2,547 research outputs found

    Online Permutation Routing in Partitioned Optical Passive Star Networks

    Full text link
    This paper establishes the state of the art in both deterministic and randomized online permutation routing in the POPS network. Indeed, we show that any permutation can be routed online on a POPS network either with O(dglogg)O(\frac{d}{g}\log g) deterministic slots, or, with high probability, with 5cd/g+o(d/g)+O(loglogg)5c\lceil d/g\rceil+o(d/g)+O(\log\log g) randomized slots, where constant c=exp(1+e1)3.927c=\exp (1+e^{-1})\approx 3.927. When d=Θ(g)d=\Theta(g), that we claim to be the "interesting" case, the randomized algorithm is exponentially faster than any other algorithm in the literature, both deterministic and randomized ones. This is true in practice as well. Indeed, experiments show that it outperforms its rivals even starting from as small a network as a POPS(2,2), and the gap grows exponentially with the size of the network. We can also show that, under proper hypothesis, no deterministic algorithm can asymptotically match its performance

    Configurable and Scalable Turbo Decoder for 4G Wireless Receivers

    Get PDF
    The increasing requirements of high data rates and quality of service (QoS) in fourth-generation (4G) wireless communication require the implementation of practical capacity approaching codes. In this chapter, the application of Turbo coding schemes that have recently been adopted in the IEEE 802.16e WiMax standard and 3GPP Long Term Evolution (LTE) standard are reviewed. In order to process several 4G wireless standards with a common hardware module, a reconfigurable and scalable Turbo decoder architecture is presented. A parallel Turbo decoding scheme with scalable parallelism tailored to the target throughput is applied to support high data rates in 4G applications. High-level decoding parallelism is achieved by employing contention-free interleavers. A multi-banked memory structure and routing network among memories and MAP decoders are designed to operate at full speed with parallel interleavers. A new on-line address generation technique is introduced to support multiple Turbo interleaving patterns, which avoids the interleaver address memory that is typically necessary in the traditional designs. Design trade-offs in terms of area and power efficiency are analyzed for different parallelism and clock frequency goals

    Interval Routing Schemes for Circular-Arc Graphs

    Full text link
    Interval routing is a space efficient method to realize a distributed routing function. In this paper we show that every circular-arc graph allows a shortest path strict 2-interval routing scheme, i.e., by introducing a global order on the vertices and assigning at most two (strict) intervals in this order to the ends of every edge allows to depict a routing function that implies exclusively shortest paths. Since circular-arc graphs do not allow shortest path 1-interval routing schemes in general, the result implies that the class of circular-arc graphs has strict compactness 2, which was a hitherto open question. Additionally, we show that the constructed 2-interval routing scheme is a 1-interval routing scheme with at most one additional interval assigned at each vertex and we an outline algorithm to calculate the routing scheme for circular-arc graphs in O(n^2) time, where n is the number of vertices.Comment: 17 pages, to appear in "International Journal of Foundations of Computer Science

    State-of-the-art in Power Line Communications: from the Applications to the Medium

    Get PDF
    In recent decades, power line communication has attracted considerable attention from the research community and industry, as well as from regulatory and standardization bodies. In this article we provide an overview of both narrowband and broadband systems, covering potential applications, regulatory and standardization efforts and recent research advancements in channel characterization, physical layer performance, medium access and higher layer specifications and evaluations. We also identify areas of current and further study that will enable the continued success of power line communication technology.Comment: 19 pages, 12 figures. Accepted for publication, IEEE Journal on Selected Areas in Communications. Special Issue on Power Line Communications and its Integration with the Networking Ecosystem. 201

    \u3cem\u3ek-k\u3c/em\u3e Routing, \u3cem\u3ek-k\u3c/em\u3e Sorting, and Cut Through Routing on the Mesh

    Get PDF
    In this paper we present randomized algorithms for k-k routing, k-k sorting, and cut through routing. The stated resource bounds hold with high probability. The algorithm for k-k routing runs in [k/2]n+o(kn) steps. We also show that k-k sorting can be accomplished within [k/2] n+n+o(kn) steps, and cut through routing can be done in [3/4]kn+[3/2]n+o(kn) steps. The best known time bounds (prior to this paper) for all these three problems were kn+o(kn). [kn/2] is a known lower bound for all the three problems (which is the bisection bound), and hence our algorithms are very nearly optimal. All the above mentioned algorithms have optimal queue length, namely k+o(k). These algorithms also extend to higher dimensional meshes

    Randomized Algorithms For Packet Routing on the Mesh

    Get PDF
    Packet routing is an important problem of parallel computing since a fast algorithm for packet routing will imply 1) fast inter-processor communication, and 2) fast algorithms for emulating ideal models like PRAMs on fixed connection machines.There are three different models of packet routing, namely 1) Store and forward, 2) Multipacket, and 3) Cut through. In this paper we provide a survey of the best known randomized algorithms for store and forward routing, k-k routing, and cut through routing on the Mesh Connected Computers

    Domain specific high performance reconfigurable architecture for a communication platform

    Get PDF

    A mathematical programming approach to stochastic and dynamic optimization problems

    Get PDF
    Includes bibliographical references (p. 46-50).Supported by a Presidential Young Investigator Award. DDM-9158118 Supported by matching funds from Draper Laboratory.Dimitris Bertsimas
    corecore