for any given

filter specification of N taps, only IV PALUs are required

• Output 3 is classed as the base-line tap topology. Each PALU is capable of represent-

ing a filter coefficient. Whilst such a topology is highly unrealistic in terms of added

control logic and interconnect, it provides the genetic algorithm with a highly flexible

means of implementing the desired filter coefficient set and further reduces interdepend-

ency between PALUs. The total number of PALUs available as potential tap outputs is

therefore given by

PLA taps = Xwidth * Ywidth 	 (6.12)

Where a total of 1092 PLA taps bits are required to encode the desired filter tap at a given

PALU location.

6.4.2 Configuring the PLA-based FIR Filter

Unlike the FPGA-based filter outputs presented earlier, tap outputs within the PLA are at fixed

predetermined locations. This is because of both the nature of the PLA structure, and the hier-

archical ideal connection topologies discussed above, which make programmable tap outputs

117

Reconfigurable platforms for FIR filter implementation using EHW

Interconnect
PALU 	- 	 PALU

Interconnect 	Interconnect
PALU 	 PALU

A
 33 L11

Ll •h- r
28 	 21 L4JI

PULSE LID 	11 2~
•LJ

-

W2

•H-
uHi
LUZ—JI

-f1 Iwo
--

Figure 6.15: Example PL4 configuration of 5-tap primitive operator filter.

that the topology is naturally suitable to fault tolerant design. This aspect will be examined

more thoroughly in Chapter 7. Also note that a number of PALU's simply act as through

connects (shift-by-zero) to adjoining PALU elements.

6.4.3 PLA -Based FIR Filter Parameters

Each PLA topology was investigated using II columns of PALU and 9 rows. These dimensions

were chosen so that the 9 distinct taps of the low-pass filter could be configured using all

three output topologies. Eleven columns of PALU where used (instead of 9) so that the first

three columns could generate sufficient partial products to produce the desired filter coefficients

when output 2 was employed. It is therefore apparent that more PALUs are to be utilised

using the PLA architecture than were implemented using the FPGA. However, larger PALU

dimensions are required to ensure that the array size remains constant for each of the output

and interconnect topologies investigated, and to provide sufficient PALUs to make use of the

hierarchical interconnect employed. Results from section 6.3.5 show than on average only 78%

of PALUs in the FPGA-based filter were utilised. It is therefore prudent to assume that if the

PLA is to produce competitive PALU utilisation, then the same number of PALUs should be

Reconilgurable platforms for FIR filter implementation using EHW

used; this would require a lower PALU utilisation in the PLA of around 50%.

All other GA and filter parameters are the same as that detailed in section 6.3.3. Therefore for

a 11 x9 PLA-based filter implementing Route 4 interconnect and Output 3 tap sequence, 1449

bits are required to encoded the configuration string. This translates to a maximum search space

of 21449 possible bit string configurations, which must then be successfully manipulated by the

genetic algorithm.

6.4.4 Investigation of Genetic Operator Parameters

The configuration bit string uscd to program the PLA-based filter is eoiiipartiiieiitaiiscd all

 in a different way to the bit string used to configure the FPGA. In addition, the archi-

tectural differences between the two programmable platforms are significant enough to produce

search spaces with very different fitness landscapes. These two factors potentially effect the

suitability of the original crossover and mutation parameters used by the GA to manipulate the

FPGAs configuration. As a result the same investigations detailed in section 6.3.4 will again be

performed, this time to determine the effects of crossover and mutation when using the GA to

configure the PLA for coefficient generation. Crossover probabilities of 0 and 60% are therefore

examined, in addition to mutation rates of 1/N, 21N and 31N. Three of the four interconnect

topologies were implemented for each crossover and mutation parameter investigated. Output

1 was arbitrarily selected as the fixed output topology for each investigation. Tables 6.4 and 6.5

display the average fitness of the coefficient sets generated for each PLA interconnect sequence

as a results of varying crossover and mutation probabilities respectively. Despite the differ-

Connection
Topology

Average 	Fitness
with Crossover

Average 	Fitness
without Crossover

Route 1 8.5387 = 94.9% 8.6018 = 95.6%
Route 8.3010=98.1% 8.7930=97.7%

Route 3 8.8757 = 98.6% 8.8824 = 98.7%

Table 6.4: Performance of PLA connection topologies in generating 31-tap low-pass filter con-
figured using genetic algorithm with and without crossover

ences in architecture and bit string encoding, both the FPGA and PLA-based filters perform

equally well without crossover as they do when it is employed. This is for the same reasons of

epistasis discussed in section 6.3.4. Whilst the mutation rate of 21N produced coefficients of

slightly better fitness (between 0.3 and 1.1% depending on the PLA interconnect topology using

120

Reconuigurable platforms for FIR filter implementation using EHW

Connection
Topology

Average Fitness at
Pm = 21N

Average Fitness at
Pm 	31N

Route 1 8.6450 = 96.1% 8.5770 = 95.3%
Route 2 8.8560 = 98.4% 8.8213 = 98.0%
Route 3 8.9192 = 99.1% 8.8712 = 98.6%

Table 6.5: Performance of PLA connection topologies in generating 31-tap low-pass filter con-
figured using genetic algorithm with variable mutation rates and no crossover em-
ployed.

a mutation rate of 1/N), it was decided to keep the original parameters used for the FPGA by

maintaining both the original mutation rate at Pm = 1/N and rcmoving crossover. This would

also provide more accurate future comparisons between the two programmable platforms.

6.4.5 Performance Comparison of PLA Topologies

The performance of each PLA routing and output topology was based on the same four per-

formance criteria used to investigate the FPGA outlined at the beginning of section 6.3.3. For

completeness the criteria a listed here again; and includes the fitness of the filter, the number of

PALUs used, the degree of PALU re-use (generation of partial products), and the total number

of shift, add and subtract operations required to implement the specified set of coefficients. The

results of each criteria, averaged over the ten investigations for each PLA topology, are shown

in Figure 6.16.

Coefficient Fitness: Both output topologies 1 and 3 produce coefficients of greater fitness the

higher the degree of routing available between PALUs. This is not the case when Output 2 is

used, in fact higher interconnectivity reduces the ability of the GA to find suitable PLA con-

figurations when column-based tap outputs are employed. However, A PLA combination of

Output 2 and Route 2 provides the genetic algorithm with a programmable architecture which

consistently produces highly fit filter coefficients, and was the only topology to produce a set of

filter coefficient which exactly matched those presented in table 6.1. Remember that a fitness

of > 98.5% was required to produce a transfer function with acceptable low-pass characterist-

ics. At least one in ten evolutionary runs resulted in an acceptable filter response for each of

the PLA output and interconnect topologies examined; this is a considerable improvement over

the FPGA platform. In addition, the Output 2, Route 2 PLA topology was the only program-

mable architecture in which all ten configurations generated by the GA produced acceptable

121

275
25

12

a
'5

j

75
2- 6

-, - 0CC.0CA.4 -, 0*5.20CC. 0CSt4 	 0*5.5 	 -
0*. CC. Ac. ROW Cd 	Cd 	Cd 	Cd 	*(- WAS

Reconfigurable platforms for FIR filter implementation using EHW

A,

A6

lAs
a. lflrffflr'flh'

F,,osso T5ocslw,kj

- AC2 AC2 A.sfl As 	fle.Se5 RA5A3 R.MS RI aa ACItI 0*5.4

(a) Success of FIR filter based on fitness criteria.

I I 1'! n7ri 1

• *O4C.
• AM,

o u dasgA

(b) PALU usage (coverage) required by FIR filter.

ii
0CC.
As.

0CC.
As. As. As. CA CA

_s
Ca 0CC. 'M 0CC.

.ip
0CC.
sAsC

0CC.

(C) PALU re-use exploited by FIR filter.

• ACC.Q.

• hAs AC-I..

(d) Operations performed by PALU to implement FIR filter.

Figure 6.16: Performance of PL4 topologies to autonomously generate a 31-tap low-pass FIR
filter

122

Reconfigurable platforms for FIR filter implementation using EHW

coefficients.

PALU Utilisation: On average, the greater the number of PALU's used within a PLA topology

the better the fitness of the filter coefficients produced. This is particularly true for PIA topolo-

gies employing Output 2, where the degree PALU utilisation closely mirrors coefficient fitness.

Approximately 57% of PALUs were required to implemented the desired coefficient set. In real

terms this equates to an average increase of 6 PALUs per implementation of the low-pass filter

coefficient set, when compared to the average number of PALUs utilised on the FPGA. This

result demonstrates that although the array dimensions of the PIA are larger than the FPGA,

both platforms utilise roughly the same number of PALUs. The PLA therefore remains com-

petitive with the FPGA in terms of PALU utilisation, however, the quality of coefficient set

generated on the PLA is markedly higher than that produced on by the FPGA.

PALU Re-use: Route 1 (local routing) promotes the highest degree of PALU re-use, independ-

ent of the output topology. This is again due to the high level of dependence between PALUs

inherent in the Route 1 interconnect topology, a relationship which was also found with the

FPGA architecture. However, unlike the FPGA architecture the critical path through the PLA

is not influenced by interconnect topology because of its 2D column-based structure, and there-

fore cannot be used as a direct measure of linkage between PALUs. Also, the ideal connection

topology between columns of PALU means that the available connectivity between neighbour -

ing PALUs is considerably higher than that found on the FPGA. As a result PALU re-use on

the PLA platform is three times lower than that on the FPGA.

Route 1 also produces a poorer quality of filter coefficients than when other routing topologies

are used. The genetic algorithm therefore demonstrates that Route 1 connectivity is the least

effective means of generating the specified set of coefficients. This stems directly from the to-

pologies flat interconnect hierarchy which does not provide direct routing between non-adjacent

columns of PALU.

PALU Operations: Almost identical trends in the use of PALU operations can be seen between

both the PLA and FPGA architectures. In all PLA topologies the number of shift operations

utilised is approximately twice that of addition or subtraction; and the number of PALU addi-

tions is consistently greater than the number of subtractions. Again, these characteristics are

particularly desirable for efficient partial product generation using multiplierless design tech-

niques such as CSD and POE Remember that the genetic algorithm has no a priori knowledge

123

Reconflgurable platforms for FIR filter implementation using EHW

of POF or either of the programmable platform architectures. The GA has therefore provided

a strong indication as to the natural suitability of both programmable platforms for POF based

FIR Filter coefficient generation.

6.4.6 Graphical Representation of PIA-Based FIR Filter

The graphical C program detailed in section 6.3.6 was modified to accommodate the various

PLA topologies. Four postscript templates were developed to reflect each of the four intercon-

nect topologies investigated; these are shown in Appendix B. The hierarchical interconnect of

each PLA topology is colour encoded. Local, or nearest neighbour connectivity, is denoted

in yellow, level-2 interconnect in green, level-4 in red, and column based connectivity in light

blue (the same colours as the PALU). Connections programmed to logic '0' are shown in pink,

and those connected to the filter input, X (n) are displayed in dark blue. Coefficient tap outputs

are labelled and also highlighted. As with the FPGA graphical program, PALU operations are

denoted by their relevant signs. Figure 6.17 displays the PLA configuration of the best coeffi-

cient set generated by the GA. As mentioned above it was implemented on a PLA with Route

2 interconnect and Output 2 tap placement.

6.5 Comparison of PLA and FPGA-Based Filter Platforms

The genetic algorithm has provided a means of independently appraising the suitability of both

the FPGA and PLA-based filter platforms for implementing the coefficient set used to describe

the benchmark 31-tap low-pass FIR filter presented in this chapter. Whilst comparisons have

already been made in section 6.4.5, this section identifies those critical comparisons which

remain.

The results presented show that the average quality of coefficients produced by the GA on

the PLA based FIR-filter (98.6%) significantly outperform the fitness of those produced on

the FPGA architecture (94.6%). It is therefore apparent that the PLA-based filter consistently

produces coefficients sets which fulfil the desired low-pass specification (> 98.57c), and as

such is more suited to FIR filter coefficient generation than the FPGA-based approach. This can

be further substantiated by recalling that a deviation in the accumulated fitness of a coefficient

set by more than 0.5 to 1.0% can have significant impact on the performance of the transfer

function produced. An average drop of 4% in the fitness of coefficients produced on the FPGA

124

Reconfigurable platforms for FIR filter implementation using EHW

I GENERATION6661 I TOTAL CELL USAGE69 = 69.7% 1 Shifters23

I Addersr26 I SubtracLors20 I Cell re-use166 = 70.638298 I

Figure 6.17: Example PL4 configuration of3l-tap low-pass filter filter

is therefore a significant indication as to the superiority of the PLA-based architecture.

Results also indicate that in both programmable platforms a strong relationship exists between

the degree of linkage, or freedom of connectivity, provided by interconnect topologies between

PALUs, and the amount of PALU re-use within each array. It has been shown that the higher the

degree of linkage (dependency) between neighbouring PALUs the greater the degree of re-use.

This relationship ship can be gauged by the critical path that is created by each interconnect

sequence, and the availability of shorter routes which might be taken along the critical path.

Routing topologies which display the highest degree of linkage and least freedom of intercon-

nect along the critical path are the AFFA and Route 1 interconnect sequences for the FPGA and

PLA respectively.

The following summarises the PLA and FPGA topologies best and least suited to autonomously

implementing the benchmark FIR filter coefficient set using EHW.

. The best average coefficient fitness produced on the FPGA was achieved using the LSIS-

125

Reconfigurable platforms for FIR filter implementation using EHW

CFFLA-BLOS topology at 97.3%

. The worst average coefficient fitness produced on the FPGA was achieved using the

BLIS-AFFA-AOOS topology at 89.9%

The best average coefficient fitness produced on the PLA was achieved using Route 2

and Output 2 at 99.8%. For the purposes of further investigation this PLA topology will

now be denoted Co12.

. The worst average coefficient fitness produced on the PLA was achieved using Route 1

and Output at 95.6%

The second most effective programmable topology was again achieved using the PLA, in this

case with Route 3 interconnect and the column-based tap output sequence, Output 1. For the

purpose of further investigation this PLA topology will now be termed Row3.

6.5.1 Further Investigations

In order to further validate the results obtained through configuration of the low pass filter, the

two most effective programmable topologies, Co12 and Row3, were analysed. A second filter

specification was chosen to be the 20-tap Hubert transformer, designed using the Remez ex-

change algorithm developed by McClellan et. al. and benchmarked in [130]. This filter was

chosen as it required 10 taps to implement in folded form and is therefore of similar length

to the 9 distinct taps required to implement the 31-tap low-pass filter benchmarked previously.

However, the Hilbert transformer has a different coefficient distribution which will test the gen-

eral suitability of both PLA architectures, which have very different output topologies. Whereas

the low-pass filter response requires a set of coefficients who's magnitudes increase with tap

length, the Hilbert transformer coefficient distribution varies in magnitude along the length of

the filter. Finally the Hilbert transformer is also represented using a 16-bit 2's compliment

encoding, which again matches the PIA specification required for the low-pass filter.

Co12 was implemented using 11 columns and 10 rows. Row3 implemented the Hubert trans-

form using 13 columns and 9 rows. Both topologies therefore have a comparable number of

PALU's. The same experimental setup was used as for the low-pass filter investigation. Results

are shown in Figure 6.18.

126

I
I

•A...g. 508

E0A.mo. StFOth

27.5

25

5 22.5

S a 	20

HFRo-o. 17.5

5 	15

12.5

10

Co12 	 Row3 Co12 	 Row3

Reconfigurable platforms for FIR filter implementation using EHW

•A8.lJ. Fb

Di..ot FO

ruoo FO

S

0.

a
I
0.

iI

COO 	 R0w3

CoO 	 R0w3

Topology
	

Topology

(a) Success of FIR filter based on fitness cri-
teria.

(b) PALU usage (coverage) required by FIR fil-
ter.

Topology
	

Topology

(c) PALU re-use exploited by FIR filter. 	 (d) Operations performed by PALU to imple-
ment FIR filter.

Figure 6.18: Performance of Co12 and Row3 PLA topologies to autonomously generate a 20-
tap Hubert transform FIR filter.

Co12 enables the genetic algorithm to produce coefficients for the Hubert transform with con-

siderably better fitness than those generated using Row3. Comparison between coefficient fit-

ness and PALU usage (Figure 6.18(a) and Figure 6.18(b)) further demonstrates the relationship

between PALU usage and coefficient fitness. Co12 therefore utilises approximately 15% more

PALU's than Row3, achieving greater filter performance.

Reproduction of the desired filter response inside each PIA has been of primary importance.

Filter performance on the PLA topology with column-based tap placement (Output 2) is not

dependent on coefficient distribution. Row-based tap placement (Output 1) performs better

on filters who's coefficients are distributed in ascending order. This observation outlines a

restriction in the PLA architecture as partial products for each coefficient are generated column-

by-column. Each PALU therefore relies on terms generated by previous columns to produce

the relevant product. Output 1 is therefore detrimental to the effectiveness of the basic PIA

architecture for non-ordered coefficient filters. This is because the magnitude of partial products

127

Reconfigurable platforms for FIR filter implementation using EHW

generated in each proceeding column may not necessarily increase. This can be overcome using

Output 2, or has been shown in section 6.4.5, by increasing the degree of available interconnect

between PALUs.

6.6 Summary

This chapter has presented the development, and evaluation of two programmable platforms

tailored for implementing FIR filter coefficient multiplication using EHW. Coefficient sets are

implemented on either an FPGA or PLA-based programmable architecture, both of which re-

place explicit coefficient multiplication with a distributed series of bit-shifts, additions and

subtractions. Each programmable platform employs an embedded genetic algorithm designed

to autonomously configure the PLD for a given filter specification. The genetic algorithm

was used to investigate the most suitable programmable architecture for implementing high-

performance multiplierless digital filters, and provided parameterisation of the key genetic op-

erators: crossover and mutation. Initial tests however have shown the limitations of crossover

as an effective means of generating a specified coefficient set on either programmable platform.

A 31-tap low-pass FIR filter was benchmarked to enable comparisons between the perform-

ance of the PLA and FPGA architectures. Each architecture was implemented using a number

of filter input, tap output and PALU interconnect topologies. The performance of each topo-

logy was evaluated based on the coefficient fitness, area utilisation, and PALU re-usability of

the configurations generated by the genetic algorithm. Coefficient fitness is the most import-

ant measure of FPGA/PLA performance. Results demonstrate that the PLA-based architecture

considerably outperformed the FPGA in terms of the quality of the coefficient sets produced.

Investigations show that Co12 produced filter coefficients of higher fitness than other topolo-

gies, when autonomously configured using the genetic algorithm. On average the PLA pro-

duces coefficient sets with a fitness score 4% higher than the FPGA. The PLAs dominance over

the FPGA is attributed to the higher degree of flexibility afforded by the PLA interconnect to-

pologies which utilise a hierarchical connectivity; and the fact that the critical path of the PLA

is markedly shorter than the FPGA. Both these factors have been shown to effect the degree

of interdependence (linkage) between neighbouring PALUs. Greater flexibility of interconnect

and short critical paths therefore reduce PALU linkage and increase FPGAIPLA performance.

Co12 was also shown to be the most flexible PLA architecture for implementing filters with a

non-uniform coefficient distribution, significantly out-performing the next best programmable

128

Reconfigurable platforms for FIR filter implementation using EHW

topology (row3).

Whilst the Co12 PLA architecture has been shown to be the most effective in generating FIR

filter coefficients using EHW, its currents implementation using an ideal interconnect between

columns of PALU is unrealistic and would require prohibitive routing in VLSI as the number of

PALU columns and rows increases to match filter complexity. Chapter 7 therefore investigates

the translation of the Co/2 architecture into a synthesisable VHDL netlist for implementation

in silicon. Physical constraints will be examined, such as timing along the critical path and

the degree of interconnect required to implement a functionally acceptable Co12 architecture

without ideal interconnect.

129

Chapter 7
Translating the Co12 PLA Topology

into Hardware

7.1 Introduction

All of the programmable platforms currently investigated have used software simulation to eval-

uate the performance of the filter coefficient sets configured on them by the genetic algorithm.

The performance evaluation of both the PLA and FPGA-based FIR filters therefore exhibit ex-

trinsic evolution in EHW terms, as discussed in Chapter 2. In order for faster and more realistic

generation of filter coefficients to occur, the programmable platform on which the filter is to be

implemented must be realised in physical hardware. Intrinsic real-time evaluation of the PLA

architecture configured to implement a given coefficient set is then possible.

Analysis of both the FPGA and PLA-based EHW platforms investigated in Chapter 6 have

shown that a PLA architecture capable of column-based tap placement with localised and 2-

level PALU interconnect, Co/2, is the most effective programmable topology for implement-

ing an FIR coefficient multiplication unit using EHW. However, its ideal interconnect topology

does not make it suitable for implementation in hardware, which is of little use to real world

SoC signal processing applications. In addition, FIR filters are crucial for robust data commu-

nication and manipulation. DSP devices are frequently employed in environments where issues

such high processing speed, low physical area, and device reliability are highly critical, such

as in space applications. For many such applications DSPs must maintain functionality over

prolonged periods in harsh environments. Built in reliability of FIR filter devices is therefore

required. The performance and sustained reliability of hardwired FIR filters is therefore of great

importance.

This Chapter presents the translation of the Co12 PLA architecture from an RTL-level beha-

vioural VHDL model into a physically realisable, technology specific netlist using Synopsys

Design Analyser synthesis software and Alcatel's 0.35 pm MTC45000 technology library. The

architectural limitations of the Co12 PLA are identified in order to develop a physically real-

istic PLA structure. The synthesised PLA netlist is then compared with the original Co12 PLA

130

Translating the Co12 PLA Topology into Hardware

architecture using the GA. Finally the real-world performance of the netlisted PLA is further

investigated by examining the ability of both the GA and the PLA to adapt to an increasingly

high number of faults randomly introduced onto PALUs in the PLA architecture.

7.2 Synthesis and Performance Analysis of PLA-Based Filter

Translating Co12 into a synthesisable IP core requires modifications to be made to the original

array of ideal interconnects between PALUs, detailed in section 6.4.1. The ideal connectivity

model is not suitable for hardware implementation as it incurs a large area for both routing

and control logic, due to an cxccssivc interconnect. This would jesuit in lung delays betweeii

PALU's, and high capacitive loads from excessive fanout on interconnect pins. In order to

minimise these problems the interconnect array was modified such that each PALU input could

route to one of only three PALU's from the previous column. So as to maximise connectivity

between columns, no two inputs were routed to the same set of three PALU's. The reduced

connectivity architecture centres around the position of the current PALU in the column. Ain is

connected to one PALU above, below and including that of the PALU at the same location in the

previous column. Bin then connects to the second, third and fourth PALU directly above that of

the PALU in the previous column. Figure 7.1 displays an example of the reduced connectivity

model.

The amount of control logic for the interconnect array is therefore reduced, along with inter-

connect area, signal delay, and drive-strength. Also, this complexity does not increase with

column height (as would be the case with the ideal interconnect). This ensures that the PLA

architecture remains scalable.

7.2.1 Comparative analysis with RTL 'ideal' model

In order to determine if the reduced connectivity PLA architecture performed as well as the

ideal interconnect, Co12 was modified and simulated using the same benchmark low-pass fil-

ter detailed in section 6.2 of Chapter 6, and the same experimental setup as that used for the

original Co12 PLA presented in sections 6.2.1 and 6.4.3. The modified Co12 PLA is named

Co12 i-educed for clarity and was again written in VHDL at the RTL level. A second investiga-

tion of Co12 i-educed was also performed to determine the effects of changing PLA dimensions.

Column width was reduced from 11 to 6, and the number of rows was instead extended to 16.

131

Translating the Co12 PLA Topology into Hardware

Interconnect 	 Interconnect
Array N-i 	 Array N

PALU Column N-3 	 PALU Column N-I 	'\ALU Column N

PALU

	

PALIJ 	

\

1JF—PALU Local Interconnect If :1~
PALU BusA 	[J PALU 	 PALU

1
5

	

PALU 	 j 4LU 	 U {wu
4 	 r.-.J 4 	 1 	ii 	4

	

PALU 	 I LJPALU 	 LJPALU

	

3
I 	

3
I

	

fALU

PALU 	 Lj- PA-LU

BusB 	 - l'.•\l.(
L

Fast interconnect

Figure 7.1: Example of reduced connectivity between PAL Us

In this case the bottom 9 PALUs in the final column were connected to output taps. These

dimensions were designed to roughly maintain the number of PALUs within the PLA, whilst

reducing the latency of the circuit. The same experimental setup was again employed, and the

PIA was identified as Co/2 -6x.16. Figure 7.2 displays averaged data of the results obtained.

The average fitness of coefficients generated using Co12educed is almost identical to those

produced using the original Co12 topology. However Co12reduced used approximately 15%

more PALUs than Co/2, and re-used on average 81%; around 20% more than the original Co12

PLA. This supports evidence presented in Figure 6.16 which links reduced connectivity with

greater PALU re-use and in some cases poorer filter performance. The fact that more PALUs

are required to implement filters of high quality suggests that Col2educed still provides the

genetic algorithm with a means of counter-acting the negative effects of reduced connectivity

between PALUs. Altering dimensions of the PLA in Co1213x16 maintained the quality of the

filter coefficients, but greatly reduced both the number of PALUs used and the degree of re-use

when compared to Co12 limited. In fact usage and re-use are shown to be comparable to or

lower than those produced using the original Co12 PLA. The results highlight the flexibility of

132

Translating the Co12 PLA
	

into Hardware

W 75

wl- If1 	
SAwwage

80-

775

725

IuM0 L

Co12 6018

rpoIogy

(a) Success of FIR filter based on fitness cri-

teria.

- 	
-

nMM1R.-U..

i

I&RE

(C) PALU re-use exploited by FIR filter.

(b) PALU usage (coverage) required by FIR fil-

ter.

TI
!

(d) Operations performed by PALU to imple-

ment FIR filter.

Figure 7.2: Performance of Col2educed and Co126x16 PLA topologies to autonomously
generate a 31-tap low-pass FIR filter.

the PLA to adapt to varying dimensions and maintain filter performance. Ratios between shift,

addition and subtraction operations remain similar to those originally identified in Chapter 6

throughout.

7.2.2 Synthesis Details

Due to the success of the Co126x16 topology, which was written in VHDL at the RTL level,

a PLA core with 6 columns and 5 rows was synthesised using the Alcatel MTC45000 library.

Five rows were chosen to maintain a compact PLA core that could readily be synthesised.

Multiple cores are simply connected during initial parameterisation of the PLA-based FIR filter

platform. Therefore a PLA can be sized according to the maximum number of taps required for

a specific range of applications. A total of C + 1 clock cycles are required to multiply input data

with the desired coefficient set, where C = 6 and is the number of PALU columns. As a result,

133

Translating the Co12 PLA Topology into Hardware

the throughput of the PLA is not effected by filter length. This is a considerable advantage over

single multiplier MAC filter architectures. Top-down synthesis was performed using Synopsys

Design Analyzer. This was shown to produce better timing and area results than synthesis

using a bottom-up approach. Appendix C.1 displays the synthesis script used. The scalability

of the PLA core was examined by synthesising it at six operational clock frequencies: 10MHz,

25M1-lz, 50MHz, 80MHz, 90M1-lz, and 100 MHz; all PLA data-widths were set at 16-bits.

Theses frequencies were chosen to reflect typical timing constraints required on high speed

SoC bus architectures, which range from 60 to 100MHz. Result can be seen in Figure 7.3.

Area remains relatively constant from 10 to 50 MHz. Between 50 and 100MHz the area of the

synthesised PLA core increases approximately linearly. For technologies smaller than 035m,

faster throughput could be achieved.

38000

. 	 36000
C
a)

34000

Cr 32000

CD

15 30000

28000

Z
CZ 26000
CL)

CU 24000

.3 22000

Synthesised area

25 MHz 	50 MHz 	80 MHz 	90 MHz
	

100 MHz

20000

10 MHz

Operational frequency

Figure 7.3: Logic area of PL4 core as a result of synthesis for increasing operational speeds.

The critical timing path was found to lie between the BusA/BusB input of any given set of

interconnect logic, and the output register of the PALU which is associated with this intercon-

nect. This is explained in more detail in Figure 7.4. The largest delay is incurred through

the adder/subtracter unit of the PALU. One way to reduce this would be to customise the ad-

134

Translating the Co12 PLA Topology into Hardware

der/subtracter block for a specific silicon technology. This would limit the general portability

of the P/A core, but further increase its performance.

Interconnect logic

bUout

Figure 7.4: Critical delay path through PL4 architecture.

Figure 7.5 displays the Leapfrog VHDL simulation of the 6x5 PL4 Core netlist synthesised to

operate at 10MHz and then back annotated into the simulation testbench presented in Appendix

C.2.

The PIA Core presented has been programmed to multiply X (n) by the coefficient set { 1, 7,

16, 21, 331, representing taps Ito 5 respectively, defined as Output-Port(i) in the waveform of

Figure 7.5. The coefficients were configured on the P/A Core using the bit-string displayed

in Memory -Contents. The waveform signal Pla -Data -Stream is simply the binary data held

in Memory-Contents as it is fed bit-serially into the PLAs serial-to-parallel shift register as

shown in Figure 6.12 of Chapter 6. Ten input stimuli (16-bit words) representing the filter

input. X(n), were applied to the P/A Core via PLASignalinput. Each of the ten input vectors

in the set {l, 25, 49, 385, 553, 271, 1, 449, 1071 is fed in turn to the P/A Core which then

takes 7 clock cycles to perform the distributed coefficient multiplication before the result is

present on Output.Port(). The 7 cycle latency between PL4Signalinput and Output Jort()

can clearly be seen by the red markers in Figure 7.5, which indicates when the P/A Core has

finished processing the current coefficient multiplication. For example, the third input word,

49, when multiplied by the 5-tap coefficient set can be seen to display the correct corresponding

tap outputs 49, 343, 784,1029 and 1617.

135

Translating the Co12 PLA Topology into Hardware

p

ji 	 ';,i 	 g 	 1 	 u 	 .1 	 liii 	 II 	 Ii i 	k 	 .1

IME __. Li 	
iI_iuuuuuuuuI.

iuuuul_ui.zi_uuuuui

01

Figure 7.5: Simulation waveform of 6x5 PLA Core VHDL netlist synthesised at 10MHz.

7.3 Fault Tolerant Characteristics of PLA-Based EHW Platform

Figure 7.2(b) shows that on average around 42% of the Go12_6xl6 PLA topology remains re-

dundant after the low-pass filter is implemented. This provides the GA with sufficient PALU

resources to reconfigure the PLA if sections of the architecture become damaged. The PLA-

based FIR filter platform therefore exhibits fault tolerance through controlled redundancy. Karri

has already shown this fault-tolerant method to be efficient in [112].

Fault tolerance systems are widely used in space applications such as commercial satellite com-

munication where hardware deteriorates due to damaged caused by cosmic rays, and in other

inhospitable environments where human intervention is difficult or impossible. Systems must

therefore maintain functionality despite factors such as severe temperature variation, radiation

and operational ware. Conventional fault tolerant VLSI systems employ techniques such as

check-pointing [110], concurrent error detection 1111] and redundancy. There purpose is to

maintain system operation, or prevent further successive faults by minimising the damaged

sustained [18]. However, fault tolerant systems are costly as they reduce operational speed and

136

Translating the Co12 PLA Topology into Hardware

increase physical area.

Alternative approaches to the design of fault tolerant systems have recently been proposed

using evolvable hardware [21, 131-133]. Such approaches provide novel techniques for fault

recovery and prevention without the need of additional redundancy, fault detection or diagnosis.

Instead a genetic algorithm is used to monitor system performance and reconfigure aspects

of a circuit to counter-act any deleterious faults. Fault tolerant systems which employ EHW

must therefore be able to adapt on-line when required. Hardwired GAs are capable of running

considerably faster than those implemented in software on general purpose micro-computers,

and are therefore suitable for applications which require online adaptation. As a result, GAs

are frequently mapped onto Programmable logic devices (PLD5) so that the fitness function

can later be modified for different design criteria [17, 121-123]. Custom EAs have also been

implemented on ASICs [124, 125]. In such cases the fitness algorithm is then set for a specific

application.

For EHW to provide a competitive solution to conventional fault tolerant design, EHW re-

sources must be smaller than those required by conventional fault tolerant architectures. The

benefits of using a single fixed EHW resource become more apparent as circuit size or com-

plexity increases. Inversely, hardware requirements for conventional fault tolerant designs will

continue to grow.

7.3.1 Introducing Faults into the PIA-Based FIR Filter

The Co12_6x16 PLA architecture (RTL description) was subjected to four increasingly large

numbers of faulty PALUs. These faults covered 0%, 5%, 13% and 25% of the PLA architecture.

Each individual fault was obtained by pulling both inputs of a given PLA to zero and setting it

to shift-by-zero, effectively simulating a "Stuck at zero" fault. This was achieved by "freezing"

sections of configuration string which related to the selected faulty PALUs. For each increasing

percentage of faults the low-pass filter coefficients were evolved ten times on the PIA using

the genetic algorithm. Again, ten randomly generated populations of configuration-strings were

created for each of the ten filter coefficient sets evolved. The dimensions of Co12_6x16 were

maintained to provide limited redundancy for when faults were introduced into the PLA.

Faults were placed at random for each level of coverage. The same faults were then main-

tained over the ten times the low pass filter coefficients were evolved so to obtain an average.

137

Translating the Co12 PLA Topology into Hardware

Figure 7.6 displays the topology of PALU faults for each level of fault coverage.

7.3.2 Analysis

The ability of the fault tolerant hardware platform to adapt to or sustain increasing faults was

investigated through the same four criteria identified in Chapter 6: The fitness of the filter

evolved, the number of PALUs used, the degree of PALU re-use (generation of partial products),

and the total number of shift, add and subtract operations required to implement the desired

coefficients. Results are shown in Figure 7.7.

Figure 7.7 reveals that at PALU faults from 0 to 13%, he genetic ml or1th 1s in each case able

to evolve a filter with a maximal fitness of 99.9%. When the PLA is 25% faulty a 0.5% decrease

in the fittest filter solution is incurred. The average fitness of filter coefficients evolved remain

above 98.5% until 25% of the PLA experiences faults. Recall from Chapter 6 that a fitness >

98.5% was required to produce a transfer function with acceptable low-pass characteristics and

a gain no less than -52 dB. An example of a typically acceptable response for the low-pass filter

is shown by the green transfer function in Figure 6.1. Variation of the least fit filters evolved by

the GA is more marked as the percentage of faults in the PLA increases.

The average number of PALUs used to implement the low pass filter reduces as the percentage

of faults found in the PLA increases. However, only a 10% reduction in PALU usage is exper-

ienced on the PIA despite a 25% decrease in the number of functional PALUs available. This

suggests that the PLA provides the GA with a means of counter-acting the deleterious effects

of PALUs which are "stuck at zero". Comparisons between figures 7.7(a) and 7.7(b) reveal

that as fewer PALU resources are made available to the GA through faults, a reduction in filter

performance is experienced. The number of PALUs required to implement the filter therefore

relates directly to the fitness of the evolved solution.

Accounting for variations of faults at 5 and 13% of the PLA area, the average number of PALUs

reused within the PLA (to generate partial product terms) remains relatively constant, with an

overall reduction of less than 5%. Again this supports the notion of a robust PIA architecture

capable of providing an adaptable environment for fault tolerant design using EHW.

Regardless the degree of faulty PALUs, the number of shifter operations selected by the GA

is double that of either additions or subtractions. As expressed in section 6.3.5 and 6.4.5 in

Chapter 6, this is encouraging as programmable shifts consume considerably less power then

138

Translating the Co12 PLA Topology into Hardware

• UII1'I • IIIIuI7 .
9iI' • —— i:i - i . • - • ._ •. r• .
-IjIL- • — I — II—I U • .I r U
-I.IL • — —I I!1 U • ..i •• i 1...r U
- IjIL I—I U • _•_ • U. . • II — • — • • ..i_ • •• • — • U —

I I
.r ij'I7L rn

(a) 5% PALU faults. 	 (b) 13% PALU faults.

I :i -"-•' 11u .jimt'1I
;!r' •i:I :i : jI

I I .ii xx•.!

•!i :j
•11

• I!1 :.•......•..:::.
•!i • I •uu.rn •',•

Iii UI • •.. riuri -1?

1:1

(c) 25% PALU faults.

Figure 7.6: "Stuck-at-Zero "fault topologies covering PLA

139

Translating the Co12 PLA Topology into Hardware

•
• i. a
• Mtat Ft

55

55.5

55

57.5

55

9

1355% 	 25.42%

Pa004390 FatO Coa.tg

(g) Pitneocz ef fTR filter ,'n ffit'ier,tç h,etI 'Sn

creased percentage of faults in PLA.

55.5

05

3m 5542.

I.05ILQ. 	 5.

47.5

42.5

35

- Aa.a55 Fb-In.

• Ml, R5.4a.

• Mlx lb-ta.

0.42% 	 342% 	 1342% 	 5555% 	 055% 	 542% 	 1355% 	 2542%

P 	 Fa2ICta 	 pt42. Fat Caa.9.

(b) Number of PALUs utilised to generate desired 	(c) Amount of PALU re-use based on increased per-
FIR filter coefficients based on increased percent- 	centage of faults in PLA.
age of faults in PLA.

I
• Aa.420A

• Aa.St55

055% 	 5. 	 1355% 	 2555%

Fa

(d) 'I'pe of PALU operation based on increased per-
centage of faults in PIA.

Figure 7.7: Analysis of Co12...6x16 PLA architecture with increasing percentages of faulty
PAL Us

140

Translating the Co12 PLA Topology into Hardware

either addition or subtraction operations, and are considered to be the primary means of product

generation when using multiplierless filter techniques such as POF design.

Of course the placement of faulty PALUs will greatly effect the ability of the GA to evolve high

quality filters. Faults close to, or directly on PALUs which are connected to coefficient taps will

have a more detrimental effect than those distributed in the centre of the PLA. This accounts for

the poorer average fitness performance of filters generated on the PLA with a faulty area of 5%

compared to those generate by the GA on a PLA with 13% faults. Given the added number of

redundant rows present in the PLA architecture it would be possible to adapt the platform such

that taps could be moved to other PALUs which are not near faults, or are themselves faulty, but

still located on the final column. An example PLA configuration of the 31-tap low pass filter

evolved with 99.9% correctness and 13% of its PALUs faulty is illustrated in Figure 7.8. Faulty

PALUs are shown as dark green anomalies.

7.3.3 Population Initialisation After Fault Detection

In each of the fault scenarios investigated in section 7.3.1, populations of configuration-strings

were randomly generated. However, two other approaches to population initialisation are avail-

able. In this Chapter they are termed Population seeding, and Population recall. Both of these

approaches were investigated to see if fault recovery times after detection could be decreased

when compared to random population initialisation. The method of population seeding applied

in this Chapter involved taking the fittest solution stored from the previous evolutionary run

(and currently in operation on the PLA), and placing it into a population of 99 randomly gen-

erated configuration-strings. Population recall simply involves re-introducing the most recent

population of configuration-strings evolved, and using this as the initial start point.

The effectiveness of both approaches was examined using the same Co126x16 PLA topology

with 13% of its PALUs "stuck-at-zero", as shown in Figure 7.6(b). So as to obtain an averaged

performance the same low-pass filter was evolved ten times using the population seeding ap-

proach. In each case the PLA configuration shown in Figure 7.8 was used as the seed. All other

configuration-strings were randomly generated. A randomly selected final population, evolved

for the low-pass filter with no faults in the PLA, was used as the initial population for the recall

approach. As no configuration-string needed to be randomly generated this scenario was run

only once. The performance of each initialisation approach was determined to be the number of

generations required by the GA to produce a filter response with a fitness > 98.5%. Figure 7.9

141

Translating the Co12 PLA Topology into Hardware

I GENERATION:6661 	I TOTAL CELL OSAGE:53 = 	55.2% I 	Shifters:27

I 	Adders:18 	I Subtractors:8 I 	Cell re-use:67 = 558 	I

14 Li +

+

14 4

: +
rn

0612

I -r

+ 	10 03 	10 IIIIII 50 	1) • _
• E L 129• L1 Fj
LiI • a 5-11 F-31

- rn

• S1)• c - E
L1- 28 - -55

—6

U - 84 8 84 Ed 8 212 -

• a]i

r1

-
	

-
-

Figure 7.8: Schematic showing configuration of low-pass FIR filter on PL4 with 13% faults

-

•

-

-

-

-
El

•

TAP 9

7 	 +

IUW
TAP 8

+
TAP 7

+
TAP 6

Ellilil 	11

TAP 5

+
TAP 4

F5 It TAP 3

-
TAP 2

TAP 1

142

Translating the Co12 PLA Topology into Hardware

displays the results obtained. The averaged evolution of filter fitness using random population

initialisation has also been shown.

9

8.5

8

(I)
75

t 7
LL

65
w
06

55

C)
1..

= 4
U-

.5

4

3.5

Population Initialisation
- Pcwsi ITufl

- Randomised PoouIaton
- Seeded PopuIi1on

o too 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Generation

Figure 7.9: Fitness performance offilter evolved on PL4 based on various methods of gener-
ating the initial population of configuration-strings.

Both population seeding and recall enable the GA to adapt to the faulty PLA architecture

and produce coefficient sets with target fitness considerably faster than when a population of

configuration-strings are randomly generated. Population seeding produces filters of fitness >

98.5% after 272 generations, population recall required 513 generations, whilst random initial-

isation took an average of 1521 generations to reach target fitness. This translates to a 6 fold

and 3 fold increase in fault recovery over that of random initialisation for population seeding

and recall respectively.

7.4 Summary

The C'612 PLA architecture, identified as the most effective for the autonomous implementa-

tion of FIR filter coefficients, was translated into a synthesisable, technology dependent VHDL

netlist. The ideal interconnect between columns of PALU was instead replaced with more re-

stricted interconnect reflecting realistic PALU fan-out. The resulting PLA architecture, termed

143

Translating the Co12 PIA Topology into Hardware

Col2educed, was then compared with Co12 using the benchmark low-pass filter; with results

showing comparable fitness in the coefficients sets produced by the GA.

Six columns and five rows of PALU were selected as the base dimensions to generate a synthes-

ised VHDL core of the Col2educed PLA architecture. Operational speeds of 10 to 100MIHz

were presented after synthesis, and reflect typical SoC bus frequencies. A signal latency of 7

clock cycles, independent of filter length, is experienced on the core. This is a considerable

advantage over single multiply accumulate DSP architectures which have processing times dir-

ectly proportional to filter tap length. More complex FIR filters can be constructed by simply

adding a number of 6x5 PLA cores during initial VHDL parameterisation of the filter specific-

ation.

The ability of the platform to adapt to increasing numbers of faults was investigated through

the evolution of a 31-tap low-pass FIR filter. Four increasingly large numbers of faulty PALUs

were introduced to the PLA from 0 to 25% of the total architecture. Results show that the

functionality of filters evolved on the PLA was maintained despite the increasing number of

faults present. This was attributed to redundant PALUs (inherent in the PLA) exploited through

the use of EHW. Two additional methods of population initialisation were examined to see

if fault recovery times after detection could be decreased compared with random population

initialisation. It was shown that seeding a population of random configuration-strings with the

best configuration currently obtained produced filters of acceptable fitness 6 times faster than

with purely randomised population initialisation.

144

Chapter 8
Summary and Conclusions

8.1 Introduction

The focus of this thesis has been to investigate if a programmable platform tailored for evolvable

hardware (EHW) can be developed which is highly suited to the autonomous implementation of

digital FIR filters. Three novel programmable platforms have been developed for this purpose

each with a distinctly different architectural design to accommodate FIR coefficient multiplic-

ation.

This chapter is organised as follows: Section 8.2 presents a summary of the material presen-

ted in each chapter of this thesis, Section 8.3 then provides conclusions drawn from the data

collected, supporting or rejecting the thesis statement given above. Section 8.4 highlights what

has been achieved as a result of the research carried out and Section 8.5 outlines future work

which would add to the knowledge already gained from research undertaken in this thesis, and

discuses what might be done to improve the performance of the EHW platforms. Finally sec-

tion 8.6 presents a number of final comments regarding the thesis, and possible applications of

research presented therein.

8.2 Summary

The underlying theme of this thesis has been to investigate a number of programmable ar -

chitectures for the automated design of digital FIR filters using the principle of EHW. Each

programmable architecture is therefore configured using a genetic algorithm (GA) which is

derived from a class of non-heuristic search and optimisation techniques termed evolutionary

algorithms, which are inspired by the process of biological evolution. The GA must there-

fore successfully search for and manipulate the encoding used to configure each programmable

architecture in order to generate the desired filter coefficient set in hardware.

Chapter 2 introduced the concepts behind evolutionary algorithms and identified four distinct

classes, one of which was the GA. The suitability of the GA for automated digital circuit design

145

Summary and Conclusions

using EHW was identified due to the manner in which possible circuit solution are encoded

and manipulated. The mechanisms behind the algorithms operation were also presented and

focused on the application of autonomous circuit design.

Chapter 2 also demonstrated the benefits and limitations behind both gate-level and functional-

level approaches to EFIW circuit design through literature review. The differences between

software-based circuit simulation (extrinsic evaluation), and hardware-based, or intrinsic circuit

evaluation were also evaluated. It was shown that extrinsic evaluation techniques lack models

which describe the physical characteristic of the circuit evolved, whilst intrinsic evaluation

often resulted in the exploitation of anomalous physical characteristics particular to the device

on which the circuit was evolved.

The first of three EHW platforms termed the Virtual Chip was presented in Chapter 3. Circuits

were generated in the Virtual Chip using a GA which described each circuit as a VHDL model.

Each model was then evaluated extrinsically using simulation tools designed to take account of

physical circuit characteristics such as timing and area. The Virtual Chip was initially used to

compare the effectiveness of two circuit component libraries; one reflecting gate-level evolu-

tion, the other function-level by using a GA to autonomously design three types of DSP circuit:

an MxN multiplier, 7-bit one's voter and a 2-tone frequency discriminator, all of which had

been previously benchmarked in the EHW community.

The concept of phased evolution is also introduced in Chapter 3 as an approach to generate

more complex multiplier circuits for FIR coefficient multiplication. Phased evolution partitions

circuit complexity into relevant circuit outputs and in doing so reduces the search space into

smaller landscapes which relate to each sub-circuit. A 3x3 bit parallel multiplier was generated

using phased evolution that could not be generated in the same number of generations using the

conventional Virtual Chip

Chapter 4 presented the basic concepts behind FIR filter theory and demonstrated how fil-

ters can be implemented in hardware using the direct-form and transposed-direct-form. The

multiplier was identified as the most costly component in filter implementation and a num-

ber of design methodologies were discussed which either reduced the role of the multiplier,

or replaced it with a series of bit-shifts, additions and subtractions. In particularly, the prim-

itive operator filter (POF) methodology was identified as a technique suitable for adaptation

to EHW using functional-level evolution. A wide range of fixed-function and programmable

146

Summary and Conclusions

VLSI architectures dedicated to implementing FIR filters, with and without explicit multiplic-

ation, were also presented. In addition, a class of general purpose programmable logic devices

(PLD5) were introduced and methods for performing coefficient multiplication on theses archi-

tectures investigated.

From the information presented in Chapter 4, Chapter 5 detailed the development of a PALU

dedicated to FIR coefficient multiplication using the POF approach. The PALU was designed

to be implemented in two distinct array structures, reflecting two different classes of PLD. The

GA used to configure each PALU was also presented. Both the GA and PALU were written in

VHDL and formed the backbone of the final two programmable EHW platforms.

Chapter 6 presented the development and evaluation of the final two programmable platforms,

dedicated to FIR coefficient multiplication. The first was based on a standard FPGA archi-

tecture, the second on a conventional PLA. Both PLDs were investigated using a number of

filter input, tap output and PALU interconnect topologies. A 31-tap low-pass filter was used to

provide a benchmark for comparison between each programmable platform and topology vari-

ation. Each PLA and FPGA topology was analysed based on a number of performance criteria

such as the quality of filter response produced by the coefficient set, and the number of PALUs

utilised in any given array.

The most effective PLA-based filter architecture identified in chapter 6 was translated into a

technology dependent netlist in Chapter 7. Physical constraints were examined an modifica-

tions to the original architecture made where necessary. The ability of the platform to adapt to

increasing levels of faulty PALUs was also investigated. Results show that the quality of coef-

ficients evolved on the netlisted PLA was maintained. Three approaches to population seeding

were compared to see which most aided fault recovery times after detection.

8.3 Conclusions

This thesis proposed that a programmable platform tailored for evolvable hardware can be de-

veloped which is highly suited to the autonomous implementation of digital FIR filters. From

information presented in Chapter 2 it can be concluded that a genetic algorithm provides suit-

able search mechanisms for developing digital circuits using the EHW approach. Gate-level

evolution has been shown to produce digital circuits smaller in area than those developed using

conventional design techniques. However gate-level evolution fails on more complex circuits

147

Summary and Conclusions

as the search space which must be successfully navigated to generate them grows non-linearly

with circuit complexity. It was shown that functional-level evolution can be used to constrain

the search space by using larger circuit building blocks, providing the genetic algorithm with

an easier means of finding solutions for more complex digital circuits.

From results presented of the Virtual Chip EHW platform developed in Chapter 3 it can be

concluded that functional-level evolution considerably outperforms gate-level by enabling the

genetic algorithm to successfully generate more solutions for each of the DSP circuits invest-

igated. In addition, it can be concluded that for all circuits investigated on the Virtual Chip the

genetic algorithm required less time to generate circuit solutions using a functional-level com-

ponent library than when the gate-level component library was employed. Because fewer logic

elements are required to encode circuit descriptions using the functional library, this results in

a search space several orders of magnitude smaller than that produced by the longer circuit

encodings required when using the gate-level library. The timing and area characteristics of the

circuits generated by both the functional and gate-level component libraries were comparable.

However in both cases the GA produced circuits which were either equal to or better in perform-

ance than functionally equivalent circuits generated using standard digital design techniques. It

can therefore be concluded that, for the DSP circuits evaluated, functional-level evolution does

not result in the generation of circuits with lower performance in terms of physical area than

those produced using simple gate primitives.

Phased evolution, also presented in Chapter 3, partitions circuit complexity and in doing so

reduces the search space into smaller landscapes, related to each sub-circuit. It can therefore be

concluded that this segmented approach reduces the associated degree of epistasis inherent in

the chromosomes circuit encoding. This make it possible to evolve complex multiplier circuits

more effectively than simply evolving the circuit as a single entity. Results also demonstrate

the non-uniformity in the complexity of the multiplier architecture related to individual output

paths. It can be concluded that multiplier circuits generated using phased evolution are of equi-

valent performance in terms of area and timing to multipliers generated using standard design

techniques, in addition to other published design techniques using EHW. However failure of the

Virtual Chip to generate a 4x4 bit parallel multiplier when using phased evolution indicates that

larger logic components of greater functionality are required to generate a multiplication unit

of sufficient complexity to implement FIR coefficient multiplication. In addition, the success of

other published EHW approaches indicates that a more constrained programmable architecture

148

Summary and Conclusions

is required to further reduce the multiplier search space.

Chapter 6 presented the development of two programmable platforms inspired by two different

classes of PLD. Each platform was specifically designed to implement FIR coefficient multi-

plication using a distributed, multiplierless architecture based around primitive operator filters

(POF). Initial results support the conclusion that crossover was not effective in enabling the

genetic algorithm to configure either programmable platform to implement the specified coef-

ficient set. This is due to the high level of epistasis inherent in the POF design problem. This

high degree of epistasis means that interactions between PALUs and programmable intercon-

nects is non-linear, and filter fitness cannot be directly attributed to the effects of an individual

PALU.

From a number of PLA and FPGA-based filter topologies examined, it can be concluded that

the PLA-based filter architecture considerably outperformed the FPGA in terms of the quality

of coefficients sets produced. This is supported by results in Chapter 6 which show that on

average the PLA-based architectures produced coefficients with a fitness score 4% higher than

those produced on the FPGA. It can further be concluded that the performance of the PLA is

attributed to the higher degree of flexibility afforded by the PLA interconnect topologies which

utilise hierarchical connectivity, and that the critical path of the PLA is in every case shorter than

the FPGA. These two factors have been shown to reduce linkage between PALUs, indicated

by reductions in PALU re-use, which improves performance. It has therefore been shown

that a PLA architecture implementing column-based tap placement with a nearest neighbour

and 2-level PALU interconnect hierarchy is the most effect programmable platform for the

autonomous implementation of FIR filter coefficient multiplication using EHW.

From translating the most effective PLA architecture identified into a synthesisable, physic-

ally realisable component netlist with reduced PALU interconnect, it can be concluded that no

reduction in performance was experience when compared to the original PLA model. The cre-

ation of a 6x16 PLA revealed that changing the dimensions of the PLA significantly reduces

the latency of the filter to 7 clock cycles, irrespective of tap length, and incurs no reduction

in the quality of filter coefficients produced. In fact around 20% fewer PALUs were required

to implemented the 31-tap filter benchmarked when the 6x16 PLA was employed. Similar ra-

tios were experienced with PALU re-uses, supporting the conclusion that lower PALU linkage

results in better PLD performance.

149

Summaiy and Conclusions

The fault tolerance of the 6x16 PLA was investigated in Chapter 7. Results show that the

quality of filter coefficients evolved on the P[A can be maintained despite a 25% increase in

the number of faulty PALUs present on the array. It can therefore be concluded that the 6x16

PLA provides sufficient PALU redundancy to enable the GA to over come the inclusion of a

significant number of faults. Three approaches to population seeding were compared: random

initialisation, population seeding and population recall. Each approach was examined to see

which most aided fault recovery times after faults were detected on the PLA. Results show that

population seeding reproduced coefficients that were of acceptable fitness 6 times faster than

when random initialisation was used and 3 time faster than population recall. It can then be

concluded that population seeding provides the most effective means of adapting a population

of configuration strings to over come faults on the 6x16 PLA for a given set of filter coefficients.

8.4 Achievements

The research presented in this thesis has required the development of a number of software and

hardware-based models and programs. For completeness these are highlighted below:

The development of a novel genetic algorithm written in C for the Virtual Chip EHW

platform.

. The creation of the Virtual Chip EHW environment used to autonomously generate

VHDL descriptions of evolving circuit solutions.

. The development of a Programmable Arithmetic Logic Unit (PALU) written and para-

meterised in VHDL and inspired by the concept of the primitive operator filter (POF)

approach to implementing FIR filters.

• The development of an FPGA and PLA-inspired array of PALUs dedicated to program-

mable FIR filter coefficient multiplication. The programmable arrays were written in

VHDL and designed to express a number of interconnects and filter input and output

topologies which could then be configured using a GA.

• Generation of a parametrisable genetic algorithm, written in VHDL and embedded along-

side the FPGA and PLA-based programmable platforms.

MH

Summary and Conclusions

• Development of visualisation software written in C and designed to model both the FPGA

and PLA-based architectures and graphically depict the filter configurations produced.

This was achieved using postscript format.

8.5 Future Work

This thesis has endeavoured to provide a rigorous investigation of the focus of research outlined

in section 8.1. However, a number of additional potentially interesting areas remain which

might further add to the knowledge already gained from the research presented.

The suitability of each coefficient string used to configure the two PLD-based programmable

platforms is currently calculated by the fitness of the coefficient set produced. Filter perform-

ance might further be improved by including a Pareto-based fitness measure incorporating all

four performance criteria: PALU utilisation, PALU re-use, the ratio of additions, subtractions

and bit-shifts; as well as coefficient fitness. Whilst this would not directly add to a more efficient

comparison between EFIW platforms, it might provide more optimised filter implementations.

Another method of improving the effectiveness in which the GA can configure each program-

mable platform would be to add heuristic knowledge of both the programmable architecture

and the POF design approach into the GA search function. This might for example utilise the

directed graph/GA hybrid approach implemented by Redmill et.al in [97].

An investigation as to the suitability of other search techniques such as simulated annealing

for autonomously implementing filter coefficients on each of the three programmable platform

might also be performed. This would provide a useful evaluation of the effectiveness of EHW

for the automated digital filter design problem presented in this thesis.

Finally, it is possible to extend the Virtual EHW platform to enable POF-based coefficient

multiplication. This would then provide a means of accurately appraising the performance of

the Virtual Chip when compared to the PLA and FPGA-based EHW platforms.

8.6 Final Comments

In summary, this thesis has investigated whether a programmable platform tailored for evolvable

hardware can be developed which is highly suited to the autonomous implementation of digital

151

Summary and Conclusions

FIR filters. It can therefore be concluded that the 6xN PLA architecture developed in Chapter 7

provides the most suitable platform for evolving coefficient taps in terms of the quality of filter

coefficient produced, the PALU resources utilised, the overall latency of the filter implemented,

and the architectures resilience to faults through controlled redundancy.

High performance digital filters are in great demand throughout the communication industry

and other sectors that require data control and manipulation. Industrial requirements include

fast operational speed, low physical area, device portability, and reliability/robustness. The

PLA-based EHW platform developed satisfies many of these conditions, and could be embed-

ded into a number of SoC devices that might benefit from online adaptive data manipulation.

152

References

Z. Yajiang, H. Lingyi, Q. Yulin, X. Xia, and H. Xiaoling, "A high speed multiplication-
and-accumulation design methodology for submicron and deep submicron dsp solu-
tions," in 5th IEEE mt. Conf on Solid-State and Integrated Circuit Technology, pp. 502-

504, 1998.

D. R. Bull and D. H. Horrocks, "Primitive operator digital filters," in lEE Proc -G,
pp. 401-412, 1991.

V. M. Porto, "Evolutionary methods for training neural networks for underwater pattern
classification," in 24th Ann. Asilotnar Cunf On Signals, Systems 	 l 2and Computers, VO. ,

pp. 1015-1019, 1989.

D. B. Fogel, L. J. Fogel, and V. M. Porto, "Evolving neural networks," Biol. Cybernet.,

vol. 63, pp. 487-93, 1990.

P. Angeline, G. Saunders, and J. Pollack, "Complete induction of recurrent neural net-
works," in Proc. 3rd Ann. Conf on Evolutionary Programming, pp. 1-8, 1994.

K. P. Dahal, G. M. Burt, J. R. NcDonald, and A. Moyes, "A case study of scheduling
storage tanks using a hybrid genetic algorithm," IEEE Transactions on Evolutionary

Computation, vol. 5, pp. 283-294, June 2001.

R. Chandrasekharam, S. Subhramanian, and S. Chaudhury, "Genetic algorithm for node
partitioning problem and applications in vlsi design," in lEE Proceedings Computers and
Digital Techniques, vol. 140, pp. 255-260, Sept 1993.

B. M. Goni and T. Arslan, "An evolutionary 3d over-the-cell router," in 12th Annual
IEEE InternationalASlC/SOC Conference, (Washington, DC.), pp. 206-209, Sept 15-

18 1999.

J. Arabas and S. Kozdrowski, "Applying an evolutionary algorithm to telecommunication
network design," IEEE Trans. on Evolutionary Computation, vol. 5, pp. 309-322, Aug
2001.

R. Drechsler, Evolutionary Algorithms for VLSI CAD. Boston MA: Kluwer, ISBN 0-
7923-8168-8, 1998.

T. Higuchi, M. Iwata, D. Keymeulen, H. Sakanashi, M. Murakawa, I. Kajitani, E. Taka-
hashi, and K. Toda, "Real-world applications of analog and digital evolvable hardware,"
IEEE Transactions on Evolutionary Computation, vol. 3, pp. 220-235, September 1999.

V. K. Vassilev, D. Job, and J. F Miller, "Towards the automatic design of more efficient
digital circuits," in In Proceedings of the Second NASA/DOD Workshop on Evolvable
Hardware, pp. 151-160,2000.

A. Thompson, "An evolved circuit, intrinsic in silicon entwined with physics," in
Evolvable Systems: From Biology to Hardware. (ICES 96), pp. 390-405, 1996.

153

References

X. Yao and T. Higuchi, "Promises and challenges of evolvable hardware," in Evolvable
Systems: From Biology to Hardware. (ICES 96), pp. 55-80, 1996.

M. Sipper and D. Mange, "Guest editorial from biology to hardware and back," IEEE
Transactions on Evolutionary Computation, 1999.

K. Imamura, J. A. Foster, and A. W. Krings, "The test vector problem and limitations
to evolving digital circuits," in In Proceedings of the Second NASA/DOD Workshop on
Evolvable Hardware, pp. 75-79,2000.

G. Tufte and P. C. Haddow, "Evolving and adaptive filter," in In Proceedings of the
Second NASA/DOD Workshop on Evolvable Hardware, pp. 143-150, 2000.

S. Levi and A. K. Agrawala, Fault tolerant system design. McGraw-Hill, 1994.

A. Thompson and R Layzeil, Analysis of unconventional evolved electronics," Commu-

nications of the ACM, vol. 42, pp. 71-79, Apr. 1999.

A. M. Tyrell, G. Hollingworth, and S. L. Smith, "Evolutionary strategies and intrinsic
fault tolerance," in In Proceedings of the Third NASA/DOD Workshop on Evolvable
Hardware, pp. 98-108, July 2001.

T.-S. Park, C.-H. Lee, and D.-J. Chung, "Intrinsic evolution for synthesis of fault recov-
erable circuit," IEICE Trans. Fundamentals, pp. 2488-2497, Dec. 2000.

A. Stoica, D. Keymeulen, and R. Zebulum, "Evolvable hardware solutions for ex-
treme temperature electronics," in In Proceedings of the Third NASA/DOD Workshop
on Evolvable Hardware, pp. 93-97, July 2001.

M. Salami, H. Sakanashi, M. Tanaka, M. Iwata, T. Kurita, and T. Higuchi, "On-line
compression of high precision printer images by evolvable hardware," in Proceedings of
Data Compression Conference. DCC '98, pp. 219-228,1998.

www.xilinx.com, "Xilinx data book 2000."

A. T. G. Fuller and B. Nowrouzian, "A novel technique for optimization over the canon-
ical signed-digit number space using genetic algorithms," in IEEE Int. Sypm. Circuits
and Systems, ISCAS, vol. 2, pp. 745-748,2001.

G. Wade, A. Roberts, and G. Williams, "Multiplier-less fir filter design using a genetic
algorithm," lEE Proc. Vision, Image and Signal Processing, vol. 141, pp. 175-180, June
1994.

B. I. Hounsell and T. Arslan, "A novel evolvable hardware framework for the evolution
of high performance digital circuits," in In Proceedings of GECCO 2000, vol. 1, (Las

Vegas USA), pp. 525-532, July 2000.

B. I. Hounsell and T. Arslan, "A novel genetic algorithm for the automated design of per-
formance driven digital circuits," in In Proceedings of IEEE Congress on Evolutionary
Computation (CEC), vol. 1, (La Hoya USA), pp. 601-608, July 2000.

154

References

B. I. Hounsell and T. Arsian, "Evolutionary design and adaptation of digital filters within
an embedded fault tolerant hardware platform," in Proceedings of 3rd NASA/DOD IEEE
workshop -on Evolvable Hardware, vol. 1, (Los Angeles USA), pp. 127-135, July 2001.

B. I. Hounsell and T. Arsian, "A programmable multiplierless digital filter array for em-
bedded soc application," In lEE Electronics Letters, vol. 37, pp. 737-737, June 2001.

B. I. Hounsell and T. Arsian, "An embedded programmable core for the implementation
off high performance digital filters," in In Proceedings of 14th Annual IEEE Interna-
tionalASiC/SoC Conference,, (Washington USA), pp. 12-14, Sept 2001.

B. I. Hounsell and T. Arsian, "n embedded programmable logic array for online adapt-
ation of multiplierless fir filters," Submitted to IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 2001.

E. F Moore, "Gedanken-experiments on sequential machines: automata studies," in An-
nals of Mathematical Studies, vol. 34, pp. 129-153, Princeton, NJ: Princeton University
Press, 1957.

G. H. Mealy, "A method of synthesizing sequential circuits," Bell Syst. Tech. J., vol. 34,
pp. 1054-79, 1955.

L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial intelligence through simulated evol-
ution. New York: Wiley, 1966.

D. B. Fogel and J. L. Fogel, "Optimal routing of multiple autonomous underwater
vehicles through evolutionary programming," in IEEE Proc. Symp. on Autonomous Un-
derwater Vehicle Technology, pp. 44-47, 1990.

W. C. Page, J. M. McDonnell, and B. Anderson, "An evolutionary programming ap-
proach to multi-dimensional path planning," in Proc. 1st Ann. Conf on Evolutionary
Programming, pp. 63-70,1992.

P. G. Harrald and D. B. Fogel, "Evolving continuous behaviours in the iterated prisoner's
dilemma," BioSystems, vol. 37, pp. 135-145, 1996.

D. B. Fogel, "The evolution of intelligent decision making in gaming," Cybernet. Syst.,
vol. 22, pp. 223-236,1991.

D. B. Fogel, "Applying evolutionary programming to selected travelling salesman prob-
lems," Cybernet. Syst., vol. 24, pp. 27-36, 1993.

I. Rechenberg, "Evolutionsstrategien," in Simulationsmethoden in der Medizin und Bio-
logie (B. Schneider and U. Ranft, eds.), pp. 83-114, Berlin: Springer, 1978.

T. Back, Evolutionary Algorithms in theory and Practice. Evolutionary Strategies Evol-
utionary Programming Genetic Algorithms. Oxford University Press, 1996.

J. R. Koza, "Hierarchical genetic algorithms operating on populations of computer pro-
grams," in Proc. 11th mt. Joint Conf on Artificial Intelligence, San Mateo, CA: Morgan
Kaufmann, 1989.

155

References

N. L. Cramer, "A representation of the adaptive generation of simple sequential pro-
grams," in Proc. 1st mt. Conf on Genetic Algorithms (J. J. Grefenstette, ed.), Hillsdale,
NJ: Eribaum, July 1985.

J. R. Koza, E H. B. I. amd D. Andre, M. A. Keane, and E Dunlap, "Automated syn-
thesis of analog electrical circuits by means of genetic programming," EEE Trans. on
Evolutionary Computation, vol. 9, pp. 109-128, July 1997.

D. Andre, F H. B. III, J. Koza, and M. A. Keane, "On the theory of designing circuits
using genetic programming and a minimum of domain knowledge," in EEE World Con-
gress on Computational Intelligence., pp. 130-135, 1998.

M. Brameier and W. Banzhaf, "A comparison of linear genetic programming and neural
networks in medical data mining," IEEE Trans. on Evolutionary Computation, vol. 5,

nn" 17-2tS Pphiiirvflfl1 rr

P. S. Negan, M. L. Wong, K. S. Leung, and J. C. Y. Cheug, "Using grammar based
genetic programming for data mining of medical knowledge," in Proc. 3rdAnnu. Conf
on Genetic Pogramming, 1998.

R. B. Nachbar, "Molecular evolution: Automated manipulation of hierarchical chemical
topology and its application to average molecular structures," Genetic Programming and
Evolvable Machines, vol. 1, pp. 57-94, April 2000.

J. Koza, Genetic Programming: On the programming of Computers by means of natural
selection. MIT Press, 1992.

K. E. K. Jr, ed., Advances in Genetic Programming. Cambridge MA: MIT Press, 1994.

J. Holland, Adaptation in Natural andArtificial Systems. University of Michigan Press,
1975.

D. B. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, 1989.

T. Back, D. B. Fogel, and T. Michalewicz, eds., Evolutionary Computation 1 Basic Al-
gorithms and Operations. Institute of Physics Publishing, ISBN 0750306645, 2000.

P. Thompson, "Circuit evolution and visualisation," in Evolvable Systems: From Biology
to Hardware. (ICES 2000), pp. 229-240, 2000.

M. Pedram, "Power minimisation in ic design: Principles and applications," ACM
Transationson Design Automation ofElectronicSystems, vol. 1, no. 1, pp. 3-56, January
1996.

V. K. Vassilev and J. F. Miller, "Scalability problems of digital circuit evolution," in In
Proceedings of the Second NASA/DOD Workshop on Evolvable Hardware, pp. 55-64,
2000.

V. K. Vassilev, J. F Miller, and T. C. Fogarty, "On the nature of two-bit multiplier land-
scapes," in In Proceedings of the First NASA/DOD Workshop on Evolvable Hardware,
pp. 36-45, 1999.

156

References

M. Murakawa, "Hardware evolution at functional level," in Proc. of the international
Conference on Parallel Problem Solving from Nature (PPSN'96), pp. 62-71, 1996.

I. Kajitani, T. Hoshino, D. Nishikawa, H. Yokoi, S. Nakaya, T. Yamauchi, T. Inuo,
N. Kajihara, M. Iwata, D. Keymeulen, and T. Higuchi, "A gate-level ehw chip: Im-
plementing ga operations and reconfigurable hardware on a single sli," in Evolvable
Systems: From Biology to Hardware. (ICES 98), pp. 1-12, 1998.

E. Ozdemir, Evolutionary methods for the design of digital circuits and systems. PhD
thesis, The University of Wales, Cardiff, 1999.

M. Tanaka, H. Sakanashi, M. Salami, M. Iwata, T. Kurita, and T. Higuchi, "Data
compression for digital color electrophotographic printer with evolvable hardware," in
Evolvable Systems: From Biology to Hardware. (ICES 98), 1998.

M. Murakawa, S. Yoshizawa, and T. Higuchi, "Adaptive equalization of digital commu-
nication channels using evolvable hardware," in Evolvable Systems: From Biology to
Hardware. (ICES 96), pp. 379-389, October 1996. Functional level approach to EHW
using taylored GA/hardware chip.

R. S. Zebulum, M. A. Pacheco, and M. Vellasco, "Evolvable systems in hardware design
taxonomy, survey and applications," in Evolvable Systems: From Biology to Hardware.
(ICES 96), pp. 344-358, 1996.

A. Hernandez-Aguirre, C. A. Coello, and B. P. Buckles, "A genetic programming ap-
proach to logic function synthesis by means of multiplexers," in Proceedings of the First
NASA/DoD Workshop on Evolvable Hardware, pp. 46-53, 1999.

R. Drechsler and W. G. unther, "Evolutionary synthesis of multiplexor circuits under
hardware constraints," in In Proceedings of Genetic and Evolutionary Computation Con-
ference (GECCO-2000, pp. 513-518 9 2000.

T. Arsian, D. H. Horrocks, and E. Ozdemir, "Structural cell-based vlsi circuit design
using a genetic algorithm," in IEEE International Symposium on Circuits and Systems,
(Atlanta, USA), pp. 308-311, 1996.

J. E Miller and P. Thompson, "Aspects of digital evolution: Geometry and learning," in
Evolvable Systems: From Biology to Hardware (ICES 98), pp. 25-35 9 1998.

A. Thompson, "On the automatic design of robust electronics through artificial evolu-
tion," in Evolvable Systems: From Biology to Hardware. (ICES 98), pp. 13-24, 1998.

P. Layzell, "Reducing hardware evolution's dependency on fpgas," in Proceedings of
the Seventh International Conference on Microelectronics for Neural, Fuzzy and Bio-
Inspired Systems. MicroNeuro '99, pp. 171-178, 1999.

D. Levi and S. A. Guccione, "Geneticfpga: Evolving stable circuits on mainstream
fpgas," in In Proceedings of the First NASA/DOD Workshop on Evolvable Hardware
(A. Stoica, D. Keymeulen, and J. L. (Eds.), eds.), pp. 12-17, IEEE Computer Society
Press, Los Alamitos, July 1999.

157

References

G. Tufte and P. C. Haddow, "Prototyping a ga pipeline for complete hardware evolution,"
in Proceedings of The First NASA/DoD Workshop on Evolvable Hardware, pp. 18 —25,

1999.

A. Hamilton, K. Papathanasiou, M. Tamplin, and T. Brandtner, "Palmo: Field program-
mable analogue and mixed-signal vlsi for evolvable hardware," in Evolvable Systems:
From Biology to Hardware. (ICES 98), pp. 335-344, 1998.

A. Hamilton, P. Thompson, and M. Tamplin, "Experiments in evolvable filter design
using pulse based programmable analogue vlsi models," in Evolvable Systems: From
Biology to Hardware. (ICES 2000), pp. 61-71, 2000.

A. Stoica, R. Zebulum, D. Keymeulen, R. Tawel, T. Daud, and A. Thankoor, "Reconfig-
urable vlsi architectures for evolvable hardware: From experimental field programmable
transistor arrays to evolution-oriented chips," IEEE Trans on Very Large Scale Integra-
tion (VLSI) Systems, vol. 9, pp. 227-232, February 2001.

P. J. Ashenden, The Designer's Guide to VHDL. Morgan Kaufmann Publishers, Inc,
1995.

T. Hikage, H. Hemmi, and K. Shimohara, "Hardware evolution system introducing dom-
inant and recessive heredity," in Evolvable Systems: From Biology to Hardware. (ICES
96), pp. 423-436, Springer, October 1996.

A. Thompson, P. Layzell, and R. S. Zebulum, "Explorations in design space: Unconven-
tional electronics design through artificial evolution," IEEE Transactions on Evolution-
ary Computation, vol. 3, pp. 267-196, September 1999.

Cadence Design Systems, Inc., BuildGates User Guide, release 2.3 ed., March 1999.

J. Bergeron, Writing Testbenches Functional Verification of HDL Models. Kluwer Aca-

demic Publishers, 2000.

[811 V. K. Vassilev, J. F. Miller, and T. C. Fogarty, "Digital circuit evolution and fitness land-
scapes," in Proceedings of the 1999 Congress on Evolutionary Computation, CEC 99,
vol. 2, pp. 1299-1306,1999.

Y. Davidor, "Epistasis variance - suitability of a representation to genetic algorithms,"
tech. rep., The Weizmann Institute of Science, Dept of Applied Mathematics and Com-
puter Science, December 1989.

J. G. Proakis and D. G. Manolakis, Digital Signal Processing, ch. 7, pp. 470-485. Mac-
millan Publishing Company, NY, 2 ed., 1992.

B. Mulgrew, P. Grant, and J. Thompson, Digital Signal Processing Concepts andApplic-
ations. MacMillan Press LTD, 1999.

N. M. Mitrou, "Results on nonrecursive digital filters with nonequidistant taps," IEEE
Trans. Acoust., Speach, Signal Processing, vol. 33, pp. 1621-1624, Dec. 1985.

R. J. Hartnett, "Design of efficient parallel hybrid fir filters using dynamic programming
and subset selection methods," in in Proc. 1990 mt. Conf Acoust., Speach, Signal Pro-
cessing, pp. 1337-1340, 1990.

158

References

J. T. Kim, W. J. Oh, and Y. H. Lee, "Design of nonuniformly spaced linear-phase fir
filters using mixed integer linear programming," IEEE Trans. Signal Processing, vol. 44,
pp. 123-126, Jan. 1996.

A. Avizienis, "Signed-digit number representation for fast parallel arithmetic," IRE
Trans. Electon. Comput, pp. 389-400,1961.

H. Samueli, "An improved search algorithm for the design of multiplierless fir filters
with powers-of-two coefficients," IEEE Trans. Circuits Syst, vol. 36, pp. 1044-1047,
July 1989.

X. Xu and B. Nowrouzian, "Local search algorithm for the design of multiplierless di-
gital filters with csd multiplier coefficients," in IEEE Canadian Conference on Electrical
and Computer Engineering, vol. 2, pp. 811-816, May 1999.

Y. C. Lim and S. R. Parker, "Fir filter design over a discrete powers-of-two coefficient
space," IEEE Trans. Acoust., Speach, Signal Processing, vol. 31, pp. 583-591, June
1983.

Q. Zhao and Y. Tadokoro, "A simple desing of fir filters with powers-of-two coefficients,"
IEEE Trans. Circuits Syst, vol. 35, pp. 566-570, May 1988.

P. Gentili, E Piazza, and A. Uncini, "Efficient genetic algorithm design for power-of-
two fir filters," in mt Conf Acoustics, Speech, and Signal Processing. ICASSP-95 , vol. 2,
pp. 1268-1271,1995.

S. Sriranganathan, D. R. Bull, and D. W. Redmill, "Design of 2-d multiplierless fir fil-
ters using genetic algorithms," in First mt Conf on Genetic Algorithms in Engineering
Systems: Innovations and Applications. GALESIA , pp. 282-286, 1995.

G. Wacey and D. R. Bull, "Architectural synthesis of digital filters for asic implementa-
tion," in Digital andAnalogue Filter and Filtering Systems, lEE Colloquium on, pp. 6/1-
6/5, 1991.

T. Arslan, H. I. Eskikurt, and D. H. Horrocks, "Configurable structures for a primitive
operator digital filter fpga," in IEEE Workshop on Signal Processing Systems, SIPS 97-
Design and Implementation, pp. 532-540, 1997.

D. W. Redmill, D. R. Bull, and E. Dagless, "Genetic synthesis of reduced complexity
filters and filter banks using primitive operator directed graphs," lEE Proc. -Circuits
Devices Syst, vol. 147, pp. 303-310, Oct. 2000.

D. R. Bull, Reduced complexity. PhD thesis, School of Electronic and Systems Engin-
eering, University of Wales, 1989.

R. A. Hawley, B. C. Wong, T. ji Lin, J. Laskowski, and H. Samueli, "Design techniques
for silicon compiler implementations of high-speed fir digital filters," IEEE Journal.
Sold-State Circuits, vol. 31, pp. 656-667, May 1996.

J. B. Evans, "An efficient fir filter architecture," in in Proc. mt. Symposium. Acoust.,
Speach, Signal Processing, vol. 1, pp. 627-630, May 1993.

159

References

I. E. Ungan and M. Askar, "A gate array chip for high frequency dsp applications," in in
Proc. mt. Conf 7th Mediterranean Electrotechnical, pp. 549-552, 1994.

S. Nooshabadi, J. A. Montiel-Nelson, and G. S. Visweswarain, "Micropipeline architec-
ture for multiplier-less fir filters," in in Proc. mt. Conf 10th Conference on VLSI Design,
pp. 451-456, Jan. 1997.

S. Yoon and M. H. Sunwoo, "An efficient multiplierless fir filter chip with variable-
length taps," in IEEE Workshop on Signal Processing Systems. SIPS 97 - Design and
Implementation, pp. 412-420,1997.

K.-Y. Khoo, A. Kwentus, and J. A. N. Wilson, "An efficient 175mhz programmable fir
digital filter," in IEEE mt Symp on Circuits and Systems, ISCAS '93, pp. 72-75, 1993.

K.-Y. Khoo, A. Kwentus, and J. A. N. Wilson, "A programmable fir digital filter using
csd coefficients," IEEE Journall, Sold-State Circuits, vol. 31, pp. 869-874, June 1996.

W. J. Oh and Y. H. Lee, "Implementation of programmable multiplierless fir filters with
powers-of-two coefficients," IEEE Trans. Circuits Syst, vol. 42, pp. 553-556, Aug. 1995.

S. R. Powell and P. M. Chau, "Reduced complexity programmable fir filters," in IEEE

mt Symp on Circuits and Systems. ISCAS '92. Proceedings, pp. 561-564, 1992.

J. F. Miller, "On the filtering properties of evolved gate arrays," in In Proceedings of the

FirstNASA/DOD Workshop on Evolvable Hardware, pp. 2-11, 1999.

S. J. Flockton and K. Sheeham, "Behaviour of a building block for intrinsic evolu-
tion of analogue signal shaping and filtering circuits," in In Proceedings of the Second
NASA/DOD Workshop on Evolvable Hardware, pp. 117-123, 2000.

Y. Tamir and M. Tremblay, "High performance fault-tolerant vlsi systems using micro
rollback," IEEE Trans. Computers, vol. 39, pp. 548-554, Apr. 1990.

J. H. Patel and L. Y. Fung, "Concurrent error detection in alu's by recomputing with
shifted operands," IEEE Trans. Computers, vol. 31, pp. 589-595, July 1982.

R. Karri, K. Hogstedt, and A. Oraioglu, "Rapid prototyping of fault tolerant vlsi sys-
tems," in mt Symp on High-Level Synthesis. 7th Proc, pp. 126-131, 1994.

L. Mintzer, "Digital filtering in fpgas," in Twenty-Eighth Asilomar Conf on Signals,
Systems and Computers, vol. 2, pp. 1373-1377, 1994.

S. A. White, "Applications of distributed arithmetic to digital signal processing: A tu-
torial review," IEEE ASSP Magazine, vol. 6, no. 3, pp. 4-19, 1989.

M. Martinez-Peiro, J. Valls, T. Sansaloni, A. P. Pascual, and E. I. Boemo, "A comparison
between lattice, cascade and direct form fir filter structures by using a fpga bit-serial
distributed arithmetic implementation," in 6th IEEE Proc. mt. Conf Electronics, Circuits
and Systems (ICECS'99), vol. 1, pp. 241-244, 1991.

V. Pasham, A. Miller, and K. Chapman, "Application notes from virtex and virtex-ii
series: Transposed form fir filters," tech. rep., Xilirix, January 10th 2001.

160

References

A. Amira, A custom coprocessor for matrix algorithms. PhD thesis, University of Be!-
fast, 2001.

D. C. Chen and J. M. Rabaey, "A reconfigurable multiprocessor ic for rapid prototyping
of algorithmic-specific high-speed dsp data paths," IEEE journal of Solid-State Circuits,
vol. 27, pp. 1895-1904, Dec 1992.

K. Rajagopalan and P. Sutton, "A flexible multiplication unit for an fpga logic block," in
Int. Symp on Circuits and Systems (ISCAS) 2001, vol.4, pp. 546-549,2001.

N. Venkateswaran, A. K. Murugavel, and G. Chandramouli, "Field programmable dsp
transform arrays," in IEEE Workshop on Signal Processing Systems (SIPS), pp. 152-161,
1998.

R. Porter, k. McCabe, and N. Bergmann, "An applications approach to evolvable hard-
ware," in In Proceedings of the First NASA/DOD Workshop on Evolvable Hardware,
pp. 170-174, 1999.

M. Sipper, M. Goeke, D. Mange, A. Stauffer, E. Sanchez, and M. Tomassini, "The firefly
machine: online evoiware," in IEEE mt Conf on Evolutionary Computation, pp. 181-
186, 1997.

Y.-H. Choi and D. J. Chung, "Vlsi procsesor of parallel genetic algorithm," in Proceed-
ings of the Second IEEEAsia Pacific Conference onASICs. AP-A SIC 2000, pp. 143-146,
2000.

T. Higuchi, M. Masahiro, M. Iwata, I. Kajitani, W. Liu, and M. Salami, "Evolvable
hardware at functional level," in IEEE International Conference on Evolutionary Com-
putation, pp. 187-192, 1997.

S. Wakabayashi, T. Koide, N. Toshine, M. Goto, Y. Nakayama, and K. Hayya, "An lsi
implementation of an adaptive genetic algorithm with on-the-fly crossover operator se-
lection," in Proceedings of the ASP-DAC '99. Asia and South PacificD esign Automation
Conference, vol. 1, pp. 37-40, 1999.

E. Zwyssig, "Low power digital filter design for hearing aid applications," Master's
thesis, The University of Edinburgh UK, 2000.

C. R. Reeves, "Predictive measures for problem difficulty," in Congress on Evolutionary
Computation, CEC, vol. 1, pp. 736-743,1999.

P. Merz and B. Freisleben, "On the effectiveness of evolutionary search in high-
dimensional nk-landscapes," in IEEE mt. Conf on Computational Intelligence. Evol-
utionary Computation Proceeding, pp. 741-745, 1998.

H. Tsutsui, K. Hiwada, T. Izumi, T. Onoye, and Y. Nakamura, "A design of lut-array -
based pid and a synthesis approach based on sum of generalized complex terms expres-
sion," in IEEE Int. Symp on Circuits and Systems, ISCAS '2001, vol. 5, pp. 203-206,
2001.

161

References

J. McClellan, T. W. Parks, and L. R. Rabiner, "A computer program for designing
optimum fir linear phase digital filters," Transactions on Audio and Electroacoustics,

pp. 506-526, Dec. 1973.

A. Thompson, "Evolving fault tolerant systems," inFirstlnt. Con! on GeneticAlgorithms
in Engineering Systems: Innovations and applications. GALESIA, pp. 524-529, 1995.

A. Stoica, D. Keymeulen, V. Duong, and C. Salazar-Lazaro, "Automatic synthesis and
fault-tolerant experiments on an evolvable hardware platform," in IEEE Aerospace Con-

ference Proceedings, vol. 5, pp. 465-471, 2000.

J. D. Lohn, G. L. Haith, S. P. Colombano, and D. Stassinopoulos, "Towards evolving cir-
cuits for autonomous space applications," in IEEE Aerospace Conference Proceedings,

vol. 5, pp. 473-486,2000.

162

Appendix A
VHDL Code for DSP Circuits

A.! VHDL gate-level description of 2-bit multiplier

LIBRARY ieee; USE ieee.std_logic_1164 .ALL;
USE WORK, library_cells .ALL;

ENTITY multi_2bit IS
PORT(SIGNAL mO, ml, in2, in3 : IN std_ulogic;

SIGNAL outO, outi, out2, out3 	OUT std_ulogic);
END multi_2bit;

ARCHITECTURE struc OF multi_2bit IS
SIGNAL interO, interi, inter2, inter3 : std_ulogic;
SIGNAL zero : std_ulogic : '0';

BEGIN
cell_O :AND_2input

PORT MAP (mO, in2, outO);
cell_i :AND_2input

PORT MAP (ml, in2, interO);
cell_2 :AND_2 input

PORT MAP (ml, in3, inter2);
cell_3 :AND_2 input

PORT MAP (mO, in3, interl);
cell_4 :FULLADDER

PORT MAP (interl, zero, interO, outi, inter3);
cell_5 : FULLADDER
PORT MAP (zero, inter3, inter2, out2, out3);

END struc;

A.2 7-bit pattern recognizer (one's voter)

LIBRARY ieee;
USE ieee.std_logic_1164 .ALL;
USE WORK, library_cells .ALL;

ENTITY recog_7bit IS
PORT(SIGNAL mO, i, in2, in3, in4, ins, in6 : IN std_ulogic;

SIGNAL outO : OUT std_ulogic);
END recog_7bit;

ARCHITECTURE struc OF recog_7bit IS

163

VHDL Code for DSP Circuits

SIGNAL interi, inter2 : std_ulogic;
BEGIN

cell-0: recog_3bit
PORT MAP (mO, ml, in2, interi);

cell-1: recog_3bit
PORT MAP (in3, in4, in5, inter2);

cell-2: recog_3bit
PORT MAP (interi, inter2, in6, outO);

END struc;

A.2.1 3-bit pattern recognizer

LIBRARY ieee; USE ieee.std logic 1164.ALL;

ENTITY recog_3bit IS
PORT(SIGNAL mO, ml, in2 : IN std_ulogic;

SIGNAL outO : OUT std_ulogic);
END recog_3bit;

ARCHITECTURE struc OF recog_3bit IS
BEGIN

outO <= ((mO AND ml) OR (mO AND in2) OR (ml AND in2));

END struc;

A.3 A behavioural model of a two tonne discriminator

LIBRARY ieee;
USE ieee. std_logic_i i64 .ALL;
USE ieee. numeric_std . ALL;

ENTITY bhv tonne IS
PORT(SIGNAL f req_in 	: IN std—logic;

SIGNAL clock 	: IN std—logic;
SIGNAL decision : OUT std—logic);

END bhv_tonne;

ARCHITECTURE bhv OF bhv_tonne IS
BEGIN

MainBody: PROCESS(clock, f req_in)
VARIABLE pos_count : integer RANGE 0 TO 255 : 0;
VARIABLE count—decision : std—logic;

BEGIN
IF freq_in
THEN

IF rising_edge (clock)
THEN
pos_count : pos_count + 1;

END if;
ELSIF f req_in = 1 0'

164

InputJ

Input

Input

Input

Outputl

Output2

Output3

Output4

VHDL Code for DSP Circuits

THEN
CASE pos_count IS
WHEN 4 =>

count decision : 1 0 1 ;

WHEN 12 =>
count—decision : '1';

WHEN OTHERS =>
count _decision := count—decision;

END CASE;
pos_count := 0;

END IF;
decision <= count decision;

END PROCESS MainBody;
END bhv;

A.4 Schematic of 2x2-bit Parallel Multiplier Evolved by Miller et.al .
and Associated VHDL Code

Figure A.!: 2x2-bit parallel multiplier evolved my Miller et.aL

-- Description of Miller 'Novel' 2x2 parallel multiplier
-- Taken from "Digital Circuit Evolution and Fitness
-- Landscapes", Proceedings of the 1999 Congress on
-- Evolutionary Computation, CEC 99

LIBRARY ieee;
USE ieee. std_logic_1 164 .ALL;
USE ieee . numeric_std . ALL;

ENTITY Miller2x2mult IS

165

A1n2

Am!

AinO

13in2

Bin!

BinO

Pout5

Pout4

Pou!3

Pout2

Pout!

PoutO

VHDL Code for DSP Circuits

PORT(SIGNAL Input : IN std_logic_vector(3 DOWNTO 0);
SIGNAL Output : OUT std_logic_vector(3 DOWNTO 0));

END Miller2x2mult;

ARCHITECTURE rtl OF Miller2x2mult IS
BEGIN

-- purpose: describes 2x2-bit multiplier at gate-level
multiplier: process (Input)

variable nodel, node2, node3 : std logic;
begin

nodel := (not Input(0)) or (not Input(3));
node2 := Input(l) and Input(2);
node3 := nodel and (not node2);
Output(0) <= node3;
Output(1) <= (not node3) and (Input(0) and Input(2));
Output(2) <= (not nodel) xor node2;
Output(3) <= Input(1) and Input(3);

end process multiplier;
END rtl;

A.5 Schematic of 30-bit Parallel Multiplier Evolved by Miller et.al .
and Associated VHDL Code

Figure A.2: 3x3-bit parallel multiplier evolved my Miller et.al .

166

VHDL Code for DSP Circuits

-- Description of Miller 'Novel' 3x3 parallel multiplier
-- Taken from "Towards the Automatic Design of More
-- Efficient Digital Circuits", In Proceedings of the
-- Second NASA/DOD Workshop on Evolvable Hardware, 2000

LIBRARY ieee;
USE ieee. std_logic_1l64 .ALL;
USE ieee. numeric_std .ALL;

ENTITY Miller3x3mult IS
PORT(SIGNAL Am, Bin : IN std _ logic _vector(2 DOWNTO 0);

SIGNAL Pout 	: OUT std_logic_vector(5 DOWNTO 0));
END Miller3x3mult;

ARCHITECTURE rtl OF Miller3x3mult IS
BEGIN

-- purpose: describes 3x3-bit multiplier at gate-level
multiplier: process (Am, Bin)

variable nodel, node2, node3, node4 : std _logic;
variable node5, node6, node7, node8, node9 : std—logic;

begin
nodel 	: Ain(0) and Bin(0);
Pout(0) <= nodel;
Pout(l) <= (Ain(0) and Bin(l)) xor (Ain(l) and Bin(0));
node2 	:= Ain(0) and Bin(2);
node3 	:= Ain(l) and Bin(l);
node4 	:= node3 and (not nodel);
node5 	:= (Ain(2) and Bin(0)) xor node4;
Pout(2) <= node2 xor node5;
node6 	:= Ain(2) and Bin(2);
node7 	:= (Ain(l) and Bin(2)) xor (Ain(2) and Bin(l));
node8 	:= ((node2 xor node4) and node5) xor node3;
Pout(3) < node7 xor node8;
node9 : nodel and node8;
Pout(4) < node9 xor ((not node4) and node6);
Pout(5) < (node3 xor node9) and node6;
end proces s multiplier;

END rtl;

167

Appendix B
Further Details of FPGA and
PLA-Based EHW Platforms

B.1 Postscript Templates of FPGA Interconnect Topologies for Graph-
ical Representation

B.1.1 Elements of Postscript That Are Common to FPGA Interconnect Tem-
plates

.5 .5 scale

/box size 65 cief
/x size 8 def
/y_size 8 def
/grid—Spacing 130 def

/box {
newpath
moveto
gsave box

—size 0 rlineto
0 box—size 2 dlv rlineto
yshift y_size ne

gsave
1 0 0 setrgbcolor
grid _spacing 2 dlv 0 rllneto
stroke
grestore

}if
0 box_size 2 dlv rlineto
box_size neg 0 rlineto
closepath
stroke
grestore

/Courrier flndfont % Get the basic font
15 scalefont 	% Scale the font to 15 points
setfont 	 % Make it the current font

} det

/tap_box {
newpath
zoveto
gsave
5 setlinewidth
box_size 0 rlineto
0 box_size rlineto
box_size neg 0 rlineto
closepath
stroke
grestore

} def

/background_box{
mveto
%DRAW HIGHLIGHTED BOX
box size 0 rlineto 	% right
0 box—Size rlineto 	% up
box—Size neg 0 rlineto % left
0 box—Size neg rlineto % down
% SET COLOUR OF BACKGROUND BOX TO GREY
gsave
.75 .75 .75 setrgbcolor
gsave

Further Details of FPGA and PLA-Based EHW Platforms

fill
grestOre
stroke
grestOre
stroke

} def

/rgb_box (
zxveto
%DRAW HIGHLIGHTED BOX
box_size 0 rlineto 	% right
o box_size rlineto 	% up
box_size neg 0 rlinetO % left
o box-size neg rlineto % down

} def

/left_xnux {
nxweto
box_size 2 dlv box-size rmoveto % moveto start (top of box)
gsave
o 1 0 setrgbcolor % Set left Mux input green
o 6 rilneto % up
box_size neg 0 rlineto % left
o box size 4 dlv rlineto % up

grestore
box 	neg box _size 4 div 6 add rmoveto _size
box_size 3 dlv 0 rllneto % right (mux symbol bottom right)
box _size 3 div neg 20 rlineto % up-left
box-size 6 div neg 0 rlineto % left
gsave
0 box size 4 div rllneto % up
box 	0 rlineto _size % right
box size 6 div 0 rllneto 6 right
0 6 rlineto 6 up
stroke
grestore
box size 6 div neg 0 rllneto 6 left
box size 3 div neg 20 neg rlineto % down-left (mux symbol bottom right)
box-size 3 div 0 rlineto 6 right
gsave
0 0 1 setrgbcolor 6 Set left Mux input blue
0 box-size 4 div neg rlineto % down
box_size neg 0 rlineto % left
0 box-size 2 mul neg rilneto 6 down

yshlft 1 eq

xshift 1 eq

10.9 12.5 llneto % down
12 0 	rllneto

)if
}if

stroke
grestore
box size 3 dlv 0 rlineto % right
stroke

} def

/bottom_mux {
moveto
box size 2 div 0 rmoveto
0 boxsize 2 div neg rllneto 6 down
box size 6 div neg 0 rlineto 6 left
box size 3 div neg 20 neg rlineto 6 down-left (mux symbol bottom right)
box-size 3 div 0 rlineto 6 right
gsave
0 0 1 setrgbcolor 6 Set left Mux input blue
0 box size neg rlineto 6 down
box _size 2 mul neg 0 rllneto % left
stroke
grestore
box-size 3 div 0 rllneto 6 right
gsave
0 1 0 setrgbcolor % Set right Mux input green
0 box _size 3 div neg rilneto % down
stroke
grestore
box size 3 dlv 0 rlineto 6 right
box size 3 dlv neg 20 rlineto % up-left
box size 6 div neg 0 rlineto % left
stroke

} def

/VDD {
/Courrier findfont S Get the basic font
18 scalefont S Scale the font to 15 points

Further Details of FPGA and PLA-Based EHWPlatfornis

setfont 	 % Make it the current font

newpath
Ixzveto
box _size 3 dlv box size 3 div add box—size 2 dlv box—size 3
dlv add 20 add neg rmoveto

15 neg 0 rmoveto
30 0 rlineto
gsave
0 1 0 setrgbcolor 	 % Set VDD text colour to green
31 neg 15 neg rmoveto
(VDD) show
grestore
stroke

} def

/ground {
/Courrier flndfont % Get the basic font
18 scalefont % Scale the font to 15 points
setfont % Make it the current font
moveto
gsave
1 0 0 setrgbcolor % Set pen colour red

0 box size 2 div rmoveto % Move up half of box
box size box size 3 dlv add neg 0 rlineto _ % left
0 box_size 3div neg rlineto % down
gsave
box _size 4 div neg 0 rmoveto % left
box size 2 dlv 0 rlineto % right
stroke
grestore

17 neg 15 neg rmoveto
(VDD) show

stroke
grestore

} def

fright_ground
/Courrier findiont S Get the basic font
18 scalefont S Scale the font to 15 points
setfont S Make It the current font
Inoveto
gsave
1 0 0 setrgbcolor % Set pen colour red

box _size box—size 2 div rinoveto S Move up half of box
box _size 2 dlv 0 rlineto S right
0 box—size 3 dlv neg rilneto S down
gsave
box size 4 div neg 0 rnloveto S left
box size 2 dlv 0 rlineto S right
stroke
grestOre

17 neg 15 neg rinoveto
(VDO) show

stroke
grestOre

} def

/routing_block_vrt {
rmoveto
box size 3 dlv 0 rlineto S right
o box size 8 dlv rlineto S up
box _size 3 dlv neg 0 rllneto S left
0 box—size 8 div neg rlIneto S down

} def

/routing_block_hrz {
rxnoveto
box size 8 div 0 rlineto S right
0 boxsize 3 div rlineto S up
box size 8 div neg 0 rlineto S left
0 	x_size bo 3 div neg rlineto S down

} def

/addition block {
rxnoveto
S DRAW BOX
box size 2 dlv 0 rlineto S right
0 	xsize bo 2 dlv rlineto S up
box size 2 dlv neg 0 rlineto % left
0 box_size 2 dlv neg rlineto S down

S SET COLOUR OF ADDITION BLOCK TO YELLOW

170

Further Details of FPGA and PLA -Based EHW Platforms

gas
1 1 0 setrgbcolor
gsave
fill
grestore
stroke
grestore

% DRAW ADDITION SYMBOL
gsave
box size 4 dlv box size 8 div rmoveto
O box size 4 dlv rlineto 	% up
box—size 8 div neg box_size 8 div neg reoveto
box size 4 dlv 0 rlineto 	% right
stroke
grestore
stroke

}def

/subtraction block {
Eluoveto
% DRAW BOX
box size 2 dlv 0 rllneto 	% right
bo O x_size 2 dlv rlineto 	% up

box—size 2 div nog 0 rllneto 9 left
o box—size 2 div neg rilneto 9 down

9 SET COLOUR OF SUBTRACTION BLOCK TO YELLOW
gsave
1 1 0 setrgbcolor
gsave
fill
grestore
stroke
grestore

9 DRAW SUBTRACT SYMBOL
gsave
box size 8 div box_size 4 div rmovetO
box size 4 div 0 rlineto 9 right
stroke
grestore
stroke

}def

/Shifter block {
/shift_value exch def

9 DRAW BOX
box size 2 div 0 rlineto 	% right
o boxsize 2 dlv rlineto 	% up
box size 2 div neg 0 rllnetO % left
o box—size 2 dlv neg rlineto % down

% SET COLOUR OF SUBTRACTION BLOCK TO YELLOW
gsave
1 1 0 setrgbcolor
gsave
fill
grestore
stroke
grestore

9 DRAW VALUE OF LEFT SHIFT
gsave
/Courrier findfont % Get the basic font
19 Bcalefont 	% Scale the font to 19 points
setfont 	 % Make it the current font
5 12 rmoveto
(S) show
1 0 rinoveto
shift_value (xxxx) cvs show
grestOre
stroke

}def

171

Further Details of FPGA and PLA-Based EHW Platforms

B1.2 Postscript Template for Alternating Feed-Forward Array (AFFA) FPGA
Interconnect Topology

START PROGRAM

1 1 x_size

/xshift exch def
1 1 y_size

/yshift exch del

DRAW BOTTOM MUX AND BOTTOM WRAP CONNECT
xshift 1 eq

yshift grid _spacing mul xshift grid _spacing mul bottom _mux
yshift grid—spacing mul xshift grid_spacing mul VDD

} if

% DRAW THE BOX
yshift grid—spacing mul xshift grid—spacing mul box
yshift 1 eq 	-

stroke

%gsave
%1 1 1 setrgbcolor
%.86 .86 .25 setrgbcolor
%gsave
%fil].
%grestOre
stroke
%grestore

}ifelse

% DRAW LEFT MUX
ysbift 1 eq
{ %if

xshift x_size eq not
{ %if

yshift grid—Spacing mul xshift grid spacing mul left—mux
}if

% ALTERNATE GROUND CONNECTION
xshift 2 mod 0 ne

% Draw ground connection to PALU
yshift grid—spacing mul xshift grid_spacing mul ground

}if

{ %else
yshift grid—Spacing mul xshift grid—Spacing mul moveto
box size 2 div box size rmoveto
x_size xshift eq not

gsave
o i o setrgbcolor
o grid spacing 2 div rlineto
stroke
grestore

}if
}ifelse

% DRAW FAR RIGHT GROUND
yshift y_size eq

xshift 2 mod 0 eq

Draw ground connection to PALU
yshift grid—Spacing mul xshift grid spacing mul right_ground

}if
}if

} for
} for

172

Further Details of FPGA and PLA -Based EHW Platforms

B.13 Postscript Template for Continuous Feed-Forward Array (CFFA) FPGA
Interconnect Topology

START PROGRAM

1 1 x_size

/xshift exch def
1 1 y_size

/yshift exch def

% DRAW BOTTOM MUX AND BOTTOM WRAP CONNECT
xshift 1 eq 	 -

yshitt grid _spacing mul xshift grid spacing mul bottom_mux
yshift grid—spacing mul xshift grid—Spacing mul VDD

)if

% DRAW THE BOX
yshift grid

—
spacing mul xshift grid—Spacing mul box

yshift 1 eq

Lroke

%gsave
%1 1 1 setrgbcolor
%.86 .86 .25 setrgbcolor
%gsave
%fill
%grestore
stroke
%grestore

}ifelse

% DRAW LEFT MUX
yshift 1 eq
{ %if

xshift x_size eq not
{ %if

yshift grid—spacing mul xshift grid—spacing mul left_mux
}if

% Draw ground connection to PALO
yshift grid—spacing mul xshift grid—Spacing mul ground

{ %else
yshift grid—spacing mul xshift grid spacing mul moveto
box _size 2 div box—size rmoveto
x_size xshift eq not

gsave
o 1 0 setrgbcolor
o grid—Spacing 2 div rlineto
stroke
grestore

}if
}ifelse

} for
} for

B.1.4 Postscript Template for Continuous Feed-Forward Loop Array (CLFFA)
FPGA Interconnect Topology

/wrap {
/Courrier findfont 	 % Get the basic font
18 scalefont 	 % Scale the font to 15 points
setfont 	 % Make it the current font

newpath
ncveto
xshift x_size eq
{ %if

box—Size 2 div box size 2 inul box—size 3 div add rmoveto
15 neg 0 rmoveto
30 0 rlineto
0 box—Size 3 div neg rlineto 	% down
30 neg 0 rlineto
closepath
gRave
0 1 0 setrgbcolor
gsave
fill

173

Further Details of FPGA and PLA-Based EHW Platforms

grestore
stroke
grestore
5 16 negrNDveto
yshift (xxxx) cvs show

{ %else
box _size 3 div box—size 3 div add box—size 2 div box—size 3
dlv add 20 add neg rinovetO

15 neg 0 rinoveto
30 0 rllneto
yshift 1 eq
{ %if

gsave
0 1 0 setrgbcolor
	 % Set VDD text colour to green

31 neg 15 neg rnloveto
(VDD) show
grestore

{%else
0 box _size 3 dlv neg rlineto
	% down

30 neg 0 rlineto
closepath
gsave
0 1 0 setrgbcolor
gsave
fill
grestOre
stroke
grestore
5 16 neg rmoveto
yshlft 1 sub (xxxx) cvs show

}lfelse
}lfelse

stroke
} def

START PROGRAM

1 x_size

/xshift exch def
1 1 y_slze

/yshift exch def

% DRAW BOTTOM MUX AND BOTTOM WRAP CONNECT
xshift 1 eq

yshift grid—Spacing mul xshift grid—spacing rnul bottom_mux
yshift grid—Spacing mul xshift grid—spacing mul wrap

}if

% DRAW THE BOX
yshift grid—Spacing mul xshift grid—spacing mul box
yshift 1 eq

stroke

%gsave
%1 1 1 setrgbcolor
%.86 .86 .25 setrgbcolor
%gsave
%flll
%grestore
stroke
%grestore

}ifelse

% DRAW LEFT MUX
yshift 1 eq
{ %if

xshift x_size eq not
{ %if

yshift grid spacing mul xshift grid spacing mul left —mux

{ %else
yshift grid—spacing mul xshift grid—spacing mul moveto
box—size 2 div box size rNDvetO
gsaVe
0 1 0 setrgbcolor
0 grid spacing 2 div rlineto
stroke
grestore

}ifelse

% Draw ground connection to PALU

174

Further Details of FPGA and PIA-Based EHW Platforms

yshift grid—spacing inul xshift grid—spacing inul ground

{ %else
yshift grid—Spacing inul xshift grid—spacing mul moveto
box_size 2 div box _size rmoveto
y_size x_size mul yshift xshift mul eq not

gsave
o i o setrgbcolor
O grid—spacing 2 div rlineto
stroke
grestore

)if
}ifelse

% DRAW TOP WRAP CONNECTS
xshift x_size eq

yshift y_size eq not

yshift grid—spacing nail xshift grid—spacing mul wrap
}if

}if

} for
for

B.2 Postscript Templates of PIA Interconnect Topologies for Graph-
ical Representation

131.1 Elements of Postscript That Are Common to PtA Interconnect Templates
%%Orientation: Landscape

/box—Size 65 def
/grid_spacing_vrt box—size 2 inul def
/grid_spacing_hrz box_size 3 nail def

yscale xscale scale
90 rotate
0 grid_spacing_vrt x_size 2 add mill neg translate

/colourA{
.7 .7 1 setrgbcolor

} def

/COlOurB{
1 .4 .4 setrgbcolor

} def

/colourC {
1 .8 0 setrgbcolor

} def

/COlOurD{
.2 .7 .8 setrgbcolor

} def

/cOlOurE{
.5 .8 0 setrgbcolor

} def

/PALU{
/Courier findfont 	 % Get the basic font
25 scalefont 	 % Scale the font to 15 points
setfont 	 % Make it the current font

newpath
naiveto
box—size 0 rlineto 	 % right
0 box_size 2 div rlineto 	% up

yshift y_size ne

gsave
box size 2 div 0 rlineto 	% right

% DISPLAY OUTPUT NUMBER
box size 3 div neg 5 rmoveto
xsh_ift 1 sub (xxxx) cvs show

stroke
grestore

175

Further Details of FPGA and PLA -Based EHW Platforms

}if

o box _size 2 div rlineto 	% up
box_size neg 0 rlineto 	 % left
O box _size 4 div neg rlineto 	% down
gsave
box _size 2 dlv neg 0 rilneto 	% left
stroke
grestore
o box _size 2 div neg rlineto 	% down
gsave
box size 2 dlv neg 0 rlineto 	% left
Stroke
grestore
o box _size 4 div neg rlineto 	% down
closepath
gsave

% SET COLOUR OF ROUTING BLOCK FOR CONNECTION CLARITY
yshift 2 mod 1 eq

colourA

colours
)ifelse

yshift X2—colour eq

colourC
/X2 —colour X2 —colour 4 add Store

}if
yshift X4—colour eq

colourD
/X4—colour X4 —colour 6 add store

)if
yshift X4—colour 4 sub eq

colourE
}if
gsave
fill
grestore
stroke
grestOre

} def

/Shifter{
/Courier flndfont 	 % Get the basic font
25 scalefont 	 % Scale the font to 15 points
setfont 	 % Make it the Current font

newpath
moveto
box size 0 rlineto 	 % right
0 box_size 2 div rlineto 	% up

gSave
box—size 2 div 0 rlineto 	% right

% DISPLAY OUTPUT NUMBER
box _size 3 div neg 5 rmoveto
xshift 1 sub (xxxx) cvs show

stroke
grestore

o box size 2 div rlineto % up
box—Size neg 0 rlinetO % left
o box—size 2 div neg rlineto % down
gsave
box _size 2 div neg 0 rlineto % left
stroke
grestore
o box _size 2 div neg rlineto % down
closepath

gsave
% SET COLOUR OF Shifter
colourA
gsave
fill
grestore
stroke
grestore

} def

176

Further Details of FPGA and PIA-Based EHW Platforms

/inputbus{
/Courier findfont 	 % Get the basic font
20 scalefont 	 % Scale the font to 25 points
setfont 	 % Make it the current font

gsave
yshift grid_spacing_hrz mul xshift grid_spacing_vrt mul moveto
box-Size 2 div neg box-Size 2 div reoveto
0 grid_spacing_vrt x_size 1 sub mul 2 dlv rlineto
gsave
100 neg 0 rlineto

% SHOW IMPULSE STRING
0 5 rmoveto
(IMPULSE) show

stroke
grestore
0 grid_spacing_vrt x_size 1 sub mul 2 dlv rlineto
stroke
grestore

} def

/routing {

box _size 0 rmoveto 	 % move to bottom right of PALU at
box-size 2 dlv box_size 2 dlv neg rooveto % 1/2 box -Size distance

box size 0 rlineto 	 % right
bo 0 x_size x_slze mul rlineto 	% up

0 grid_spacing_vrt 2 dlv x_size mul rilneto 	% up
box size neg 0 rlineto 	 % left
0 box_ size x_slze nail neg rlineto % down
0 grid_spacinig_vrt 2 div x_size mul ileg rlineto % down
stroke

} def

/connection _block(
rmoveto
box size 1.5 div 0 rlineto 	% right
0 box_size 2 dlv rlineto 	% up
box-size 1.5 dlv neg 0 rlineto % left
o box-size 2 dlv neg rllneto 	% down

} def

/addition block(
rmoveto
% DRAW BOX
box size 2 dlv 0 rlineto 	% right
0 box_size 2 div rlineto 	% up
box-size 2 div neg 0 rlineto % left
0 box-size 2 div neg rllneto % down

% SET COLOUR OF ADDITION BLOCK TO WHITE
gsave
1 1 1 setrgbcolor
gsave
fill
grestore
Stroke
grestore

% DRAW ADDITION SYMBOL
gsave
box size 4 div box size 8 dlv rmoveto
0 box size 4 dlv rilneto 	% up
box _size 8 dlv neg box-Size 8 div neg rmoveto
box _size 4 dlv 0 rlineto 	% right
stroke
greStore
stroke

} def

/subtraction _block(
rmoveto
% DRAW BOX
box size 2 div 0 rilneto 	% right

bo 0 x_size 2 dlv rilneto 	% up
box _size 2 div neg 0 rlineto % left
0 box_size 2 dlv neg rlineto % down

% SET COLOUR OF SUBTRACTION BLOCK TO WHITE
gsave
1 1 1 setrgbcolor
gsave
fill
grestore
stroke
grestore

177

Further Details of FPGA and PIA-Based EHW Platforms

% DRAW SUBTRACT SYMBOL
gsave
box_size 8 div box—size 4 dlv rmoveto
box size 4 div 0 rlineto % right
stroke
grestore
stroke

}def

/Shifter _block(
rmoveto
% DRAW BOX
box size 2 div box size 4 dlv add 0 rlineto 	% right
O box size 2 div rlineto 	% up
box size 2 div box size 4 div add neg 0 rlineto % left
o box_size 2 div neg rlineto % down

% SET COLOUR OF SUBTRACTION BLOCK TO WHITE
gsave
1 1 1 setrgbcolor
gsave
fill
grestore
stroke

stroke
}def

/X2_fast_route(
box _size 4 div 0 rmoveto
box—size 2 mul box—size 2 div neg rmoveto

% SET TWO ROUTE LINES SO CONNECTIONS ARE MORE VISABLE
yshift 2 mod 0 eq

o box size 2 div neg rlineto 	% down
grid_spacing_hrz 2 mul box_size 2 div sub 0 rlineto % right
o box—size 2 div rilneto 	 % up

O box size neg rlineto 	% down
grid_spacing_hrz 2 mul box_size 2 div sub 0 rlineto % right
o box size rlineto 	 % up

}ifelse
stroke

}def

/X4_f ast_route (
box size 4 dlv 0 rmoveto
box—size 2 mul box—size 2 div neg rmoveto

S SET TWO ROUTE LINES SO CONNECTIONS ARE MORE VISABLE
yshlft 4 mod 0 eq

O box size 1.5 mul meg rlineto 	 S down
grid_spacirig_hrz 4 mul box—Size 2 dlv sub 0 rlineto S right
o box—size 1.5 mul rlineto 	 S up

o box size neg rlinetO 	 S down
grid_spaclng_hrz 4 mul box—Size 2 dlv sub 0 rlineto S right
o box size rlineto 	 S up

)ifelse

stroke
}def

/highlight—box(
rmoveto
%DRAW HIGHLIGHTED BOX
box size 0 rlineto 	S right
o 13;x size rlinetO 	S up
box_size neg 0 rilneto S left
o box_size neg rlineto S down
closepath
7 setlinewidth
o 0 0 setrgbcolor
stroke

} def

/backgrOufld_bOX {
rmovetO
%DRAW HIGHLIGHTED BOX
box size 0 rilneto 	S right
o box _size rlineto 	S up
box—size neg 0 rlineto S left
o box size neg rlineto S down
S SET COLOUR OF BACKGROUND BOX TO GREY

178

Further Details of FPGA and PLA-Based EHW Platforms

gsave
.75 .75 .75 setrgbcolor
gsave
fill
grestore
Stroke
grestore
Stroke

} clef

B.2.2 Postscript Template for Route 1 PLA Interconnect Topology
GENERATE ROUTE 1 PLA TEMPLATE

1 1 x_size

/X2—colour 3 clef
/X4 colour 2 clef
/xshift exch clef

1 1 y_size

/yshift exch clef

% DRAW SHIFTER
yshift 1 eq

yshift grid_spacing_hrz inul xshift grid_spacing_vrt mul Shifter

% DRAW INPUT BUS
xshift 1 eq

input_bus
}if

% DRAW PALO

yshift grid_spacing_hrz mcii xshift grid _spacing _vrt mul PALU
}ifelse

yshift grid_spacing_hrz miii xshift grld_spacing_vrt mul moveto

% DRAW INTERCONNECT BOX

xshift 1 eq

yshift y_size ne

% DRAW ROUTING BLOCK
gSave
routing
grestOre

)if
)if
stroke

} for

} for

B.23 Postscript Template for Route 2 PIA Interconnect Topology
GENERATE ROUTE 2 PLA TEMPLATE

1 1 x_size

/X2 colour 1 def
/xshift exch def

1 1 y_size

/yshift exch clef

% DRAW SHIFTER
yshift 1 eq

yshift grid_spacing_hrz inul xshift grid_spacing_vrt mcii Shifter

% DRAW INPUT BUS
xshift 1 eq

input—bus
}if

% DRAW PALU

179

Further Details of FPGA and PLA -Based EHW Platforms

yshift grid_spacing_hrZ mul xshift grid_spaCing_vrt mul PALO

}ifelse

yshift grid_spacing_hrz mul xshift grid_spacing_vrt mul moveto

% DRAW INTERCONNECT BOX

xshift 1 eq

yshift y_size ne

% DRAW ROUTING BLOCK
gsave
routing
grestOre
stroke

% DRAW 2X FAST INTERCONNECT
yshift y_size 2 Rub it

gsave
yshift grid _spaciflg_hrZ mui xshift grid_spacing_vrt
mul X2_fast_route
grestore

}if
}if
stroke

} for

} for

B.2.4 Postscript Template for Route 3 PIA Interconnect Topology

GENERATE ROUTE 3 PIA TEMPLATE %%%%%%%%%%%%%%%

1 1 x_size

/X2 colour 3 def
/X4 colour 2 def
/xshift exch def

1 1 y_size

/yshift exch def

% DRAW SNIFTER
yshift 1 eq

yshift grid_spacing_hrz mul xshift grid_spacing_vrt mul Shifter

% DRAW INPUT BUS
xshift 1 eq

input_bus
}if

% DRAW PALU

yshift grid_spacing_hrz mul xshlft grid_spacing_vrt mul PALO

}ifelse

yshift grid_spacing_hrz mul xshift grid_spacing_vrt mul moveto

% DRAW INTERCONNECT BOX

xshift 1 eq

yshift y_size as

% DRAW ROUTING BLOCK
gsave
routing
grestOre

% DRAW 2X FAST INTERCONNECT ON ODD 'YSHIFTS' ONLY
yshift 2 mod 1 eq

yshift y_size 2 sub it

gSaVe
X2_fast_rOute
grestOre

} if
)if
% DRAW 4X FAST INTERCONNECT ON EVEN 'YSHIFTS' ONLY

Further Details of FPGA and PLA-Based EHW Platforms

yshift 2 mod 1 ne

yshift y_size 4 sub it

gsave
X4_fast_route
grestore

}if
}if

}if
}if
stroke

} for

} for

B.2.5 Postscript Template for Route 4 PIA Interconnect Topology

GENERATE ROUTE 4 PLA TEMPLATE

1 1 x_size

/X2—colour 3 def
/X4 colour 2 def
/xshift exch def

1 1 y_size

/yshift exch def

% DRAW SHIFTER
yshift 1 eq

yshift grid_spacing_hrz mui xshift grid_spacing_vrt mul Shifter

% DRAW INPUT BUS
xshift 1 eq

input_bus
}if

% DRAW PALO

yshift grid_spacing_hrz mui xshift grid_spacing_vrt mul PALU
}ifeise

yshift grid_spacing_hrz mui xshift grid_spacing_vrt mul moveto

% DRAW INTERCONNECT BOX

xshift 1 eq

yshift y_size ne

% DRAW ROUTING BLOCK
gsave
routing
grestOre

% DRAW 2X FAST INTERCONNECT ON ODD 'YSHIFTS' ONLY
yshift 2 mod 1 eq

yshift y_size 2 sub it

gsave
X2_fast_rOLlte
greStore

)if
)if
% DRAW 4X FAST INTERCONNECT ON EVEN 'YSHIFTS' ONLY
yshift 2 mod 1 ne

yshift y_size 4 sub it

gsave
X4_fast_route
grestore

}if
}if

)if
}if
stroke

} for

} for

181

Appendix C

Synthesis and Simulation Script for
Generation of 6x5 PLA Core

C.! Top-Down Synthesis script for 6x5 PLA Core
LOG_FILE = " /tmp/EHW_platform/synopsis flog_files!
TO_b 0MNz_6X5_PLA_C2_limited_V3 . log"
MASU_FILE ='TD_100MHz_6X5_PLA_C2'
NETOIR = " /tmp/ENW_platform/synopsis/reports/"
PLOTS = "/tmp/EHW_platform/synopsis/plots/"

/ Parameters for Clock, Reset, In- and Outputs: *1

CLKNANE = "clock'
RESNAME = "GlobalReset"
CLKPERIOD = 10.0
CLEJIP = CLEPERIOD / 2
CLESKEW = 1
cLETRANS = 0.5
LKDELAY 1
INPDELAY 1
OUTPDELAY = 1

/ Parameters for PLA Elaboration: */

BUSWIDTH = 16 	/* I/o Bus width of EHW environment 1
XWIDTH = 6 	 /* Number of PALU5 in X Axis *1
YWIDTH = 5 	 /* Number of PALU5 in Y Axis */
CONNECT_CNTRL = 3 	/ sit width of control for interconnect_mux */
PALU_CNTRL = 5 	/ sit width of control for each PALU */
CIRCUITOUTPUTS = 5 1* Number of Circuit Outputs required */
MAX_CONNECT = 3 	1* Number of PALUS connected to Interconnect _Mux*/
CNTRL_OFFSET = 20 	1 Number of bits required to control MaxShifters/

MASU = "PLA_C2_1imited_V3
VER = "limited _V3"
MASU_VER = MASU_FILE + VER

analyze -f vhdl -lib WORE VNDSRC + pack_local.vhd
analyze -f vhdl -lib WORK VNDSRC + MUX_2_FFA_cells.vhd
analyze -f vhdl -lib WORK VNDSRC + addsub_cla.vhd
analyze -f vhdl -lib WORK VNDSRC + NbitMux_21n.vhd
analyze -f vhdl -lib WORK VNDSRC + Npos_leftshift.vhd
analyze -f vhdl -lib WORK VNDSRC + Maxshift_limitedl6.vhd
analyze -f vhdl -lib WORK VNDSRC + POF_ALU.vhd
analyze -f vhdl -lib WORE VHOSRC + Nbit_shiftEnable.vhd
analyze -f vhdl -lib WORE VEDSRC + Nbit_ShiftReg.vhd
analyze -f vhdl -lib WORK VHDSRC + Interconnect_Mux_limited.vhd
analyze -f vhdl -lib WORK VHDSRC + Interconnectjeux2_limited.vhd
analyze -f vhdl -lib WORK VHDSRC + Nbit_ser_to_par.vhd
analyze -f vhdl -bib WORK VHOSRC + PLA_C2_13*mited_V3 .vhd

include SCRIPT + "PLA_parameters" + VER + ". 5cr"

sh date

elaborate MASU -param "suSWidth&' + BUSWIDTH + ",Xwidth=" + XWIDTH + \

Ywidth&' + YWIDTB +, Connect_Cntrl=" + CONNECT _CNTRL + ",PALU_Cntrl=" +\
PALU_CNTNL + ",CircuitOutputs=" + CIRCUIPOUTPUTS + , Max_Connect=" + \

MAX CONNECT > NETDIR + MASU VEN + "elaboration. rpt"

current_design = MASU
set_operating_conditions -min BCIND -max WIND -lib MTC45000.db:MTC45000
set_wire_load_model -name 36000to42000 -lib \
14TC45000_WL_WORST. db:MTC45000_WL_WONST -max

set_wire_load_model -name 36000to42000 -bib \
MTC45000_WL_TYP.db:MTC45000_WL_TYP -mm

create_clock CLKNAME -period CLKPERIOD -waveform (0 CLKHP}
set_clock_uncertainty CLESKEW CLKNAME

182

Synthesis and Simulation Script for Generation of 6x5 PIA Core

set_clock_transition CLKTRANS CLENAME
set_dont_touch_network {CLKNAME RESNAME}
set_drive 0 {CLKNANE.RESNANE}
set_input_delay INPDELAY -add_delay -clock CLENAME all_inputs() >> LOG_FILE
set_output_delay OUTPDELAY -add_delay -clock CLKNAME all_outputs() >> LOG FILE
set fix hold CLKNAME

uniquify

current design MASU
compile -map_effort medium >> LOG-FILE
change_names -h -rules NET >> LOG-FILE
report_constraint -all-violators > NETDIR + MASU_VER + '_violations.rpt"

report_area >> NETDIR + MASU_VER + rpt
report_timing -delay max >> NETDIR + MASU_VER + ".rpt

write -f vhdl -h -Output NETDIR + MASU_VER + vhd
write -f verilog -h -output NETDIR + MASU_VER + ".
write -f db -h -Output NETOIR + MASU_VER + db"
remove design -all >> LOG-FILE

exit

C.2 VHDL Leapfrog Testbench for Netlist Simulation 6x5 PLA
Core

-- PLA architecture for development of FIR Filter algorithms

LIBRARY ieee;
library mtc_lib;

USE ieee.std_logic_1164 .ALL;
USE ieee .numeric_Std.ALL;
USE WORR.local.ALL;
use mtc_lib.MTC45000_VcompOfleflts.all;
use work.CONV PACK PLA C2 lflsited_V3.all;

ENTITY PLA_C2_limited_V3_testbench IS

END PLA_C2_limited_V3_testbench;

ARCHITECTURE functional OF PLA_C2_limited_V3_testbench IS

-- Constants are user defined and determine dimensions of PIA architecture

CONSTANT BusWidth integer 16; -- I/O Bus width of EHW environment
CONSTANT Xwidth : integer 6; -- Number of EHW CLBS in X Axis
CONSTANT Ywidth : integer 5; -- Number of EHW CLBB in Y Axis
CONSTANT CircuitOutputs integer 5; -- Number of circuit Outputs required
CONSTANT PP.LUCntrl : integer 5; -- Bit width of control for

-- each Programmable ALU
CONSTANT Max Connect integer = 3; -- Number of PALU5

-- connected to Routing logic
constant Connect_Cntrl : integer log_2((2*Max_Connect)_1)+1; -- Bit width of

-- control for
-- routing MUX5

constant Cntrl_Offset integer : ((lOg_2(BuSWidth-1)+1) * Ywidth); -- Control
-- offset
-- for
-- leftmost
-- shifters

constant string_length : integer 	(((Xwidth-l) * Ywidth *
(PALU_Cntrl+(2*COnflect_Cntrl))) +

Cntrl_Offset);

constant initial delay : integer := 10; 	-- Number of clock cycles before
-- loading configuration data

type Output_pins is array (1 to CircuitOutputs) of std_logic_vector(BusWidth-1 downto 0);

-- Global Inputs

SIGNAL clock 	: std logic;
SIGNAL GlobalReset : std logic;

-- Inputs to PLA Architecture

SIGNAL PLA_Signallnput 	: typeld_0;
SIGNAL PLA_data_stream 	: std-logic;
SIGNAL Data-enable 	: std logic := '0;

183

Synthesis and Simulation Script for Generation of 6x5 PLA Core

SIGNAL Load_PLA 	 : std-logic := 1 0 1 ;

-- Outputs from PLA Architecture

SIGNAL PLA_Output_Bus : typeld_l;
SIGNAL Output_Port 	: Output_pins;

-- Inputs to Nbit_par_to_ser (temporary memory unit)

SIGNAL load-memory 	: std-logic := 1 1 1 ;

SIGNAL memory_contents : std_logic_vector(string_length - 1 DOWNTO 0)
: "1101010111001001110110101010111011000010001011011001001110001001010010000001001111001

1011o10000l00011l101010000l110000010lo1ol100101l0101o11o101110010000flo0l01000111l100
0111000l10000101l01011110ll0101001011o110001101100001011l0100111l010001001001ol0l0000
1l1100100011100111O100001101010011001001";

component PLA_C2_1imited_V3
port(Environmentlnput : in typeld_0;

ChromosomeString, clock, GlobaiReset, load_PLA, Enable_data : in std-logic;
PLA_Output_Bus : Out typeld_1);

end component;

COMPONENT Nbit_par_to_ser
OppT(gy,N-h 	 integer;

Ywidth 	 : integer;
Cntrl_offset 	: integer;
PALU_Cntrl 	: integer;
Connect_Cntrl 	: integer);

PORT(SIGNAL clock 	: IN std _logic;
SIGNAL load-enable : IN std _logic;
SIGNAL Par_input 	: IN std_logic_vector(string_length - 1 DOWNTO 0);
SIGNAL Ser_output : OUT std-logic);

end COMPONENT;

BEGIN

-- Create individual output buses from PLA_Output_Bus

Outputsus: FOR i in 1 to CircuitOutputs GENERATE
Output_Port(i) em (PLA_Output_Bus((i*NusWidth)_1) &

PLA_Output_Bus((j*NusWjdth)_2) &
PLA_Output_Bus((i*BusWidth)_3) &
PLA_Output_Bus((i*BusWidth)_4) &
PLA_Output_Nus((j*BusWjdth)_5) &
PLA_Output_Nus((i*BusWidth)-6) &
PLA_Output_Nus((i*BusWidth)_7) &
PLA_Outputsus((i*BusWidth)_8) &
PLA_Output_Bus((i*NuSWidth)-9) &
PLA_Output_Bus((j*Nuswjdth)_10) &
PLA_Output_Bus((j*Nuswjdth)_11) &
PLA_Output_Bus((i*BusWidth)_12) &
PLA_Output_Bus((j*BusWjdth)_13) &
PLA_Output_Bus((j*BusWjdth)_14) &
PLA_Output_Bus((i*BusWidth)_15) &
PLA_Output_Bus((i*BusWidth)_16));

end generate OutputBus;

-- Instantiate PLA_C2_limitedV3

PtA_Unit: PLA_C2_limited_V3
PORT MAP(PLA_Signallnput,

PtA_ data _Stream,
clock,
GlobalReset,
Load_PtA,
Data enable,
PtA_Output_Bus);

-- Instantiate temporary memory unit Nbit_par_to_ser

REM_register: Nbit_par_to_ser
GENERIC MAP(Xwidth,

Ywidth,
Cntrl_offset,
PALU_Cntrl,
Connect_Cntrl)

PORT MAP(clock,
load_memory,
memory_contents,
PLA_data_stream);

-- Counter for loading of PtA configuration string

184

Synthesis and Simulation Script for Generation of 6x5 PLA Core

Counter: process(clock, GlobalReset)
type input_strings is array (1 to 10) of typeld_0;
variable count 	: integer : 0;
variable ip_count : integer := 0;
variable input_data : input_strings : (1 me "0000000000000001", -_ 1

2 me '0000000000011001', -- 25
3 => 'OOOOOOOOO011OOOl", -- 49
4 me '0000000110000001", -- 385
5 me "0000001000101001", -- 553
6 me "0000000100001111", -- 271
7 me "0000000001010101", -- 85
8 => "0000000000000001", -- 1
9 => "0000000111000001", -- 449
10 => "0000000001101011"); -_ 107

begin
if GlobalReset = '1' then
Load_PLA <= 1 0 1 ;

load _memory <= '1';
Data _enable < '0';
count := 0;
ip_COunt : = 1;

emit CLOCK'EVENT and clock = '1' then
count := Count + 1;
if Count < (string_length + initial_delay) then

if Count = initial _delay then

Data enable <=
load memory me
PLA_Signallnput <= '0000000000000001'; -- after 0 ns;

end if;

else
Load_PLA <= '0';
if (count = ((ip_cOunt * initial_delay) + string_length)) then

ip_count := ip_count + 1;
if(ip_count < 12) then

PLA_Signallnput <= input_data(ip_count-1);
end if;

end if;
end if;

end if;
end process counter;

-_ Set Input Vectors for testbench analyses of PLA Architecture

GenerateClock: PROCESS
BEGIN
clock <= '1' AFTER 0 os;
FOR i IN 0 TO 500 LOOP
clock <= '0' AFTER 100 ns, '1' AFTER 200 ns;
WAIT FOR 200 ns;

END LOOP;
WAIT;

END PROCESS GenerateClock;

ResetContrOl: PROCESS
BEGIN
GlobalReset me

AFTER 0 us,
AFTER 247 ns;

WAIT;
END PROCESS ResetControl;

END functional;

185

Appendix D

Publications

Di Refereed Journals

B. I. Hounsell, T. Arslan, A programmable multiplierless digital filter array for em-
bedded SoC applications, in TEE Electronics Letters, Vol. 37(12), pp 735-737, June
2001.

B. I. Hounsell, T Arsian, An embedded programmable logic array for online adapta-
tion of multiplierless FIR filters, Submitted to IEEE Transactions on Very Large Scale
Integration (VLSI) Systems.

D.2 Refereed Conferences

B. I. Hounsell, T. Arsian, An Embedded programmable core for the implementation
off high Performance digital filters, Proceedings of 14th Annual IEEE International
ASIC/SoC Conference, Sept. 12-14, 2001. Washington USA.

B. I. Hounsell, T. Arsian, A novel genetic algorithm for the automated design of per-
formance driven digital circuits, Proceedings of IEEE Congress on Evolutionary Com-
putation (CEC), Vol. 1, pp 601-608, July 16-19, 2000, La Hoya USA.

B. I. Hounsell, T. Arsian, A novel evolvable hardware framework for the evolution of
high performance digital circuits, Proceedings of GECCO 2000 Vol. 1, pp 525-532,
July 8-12, 2000, Las Vegas USA

D.3 Refereed Workshops

B. I. Hounsell, T. Arslan, Evolutionary design and adaptation of digital filters within
an embedded fault tolerant hardware platform, Proceedings of 3rd NASA/DoD IEEE
workshop on Evolvable Hardware, Vol. 1, pp 127-135, July 12-14, 2001, Los Angeles
USA.

ir

