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Abstract

We survey a new approach that the author and his co-workers have developed to formulate generic
stochastic and dynamic optimization problems as mathematical programming problems. The ap-
proach has two components: (a) it produces bounds on the performance of an optimal policy, and
(b) it develops techniques to construct optimal or near-optimal policies. The central idea for devel-
oping bounds is to characterize the region of achievable performance (or performance space) in a
stochastic and dynamic optimization problem, i.e., find linear or nonlinear constraints on the perfor-
mance vectors that all admissible policies satisfy. With respect to this goal we review recent progress
in characterizing the performance space and its implications for the following problem classes: In-
dexable systems (the multi-armed bandit problem and its extensions), polling systems, multiclass
queueing networks and loss networks.

We propose three ideas for constructing optimal or near-optimal policies: (1) for systems for
which we have an exact characterization of the performance space we outline an adaptive greedy
algorithm that gives rise to indexing policies (we illustrate this technique in the context of indexable
systems); (2) we use integer programming to construct policies from the underlying descriptions of
the performance space (we illustrate this technique in the context of polling systems); (3) we use
linear control over polyhedral regions to solve deterministic versions for this class of problems. This
approach gives interesting insights for the structure of the optimal policy (we illustrate this idea in
the context of multiclass queueing networks).

The unifying theme in the paper is the thesis that better formulations lead to deeper under-
standing and better solution methods. Overall the proposed approach for stochastic and dynamic
optimization parallels efforts of the mathematical programming community in the last fifteen years
to develop sharper formulations (polyhedral combinatorics and more recently nonlinear relaxations)
and leads to new insights ranging from a complete characterization for indexable systems to tight
lower bounds and new algorithms with provable a posteriori guarantees for their suboptimality for

polling systems, multiclass queueing and loss networks.
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1 Introduction

In its thirty years history the area of stochastic and dynamic optimization has addressed with various
degrees of success several key problems that arise in areas as diverse as computer and communication
networks, manufacturing and service systems. A general characteristic of this body of research is
the lack of a unified method of attack for these problems. Every problem seems to require its own
formulation and, as a result, its own somewhat adhoc approach. Moreover, quite often it is not clear
how close a proposed solution is to the optimal solution.

In contrast, the field of mathematical programming has evolved around a very small collection
of key problem formulations: network, linear, integer and nonlinear programs. In this tradition,
researchers and practitioners solve optimization problems by defining decision variables and formu-
lating constraints, thus describing the feasible space of decisions, and applying algorithms for the
solution of the underlying optimization problem. When faced with a new deterministic optimization
problem, researchers and practitioners have indeed an apriori well defined plan of attack to solve it:
model it as a network, linear, integer or nonlinear program and then use a well established algorithm
for its solution. In this way they obtain feasible solutions which are either provably optimal or with
a guarantee for the degree of their suboptimality.

In parallel, the theory of computational complexity has shed light to what we feel is the funda-
mental theoretical question in the area of mathematical programming: what problems are efficiently
(polynomially) solvable and what problems are inherently hard. This characterization is quite impor-
tant from a practical point of view as it dictates the approach for the problem (exact or heuristic). In
contrast, only very recently such characterizations have been developed for stochastic optimization
problems.

In view of these comments we feel that the following research program is in the heart of the field

of stochastic and dynamic optimization:

1. Develop a unified approach for stochastic and dynamic optimization problems that provides
both a feasible solution and a guarantee for its suboptimality (or optimality). Ideally the

approach should not fundamentally change when the problem changes.
2. Classify the inherent complexity of classical stochastic and dynamic optimization problems.

Our goal in this paper is primarily to review the recent progress towards the first goal and
secondarily to briefly outline the progress towards the second goal. Towards the first goal our plan
is to outline the approach broadly and then apply it to the following problems, which, are, in our
opinion, among the most important in applications and among the richest in modeling power and

structure (detailed definitions of the problems are included in the corresponding sections of the

paper):



1. Indexable systems (The multi-armed bandit problem and its extensions such as multiclass

queues, branching bandits, etc.).
2. Polling systems.
3. Multiclass queueing networks.
4. Multiclass loss networks.

There is an important distinction among these four problem classes. While indexable systems are
solvable very efficiently by an essentially greedy method (an indexing rule), the research community
has had significant difficulties with the other problem classes. Despite significant progress in recent
years, it is fair to say that there do not exist general methods that solve large scale versions of these
problems efficiently. One naturally wonders whether these problems are inherently hard or we could
perhaps solve them if we understand them at a deeper level. The theory of computational complexity
developed in computer science in the early 1970s to answer similar questions but for combinatorial
optimization problems provides insights to this question (the second goal of the paper), which we
briefly outline.

Classification of complexity in stochastic and dynamic optimization

The following brief discussion is informal with the goal of explaining the fundamental distinction in
complexity of these problems (for formal definitions see Papadimitriou (1994)). Let P, PSPACE,
EXPTIME be the class of problems solvable by a computer (a Turing machine) in polynomial time,
polynomial space (memory) and exponential time respectively. Let NP the class of problems which,
if given a polynomial size certificate for the problem, we can check in polynomial time whether the
certificate is valid. A significant tool to assess the difficulty of a problem is the notion of kardness.
For example if we show that a problem is EXYPTZIME-hard, it means that it provably does not have
a polynomial (efficient) algorithm for its solution, since we know that EXYPTIME # P. If we prove
that a problem is PSP.ACE-hard it means that if we find a polynomial algorithm for the problem,
then all problems in PSP.ACE have efficient algorithm. It is widely believed (but not yet proven)
that PSPACE # P; therefore, proving that a problem is PSP.ACE-hard is a very strong indication
(but not yet a proof) of the inherent hardness of the problem.

Papadimitriou and Tsitsiklis (1993) have recently shown that the multiclass queueing network
problem is EXYPTIME-hard and a very natural variation of the classical bandit problem known
as the restless bandit problem is PSPACE-hard. It is immediate that the polling optimization
problem is A'"P-hard, since it has as a special case the traveling salesman problem. Modifications of
the proof methods in Papadimitriou and Tsitsiklis (1993) show that the loss network problem is also
EXPTIME-hard, and the polling system problem is PSPACE-hard. Finally, indezable systems
have efficient algorithms and, therefore they belong in the class P. In Figure 1 we summarize this

discussion and classify these problems in terms of their inherent complexity. Figure 1 illustrates that



the difficulty the research community has had in developing efficient methods for classical stochastic

and dynamic optimization problems is due to the inherent complexity of the problems.

EXPTIME

a POLLING-SYSTEMS

P

INDEXABLE-SYSTEMS

Figure 1: Classification of the complexity of classical stochastic optimization problems.

On the power of formulations in mathematical optimization

In mathematical programming our ability to solve efficiently optimization problems is to a large
degree proportional to our ability to formulate them. In particular, if we can formulate a problem
as a linear optimization problem (with a polynomial number of variables and constraints, or with
a polynomial number of variables and exponential number of constraints such that we can solve
the separation problem in polynomial time) we prove membership of the problem in P. On the
other hand, the general integer optimization problem is N'P-hard, while the general nonlinear opti-
mization problem is PSP ACE-hard. Analogously to Figure 1 we classify in Figure 2 these classical
mathematical programming problems in terms of their inherent complexity.

Despite the inherent hardness of integer programming (IP), the mathematical programming
community has developeci methods to successfully solve large scale instances. The central idea in
this development has been itmproved formulations. Over the last fifteen years much of the effort in
integer programming research has been in developing sharper formulations (polyhedral combinatorics
and more recently nonlinear relaxations) Given that linear programming relaxations provide bounds

for IP, it is desirable to enhance the formulation of an IP by adding valid inequalities, such that the
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Figure 2: Classification of the complexity of classical mathematical programming problems.

relaxation is closer and closer to the IP. Moreover, one of the most exciting new research directions in
mathematical programming is the field of nonlinear relaxations (see for example Lovasz and Schrijver
(1990)) for integer programming problems.

On the power of formulations in stochastic and dynamic optimization
The unifying theme in the present paper is the thesis that better formulations lead to deeper un-
derstanding and better solution methods. Motivated by the power of improved formulations for
mathematical programming problems, we now like to outline in broad terms the approach to for-
mulate stochastic and dynamic optimization problems as mathematical programming problems in an
attempt to develop a unified theory of stochastic and dynamic optimization. The key idea in this
development is the following: Given a stochastic and dynamic optimization problem, we define a
vector of performance measures (these are typically expectations, but not necessarily first moments)
and then we express the -objective function as a function of this vector. The critical idea is to char-
acterize the region of achievable performance, i.e., find constraints on the performance vectors that
all admissible policies satisfy. In this way we find a series of relaxations that are progressivéiy closer
to the exact region of achievable performance. In Figure 3 we outline the conceptual similarity of
this approach to the approach used in integer programming.

As the complexity of stochastic and dynamic optimization problems increases (Figure 1), our

ability to fully characterize the region of achievable performance decreases. While for indexable



systems we can obtain full characterizations of the achievable space, in the other three stochastic
and dynamic optimization problems we study we only achieve partial characterizations (relaxations).
In Sections 2-5 we outline the progress in characterizing the performance space for the four problem
classes we are studying. Central in this development is a systematic way (the potential function
method) to obtain qonstraint;s for a stochastic optimization problem, which is described in Section
4.

L.P relaxation

Nonlinear
LP relaxation Relaxation

improved
Relaxation

Exact formulation Exact Formulation
Convex Hull
(a) (b)

Figure 3: (a) Improved relaxations for integer programming (b) Improved relaxations for stochastic
optimization problems.

Techniques to find optimal or near-optimal policies for stochastic and dynamic opti-
mization problems

We propose three ideas for constructing optimal or near-optimal policies:

1. For systems for which we have an exact characterization of the performance space we outline
an adaptive greedy algorithm that gives rise to indexing policies. We illustrate this technique
in the context of indexable systems in Section 2. This leads to significant advantages, as one
can use structural and algorithmic results from a mature field (mathematical programming) to
attack stochastic optinﬁzation problems, and offers new insights ranging from new algorithms
to solve stochastic and dynamic optimization problems to a deeper understanding of their
structure and properties. In Section 2 we illustrate that for indexable systems we can exactly
characterize the region of achievable performance as a polyhedron of special structure, which
is interestingly related with the theory of polymatroids of Edmonds (1970). More importantly,

we can use well understood linear programming techniques to unify a very large set of results



regarding indexable systems.

2. We use integer programming to construct policies from the underlying descriptions of the

performance space. We illustrate this technique in the context of polling systems in Section 3.

3. We use linear control over polyhedral regions to solve deterministic versions for this class of
problems. This approach gives interesting insights for the structure of the optimal policy (we
illustrate this idea in the context of multiclass queueing networks in Section 6). This approach
is based on the thesis that the essential difficulty in stochastic and dynamic optimization is
primarily the dynamic and combinatorial character of the problem and only secondarily the
stochastic character of the problem. Putting the randomness back in the problem, we simulate

" proposed policies and thus estimate their performance. The degree of suboptimality is then

found by comparing these simulation results to the bounds found from the relaxations.

The paper is structured as follows. In Section 2, 3, 4 and 5 we outline the progress to describe
the performance space for indexable systems, polling systems, multiclass queeuing networks and loss
networks respectively. In Section 6 we outline the linear control approach over a polyhderal space as
an approach to obtain qualitative insight for the structure of the optimal policy. The final section

includes concluding remarks and a list of open problems in the field.

2 A Polyhedral Approach to Indexable Systems

Perhaps one of the most important successes in the area of stochastic optimization in the last
twenty years is the solution of the celebrated multi-armed bandit problem, a generic version of which
in discrete time can be described as follows:

The multi-armed bandit problem: There are K parallel projects, indexed k = 1,..., K. Project
k can be in one of a finite number of states ji; € E;. At each instant of discrete time t = 0,1, ...
one can work only on a single project. If one works on project k in state ji(t) at time ¢, then one
receives an immediate reward of Ryj,(;). Rewards are additive and discounted in time by a discount
factor 0 < B < 1. The state ji(t) changes to ji(t + 1) by a homogeneous Markov transition rule,
with transition matrix P* = (pf‘,- )i.jeE., while the states of the projects one has not engaged remain
frozen. The problem is how to allocate one’s resources to projects sequentially in time (according
to a policy u arhoﬁg a>s<-ef_of ‘policies U) in order to maximize expected total discounted reward over

an infinite horizon: -
max Ey [g_; B Re(tyjn,,, (t)] :
The problem has numerous applications and a rather vast literature (see Gittins (1989) and

the references therein). It was originally solved by Gittins and Jones (1974), who proved that

to each project k one could attach an indez v*(ji(t)), which is a function of the project k and



the current state ji(t) alone, such that the optimal action at time ¢ is to engage a project of
largest current index. They also proved the important result that these index functions satisfy a
stronger indez decomposition property: the function *(-) only depends on characteristics of project
k (states, rewards and transition probabilities), and not on any other project. These indices are now
known as Gittins indices, in recognition of Gittins contribution. Since the original solution, which
relied on an interchange argument, other proofs were proposed: Whittle (1980) provided a proof
based on dynamic programming, subsequently simplified by Tsitsiklis (1986). Varaiya, Walrand
and Buyukkoc (1985) and Weiss (1988) provided different proofs based on interchange arguments.
Weber (1992) and Tsitsiklis (1993) outlined intuitive proofs.

The multi-armed bandit problem is a special case of a dynamic and stochastic service system S.
In this context, there is a finite set E of job types. Jobs have to be scheduled for service in the
system. We are interested in optimizing a function of a performance measure (rewards or taxes)

under a class of admissible scheduling policies.

Definition 1 (Indexable Systems) We say that a dynamic and stochastic service system S is
indezable if the following policy is optimal: to each job type i we attach an index ;. At each

decision epoch select a job with largest current index.

In general the optimal indices ¥; (as functions of the parameters of the system) could depend on
characteristics of the entire set E of job types. Consider a partition of set E into subsets Ey, for
k=1,... K. Job types in subset E; can be interpreted as being part of a common project type k.
In certain situations, the optimal indices of job types in E} depend only on characteristics of job
types in Ej and not on the entire set E. Such a property is particularly useful computationally since
it enables the system to be decomposed into smaller components and the computation of the indices
for each component can be done independently. As we have seen the multi-armed bandit problem

has this decomposition property, which motivates the following definition:

Definition 2 (Decomposable Systems) An indexable system is called decomposable if for all job
types i € E, the optimal index v; of job type i depends only on characteristics of job types in Ej.

In addition to the multi-armed bandit problem, a variety of dynamic and stochastic scheduling
problems has been solved in the last decades by indexing rules (see Table 3 for examples).

Faced with these results, one asks what is the underlying deep reason that these nontrivial prob-
lems have very efficient solutions both theoretically as well as practically. In particular, what is the
class of stochastic and dynamic scheduling problems that are indezable? Under what conditions are
indezable systems decomposable? But most importantly, is there a unified way to address stochastic
and dynamic scheduling problems that will lead to a deeper understanding of their strong structural

properties?



In the last decade researchers have been using the approach outlined in the Introduction (de-
scribing the feasible space of a stochastic and dynamic scheduling problem as a mathematical pro-
gramming problem) in order to give answers to some of these questions. Coffman and Mitrani (1980)
and Gelenbe and Mitrani (1980) first showed using conservation laws that the performance space of
a multiclass M/G/1 queue under the average cost criterion can be described as a polyhedron. Fed-
ergruen and Groenevelt (1988a), (1988b) advanced the theory further by observing that in certain
special cases of multiclass queues, the polyhedron has a very special structure (it is a polymatroid)
that gives rise to very simple optimal policies (the cy rule). Their results partially extend to some
rather restricted multiclass queueing networks, in which it is assumed that all classes of customers
have the same routing probabilities, and the same service requirements at each station of the network
(see also Ross and Yao (1989)). Shanthikumar and Yao (1992) generalized the theory further by
observing that if a system satisfies strong conservation laws, then the underlying performance space
is necessarily a polymatroid. They also proved that, when the cost is linear on the performance, the
optimal policy is a static priority rule (Cox and Smith (1961)). Tsoucas (1991) derived the region of
achievable performance in the problem of scheduling a multiclass nonpreemptive M/G/1 queue with
Bernoulli feedback, introduced by Klimov (1974). All these results have been further generalized
by Bertsimas and Nifio-Mora (1993} who propose a theory of conservation laws to establish that
the very strong structural properties in the optimization of a class of stochastic and dynamic sys-
tems that include the multi-armed bandit problem and its extensions follow from the corresponding
strong structural properties of the underlying polyhedra that characterize the regions of achievable
performance.

In this section we review the work of Bertsimas and Nifio-Mora (1993). In Section 2.1 we
define a class of polyhedra called extended polymatroids which describe the region of achievable
performance in a large collection of stochastic scheduling problems. In Section 2.2 we consider
optimization problems over extended polymatroids. In Section 2.3 we define generalized conservation
laws. In Sections 2.4 we consider examples of natural problems that can be analyzed using the theory

developed, while in Section 2.5 we outline applications of these characterizations.

2.1 Extended Polymatroids

Let us first establish the notation we will use. Let E = {1,...,n}. Let z denote a real n-vector,
with components z;, for 1 € E. For S C N, let S° = E\ S, and let |S| denote the cardinality of S.
Let 2F denote the class of all subsets of E. Let 5:2% — R, be set functions that satisfy 5(8) = 0.

Let A = (Af)ice, sce be a matrix that satisfies
AP >0, for i€eS and  Af=0, for i€S°, foral SCE, (1)

Let * = (1, ...,m,) be a permutation of E. For clarity of presentation, it is convenient to intro-



duce the following additional notation. For an n-vector z = (z1,...,2,)7 let 2, = (2, ..

Let us write
be = (b({m}),b({m1,72}),...,.b({m1,..., m }))T.

Let A, denote the following lower triangular submatrix of A:

Al 0 .. 0
Ai’:xﬂz} Ai:x,*a} . 0
Ax = . .
Aﬁ":hm’t”} Ai:;,“.,r,} . Ain,...,t,.}

Let v(7) be the unique solution of the linear system
J
Yo Alreomidz, = b({m,.m)), i=1,...,n
i=1
or, in matrix notation:

Ty = A;lb,.

Consider the following polyhedra with A, b:

Pe(Ab)={zeRL:) A’z 2 HS), for SCE},
1€S

B.(Ab)={z€R}:) Afz,<bS), for SCE and Y Afz; =bE)},

i€S i€E

PAb)={zeR:) Afzi<b(S), forSCE},
i€S

B(Ab)={zeR}:) Afz;285S), for SCE and Y Afz;=b(E)}.

i€S i€E
The following definition is based on Bhattacharya et. al. (1991):

o T,

)T

2)

3)

(4)

()

(6)

(7)

Definition 3 (Extended Polymatroid) We say that polyhedron P(A,b) is an eztended polyma-

troid with ground set E, if the following condition holds:
(i) For every permutation 7 of E, v(7) € P(A4,b).

In this case we say that B(A, b) is the corresponding base polytope. If condition (i) holds for P.(A,b),

we say that polyhedron P.(A,b) is an ertended contra-polymatroid with base polytope B.(4,b).

If A = 1foralli€ S, v(7) € P(A,b) if and only if the set function b(S) is submodular, i.e., for all

S, TCE,
H(S)+HT)<HSNT)+bSUT).

This case corresponds to the usual polymatroids introduced in Edmonds (1970).

The next theorem characterizes the extreme points of the polyhedra B.(A,b) and B(A, b).

10



Theorem 1 (Characterization of Extreme Points) The set of eztreme points of B.(A,b) is
{v(x) : 7 is a permutation of E }.

As an example, let us consider the so called Klimov problem with n = 3 classes: three Poisson
arrival streams with rates A; arrive at a single server. Each class has a different service distribution.
After service completion, a job of class i becomes a job of class j with probability p;; and leaves the
system with probability 1 — )", pix. Let z¥ be the expected length of class ¢ under policy u. What

is the space of vectors (z¥,z4,z%) as the policies u vary? For every policy

AFYzE > b({i}),

which means that the total work class ¢ brings to the system under any policy is at least as much
as the work under the policy that gives priority to class i. Similarly, for every subset of classes, the
total work that this set of classes brings to the system under any policy is at least as much as the

work under the policy that gives priority to this set of classes:
Az 4 Az, > 8({1,2)),
Az 4 Al 2g > ({1, 3)),
APy + AP F 25 > b({2,3)).
Finally, there is work conservation, i.e., all nonidling policies give the same total work:
A3y 4 alb23Y,, 4 A4SV, = ({1, 2,3)).

The performance space in this example consists exactly of the 23 — 1 = 7 constraints and it is indeed

an extended contra-polymatroid base, which is drawn in Figure 4.

The polytope has 3! = 6 extreme points corresponding to the 6 possible permutations. Extreme
points in an extended polymatroid correspond to the performance vectors of complete priority poli-
cies. For example, extreme point A in Figure 4 corresponds to the performance vector of the policy
that gives highest priority to class 1, then to class 2 and last priority to class 3. The vector corre-

sponding to point A is the unique solution of the triangular system:
IR Az = b({1}),

Az 4 Al 2, = b({1,2)),

A?’z‘s}zl + A§1,2,3}32 + A;{,I’z’a}za = b({1,2,3}).

11



Figure 4: An extended polymatroid in dimension 3.

2.2 Optimization over Extended Polymatroids

Let us consider the following linear program over an extended contra-polymatroid base:

(LP) max{ Z Riz; : z € B.(A,b) } 8)

i€E
The theory over extended polymatroids is completely analogous. Given that the extreme points of
the polytope B.(A,b) correspond to priorities (permutations), the problem reduces to finding which
priority is optimal. Tsoucas (1991) and Bertsimas and Nifio-Mora (1993) presented the following
adaptive greedy algorithm:
Algorithm AG
Input: (R, A).
Output: (7, 7,9, v, ), where 7 = (m1,...,7,) is a permutation of E, § = (7°) g g ¥ = (1, .-, ¥n),
and § = {Sy,...,5,}, with §; = {my,...,m}, for k € E. )

Step 0. Set S, = E. Set Vnzmax{TRg-:ieE};
pick 7y, Eargmax{ fg’- 11 € E};

set Yx, = Vn.

Ste;) k. Fork=1,...,n-1:

Ri=-Y*1gfm-iy o
Set Sn_k = Sp—k+1 \ {Tn—k+1 }; set vo_p = max{ E’:‘;,:,, . 1 i€Suk };

12



Problem Feasible space Indices Optimal solution
Ties APz Sb(S),SCE
(LP)mingep(asy Cz | B(A,b)%: { Yicr APzi = b(E) (C, A2y | yp <o < va,
z>0
Fx = A7 b,
Yies APz 2 H(5),SCE 4G
(LP:) maxyep (ap) Rz | Bo(A,0)° 18 T p APz = b(E) (RAYZE v | vp, € < 7p,
z>0
Ty = A;lgr

Table 1: Linear programming over extended polymatroids

2Extended polymatroid
bExtended contra-polymatroid

k-1 .S ;

. R.-—ZA_ A" Tvan; .

pick 7, € argmax{ = 1€ Sp-k };
(3

set Yr,_, = LT + Vn—k.

Step n. For S C E set

-s_{"f’ if S = §; for some j € E;
0, otherwise.

Bertsimas and Nifio-Mora (1993) show that outputs 4 and ¥ of algorithm AG are uniquely
determined by the input (R, A). Moreover, 7 is an optimal solution to the linear programming dual
of (LP.). The above algorithm runs in O(n3). They also show, using linear programming duality,

that linear program (LP,) has the following indexability property.

Definition 4 (Generalized Gittins Indices) Let 3 be the dptimal dual solution generated by
algorithm AG. Let

v= ) 7, i€k
S: EDS3i

We say that 47, ..., 74 are the generalized Gittins indices of linear program (LP.).

Theorem 2 (Indexability of LP over extended polymatroids) (a) Linear program (LP.) is

optimized by v(x), where 7 is any permutation of E such that

Yo £ < Y 9

Bertsimas and Nifio-Mora (1993) also provide closed form expressions for the generalized Gittins
indices which can be used for sensitivity analysis. Optimization over the base of an extended

polymatroid is analogous to the extended contra-polymatroid case (see Table 1).

In the case that matrix A has a certain special structure, the computation of the indices of (L P,)
can be simplified. Let E be partitioned as E = |J5_, F;. Let A* be the submatrix of matrix A
corresponding to subsets S C E;. Let R* = (R;)iek,- Assume that the following condition holds:

A = A7Ex = (A*)P"Ex | fori€e SNE; and SCE. (10)

13



Let {7f}ick. be the generalized Gittins indices obtained from algorithm AG with input (R, A¥).

Theorem 3 (Index Decomposition) Under condition (10), the generalized Gittins indices cor-

responding to (R, A) and (R¥, A¥) satisfy
vi=7vF fori€eEy andk=1,..., K. (11)

Theorem 3 implies that the fundamental reason for decomposition to hold is (10). A useful

consequence is the following:

Corollary 1 Under the assumptions of Theorem 3, an optimal solution of problem (LP,) can be
computed by solving K subproblems: Apply algorithm AG with inputs (R*, A¥), fork=1,..., K.

2.3 Generalized Conservation Laws

A natural question is how one can show that the performance space of a stochastic optimization
problem is indeed an extended polymatroid. More importantly, what physical properties of the
problem imply that the performance space is an extended polymatroid? In this section we identify
certain properties of the problem that imply that the performance space is an extended polymatroid.

Consider a generic dynamic and stochastic service system. There are n job types, which we label
i€ E={1,...,n}. Jobs have to be scheduled for service in the system. Let us denote U the class
of admissible scheduling policies. Let z} be a performance measure of type ¢ jobs under admissible
policy u, for ¢ € E. We assume that z} is an expectation. Let z* denote the performance vector
under a static priority rule (i.e. the servicing priority of a job does not change over time) that
assigns priorities to the job types according to permutation = = (71,...,m,;) of E, where type m,

has the highest priority.

Definition 5 (Generalized Conservation Laws) The performance vector z is said to satisfy
generalized conservation laws if there exist a set function b(-) : 2% — R, and a matrix A =
(A?)ier,scE satisfying (1) such that:

(a)

b(S) = EA;S::}' forallm:{m,...,m5} =S and SCE; (12)
i€S
(b) For all admissible policies u € U,

Y Afz¢>8(S) foralSCE  and Y APz} =H(E), (13)
€S i€E

or respectively,
d Afz <b(S) forall SCE and > APzl = b(E). (14)
€S i€E
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The following theorem formalizes the intuition developed in the example of Figure 4 and es-
tablishes that if a system satisfies conservation laws (a physical property of the system, which is

relatively easy to check) then the performance space is an extended polymatroid:

Theorem 4 Assume that performance vector ¢ satisfies generalized conservation laws (12) and (13)
(respectively (12) and (14)). Then

(a) The vertices of B.(A,b) (respectively B(A,b)) are the performance vectors of the static priority
rules, and =™ = v(w) for every permutation = of E.

(b) The extended contra-polymatroid base B.(A,b) (respectively the extended polymatroid base B(A,b))

18 the performance space.

Suppose that we want to find an admissible policy u € U that maximizes a linear reward function

on the performance ;. p R;z}. This optimal control problem can be expressed as

(LPy) max{ZR;x:-‘ :ueu}. (15)
i€E
By Theorem 4 this optimal control problem can be transformed into the following linear programming
problem:
(LF) maX{ D Rizi:z € B(A,b) } (16)
i€E

The strong structural properties of extended polymatroids lead to strong structural properties in
the control problem.

Let 71, ..., 7n be the generalized Gittins indices of linear program (LP,). As a direct consequence
of the results of Section 2.2 it follows that the control problem (LPy) is solved by an index policy,

with indices given by v1,...,7n.

Theorem 5 (Indexability of Systems Satisfying Conservation Laws) A policy that selects
at each decision epoch a job of currently largest generalized Gittins indez is optimal for the control

problem.

2.4 Branching Bandit Processes

Consider the following branching bandit process introduced by Weiss (1988), who observed that it can
model a large number of stochastic and dynamic optimization problems. There is a finite number
of project types, labeled & = 1,...,K. A type k project can be in one of a finite number of states
ix € Eg, which correspond to stages in the development of the project. It is convenient in what
follows to combine these two indicators into a single label i = (k,i;), the state of a project. Let
E ={1,...,n} be the finite set of possible states of all project types.

We associate with state i of a project a random time v; and random arrivals Ny = (Nj;)jcE-

Engaging the project keeps the system busy for a duration v; (the duration of stage i), and upon
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completion of the stage the project is replaced by a nonnegative integer number of new projects Ny;,
in states j € E. We assume that given 7, the durations and the descendants (v;; (Nij)jc£) are random
variables with an arbitrary joint distribution, independent of all other projects, and identically
distributed for the same i. Projects are to be selected under an admissible policy u € U: Nonidling
(at all times a project is being engaged, unless there are no projects in the system), nonpreemptive
(work cannot be interrupted until the engaged project stage is completed) and nonanticipative
(decisions are based only on past and present information). The decision epochs are t = 0 and the
instants at which a project stage is completed and there is some project present.

We shall refer to a project in state 7 as a type ¢ job. In this section, we will define two different
performance measures for a branching bandit process. The first one will be appropriate for modelling
a discounted reward-tax structure. The second will allow us to model an undiscounted tax structure.
In each case we demonstrate what data is needed, what the performance space is and how the relevant
parameters are computed.

Discounted Branching Bandits

Data: Joint distribution of v;, Ni1,..., Ni, for each :

®;(0,21,...,2n) = E[e“"”"zf’“ ...z,’,v""],

¥;(9) = ®;(6,1,...,1),

m;, the number of type ¢ bandits initially present, R;, an instantaneous reward received upon
completion of a type i job, C;, a holding tax incurred continuously while a type i job is in the
system and a > 0, the discount factor.

Performance measure: Using the indicator

1 if a type j job is being engaged at time ¢;
L) = . (17
0 otherwise,
the performance measure is
o0
zi(a) = Eq [/o e I;(t) dt] . (18)

Performance Space: The performance vector for branching bandits z%(a) satisfies generalized con-

servation laws

(a) Yies A;": aZ{ (@) 2 ba(S), for S C E, with equality if policy u gives complete priority to S°-jobs.
(b) Liep Afazi (@) = bal(E).

Therefore, the performance space for branching bandits corresponding to the performance vector
z¥(c) is the extended contra-polymatroid base B.(Aq4,bs). The matrix A, and set function b4(-)

are calculated as follows: .
1-¥7"(a)

S _ " 7i \J
e = T%(a)

i€S, SCE, (19)

16



ba($) = = TT 45" (@)™ — = [T (¥F (@)™, SCE (20)
j€se JEE

and the functions ¥} (8) are calculated from the following fixed point system:

¥S() = ( (¥5(9)) es,1sc), i€ E.

Objective function:

max VB m) = 3 Riaet(@)-3 miC: = Y { RetCim 3 EINoIC; gt (@)= 3 miC

T
icE i€E icE jEE v ( ) i€eE

(21)

Undiscounted Branching Bandits
We consider the case that the busy period of the branching bandit process is finite with probability
1.
Data: E[v;], E[v?], E[N;;]. Let E[N] denote the matrix of E[N;;].
Performance measure:
50 = { 1, if a type j job is being engaged at time ¢;
0, otherwise,

Qj(t) = the number of type j jobs in the system at time t.
o0
6 = E, Uo Ij(t)tdt] jeE.

= [)w Eu[QJ(t)] dta Je E.

Stability: The branching bandits process is stable (its busy period has finite first two moments) if
and only if E[N] < I (the matrix I — E[N] is positive definite).

Performance space:

I. 9% satisfies generalized conservation laws

(a) Yies AF8¢ < b(S), for S C E, with equality if policy u gives complete priority to S-jobs.
(b) Xicr AEg¥ = b(E).

The matrix A and set function b(-) are calculated as follows:

E[T5°]
S _ $
4= T

i€ S, (22)

and

B(S ..—E TE)? (TS ] + E[”' [vf] (B[] _ EUTSYTN 23
()= 3E((T )] - 3ELT] 2 (E[m} E[v?]) (23)

where we obtain E[T}%], Var[T;°] (and thus E[(T}?)?]) and E[v;] by solving the following linear systems:

E[T] = E[u] + )_E[N;]E[Tf), i€E;
‘ JES

Var[T] = Varlu] + (E[TS]) T, s Cov [(N;,- ),-es)] (EITF)), s + 3 ENy] VarlTFl,i € B;
j€s

17



Problem | Performance measure |  Performance space | Algorithm |

maXyeu V(R < x;-‘(a) fo u[l(t)]e=* dt B.(Aa, by )? (Ro’.’ Aq) A9, (@)
Aq, ba(-): see (19), (20) R,: see (21)

mingey Vu(o’c)

(finite busy period case) = [° Eu[I; (2))t dt] B(A,b) (C, A) 25
A, b(-): see (22), (23) C: see (26)
= [ Eu[Q; (1)) dt] B.(A',b) (C,A") 2% 4

A, ¥ (): see (24), (25)

Table 2: Modelling Branching Bandit Problems.

3Extended contra-polymatroid base
bExtended polymatroid base

Ely;]=m; + Y E[N;]E[s], j€E.

i€E
Finally,
ET5] =Y miE[T7],
i€S
Var[T5] = 3 m; Var[T).
i€S

II. The performance vector for branching bandits W* satisfies the following generalized conservation
laws:

(3) ies APWE > ¥(S), for S C E, with equality if policy u gives complete priority to S-jobs.
(b) Z.’ez AEF2¥ = V'(E), where

AS =E[Tf)], i€, (24)
¥(S) = b(E) - (S°) +2)_ hE[T}], (25)
i€S

where row vector h = (h;); € E is given by

h=m(I - E[N])‘lniag(((E[""D;[;r“r[""] )ies)(I - E[N]),

and Diag(z) denotes a diagonal matrix with diagonal entries corresponding to vector z.

Objective function:

min V,®©) = Zc o +2Y Chi =Y —— e (a Z E[Nu]C:) 6 +2) Cihi  (26)

i€E H3 i€E i€E

In Table 2 we summa;'ize the problems we considered, the performance measures used, the

conservation laws, the corresponding performance space, as well as the input to algorithm AG.

2.5 Applications

How in general do we show that the performance space is an extended polymatroid? From Theorem

4 it is sufficient to check that generalized conservation laws hold. In addition, if the problem can be
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| System | Criterion | Indexability 1 Performance Space ]
Batch of jobs LCe Smith (1956): D° Queyranne (1993): D, P¢
Rothkopf (1966b) Bertsimas & Nifio-Mora (1993): P
DC? Rothkopf (1966a): D Bertsimas & Nino-Mora (1993): P
Gittins & Jones (1974)
Batch of jobs LC Horn (1972): D Bertsimas & Nino-Mora (1993): EP°®
with out-tree Meilijson & Weiss (1977)
prec. constraints DC Glazebrook (1976) Bertsimas & Nino-Mora (1993): EP
Multiclass M/G/1 LC Cox & Smith (1961) Coffman & Mitrani (1980): P
Gelenbe & Mitrani (1980): P
DC Harrison (1975a, 1975b) Bertsimas & Nifio-Mora (1993): EP
Multiclass 7 M/G/c LC Federgruen & Groenevelt (1988b) | Federgruen & Groenevelt (1988b): P
Shanthikumar & Yao (1992) Shanthikhumar & Yao (1992): P
Multiclass G/M /¢ LC Federgruen & Groenevelt (1988a) | Federgruen & Groenevelt (1988a): P
- Shanthikumar & Yao (1992) Shanthikumar & Yao (1992): P
Multiclass LC | Ross & Yao (1989) Ross & Yao (1989): P
Jackson network ¢
Multiclass M/G/1 LC Klimov (1974) Tsoucas (1991): EP
with feedback DC Tcha & Pliska (1977) Bertsimas & Nino-Mora (1993): EP
Multi-armed bandits DC Gittins & Jones (1974) Bertsimas & Nifio-Mora (1993): EP
Branching bandits LC Meilijson & Weiss (1977) Bertsimas & Nifio-Mora (1993): EP
DC Weiss (1988) Bertsimas & Nifio-Mora (1993): EP

Table 3: Indexable problems and their performance spaces.

¢Linear cost

bDeterministic processing times

°Polymatroid

4Discounted linear reward-cost

¢Extended polymatroid

fSame service time distribution for all classes .
9Same service time distribution and routing probabilities for all classes (can be node dependent)

modeled as a branching bandit problem (with or without discounts), have taxes and/or rewards, the

performance space is an extended polymatroid. Given that branching bandits is a general problem

formulation that encompasses a variety of problems, it should not be surprising that the theory

developed encompasses a large collection of problems. In Table 3 below we illustrate the stochastic

and dynamic problem from the literature, the objective criterion, where the original indexability

result was obtained and where the performance space was characterized. For explicit derivations

of the parameters of the extended polymatroids involved the reader is referred to Bertsimas &

Nifio-Mora (1993).

What are the implications of characterizing the performance space as an extended polymatroid?

1. An independent algébraic proof of the indexability of the problem, which translates to a very

efficient solution. In particular, Algorithm .AG that computes the indices of indexable systems

is as fast as the fastest known algorithm (Varaiya, Walrand and Buyukkoc (1985)).

2. An understanding of whether or not the indices decompose. For example, in the classical

multi-armed bandits problem Theorem 3 applies and therefore, the indices decompose, while
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in the general branching bandits formulation they do not.

3. A unified and practical approach to sensitivity analysis of indexable systems, based on the well

understood sensitivity analysis of linear programming (see Bertsimas and Nifio-Mora (1993)).

4. A new characterization of the indices of indexable systems as sums of dual variables corre-
sponding to the extended polymatroid that characterizes the feasible space. This gives rise to
new interpretations of the indices as prices or retirement options. For example, we can ob-
tain a new interpretation of indices in the context of branching bandits as retirement options,
thus generalizing the interpretation of Whittle (1980) and Weber (1992) for the indices of the

classical multi-armed bandit problem.

5. The realization that the algorithm of Klimov for multiclass queues and the algorithm of Gittins

for multi-armed bandits are examples of the same algorithm.

6. Closed form formulae for the performance of the optimal policy that can be used a) to prove
structural properties of the problem (for example a result of Weber (1992) that the objective
function value of the classical multi-armed bandit problem is submodular) and b) to show that
the indices for some stochastic and dynamic optimization problems do not depend on some of

the parameters of the problem.

Most importantly, this approach provides a unified treatment of several classical problems in
stochastic and dynamic optimization and is able to address in a unified way their variations such
as: discounted versus undiscounted cost criterion, rewards versus taxes, preemption versus non-
preemption, discrete versus continuous time, work conserving versus idling policies, linear versus

nonlinear objective functions.

3 Optimization of Polling Systems

Polling systems, in which a single server in a multiclass queueing system serves several classes of
customers incurring switch-over times when he serves different classes, have important applications
in computer, communication, production and transportation networks. In these application areas
several users compete for access to a common resource (a central computer in a time sharing computer
system, a transmission channel in a communication system, a machine in a manufacturing context
or a vehicle in transportation applications). As a result, the problem has attracted the attention
of researchers across very different disciplines. The name polling systems comes primarily from the
communication literature. Motivated by its important applications, polling systems have a rather
large literature, which almost exclusively addresses the performance of specific policies rather than
the optimal design of the polling system. For an extensive discussion of the research work on polling

systems, we refer to the survey papers by Levy and Sidi (1990) and Takagi (1986), (1988).
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Consider a system consisting of N infinite capacity stations (queues), and a single server which
serves them one at a time. The arrival process to station ¢ (i = 1,2,..., N) is assumed to be a
Poisson process with rate ;. The overall arrival rate to the system is A = Zf;l A;. Customers
arriving to station ¢ will be referred to as class-i customers and have a random service requirement
X; with finite mean z; and second moment zgz) respectively. The actual service requirement of a
specific customer is assumed to be independent of other system variables. The cost of waiting for
class-i customers is ¢; per unit time. There are switch-over time d;; whenever the server changes
from serving class-i customers to class-j customers. The offered traffic load at station i is equal to
pi = Aiz;, and the total traffic load is equal to p = Zfil p;i. It is well known (see for example Takagi
(1986)) that the system is stable if and only if p < 1. Note that this condition does not depend on
the switch-over times.

The natural performance measure in polling systems is the mean delay time between the request
for service from a customer and the delivery of the service by the server to that customer. The
optimization problem in polling systems is to decide which customer should be in service at any
given time in order to minimize the weighted expected delay of all the classes. Let & be the class
of non-preemptive, non-anticipative and stable policies. Within & we further distinguish between
static (Ustatic) and dynamic (Ugynamic) policies. Static policies at each decision epoch do not take
into account information about the state of stations in the system other than the one occupied
by the server and are determined a priori or randomly. For example the policy under which the
server visits the stations in a predetermined order according to a routing table is a static policy.
Dynamic policies take into account information about the current state of the network. For example,
a threshold policy or a policy that visits the most loaded station, is a dynamic policy, because the
decision on which customer to serve next by the server depends on the current queue lengths at
various stations in the system. In certain applications it might be impractical or even impossible
to use a dynamic policy. For example in a transportation network, the vehicle might not know the
overall state of the network. As a result, although static policies are not optimal, they can often be
the only realistic policy. Moreover, when there are no switch-over times, the policy that minimizes
the mean weighted delay is an indexing policy (the cu rule), a static policy.

While the literature on performance analysis of polling systems is huge there are very few papers
addressing optimization. Hofri and Ross (1988) and Reiman and Wein (1994) address the optimiza-
tion problem over dynamic policies for polling systems with two stations. Boxma et. al. (1990)
propose heuristic polling ;;able strategies. In this section we review the work in Bertsimas and Xu
(1993) in which a nonlinear (but convez) optimization problem is proposed, whose solution provides
a lower bound on an arbitrary static policy. Using information from the lower bounds and integer
programming techniques, static policies (routing table policies) are constructed that are very close

(within 0-3%) to the lower bound.
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3.1 Lower bounds on achievable performance

We dev elop in this section lower bounds onthe weighted mean waiting time for p olling systems
non-preemptiv e, non-an ticipativ e and stable p olicies. We call these p olicies admissib
first focus onthe class of static  p olicies U,iqeic, in Which the server’s behavior when in station i is
independent of the state of the other stations in the system (i.e., the queue lengths and the interarrival
times of the customers). Examples of static policies include randomized policies, in which the next
station to be visited by the server is determined by an a priori probability distribution, and routing
table policies, in which the next station to be visited is predetermined by a routing table. A special
case of the routing table policies is the cyclic policy, where the stations are visited by the server in
a cyclic order.

Let E[W;] be the average waiting time of class-i customers. The goal is to find an admissible

static policy u € Uytatic to minimize the weighted mean delay E[W] for the polling system:
N
Jpin  E[W] = Z:c.-/\,-E[W;]. (27)

Within a particular class, we assume that the server uses a First-In-First-Out (FIFO) discipline.
We denote with d;; the switch-over time when the server changes from serving class-i customers to

class-j customers (i,j =1,2,...,N).

Theorem 6 The optimal weighted mean delay in a polling system under any static and admissible

policy is bounded from below by:

E[W] > L[ diaf? 28
[ ]—.max :\' E E(l-—a’,_l)(l—a’) y Zstatic { ( )

§=1

where 0; = Z;=1 Pi and Zsiatic 15 the solution of the following convezr programming problem:
N (2)
in ’\2‘” ciAi(l—pi)
Zstatic = min (29)
2A =1 1-p 2’\2(2—1”5:)
subject to
N N
zmij"zmh':(), i=12,...,N (30)
i=1 k=1
N
Y dimi; <1-p (31)

i,j=1
mij 2 0 v i’j’
mi; =0 Vi,

3

where m;; (i,j = 1,2,...,N) have the interpretation of the average number of visits per unit time

by the server from station i to station j.
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The m;; in the above convex optimization problem represent the steady state average number of
visits from station i to station j per unit time. Constraint (30) represents conservation of flow, while
(31) is the stability condition. These constraints are still valid even under dynamic policies. The
fact that the objective function in (29) represents a lower bound for the optimal solution value, only
holds for static policies. Notice that while the feasible space of (29) is a network flow problem with
a side constraint, the objective function is a nonlinear, but convex function.

In order to acquire further insight on the bounds of the previous theorem, the flow conservation

constraints (30) are relaxed to obtain a closed form formula for the lower bounds.

Theorem 7 a) For a polling system, the weighted mean delay for all static and admissible policies

is bounded from below by:

1 [& Ai E” al iAi
E[W] > Zelosed = ma.x{x [E _;_] [; (1 - G'if )(1 - 0‘.‘)] ’

1

$=1
1 g iz + (T Ve = p)d;)? (32)
224 1-p; 20(1-p) ’

where o; = Z}=1 pi and di = dj¢y; = min;{d;;}.
b) For a homogeheous polling system (¢; = 1, z; = 2, for alli = 1,2,...,N), under ezhaustive,
static and admissible policies, the weighted mean delay is bounded from below by:

2 N {1 — 0:)d*)2
BIW)> iy = oo + Lim P (39)

3.2 Design of effective static policies

The goal of this subsection is to provide a technique to construct near optimal policies using integer
programming. As already mentioned the m;; are interpreted as the steady state average number
of visits from station 7 to station j per unit time. Let e;; = m;;/ Ek,, my; be the ratio of switch-
overs from station i to station j over all switch-overs in the system. E = [e;;] is the corresponding
switch-over ratio matrix. Intuitively, in order for the performance of a policy u to be close to the
lower bound, it is desirable that the proportion of switch-overs from station i to station j under the
policy u is close to e;;. We refer to this requirement as the closeness condition. We consider two
classes of policies that satisfy the closeness condition approximately.

Randomized policies: .

Under this class of policies the server after serving exhaustively all customers at station i moves
to station j with probability p;;. Kleinrock and Levy (1988) consider randomized policies, in which
the next station visited will be station j with probability p;, independent of the present station.

Given the values of m;; from the lower bound calculation, we would like to choose the probabilities
pij so that the closeness condition is satisfied. An obvious choice is to pick p;; = e;;/ Zi\;l €ik-

P = [p;;] is the corresponding switch-over probability matrix. We note, however, that this choice of
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pij does not necessarily represent the optimal randomized policy.
Routing table policies

Under this class of policies the server visits stations in an a priori periodic sequence. For example
the server visits a three station system using the cyclic sequence (1,2,3,1,2,3,...) or the sequence
(1,2,1,2,3,1,2,1,2,3,.. ), i.e., stations 1 and 2 are visited twice as often as station 3. Boxma et. al.
(1990) use heuristic rules to construct routing table policies.

We use integer programming methods to construct routing tables that satisfy the closeness con-
dition. Let h;; be the number of switch-overs from station i to station j in an optimal routing
table. H = [h;;] is the switch-over matrix. Note that unlike m;;, hij should be integers. Notice
that 2,-, j h;; is the length of the routing table, i.e., the total number of switch-overs in the periodic
sequénc& Moreover, e;; Zk,l hy; is the desired number of switch-overs from station ¢ to station j in
the routing table under the closeness condition. In order to satisfy the closeness condition, a possible
- objective in selecting a routing table is to minimize the maximum difference between the number of
switch-overs h;; from station ¢ to station j in the optimal routing table and the desired number of
switch-overs determined by e;; Zk,l hir. ie.,

m{max{ by — eis 3 hurl}) (34)

In addition, the flow conservation at each station requires that

N N
Sohi=Y hu=0, i=12...N, (35)
i=1 k=1

i.e., the number of visits by the server to station i should equal to the number of visits by the server
from station ¢ to other stations. The h;;’s should also form an Eulerian tour. Let I be the set
of all stations and G be the subset of stations in the network. Since the Eulerian tour should be

connected, we require that for all subsets G of the stations

Y hi21, VGCI, G#4. (36)
i€G, j€G

In summary, the problem becomes

(PEuterian)  minp{max;;{|hij — ei; 2° ; huil}}

subject to : Eﬁ__l hi; - Zi\;l hi; =0, i=12,...,N 37)
v E{eG’jechijZ]-) VGCI, G¢¢
hij > 0, integer, i,j=12,...,N

Equation (37) can be easily converted to a pure integer programming problem. Since our goal is
only to obtain an approximate solution, we approximate the problem by relaxing the connectivity
constraints in equation (36). But if equation (36) is relaxed, h;; = 0, V i, j will be a feasible solution

and will minimize the objective function in (37). In order to exclude this infeasible solution to (37),

24



we impose a lower limit on the length of the routing table. Since each of the stations should be
visited at least once in any feasible routing table, the length of any routing table should be at least
N. Moreover, we place an upper bound Ly, on the length of the routing table to make the integer

programming solvable:

(Papproz)  minp{maxi;{lhij — e 3°4 ; hri|}}

subject to  YoIL, hij — Topoy i =0, i=12,...,N
N S Zi,j hij S Lmat
hij > 0, integer, i,j=1,2,...,N

The previous formulation can be reformulated as a pure integer programming problem as follows:

(Pa?Proz) min y

subject to Y — hij +ei; g b 20, i,j=1,2,...,N
z+hij—e; Y b >0, i,j=12,...,N
Ef:lhij —Ziv=1hki=0, i=12,...,N
N <35 hi5 £ Limas
hij > 0, integer, i,j=12,...,N

(38)

Note that there are many feasible routing tables that will be consistent with the h;;’s obtained
from the solution of (Papproz). We will select a Eulerian tour that spaces the visits to the stations
as equally as possible. Although it is possible to formulate this requirement precisely as another
integer programming problem, we found numerically that the added effort is not justified from the

results it produces.

3.3 Performance of proposed policies
Based on extensive simulation results Bertsimas and Xu (1993) arrive at the following conclusions:

1. The routing policies constructed outperform all other static routing policies reported in the

literature and they are at most within 3% from the lower bounds for the cases studied.

2. The performance of the routing table policy improves compared against other static routing

policies as the change-over times or the system utilization increases.

3. For lower tih‘a.nge-b\'re.r times and system utilizations dynamic policies outperform static policies
by a significant margin. But as the change-over times or system utilization increase, static
policies are equally or more effective. This is a rather interesting fact, since at least in the
cases that optimal dynamic policies are known (two stations), they are rather complicated

threshold class policies (Hofri and Ross (1988)).
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4. Based on the intuition from the proof of the static lower bound and the numerical results,
Bertsimas and Xu (1993) conjecture that the static lower bounds developed in this paper are

valid for dynamic policies also under heavy traffic conditions or for large changeover costs.

These results suggest that as far as static policies are concerned the routing table policies con-

structed through integer programming are adequate for practical problems.

4 Multiclass Queueing Networks

A multiclass queueing network is one that services multiple types of customers which may differ in
their arrival processes, service requirements, routes through the network as well as costs per unit of
waiting time. The fundamental optimization problem that arises in open networks is to determine
an optimal policy for sequencing and routing customers in the network that minimizes a linear
combination of the expected sojourn times of each customer class. The fundamental optimization
problem that arises in a multiclass closed network is the maximization of throughput. There are
both sequencing and routing decisions involved in these optimization problems. A sequencing policy
determines which type of customer to serve at each station of the network, while a routing policy
determines the route of each customer. There are several important applications of such problems:
packet-switching communication networks with different types of packets and priorities, job shop
manufacturing systems, scheduling of multi-processors and multi-programmed computer systems, to
name a few.

In this section we present a systematic way introduced in Bertsimas, Paschalidis and Tsitsiklis
(1992) based on a potential function to generate constraints (linear and nonlinear) that all points
in the achievable space of a stochastic optimization problem should satisfy.

We consider initially an open multiclass queueing network involving only sequencing decisions
(routing is given) with N single server stations (nodes) and R different job classes. The class of a
job summarizes all relevant information on the current characteristics of a job, including the node
at which it is waiting for service. In particular, jobs waiting at different nodes are by necessity of
different classes and a job changes class whenever it moves from one node to another. Let o(r) be
the node associated with class r and let C; be the set of all classes r such that o(r) = i. When a
job of class r completes service at node i, it can become a job of class s, with probability p,, and
move to server -a(s); it can also exit the network, with probability pyg = 1 — Eil prs. There are
R independent Poisson arrival streams, one for each customer class. The arrival process for class
r customers has rate Ao, and these customers join station o(r). The service time of class r jobs is
assumed to be exponentially distributed with rate u,.. Note that jobs of different classes associated
with the same node can have different service requirements. We assume that service times are

independent of each other and independent of the arrival process.
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Whenever there is one or more customers waiting for service at a node, we can choose which,
if any, of these customers should be served next. (Notice, that we are not restricting ourselves to
work-conserving policies.) In addition, we allow for the possibility of preemption. A rule for making
such decisions is called a policy. Let n,(t) be the number of class r customers present in the network
at time t. The vector fi(t) = (ny1(t),...,ng(t)) will be called the state of the system at time .
A policy is called Markovian if each decision it makes is determined as a function of the current
state. It is then clear that under a Markovian policy, the queueing network under study evolves as
a continuous-time Markov chain.

For technical reasons, we will only study Markovian policies satisfying the following assumption:
Assumption A: a) The Markov chain () has a unique invariant distribution.

b) For every class r, we have E[n2(t)] < oo, where the expectation is taken with respect to the
invariant distribution.

Let n, be the steady-state mean of n,(t), and z, be the mean response time (waiting plus service
time) of class » customers. We are interested in determining a scheduling policy that minimizes
a linear cost function of the form Zle crzr. As before we approach this problem by trying to
determine the set X of all vectors (z3,...,zg) that are obtained by considering different policies
that satisfy Assumption A. By minimizing the cost function Eil ¢z, over the set X, we can then
obtain the cost of an optimal policy.

The set X is not necessarily convex and this leads us to considering its convex hull X’. Any vector
z € X' is the performance vector associated with a, generally non—Markovian, policy obtained by
“time sharing” or randomization of finitely many Markovian policies. Note also that if the minimum
over X’ of a linear function is attained, then it is attained at some element of X. We will refer to

X' as the region of achievable performance or, simply, the achievable region.

4.1 Sequencing of Multiclass Open Networks: Approximate Polyhedral

Characterization

The traffic equations for our network model take the form

R
Ar = Aor + Z AriDpiy, r=1...,R (39)

ri=1

We assume that the inequality

21

Hr
reC;
holds for every node i. This ensures that there exists at least one policy under which the network is

stable.

“Let us consider a set S of classes. We consider a potential function of the form (R5(t))? where

RS(t) =Y fs(r)ne (), (40)

res
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and where fg(r) are constants to be referred to as f-parameters. For any set S of classes, we will use
a different set of f-parameters, but in order to avoid overburdening our notation, the dependence on
S will not be shown explicitly.

We will impose the following condition on the f-parameters. Although it may appear unmotivated
at this point, the proof of Theorem 8 suggests that this condition leads to tighter bounds. We assume

that for each S we have:

For any node i, the value of the expression

pe | D peer(F(r) = F() + - pre £(7) (41)
r'es r'gs

is nonnegative and the same for all » € C; NS, and will be denoted by f;. If C; NS is

empty, we define f; to be equal to zero.

Bertsimas, Paschalidis and Tsitsiklis (1992) prove the following theorem. We present its proof, since
it is instructive of how potential function arguments can be used in general to construct polyhedral

approximations of the achievable region in stochastic and dynamic optimization problems.

Theorem 8 For any set S of classes, for any choice of the f-parameters satisfying the restriction

(41), and for any policy satisfying Assumption A, the following inequality holds:
N'(S)
S A f(r)z, 2 D) (42)

res

where :

N'(S) = D dorfAr)+ D A Y e £2(F) +

res rgS r'€S
Z Ar l:z pre(f(r) = f(r,))z + z prr'fz(r)
res r'esS r'¢gs

N
D(S)=2 [E -3 Ao,f(r)]

i=1 res

S being a subset of the set of classes and z, the mean response time of class r.

Proof We first uniformize the Markov chain so that the transition rate at every state is equal

to
v= Y o+ L
r r

The idea is to pretend that every class is being served with rate ., but a service completion is a

fictitious one unless a customer of class r is being served in actuality. Without loss of generality
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we scale time so that » = 1. Let 7 be the sequence of transition times for the uniformized chain.
Let B,(t) be the event that node o(r) is busy with a class  customer at time ¢. Let B,(¢) be its
complement. Let 1{.} the indicator function. We assume that the process 7i(¢) is right-continuous.

We have the following recursion for R(7%)

E[R*(141) | ()] =
D Ao (R(me) + £+ D Aor RE(me) +

res rgs

> uel{B. (1)} {Z pre(R(e) = f(r) + F() + D prr(R(Te) — f(r)f] +

res r'eS r'gS
> {B(n)} R (1) +
res

> url{By(7)} [E pro(R(Te) + F(F)2 + ) p"fﬂz(rk)] +
rgSs r'€S r'gs
> e 1{Br ()} R2(ni)

rgSsS
In the above equation, we use the convention that the set of classes ' ¢ S also contains the case
' = 0, which corresponds to the external world of the network. (Recall that p,o is the probability
that a class r customer exits the network after completion of service.) We now use the assumption

that the f-parameters satisfy (41). Then, the term

2w 1{Br ()} [E pre R(Te)(F(r) = F()) + Y pert R(7) f(7)

res r'eS r'gS

can be written as
N
E fiR(m)1{server i busy from some class r € SNC; at 7 }.

i=1
(Recall that we defined f; = 0 for those stations i having C; N S empty.) To bound the above
term, we use the fact that the indicator is at most 1. It should now be apparent why we selected
f-parameters satisfying (41). By doing so, we were able to aggregate certain indicator functions
before bounding them by 1.
In addition, to bound the term

D 2 1{B. ()} D prr R(m) ()

rgs r'eS
we use the inequality 1{B,(m)} > 0.

We apply all of these bounds to our recursion for R(7;). We then take expectations of both sides
with respect to the invariant distribution (these expectations are finite due to Assumption A) and
we can replace E[R(7)] by E[R(t)]. After some elementary algebra and rearrangements, using (41)
and the relation (valid in steady-state) E{1{B(7x)}] = Ar/u,, we finally obtain (42). O
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Remarks : In order to apply Theorem 8, we must choose some f-parameters that satisfy (41).
We do not know whether there always exists a choice of the f-parameters that provides dominant
bounds. But, even if this were the case, it would probably be difficult to determine these “best”
J-parameters. Later in this section, we show that finding the best f-parameters is not so important
because there is a nonparametric variation of this bounding method that yields tighter bounds.
The situation is analogous with polyhedral combinatorics, where from a given collection of valid
inequalities we would like to select only facets.

Let us now specify one choice of the f-parameters that satisfies (41). For a set S of classes, (41)

yields
fi=pef(r) Z Prr = Pr Z Pre f(r') + e £(r) Z Drriy vreCins

r'eS r'eS r'gsS

which implies

L )= S pf(),  Wrecins
Hr r'eS
Thus, due to (41), in order to explicitly determine the f-parameters, it suffices to select nonnegative

constants f;, for each station ¢ with C; NS non-empty. One natural choice of these f;’s that appears
to provide fairly tight bounds is to let f; = 1, for all stations ¢ with C; NS non-empty. This leads
to fs(r) being equal to the expected remaining processing time until a job of class r exits the set
of classes S. With this choice, the parameters fgs(r) can be determined by solving the system of

equations

1

fs(r)==—+ ) prrfs(r'), re€S. (43)
Hr r'es

Moreover this choice of the f-parameters causes the denominator of (42) to be of form 1-3" . ¢ Ar/pr,

which is the natural heavy traffic term; this is a key reason why we believe that it leads to tight
bounds. Qur claim is also supported by the fact that in indexable problems (Section 2), this choice
of the f~parameters yields an exact characterization.

We next present a nonparametric method for deriving constraints on the achievable performance
region. This variation has also been derived independently in Kumar and Kumar (1993). We use

again a function of the form
R
R@t)=)_ f(r)n.(t) (44)
r=1

where f(r) are scalars that we call f-parameters. We introduce Boi(t) to denote the event that node

1 is idle at time t. We then define

Ly = E[I{By(7e)}np ()] (45)

and
Nir» = E[I{Boi(m)}nr/(7)], (46)
where 1{-} is the indicator function and the expectations are taken with respect to the invariant

distribution.
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Theorem 9 For every scheduling policy satisfying Assumption A, the following relations hold:

R
irlrr =2 Y prPrrkor = 200p A e = Mor + A1 =per) + 3 Avprr  r=1,...,R  (47)
ri=1 r'#r

and

R R
Brlepr + prt Loy — }: PuwPwrlur — Z PuwPwr Tur — AorAp Zpr = Aopr Apz, =

L] w=1 w=l
—ArPret — Apt Priy Vr, v’ such that r > r'. (48)
Z Ipr + Nipr = Aprzg (49)
reC;

Irpr 20, Nipt 20, 2; 20

Proof We uniformize as in Theorem 8 and proceed similarly to obtain the recursion
E[R*(1e41) | i(m)] =

R
> Xor(R(me) + £(r))* +
r=1

R R
> uel{B.(m)} {Z pee (R(me) = £(r) + £(r')) + pro(R(me) — f(r))?| +

r=1

R
> urL{Br (r) YR ()
r=1

ri=

Rearranging terms and taking expectations with respect to the invariant distribution, we obtain

R R R
2> ur [Z Pre(F(r) = (7)) + prof(r)] E[1{B.(me)}R(me)] = 2 Y Aor f(r) E[R(7e)]

r=1 ri=1 tr=1
R R R
= Z /\Orfz(r) + Z Ar I;Z Prr’(f(r) - f(r,))z + prﬂfz(r) (50)
r=1 r=1 ‘=1

Moreover, it is seen from (44) and (45) that

R
E[{B,(ne)}R(n)] = > f(r')Irrr.

ri=1

Let us define the vector f = (f(1),..., f(R)). We note that both sides of (50) are quadratic functions

of f. In particular, (50) can be written in the form

FTQf = £7Qof, (51)

for some symmetric matrices @, Q. Since (51) is valid for all choices of f, we must have Q = Q.
It only remains to carry out the algebra needed in order to determine the entries of the matrices Q
and Qg. From (50), equality of the rth diagonal entries of @ and Qo yields (47), and equality of the

off-diagonal terms yields (48). Due to symmetry, it suffices to consider r > r’.
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Finally, since the events B,.(7;) = “server i busy from class r at 7”,r € C;, and Boi(7:) =“server ¢

idle at 7” are mutually exclusive and exhaustive we obtain (49). O

Remark: An alternative derivation of the equalities of the previous theorem is as follows: we -

consider a test function g and write

E{E[g((me+1))| 7i(m)]} = Elg(7(m))),

as long as the indicated expectations exist. By rewriting the previous equality in terms of the instan-
taneous transition rate matrix for the Markov chain 7(t), and by introducing some new variables, we
obtain certain relations between the variables. In particular, (47) can be derived by considering test
functions of the form g(7(¢)) = n2(¢), while (48) can be derived by considering the test functions
of the form g¢(7i(t)) = n,(¢t)n,(t). Intuitively, we expect that these quadratic test functions capture
some of the interaction among different customer classes.

By minimizing Efﬂ ¢rZ, subject to the constraints of Theorem 9 we obtain a lower bound
which is no smaller than the one obtained using Theorem 8. In addition, the linear program in
Theorem 9 only involves O(R?) variables and constraints. This should be contrasted with the linear
program associated to our nonparametric variation of the method which involved R variables but

O(2%) constraints.

4.2 Indexable systems: Polynomial reformulations

When applied to the systems we studied in Section 2, the parametric method gives as the perfor-
mance space an extended polymatroid. In particular, for undiscounted branching bandits Bertsimas,
Paschalidis and Tsitsiklis (1994) obtain exactly the polyhedron (extended polymatroid) outlined in
the previous section. Surprisingly, the nonparametric method gives a new reformulation of the ex-
tended polymatroid using O(N?) variables and constraints, where N is the number of bandit types.
This is interesting for at least two reasons: a) It makes it very easy to solve indexable systems
with side constraints, using linear programming techniques (see Bertsimas et. al. (1994)), b) It
has been conjectured in mathematical programming theory that whenever linear optimization prob-
lems are solvable in polynomial time, they have formulations with a polynomial number of variables
and constraints. No such polynomial formulation has been known for polymatroids and extended
polymatroids. The nonparametric method produces polynomial reformulations, thus proving the
conjecture for this special case. It is somewhat surprising that a purely stochastic method (potential
function method) proves a rather nonobvious result in mathematical programming. This is an exam-
ple of the very positive synergies that can result from the interaction of stochastic and deterministic
methods.

We briefly review the application of the method to the undiscounted branching bandit problem

described in Section 2. Let 7 be the sequence of service completions. Let x;(7x) be 1 if at time
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T a class i customer starts being served. Let N,(t) be the number of class r customers present in
the system at time t. Any non-preemptive policy satisfies the following formula that describes the

evolution of the system:

R
Ni(Te41) = Ni(me) + 3 xj () (Nji — 6i5), (52)
j=0
We first observe that the value of p = E[xi(7:)] is the same for all policies and can be obtained as

the unique solution of the system of equations
R
D P ENi]=pf, i=1,...,R, (53)
j=0

which is obtained by taking expectations of both sides of (52) with respect to the stationary distri-

bution. Moreover,

R
doef=1, (54)
i=0
which follows from the definition of p} .
By considering the potential function
R(t) =) fiNi(t) (55)
i€E

and applying the evolution equation (52) for ¢ = 74, and using the parametric potential function
method we obtain that the performance vector n} = E[N;(7;)] satisfies conservation laws, and thus
its performance space is an extended polymatroid (see Bertsimas et. al. (1994)).

More interestingly, consider the auxiliary variables
2z = E[Xj(?’k)Ni(Tk)]: i,j€EE,

Let z stand for the R(R + 1)-dimensional vector with components z;;. Notice that zj; = 0 if and
only if Ni(:) > 0 implies x;(7:) = 0; that is, if and only if class i has priority over class j. In
particular, a policy is nonidling if and only if 2¢; = 0 for all i £ 0.

Then by applying the nonparametric method we obtain

Theorem 10 The achievable space (n*,2) for the undiscounted branching bandit problem is ezactly
the polyhedron

R R

S oFE[(Nji - 6:)1+ 2)_ 2 B[Nji — 8;:] =0, i € E,

j =0

j=0

R R R
Yz ENjr = 8501+ D 2r E[Njr = 8501+ 3 pf E(Njr = 652 )(Njrs = &je] = 0, 1,7’ € B.
j=0 j=0 j=0



Notice that the previous characterization involves only a quadratic number of constraints at the
expense of a quadratic number of new variables. Having characterized the performance space at
service completions Bertsimas et. al. (1994) show how to pass to the performance space at arbitrary
times. The extended polymatroid that results is identical with the one obtained in Section 2. A

characterization corresponding to Theorem 10 is obtained as well.

4.3 Extensions: Routing and Closed Networks

In this section we briefly describe several generalizations to the methods introduced in the previous
section. In particular, we treat networks where routing is subject to optimization and closed net-
work§.

Routing and Sequencing

The framework and the notation is exactly as in Section 4.1. Instead of the routing probabilities
prr being given, we control whether a customer of class r becomes a customer of class »’. For this
reason, we introduce p,,(7;) to denote the probability (which is under our control) that class r
becomes r’ at time 7x41, given that we had a class r service completion at time 7¢41. For each class
r, we are given a set F,. of classes to which a class r customer can be routed to. (If F; is a singleton
for every r, the problem is reduced to the class with no routing decisions allowed.)

The procedure for obtaining the approximate achievable region is similar to the proof of Theorem
8 except that the constants p,,: are replaced by the random variables p,,(7¢) in the main recursion.
We also need to define some additional variables. Similarly with equations (45) and (46), these
variables will be expectations of certain products of certain random variables; the routing random
variables p,,/(7:) will also appear in such products.

An important difference from open networks is that the application of the nonparametric method
to R(t) also yields the traffic equations for the network; these traffic equations are now part of the
characterization of the achievable region because they involve expectations of the decision variables
pre(7k), whereas in Section 4.1 they involved the constants p,... Application of the method to R2(t)
provides more equations that with some definitional relations between variables, similar to (49),
complete the characterization.

Closed Networks

Consider a closed multiclass queueing network with N single server stations (nodes) and R different
job classes. There are K customers always present in the closed network. We use the same notation
as for open networks except that there are no external arrivals (Ag, = 0) and the probability that a
customer exits the network is equal to zero (pro = 0). We do not allow routing decisions, although
routing decisions can be included in a manner similar to the case of open networks.

As in open networks, we only consider sequencing decisions and policies satisfying Assumption
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A(a); Assumption A(b) is automatically satisfied. We seek to maximize the weighted throughput

R
Zcrkn
r=1

where A, = u, E[1{B,(7%)}] is the throughput of class r. The derivation of the approximate achiev-

able region is routine and we omit the details.

Although we presented the method for systems with Poisson arrivals and exponential service
time distributions, the method can be easily extended to systems with phase-type distributions
by introducing additional variables. Moreover, one can use the method to derive bounds on the
performance of particular policies. This is done by introducing additional constraints that capture

as many features of a particular policy as possible.

4.4 Higher Order Interactions and Nonlinear Characterizations

The methodology developed so far leads to a polyhedral set that contains the achievable region
and takes into account pairwise interactions among classes in the network. We can extend the

methodology and its power as follows:

1. We take into account higher order interactions among various classes by extending the potential

function technique developed thus far.

2. We obtain nonlinear characterizations of the achievable region in a systematic way by using

ideas from the powerful methodology of semidefinite programming.

In particular, we show how to construct a sequence of progressively more complicated nonlinear
approximations (relaxations) which are progressively closer to the exact achievable space.
Higher Order Interactions

The results so far have made use of the function R(t) = Zf=1 f(r)n.(t) and were based essentially
on the equation

E[E[R(7i41) | fi(n)] = E[R(s)].
By its nature, this method takes into account only pairwise interactions among the various classes.
For example, the nonparametric method introduces variables E[1{B,(7¢)}n;(7¢)], taking into ac-
count the interaction of classes r and j.

We now describe a generalization that aims at capturing higher order interactions. Consider again
an open queueing network of the form described in Section 4.1, where there are no routing decisions
to be made. We apply the nonparametric method by deriving an expression for E[R3(7341) | fi(7))
and then collecting terms; alternatively, we can use test functions g(7i(t)) = n,(t)n;(t)ne(t). (We
need to modify Assumption A(b) and assume that E[n3(t)] < c0.) In addition to the variables

I.; = E[1{B,(7&)}n;(7)], we introduce some new variables, namely,

Hrji = E[1{B, () }n;(me) e (72)] (56)
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and
Mjx = E[n;(re)ni(7e)]

The recursion for E[R3(7i41) | 7i(7i)] leads to a set of linear constraints involving the variables
{(nr, Irj, Hyjk, Mji)}.

The new variables we introduced take into account interactions among three customer classes
and we expect that they lead to tighter constraints. Another advantage of this methodology is that
we can now obtain lower bounds for more general objective functions involving the variances of the
number of customers of class r, since the variables M;; = E[n}(rk )] are now in the augmented space.

Naturally, we can continue with this idea and apply the nonparametric method to E[R*(T41) |
(k)] for i > 4. In this way, we take into account interactions among i classes in the system.
There is an obvious tradeoff between accuracy and tractability in this approach. If we denote by
P; the set obtained by applying the nonparametric method to E[R*(¢41) | 7i(7:)], the approximate
performance region that takes into account interactions of up to order i is ﬂf= 1FPi. The dimension
of this set and the number of constraints is O(R'), which even for moderate i can be prohibitively
large.

The explicit derivation of the resulting constraints is conceptually very simple but is algebraically
involved and does not yield any additional insights. In fact this derivation is not hard to automate.
Bertsimas et. al (1992) have used the symbolic manipulation program Maple to write down the
recursion for E[R*(7¢41) | #(7:)], and generate equality constraints by collecting the coefficients of
each monomial in the f-parameters.

Nonlinear Interactions

In several examples, we found that although the method provides relatively tight bounds, it does
not exactly characterize the achievable region and there is a gap between the lower bound and
the performance of an optimal policy. We believe that the reason is that the achievable region is
not always a polyhedron. We will therefore discuss how to extend our methods so as to allow the
possibility of nonlinear characterizations.

Let Y be a vector of random variables and let Q@ be a symmetric positive semidefinite matrix.

Clearly,
E[(Y - EN)TQ(Y - E[Y])] 2 0,
which implies that
E[YTQY) > E[YT|QE[Y]. (57)

Notice that (57) holds for every symmetric semidefinite matrix Q. By selecting particular values
for matrices @, one obtains a family of inequalities. For example, consider the model of Section 4.1

and fix some r. Let Y be the vector with components (1{B.(7&)}ni(7e)), 7 =1,..., R and use the
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identity 1{B,(%)} = (1{Br(m%)})?, to obtain the quadratic inequalities
> HuiQi 2 Y Qijlily, r=1,...,R, (58)
i i
where I.; and H,;; have been defined in (45) and (56).
Any choice of @ leads to a new set of quadratic inequalities. We will actually impose the
constraints of the form (58) for all choices of . Bertsimas et. al. (1992) show how to solve the
problem with the nonlinear inequalities as a semidefinite-programming problem.

Higher order nonlinear constraints can be also obtained by using inequalities such as
E[1{B,(re)}n}(me)] 2 Eln;(r)}]*, h=1,2,...

which again follow from Jensen’s inequality. We thus obtain a sequence of progressively more

complicated convex sets that approximate the achievable region.

4.5 Performance of the bounds

In this section we summarize the principal insights form the extensive computational results reported

in Bertsimas et. al. (1992) regarding the performance of these methods:

1. The lower bound obtained by the nonparametric variation of the method is at least as good
as the lower bound obtained by the parametric method as expected. In fact in more involved
networks it is strictly better. The reason is that the nonparametric method takes better into

account the interactions among various classes.

2. The strength of the lower bounds obtained by the potential function method is comparable to
the strength of the “pathwise bound” derived in Ou and Wein (1992).

3. The bounds are very good in imbalanced traffic conditions and the strength of the bounds
increases with the traffic intensity. A plausible explanation is that in imbalanced conditions
the behavior of the system is dominated by a single bottleneck station and for single station

systems we know that the bounds are exact.

4. In balanced traffic conditions, the bounds also behave well, especially when the traffic intensity

is not very close to one.

5. In certain routing examples, the method is asymptotically exact (as p — 1), which is very

encouraging.
6. In closed network examples, the bounds were extremely tight.

7. When applied to indexable systems considered in Section 2 the parametric variation of the
method produces the exact performance region (extended polymatroid), while the nonpara-

metric variation leads to a reformulation of the achievable region with a quadratic (as opposed
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to exponential) number of constraints. This is particularly important when side constraints
are present, because we can now apply linear programming methods on a polynomial size

formulation of the problem.

The techniques in this section are generalizable to an arbitrary stochastic and dynamic optimiza-

tion problem as follows:

1. Given a stochastic and dynamic optimization problem, first write the equations that describe

the evolution of the system (see for example (52)).

2. Define a potential function of the type (55) and apply the nonparametric variation of the
_method.

3. By defining appropriate auxiliary variables, find a relaxation of the achievable region.
4. By exploring higher order interactions, obtain stronger relaxations.

Overall, the power of the method stems from the fact that it takes into account higher order in-
teractions among various classes. The first order method is as powerful as conservation laws since
it leads to exact characterizations in indexable systems. As such, this approach can be seen as the

natural extension of conservation laws.

5 Loss Networks

In this section we consider the problem of routing calls/messages in a telephone/communication
network. The important difference with the problem of the previous section is that this is a loss
network, in the sense that calls that can not be routed are lost as opposed to being queued. Because
of its importance the problem has attracted the attention of many researchers (for a comprehensive
review see Kelly (1991)).

We will describe the problem in terms of a telephone network, which is represented by a complete
directed graph G = (V, A) with N = |V| nodes and |A| = N(N — 1) ordered pairs of nodes (%, j).
Calls of type (4,j) need to be routed from node i to node j and carry a reward w(¢,j). Arriving
calls of type (¢,j) may be routed either directly on link (7,7) or on a route r € R(%,j) (a path in
G), where R(i., J)-is the set of alternative routes for calls of type (i,7). Let C;; be the capacity of
the direct link (7, j) (C;; = 0 if the link (4, j) is missing). Let S(4,7) = {(#,7)} U R(4, j) be the set of
routes for calls of type (¢,7). When a call of type (7, j) arrives at node i, it can be routed through
r only if there is at least one free circuit on each link of the route. If it is accepted, it generates a
revenue of w(i,j) and simultaneously holds one circuit on each link of the route r for the holding
period of the call. Incoming calls of type (i, j) arrive at the network according to a Poisson process

of rate )A;j, while its holding period is assumed to be exponentially distributed with rate u;; and
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independent of earlier arrivals and holding times. The problem is to find an acceptance/rejection
policy to maximize the total expected reward in steady state.

Our goal in this section is to obtain an approximate characterization of the achievable space
using the potential function method and thus obtain an upper bound on the expected reward.
We report results obtained in Bertsimas and Cryssikou (1994). Kelly (1993) has developed an
approach based on nonlinear optimization to obtain bounds. We first present approximate and
exact characterizations for the case of a single link and an approximate characterization for the case

of a full network.

5.1 Single Link

In order to illustrate the methodology we present the simpler problem of one link and two classes
of arriving calls. Consider a single link of capacity C, which is offered two different types of calls.
Let A; and A; be the arrival rates, p#; and pa be the service rates and w; and wy be the reward
generated by acceptance of a type 1 and 2 call, respectively. We are interested in maximizing the
expected reward Z,?:l w; E[n;], where E[n;] is the expected value of the number of calls of type i.
Let 7 be the time at which the k-th event (arrival or service completion) occurs. Let 7i(7:) denote
the state of the system after the kth transition. We will be using the notation 1{-} to denote the
indicator function. Finally, A;(r¢) (Ai(r:)) denotes the decision (0, 1) of whether a call of type i
is accepted (rejected) at time 7 . By applying the potential function nonparametric method to the

potential function

2
R(t) = fimi(t)

=1

we obtain

Theorem 11 The performance space for the single link loss system is contained in the following
polyhedron:
Ai E[HAi(me)}] = ps E[Hni(re) 2 1}] =0, i=1,2

Ai E[ni(me) {Ai(n)}] — pi E[ni(me) ] + pi E[H{ni(m) 2 1}] =0, i=1,2
ALE[ny(1e) 1{A1(me) 1+ A2 E[n1(me) L{A2(me) ] = p1 Elna(m)1{n1(7e) = 1}]+u2E[ny(m)H{na(7) 2 1}].
Elny(m)] + E[n2(n)] < C
E[(n1(me) + na(m))H{ni(ne) 2 1}] < CE[l{ni(n) 2 1}], i=1,2
E[(n1(re) + n2(7i))1{ni(re) 2 1}] < E[(n1(me) + n2(7))), i=1,2
0< E[l{ni(ne) 2 1} £ 1, E[ni(n)] 2 El{ni(n) 2 1}] 20, i=1,2.

Mazimizing the linear function wy E[ny(m)] + wa E[n2(m:)] provides a bound on the optimal reward.
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The previous characterization used only O(1) variables. We can obtain an exact formulation in

this case by considering O(C) variables

E[{ni(me) = k,na(m) = 1, Ai(mi)}].

This characterization is equivalent to modeling the problem as a Markov decision process. Clearly
this approach leads to an exact characterization, but its extension to the network case is problematic
because of the very large number of variables. Kelly (1993) has also presented an exact method based

on a closed form nonlinear formula to solve the single link problem.

5.2 Network

Let nf;(t) be the number of calls of type (4, j) routed through path r at time ¢ under the stationary
distribution. We consider Markovian policies, in the sense that a decision is only based on the current
state. It is then clear that under a Markovian policy, the loss network evolves as a continuous-time
Markov chain. Also 1{AJ;}(t) denotes the (0, 1) decision of whether an incoming call (¢, j) is routed
through route r € S(i,j) at time t. Let E[n[;] = E[n};(t)], E[(1{A};}(t)] = E[1{A[;}] where
the expectation is taken under the stationary distribution. By introducing the potential function

R(t) = 3 j),» fjni;(t) Bertsimas and Cryssikou (1994) prove the following.

Theorem 12 The optimal ezpected reward is bounded above by the value attained by the following

linear problem

mazimize z Z wijE["fj]

i,j reS@i,j)
subject to
Aij E[nl; H{AGH — pij Elng] + pij E(1{n}; > 1}] =0 VreS@j) , Y(3,75)
Xij Elndy LAY + M Elnly 1{ALY] = s Elnd, 1y > 11+
pu E[nl; 1{n];, > 1}] ¥(i,J),(k,1), r € S(i,5), ¢ € S(k,1)
Y. ERL] < Gy V(4, )
reS(k,1):(i,5)er
> E[Li{nl 21} < C;E[l{nl, > 1}] V(i 5), (s,t), 7
reS(k,1):(i,j)er
> Ebp{sh >11< Y Eln V(i, j), (s,t),
reS(k,01):(3,5)€r reS(k,1):(s,5)€r
Y. ERp{AL)] < CE[{AL)] Vi, 5), (s, 2),,
reS(k,0):(i,5)€r
> ERpM{AlNl < Y. Elngl V(i, 5), (s, 1),
reS(k,1):(¢,5)€r r€S(k,1):(s,5)€r

40



E[nj;] > E[1{n}; > 1}],
E[l{nj; 21} < 1.
E{4511 <1,
all variables are nonnegative.

Compared with the variables we introduced, Kelly (1993) considers as variables:
ziy =0,y = Y nf,
r#£(i)
The linear program of Theorem 12 has O(N?R?) variables and constraints, where N is the number
of demands (7, j) and R is the number of alternative paths. In contrast Kelly’s approach uses O(N)
variables and O(A) number of constraints where A is the number of links.

Based on very limited computational experience, the bounds of Theorem 12 are stronger com-
pared with the ones derived in Kelly (1993), (based on nonlinear optimization) for sparser asym-
metric networks, while the bounds in Kelly (1993) are better for complete symmetric networks. An
attractive alternative seems to combine both bounds, as they seem to capture somewhat different
behavior. '

By introducing variables of the type
E[l{n;'.j = k1}, l{n;q = ka}, I{A{t}]’

we can obtain tighter bounds at the expense of higher computational needs. By continuing in this
manner, we can recapture the exact formulation of the problem as a Markov decision process. In
this way the method produces a series of relaxations which are progressively closer to the exact

formulation.

6 An optimal control approach to dynamic optimization

In this section we introduce a method of constructing near optimal policies based on an optimal
control approach. We will introduce the method by addressing the following multiclass open network
with two types (not classes) of customers, depicted in Figure 5.

Type 1 customers visit stations 1 and 2, in that order, before exiting the network and type 2
customers visit only station 1 before exiting the network. We define class 1,2 customers to be type
1 customers at stations 1,2, respectively, and class 3 customers to be type 2 customers at station 1.
Let Ay and A2 be the (deterministic) arrival rates for customers of class 1 and 2, respectively. Let
41, p2 and pg be the (deterministic) service rates of classes 1, 2 and 3 respectively. Let us define
the traffic intensities: p; = :—3, P2 = %:, p3 = 7’2‘ In order to ensure that at least one stable policy

exists, we assume that p; + p3 < 1 and pz < 1. Let ¢; be the holding cost of class i, i = 1, 2, 3.
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e 0O

Figure 5: A three class open queueing network.

Let us notice that we have assumed that there is no randomness in the system. Let z; be the
initial number of customers for class i. Let z¥(¢) be the number of customers for class i at time ¢
if we follow a policy u. Note that for this problem, a policy amounts to a rule according to which
the first server can decide which customer class, if any, to serve. We are interested in a scheduling

policy that minimizes the total holding cost

o 3
ngn/ Zc,-x}‘(t)dt.
0 =1

Notice that although the integral extends to infinity, under a stable policy there is a finite time at
which the network empties. In order to formulate this problem we define u;(t) be the effort that

class i receives at time ¢, which is a number in [0, 1] . Then the problem can be formulated as follows:

min /°° (c1z1(t) + caz2(t) + cazs(t))dt. (59)
0
subject to
£1(t) = A1 — prus(?)
2(t) = p1u1(?) — paus(t)

£'3(t) = /\2 - p3‘ll3(t)

ui(t) +u3(t) <1
112(t) S 1

zi(t),ui(t) > 0.

The approach we outline in this section is based on the thesis that the essential difficulty in
stoqha.stic and dynamic optimization is primarily the dynamic and combinatorial character of the
problem and only secondarily the stochastic character of the problem. Therefore, a fluid approxima-

tion of the system is expected to capture the qualitative character of an optimal policy. In general,

42



given an open multiclass network, the general problem can be formulated as follows:
[=e]
CLP min/ c;iz;()dt
(CLP) A 2’: i(?)

subject to

z(t) = Au(t) + b
Du(t)<e
u(t) > 0
z(t) 2 0,

where the matrix A and vector b are easily found from the given parameters, the matrix D depends
on the topology of the network and the vectors z(t) and u(t) are the queue lengths and the controls at
time ¢. The above optimization problem is known in the literature as continuous linear programming
(see for example Anderson (1987)).

Optimization of fluid models as approximations of stochastic and dynamic optimization problems
have been introduced in Bellman (1957). Anderson (1978) introduced this particular model for
dynamic scheduling problems while Chen and Yao (1989) and Atkins and Chen (1993) propose
myopic strategies. Regarding algorithms for the general problem it is fair to say that there are no
efficient algorithms for the problem. Perhaps the most efficient one is due to Pullan (1993), who
also contains a nice survey of the area.

We next review some recent work of Avram and Bertsimas (1994) to solve instances of (LCP). We
start with the system in Figure 5. Applying Pontryagin’s maximum principle, Avram and Bertsimas

(1994) show that the following policy is optimal for problem (59).
Theorem 13 There are the following three cases:
1. If cypy < capg, give absolute priority to class 3 (us(t) = 1).

2. If capa < c1phy < capsa + Copsz give priority to class 3 if

B1 — A1 C1phy — C3H3
M2 — 4 Copi2

T2 > I

give priority to class 1 otherwise (see Figure 6).

3. If capz + copz < c1py, give absolute priority to class 1.

The above policy which is consistent with the heavy traffic policy in Harrison and Wein (1989)
generalizes the well known cu rule and establishes formally the optimality of thresholds policies.
What insights do we obtain about the structure of optimal policies in the stochastic case, for example
when arrivals are Poisson and services are exponential? We conjecture that cases 1 and 3 (absolute

priority rules) will be identical in the stochastic case; however, in case 2 we conjecture that there
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Figure 6: Threshold optimal policies for the Example of Figure 5.

is a threshold curve which is nonlinear (see Figure 6). In other words, we believe that the optimal
policy for the fluid model gives significant qualitative insights for the optimal policy.

Other evidence of the close connection between the stochastic and deterministic models include
the Klimov model (see Section 2), where the control approach reproduces Klimov’s indexing policy.
Moreover, Avram and Bertsimas (1994) include further examples.

In general, for an open multiclass queueing network with n classes, the control approach gives rise
to a partition of the space of (z1,...,z,) into polygonal regions, in which an absolute priority policy
is optimal. The determination of these partitions is combinatorially explosive, but conceptually
simple. While, to analytically characterize the partition becomes very difficult very fast, a numerical

approach would be highly desirable.

7 Concluding Remarks and Open Problems

We presented what we believe is a powerful and unified approach for stochastic and dynamic opti-
mization problems based on mathematical programming. To summarize the method consists of the

following steps:
1. We first define appropriate decision variables.

2. Using the potential function method or using particular properties of the problem we generate

a relaxation (or a series of relaxations) of the achievable space.

3. If the relaxation is exact we have found an exact solution of the problem (for example index-
able systems). If not, optimizing over the relaxation we obtain a bound on the achievable

performance.
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4. By using information from the bounds we construct near optimal policies (for example polling

systems) using integer programming.

5. By approximating the stochastic and dynamic systern by a deterministic but still dynamic
model, we reduce the problem to a linear control problem, which we then solve by linear
programming methods. Simulating the policies obtained gives feasible policies to the stochastic
systems. Comparing the performance of these policies to the bounds obtained, we obtain a

guarantee of the suboptimallity of the proposed policies.

We finally want to emphasize that the proposed approach gives insights to the complexity of
stochastic optimization problems. We have seen that for indexable systems, we can obtain an exact
formulation by the first order relaxation obtained from the potential function method. The order
of the relaxation provides information regarding the complexity of the problem, i.e., the higher the
order of the relaxation needed to exactly characterize the region of achievable performance, the more
difficult the problem is. Notice that this view of complexity is different, but we believe insightful,
than the traditional one (Figure 1).

Regarding open questions we feel that the following list will give important insights to the field

of stochastic and dynamic optimization:

1. Regarding the method of characterizing the performance space, it would be desirable to find
systematic techniques to propose heuristic policies from relaxations (an example of this type

is the heuristic in Section 3 for polling systems).

2. It would be desirable to develop techniques to bound the closeness of heuristic policies to
relaxations. Techniques developed in the field of approximability of combinatorial problems

might be useful here (see for example Bertsimas and Vohra (1994)).

3. The potential function method is a systematic way to describe a series of relaxations for the
region of achievable space in stochastic and dynamic optimization problems. Investigating the
power of higher order relaxations and experimenting with non-polynomial (in particular piece

wise linear) potential functions, will enhance the power of the method.

4. It would be desirable to find an efficient algorithm for problem (LC P) for a general multiclass

queueing network problem of Section 6.

In closing, although the proposed approach illustrates how mathematical programming tech-
niques can be used in applied probability, we have also seen an example of a reverse application:
the potential function method provides a nontrivial reformulation of an extended polymatroid using
quadratic number of variables and constraints. As a result, we hope that these results will be of

interest to applied probabilists, as they provide new interpretations, proofs, algorithms, insights and
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connections to important problems in stochastic optimization, as well as to discrete optimizers, since
they reveal a new and important area of application.
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