
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

October 1993

k-k Routing, Routing, k-k Sorting, and Cut Through Routing on the Mesh Sorting, and Cut Through Routing on the Mesh

Sanguthevar Rajasekaran
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Sanguthevar Rajasekaran, "k-k Routing, k-k Sorting, and Cut Through Routing on the Mesh", . October
1993.

University of Pennsylvania Department of Computer and Information Sciences Technical Report No. MS-CIS-91-93.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/327
For more information, please contact repository@pobox.upenn.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76362195?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F327&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/327
mailto:repository@pobox.upenn.edu

k-k Routing, Routing, k-k Sorting, and Cut Through Routing on the Mesh Sorting, and Cut Through Routing on the Mesh

Abstract Abstract
In this paper we present randomized algorithms for k-k routing, k-k sorting, and cut through routing. The
stated resource bounds hold with high probability. The algorithm for k-k routing runs in [k/2]n+o(kn)
steps. We also show that k-k sorting can be accomplished within [k/2] n+n+o(kn) steps, and cut through
routing can be done in [3/4]kn+[3/2]n+o(kn) steps. The best known time bounds (prior to this paper) for
all these three problems were kn+o(kn).

[kn/2] is a known lower bound for all the three problems (which is the bisection bound), and hence our
algorithms are very nearly optimal. All the above mentioned algorithms have optimal queue length,
namely k+o(k). These algorithms also extend to higher dimensional meshes.

Comments Comments
University of Pennsylvania Department of Computer and Information Sciences Technical Report No. MS-
CIS-91-93.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/327

https://repository.upenn.edu/cis_reports/327

k - k routing, k - k Sorting, and
Cut Through Routing On The Mesh

MS-CIS-91-93
GRASP LAB 290

Sanguthevar Rajasekaran

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19 104-63 89

October 1991

ic - k Routing, k - k Sorting, and
Cut Through Routing on the Mesh

Sanguthevar Rajasekaran
Department of Computer and Information Science
Univ. of Pennsylvania, Philadelphia, PA 19104.

Abstract In this paper we present randomized algorithms for k - k routing, k - k sorting, and
cut through routing. The stated resource bounds hold with high probability. The algorithm
for k - k routing runs in [$In + ~ (k n) steps, the time bound of the best known previous
algorithm being kn + o(kn) due to Rajasekaran & Raghavachari [22] (randomized) and
Kunde [lO](deteministic). We also show that k - k sorting can be accomplished within
[$In + n + o(kn) steps, and cut thorugh routing can be done in $kn + f n + o(kn) steps.
[10]'s algorithm for k - k sorting has a time bound of kn + o(kn), and [22Iys randomized
algorithm for cut through routing runs in kn + o(kn) time. These were the best known
algorithms prior to this paper.

'"- 2 is a known lower bound for all the three problems (which is the bisection width), and
hence our algorithms are very nearly optimal. All the above mentioned algorithms have
optimal queue length, namely k + o(k). These algorithms also extend to higher dimensional
meshes.

1 Introduction

1.1 Packet Routing

Fixed connection machines are some of the most practical models of parallel computing, as infered from the
parallel computers available today. A fixed connection machine is usually represented as a directed graph
whose nodes correspond to processing elements, and whose edges correspond to communication links.
The speed of a parallel computer is determined by 1) the computing power of component processors, and
2) the speed of inter-processor communication. Nowadays the computing power of individual processing
elements can be made arbitrarily high owing to the decline in hardware costs. Thus the speed of any
parallel machine crucially depends on how fast the inter-processor communication is.

A single step of inter-processor communication in a fixed connection network can be thought of as
the following task (also called packet routing): Each node in the network has a packet of information
that has to be sent to some other node. The task is to send all the packets to their correct destinations as
quickly as possible such that at the most one packet passes through any wire at any time.

A special case of the routing problem is called the partial pemzutation routing. In partial permutation
routing, each node is the origin of at the most one packet and each node is the destination of no more than

one packet. A packet routing algorithm is judged by 1) its run time, i.e., the time taken by the last packet
to reach its destination, and 2) its queue length, which is defined as the maximum number of packets any
node will have to store during routing. Contentions for edges can be resolved using a priority scheme.
Furthest destination first, furthest origin first, etc. are examples of priority schemes. We assume that a
packet not only contains the message (from one processor to another) but also the origin and destination
information of this packet. An algorithm for packet routing is specified by 1) the path to be taken by
each packet, and 2) a priority scheme.

1.2 Different Models of Packet Routing and k - k Sorting

How large a packet is (when compared with the channel width of the communication links) will determine
whether a single packet can be sent along a wire in one unit of time. If a packet is very large it may have
to be split into pieces and sent piece by piece. On this criterion many models of routing can be derived.
A packet can be assumed to be either atomic (this model is known as the store and forward model), or
much larger than the channel width of communication links (thus necessitating splitting).

In the later, if each packet is broken up into k pieces (also calledjits), where k depends on the width
of the channel, the routing problem can be studied under two different approaches. We can consider the
k flits to be k distinct packets, which are routed independently. This is known as the multipacket routing
approach [9]. Each flit will contain information about its origin and destination. The problem of k - k
routing is one where 5 k packets originate from any node and 5 k packets are destined for any node
under the multipacket model.

Alternatively, one can consider the k flits to form a snake. All flits follow the first one, known as
the head, to the destination. A snake may never be broken, i.e., at any given time, consecutive flits of
a snake are at the same or adjacent processors. Only the head has to contain the origin and destination
addresses. This model is called the cut through routing with partial cuts or simply the cut through routing

~ 5 1 .
The problem of k - k sorting on any fixed connection machine is the problem of sorting where exactly

k packets are input at any node.

1.3 Mesh Connected Computers

The fixed connection machine assumed in this paper is the Mesh Connected Computer. The basic topology
of a two dimensional Mesh is an n x n square grid with one processor per grid point (see figure 1). Except
for processors at the boundary, evexy other processor is connected to its neighbors to the left, right, above,
and below through bidirectional links. Variations in this topology are possible depending on whether one
or more of the following connections are allowed : 1) vertical wrap arounds, 2) horizontal wrap arounds,
and 3) connections to diagonal neighbors. In this paper we only consider the Mesh with the basic topology.
The instruction stream assumed is MIMD. This in particular means that each node can send and receive
a packet (or a Ait) from all its (four or less) neighbors in one unit of time.

Mesh connected computers (MCCs) have drawn the attention of computer scientists in recent times

(n,n>
FIG. 1. An n x n Mesh Connected Computer

because of their many special properties. Some of the special features of MCCs are: 1) they have a
simple interconnection pattern, 2) many problems have data which map naturally onto them, and 3) they
are linear-scalable.

1.4 Known and New Results

Many optimal algorithms (both deterministic and randomized) have been derived for store and forward
routing. See e.g., [29, 24, 6, 8, 13, 21, 201. The problem of multipacket routing on the Mesh was first
studied by Kunde and Tensi [27] who presented an efficient algorithm for k - k routing (with a time
bound of qkn + 0($) and a queue length of q (for any 1 < q 5 n)).

Makedon and Simvonis [15] initiated the study of cut through routing on the Mesh and presented both
a deterministic algorithm (with a time bound of f k n + 0(?)) and a randomized algorithm (with a time

bound of kn + 0(?)), for a queue length of q (for any 1 5 q 5 n). Later Rajasekaran and Raghavachari
[22] showed that both multipacket and cut through routing can be performed in kn + O(k log n) steps
using a randomized algorithm, the queue length being O(k) . Recently Kunde [lo] has presented an
algorithm for k - k routing whose time bound is kn + o(kn) and whose queue length is k, for any k 2 4.
He also proved that a sequence of k permutations can be routed in r$l n + o(kn) steps (for any k 2 8)
and obtained similar results for routing on T-dimensional meshes as well. However this algorithm can
not be used for the general k - k routing unless one is willing to perform certain 'off-line' computing. In
this paper we present an algorithm for Ic - k routing with a run time of 161 n + o(kn) and an algorithm
for cut through routing with a run time of i k n + !n + o(kn), for any k 2 8. Both these algorithms are
randonlized and need a queue length of only k + o(k), with high probability.

As far as k - k sorting on the Mesh is concerned, several optimal algorithms can be found in the
literature for 1 - 1 sorting [27, 7 , 26, 14, 121 (all of which have a run time of 3n + o(n)). Recently
Kaklarnanis, Krizanc, Narayanan, and Tsantilas [4] showed that 1 - 1 sorting can be accomplished within
2.5n + o(n) steps and constant queue length using a randomized algorithm. Later, Kunde [lo] matched

this time bound with a deterministic algorithm and a queue length of 2. Park and Balasubramanian [18]
proved that 2 - 2 sorting can be performed on an n x n Mesh in an optimal 3 n + o (n) steps. Subsequently
Kunde [lo] gave an algorithm for k - k sorting that runs in [k/41,2n + k n / 2 + o (k n) time with a queue
length of k, for any k > 4. We give in this paper a randomized algorithm for k - k sorting which runs
in [$l n + n + o (k n) time and which has a queue length of k + o(k) , for any b 2 8. The queue length of
our routing and sorting algorithms is only k + O (1) if k = O (n U) for some constant v < 1. In practice
k is usually a constant and hence it may be safe to assume this queue length to be k + O(1) .

We also show that our routing and sorting algorithms apply to higher dimensional Meshes. Several
algorithms exist for off-line routing (see e.g., [2, 5, 17, 191). In [Ill, Leighton analyzes the expected
behavior of certain greedy algorithms for packet routing. For an excellent treatise on sorting and routing
algorithms for the Mesh, the reader is refered to Leighton [12]. Since is a lower bound for all the
three problems we consider in this paper [9, 101, our algorithms are very nearly optimal.

1.5 Some Definitions

We say a randomized algorithm uses 6 (g (n) j amount of any resource (like time, space etc.) if there exists
a constant c such that the amount of resource used is no more than c a g (n) with probability 2 1 - nd f f
on any input of length n. Similar definitions apply to 6(g(n)) and other such 'asymptotic' functions.

By high probability we mean a probability of > 1 - n-O for any a 2 1 (n being the input size of
the problem at hand).

Let B (n , p) denote a binomial random variable with parameters n and p, and let 'w.h.p.' stand for
'with high probability' .

1.6 Chernoff Bounds

One of the most frequently used facts in analyzing randomized algorithms is Chernofl bounds. These
bounds provide close approximations to the probabilities in the tail ends of a binomial distribution. Let
X stand for the number of heads in n independent flips of a coin, the probability of a head in a single
flip being p. X is also known to have a binomial distribution B(n,p) . The following three facts (known
as Chemoff bounds) are now folklore (and were discovered by Chemoff [3] and Angluin & Valiant [I]):

Prob.[X 2 (1 + ejnp] 5 e ~ ~ (- ~ ~ n ~ / 2) , and

Prob.[X 5 (1 - ~) n p] 5 ezp(-c2np/3 j ,

for any 0 < E < 1, and m > np.

2 The Queue Line Lemma

In the process of packet routing in a network, the time taken by any packet to reach its destination is
dictated by two factors: 1) the distance between the packet's origin and destination, and 2) the number of
steps (also called the delay) the packet waits in queues. The Queue Line Lemma enables one to compute
an upper bound on the delay of any packet.

Consider the set of paths P taken by the packets. Two packets are said to overlap if they share at
least one edge in their paths. The set of paths is said to be nonrepeating if for any two paths in F, the
following statement holds: If these two paths meet, share some successive edges, and diverge, then they
will never meet again. The following lemma is due to Valiant and Brebner [29]:

Lemma 2.1 The amount of delay any packet q suffers waiting in queues is no more than the number of
distinct packets that overlap with q, provided the set of paths taken by packets is nonrepeating.

3 Routing on a Linear Array

In this section we study different routing problems on a linear array. These results will help us analyze
routing algorithms on the Mesh. As will be shown, routing on a Mesh can be broken into a constant
number of phases, where in each phase routing is performed either along the rows or along the columns.

Problem 1. Each node of a linear n-array has 5 k packets initially and each node is the destination of
5 k packets. Send all the packets to their destinations sending at the most one packet along any edge in
a single step.

The following lemma can be proved using the proof technique of [24] and [9] :

Lemma 3.1 Ifwe use the furthest destinationfirstpriority scheme, Problem I can be solved in time 5 $.

Problem 2 The number of packets destined for any successive i nodes of a linear array is 5 k i + f (n).
Route the packets.

The following lemma also can be proven along the same lines as that of lemma 3.1.

Lemma 3.2 Ifwe use the furthest destinationfirstpriority scheme, Problem 2 can be solved in % + f (n)
steps.

4 A Simple Algorithm for k - k Routing and Cut Through Routing

In this section we show that both k - k routing and cut through routing can be accomplished within
roughly ikn + 6(kn) steps on an n x n Mesh, the queue length being k + Z(k) .

The algorithm to be presented is very similar to the original algorithm of Valiant and Brebner [29].
There are three phases in the algorithm. Let q be any packet whose origin is (i, j) and whose destination
is (T , s).

In phase I q chooses a random node in the column of its origin (each such node being equally likely).
If (z', j) was the node chosen, it traverses dong column j upto this node. In phase 11, q travels along
row 2' upto column s. Finally, in phase I11 the packet reaches its destination traversing along column s.
Use the furthest destination first priority scheme for all the three phases.

Lemma 4.1 The above algorithm has a run time of $kn + G(kn) (when applied to k - k routing), the
queue length being k + i5(k).

Proof. In phases I and 11, the number of packets that are destined for any successive i nodes is B(kn, i / n)
and B(kin, l / n) respectively. Using Chemoff bounds, this number is ki + 6(&-). In phase I11
the number of packets destined for any successive i nodes is exactly ki. Thus phase I and phase I1 can
be completed in % + iT(kn) steps each. Also phase I11 can be done within % steps (cf. lemma 3.2).0

Random Coloring. The time bound of the above algorithm can be improved to 2 kn + Z(kn) using the
following trick (which has been used in previous works [9, 15, 221). Realize that the above algorithm is
uniaxial, i.e., at any given time either only the row edges are used or the column edges are used. The
idea is to make use of the unused edges also.

At the beginning color each packet as white or black by flipping a 2-sided unbiassed coin. The white
packets use the above mentioned algorithm without any modification, where as the black packets exploit
the unused edges. To be more precise, in phase I, a black packet chooses a random node in the row of
its origin and goes there along the row. In phase I1 it traverses along the current column to the row of its
destination and in phase I11 it travels along the current row to its destination. Because of the MIMD model
assumed in this paper, and because all the three phases are disjoint there will not be any conflict between
black and white packets. Also, both the number of black packets and the number of white packets is
~ (k n ~ , 1/2) . Thus w.h.p. these two numbers will be nearly the same.

Further, the number of black (white) packets that will participate in the row routing of phases I and
111 (phase 11) is B(kn, 1/2) each. Also, the number of white (black) packets that participate in column
routing of phases I and I11 (phase 11) is B(kn, 1 /2) each. Thus using lemma 3.2 we can show that each
of the three phases can be completed in 9 + C(kn) steps.

The total queue length of any successive log n nodes is 6 (k log n) (because the expected queue length
at any single node is k implying that the expected queue length in log n successive nodes is k log n; now
apply Chernoff bounds). One could employ the technique of Rajasekaran and Tsantilas [24] to distribute
packets locally such that the number of packets stored in any node is 6 (k) . The queue length can further

be shown to be k + Z(k) using the ideas employed in the next two sections. Therefore we have the
following

Theorem 4.1 k - k routing can be completed in i k n + G(kn) steps on an n x n Mesh, the queue length
being k + G(k).

Corollary 4.1 Cut through routing can be performed using the above algorithm within i k n + $n + Z(kn)
steps, the queue length being k + G(k).

Proof. The only change in the analysis is that in Lemma 3.2, the time bound for cut through routing is " + + f (n) (cf. Lemma 3.1 in [22]). 2

5 An Optimal Algorithm for Ic - k Routing

In this section we show that k - k routing can be performed within [$In + o"(kn) steps, for any k 2 8.
The main idea behind the algorithm is the concentrated regular data streams introduced by Kunde [lo].
In particular, the following theorem due to Kunde is an essential part of our algorithm. We also show
that the same algorithms are applicable on higher dimensional Meshes.

Theorem 5.1 A sequence of k permutations can be routed on an n x n Mesh such that the time bound is
[$ In + o(kn) and the queue length is k (for any k >_ 8).

Consider the general k - k routing problem. There are exactly k packets starting from any node and
exactly k packets destined for any node. Using Hall's theorem [12], it follows that one can decompose the
general k - k routing problem into a sequence of k permutations. But then it involves a certain amount
of off-line work. Here lies the difficulty in applying theorem 5.1 for the general k - k routing.

To begin with, say we color each packet in a node with a random color (from a collection of k colors;
call these colors 1 , 2 , . . . , k). One would expect that packets of the same color form 'more or less' a
permutation. This is the main idea behind our algorithm. Another difficulty in using theorem 5.1 is that
this algorithm is applicable only if we have a sequence of k full permutations. This is not a serious
problem either as we will show.

For the problems of k - k sorting and k - k routing, the packets can be assumed to form k disjoint
layers [9, 101. Any indexing should be defined on the triple (l , r , c) where T and c are the row and column
numbers of any node and l is the layer within this node.

The Algorithm

Step 1

Color the k packets in each node randomly from out of the colors 1 ,2 , . . . , k .

Step 2

Partition each row into slices of nc (for some constant c < 1) successive
nodes each. Sort the packets in each slice w.r.t. to their colors, the
indexing used being lexicographic of the tuple (l , c) .
(* The effect of this sorting is to distribute all the packets of the same
color uniformly among the nhodes. This can be done in O (k n c) steps.
Each color corresponds to a layer. *)

Step 3

If there are more than one packets of the same color in any node, retain
only one packet of this color. Call all the retained packets as special
packets. Call the rest of the packets as stray packets.
(* This takes k time units. W.h.p., the number of stray packets in any
slice will be 5 kncl, for some constant E' < E (as shown in lemma 5.1).

*>
Step 4

In any node if there are less than k special packets, create dummy packets
of appropriate colors such that there is exactly one packet (either special
or dummy) of each color in every node. A dummy packet has a random
destination in the Mesh.
(* This can also be done in k units of time. *)

Step 5

Send each stray packet to a random node in its slice.
(* This can be done in kn" steps w.h.p. *)

Step 6

Route all the non-stray packets (there are exactly k of them in each
node) using Kunde's algorithm [lo]. Notice that non-stray packets of the
same color still need not form a full permutation. Kunde's algorithm for
routing a sequence of k permutations indeed sorts the packets w.r.t. their
destination addresses (in some appropriate indexing scheme). Non-stray
packets use the same algorithm, i.e., they are sorted. At the end of this
sorting step, each special packet will be most n%teps away from its final
destination, for some constant 6 < 1 (as will be shown in Lemma 5.3).
(* Sorting can be performed in n + o(kn) steps (see Theorem 5.1),
the queue length being k. *)

Step 7

After the above sorting step, delete all the dummy packets and send each
special packet to its correct destination.
(* This task can be accomplished using any of the existing sorting or
routing algorithms in ~ (k n " steps, since any such sorting or routing is
only local to a sub-mesh of size n6 x n6. The queue length can also be
kept as k. *)

Step 8

Route the stray packets using the greedy algorithm. If a packet originates
from (i, j) whose destination is (r, s), it traverses along row i upto (i, r)

and then travels along column s upto (r , s).
(* This routing can be done in 2n + Z(kn) steps with a queue length of
5(k) if there were no other packets in tlle Mesh (see Lemma 5.4 below).

*>

The correctness of the above algorithm is quite clear. The fact that its time bound is [$In + o(kn)
is established in the following sequence of lemmas.

Lemma 5.1 The number of stray packets in any slice of n' nodes is 5 kn" for some constant E' < E.

Proof. Consider any color i. The number of packets of color i in a given slice is B (k n e , l l k) . The
expectation of this random variable is nc. Using Chemoff bounds, this number is n" 6(J-).

As an immediate consequence of the above lemma we get the following

Lemma 5.2 The number of stray packets along any row or any column (at the end of Step 5) is 5 knr ,
for some constant y < 1 w.h.p.

Lemma 5.3 After the sorting done in Step 6, each special packet will be at the most n6 Cfor some constant
S < 1) distance away from its final destination.

Proof. The indexing scheme used in Kunde's algorithm is 'block-wise snake-like row major', where the
block is of size n2I3 x n2I3.

Consider a special packet q whose destination node is (j, s). After the sorting in Step 6, q can only
be displaced from its actual destination by dummy packets whose destination is in row j or below. But
the total number of stray packets in the whole Mesli is 5 n4I3 w.h.p. for a proper choice of E. Thus q

can only be displaced by one block in the worst case w.h.p. 0.

The following lemma shows that the stray packets can be routed easily using the greedy algorithm so
as to ensure G(k) queue length, provided there are no other packets in the Mesh.

Lemma 5.4 In an n x n Mesh with k packets in each node, let each packet be selected for routing with
probability 3 lfar some constant 0 < $ < 1). Let a similar statement hold for the packets destined for
any node. Then, these packets can be routed in 2n f 6(lcn) steps, the queue length being 5(k) , using the
greedy algorithm.

Proof. is similar to that of Theorem 5.1 in [24].
The above algorithm as mentioned has a time bound of [$ I n + Z(kn) + 2n. But as such, it is assumed

that Step 6 and Step 8 are disjoint. We can overlap these two steps and hence obtain the following

Lemma 5.5 If Step 6 and Step 8 in the above algorithm are overlapped, the time bound can be reduced
to [$ In + G(kn).

Proof. Give the highest priority to stray packets. The number of stray packets that will traverse along
any column or any row is 5 knv w.h.p. according to lemma 5.2. Therefore the maximum delay that any
non-stray packet suffers because of stray packets is G(kn7) (for some constant y < 1). Also, the queue
length increase due to overlap is only Z(k).

The above results yield the following

Theorem 5.2 k - k routing on an n x n Mesh can be performed within [$ I n + 6 (k n) steps, the queue
length being k + 6(k) .

Corollary 5.1 If k = O (n W) for some constanr v < 1, the queue length of the above algorithm is only
k + d (1) .

Proof. If kn" (see Lemma 5.1) is o (l) , the number of stray packets in any node at the end of Step 5 is
only 6 (1) . Also notice that Step 5 could be performed before Step 4.

The following theorem pertains to k - k routing on r-dimensional Meshes.

Theorem 5.3 k - k routing on an r- dimensional Mesh can be performed within + d(krn('-')Ir)
steps, the queue length being k + G(k). I f k = O (n v) , the queue length is only k + 0"(1).

Proof. will appear in the final version.

6 k - k Sorting on the Mesh

The problem is to sort a Mesh in which there are k packets to start with in each node. Many optimal
algorithms have been proposed in the literature for 1 - 1 sorting under various Mesh models [27,7,26, 141.
Park and Balasubramanian [I81 proved that 2 - 2 sorling can be completed in 3n + o (n) steps. Later
Kunde [lo] showed that k - k sorting can be done in k n + o(kn) steps, keeping the queue length as
k. The indexing used is layer last blockwise snake-like row-major ordering. We also assume the same
indexing scheme.

In this section we show that k - k sorting can be accomplished within n + 6 (k n) + n steps, for any
k 2 8. The queue length is k + G(k). If k = O (n v) for some v < 1, the queue length is only k + 6 (1) .
We will make use of the optimal k - k routing algorithm presented in section 5 as a subroutine. The time
bound of our algorithm very nearly matches the bisection width of 9.
Summary. Random sampling has played a vital role in the design of parallel algorithms for comparison
problems (including sorting and selection). Reischuk's [25, 231 sorting algorithm is a good example.
Given n keys, the idea is to: 1) randomly sample n' (for some constant E < 1) keys, 2) sort this sample
(using any nonoptimal algorithm), 3)partition the input using the sorted sample as splitter keys, and 4) to
sort each pan separately in parallel. Similar ideas have been used in many other works as well (see e.g.,

[231).
Let X = k l , k2,. . . , kn be a given sequence of n keys and let S = {ki, k;, . . . , k:) be a random sample

of s keys picked from X. X is partitioned into (s + 1) parts defined as follows. X 1 = {t E X : l 5 ki),

Xj = { a E X : < l 5 kg} for 2 5 j 5 s, and X,+l = {l E X : 4 > k:}. The following
lemma [25, 231 probabilistically bounds the size of each of these subsets, and will prove helpful to our
algorithm.

Lemma 6.1 The cardinnliry of each Xj (1 j j j (s + 1)) is d(& log n) .

Kaklarnanis, Krizanc, Narayanan, and Tsantilas [4] recently implemented a similar algorithm on the
Mesh to show that 1 - 1 sorting can be done on the Mesh in 2.5n steps (for a constant queue length).
Next we describe our algorithm which is similar to that of [4]. A random sample is chosen and sorted.
The sorted sample is broadcast to the whole Mesh, using which each key can compute an approximate
rank. Now each key is routed to its approximate destination using the algorithm of section 5. By then, the
global rank of each splitter key is computed and broadcast. The global ranks of the splitter keys enable
each key to compute its global rank. Finally, every key is sent to its actual destination (which will be
very close to its approximate destination w.h.p.)

Algorithm k - k Sorting

Step 1

Each key includes itself as a sample key in S with probability 5, for
some constant E < 1. Concentrate all the sample keys in the middle of
the Mesh in a block of size n6 x n6 (where 6 is a constant > 1 - t), and
sort this block.
(* The number of keys in the sample is kg(n2-'). The cocentration can
be done in 0.5n+ 6 (k n) steps, the queue length being Z(k). Sorting takes
0 (k n 6) steps. *)

Step 2

Partition the Mesh into blocks of size n6' x n6' for some 6' > 6. Broadcast
a copy of the sorted sample block to all the blocks of the Mesh. Sort all
the keys in each block.
(* Broadcasting takes 0.5n + 6 (k n) steps. Sorting can be performed in
0 (k n 6 ') steps. The queue increases in each block by G(k) because of the
sample keys. *)

Step 3

Perform a segmented prefix sum operation within each block to determine
an approximate rank for each key and also compute the partial rank of
each splitter key in this block.
(* Can be done in 0 (k n 6 ') steps. After this step. each key knows the X j
it belongs to. *)

Step 4

Compute the global rank of each splitter key and broadcast this informa-
tion to each block in the Mesh.
(* This is done by summing up the partial ranks computed in Step 3 for
each sample key. Summing is done as the sample blocks traverse toward
the center of the Mesh. Within 0.5n + Z(kn) steps the global ranks of all
the splitter keys will be available at the center. In another 0.5n + 6(kn)
steps these ranks can be broadcast (as a block). *)

Step 5

Using the k - k muting algorithm of section 5 mute each packet to a
random node in a block that corresponds to the approximate rank of the
key.
(* This can be shown to take 151 n + G(kn) steps, the queue length being
k + 6(b) . At the end of this step each packet is at most one block away
from its actual destination w.h.p. *)

Step 6

Sort each block and make use of the global ranks of the splitter keys to
compute the global rank of each key in the block.
(* Can be completed in 0 (k n 6 ') time units. *)

Step 7

Route each packet to its actual destination.
(* This step takes ~ (k n ") time. *)

The following lemmas establish the correctness of the algorithm.

Lemma 6.2 The number of keys in the sample is kB"(n2-').

Lemma 6.3 The approximate destination computed in Step 3 for each key is at the most one block away
from the actual destination of the key.

Proof. This is a consequence of Lemma 6.1.

Theorem 6.1 The above algorithm for k - k sorting runs in r$ln -I- C(bn) + n steps, the queue length
being b + C (k) .

Proof Sketch. As stated the algorithm seems to take r$l n + G(kn) + 2n time. But we can overlap Step
4 and Step 5 giving the highest priority to the sample block. Also notice that the sample block has only
G(k) keys per node.

If Step 4 and Step 5 are overlapped and the highest priority is given to sample block, the additional
queue length increase is only 5(k) . More over, the additional delay any packet suffers in Step 5 due to
the sample block is only 0 (n 6) . Thus n time units can be saved because of overlapping.

Corollary 6.1 If k = O(nU) for some constant v < 1 , the queue length of the above sorting algorithm is
only k + 6(1).
Proof. If n2"s asymptotically larger than kn2-€ , the number of keys in the sample block in Step 1 (and
after) is G(1).

Similar bounds can be obtained for k - k sorting on an r-dimensional Mesh as well.

Theorem 6.2 k - k sorting on an r - dimensional Mesh can be performed within [kl T - +n 2 + 6(krn('-')IT)
steps, the queue length being k + Z(k). If k = O(n"), the queue length is only k + O(1).

Proof. will appear in the final version.

7 Conclusions

In this paper we have presented randomized algorithms for k - k routing, L - k sorting, and cut through
routing on the Mesh. These algorithms have time bounds which match or very nearly match the bisection
width of 9. An interesting open problem is if there exist deterministic algorithms with similar behavior.

References

[I] Angluin, D., and Valiant, L.G., 'Fast Probabilistic Algorithms for Hamiltonian Paths and Matchings,'
Journal of Computer and Systems Science, 18, 1979, pp. 155-193.

[2] Annexstein, F., and Baumslag, M., 'A Unified Approach to Off-Line Permutation Routing on Parallel
Networks,' Proc. Symposium on Parallel Algorithms and Architectures, pp. 398-406, July 1990.

[3] Chemoff, H . , ' A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the Sum of
Obse~vations,' Annals of Mathematical Statistics 23, 1952, pp. 493-507.

[4] Kaklamanis, C., Krizanc, D., Narayanan, L., and Tsantilas, Th., 'Randomized Sorting and Selec-
tion on Mesh Connected Processor Arrays,' Proc. ACM Symposium on Parallel Algorithms and
Architectures, 199 1.

151 Krizanc, D., 'A Note on Off-line Permutation Routing on a Mesh Connected Processor Array,' Proc.
International Conference on Computing and Information, 1991, pp. 418-421.

[6] Krizanc, D., Rajasekaran, S., and Tsantilas, T. 'Optimal Routing Algorithms for Mesh Connected
Processor Arrays,' Proc. VLSI Algorithms and Architectures: AWOC, 1988. Springer-Verlag Lecture
Notes in Computer Science #319, pp. 411-22. To appear in Algorithmica.

[7] Kumar, M., and Hirschberg, D., 'An Efficient Implementation of Batcher's Odd-Even Merge Algo-
rithm and its Application to Parallel Sorting Schemes,' IEEE Trans. Comp., 32 (1983).

[8] Kunde, M. 'Routing and Sorting on Mesh Connected Processor Arrays,' Proc. VLSI Algorithms and
Architectures: AWOC 1988. Springer-Verlag Lecture Notes in Computer Science #3 19, Springer-
Verlag, pp. 423-33.

[9] Kunde, M., and Tensi, T. 'Multi-Packet Routing on Mesh Connected Arrays,' Proc. ACM Symposium
on Parallel Algorithms and Architectures, 1989, pp. 336-343.

[lo] Kunde, M., 'Concentrated Regular Data Streams on Grids: Sorting and Routing Near to the Bisection
Bound,' to be presented in the IEEE Syniposium on Foundations of Computer Science, 1991.

[I l l Leighton, T., 'Average Case Analysis of Greedy Routing Algorithms on Arrays,' Proc. ACM Sym-
posium on Parallel Algorithms and Architectures, pp. 2-10, July 1990.

[12] Leighton, T., Introduction to Parallel Algorithms and Architectures: Arrays-Trees-Hypercubes,
Morgan-Kaufmann Publishers, San Mateo, California, 1992.

[13] Leighton, T., Makedon, F., and Tollis, I.G. 'A 2 n - 2 Step Algorithm for Routing in an n x n Array
With Constant Size Queues,' Proc. ACM Symposium on Parallel Algorithms and Architectures,
1989, pp. 328-35.

[14] Ma,Y., Sen, S., Scherson, D., 'The Distance Bound for Sorting on Mesh Connected Processor Arrays
is Tight,' In Proc. 27th IEEE Symposium on Foundations of Computer Science, 1986, pp. 255-263.

[15] Makedon, F., Simvonis, A., 'On bit Serial packet routing for the mesh and the torus.' Proc. third
Symposium on Frontiers of Massively Parallel Computation, 1990, pp. 294-302.

[16] Makedon, F., and Simvonis, A., 'Fast Parallel Communication on Mesh Connected Machines with
Low Buffer Requirements,' Proc. International Conference on Computer Design, 1990.

[17] Nassimi, D., and Sahni, S., 'An Optimal Routing Algorithm for Mesh Connected Parallel Computers,'
J. ACM, 27 (1980) pp. 6-29.

[18] Park, A., and Balasubramanian, K., 'Reducing Communication Costs for Sorting on Mesh-Connected
and Linearly Connected Parallel Computers,' J. of Parallel and Distributed Computing, 9, 1990, pp.
3 18-322.

[19] Raghavendra, C.S., and Kumar, V.K.P., 'Permutations on Illiac IV-Type Networks,' IEEE Trans.
Comp., 35 (1986) pp. 662-669.

[20] Rajasekaran, S., 'Randomized Algorithms for Packet Routing on the Mesh,' to appear in Advances
in Parallel Algorithms, Blackwell Scientific Publications, 1991.

[21] Rajasekaran, S., and Overholt, R. 'Constant Queue Routing on a Mesh,' Proc. Symposium on
Theoretical Aspects of Computer Science, 1990. Springer-Verlag Lecture Notes in Computer Science
#480, pp. 444-455. To appear in JPDC.

[22] Rajasekaran, S., and Raghavachari, M., 'Optimal Randomized Algorithms for Multipacket and Cut
Through Routing on the Mesh,' to be presented in the IEEE Symposium on Parallel and Distributed
Processing, Dallas, Texas, Dec. 1991.

[23] Rajasekaran, S., and Sen, S., 'Random Sampling Techniques and Parallel Algorithms Design,' in
Synthesis of Parallel Algorithms, editor: Reif, J.H., Morgan-Kaufmann Publishers, San Mateo, Cal-
ifornia, 1992.

[24] Rajasekaran, S., and Tsantilas, T. 'An Optimal Randomized Routing Algorithm for the Mesh and A
Class of Efficient Mesh like Routing Networks,' Proc. 7th Conference on Foundations of Software
Technology and Theoretical Computer Science, 1987. Springer-Verlag Lecture Notes in Computer
Science #287, pp. 226-241.

[25] Reischuk, R., 'Probabilistic Parallel Algorithms for Sorting and Selection,' SIAM Journal of Com-
puting, 14(2), 1985, pp. 396-41 1.

[26] Schnorr, C.P., and Shamir, A., 'An Optimal Sorting Algorithm for Mesh Connected Computers,' In
Proc. 18th ACM Symposium on Theory of Computing, 1986, pp. 255-263.

[27] Thompson, C.D., and Kung, H.T., 'Sorting on a Mesh Connected Parallel Computer,' Comm. ACM,
20 (1977) pp. 263-270.

[28] Valiant, L.G., 'A Scheme for Fast Parallel Communication,' SIAM J. Comp. 11 (1982), pp. 350-361.

[29] Valiant, L.G., and Brebner, G. J., 'Universal Schemes for Parallel Communication,' In Proc. 13th
ACM Symposium on Theory of Computing, 1981, pp. 263-277.

	k-k Routing, k-k Sorting, and Cut Through Routing on the Mesh
	Recommended Citation

	k-k Routing, k-k Sorting, and Cut Through Routing on the Mesh
	Abstract
	Comments

	tmp.1185561695.pdf.m9TMI

