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ic - k Routing, k - k Sorting, and 
Cut Through Routing on the Mesh 

Sanguthevar Rajasekaran 
Department of Computer and Information Science 
Univ. of Pennsylvania, Philadelphia, PA 19104. 

Abstract In this paper we present randomized algorithms for k - k routing, k - k sorting, and 
cut through routing. The stated resource bounds hold with high probability. The algorithm 
for k - k routing runs in [$In + ~ ( k n )  steps, the time bound of the best known previous 
algorithm being kn + o(kn) due to Rajasekaran & Raghavachari [22] (randomized) and 
Kunde [lO](deteministic). We also show that k - k sorting can be accomplished within 
[$In + n + o(kn) steps, and cut thorugh routing can be done in $kn + f n  + o(kn) steps. 
[10]'s algorithm for k - k sorting has a time bound of kn + o(kn), and [22Iys randomized 
algorithm for cut through routing runs in kn + o(kn) time. These were the best known 
algorithms prior to this paper. 

'"- 2 is a known lower bound for all the three problems (which is the bisection width), and 
hence our algorithms are very nearly optimal. All the above mentioned algorithms have 
optimal queue length, namely k + o(k). These algorithms also extend to higher dimensional 
meshes. 

1 Introduction 

1.1 Packet Routing 

Fixed connection machines are some of the most practical models of parallel computing, as infered from the 
parallel computers available today. A fixed connection machine is usually represented as a directed graph 
whose nodes correspond to processing elements, and whose edges correspond to communication links. 
The speed of a parallel computer is determined by 1) the computing power of component processors, and 
2) the speed of inter-processor communication. Nowadays the computing power of individual processing 
elements can be made arbitrarily high owing to the decline in hardware costs. Thus the speed of any 
parallel machine crucially depends on how fast the inter-processor communication is. 

A single step of inter-processor communication in a fixed connection network can be thought of as 
the following task (also called packet routing): Each node in the network has a packet of information 
that has to be sent to some other node. The task is to send all the packets to their correct destinations as 
quickly as possible such that at the most one packet passes through any wire at any time. 

A special case of the routing problem is called the partial pemzutation routing. In partial permutation 
routing, each node is the origin of at the most one packet and each node is the destination of no more than 



one packet. A packet routing algorithm is judged by 1) its run time, i.e., the time taken by the last packet 
to reach its destination, and 2) its queue length, which is defined as the maximum number of packets any 
node will have to store during routing. Contentions for edges can be resolved using a priority scheme. 
Furthest destination first, furthest origin first, etc. are examples of priority schemes. We assume that a 
packet not only contains the message (from one processor to another) but also the origin and destination 
information of this packet. An algorithm for packet routing is specified by 1) the path to be taken by 
each packet, and 2) a priority scheme. 

1.2 Different Models of Packet Routing and k - k Sorting 

How large a packet is (when compared with the channel width of the communication links) will determine 
whether a single packet can be sent along a wire in one unit of time. If a packet is very large it may have 
to be split into pieces and sent piece by piece. On this criterion many models of routing can be derived. 
A packet can be assumed to be either atomic (this model is known as the store and forward model), or 
much larger than the channel width of communication links (thus necessitating splitting). 

In the later, if each packet is broken up into k pieces (also calledjits), where k depends on the width 
of the channel, the routing problem can be studied under two different approaches. We can consider the 
k flits to be k distinct packets, which are routed independently. This is known as the multipacket routing 
approach [9]. Each flit will contain information about its origin and destination. The problem of k - k 
routing is one where 5 k packets originate from any node and 5 k packets are destined for any node 
under the multipacket model. 

Alternatively, one can consider the k flits to form a snake. All flits follow the first one, known as 
the head, to the destination. A snake may never be broken, i.e., at any given time, consecutive flits of 
a snake are at the same or adjacent processors. Only the head has to contain the origin and destination 
addresses. This model is called the cut through routing with partial cuts or simply the cut through routing 

~ 5 1 .  
The problem of k - k sorting on any fixed connection machine is the problem of sorting where exactly 

k packets are input at any node. 

1.3 Mesh Connected Computers 

The fixed connection machine assumed in this paper is the Mesh Connected Computer. The basic topology 
of a two dimensional Mesh is an n x n square grid with one processor per grid point (see figure 1). Except 
for processors at the boundary, evexy other processor is connected to its neighbors to the left, right, above, 
and below through bidirectional links. Variations in this topology are possible depending on whether one 
or more of the following connections are allowed : 1) vertical wrap arounds, 2) horizontal wrap arounds, 
and 3) connections to diagonal neighbors. In this paper we only consider the Mesh with the basic topology. 
The instruction stream assumed is MIMD. This in particular means that each node can send and receive 
a packet (or a Ait) from all its (four or less) neighbors in one unit of time. 

Mesh connected computers (MCCs) have drawn the attention of computer scientists in recent times 



(n,n> 
FIG. 1. An n x n Mesh Connected Computer 

because of their many special properties. Some of the special features of MCCs are: 1) they have a 
simple interconnection pattern, 2) many problems have data which map naturally onto them, and 3) they 
are linear-scalable. 

1.4 Known and New Results 

Many optimal algorithms (both deterministic and randomized) have been derived for store and forward 
routing. See e.g., [29, 24, 6, 8, 13, 21, 201. The problem of multipacket routing on the Mesh was first 
studied by Kunde and Tensi [27] who presented an efficient algorithm for k - k routing (with a time 
bound of qkn + 0($)  and a queue length of q (for any 1 < q 5 n)). 

Makedon and Simvonis [15] initiated the study of cut through routing on the Mesh and presented both 
a deterministic algorithm (with a time bound of f k n  + 0(?)) and a randomized algorithm (with a time 

bound of kn + 0(?)), for a queue length of q (for any 1 5 q 5 n). Later Rajasekaran and Raghavachari 
[22] showed that both multipacket and cut through routing can be performed in kn + O(k log n )  steps 
using a randomized algorithm, the queue length being O(k) .  Recently Kunde [lo] has presented an 
algorithm for k - k routing whose time bound is kn + o(kn) and whose queue length is k, for any k 2 4. 
He also proved that a sequence of k permutations can be routed in r$l n + o(kn) steps (for any k 2 8) 
and obtained similar results for routing on T-dimensional meshes as well. However this algorithm can 
not be used for the general k - k routing unless one is willing to perform certain 'off-line' computing. In 
this paper we present an algorithm for Ic - k routing with a run time of 161 n + o(kn) and an algorithm 
for cut through routing with a run time of i k n  + !n + o(kn), for any k 2 8. Both these algorithms are 
randonlized and need a queue length of only k + o(k),  with high probability. 

As far as k - k sorting on the Mesh is concerned, several optimal algorithms can be found in the 
literature for 1 - 1 sorting [27, 7 ,  26, 14, 121 (all of which have a run time of 3n + o(n)).  Recently 
Kaklarnanis, Krizanc, Narayanan, and Tsantilas [4] showed that 1 - 1 sorting can be accomplished within 
2.5n + o(n)  steps and constant queue length using a randomized algorithm. Later, Kunde [lo] matched 



this time bound with a deterministic algorithm and a queue length of 2. Park and Balasubramanian [18] 
proved that 2 - 2 sorting can be performed on an n x n Mesh in an optimal 3 n  + o ( n )  steps. Subsequently 
Kunde [lo] gave an algorithm for k  - k sorting that runs in [k/41,2n + k n / 2  + o ( k n )  time with a queue 
length of k, for any k > 4. We give in this paper a randomized algorithm for k  - k  sorting which runs 
in [$l n + n + o ( k n )  time and which has a queue length of k  + o(k ) ,  for any b 2 8. The queue length of 
our routing and sorting algorithms is only k + O ( 1 )  if k = O ( n U )  for some constant v < 1. In practice 
k is usually a constant and hence it may be safe to assume this queue length to be k  + O(1) .  

We also show that our routing and sorting algorithms apply to higher dimensional Meshes. Several 
algorithms exist for off-line routing (see e.g., [2, 5, 17, 191). In [Ill, Leighton analyzes the expected 
behavior of certain greedy algorithms for packet routing. For an excellent treatise on sorting and routing 
algorithms for the Mesh, the reader is refered to Leighton [12]. Since is a lower bound for all the 
three problems we consider in this paper [9, 101, our algorithms are very nearly optimal. 

1.5 Some Definitions 

We say a randomized algorithm uses 6 ( g ( n ) j  amount of any resource (like time, space etc.) if there exists 
a constant c such that the amount of resource used is no more than c a g ( n )  with probability 2 1 - nd f f  
on any input of length n. Similar definitions apply to 6(g(n)) and other such 'asymptotic' functions. 

By high probability we mean a probability of > 1 - n-O for any a 2 1 ( n  being the input size of 
the problem at hand). 

Let B ( n , p )  denote a binomial random variable with parameters n and p, and let 'w.h.p.' stand for 
'with high probability' . 

1.6 Chernoff Bounds 

One of the most frequently used facts in analyzing randomized algorithms is Chernofl bounds. These 
bounds provide close approximations to the probabilities in the tail ends of a binomial distribution. Let 
X stand for the number of heads in n independent flips of a coin, the probability of a head in a single 
flip being p. X is also known to have a binomial distribution B(n,p) .  The following three facts (known 
as Chemoff bounds) are now folklore (and were discovered by Chemoff [3] and Angluin & Valiant [I]): 

Prob.[X 2 (1 + ejnp] 5 e ~ ~ ( - ~ ~ n ~ / 2 ) ,  and 

Prob.[X 5 (1 - ~ ) n p ]  5 ezp( -c2np/3 j ,  

for any 0 < E < 1, and m > np. 



2 The Queue Line Lemma 

In the process of packet routing in a network, the time taken by any packet to reach its destination is 
dictated by two factors: 1) the distance between the packet's origin and destination, and 2)  the number of 
steps (also called the delay) the packet waits in queues. The Queue Line Lemma enables one to compute 
an upper bound on the delay of any packet. 

Consider the set of paths P taken by the packets. Two packets are said to overlap if they share at 
least one edge in their paths. The set of paths is said to be nonrepeating if for any two paths in F, the 
following statement holds: If these two paths meet, share some successive edges, and diverge, then they 
will never meet again. The following lemma is due to Valiant and Brebner [29]:  

Lemma 2.1 The amount of delay any packet q suffers waiting in queues is no more than the number of 
distinct packets that overlap with q, provided the set of paths taken by packets is nonrepeating. 

3 Routing on a Linear Array 

In this section we study different routing problems on a linear array. These results will help us analyze 
routing algorithms on the Mesh. As will be shown, routing on a Mesh can be broken into a constant 
number of phases, where in each phase routing is performed either along the rows or along the columns. 

Problem 1. Each node of a linear n-array has 5 k packets initially and each node is the destination of 
5 k packets. Send all the packets to their destinations sending at the most one packet along any edge in 
a single step. 

The following lemma can be proved using the proof technique of [24] and [9 ] :  

Lemma 3.1 Ifwe use the furthest destinationfirstpriority scheme, Problem I can be solved in time 5 $. 

Problem 2 The number of packets destined for any successive i nodes of a linear array is 5 k i  + f (n). 
Route the packets. 

The following lemma also can be proven along the same lines as that of lemma 3.1. 

Lemma 3.2 Ifwe use the furthest destinationfirstpriority scheme, Problem 2 can be solved in % + f ( n )  
steps. 

4 A Simple Algorithm for k - k Routing and Cut Through Routing 

In this section we show that both k - k routing and cut through routing can be accomplished within 
roughly ikn + 6(kn) steps on an n x n Mesh, the queue length being k + Z(k) .  

The algorithm to be presented is very similar to the original algorithm of Valiant and Brebner [29].  
There are three phases in the algorithm. Let q be any packet whose origin is (i, j )  and whose destination 
is ( T ,  s). 



In phase I q chooses a random node in the column of its origin (each such node being equally likely). 
If (z', j )  was the node chosen, it traverses dong column j  upto this node. In phase 11, q travels along 
row 2' upto column s. Finally, in phase I11 the packet reaches its destination traversing along column s. 
Use the furthest destination first priority scheme for all the three phases. 

Lemma 4.1 The above algorithm has a run time of $kn + G(kn) (when applied to k  - k routing), the 
queue length being k + i5(k). 

Proof. In phases I and 11, the number of packets that are destined for any successive i  nodes is B(kn,  i / n )  
and B(kin, l / n )  respectively. Using Chemoff bounds, this number is ki + 6(&-). In phase I11 
the number of packets destined for any successive i nodes is exactly ki. Thus phase I and phase I1 can 
be completed in % + iT(kn) steps each. Also phase I11 can be done within % steps (cf. lemma 3.2).0 

Random Coloring. The time bound of the above algorithm can be improved to 2 kn + Z(kn) using the 
following trick (which has been used in previous works [9, 15, 221). Realize that the above algorithm is 
uniaxial, i.e., at any given time either only the row edges are used or the column edges are used. The 
idea is to make use of the unused edges also. 

At the beginning color each packet as white or black by flipping a 2-sided unbiassed coin. The white 
packets use the above mentioned algorithm without any modification, where as the black packets exploit 
the unused edges. To be more precise, in phase I, a black packet chooses a random node in the row of 
its origin and goes there along the row. In phase I1 it traverses along the current column to the row of its 
destination and in phase I11 it travels along the current row to its destination. Because of the MIMD model 
assumed in this paper, and because all the three phases are disjoint there will not be any conflict between 
black and white packets. Also, both the number of black packets and the number of white packets is 
~ ( k n ~ ,  1/2) .  Thus w.h.p. these two numbers will be nearly the same. 

Further, the number of black (white) packets that will participate in the row routing of phases I and 
111 (phase 11) is B(kn,  1/2) each. Also, the number of white (black) packets that participate in column 
routing of phases I and I11 (phase 11) is B(kn,  1 /2)  each. Thus using lemma 3.2 we can show that each 
of the three phases can be completed in 9 + C(kn) steps. 

The total queue length of any successive log n nodes is 6 ( k  log n )  (because the expected queue length 
at any single node is k implying that the expected queue length in log n successive nodes is k log n; now 
apply Chernoff bounds). One could employ the technique of Rajasekaran and Tsantilas [24] to distribute 
packets locally such that the number of packets stored in any node is 6 ( k ) .  The queue length can further 

be shown to be k + Z(k) using the ideas employed in the next two sections. Therefore we have the 
following 

Theorem 4.1 k - k routing can be completed in i k n  + G(kn) steps on an n x n Mesh, the queue length 
being k + G(k). 

Corollary 4.1 Cut through routing can be performed using the above algorithm within i k n  + $n  + Z(kn) 
steps, the queue length being k + G(k). 



Proof. The only change in the analysis is that in Lemma 3.2, the time bound for cut through routing is " + + f (n) (cf. Lemma 3.1 in [22]). 2 

5 An Optimal Algorithm for Ic - k Routing 

In this section we show that k - k routing can be performed within [$In + o"(kn) steps, for any k 2 8. 
The main idea behind the algorithm is the concentrated regular data streams introduced by Kunde [lo]. 
In particular, the following theorem due to Kunde is an essential part of our algorithm. We also show 
that the same algorithms are applicable on higher dimensional Meshes. 

Theorem 5.1 A sequence of k permutations can be routed on an n x n Mesh such that the time bound is 
[$ In  + o(kn)  and the queue length is k  (for any k >_ 8). 

Consider the general k - k routing problem. There are exactly k packets starting from any node and 
exactly k packets destined for any node. Using Hall's theorem [12], it follows that one can decompose the 
general k - k routing problem into a sequence of k permutations. But then it involves a certain amount 
of off-line work. Here lies the difficulty in applying theorem 5.1 for the general k - k routing. 

To begin with, say we color each packet in a node with a random color (from a collection of k colors; 
call these colors 1 , 2 , .  . . , k). One would expect that packets of the same color form 'more or less' a 
permutation. This is the main idea behind our algorithm. Another difficulty in using theorem 5.1 is that 
this algorithm is applicable only if we have a sequence of k full permutations. This is not a serious 
problem either as we will show. 

For the problems of k - k sorting and k - k routing, the packets can be assumed to form k disjoint 
layers [9, 101. Any indexing should be defined on the triple ( l ,  r ,  c )  where T and c are the row and column 
numbers of any node and l is the layer within this node. 

The Algorithm 

Step 1 

Color the k packets in each node randomly from out of the colors 1 ,2 ,  . . . , k .  

Step 2 

Partition each row into slices of nc (for some constant c < 1) successive 
nodes each. Sort the packets in each slice w.r.t. to their colors, the 
indexing used being lexicographic of the tuple ( l ,  c ) .  
(* The effect of this sorting is to distribute all the packets of the same 
color uniformly among the nhodes.  This can be done in O ( k n c )  steps. 
Each color corresponds to a layer. *) 



Step 3 

If there are more than one packets of the same color in any node, retain 
only one packet of this color. Call all the retained packets as special 
packets. Call the rest of the packets as stray packets. 
(* This takes k time units. W.h.p., the number of stray packets in any 
slice will be 5 kncl, for some constant E' < E (as shown in lemma 5.1). 

*> 
Step 4 

In any node if there are less than k  special packets, create dummy packets 
of appropriate colors such that there is exactly one packet (either special 
or dummy) of each color in every node. A dummy packet has a random 
destination in the Mesh. 
(* This can also be done in k units of time. *) 

Step 5 

Send each stray packet to a random node in its slice. 
(* This can be done in kn" steps w.h.p. *) 

Step 6 

Route all the non-stray packets (there are exactly k of them in each 
node) using Kunde's algorithm [lo]. Notice that non-stray packets of the 
same color still need not form a full permutation. Kunde's algorithm for 
routing a sequence of k permutations indeed sorts the packets w.r.t. their 
destination addresses (in some appropriate indexing scheme). Non-stray 
packets use the same algorithm, i.e., they are sorted. At the end of this 
sorting step, each special packet will be most n%teps away from its final 
destination, for some constant 6 < 1 (as will be shown in Lemma 5.3). 
(* Sorting can be performed in n  + o(kn)  steps (see Theorem 5.1), 
the queue length being k.  *) 

Step 7 

After the above sorting step, delete all the dummy packets and send each 
special packet to its correct destination. 
(* This task can be accomplished using any of the existing sorting or 
routing algorithms in ~ ( k n "  steps, since any such sorting or routing is 
only local to a sub-mesh of size n6 x n6. The queue length can also be 
kept as k. *) 

Step 8 

Route the stray packets using the greedy algorithm. If a packet originates 
from (i, j) whose destination is (r, s), it traverses along row i upto (i, r )  



and then travels along column s  upto ( r ,  s). 
(* This routing can be done in 2n + Z(kn) steps with a queue length of 
5(k)  if there were no other packets in tlle Mesh (see Lemma 5.4 below). 

*> 

The correctness of the above algorithm is quite clear. The fact that its time bound is [$In  + o(kn)  
is established in the following sequence of lemmas. 

Lemma 5.1 The number of stray packets in any slice of n' nodes is 5 kn" for some constant E' < E.  

Proof. Consider any color i. The number of packets of color i in a given slice is B ( k n e ,  l l k ) .  The 
expectation of this random variable is nc. Using Chemoff bounds, this number is n" 6( J-). 

As an immediate consequence of the above lemma we get the following 

Lemma 5.2 The number of stray packets along any row or any column (at the end of Step 5)  is 5 knr ,  
for some constant y < 1 w.h.p. 

Lemma 5.3 After the sorting done in Step 6,  each special packet will be at the most n6 Cfor some constant 
S < 1) distance away from its final destination. 

Proof. The indexing scheme used in Kunde's algorithm is 'block-wise snake-like row major', where the 
block is of size n2I3 x n2I3. 

Consider a special packet q whose destination node is (j, s). After the sorting in Step 6, q can only 
be displaced from its actual destination by dummy packets whose destination is in row j or below. But 
the total number of stray packets in the whole Mesli is 5 n4I3 w.h.p. for a proper choice of E. Thus q 

can only be displaced by one block in the worst case w.h.p. 0. 

The following lemma shows that the stray packets can be routed easily using the greedy algorithm so 
as to ensure G(k) queue length, provided there are no other packets in the Mesh. 

Lemma 5.4 In an n  x n  Mesh with k packets in each node, let each packet be selected for routing with 
probability 3 lfar some constant 0 < $ < 1). Let a similar statement hold for the packets destined for 
any node. Then, these packets can be routed in 2n f 6(lcn) steps, the queue length being 5(k ) ,  using the 
greedy algorithm. 

Proof. is similar to that of Theorem 5.1 in [24]. 
The above algorithm as mentioned has a time bound of [ $ I  n  + Z(kn) + 2n. But as such, it is assumed 

that Step 6 and Step 8 are disjoint. We can overlap these two steps and hence obtain the following 

Lemma 5.5 If Step 6 and Step 8 in the above algorithm are overlapped, the time bound can be reduced 
to [$ In  + G(kn). 



Proof. Give the highest priority to stray packets. The number of stray packets that will traverse along 
any column or any row is 5 knv w.h.p. according to lemma 5.2. Therefore the maximum delay that any 
non-stray packet suffers because of stray packets is G(kn7)  (for some constant y < 1). Also, the queue 
length increase due to overlap is only Z(k). 

The above results yield the following 

Theorem 5.2 k - k routing on an n  x n  Mesh can be performed within [ $ I n  + 6 ( k n )  steps, the queue 
length being k + 6(k ) .  

Corollary 5.1 If k  = O ( n W )  for some constanr v < 1, the queue length of the above algorithm is only 
k  + d ( 1 ) .  

Proof. If kn" (see Lemma 5.1) is o ( l ) ,  the number of stray packets in any node at the end of Step 5 is 
only 6 ( 1 ) .  Also notice that Step 5 could be performed before Step 4. 

The following theorem pertains to k - k routing on r-dimensional Meshes. 

Theorem 5.3 k - k routing on an r- dimensional Mesh can be performed within + d(krn('-')Ir) 
steps, the queue length being k  + G(k). I f  k = O ( n v ) ,  the queue length is only k  + 0"(1). 

Proof. will appear in the final version. 

6 k - k Sorting on the Mesh 

The problem is to sort a Mesh in which there are k packets to start with in each node. Many optimal 
algorithms have been proposed in the literature for 1 - 1 sorting under various Mesh models [27,7,26, 141. 
Park and Balasubramanian [I81 proved that 2 - 2 sorling can be completed in 3n + o ( n )  steps. Later 
Kunde [lo] showed that k - k sorting can be done in k n  + o(kn)  steps, keeping the queue length as 
k. The indexing used is layer last blockwise snake-like row-major ordering. We also assume the same 
indexing scheme. 

In this section we show that k - k sorting can be accomplished within n +  6 ( k n )  + n steps, for any 
k 2 8. The queue length is k + G(k). If k = O ( n v )  for some v < 1, the queue length is only k + 6 ( 1 ) .  
We will make use of the optimal k - k routing algorithm presented in section 5 as a subroutine. The time 
bound of our algorithm very nearly matches the bisection width of 9. 
Summary. Random sampling has played a vital role in the design of parallel algorithms for comparison 
problems (including sorting and selection). Reischuk's [25, 231 sorting algorithm is a good example. 
Given n keys, the idea is to: 1) randomly sample n' (for some constant E < 1) keys, 2) sort this sample 
(using any nonoptimal algorithm), 3)partition the input using the sorted sample as splitter keys, and 4) to 
sort each pan separately in parallel. Similar ideas have been used in many other works as well (see e.g., 

[231). 
Let X = k l ,  k2,. . . , kn be a given sequence of n keys and let S = {ki, k;, . . . , k:)  be a random sample 

of s keys picked from X. X is partitioned into (s + 1)  parts defined as follows. X 1  = {t  E X : l 5 ki), 



Xj = { a  E X : < l 5 kg} for 2 5 j 5 s, and X,+l = {l E X : 4 > k:}. The following 
lemma [25, 231 probabilistically bounds the size of each of these subsets, and will prove helpful to our 
algorithm. 

Lemma 6.1 The cardinnliry of each Xj (1 j j j (s + 1)) is d(& log n) .  

Kaklarnanis, Krizanc, Narayanan, and Tsantilas [4] recently implemented a similar algorithm on the 
Mesh to show that 1 - 1 sorting can be done on the Mesh in 2.5n steps (for a constant queue length). 
Next we describe our algorithm which is similar to that of [4]. A random sample is chosen and sorted. 
The sorted sample is broadcast to the whole Mesh, using which each key can compute an approximate 
rank. Now each key is routed to its approximate destination using the algorithm of section 5. By then, the 
global rank of each splitter key is computed and broadcast. The global ranks of the splitter keys enable 
each key to compute its global rank. Finally, every key is sent to its actual destination (which will be 
very close to its approximate destination w.h.p.) 

Algorithm k - k Sorting 

Step 1 

Each key includes itself as a sample key in S with probability 5, for 
some constant E < 1. Concentrate all the sample keys in the middle of 
the Mesh in a block of size n6 x n6 (where 6 is a constant > 1 - t), and 
sort this block. 
(* The number of keys in the sample is kg(n2-'). The cocentration can 
be done in 0.5n+ 6 ( k n )  steps, the queue length being Z(k). Sorting takes 
0 ( k n 6 )  steps. *) 

Step 2 

Partition the Mesh into blocks of size n6' x n6' for some 6' > 6. Broadcast 
a copy of the sorted sample block to all the blocks of the Mesh. Sort all 
the keys in each block. 
(* Broadcasting takes 0.5n + 6 ( k n )  steps. Sorting can be performed in 
0 ( k n 6 ' )  steps. The queue increases in each block by G(k) because of the 
sample keys. *) 

Step 3 

Perform a segmented prefix sum operation within each block to determine 
an approximate rank for each key and also compute the partial rank of 
each splitter key in this block. 
(* Can be done in 0 ( k n 6 ' )  steps. After this step. each key knows the X j  
it belongs to. *) 



Step 4 

Compute the global rank of each splitter key and broadcast this informa- 
tion to each block in the Mesh. 
(* This is done by summing up the partial ranks computed in Step 3 for 
each sample key. Summing is done as the sample blocks traverse toward 
the center of the Mesh. Within 0.5n + Z(kn) steps the global ranks of all 
the splitter keys will be available at the center. In another 0.5n + 6(kn)  
steps these ranks can be broadcast (as a block). *) 

Step 5 

Using the k - k muting algorithm of section 5 mute each packet to a 
random node in a block that corresponds to the approximate rank of the 
key. 
(* This can be shown to take 151 n + G(kn) steps, the queue length being 
k + 6(b) .  At the end of this step each packet is at most one block away 
from its actual destination w.h.p. *) 

Step 6 

Sort each block and make use of the global ranks of the splitter keys to 
compute the global rank of each key in the block. 
(* Can be completed in 0 ( k n 6 ' )  time units. *) 

Step 7 

Route each packet to its actual destination. 
(* This step takes ~ ( k n " )  time. *) 

The following lemmas establish the correctness of the algorithm. 

Lemma 6.2 The number of keys in the sample is kB"(n2-'). 

Lemma 6.3 The approximate destination computed in Step 3 for each key is at the most one block away 
from the actual destination of the key. 

Proof. This is a consequence of Lemma 6.1. 

Theorem 6.1 The above algorithm for k - k sorting runs in r$ln -I- C(bn) + n steps, the queue length 
being b + C ( k ) .  

Proof Sketch. As stated the algorithm seems to take r$l n + G(kn) + 2n time. But we can overlap Step 
4 and Step 5 giving the highest priority to the sample block. Also notice that the sample block has only 
G(k) keys per node. 

If Step 4 and Step 5 are overlapped and the highest priority is given to sample block, the additional 
queue length increase is only 5(k ) .  More over, the additional delay any packet suffers in Step 5 due to 
the sample block is only 0 ( n 6 ) .  Thus n time units can be saved because of overlapping. 



Corollary 6.1 If k = O(nU)  for some constant v < 1 ,  the queue length of the above sorting algorithm is 
only k + 6(1). 
Proof. If n2"s asymptotically larger than kn2-€ ,  the number of keys in the sample block in Step 1 (and 
after) is G(1). 

Similar bounds can be obtained for k - k sorting on an r-dimensional Mesh as well. 

Theorem 6.2 k - k sorting on an r -  dimensional Mesh can be performed within [kl T -  +n 2 + 6(krn('-')IT) 
steps, the queue length being k + Z(k). If k = O(n"), the queue length is only k + O(1). 

Proof. will appear in the final version. 

7 Conclusions 

In this paper we have presented randomized algorithms for k - k routing, L - k sorting, and cut through 
routing on the Mesh. These algorithms have time bounds which match or very nearly match the bisection 
width of 9. An interesting open problem is if there exist deterministic algorithms with similar behavior. 
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