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Abstract

We survey a new approach that the author and his co-workers have developed to formulate generic

stochastic and dynamic optimization problems as mathematical programming problems. The ap-

proach has two components: (a) it produces bounds on the performance of an optimal policy, and

(b) it develops techniques to construct optimal or near-optimal policies. The central idea for devel-

oping bounds is to characterize the region of achievable performance (or performance space) in a

stochastic and dynamic optimization problem, i.e., find linear or nonlinear constraints on the perfor-

mance vectors that all admissible policies satisfy. With respect to this goal we review recent progress

in characterizing the performance space and its implications for the following problem classes: In-

dexable systems (the multi-armed bandit problem and its extensions), polling systems, multiclass

queueing networks and loss networks.

We propose three ideas for constructing optimal or near-optimal policies: (1) for systems for

which we have an exact characterization of the performance space we outline an adaptive greedy

algorithm that gives rise to indexing policies (we illustrate this technique in the context of indexable

systems); (2) we use integer programming to construct policies from the underlying descriptions of

the performance space (we illustrate this technique in the context of polling systems); (3) we use

linear control over polyhedral regions to solve deterministic versions for this class of problems. This

approach gives interesting insights for the structure of the optimal policy (we illustrate this idea in

the context of multiclass queueing networks).

The unifying theme in the paper is the thesis that better formulations lead to deeper under-

standing and better solution methods. Overall the proposed approach for stochastic and dynamic

optimization parallels efforts of the mathematical programming community in the last fifteen years

to develop sharper formulations (polyhedral combinatorics and more recently nonlinear relaxations)

and leads to new insights ranging from a complete characterization for indexable systems to tight

lower bounds and new algorithms with provable a posteriori guarantees for their suboptimality for

polling systems, multiclass queueing and loss networks.
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1 Introduction

In its thirty years history the area of stochastic and dynamic optimization has addressed with various

degrees of success several key problems that arise in areas as diverse as computer and communication

networks, manufacturing and service systems. A general characteristic of this body of research is

the lack of a unified method of attack for these problems. Every problem seems to require its own

formulation and, as a result, its own somewhat adhoc approach. Moreover, quite often it is not clear

how close a proposed solution is to the optimal solution.

In contrast, the field of mathematical programming has evolved around a very small collection

of key problem formulations: network, linear, integer and nonlinear programs. In this tradition,

researchers and practitioners solve optimization problems by defining decision variables and formu-

lating constraints, thus describing the feasible space of decisions, and applying algorithms for the

solution of the underlying optimization problem. When faced with a new deterministic optimization

problem, researchers and practitioners have indeed an apriori well defined plan of attack to solve it:

model it as a network, linear, integer or nonlinear program and then use a well established algorithm

for its solution. In this way they obtain feasible solutions which are either provably optimal or with

a guarantee for the degree of their suboptimality.

In parallel, the theory of computational complexity has shed light to what we feel is the funda-

mental theoretical question in the area of mathematical programming: what problems are efficiently

(polynomially) solvable and what problems are inherently hard. This characterization is quite impor-

tant from a practical point of view as it dictates the approach for the problem (exact or heuristic). In

contrast, only very recently such characterizations have been developed for stochastic optimization

problems.

In view of these comments we feel that the following research program is in the heart of the field

of stochastic and dynamic optimization:

1. Develop a unified approach for stochastic and dynamic optimization problems that provides

both a feasible solution and a guarantee for its suboptimality (or optimality). Ideally the

approach should not fundamentally change when the problem changes.

2. Classify the inherent complexity of classical stochastic and dynamic optimization problems.

Our goal in -this paper is primarily to review the recent progress towards the first goal and

secondarily to briefly outline the progress towards the second goal. Towards the first goal our plan

is to outline the approach broadly and then apply it to the following problems, which, are, in our

opinion, among the most important in applications and among the richest in modeling power and

stru'cture (detailed definitions of the problems are included in the corresponding sections of the

paper):
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1. Indexable systems (The multi-armed bandit problem and its extensions such as multiclass

queues, branching bandits, etc.).

2. Polling systems.

3. Multiclass queueing networks.

4. Multiclass loss networks.

There is an important distinction among these four problem classes. While indexable systems are

solvable very efficiently by an essentially greedy method (an indexing rule), the research community

has had significant difficulties with the other problem classes. Despite significant progress in recent

years, it is fair to say that there do not exist general methods that solve large scale versions of these

problems efficiently. One naturally wonders whether these problems are inherently hard or we could

perhaps solve them if we understand them at a deeper level. The theory of computational complexity

developed in computer science in the early 1970s to answer similar questions but for combinatorial

optimization problems provides insights to this question (the second goal of the paper), which we

briefly outline.

Classification of complexity in stochastic and dynamic optimization

The following brief discussion is informal with the goal of explaining the fundamental distinction in

complexity of these problems (for formal definitions see Papadimitriou (1994)). Let P, PSPAC£,

£XPTZIM£ be the class of problems solvable by a computer (a Turing machine) in polynomial time,

polynomial space (memory) and exponential time respectively. Let XP the class of problems which,

if given a polynomial size certificate for the problem, we can check in polynomial time whether the

certificate is valid. A significant tool to assess the difficulty of a problem is the notion of hardness.

For example if we show that a problem is £XPTIM-hard, it means that it provably does not have

a polynomial (efficient) algorithm for its solution, since we know that £XAPTIM£ P. If we prove

that a problem is PSPAC£-hard it means that if we find a polynomial algorithm for the problem,

then all problems in PSPACE have efficient algorithm. It is widely believed (but not yet proven)

that PSPACE $ P; therefore, proving that a problem is PSPACE-hard is a very strong indication

(but not yet a proof) of the inherent hardness of the problem.

Papadimitriou and Tsitsiklis (1993) have recently shown that the multiclass queueing network

problem is EXPT2IMS--hard and a very natural variation of the classical bandit problem known

as the restless bandit problem is PSPACE-hard. It is immediate that the polling optimization

problem is JNP-hard, since it has as a special case the traveling salesman problem. Modifications of

the proof methods in Papadimitriou and Tsitsiklis (1993) show that the loss network problem is also

EXPTIME-hard, and the polling system problem is PSPACE-hard. Finally, indezable systems

have efficient algorithms and, therefore they belong in the class P. In Figure 1 we summarize this

discussion and classify these problems in terms of their inherent complexity. Figure 1 illustrates that
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the difficulty the research community has had in developing efficient methods for classical stochastic

and dynamic optimization problems is due to the inherent complexity of the problems.

EXPTIME

Figure 1: Classification of the complexity of classical stochastic optimization problems.

On the power of formulations in mathematical optimization

In mathematical programming our ability to solve efficiently optimization problems is to a large

degree proportional to our ability to formulate them. In particular, if we can formulate a problem

as a linear optimization problem (with a polynomial number of variables and constraints, or with

a polynomial number of variables and exponential number of constraints such that we can solve

the separation problem in polynomial time) we prove membership of the problem in P. On the

other hand, the general integer optimization problem is NP-hard, while the general nonlinear opti-

mization problem is PSPACE-hard. Analogously to Figure 1 we classify in Figure 2 these classical

mathematical programming problems in terms of their inherent complexity.

Despite the inherent hardness of integer programming (IP), the mathematical programming

community has developed methods to successfully solve large scale instances. The central idea in

this development has been improved formulations. Over the last fifteen years much of the effort in

integer programming research has been in developing sharper formulations (polyhedral combinatorics

and more recently nonlinear relaxations) Given that linear programming relaxations provide bounds

for IP, it is desirable to enhance the formulation of an IP by adding valid inequalities, such that the
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Figure 2: Classification of the complexity of classical mathematical programming problems.

relaxation is closer and closer to the IP. Moreover, one of the most exciting new research directions in

mathematical programming is the field of nonlinear relaxations (see for example Lovisz and Schrijver

(1990)) for integer programming problems.

On the power of formulations in stochastic and dynamic optimization

The unifying theme in the present paper is the thesis that better formulations lead to deeper un-

derstanding and better solution methods. Motivated by the power of improved formulations for

mathematical programming problems, we now like to outline in broad terms the approach to for-

mulate stochastic and dynamic optimization problems as mathematical programming problems in an

attempt to develop a unified theory of stochastic and dynamic optimization. The key idea in this

development is the following: Given a stochastic and dynamic optimization problem, we define a

vector of performance measures (these are typically expectations, but not necessarily first moments)

and then we express the- objective function as a function of this vector. The critical idea is to char-

acterize the region of achievable performance, i.e., find constraints on the performance vectors that

all admissible policies satisfy. In this way we find a series of relaxations that are progressively closer

to the exact region of achievable performance. In Figure 3 we outline the conceptual similarity of

this approach to the approach used in integer programming.

As the complexity of stochastic and dynamic optimization problems increases (Figure 1), our

ability to fully characterize the region of achievable performance decreases. While for indexable
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systems we can obtain full characterizations of the achievable space, in the other three stochastic

and dynamic optimization problems we study we only achieve partial characterizations (relaxations).

In Sections 2-5 we outline the progress in characterizing the performance space for the four problem

classes we are studying. Central in this development is a systematic way (the potential function

method) to obtain constraints for a stochastic optimization problem, which is described in Section

4.

LP relaxation

X2

I I,

I X1
Exact formulation

Convex Hull

(a)

x2

Nonlinear
LP relaxation Relaxation

\

1 -1
Exact Formulation

(b)

X,

Figure 3: (a) Improved relaxations for integer programming (b) Improved relaxations for stochastic
optimization problems.

Techniques to find optimal or near-optimal policies for stochastic and dynamic opti-

mization problems

We propose three ideas for constructing optimal or near-optimal policies:

1. For systems for which we have an exact characterization of the performance space we outline

an adaptive greedy algorithm that gives rise to indexing policies. We illustrate this technique

in the context of indexable systems in Section 2. This leads to significant advantages, as one

can use structural and algorithmic results from a mature field (mathematical programming) to

attack stochastic optimization problems, and offers new insights ranging from new algorithms

to solve stochastic and dynamic optimization problems to a deeper understanding of their

structure and properties. In Section 2 we illustrate that for indexable systems we can exactly

characterize the region of achievable performance as a polyhedron of special structure, which

is interestingly related with the theory of polymatroids of Edmonds (1970). More importantly,

we can use well understood linear programming techniques to unify a very large set of results
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regarding indexable systems.

2. We use integer programming to construct policies from the underlying descriptions of the

performance space. We illustrate this technique in the context of polling systems in Section 3.

3. We use linear control over polyhedral regions to solve deterministic versions for this class of

problems. This approach gives interesting insights for the structure of the optimal policy (we

illustrate this idea in the context of multiclass queueing networks in Section 6). This approach

is based on the thesis that the essential difficulty in stochastic and dynamic optimization is

primarily the dynamic and combinatorial character of the problem and only secondarily the

stochastic character of the problem. Putting the randomness back in the problem, we simulate

proposed policies and thus estimate their performance. The degree of suboptimality is then

found by comparing these simulation results to the bounds found from the relaxations.

The paper is structured as follows. In Section 2, 3, 4 and 5 we outline the progress to describe

the performance space for indexable systems, polling systems, multiclass queeuing networks and loss

networks respectively. In Section 6 we outline the linear control approach over a polyhderal space as

an approach to obtain qualitative insight for the structure of the optimal policy. The final section

includes concluding remarks and a list of open problems in the field.

2 A Polyhedral Approach to Indexable Systems

Perhaps one of the most important successes in the area of stochastic optimization in the last

twenty years is the solution of the celebrated multi-armed bandit problem, a generic version of which

in discrete time can be described as follows:

The multi-armed bandit problem: There are K parallel projects, indexed k = 1,..., K. Project

k can be in one of a finite number of states jk E Ek. At each instant of discrete time t = 0, 1,...

one can work only on a single project. If one works on project k in state jk(t) at time t, then one

receives an immediate reward of Rkj,(t). Rewards are additive and discounted in time by a discount

factor 0 < ] < 1. The state j(t) changes to jk(t + 1) by a homogeneous Markov transition rule,

with transition matrix pk = (Pi )i,jEE, while the states of the projects one has not engaged remain

frozen. The problem is how to allocate one's resources to projects sequentially in time (according

to a policy u among a set of policies U) in order to maximize expected total discounted reward over

an infinite horizon:

max Eu [ t Rk( )i() (t) 

The problem has numerous applications and a rather vast literature (see Gittins (1989) and

the references therein). It was originally solved by Gittins and Jones (1974), who proved that

to each project k one could attach an index yk(j(t)), which is a function of the project k and
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the current state jk(t) alone, such that the optimal action at time t is to engage a project of

largest current index. They also proved the important result that these index functions satisfy a

stronger index decomposition property: the function 9k(.) only depends on characteristics of project

k (states, rewards and transition probabilities), and not on any other project. These indices are now

known as Gittins indices, in recognition of Gittins contribution. Since the original solution, which

relied on an interchange argument, other proofs were proposed: Whittle (1980) provided a proof

based on dynamic programming, subsequently simplified by Tsitsiklis (1986). Varaiya, Walrand

and Buyukkoc (1985) and Weiss (1988) provided different proofs based on interchange arguments.

Weber (1992) and Tsitsiklis (1993) outlined intuitive proofs.

The multi-armed bandit problem is a special case of a dynamic and stochastic service system S.

In this context, there is a finite set E of job types. Jobs have to be scheduled for service in the

system. We are interested in optimizing a function of a performance measure (rewards or taxes)

under a class of admissible scheduling policies.

Definition 1 (Indexable Systems) We say that a dynamic and stochastic service system S is

indexable if the following policy is optimal: to each job type i we attach an index yi. At each

decision epoch select a job with largest current index.

In general the optimal indices i (as functions of the parameters of the system) could depend on

characteristics of the entire set E of job types. Consider a partition of set E into subsets Ek, for

k = 1,... K. Job types in subset Ek can be interpreted as being part of a common project type k.

In certain situations, the optimal indices of job types in Ek depend only on characteristics of job

types in Ek and not on the entire set E. Such a property is particularly useful computationally since

it enables the system to be decomposed into smaller components and the computation of the indices

for each component can be done independently. As we have seen the multi-armed bandit problem

has this decomposition property, which motivates the following definition:

Definition 2 (Decomposable Systems) An indexable system is called decomposable if for all job

types i E Ek, the optimal index yi of job type i depends only on characteristics of job types in Ek.

In addition to the multi-armed bandit problem, a variety of dynamic and stochastic scheduling

problems has been solved in the last decades by indexing rules (see Table 3 for examples).

Faced with these results, one asks what is the underlying deep reason that these nontrivial prob-

lems have very efficient solutions both theoretically as well as practically. In particular, what is the

class of stochastic and dynamic scheduling problems that are indexable? Under what conditions are

indexable systems decomposable? But most importantly, is there a unified way to address stochastic

and dynamic scheduling problems that will lead to a deeper understanding of their strong structural

properties ?
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In the last decade researchers have been using the approach outlined in the Introduction (de-

scribing the feasible space of a stochastic and dynamic scheduling problem as a mathematical pro-

gramming problem) in order to give answers to some of these questions. Coffman and Mitrani (1980)

and Gelenbe and Mitrani (1980) first showed using conservation laws that the performance space of

a multiclass M/G/1 queue under the average cost criterion can be described as a polyhedron. Fed-

ergruen and Groenevelt (1988a), (1988b) advanced the theory further by observing that in certain

special cases of multiclass queues, the polyhedron has a very special structure (it is a polymatroid)

that gives rise to very simple optimal policies (the cp rule). Their results partially extend to some

rather restricted multiclass queueing networks, in which it is assumed that all classes of customers

have the same routing probabilities, and the same service requirements at each station of the network

(see also Ross and Yao (1989)). Shanthikumar and Yao (1992) generalized the theory further by

observing that if a system satisfies strong conservation laws, then the underlying performance space

is necessarily a polymatroid. They also proved that, when the cost is linear on the performance, the

optimal policy is a static priority rule (Cox and Smith (1961)). Tsoucas (1991) derived the region of

achievable performance in the problem of scheduling a multiclass nonpreemptive M/G/1 queue with

Bernoulli feedback, introduced by Klimov (1974). All these results have been further generalized

by Bertsimas and Nifio-Mora (1993) who propose a theory of conservation laws to establish that

the very strong structural properties in the optimization of a class of stochastic and dynamic sys-

tems that include the multi-armed bandit problem and its extensions follow from the corresponding

strong structural properties of the underlying polyhedra that characterize the regions of achievable

performance.

In this section we review the work of Bertsimas and Niiio-Mora (1993). In Section 2.1 we

define a class of polyhedra called extended polymatroids which describe the region of achievable

performance in a large collection of stochastic scheduling problems. In Section 2.2 we consider

optimization problems over extended polymatroids. In Section 2.3 we define generalized conservation

laws. In Sections 2.4 we consider examples of natural problems that can be analyzed using the theory

developed, while in Section 2.5 we outline applications of these characterizations.

2.1 Extended Polymatroids

Let us first establish the notation we will use. Let E = {1,..., n}. Let x denote a real n-vector,

with components xi, for i E E. For S C N, let S = E \ S, and let St denote the cardinality of S.

Let 2 E denote the class of all subsets of E. Let b: 2E -- R+ be set functions that satisfy b(0) = 0.

Let A = (AiS)iE, scE be a matrix that satisfies

A s > 0, for i E S and A = 0, for iESe, for all S C E, (1)

Let r = (r 1l, ... ,rn) be a permutation of E. For clarity of presentation, it is convenient to intro-
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duce the following additional notation. For an n-vector x = (l,. ., Xn)
T let Xz = (, ... , X)T.

Let us write

b, = (b({Irl)),b({rx} , r2 }), .. ., b({rl, .. , Irn}))T.

Let A, denote the following lower triangular submatrix of A:

A 01} ...

A 1 21 A r 1- .. .

0

0

n

Let v(r ) be the unique solution of the linear system

·A{' i i1I, = b({7r, . .,r }),

i=1

)
(2)

or, in matrix notation:

Z, = A;'b,. (3)

Consider the following polyhedra with A, b:

PC(A,b)= { x E fn: Z A s 2i > b(S), for S C E},
iEs

B,(A,b) = { E R: A i <b(S), for SC E and A xi = b(E)),
iES iEE

P(A,b)= { z E : : Ax < b(S), for S C E},
iES

B(A,b) = {z E R : ZAASi > b(S), for S C E and Z AEzi = b(E)}.
iES iEE

The following definition is based on Bhattacharya et. al. (1991):

(4)

(5)

(6)

(7)

Definition 3 (Extended Polymatroid) We say that polyhedron P(A, b) is an extended polyma-

troid with ground set E, if the following condition holds:

(i) For every permutation r of E, v(ir) E P(A, b).

In this case we say that B(A, b) is the corresponding base polytope. If condition (i) holds for P(A, b),

we say that polyhedron Pc(A, b) is an extended contra-polymatroid with base polytope B,(A, b).

If A s = 1 for all i E S, v(ir) E P(A, b) if and only if the set function b(S) is submodular, i.e., for all

S,T C E,

b(S) + b(T) < b(S n T) + b(S U T).

This case corresponds to the usual polymatroids introduced in Edmonds (1970).

The next theorem characterizes the extreme points of the polyhedra B,(A, b) and B(A, b).
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Theorem 1 (Characterization of Extreme Points) The set of extreme points of Be(A, b) is

{ v(ir) : r is a permutation of E }.

As an example, let us consider the so called Klimov problem with n = 3 classes: three Poisson

arrival streams with rates Ai arrive at a single server. Each class has a different service distribution.

After service completion, a job of class i becomes a job of class j with probability Pij and leaves the

system with probability 1 - k Pik. Let x' be the expected length of class i under policy u. What

is the space of vectors (xz, xz, xz) as the policies u vary? For every policy

A~}wx >_ b({i}),

which means that the total work class i brings to the system under any policy is at least as much

as the work under the policy that gives priority to class i. Similarly, for every subset of classes, the

total work that this set of classes brings to the system under any policy is at least as much as the

work under the policy that gives priority to this set of classes:

AI1 2 1 + A1'2}1 2 > b((1, 2}),

AlX'3}21 + A1a}23 > b({l, 3}),

A'2,3}X2 + A'2,3)23 > b({2, 3}).

Finally, there is work conservation, i.e., all nonidling policies give the same total work:

Al'2'31 x + A1,2,31x 2 + A1,2 '31}23 = b({1, 2, 3}).

The performance space in this example consists exactly of the 23 - 1 = 7 constraints and it is indeed

an extended contra-polymatroid base, which is drawn in Figure 4.

The polytope has 3! = 6 extreme points corresponding to the 6 possible permutations. Extreme

points in an extended polymatroid correspond to the performance vectors of complete priority poli-

cies. For example, extreme point A in Figure 4 corresponds to the performance vector of the policy

that gives highest priority to class 1, then to class 2 and last priority to class 3. The vector corre-

sponding to point A is the unique solution of the triangular system:

"-~ '::"Af1}x, = b(1l}),

A1,2} 2 1 + A1,2}22 = b(( 1, 2}),

A'1,2,3}2 + A '2'3}z2 + A1'2'3)}3 = b({1, 2, 3)).

11
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Figure 4: An extended polymatroid in dimension 3.

2.2 Optimization over Extended Polymatroids

Let us consider the following linear program over an extended contra-polymatroid base:

(LPc) max Rzi: z EBc(A,b)} (8)

The theory over extended polymatroids is completely analogous. Given that the extreme points of

the polytope B,(A, b) correspond to priorities (permutations), the problem reduces to finding which

priority is optimal. Tsoucas (1991) and Bertsimas and Nifio-Mora (1993) presented the following

adaptive greedy algorithm:

Algorithm Ag

Input: (R, A).

Output: (, r,, v, S), where r = (r, ..., rn) is a permutation of E, = (YS)sCE_, = (v, ... ,n)

and S = S,...,Sn}, with Sk = {rl,..., r, for k E E.

Step 0. Set S, = E. Set v, = maxt : i E E };

pick 7rn E argmax( A : i E E };

set V = Yn.

Step k. For k = 1, ... , n- 1:

Set S.-k = S-k+l \ {rn-k+1 }; set n-- = max{ A _j i };

12



Table 1: Linear programming over extended polymatroids

aExtended polymatroid
bExtended contra-polymatroid

7n-k Ri-EiAi -- y.j Epick r,k E argmax{ iES- k };

set T.n-Ak = rT,-k+l + Vn-k-

Step n. For S C E set

-s |= i v, if S = Sj for some j E E;
0, otherwise.

Bertsimas and Niiio-Mora (1993) show that outputs y and of algorithm A are uniquely

determined by the input (R, A). Moreover, y is an optimal solution to the linear programming dual

of (LP,). The above algorithm runs in O(n3 ). They also show, using linear programming duality,

that linear program (LPc) has the following indexability property.

Definition 4 (Generalized Gittins Indices) Let be the optimal dual solution generated by

algorithm Ag. Let

7'= Z VS, iEE.
S: EDS3i

We say that 7;, ... , y* are the generalized Gittins indices of linear program (LPc).

Theorem 2 (Indexability of LP over extended polymatroids) (a) Linear program (LP) is

optimized by v(7r), where r is any permutation of E such that

r., < I.. < ._- (9)

Bertsimas and Nifio-Mora (1993) also provide closed form expressions for the generalized Gittins

indices which can be-used for sensitivity analysis. Optimization over the base of an extended

polymatroid is analogous to the extended contra-polymatroid case (see Table 1).

In the case that matrix A has a certain special structure, the computation of the indices of (LP)

can be simplified. Let E be partitioned as E = Uk=1 Ek. Let Ak be the submatrix of matrix A

corresponding to subsets S C Ek. Let Rk = (R)iE,,EE. Assume that the following condition holds:

As = A s nE = (A) sn Ek, foriESnEk andSCE. (10)

13

Problem Feasible space Indices Optimal solution

?EEs AS;xi < b(S), S C E
(LP) min-Es(A,b) CX B(A, b)a iE AiEZi = b(E) (C, A) '-

t 7 7~ < .' < 7,.
z>O

, = Albx

EiEs AiSzi b(S), SCE AC
(LPc)max-ESc(Ab) R Bc(A,b)b: EiE AiExi = b(E) (R, A) 7 7., < * * < 7. n

z>0
C = Al,T'~~~~~~~~~



Let {(ik}iE, be the generalized Gittins indices obtained from algorithm AG with input (Rk, Ak).

Theorem 3 (Index Decomposition) Under condition (10), the generalized Gittins indices cor-

responding to (R,A) and (Rk,Ak) satisfy

' = , fori E Ek and k = 1,...,K. (11)

Theorem 3 implies that the fundamental reason for decomposition to hold is (10). A useful

consequence is the following:

Corollary 1 Under the assumptions of Theorem 3, an optimal solution of problem (LPc) can be

computed by solving K subproblems: Apply algorithm A7 with inputs (Rk, Ak), for k 1, . . , K.

2.3 Generalized Conservation Laws

A natural question is how one can show that the performance space of a stochastic optimization

problem is indeed an extended polymatroid. More importantly, what physical properties of the

problem imply that the performance space is an extended polymatroid? In this section we identify

certain properties of the problem that imply that the performance space is an extended polymatroid.

Consider a generic dynamic and stochastic service system. There are n job types, which we label

i E E = 1, ... , n}. Jobs have to be scheduled for service in the system. Let us denote U the class

of admissible scheduling policies. Let xz be a performance measure of type i jobs under admissible

policy u, for i E E. We assume that xz is an expectation. Let z T denote the performance vector

under a static priority rule (i.e. the servicing priority of a job does not change over time) that

assigns priorities to the job types according to permutation r = (r,..., rn) of E, where type rn

has the highest priority.

Definition 5 (Generalized Conservation Laws) The performance vector z is

generalized conservation laws if there exist a set function b() : 2E + + and

(AiS)iEE,scE satisfying (1) such that:

(a)

b(S) = EA for all r: {r 1
iES

(b) For all admissible policies u E U,

E ASzU > b(S) forall S C E
iES

or respectively,

,... ,rlsl}=S and SCE;

and A x' = b(E),
iEE

said to satisfy

a matrix A =

(12)

(13)

Z Ai < b(S) for allSCE
iES

and E AiEZ- = b(E).
iEE

14

(14)



The following theorem formalizes the intuition developed in the example of Figure 4 and es-

tablishes that if a system satisfies conservation laws (a physical property of the system, which is

relatively easy to check) then the performance space is an extended polymatroid:

Theorem 4 Assume that performance vector satisfies generalized conservation laws (12) and (13)

(respectively (12) and (14)). Then

(a) The vertices of Bc(A, b) (respectively B(A,b)) are the performance vectors of the static priority

rules, and xzr = v(ir) for every permutation r of E.

(b) The eztended contra-polymatroid base Be(A, b) (respectively the etended polymatroid base B(A, b))

is the performance space.

Suppose that we want to find an admissible policy u E U that maximizes a linear reward function

on the performance EiEE R/xZ'. This optimal control problem can be expressed as

(LPu) max E Rx : u E U (15)

By Theorem 4 this optimal control problem can be transformed into the following linear programming

problem:

(LP,) max E{ Rixi E Bc(A b)}. (16)
iEE

The strong structural properties of extended polymatroids lead to strong structural properties in

the control problem.

Let y7, ... , 7n be the generalized Gittins indices of linear program (LPe). As a direct consequence

of the results of Section 2.2 it follows that the control problem (LPu) is solved by an index policy,

with indices given by 71,..., 7n.

Theorem 5 (Indexability of Systems Satisfying Conservation Laws) A policy that selects

at each decision epoch a job of currently largest generalized Gittins index is optimal for the control

problem.

2.4 Branching Bandit Processes

Consider the following branching bandit process introduced by Weiss (1988), who observed that it can

model a large number of stochastic and dynamic optimization problems. There is a finite number

of project types, labeled k = 1,..., K. A type k project can be in one of a finite number of states

ik E Ek, which correspond to stages in the development of the project. It is convenient in what

follows to combine these two indicators into a single label i = (k, ik), the state of a project. Let

E = {1,..., n} be the finite set of possible states of all project types.

We associate with state i of a project a random time vi and random arrivals Ni = (Nij)jEE.

Engaging the project keeps the system busy for a duration vi (the duration of stage i), and upon
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completion of the stage the project is replaced by a nonnegative integer number of new projects Nij,

in states j E E. We assume that given i, the durations and the descendants (vi; (Nij)jEE) are random

variables with an arbitrary joint distribution, independent of all other projects, and identically

distributed for the same i. Projects are to be selected under an admissible policy u E U: Nonidling

(at all times a project is being engaged, unless there are no projects in the system), nonpreemptive

(work cannot be interrupted until the engaged project stage is completed) and nonanticipative

(decisions are based only on past and present information). The decision epochs are t = 0 and the

instants at which a project stage is completed and there is some project present.

We shall refer to a project in state i as a type i job. In this section, we will define two different

performance measures for a branching bandit process. The first one will be appropriate for modelling

a discounted reward-tax structure. The second will allow us to model an undiscounted tax structure.

In each case we demonstrate what data is needed, what the performance space is and how the relevant

parameters are computed.

Discounted Branching Bandits

Data: Joint distribution of vi, Nil,..., Nin for each i:

Qti(, zl,..., .) = E [e-ei zl ZNi ]X

%i(0) = i(0, 1, , 1),

mi, the number of type i bandits initially present, R, an instantaneous reward received upon

completion of a type i job, Ci, a holding tax incurred continuously while a type i job is in the

system and a > 0, the discount factor.

Performance measure: Using the indicator

f 1 if a type j job is being engaged at time t;

0 otherwise,

the performance measure is

z2j(a) = Eu [ e-atIj(t)dt. (18)

Performance Space: The performance vector for branching bandits zU(a) satisfies generalized con-

servation laws

(a) EiEs A'Sz'(a) >b.(S), for S C E, with equality if policy u gives complete priority to S-jobs.

(b) EicE Aq x (a) ba,(-E).

Therefore, the performance space for branching bandits corresponding to the performance vector

xu(a) is the extended contra-polymatroid base B¢(Aa, ba). The matrix A, and set function b(-)

are calculated as follows:

s 1-Val ) ieS, SCE; (19)
= 1- iES, SCE;19
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ba(S) = II [Se(a)]mi- r II[jE()]m, S C E (20)
jes. jEE

and the functions *IS(O) are calculated from the following fixed point system:

S() = si (o, ((O))j l S ), i E E.

Objective function:

max V(R,C)(m) Ri,azi (a)-E miCi = t{R,+Ci- E E[Nij]Cj } -i(a) z ()- miCi

iEE iEE iEE jEE iEE

(21)

Undiscounted Branching Bandits

We consider the case that the busy period of the branching bandit process is finite with probability

1.

Data: E[vi], E[v], E[Nij]. Let E[N] denote the matrix of E[Nii].

Performance measure:

1, if a type j job is being engaged at time t;

I, otherwise,

Qj(t) = the number of type j jobs in the system at time t.

= E[ Ij,(t)t dt j E E.

Wju = E[Q(t)] dt, j E E.

Stability: The branching bandits process is stable (its busy period has finite first two moments) if

and only if E[N] < I (the matrix I - E[N] is positive definite).

Performance space:

I. 0u satisfies generalized conservation laws

(a) liEs AsO? < b(S), for S C E, with equality if policy u gives complete priority to Sc-jobs.

(b) iEEs AZO? = b(E).

The matrix A and set function b(.) are calculated as follows:

As = E[ 'v ] i S, (22)

and

1 b(S)-2Ef(TB)2] - E[] + Ev]E[v?] E[ T is ] E[(T S) 2 ] (23)b(S)-= 2 E ~~Ez] 2E[ . S)]2 k E[vi] E[v] '(23)
iES

where we obtain E[TiS], Var[Ts] (and thus E[(Ti) 2 ]) and E[vj] by solving the following linear systems:

E[Tis] = E[vi] + E E[Nij] E[Tjs], i E E;
iES

Va[] = Var[v,] + (E[T])L S CoV [(Ni,),Es)] (E[T])ES + E E[Nij] Var[Tj],i E E;
jES
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Table 2: Modelling Branching Bandit Problems.

aExtended contra-polymatroid base
bExtended polymatroid base

E[vj] = mj + E E[Nij] E[vi], j E E.
iEE

Finally,

E[Ts] = E mi E[Ti],
iES

Var[T,] = E mi Var[T].
iES

II. The performance vector for branching bandits W u satisfies the following generalized conservation

laws:

(a) ZiEs A'iWi > b'(S), for S C E, with equality if policy u gives complete priority to S-jobs.

(b) CiEE AEziU = b'(E), where

A' s = E[TiS], i E S, (24)

b'(S) = b(E) - b(SC) + 2 E hiE[Tjs], (25)
iES

where row vector h = (hi)i E E is given by

h = m(I - E[N])-lDiag(( (E[v i] ) - Var[vil )iE)(I E[N])
E[vi]

and Diag(x) denotes a diagonal matrix with diagonal entries corresponding to vector X.

Objective function:

min V(°,C ) = Cieo + 2 Cihi = E[ Ci, - E[Nj]Cj + 2 E Cihi (26)
iEE iEE iEE jEE iEE

In Table 2 we summarize the problems we considered, the performance measures used, the

conservation laws, the corresponding performance space, as well as the input to algorithm AG.

2.5 Applications

How in general do we show that the performance space is an extended polymatroid? From Theorem

4 it is sufficient to check that generalized conservation laws hold. In addition, if the problem can be

18

Problem Performance measure Performance space I Algorithm

maxuEu Vu(,a () = fo°0 Eu [Ij(t)]e-a' dt Bc(Am,bc)a (R,Aa) 40 7(-)
A,, b,(-): see (19), (20) Rac: see (21)

minuEU Vu( ' c)

(finite busy period case) Oju = fo Eu [Ij (t)]tdt] B(A, b)b (C, A) .O 7y

A, b(.): see (22), (23) C: see (26)

wju = fo Eu_[Qj (t)] dt] t, (A',b') (C, A') n; ou
A', b'(.): see (24), (25)



System Criterion Indexability Performance Space

Batch of jobs LC a Smith (1956): Db Queyranne (1993): D, pc
Rothkopf (1966b) Bertsimas & Niiio-Mora (1993): P

DCd Rothkopf (1966a): D Bertsimas & Niiio-Mora (1993): P
Gittins & Jones (1974)

Batch of jobs LC Horn (1972): D Bertsimas & Niiio-Mora (1993): EPe

with out-tree Meilijson & Weiss (1977)
prec. constraints DC Glazebrook (1976) Bertsimas & Niiio-Mora (1993): EP
Multiclass M/G/1 LC Cox & Smith (1961) Coffman & Mitrani (1980): P

Gelenbe & Mitrani (1980): P
DC Harrison (1975a, 1975b) Bertsimas & Niiio-Mora (1993): EP

Multiclass f M/G/c LC Federgruen & Groenevelt (1988b) Federgruen & Groenevelt (1988b): P
Shanthikumar & Yao (1992) Shanthikhumar & Yao (1992): P

Multiclass G/M/c LC Federgruen & Groenevelt (1988a) Federgruen & Groenevelt (1988a): P
Shanthikumar & Yao (1992) Shanthikumar & Yao (1992): P

Multiclass LC Ross & Yao (1989) Ross & Yao (1989): P
Jackson network 9
Multiclass M/G/1 LC Klimov (1974) Tsoucas (1991): EP
with feedback DC Tcha & Pliska (1977) Bertsimas & Nifio-Mora (1993): EP
Multi-armed bandits DC Gittins & Jones (1974) Bertsimas & Nifio-Mora (1993): EP
Branching bandits LC Meilijson & Weiss (1977) Bertsimas & Nifio-Mora (1993): EP

DC Weiss (1988) Bertsimas & Niiio-Mora (1993): EP

Table 3: Indexable problems and their performance spaces.

aLinear cost
Deterministic processing times

cPolymatroid
dDiscounted linear reward-cost
eExtended polymatroid
f Same service time distribution for all classes
9Same service time distribution and routing probabilities for all classes (can be node dependent)

modeled as a branching bandit problem (with or without discounts), have taxes and/or rewards, the

performance space is an extended polymatroid. Given that branching bandits is a general problem

formulation that encompasses a variety of problems, it should not be surprising that the theory

developed encompasses a large collection of problems. In Table 3 below we illustrate the stochastic

and dynamic problem from the literature, the objective criterion, where the original indexability

result was obtained and where the performance space was characterized. For explicit derivations

of the parameters of the extended polymatroids involved the reader is referred to Bertsimas &

Niiio-Mora (1993).

What are the implications of characterizing the performance space as an extended polymatroid?

1. An independent algebraic proof of the indexability of the problem, which translates to a very

efficient solution. In particular, Algorithm AQ that computes the indices of indexable systems

is as fast as the fastest known algorithm (Varaiya, Walrand and Buyukkoc (1985)).

2. An understanding of whether or not the indices decompose. For example, in the classical

multi-armed bandits problem Theorem 3 applies and therefore, the indices decompose, while
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in the general branching bandits formulation they do not.

3. A unified and practical approach to sensitivity analysis of indexable systems, based on the well

understood sensitivity analysis of linear programming (see Bertsimas and Niiio-Mora (1993)).

4. A new characterization of the indices of indexable systems as sums of dual variables corre-

sponding to the extended polymatroid that characterizes the feasible space. This gives rise to

new interpretations of the indices as prices or retirement options. For example, we can ob-

tain a new interpretation of indices in the context of branching bandits as retirement options,

thus generalizing the interpretation of Whittle (1980) and Weber (1992) for the indices of the

classical multi-armed bandit problem.

5. The realization that the algorithm of Klimov for multiclass queues and the algorithm of Gittins

for multi-armed bandits are examples of the same algorithm.

6. Closed form formulae for the performance of the optimal policy that can be used a) to prove

structural properties of the problem (for example a result of Weber (1992) that the objective

function value of the classical multi-armed bandit problem is submodular) and b) to show that

the indices for some stochastic and dynamic optimization problems do not depend on some of

the parameters of the problem.

Most importantly, this approach provides a unified treatment of several classical problems in

stochastic and dynamic optimization and is able to address in a unified way their variations such

as: discounted versus undiscounted cost criterion, rewards versus taxes, preemption versus non-

preemption, discrete versus continuous time, work conserving versus idling policies, linear versus

nonlinear objective functions.

3 Optimization of Polling Systems

Polling systems, in which a single server in a multiclass queueing system serves several classes of

customers incurring switch-over times when he serves different classes, have important applications

in computer, communication, production and transportation networks. In these application areas

several users compete for access to a common resource (a central computer in a time sharing computer

system, a transmission channel in a communication system, a machine in a manufacturing context

or a vehicle in transportation applications). As a result, the problem has attracted the attention

of researchers across very different disciplines. The name polling systems comes primarily from the

communication literature. Motivated by its important applications, polling systems have a rather

large literature, which almost exclusively addresses the performance of specific policies rather than

the optimal design of the polling system. For an extensive discussion of the research work on polling

systems, we refer to the survey papers by Levy and Sidi (1990) and Takagi (1986), (1988).
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Consider a system consisting of N infinite capacity stations (queues), and a single server which

serves them one at a time. The arrival process to station i (i = 1, 2, ... , N) is assumed to be a

Poisson process with rate Ai. The overall arrival rate to the system is A = iN=l Ai. Customers

arriving to station i will be referred to as class-i customers and have a random service requirement

Xi with finite mean i and second moment z12) respectively. The actual service requirement of a

specific customer is assumed to be independent of other system variables. The cost of waiting for

class-i customers is ci per unit time. There are switch-over time dij whenever the server changes

from serving class-i customers to class-j customers. The offered traffic load at station i is equal to

pi = Aixi, and the total traffic load is equal to p = N= Pi. It is well known (see for example Takagi

(1986)) that the system is stable if and only if p < 1. Note that this condition does not depend on

the switch-over times.

The natural performance measure in polling systems is the mean delay time between the request

for service from a customer and the delivery of the service by the server to that customer. The

optimization problem in polling systems is to decide which customer should be in service at any

given time in order to minimize the weighted expected delay of all the classes. Let U be the class

of non-preemptive, non-anticipative and stable policies. Within U we further distinguish between

static (Utatic) and dynamic (Udynamic) policies. Static policies at each decision epoch do not take

into account information about the state of stations in the system other than the one occupied

by the server and are determined a priori or randomly. For example the policy under which the

server visits the stations in a predetermined order according to a routing table is a static policy.

Dynamic policies take into account information about the current state of the network. For example,

a threshold policy or a policy that visits the most loaded station, is a dynamic policy, because the

decision on which customer to serve next by the server depends on the current queue lengths at

various stations in the system. In certain applications it might be impractical or even impossible

to use a dynamic policy. For example in a transportation network, the vehicle might not know the

overall state of the network. As a result, although static policies are not optimal, they can often be

the only realistic policy. Moreover, when there are no switch-over times, the policy that minimizes

the mean weighted delay is an indexing policy (the cp rule), a static policy.

While the literature on performance analysis of polling systems is huge there are very few papers

addressing optimization. Hofri and Ross (1988) and Reiman and Wein (1994) address the optimiza-

tion problem over dynamic policies for polling systems with two stations. Boxma et. al. (1990)

propose heuristic polling table strategies. In this section we review the work in Bertsimas and Xu

(1993) in which a nonlinear (but convex) optimization problem is proposed, whose solution provides

a lower bound on an arbitrary static policy. Using information from the lower bounds and integer

programming techniques, static policies (routing table policies) are constructed that are very close

(within 0-3%) to the lower bound.
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3.1 Lower bounds on achievable performance

We dev elop in this section lower bounds on the weighted mean waiting time for p oiling systems

non-preemptiv e, non-an ticipativ e and stable p olicies. We call these p olicies admissib

first focus on the class of static p olicies Ut,atic, in which the server's behavior when in station i is

independent of the state of the other stations in the system (i.e., the queue lengths and the interarrival

times of the customers). Examples of static policies include randomized policies, in which the next

station to be visited by the server is determined by an a priori probability distribution, and routing

table policies, in which the next station to be visited is predetermined by a routing table. A special

case of the routing table policies is the cyclic policy, where the stations are visited by the server in

a cyclic order.

Let E[Wi] be the average waiting time of class-i customers. The goal is to find an admissible

static policy u E Utatic to minimize the weighted mean delay E[W] for the polling system:

min E[W]= iAiE[Wi]. (27)

Within a particular class, we assume that the server uses a First-In-First-Out (FIFO) discipline.

We denote with dij the switch-over time when the server changes from serving class-i customers to

class-j customers (i, j = 1, 2,..., N).

Theorem 6 The optimal weighted mean delay in a polling system under any static and admissible

policy is bounded from below by:

E[W{ 1 (2) ] max A Ztati (28)

where oai = ,=1 p and Zetatic is the solution of the following convex programming problem:

1 cii2 i(2) 1 cii(l -i)
Zutatic = mm - E~ + 1-pi N7 cE A(1 - i) (29)

subject to
N N

EZmij-EZ mi = O, i = 1, 2,...,N (30)
j=1 k=1

N

dijmj1-p (31)
i,j=l1

mij >0 Vi,j,

mii =0 V i,

where mij (i,j = 1, 2,..., N) have the interpretation of the average number of visits per unit time

by the server from station i to station j.
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The mij in the above convex optimization problem represent the steady state average number of

visits from station i to station j per unit time. Constraint (30) represents conservation of flow, while

(31) is the stability condition. These constraints are still valid even under dynamic policies. The

fact that the objective function in (29) represents a lower bound for the optimal solution value, only

holds for static policies. Notice that while the feasible space of (29) is a network flow problem with

a side constraint, the objective function is a nonlinear, but convex function.

In order to acquire further insight on the bounds of the previous theorem, the flow conservation

constraints (30) are relaxed to obtain a closed form formula for the lower bounds.

Theorem 7 a) For a polling system, the weighted mean delay for all static and admissible policies

is bounded from below by:

E[W] > Zclosed= max { [IA 2)] [ ci
i=1 i= 1

X1 E Cz 2 Z + (,\ 1 cA(1 - p)di*)2 (32)
l1 - p 2)(1 - p)

where i = pj and d = dj(i),i = minj{(di}.

b) For a homogeneous polling system (ci = 1, zi = , for all i = 1,2,..., N), under ehaustive,

static and admissible policies, the weighted mean delay is bounded from below by:

Ax2 (EN /A(1 - p )W
E[W] > o(33)E[I ~z~ifsed = 2(1 - p) + 2,(1 - ) ? (33)

3.2 Design of effective static policies

The goal of this subsection is to provide a technique to construct near optimal policies using integer

programming. As already mentioned the mij are interpreted as the steady state average number

of visits from station i to station j per unit time. Let eij = mij / Ek,l ml be the ratio of switch-

overs from station i to station j over all switch-overs in the system. E = [eij] is the corresponding

switch-over ratio matrix. Intuitively, in order for the performance of a policy u to be close to the

lower bound, it is desirable that the proportion of switch-overs from station i to station j under the

policy u is close to eij. We refer to this requirement as the closeness condition. We consider two

classes of policies that satisfy the closeness condition approximately.

Randomized policiest.

Under this class of policies the server after serving exhaustively all customers at station i moves

to station j with probability pij. Kleinrock and Levy (1988) consider randomized policies, in which

the next station visited will be station j with probability pj, independent of the present station.

Given the values of mij from the lower bound calculation, we would like to choose the probabilities

Pij so that the closeness condition is satisfied. An obvious choice is to pick pij = eij / k= eik.

P = [pij] is the corresponding switch-over probability matrix. We note, however, that this choice of
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Pij does not necessarily represent the optimal randomized policy.

Routing table policies

Under this class of policies the server visits stations in an a priori periodic sequence. For example

the server visits a three station system using the cyclic sequence (1,2,3,1,2,3,...) or the sequence

(1,2,1,2,3,1,2,1,2,3,...), i.e., stations 1 and 2 are visited twice as often as station 3. Boxma et. al.

(1990) use heuristic rules to construct routing table policies.

We use integer programming methods to construct routing tables that satisfy the closeness con-

dition. Let hij be the number of switch-overs from station i to station j in an optimal routing

table. H = [hij] is the switch-over matrix. Note that unlike mij, hij should be integers. Notice

that Eij hij is the length of the routing table, i.e., the total number of switch-overs in the periodic

sequence Moreover, eij Sk'I hkl is the desired number of switch-overs from station i to station j in

the routing table under the closeness condition. In order to satisfy the closeness condition, a possible

objective in selecting a routing table is to minimize the maximum difference between the number of

switch-overs hij from station i to station j in the optimal routing table and the desired number of

switch-overs determined by eij Sk,I hki. i.e.,

minm ax{ lhij - e 1ij hkl }}. (34)
k,l

In addition, the flow conservation at each station requires that

N N

Ehi - E hki = 0, i = 1,2,... N, (35)
j=l k=1

i.e., the number of visits by the server to station i should equal to the number of visits by the server

from station i to other stations. The hij's should also form an Eulerian tour. Let I be the set

of all stations and G be the subset of stations in the network. Since the Eulerian tour should be

connected, we require that for all subsets G of the stations

E hij>1, VGCI, G . (36)
iEG, jG

In summary, the problem becomes

(PEulerian) minh{maxi,j{lhij - eij Ek,l hklJ}}

subjectto: N hij - E=l hki = , i 1, 2,..., N
(37)

EiEG, j hij > 1, VGC I, G 

hij > 0, integer, i,j = 1,2,...,N

Equation (37) can be easily converted to a pure integer programming problem. Since our goal is

only to obtain an approximate solution, we approximate the problem by relaxing the connectivity

constraints in equation (36). But if equation (36) is relaxed, hij = 0, V i, j will be a feasible solution

and will minimize the objective function in (37). In order to exclude this infeasible solution to (37),
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we impose a lower limit on the length of the routing table. Since each of the stations should be

visited at least once in any feasible routing table, the length of any routing table should be at least

N. Moreover, we place an upper bound Lma, on the length of the routing table to make the integer

programming solvable:

(Pappror) minh {maxi,j {lhij - eij k ,I hkit) }

subject to EN=l hij - 1k= hli = 0, i1,2,. .,N

N < i,j hij < Lmax

hi > O, integer, i,j = 1,2,...,N

The previous formulation can be reformulated as a pure integer programming problem as follows:

(Papprox) min y

subject to y-hij +eijk hk> O, i,j=1,2,...,N

+ hij -eij, hkl> O, i,j = 1,2,...,N (38)

E~=1 hij - E=l hki = , i 1, 2,..., N

N < i,j hij < Lmax

hij > 0, integer, i,j 1, 2,..., N

Note that there are many feasible routing tables that will be consistent with the hij 's obtained

from the solution of (Pappro,). We will select a Eulerian tour that spaces the visits to the stations

as equally as possible. Although it is possible to formulate this requirement precisely as another

integer programming problem, we found numerically that the added effort is not justified from the

results it produces.

3.3 Performance of proposed policies

Based on extensive simulation results Bertsimas and Xu (1993) arrive at the following conclusions:

1. The routing policies constructed outperform all other static routing policies reported in the

literature and they are at most within 3% from the lower bounds for the cases studied.

2. The performance of the routing table policy improves compared against other static routing

policies as the change-over times or the system utilization increases.

3. For lower change-over times and system utilizations dynamic policies outperform static policies

by a significant margin. But as the change-over times or system utilization increase, static

policies are equally or more effective. This is a rather interesting fact, since at least in the

cases that optimal dynamic policies are known (two stations), they are rather complicated

threshold class policies (Hofri and Ross (1988)).
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4. Based on the intuition from the proof of the static lower bound and the numerical results,

Bertsimas and Xu (1993) conjecture that the static lower bounds developed in this paper are

valid for dynamic policies also under heavy traffic conditions or for large changeover costs.

These results suggest that as far as static policies are concerned the routing table policies con-

structed through integer programming are adequate for practical problems.

4 Multiclass Queueing Networks

A multiclass queueing network is one that services multiple types of customers which may differ in

their arrival processes, service requirements, routes through the network as well as costs per unit of

waiting time. The fundamental optimization problem that arises in open networks is to determine

an optimal policy for sequencing and routing customers in the network that minimizes a linear

combination of the expected sojourn times of each customer class. The fundamental optimization

problem that arises in a multiclass closed network is the maximization of throughput. There are

both sequencing and routing decisions involved in these optimization problems. A sequencing policy

determines which type of customer to serve at each station of the network, while a routing policy

determines the route of each customer. There are several important applications of such problems:

packet-switching communication networks with different types of packets and priorities, job shop

manufacturing systems, scheduling of multi-processors and multi-programmed computer systems, to

name a few.

In this section we present a systematic way introduced in Bertsimas, Paschalidis and Tsitsiklis

(1992) based on a potential function to generate constraints (linear and nonlinear) that all points

in the achievable space of a stochastic optimization problem should satisfy.

We consider initially an open multiclass queueing network involving only sequencing decisions

(routing is given) with N single server stations (nodes) and R different job classes. The class of a

job summarizes all relevant information on the current characteristics of a job, including the node

at which it is waiting for service. In particular, jobs waiting at different nodes are by necessity of

different classes and a job changes class whenever it moves from one node to another. Let (r) be

the node associated with class r and let Ci be the set of all classes r such that a(r) = i. When a

job of class r completes service at node i, it can become a job of class s, with probability Pr,,, and

move to server a(s); it can also exit the network, with probability pro = 1- _ ER1 Pr.. There are

R independent Poisson arrival streams, one for each customer class. The arrival process for class

r customers has rate AOr and these customers join station a(r). The service time of class r jobs is

assumed to be exponentially distributed with rate p,. Note that jobs of different classes associated

with the same node can have different service requirements. We assume that service times are

independent of each other and independent of the arrival process.
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Whenever there is one or more customers waiting for service at a node, we can choose which,

if any, of these customers should be served next. (Notice, that we are not restricting ourselves to

work-conserving policies.) In addition, we allow for the possibility of preemption. A rule for making

such decisions is called a policy. Let nr(t) be the number of class r customers present in the network

at time t. The vector in(t) = (nl(t),...,nR(t)) will be called the state of the system at time t.

A policy is called Markovian if each decision it makes is determined as a function of the current

state. It is then clear that under a Markovian policy, the queueing network under study evolves as

a continuous-time Markov chain.

For technical reasons, we will only study Markovian policies satisfying the following assumption:

Assumption A: a) The Markov chain in(t) has a unique invariant distribution.

b) For every class r, we have E[nr2(t)] < oo, where the expectation is taken with respect to the

invariant distribution.

Let nr be the steady-state mean of nr(t), and Zr be the mean response time (waiting plus service

time) of class r customers. We are interested in determining a scheduling policy that minimizes

a linear cost function of the form ER= crxr. As before we approach this problem by trying to

determine the set X of all vectors (z 1 ,... , R) that are obtained by considering different policies

that satisfy Assumption A. By minimizing the cost function Er=l crZr over the set X, we can then

obtain the cost of an optimal policy.

The set X is not necessarily convex and this leads us to considering its convex hull X'. Any vector

z E X' is the performance vector associated with a, generally non-Markovian, policy obtained by

"time sharing" or randomization of finitely many Markovian policies. Note also that if the minimum

over X' of a linear function is attained, then it is attained at some element of X. We will refer to

X' as the region of achievable performance or, simply, the achievable region.

4.1 Sequencing of Multiclass Open Networks: Approximate Polyhedral

Characterization

The traffic equations for our network model take the form
R

Ar = Ar + ArPrr r = 1,.,R. (39)
r'=1

We assume that the inequality

E <1
rEC, r

holds for every node i. This ensures that there exists at least one policy under which the network is

stable.

'Let us consider a set S of classes. We consider a potential function of the form (Rs(t))2 where

Rs (t) = fs(r)nr(t), (40)
rES
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and where fs(r) are constants to be referred to as f-parameters. For any set S of classes, we will use

a different set off-parameters, but in order to avoid overburdening our notation, the dependence on

S will not be shown explicitly.

We will impose the following condition on the f-parameters. Although it may appear unmotivated

at this point, the proof of Theorem 8 suggests that this condition leads to tighter bounds. We assume

that for each S we have:

For any node i, the value of the expression

,r [ , rr'(f(r) - f(r')) + Prr',,f(r) (41)
L'S r'05S

is nonnegative and the same for all r E Ci n S, and will be denoted by fi. If Ci n S is

empty, we define fi to be equal to zero.

Bertsimas, Paschalidis and Tsitsiklis (1992) prove the following theorem. We present its proof, since

it is instructive of how potential function arguments can be used in general to construct polyhedral

approximations of the achievable region in stochastic and dynamic optimization problems.

Theorem 8 For any set S of classes, for any choice of the f-parameters satisfying the restriction

(41), and for any policy satisfying Assumption A, the following inequality holds:

Z Arf(r)r > N'(S) (42)
rES D'(S)

where:

N'(S) = Ar f 2 (r) + d Ar E Prrs f 2(r') +
rES rOS r'ES

xAr [ Prr'(f(r) - f(r ))2 + E Prr f2(r)]
rES L,'ES r,~S

D'(S)= 2 Nfi - ZAorf(r)
i=1 rES

S being a subset of the set of classes and Xr the mean response time of class r.

Proof We first uniformize the Markov chain so that the transition rate at every state is equal

to

V = Z Ao, + /,
r r

The idea is to pretend that every class is being served with rate p,, but a service completion is a

fictitious one unless a customer of class r is being served in actuality. Without loss of generality
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we scale time so that v = 1. Let k be the sequence of transition times for the uniformized chain.

Let Br(t) be the event that node (r) is busy with a class r customer at time t. Let Br(t) be its

complement. Let 1{.} the indicator function. We assume that the process ii(t) is right-continuous.

We have the following recursion for R(7k)

E[R(rk+l) I l(rk)] =

E Ao(R(k) + f(r))2 + AoR 2 (rk) +
rES rtS

prl{Br(k)} prr',(R(rk)- f(r)+ f(r))2 + E Prr'(R(k)-f(r))2 +
rES Lr' ES r' FS

E prl{Br(rk)}R2 (rk) +
rES

,Irl{Br(rk)} p,rr,(R(rk) + f(r'))2 + E Prr2R (Tk)] +
res rIES r'OS

Z pr1,{Bir(rk)} (rk)
reS

In the above equation, we use the convention that the set of classes r' 4 S also contains the case

r' = 0, which corresponds to the external world of the network. (Recall that Pro is the probability

that a class r customer exits the network after completion of service.) We now use the assumption

that the f-parameters satisfy (41). Then, the term

2 prl{Br(r)} [ p,rr,R(rk)(f(r)- f(r')) + E pr,,R(rk)f(r)]
rES r E r'efs

can be written as

N

fiR(rk)1{server i busy from some class r E S n Ci at rk}.
i=l1

(Recall that we defined fi = 0 for those stations i having Ci n S empty.) To bound the above

term, we use the fact that the indicator is at most 1. It should now be apparent why we selected

f-parameters satisfying (41). By doing so, we were able to aggregate certain indicator functions

before bounding them by 1.

In addition, to bound the term

E 2/r 1{B(rk)} E p,,R(rk)f(r')
reS r'ES

we use the inequality 1{Br(rk)} > O.

We apply all of these bounds to our recursion for R(rk). We then take expectations of both sides

with respect to the invariant distribution (these expectations are finite due to Assumption A) and

we can replace E[R(rk)] by E[R(t)]. After some elementary algebra and rearrangements, using (41)

and the relation (valid in steady-state) E[l{Br(rk)}] = Ar,/pr, we finally obtain (42). 
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Remarks: In order to apply Theorem 8, we must choose some f-parameters that satisfy (41).

We do not know whether there always exists a choice of the f-parameters that provides dominant

bounds. But, even if this were the case, it would probably be difficult to determine these "best"

f-parameters. Later in this section, we show that finding the best f-parameters is not so important

because there is a nonparametric variation of this bounding method that yields tighter bounds.

The situation is analogous with polyhedral combinatorics, where from a given collection of valid

inequalities we would like to select only facets.

Let us now specify one choice of the f-parameters that satisfies (41). For a set S of classes, (41)

yields

fi = prf (r) A prr - pr Prr'f (r') + prf (r) A prr,, Vr E Ci n s
r'ES r'ES r'iS

which implies

i = f (r)- Prr'), E Ci n S
Pr r'ES

Thus, due to (41), in order to explicitly determine the f-parameters, it suffices to select nonnegative

constants fi, for each station i with Ci n S non-empty. One natural choice of these fi's that appears

to provide fairly tight bounds is to let fi = 1, for all stations i with Ci n S non-empty. This leads

to fs(r) being equal to the expected remaining processing time until a job of class r exits the set

of classes S. With this choice, the parameters fs(r) can be determined by solving the system of

equations

fs(r) = + prr,,fs(r'), r ES. (43)
Pr .'ES

Moreover this choice of the f-parameters causes the denominator of (42) to be of form 1-ErE S Ar/pr,

which is the natural heavy traffic term; this is a key reason why we believe that it leads to tight

bounds. Our claim is also supported by the fact that in indexable problems (Section 2), this choice

of the f-parameters yields an exact characterization.

We next present a nonparametric method for deriving constraints on the achievable performance

region. This variation has also been derived independently in Kumar and Kumar (1993). We use

again a function of the form
R

R(t) = f(r)nr(t) (44)
r=l

where f(r) are scalars that we call f-parameters. We introduce Boi(t) to denote the event that node

i is idle at time t. We then define

Irr' E[1(Br(rk)}lnr(rk)] (45)

and

Nir, = E[1lBoi(rk)}lnr,(rk)], (46)

where 1 is the indicator function and the expectations are taken with respect to the invariant

distribution.

30



Theorem 9 For every scheduling policy satisfying Assumption A, the following relations hold:

R

2prIrr - 2 /Jr'Pr'rIrlr - 2Ao 7rArr = Aor + Ar(1 - prr) + Arlpr, r = 1, .. .,R (47)

and

R R

117r1r7 + /,P' r'r- - : uPwrIwrl - lwPwr'Iwr - AOrArrr - AorArzr =
w=l = w=

-ArPrr, - ArPrl'r Vr, r' such that r > r'. (48)

E Irr, + Nirl = Ar'zr' (49)
rECi

Ir,' > 0, Nir, > O, xi > 0

Proof We uniformize as in Theorem 8 and proceed similarly to obtain the recursion

E[R2 (rk+l) I (rk)] =
R

Aor,(R(rk) + f(r))2 +
r=1
R [R

Zl/,{B,(rk)} [ prr'(R(rk)- f(r) + f(r'))2 +p.o(R(rk) - f(r))2 +
r=l r'=l

prl, 1Br(rk)}R2 (k)
r=l

Rearranging terms and taking expectations with respect to the invariant distribution, we obtain

2E pr P , (f(r)- f(r'))+p of(r) [l{B,(rk)}R(rk)]-2 E Aorf(r)E[R(rk)]

R R

= rf2(r) + E Ar prr (f(r)-f(r'))2 + Prof 2(r) (50)
r=l r=l =

Moreover, it is seen from (44) and (45) that

R

E[1{Br (k)}R(,)] = E f(r)I,,.

Let us define the vector f = (f(1),..., f(R)). We note that both sides of (50) are quadratic functions

of f. In particular, (50) can be written in the form

f T Qf= f T Qof, (51)

for some symmetric matrices Q, Qo. Since (51) is valid for all choices of f, we must have Q = Qo.

It only remains to carry out the algebra needed in order to determine the entries of the matrices Q

and Q0. From (50), equality of the rth diagonal entries of Q and Qo yields (47), and equality of the

off-diagonal terms yields (48). Due to symmetry, it suffices to consider r > r'.
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Finally, since the events Br(rk) = "server i busy from class r at k", r E Ci, and Boi(rk) ="server i

idle at rk" are mutually exclusive and exhaustive we obtain (49). 0

Remark: An alternative derivation of the equalities of the previous theorem is as follows: we

consider a test function g and write

E(E[g((rk+l))l i(rk))} = E[g(ii(rk))],

as long as the indicated expectations exist. By rewriting the previous equality in terms of the instan-

taneous transition rate matrix for the Markov chain 6(t), and by introducing some new variables, we

obtain certain relations between the variables. In particular, (47) can be derived by considering test

functions of the form g(n(t)) = n2(t), while (48) can be derived by considering the test functions

of the form g(in(t)) = nr(t)nr,(t). Intuitively, we expect that these quadratic test functions capture

some of the interaction among different customer classes.

By minimizing L=1 Crr subject to the constraints of Theorem 9 we obtain a lower bound

which is no smaller than the one obtained using Theorem 8. In addition, the linear program in

Theorem 9 only involves O(R2 ) variables and constraints. This should be contrasted with the linear

program associated to our nonparametric variation of the method which involved R variables but

0( 2 R) constraints.

4.2 Indexable systems: Polynomial reformulations

When applied to the systems we studied in Section 2, the parametric method gives as the perfor-

mance space an extended polymatroid. In particular, for undiscounted branching bandits Bertsimas,

Paschalidis and Tsitsiklis (1994) obtain exactly the polyhedron (extended polymatroid) outlined in

the previous section. Surprisingly, the nonparametric method gives a new reformulation of the ex-

tended polymatroid using O(N2 ) variables and constraints, where N is the number of bandit types.

This is interesting for at least two reasons: a) It makes it very easy to solve indexable systems

with side constraints, using linear programming techniques (see Bertsimas et. al. (1994)), b) It

has been conjectured in mathematical programming theory that whenever linear optimization prob-

lems are solvable in polynomial time, they have formulations with a polynomial number of variables

and constraints. No such polynomial formulation has been known for polymatroids and extended

polymatroids. The nonparametric method produces polynomial reformulations, thus proving the

conjecture for this special case. It is somewhat surprising that a purely stochastic method (potential

function method) proves a rather nonobvious result in mathematical programming. This is an exam-

ple of the very positive synergies that can result from the interaction of stochastic and deterministic

methods.

We briefly review the application of the method to the undiscounted branching bandit problem

described in Section 2. Let rk be the sequence of service completions. Let Xi(rk) be 1 if at time
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rk a class i customer starts being served. Let Nr(t) be the number of class r customers present in

the system at time t. Any non-preemptive policy satisfies the following formula that describes the

evolution of the system:

R

Ni(rk+l) = Ni(rk) + EXj(Tk)(N i-ij) (52)
j=o

We first observe that the value of p+ = E[xi(rk)] is the same for all policies and can be obtained as

the unique solution of the system of equations

R

E p+E[Nji] = + i= 1,...,R, (53)
j=o

which is obtained by taking expectations of both sides of (52) with respect to the stationary distri-

bution. Moreover,
R

~EP+ = 1, (54)
i=O

which follows from the definition of p+.

By considering the potential function

R(t) = fiNi(t) (55)
iEE

and applying the evolution equation (52) for t = r7+l and using the parametric potential function

method we obtain that the performance vector n + = E[Ni(rk)] satisfies conservation laws, and thus

its performance space is an extended polymatroid (see Bertsimas et. al. (1994)).

More interestingly, consider the auxiliary variables

zji = E[xj(rk)Ni(rk)], i,j E E,

Let z stand for the R(R + 1)-dimensional vector with components zij. Notice that zji = 0 if and

only if Ni(rk) > 0 implies Xj(rk) = O; that is, if and only if class i has priority over class j. In

particular, a policy is nonidling if and only if zoi = 0 for all i O.

Then by applying the nonparametric method we obtain

Theorem 10 The achievable space (n+,z) for the undiscounted branching bandit problem is eactly

the polyhedron
R R

E pE[(Nji - ji) 2] + 2 zjiE[Nji - 6ji ] = 0, i E,
j=O j=O

R R R

Z ZrE[Nrt- 6jr' + ZjriE[Njr - j,] + S 4E[(Njr -jr)(Njri- r] = 0, r, r E E.
j=O j=O j=O

n+ Zji, i E E,
jEE

n+, zij > 0.
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Notice that the previous characterization involves only a quadratic number of constraints at the

expense of a quadratic number of new variables. Having characterized the performance space at

service completions Bertsimas et. al. (1994) show how to pass to the performance space at arbitrary

times. The extended polymatroid that results is identical with the one obtained in Section 2. A

characterization corresponding to Theorem 10 is obtained as well.

4.3 Extensions: Routing and Closed Networks

In this section we briefly describe several generalizations to the methods introduced in the previous

section. In particular, we treat networks where routing is subject to optimization and closed net-

works.

Routing and Sequencing

The framework and the notation is exactly as in Section 4.1. Instead of the routing probabilities

Prr' being given, we control whether a customer of class r becomes a customer of class r'. For this

reason, we introduce Prr'(rk) to denote the probability (which is under our control) that class r

becomes r' at time rk+l, given that we had a class r service completion at time rk+l. For each class

r, we are given a set Fr of classes to which a class r customer can be routed to. (If F, is a singleton

for every r, the problem is reduced to the class with no routing decisions allowed.)

The procedure for obtaining the approximate achievable region is similar to the proof of Theorem

8 except that the constants p,,r are replaced by the random variables prr,(rk) in the main recursion.

We also need to define some additional variables. Similarly with equations (45) and (46), these

variables will be expectations of certain products of certain random variables; the routing random

variables prr'(rk) will also appear in such products.

An important difference from open networks is that the application of the nonparametric method

to R(t) also yields the traffic equations for the network; these traffic equations are now part of the

characterization of the achievable region because they involve expectations of the decision variables

Prr' (k), whereas in Section 4.1 they involved the constants Prr'. Application of the method to R2 (t)

provides more equations that with some definitional relations between variables, similar to (49),

complete the characterization.

Closed Networks

Consider a closed multiclass queueing network with N single server stations (nodes) and R different

job classes. There are K customers always present in the closed network. We use the same notation

as for open networks except that there are no external arrivals (Aor = 0) and the probability that a

customer exits the network is equal to zero (pro = 0). We do not allow routing decisions, although

routing decisions can be included in a manner similar to the case of open networks.

As in open networks, we only consider sequencing decisions and policies satisfying Assumption
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A(a); Assumption A(b) is automatically satisfied. We seek to maximize the weighted throughput

R

E CrA,
r=1

where Ar = p,E[1{Br(rk)}] is the throughput of class r. The derivation of the approximate achiev-

able region is routine and we omit the details.

Although we presented the method for systems with Poisson arrivals and exponential service

time distributions, the method can be easily extended to systems with phase-type distributions

by introducing additional variables. Moreover, one can use the method to derive bounds on the

performance of particular policies. This is done by introducing additional constraints that capture

as many features of a particular policy as possible.

4.4 Higher Order Interactions and Nonlinear Characterizations

The methodology developed so far leads to a polyhedral set that contains the achievable region

and takes into account pairwise interactions among classes in the network. We can extend the

methodology and its power as follows:

1. We take into account higher order interactions among various classes by extending the potential

function technique developed thus far.

2. We obtain nonlinear characterizations of the achievable region in a systematic way by using

ideas from the powerful methodology of semidefinite programming.

In particular, we show how to construct a sequence of progressively more complicated nonlinear

approximations (relaxations) which are progressively closer to the exact achievable space.

Higher Order Interactions

The results so far have made use of the function R(t) = ER= f(r)n,(t) and were based essentially

on the equation

E[E[R(rk+1) I n6(rk)]] = E[R(rk)].

By its nature, this method takes into account only pairwise interactions among the various classes.

For example, the nonparametric method introduces variables E[1{B,(7k)}nj(rk)], taking into ac-

count the interaction of classes r and j.

We now describe a generalization that aims at capturing higher order interactions. Consider again

an open queueing network of the form described in Section 4.1, where there are no routing decisions

to be made. We apply the nonparametric method by deriving an expression for E[R3 (rk+l) I (rk)]

and then collecting terms; alternatively, we can use test functions g(ni(t)) = n,(t)nj(t)nk(t). (We

need to modify Assumption A(b) and assume that E[n3(t)] < oo.) In addition to the variables

Ij = E[1{B,(rk)}nj(rk)], we introduce some new variables, namely,

H,jk = E[1{B,(rk)}nj(rk)nk(rk)] (56)
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and

Mjk = E[nj (rk)nk(rk)]

The recursion for E[R3 (rk+l) I (rk)] leads to a set of linear constraints involving the variables

{(nr, Irj, Hrjk, Mjk)}.

The new variables we introduced take into account interactions among three customer classes

and we expect that they lead to tighter constraints. Another advantage of this methodology is that

we can now obtain lower bounds for more general objective functions involving the variances of the

number of customers of class r, since the variables Mjj = E[n(rk)] are now in the augmented space.

Naturally, we can continue with this idea and apply the nonparametric method to E[Ri(rk+l) I

in(Tk] for i > 4. In this way, we take into account interactions among i classes in the system.

There is an obvious tradeoff between accuracy and tractability in this approach. If we denote by

Pi the set obtained by applying the nonparametric method to E[R(rk+l) I ni(k)], the approximate

performance region that takes into account interactions of up to order i is nf= 1P. The dimension

of this set and the number of constraints is O(R'), which even for moderate i can be prohibitively

large.

The explicit derivation of the resulting constraints is conceptually very simple but is algebraically

involved and does not yield any additional insights. In fact this derivation is not hard to automate.

Bertsimas et. al (1992) have used the symbolic manipulation program Maple to write down the

recursion for E[Ri(rk+l) I il(rk)], and generate equality constraints by collecting the coefficients of

each monomial in the f-parameters.

Nonlinear Interactions

In several examples, we found that although the method provides relatively tight bounds, it does

not exactly characterize the achievable region and there is a gap between the lower bound and

the performance of an optimal policy. We believe that the reason is that the achievable region is

not always a polyhedron. We will therefore discuss how to extend our methods so as to allow the

possibility of nonlinear characterizations.

Let Y be a vector of random variables and let Q be a symmetric positive semidefinite matrix.

Clearly,

E[(Y - E[Y])T Q(Y - E[Y])] > 0,

which implies that

E[YT QY] > E[YT]QE[Y]. (57)

Notice that (57) holds for every symmetric semidefinite matrix Q. By selecting particular values

for matrices Q, one obtains a family of.inequalities. For example, consider the model of Section 4.1

and fix some r. Let Y be the vector with components (1{B,(rk)})ni(r)), j = 1,... ,R and use the
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identity 1{Br(rk)} = (1{Br(rk)})2 , to obtain the quadratic inequalities

Z£, HrijQij > Qij IriIj, r= 1,...,R, (58)
i,j i,j

where Iri and Hij have been defined in (45) and (56).

Any choice of Q leads to a new set of quadratic inequalities. We will actually impose the

constraints of the form (58) for all choices of Q. Bertsimas et. al. (1992) show how to solve the

problem with the nonlinear inequalities as a semidefinite-programming problem.

Higher order nonlinear constraints can be also obtained by using inequalities such as

E[l{Br(rk)}n(Trk)] > E[nj(rrk)}]', h = 1,2,...

which again follow from Jensen's inequality. We thus obtain a sequence of progressively more

complicated convex sets that approximate the achievable region.

4.5 Performance of the bounds

In this section we summarize the principal insights form the extensive computational results reported

in Bertsimas et. al. (1992) regarding the performance of these methods:

1. The lower bound obtained by the nonparametric variation of the method is at least as good

as the lower bound obtained by the parametric method as expected. In fact in more involved

networks it is strictly better. The reason is that the nonparametric method takes better into

account the interactions among various classes.

2. The strength of the lower bounds obtained by the potential function method is comparable to

the strength of the "pathwise bound" derived in Ou and Wein (1992).

3. The bounds are very good in imbalanced traffic conditions and the strength of the bounds

increases with the traffic intensity. A plausible explanation is that in imbalanced conditions

the behavior of the system is dominated by a single bottleneck station and for single station

systems we know that the bounds are exact.

4. In balanced traffic conditions, the bounds also behave well, especially when the traffic intensity

is not very close to one.

5. In certain routing examples, the method is asymptotically exact (as p -- 1), which is very

encouraging.

6. In closed network examples, the bounds were extremely tight.

7. When applied to indexable systems considered in Section 2 the parametric variation of the

method produces the exact performance region (extended polymatroid), while the nonpara-

metric variation leads to a reformulation of the achievable region with a quadratic (as opposed
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to exponential) number of constraints. This is particularly important when side constraints

are present, because we can now apply linear programming methods on a polynomial size

formulation of the problem.

The techniques in this section are generalizable to an arbitrary stochastic and dynamic optimiza-

tion problem as follows:

1. Given a stochastic and dynamic optimization problem, first write the equations that describe

the evolution of the system (see for example (52)).

2. Define a potential function of the type (55) and apply the nonparametric variation of the

method.

3. By defining appropriate auxiliary variables, find a relaxation of the achievable region.

4. By exploring higher order interactions, obtain stronger relaxations.

Overall, the power of the method stems from the fact that it takes into account higher order in-

teractions among various classes. The first order method is as powerful as conservation laws since

it leads to exact characterizations in indexable systems. As such, this approach can be seen as the

natural extension of conservation laws.

5 Loss Networks

In this section we consider the problem of routing calls/messages in a telephone/communication

network. The important difference with the problem of the previous section is that this is a loss

network, in the sense that calls that can not be routed are lost as opposed to being queued. Because

of its importance the problem has attracted the attention of many researchers (for a comprehensive

review see Kelly (1991)).

We will describe the problem in terms of a telephone network, which is represented by a complete

directed graph G = (V, A) with N = IVi nodes and jIA = N(N - 1) ordered pairs of nodes (i, j).

Calls of type (i, j) need to be routed from node i to node j and carry a reward w(i, j). Arriving

calls of type (i, j) may be routed either directly on link (i, j) or on a route r E R(i, j) (a path in

G), where R(i, j) is the set of alternative routes for calls of type (i, j). Let Cij be the capacity of

the direct link (i,j) (Cij = 0 if the link (i, j) is missing). Let S(i,j) = {(i,j)} U R(i, j) be the set of

routes for calls of type (i, j). When a call of type (i, j) arrives at node i, it can be routed through

r only if there is at least one free circuit on each link of the route. If it is accepted, it generates a

revenue of w(i, j) and simultaneously holds one circuit on each link of the route r for the holding

period of the call. Incoming calls of type (i, j) arrive at the network according to a Poisson process

of rate Aij, while its holding period is assumed to be exponentially distributed with rate pij and
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independent of earlier arrivals and holding times. The problem is to find an acceptance/rejection

policy to maximize the total expected reward in steady state.

Our goal in this section is to obtain an approximate characterization of the achievable space

using the potential function method and thus obtain an upper bound on the expected reward.

We report results obtained in Bertsimas and Cryssikou (1994). Kelly (1993) has developed an

approach based on nonlinear optimization to obtain bounds. We first present approximate and

exact characterizations for the case of a single link and an approximate characterization for the case

of a full network.

5.1 Single Link

In order to illustrate the methodology we present the simpler problem of one link and two classes

of arriving calls. Consider a single link of capacity C, which is offered two different types of calls.

Let A and A2 be the arrival rates, p, and p2 be the service rates and w1 and w2 be the reward

generated by acceptance of a type 1 and 2 call, respectively. We are interested in maximizing the

expected reward E2=l wiE[ni], where E[ni] is the expected value of the number of calls of type i.

Let rk be the time at which the k-th event (arrival or service completion) occurs. Let in(rk) denote

the state of the system after the kth transition. We will be using the notation 1{ . to denote the

indicator function. Finally, Ai(rk) (Ai(rk)) denotes the decision (0, 1) of whether a call of type i

is accepted (rejected) at time rk. By applying the potential function nonparametric method to the

potential function
2

R(t) = E fini(t)
i=l

we obtain

Theorem 11 The performance space for the single link loss system is contained in the following

polyhedron:

AiE[1{Ai(rk)}-pi E[1{ni,(r) > 1}] = 0, i=1,2

Ai E[ ni(r) 1{A,(rk)}] - pLi E[ ni(r) ] + i E[ l{ni(rk) > 1} ] = 0, i = 1, 2

:AE[n2(rk)1{Al(rk)}]+A2E[nl(rk)l{A2(rk)}] = plE[n2(rk)l{nl(rk) > 1}]+P2 E[nl(rk)l{n2(rk) > 1}].

E[nl(rk)] + E[n2 (rk)] < C

E[(nl(rk) + n2(rk))l{ni(rk) > 1}] < CE[l{ni(rk) > 1}], i = 1,2

E[(n1(rk) + n2(rk))lni(rk) > 1}] <E[(n1(rk)+ n2(rk)), i = 1,2

0 < E[1{ni(rk)> 1}] < 1, E[ni(rk)] > E[1{(n(rk) 1}] > 0, i = 1,2.

Maximizing the linear function wlE[nl(rk)] + w2E[n2 (rk)] provides a bound on the optimal reward.
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The previous characterization used only 0(1) variables. We can obtain an exact formulation in

this case by considering O(C) variables

E[l{nl(rk) = k,n 2(rk) = ,Ai(rk)}].

This characterization is equivalent to modeling the problem as a Markov decision process. Clearly

this approach leads to an exact characterization, but its extension to the network case is problematic

because of the very large number of variables. Kelly (1993) has also presented an exact method based

on a closed form nonlinear formula to solve the single link problem.

5.2 Network

Let nir (t) be the number of calls of type (i, j) routed through path r at time t under the stationary

distribution. We consider Markovian policies, in the sense that a decision is only based on the current

state. It is then clear that under a Markovian policy, the loss network evolves as a continuous-time

Markov chain. Also 1{Ar }(t) denotes the (0, 1) decision of whether an incoming call (i, j) is routed

through route r E S(i,j) at time t. Let E[nrj] = E[nr(t)],E[[l{Ar}(t)] = E[l{Ar} ] where

the expectation is taken under the stationary distribution. By introducing the potential function

R(t) = (ij)r i firjnr(t) Bertsimas and Cryssikou (1994) prove the following.

Theorem 12 The optimal expected reward is bounded above by the value attained by the following

linear problem

maximize wijE[nr]
i,j rES(i,j)

subject to

Aij E[l{AXj}] - ij E[1{nj, > 1] = 0 V r E S(i,j) , V (i,j)

Aij E[nrj 1(A,} -]-pi E[nrj] +, ij E[l(nr > 1}] = 0 r E S(i,j)

Aij E[nl 1{Arj}] + Akl E[nr. 1{A)}] = Pij E[nI l{nrj > 1}]+

Pk, E[nr l nqt > 1}] V(i, j), (k, 1), r E S(i, j), q E S(k, )

E E[njl] < Cij
rE S(k,l):(i,j)Er

E[n~:,l{nqt > 1}] < CijE[l{nqt > 1}] V(i,j'
rES(k,1):(i~J)Er

rES(k,l):(ij)Er

Z E[nkl{ - At}]
rES(k,l):(i,j)Er

Z E[nr11{A t}] <
rES(k,l):(ij)Er

rES(k,1):(ij)Er

< CijE[$ASt

E[n'l]
rES(k,1):(i,j)Er
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E[nr.] > E[l{n > 1}],

E[l{.nr > 1}] < 1.

E[l{Aqt}] < 1,

all variables are nonnegative.

Compared with the variables we introduced, Kelly (1993) considers as variables:

(i,j), Z = n'

r•(i )

The linear program of Theorem 12 has O(N2 R2 ) variables and constraints, where N is the number

of demands (i, j) and R is the number of alternative paths. In contrast Kelly's approach uses O(N)

variables and O(A) number of constraints where A is the number of links.

Based on very limited computational experience, the bounds of Theorem 12 are stronger com-

pared with the ones derived in Kelly (1993), (based on nonlinear optimization) for sparser asym-

metric networks, while the bounds in Kelly (1993) are better for complete symmetric networks. An

attractive alternative seems to combine both bounds, as they seem to capture somewhat different

behavior.

By introducing variables of the type

E[l{nrj = kl}, l{npq = k2 }, 1{A{f}],

we can obtain tighter bounds at the expense of higher computational needs. By continuing in this

manner, we can recapture the exact formulation of the problem as a Markov decision process. In

this way the method produces a series of relaxations which are progressively closer to the exact

formulation.

6 An optimal control approach to dynamic optimization

In this section we introduce a method of constructing near optimal policies based on an optimal

control approach. We will introduce the method by addressing the following multiclass open network

with two types (not classes) of customers, depicted in Figure 5.

Type 1 customers visit stations 1 and 2, in that order, before exiting the network and type 2

customers visit only station 1 before exiting the network. We define class 1,2 customers to be type

1 customers at stations 1,2, respectively, and class 3 customers to be type 2 customers at station 1.

Let A1 and A2 be the (deterministic) arrival rates for customers of class 1 and 2, respectively. Let

P1, P2 and p3 be the (deterministic) service rates of classes 1, 2 and 3 respectively. Let us define

the traffic intensities: pi = , ,P2 = I, P3 = In order to ensure that at least one stable policy
exists, we assume that + p3 < 1 and P2 1. Let c be the holding cost of class i, i = 1, 2, 3.

exists, we assume that P + P < 1 and P2 < 1. Let ci be the holding cost of class i, i = 1, 2, 3.
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Figure 5: A three class open queueing network.

Let us notice that we have assumed that there is no randomness in the system. Let xi be the

initial number of customers for class i. Let xz(t) be the number of customers for class i at time t

if we follow a policy u. Note that for this problem, a policy amounts to a rule according to which

the first server can decide which customer class, if any, to serve. We are interested in a scheduling

policy that minimizes the total holding cost

c< 3

min A E cix(t)dt.
° i=l

Notice that although the integral extends to infinity, under a stable policy there is a finite time at

which the network empties. In order to formulate this problem we define ui(t) be the effort that

class i receives at time t, which is a number in [0, 1] . Then the problem can be formulated as follows:

min (cll(t) + C2 X2(t) + c3 x3(t))dt. (59)

subject to

(t) = 1 - lUl(t)

i2(t) = plul(t) - p2 u3 (t)

is3(t) = A2 - 13U3 (t)

ul(t) + u3(t) < 1

u2 (t) 1

,i(t),ui(t) > 0.

The approach we outline in this section is based on the thesis that the essential difficulty in

stochastic and dynamic optimization is primarily the dynamic and combinatorial character of the

problem and only secondarily the stochastic character of the problem. Therefore, a fluid approxima-

tion of the system is expected to capture the qualitative character of an optimal policy. In general,
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given an open multiclass network, the general problem can be formulated as follows:

0

(CLP) min cixz(t)dt

subject to

-(t) = Au(t) + b

Du(t) < e

u(t) > 0

x(t) > 0,

where the matrix A and vector b are easily found from the given parameters, the matrix D depends

on the topology of the network and the vectors x(t) and u(t) are the queue lengths and the controls at

time t. The above optimization problem is known in the literature as continuous linear programming

(see for example Anderson (1987)).

Optimization of fluid models as approximations of stochastic and dynamic optimization problems

have been introduced in Bellman (1957). Anderson (1978) introduced this particular model for

dynamic scheduling problems while Chen and Yao (1989) and Atkins and Chen (1993) propose

myopic strategies. Regarding algorithms for the general problem it is fair to say that there are no

efficient algorithms for the problem. Perhaps the most efficient one is due to Pullan (1993), who

also contains a nice survey of the area.

We next review some recent work of Avram and Bertsimas (1994) to solve instances of (LCP). We

start with the system in Figure 5. Applying Pontryagin's maximum principle, Avram and Bertsimas

(1994) show that the following policy is optimal for problem (59).

Theorem 13 There are the following three cases:

1. If c1p1 < C3p 3 , give absolute priority to class 3 (u3 (t) = 1).

2. If C3p3 < C1pl < C3P3 + c2 p2 give priority to class 3 if

1 - Al c1 p1 - C3ap3
X2 > 1

P2 - P1 c2p 2

give priority to class otherwise (see Figure 6).

3. If C3 3 + C2P2 < ClPl, give absolute priority to class 1.

The above policy which is consistent with the heavy traffic policy in Harrison and Wein (1989)

generalizes the well known cp rule and establishes formally the optimality of thresholds policies.

What insights do we obtain about the structure of optimal policies in the stochastic case, for example

when arrivals are Poisson and services are exponential? We conjecture that cases 1 and 3 (absolute

priority rules) will be identical in the stochastic case; however, in case 2 we conjecture that there
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Figure 6: Threshold optimal policies for the Example of Figure 5.

is a threshold curve which is nonlinear (see Figure 6). In other words, we believe that the optimal

policy for the fluid model gives significant qualitative insights for the optimal policy.

Other evidence of the close connection between the stochastic and deterministic models include

the Klimov model (see Section 2), where the control approach reproduces Klimov's indexing policy.

Moreover, Avram and Bertsimas (1994) include further examples.

In general, for an open multiclass queueing network with n classes, the control approach gives rise

to a partition of the space of (i,... , xn) into polygonal regions, in which an absolute priority policy

is optimal. The determination of these partitions is combinatorially explosive, but conceptually

simple. While, to analytically characterize the partition becomes very difficult very fast, a numerical

approach would be highly desirable.

7 Concluding Remarks and Open Problems

We presented what we believe is a powerful and unified approach for stochastic and dynamic opti-

mization problems based on mathematical programming. To summarize the method consists of the

following steps:

1. We first define appropriate decision variables.

2. Using the potential function method or using particular properties of the problem we generate

a relaxation (or a series of relaxations) of the achievable space.

3. If the relaxation is exact we have found an exact solution of the problem (for example index-

able systems). If not, optimizing over the relaxation we obtain a bound on the achievable

performance.
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4. By using information from the bounds we construct near optimal policies (for example polling

systems) using integer programming.

5. By approximating the stochastic and dynamic system by a deterministic but still dynamic

model, we reduce the problem to a linear control problem, which we then solve by linear

programming methods. Simulating the policies obtained gives feasible policies to the stochastic

systems. Comparing the performance of these policies to the bounds obtained, we obtain a

guarantee of the suboptimallity of the proposed policies.

We finally want to emphasize that the proposed approach gives insights to the complexity of

stochastic optimization problems. We have seen that for indexable systems, we can obtain an exact

formulation by the first order relaxation obtained from the potential function method. The order

of the relaxation provides information regarding the complexity of the problem, i.e., the higher the

order of the relaxation needed to exactly characterize the region of achievable performance, the more

difficult the problem is. Notice that this view of complexity is different, but we believe insightful,

than the traditional one (Figure 1).

Regarding open questions we feel that the following list will give important insights to the field

of stochastic and dynamic optimization:

1. Regarding the method of characterizing the performance space, it would be desirable to find

systematic techniques to propose heuristic policies from relaxations (an example of this type

is the heuristic in Section 3 for polling systems).

2. It would be desirable to develop techniques to bound the closeness of heuristic policies to

relaxations. Techniques developed in the field of approximability of combinatorial problems

might be useful here (see for example Bertsimas and Vohra (1994)).

3. The potential function method is a systematic way to describe a series of relaxations for the

region of achievable space in stochastic and dynamic optimization problems. Investigating the

power of higher order relaxations and experimenting with non-polynomial (in particular piece

wise linear) potential functions, will enhance the power of the method.

4. It would be desirable to find an efficient algorithm for problem (LCP) for a general multiclass

queueing network problem of Section 6.

In closing, although the proposed approach illustrates how mathematical programming tech-

niques can be used in applied probability, we have also seen an example of a reverse application:

the potential function method provides a nontrivial reformulation of an extended polymatroid using

quadratic number of variables and constraints. As a result, we hope that these results will be of

interest to applied probabilists, as they provide new interpretations, proofs, algorithms, insights and
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connections to important problems in stochastic optimization, as well as to discrete optimizers, since

they reveal a new and important area of application.
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