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ABSTRACT 
 
The increasing requirements of high data rates and quality of service (QoS) in fourth-generation (4G) 
wireless communication require the implementation of practical capacity approaching codes. In this 
chapter, the application of Turbo coding schemes that have recently been adopted in the IEEE 802.16e 
WiMax standard and 3GPP Long Term Evolution (LTE) standard are reviewed. In order to process 
several 4G wireless standards with a common hardware module, a reconfigurable and scalable Turbo 
decoder architecture is presented.  A parallel Turbo decoding scheme with scalable parallelism tailored to 
the target throughput is applied to support high data rates in 4G applications. High-level decoding 
parallelism is achieved by employing contention-free interleavers. A multi-banked memory structure and 
routing network among memories and MAP decoders are designed to operate at full speed with parallel 
interleavers. A new on-line address generation technique is introduced to support multiple Turbo 
interleaving patterns, which avoids the interleaver address memory that is typically necessary in the 
traditional designs. Design trade-offs in terms of area and power efficiency are analyzed for different 
parallelism and clock frequency goals. 
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INTRODUCTION 
 
The approaching fourth-generation (4G) wireless systems are promising to support very high data rates 
from 100 Mbps to 1 Gbps. This consequently leads to orders of complexity increases in a 4G wireless 
receiver. The high performance convolutional Turbo codes are employed in many 4G wireless standards 
such as IEEE 802.16e WiMax and 3GPP Long Term Evolution (LTE). 
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A Turbo decoder is typically one of the most computation-intensive parts in a 4G wireless receiver. 
Increased complexity and performance requirements and the need to reduce power and area are 
significant challenges for Turbo decoder hardware implementation. The push for multi-mode wireless 
physical layer (PHY) brings additional challenges for Turbo decoder design. While programmable 
DSP/SIMD/VLIW processors can offer great flexibility in supporting different types of Turbo codes, they 
have several drawbacks notably higher power consumption and lower throughput than the ASIC 
solutions, which make them unsuitable for handheld devices. The commonalities between these Turbo 
codes in 4G wireless standards allow resources to be shared thus reducing hardware area and making 
more efficient use of the data path. However, there are differences in the exact Turbo decoder 
implementations. In order to meet high-speed multiple 4G standards, a reconfigurable and scalable Turbo 
decoder (or coprocessor) is necessary. From an implementation point of view, there are many aspects of 
Turbo codes that make them still a very hot research topic.  First, the original MAP algorithm is of great 
complexity, so it is impractical to implement it in hardware. So the Log-MAP and Max-Log-MAP 
algorithms were proposed later to reduce the arithmetic complexity while still maintaining good decoding 
performance. The long latency of MAP decoding has prevented it from being used in the real-time 
systems. One effective solution is to apply a sliding window algorithm to reduce the decoding latency. 
The scheduling of parallel sliding windows becomes the main challenge in parallel Turbo decoder design. 
Second, the non-binary Turbo codes are proven to have better performance than the binary Turbo codes. 
An area-efficient high-radix Turbo decoder architecture poses another design challenge. Finally, the new 
contention-free interleaver enables a very high level of parallelism in Turbo decoding, but on the other 
hand it creates an obstacle for the internal memory structure. The memories need to be partitioned and 
managed properly to avoid memory access conflicts introduced by the interleaver. 

This chapter discusses several types of Turbo coding schemes that have recently been approved in 
IEEE 802.16e WiMax, 3GPP LTE, and some other 3G/4G standards. It describes a high-throughput, area- 
and power- efficient VLSI architecture for multi-mode Turbo decoders. A multi-banked memory structure 
and routing network between memories and MAP decoder cores are also introduced. Simulation and 
implementation results are presented which show that, with the aid of a unified trellis structure, a 
configurable and scalable Turbo decoder architecture provides a practical solution to the requirements of 
flexible and high data-rate reliable transmission for 4G wireless networks. 
 
BACKGROUND 
 
The Turbo code (Berrou et al., 1993; Berrou et al., 1996) has become one of the most important research 
topics in coding theory since its discovery in 1993. The astounding performance of Turbo code has 
attracted a great deal of interest in the research activity in the area of iterative error correction codes. Due 
to its excellent error correction performance, many communication standards have chosen Turbo codes as 
the Forward Error Correction (FEC) codes, such as CDMA-2000, W-CDMA, DVB-RCS, HSDPA, 
UMTS, IEEE 802.16e WiMax, and 3GPP LTE. Turbo codes can be categorized into two classes: binary 
Turbo codes and non-binary Turbo codes. For example, Turbo codes in CDMA, HSDPA, UMTS and 
3GPP LTE are binary types of Turbo codes, whereas Turbo codes in IEEE 802.16e and DVB-RCS are 
double-binary types of Turbo codes. Table 1 summarizes some of the Turbo codes in practice (Berrou, 
2003). As we can see, there are many similarities between the Turbo codes employed in different 
standards. This motivates the design of a unified and flexible Turbo decoder which can support multiple 
standards. Without loss of generality, we will mainly focus on the Turbo codes defined in 3GPP LTE and 
WiMax in the following analysis. Note that these analyses can be applied to other systems directly 
because the encoder polynomials are same. 
 
 
 
 



Table1. Some applications of Turbo codes 
Application Code structure Polynomials 

CDMA, WCDMA, UMTS, LTE 8-state binary 13, 15, 17 
WiMax, DVB-RCS 8-state double-binary 15, 13 

 
Binary Turbo Code in 3GPP LTE Standard 
 

Turbo coding scheme in 3GPP LTE standard (3GPP TS 36.212, 2008) is a parallel concatenated 
convolutional code (PCCC) with two 8-state constituent encoders and one quadratic permutation 
polynomial (QPP) interleaver. The coding rate of the Turbo code is 1/3. The structure of the Turbo 
encoder is shown in Figure 1. 
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Figure 1. Structure of rate 1/3 Turbo encoder in 3GPP LTE 

 
As seen in the figure, a Turbo encoder consists of two binary convolutional encoders connected by an 
interleaver. The basic coding rate is 1/3 which means N data bits will be coded into 3N data bits. The 
transfer function of the 8-state constituent code for PCCC is: 
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The initial value of the shift registers of the 8-state constituent encoders shall be all zeros when 

starting to encode the input bits. Trellis termination is performed by taking the tail bits from the shift 
register feedback after all information bits are encoded. Tail bits are padded after the encoding of 
information bits.  



The function of the Interleaver is to take each incoming block of N data bits and shuffle them in a 
pseudo-random manner. One of the new features in the 3GPP LTE Turbo encoder is its quadratic 
permutation polynomial (QPP) internal interleaver. We will see later that this QPP interleaver is the key 
component enabling parallel decoding of Turbo codes. 

 
Double Binary Turbo Code in IEEE 802.16e WiMax Standard 

 
The convolutional Turbo encoder for the IEEE 802.16e standard (IEEE Std 802.16, 2004) is depicted 

in Figure 2. It uses a double binary circular recursive systematic convolutional code. Data couples (A, B), 
rather than a single bit sequence, are fed to the circular recursive systematic convolutional encoder twice, 
and four parity bits (Y1,W1) and (Y2, W2) are generated in the natural order and the interleaved order, 
respectively. The encoder polynomials are described in binary symbol notation as follows: 
 

- For the feedback branch: 31 DD ++ , 

- For the Y parity bit: 
321 DD ++ , 

- For the W parity bit: 
31 D+ . 

 
The tail-biting Trellis termination scheme is used as opposed to inserting extra tail bits. In this 

termination scheme, the start state of the trellis equals to the end state of the trellis. Therefore, a pre-
encoding operation has to be performed to determine the start state. This is not a complex problem 
because the encoding process can be performed at a much higher rate. A symbol-wise almost regular 
permutation (ARP) interleaver is used in the WiMax standard, which can enable parallel decoding of 
double binary Turbo codes. 
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Figure 2. Structure of rate 1/3 double binary Turbo encoder in IEEE 802.16e 
 

Decoding Algorithm 
 

The decoding algorithm employed in the Turbo decoders is the maximum a posteriori (MAP) 
algorithm proposed by Bahl et al. in 1974 and is also called the BCJR algorithm (Bahl et al., 1974). The 
high complexity and long latency of the original MAP algorithm has made high-speed VLSI 
implementations extremely difficult to realize. Fortunately, many simplifications have been applied to the 
original MAP algorithm in order to reduce the implementation complexity. 

The Turbo decoding concept is functionally illustrated in Figure 3. As discussed before, the decoding 
is based on the MAP algorithm and is usually calculated in the log domain (Robertson et al., 1995) to 
avoid multiplications and divisions. During the decoding process, each soft-in soft-output (SISO) decoder 
receives the intrinsic log-likelihood ratios (LLRs) from the channel and the extrinsic LLRs from the other 



constituent SISO decoder through interleaving (П) or deinterleaving (П-1). The main task of the Turbo 
internal interleaver is to generate a permutation of the input data sequence that is as uncorrelated as 
possible. The randomness of the interleaver not only affects the decoding performance, but also leads to 
decoding latency because one SISO decoder must wait for the other SISO decoder to finish decoding 
before it can start the next iteration. 
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Figure 3. Basic structure of Turbo encoder and decoder 
 

An efficient representation of the Turbo decoding process is the trellis diagram which describes all 
the possible state transitions through a graph representation. Figure 4 shows a section of the trellis 
diagram for an 8-state binary Turbo code, where the dashed edges correspond to input bit uk=0, and solid 
edges correspond to uk=1. 
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Figure 4. Trellis diagram for an 8-state binary Turbo code 
 

The MAP algorithm is an optimal symbol decoding algorithm that minimizes the probability of a 
symbol error. It computes the a posteriori probabilities (APPs) of the information bits given the received 
sequence. The MAP algorithm can be summarized as follows (Soleymani, 2002, pp. 25-38; Moon, 2005, 
pp. 588-597): 
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For computing P(sk-1=s’, sk=s, y), BCJR algorithm (Bahl et al., 1974) can be applied: 
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where kα  and kβ  are referred to forward and backward metrics and are computed as: 
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In the above equations, γ is the state transition probability and is computed as: 
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where Ck is a constant and will not affect the calculation of L(uk). Lc = 4Es/N0. L(uk) is the log-likelihood 
ratio of uk defined as: 
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Now the a posteriori probability (APP) log-likelihood ratio (LLR) of the information bits can be 
expressed as: 
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MULTI-STANDARD TURBO DECODER ARCHITECTURE 
 
Related Research on Flexible Turbo Decoder Architectures 

 
The ability to support multi-mode Turbo decoding is necessary for a multi-mode baseband physical 

layer (PHY) receiver. As some 3G/4G systems use different types of Turbo coding schemes (e.g. binary 
codes in CDMA, UMTS, HSDPA, and 3GPP LTE and double binary codes in WiMax), a general solution 
to supporting multiple code types is to use programmable processors. For example, a 2 Mbps Turbo 
decoder implemented on a DSP processor is proposed by Lin et al., (2007). Also, Shin & Park (2007) and 
Muller et al. (2006) develop a multi-mode Turbo decoder based on SIMD processors, where a 5.48 Mbps 
data rate is achieved by Shin & Park (2007) and a 100 Mbps data rate is achieved by Muller et al. (2006) 
at a cost of 16 processors. While these programmable SIMD/VLIW processors offer great flexibilities, 
they have several drawbacks, notably higher power consumption and lower throughput than ASIC 



solutions. A Turbo decoder is typically one of the most computation-intensive parts in a 4G receiver, 
therefore it is essential to design an area and power efficient flexible Turbo decoder in ASIC.  

Due to the many commonalities between different Turbo coding schemes employed in 4G wireless 
standards, we will present a configurable VLSI architecture for multi-standard Turbo decoding. This 
architecture can be reconfigured to support both simple and double binary Turbo codes with up to eight 
states. The memory collision problem is addressed by applying contention-free parallel interleavers. The 
MAP decoder, memory structure and routing network are designed to operate at full speed with the 
parallel interleaver. The proposed architecture meets the challenge of multi-standard Turbo decoding at 
very high data rates.  
 
Radix-2 Decoding of Binary Turbo Codes in the Log Domain 

 
The original MAP algorithm is too complex for implementation in a practical system. To avoid the 

complicated multiplications and solve the numerical instability issues, one can calculate the MAP 
algorithm in the log domain. To explain the Log-MAP decoding algorithm, we first introduce the max* 
function which is defined as (Robertson et al., 1995): 
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Consider the decoding process of a simple binary Turbo code, let sk be the trellis state at time k, then 

the MAP decoder computes the LLR of the a posteriori probability (APP) of each information bit uk by 
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where kα  and kβ  are the forward and backward state metrics, respectively, and are computed as follows: 
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where kγ  is the branch transition probability introduced earlier and is usually referred to as a branch 

metric (BM). To extract the extrinsic information, )ˆ( kuΛ  can be split into three terms: extrinsic 

LLR )( ke uL  , a priori LLR )( ka uL  and systematic LLR )( s
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Radix-4 Decoding via One-Level Look-ahead Transform 
 

For binary Turbo codes, the trellis cycles can be reduced 50% by applying a one-level look-ahead 
transform (Bickerstaff et al., 2003; Zhang & Parhi, 2006) as illustrated in Figure 5. Since two stages of 
the trellis can be processed at each time step, this process is referred to as the Radix-4 transform. For 
instance, the Radix-4 α  recursion can be expressed as: 
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where ),( 2 kkk ss −γ is the merged branch metric for the two-bit vector { uk-1, uk} connecting state sk-2 and 

sk: 
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Similarly, the Radix-4 transform can be applied to theβ recursion: 
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Because this Radix-4 algorithm is based on the symbol level, we need to define the symbol reliability as: 
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kγ is the symbol branch transition probability with iuk =−1 and juk = . After knowing the 

symbol probabilities, the bit LLRs can be computed as: 
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Figure 5. An example of one-level look ahead transform of a 4-state trellis (From Sun, Y. et al., IEEE 
International Conference on Application-Specific Systems, Architectures and Processors (ASAP), pp. 
209-214, July 2008. © [2008] IEEE. Used with permission.) 
 
Radix-4 Decoding of Double Binary Turbo Codes 
 

The double binary Turbo codes were adopted in the IEEE 802.16e WiMax standard due to their 
better error correction performance than the binary codes. For double binary codes, the main difference 



with ordinary binary codes is the trellis termination scheme and the symbol-wise decoding scheme (Zhan, 
2006). The double binary trellis is closed as a circle with the start state equal to the end state. This is also 
referred to as a tail-biting termination scheme, which is shown in Figure 6. The symbol wise MAP 
algorithm is applied with an anti-clockwise process for α state metrics update and clockwise process for β 
state metrics update. As shown in Figure 6, four branch transitions are associated with each α/β state 
update. The decoding algorithm for double binary codes is inherently based on the Radix-4 algorithm 
(Zhan, 2006), hence the same Radix-4 α, β and L(φ)  function units as used in the binary codes can be 
applied to the double binary codes in a straightforward manner. The only different parts are the branch 
metrics γij calculations and the tail-biting trellis termination scheme. Three LLRs must be calculated for 
double binary codes: 
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Figure 6. Circular trellis for double binary Turbo code (From Sun, Y. et al., IEEE International 
Conference on Application-Specific Systems, Architectures and Processors (ASAP), pp. 209-214, July 
2008. © [2008] IEEE. Used with permission.) 
 

Figure 7 compares the trellis structures (in their Radix-4 format) of IEEE 802.16e WiMax and 3GPP 
LTE standards. As can be seen, 25% of the trellis structures are identical. The similarities between these 
two trellis structure representations imply that a generic Turbo decoder can be efficiently designed to 
support multiple wireless standards with low hardware overhead. 
  



 
 

Figure 7. Trellis structures of IEEE 802.16e WiMax and 3GPP LTE Turbo codes 
 
Unified Log-MAP Decoder Architecture 
 

Based on the observation that both binary and double binary codes can be decoded in a unified way, 
we introduce a flexible Radix-4 Log-MAP decoder architecture to support both types of decoding 
operations. To efficiently implement the Log-MAP algorithm in hardware, the sliding window technique 
(Masera, 1999) is adopted. 

The two types of decoding operations can be generalized into one unified flow which is shown in 
Figure 8. Let us first use the binary Turbo codes as an example to explain the decoding process. In Figure 
8(a), suppose a data sequence is divided into sliding blocks with a sliding window length of W. At the 
first time slot, the first sliding block I0 is fed into the decoder and stored in scratch RAM 0. At the second 
time slot, sliding block I1 is stored in scratch RAM 1; dummy β0 recursion is executed on sliding block I1; 
and simultaneously α recursion is executed on sliding block I0 and the results are stored into the α-RAM 
(LIFO). Starting from the third time slot, α unit (working in the forward order), dummy β0 unit (in the 
reverse order), effective β1 unit (in the reverse order) and Λ unit (in the reverse order) are working in 
parallel to provide real-time decoding with a latency of 2W. This decoding operation is based on three 
recursion units, two used for the backward recursions (dummy β0 and effective β1), and one for forward 
recursion (α). Each recursion unit contains full-parallel ACSA (Add-Compare-Select-Add) operators. To 
reduce decoding latency, data in a sliding window is fed into the decoder in the reverse order; α unit is 
working in the forward order; dummy β0, effective β1 and Λ units are working in the reverse order as 
shown in Figure 8. This leads to a decoding latency of 2W for binary codes and 3W for double binary 
codes. Double binary codes have an additional W delay because an additional acquisition is needed to 
obtain the initial α state metrics. 
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Figure 8. Sliding window tile chart for simple and double binary Turbo codes (From Sun, Y. et al., IEEE 
International Conference on Application-Specific Systems, Architectures and Processors (ASAP), pp. 
209-214, July 2008. © [2008] IEEE. Used with permission.) 
 

Figure 9 shows a multi-mode Radix-4 Log-MAP decoder ASIC architecture. Three scratch RAMs 
(with a depth of W) were required to buffer the input systematic, parity and a priori LLRs. And three 
branch metric calculation (BMC) units are used to compute the branch metrics for α, β0 and β1 function 
units. To support multiple Turbo codes, the decoder employs configurable BMCs and configurable α and 
β function units which can support multiple transfer functions by configuring the routing blocks. The 
routing block can be reconfigured to support different encoder polynomials. Each α and β unit consists of 
fully parallel ACSA units so the architecture can support up to 8-state Turbo decoding. The Radix-4 
ACSA unit is implemented with four parallel adders followed by three max* units. In order to generate 
LLRs for both binary and double binary codes, the extrinsic Λ function unit implements both bit LLR and 
symbol LLR generation. In order to save logic, four max* trees were shared by both types of operations. 
The Λ unit can generate soft bit LLRs and symbol LLRs in real time with a fixed latency of 2W for binary 
codes or 3W for double binary codes. 
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Figure 9. Unified Log-MAP decoder architecture (From Sun, Y. et al., IEEE International Conference on 
Application-Specific Systems, Architectures and Processors (ASAP), pp. 209-214, July 2008. © [2008] 
IEEE. Used with permission.) 
 

In this architecture, many blocks can be shared between two decoding operations. For example, the 
α, β and L(φ) units, the α RAMs, and scratch RAMs can be easily shared between two decoding 
operations. Table 2 compares the resource usage for a multi-mode decoder architecture with a single-
mode decoder architecture (Sun, 2008). In Table 2, M is the number of trellis states, W is the sliding 
window length, Bm, Bb, Bc and Be are the precisions of state metrics, branch metrics, channel LLRs and 
extrinsic LLRs, respectively. From table 2, we can see that the overhead for adding flexibility is very 
small, which is only about 7%. This overhead mainly comes from the multiplexers that were used in the 
routing networks in the recursion function units. Table 2 indicates that a configurable VLSI architecture is 
a promising solution to multi-standard Turbo decoder. As a proof of concept, the decoder has been 
synthesized for a 65nm CMOS technology. Table 3 summarizes the synthesis results at a 200MHz clock 
frequency which is a typical clock speed in an ASIC design (Sun, 2008).  



 
 

Table 2. Complexity comparison 
 Multi-mode Single-mode 

Storage (bits) (9Be+12Bc + MBm)W (9Be + 12Bc + MBm)W 
Bm-bit max* (25/2)M + 4 (25/2)M 
1-bit adder 16MBm + 10MBb 16MBm + 10MBb 

1-bit flip-flop 5MBm + 2MBb 5MBm + 2MBb 
1-bit mux 16MBm + 16MBb 3MBm 

Normalized area 1.0 0.93 
  1 four-input max4* is counted as 3 two-input max* 
  1 eight-input max8* is counted as 7 two-input max* 
 

Table 3. Area distribution 
Blocks Gate count 

α unit (including α BMU) 30.8K gates 

β unit x 2 (including β BMUs) 66.2K gates 

Λ unit 37.3K gates 

α RAM 2560 bits 
Scratch RAMs x 3 4224 bits 

Control logic 13.4K gates 
 
Area Optimization 

 
Although the multi-mode MAP decoder was designed with limited overhead, we investigated 

additional techniques to achieve further area-saving. When the MAP decoding kernel is designed, there 

are several implementation options for the )log( beae +  function. We considered two options: Log-MAP 

where Cbabeae +≈+ ),max()log( , C is a correction factor, and max-Log-MAP where 

),max()log( babeae ≈+ . If max-Log-MAP is used, the performance loss in comparison with Log-MAP is 
about 0.3 dB with about 15% logic area saving. To reduce the performance gap with the log-MAP 
decoder, we introduced a scaling factor applied to the extrinsic LLR values (Vogt & Finger, 2000) as 
shown in Figure 10 resulting in 0.1 dB loss with 15% logic area saving. With this optimization for the 
multi-mode MAP decoder using max-Log-MAP, the silicon area is comparable to the Log-MAP single-
mode MAP decoder. 
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Figure 10. Extrinsic log-likelihood ratio (LLR) scaling method 

 
TURBO INTERNAL INTERLEAVER ARCHITECTURE 
 
Interleaving has been frequently used in a variety of communication systems. Generally, an interleaver 
was used to randomize the error locations to combat with the fading or burst error channels. The Turbo 
internal interleaver is a device that takes its input bit sequence and produces an output sequence that is as 
uncorrelated as possible. Since this randomness directly affects the decoding performance, the best choice 
would be the random interleaver. However, the random interelaver is not only difficult to implement, but 
also is an obstacle to parallel Turbo decoding due to the memory access collision problem. Therefore, the 
search for a structured interleaver, especially a contention-free interleaver, remains an active research 
topic in the coding community. Traditionally, memory collisions which occur due to interleaving are 
solved by having additional write buffers (Salmela, 2007). Recently, new contention-free interleavers 
have been adopted for the next-generation wireless standards, such as the quadratic polynomial 
permutation (QPP) interleaver (Sun & Takeshita, 2005) in the 3GPP LTE standard and the almost regular 
permutation (ARP) interleaver (Berrou, 2004) in the IEEE 802.16e WiMax standard.  
 
Contention-Free Interleavers 
 

An interleaver π(i), 0 ≤ i < K, is said to be contention-free for a window size W if and only if it 
satisfies the following constraint for both ψ = π (interleaver) and ψ = π-1 (deinterleaver) (Nimbalker et 
al., 2008). 

 
( ) ( )
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 +
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where 0 ≤ j < W,  0 ≤ t; v < M (=K/W), and t ≠ v. The terms in the above equation are essentially the 
memory bank indices that are concurrently accessed by the M processors. If these memory bank addresses 
are all unique during each read and write operations, then there are no contentions in memory access.  
 
QPP Interleaver in the 3GPP LTE Standard 
 

Given an information block length N, the x-th interleaved output position is given by (3GPP TS 
36.212, 2008) 

Nxfxfx mod)()( 1
2

2 +=Π , 
 

where f1 and f2 are integers and depend on the block length N ( Nffx <≤ 21,,0 ). The block length N 
defined in the 3GPP LTE standard ranges from 40 to 6144. Figure 11 depicts the bit error rate (BER) 
simulation result of the 3GPP LTE Turbo code for block lengths of 40, 240, 1024, and 6144. In Figure 11, 
both floating (corresponds to “opt” in Figure 11) and fixed point simulation results are shown. Parameters 
used in the fixed point simulation are as follows: channel input LLR bit precision = 6 (with 2 bit 
fractional bits), bit precision of the internal state metrics = 12, sliding window length = 64, parallel sliding 
window = 1, MAP decoding algorithm = 4-entry lookup table based Log-MAP, and maximum iteration = 
6. 
 



 
 

Figure 11. Floating point and fixed point simulation result for 3GPP LTE Turbo codes 
 
Hardware Implementation of QPP Interleaver 
 

The direct computation of QPP interleaving is difficult due to the multiplication and modulo 
operations. A more efficient address generation method is to compute )(xΠ recursively: 

 

NxxNffxfxfxfx mod))()((mod))2()(()1( 2121
2

2 Γ+Π=++++=+Π , 
 

where 
Nffxfx mod)2()( 212 ++=Γ , 

 
and )(xΓ can also be computed recursively as: 

.mod)2)(()1( 2 Nfxx +Γ=+Γ  
 

Since )(xΠ , )(xΓ  and 2 f2 are all smaller than N, the modulo operation can be efficiently implemented 
with adders and multiplexers. To implement the QPP interleaver in hardware, we introduce an address 
generation circuit by cascading two Add-Compare-Choose (ACC) units as shown in Figure 12. As can be 
seen, no multipliers and dividers are required in this architecture. The critical path of this circuit only 
contains two adders and two multiplexers. After setting an initial value for )(xΠ  and )(xΓ at x = x0, the 

circuit will continuously generate the interleaving address )(xΠ  for x = x0+1, x0+2, x0+3, … at each 
cycle. Although the simplest approach to implement an interleaver is to store all the interleaving patterns 
in ROMs, this approach becomes almost impractical for a Turbo decoder supporting multiple block sizes. 



For instance, the 3GPP LTE has defined 188 different Turbo code sizes, which makes the ROM based 
interleaver implementation very inefficient. 
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Figure 12. QPP interleaver architecture (From Sun, Y. et al., IEEE International Conference on 
Application-Specific Systems, Architectures and Processors (ASAP), pp. 209-214, July 2008. © [2008] 
IEEE. Used with permission.) 
 
ARP Interleaver in IEEE 802.16e WiMax Standard 
 

The interleaver adopted by the WiMax standard is called the almost regular permutation (ARP) 
interleaver which is also contention-free. The ARP interleaver employs a two-step interleaving process 
(IEEE Std 802.16, 2004). The first step switches the alternate couples as  

 

],[],[ xxxx BAAB = , if x mod 2 = 1. 

 
In the second step, the ARP interleaver computes  
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where parameters P0, P1, P2 and P3 are constants and depend on N.  
 
Hardware Implementation of ARP Interleaver 
 

The ARP interleaver can be also computed recursively. What is more interesting is that the ARP 
interleaver can be implemented in a similar manner as the QPP interleaver by reusing the same two ACC 

units, as shown in Figure 13. Let xPx 0)( =λ , Q0=1, Q1=1+N/2+P1, Q2=1+P2, Q3=1+N/2+P3. 

After setting an initial value for )( 0xx =λ , this circuit will then continuously generate the interleaving 

address )(xΠ  for x = x0+1, x0+2, x0+3, … at each clock cycle. 
If we compare these two circuits shown in Figure 12 and Figure 13, both interleavers have the same 

logic structure. The differences between these two circuits are the initial values for the ACC units. As can 
be seen, this unified architecture only requires a few adders and multiplexers which leads to very low 



complexity and can support all QPP/ARP Turbo interleaving patterns. Compared to the traditional 
interleaver implementations, which need complex arithmetic units and/or RAMs/ROMs, the proposed 
QPP/ARP interleaver provides an efficient solution for supporting multi-standard Turbo interleaving. 
 

++

 
 

Figure 13. ARP interleaver architecture (From Sun, Y. et al., IEEE International Conference on 
Application-Specific Systems, Architectures and Processors (ASAP), pp. 209-214, July 2008. © [2008] 
IEEE. Used with permission.) 
 
PARALLEL TURBO DECODING 
 
In this section, we present the architecture challenges to design a high throughput parallel Turbo decoder 
for multi-mode functionality with small overhead. Due to the property of the convolutional trellis 
structure, one long trellis can be divided into P smaller trellises. Then, each smaller trellis is processed 
independently by a dedicated MAP decoder (Thul1 et al., 2005; Bougard et al., 2003; Prescher, 2005; 
Lee, 2005). Ignoring the small overhead introduced by the parallel MAP algorithm, the throughput can be 
increased almost by a factor of P. For example, Bougard et al. (2003) achieved a 75.6 Mbps data rate by 
employing 7 SISO decoders running at 160 MHz clock rate. 
 
Scalable Turbo Decoder Architecture 
 

The main issue in designing parallel Turbo decoder architecture is known to be the interleaver 
parallelism due to the memory access collision problem. To address the data channel decoding throughput 
issue, both 3GPP LTE and IEEE 802.16e WiMAX employ contention-free interleavers. One codeword 
can be divided into P sub-codewords and P maximum a posteriori (MAP) decoders can be employed to 
decode each sub-codeword concurrently which leads to P-level parallelism architecture. Figure 14(a) 
shows the proposed parallel decoder architecture based on contention-free 4G interleavers (Sun et al., 
2008). This architecture is flexible in that it employs both intra-codeword and inter-codeword parallel 
decoding schemes to improve the overall efficiency and throughput. The intra-codeword mode is used for 
the decoding of large-size codewords. The parallelism is achieved by dividing the whole block N into P 
sub-blocks (SBs) and assigning P MAP decoders working in parallel to reduce the latency down to 
O(N/P). The inter-codeword mode is used for small-size codewords by having P small codewords being 
decoded simultaneously and independently, so that the overall latency is reduced down to O(N/P) as well. 

The memory structure is designed to support concurrent access of LLRs by multiple MAP decoders 
in both linear addressing and interleaved addressing modes (Sun, 2008). This is achieved by partitioning 
the memory into P individual banks. Each bank has the same size and can be independently accessed. 
Because P MAP decoders always access data simultaneously at a particular offset x, it guarantees that no 
memory access conflicts occur due to the contention-free property of 

   MkMxMjMx /)(/)( +Π≠+Π , where x is the offset in the sub-block j and k ( Pkj <<≤0 ), 

and M is the sub-block length (M=N/P). A full crossbar is used for routing data between P MAP decoders 



and P memory banks. A parallel decoding example (in intra-codeword mode) for double binary codes is 
shown in Figure 14(b). Note that this concept holds for binary codes as well. 
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Figure 14. Parallel decoder architecture (From Sun, Y. et al., IEEE International Conference on 
Application-Specific Systems, Architectures and Processors (ASAP), pp. 209-214, July 2008. © [2008] 
IEEE. Used with permission.) 
 
Case Study: 100 Mbps Turbo Decoder for Category-3 3GPP LTE Device 
 

The parallelism level P can be tailored to a given codeword size. For smaller codewords, it was 
found that P=1 decoding meets the throughput requirement with less logic complexity. There are several 
P values that can achieve contention-free memory access across all large codeword sizes. To support the 
category-3 3GPP LTE data rate of ~100 Mbps, we set the maximum parallelism to be P=4. As shown in 
Figure 15, we have P=4 memory banks and depending upon the codeword size, we configure P=4 MAP 
decoders accordingly to meet the throughput requirement for different codeword sizes. 
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Figure 15. Codeword-size scalable parallel Turbo decoder 
 
Architecture Trade-off Analysis 
 

From the above descriptions, we know that high throughput can be achieved by using multiple MAP 
decoders and multiple memory banks. However, the throughput can not always increase linearly with the 
parallelism level. As SRAMs are getting smaller and smaller, the area efficiency will decrease. Also, 
there will be a fixed latency overhead for the sliding-window MAP decoding. In this section, we will 
analyze the impact of parallelism on throughput, area and power consumption. The maximum throughput 
is estimated as (Sun, 2008) 
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Throughput

W
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+⋅⋅
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where 2/
~

NN =  is the code length (in Radix-4), I is the number of iterations (contains two half 

iterations), W
~

3 is the decoding latency for each MAP decoder, and f is the clock frequency. The total area 
is estimated as (Sun, 2008) 
 

),(),()(Area fPANPAfAP routememmap ++⋅≈ , 

 
where: Amap is one MAP decoder’s area which will increase with f, Amem is the memory area which will 
increase with both N and P, and Aroute is the routing cost (crossbars plus interleavers) which will increase 
with both P and f. Note that the complexity of the full crossbar actually increases with P2. To perform the 
area and power trade-off analysis, the decoder was described in Verilog RTL and synthesized for a 65 nm 
technology using Synopsys Design Compiler. The area tradeoff analysis is given in Figure 16 which plots 
the normalized area versus throughput for different parallelism levels and clock frequency goals (80-200 
MHz, at a step of 20 MHz).  Figure 17 shows the dynamic power tradeoff analysis. As can be seen, for a 
given throughput there might be multiple configurations, not surprisingly higher parallelism (hence 
requiring lower frequency) is advantageous to the energy savings but unfavorable to the area utilization, 
and vice versa.  
 

Table 4 compares the architecture flexibility and the decoding performance of the proposed decoder 
with existing state-of-the-art Turbo decoders. In Lin et al. (2007), Muller et al. (2006), and Ituero & 
Lopez-Vallejo, (2006), programmable VLIW/SIMD processors are designed to support the decoding of 
multiple Turbo codes. In Thul et al.(2005) and Bougard et al.(2003), hardware ASIC architectures are 
proposed for simple binary Turbo codes based on the Log-MAP algorithm. In Prescher et al. (2005), a 



757 Mbps decoding throughput is achieved by employing 64 sub-optimal Constant-Log-MAP SISO 
decoders. Though the decoder in Prescher et al. (2005) achieves high throughput at low cost, it has some 
limitations, i.e. the interleaver is non-standard compliant and it can not support double binary Turbo 
codes. The comparisons in Table 4 show that our proposed architecture not only has flexibility in 
supporting multiple Turbo codes (simple binary + double binary) but also achieves a very high throughput 
(Sun, 2008). It is also scalable in terms of parallelism and data rates. 
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Figure 16. Normalized area versus throughput (N=6144, I=6, W=32). (From Sun, Y. et al., IEEE 
International Conference on Application-Specific Systems, Architectures and Processors (ASAP), pp. 
209-214, July 2008. © [2008] IEEE. Used with permission.) 
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Figure 17. Normalized power versus throughput (N=6144, I=6, W=32). (From Sun, Y. et al., IEEE 
International Conference on Application-Specific Systems, Architectures and Processors (ASAP), pp. 
209-214, July 2008. © [2008] IEEE. Used with permission.) 
 

Table 4. Comparison with existing Turbo decoder architectures 
Work Architectures Flexibility Algorithm Parallelism Frequency Throughput 
Lin, 2006 32-wide SIMD Multi-code Max-LogMap 4 window 400 MHz 2.08 Mbps 
Ituero, 2006 Cluster VLIW Multi-code LogMap Dual cluster 80 MHz 10 Mbps 
Muller, 2006 ASIP SIMD Multi-code Max-LogMap 16 ASIP 335 MHz 100 Mbps 
Thul, 2006 ASIC Single-code LogMap 6 SISO 166 MHz 59.6 Mbps 
Bougard, 2003 ASIC Single-code LogMap 7 SISO 160 MHz 75.6 Mbps 
Prescher, 2005 ASIC Single-code Const-LogMap 64 SISO 256 MHz 758 Mbps 
Our work ASIC Multi-code LogMap 32 SISO 200 MHz 711 Mbps 

 
FUTURE RESEARCH DIRECTIONS 
 

One of the key challenges in developing 4G mobile devices is low power design. The Turbo decoder is 
typically one of the most power consuming blocks in a 4G wireless PHY receiver. New techniques to 
dynamically configure the Turbo decoder hardware to achieve minimum energy consumption while 
guaranteeing quality of service (QoS) are extremely important for 4G wireless PHY design. Besides the 
semiconductor optimizations, algorithmic and architectural innovations are also required to reduce the 
power dissipation of the Turbo decoder. Thus, energy efficient Turbo decoder VLSI design is a very 
important future research topic. 



Another key challenge in developing 4G mobile devices is to simultaneously support multiple 
wireless standards, which all employ forward error correction (FEC) coding schemes. Among these FEC 
code families, low-density parity-check (LDPC) codes and Turbo codes have received tremendous 
attention in the coding community.  The success of LDPC and Turbo codes is mainly due to the efficient 
iterative decoding algorithm. Many efficient VLSI architectures for LDPC decoders have been 
investigated as well as for Turbo decoders. It is known that these two families of codes have similarities. 
For example, they can both be represented as codes on graphs which define the constraints satisfied by 
code-words. Both families of codes are decoded in an iterative way by using the sum-product algorithm 
or belief propagation algorithm. A few researchers have tried to connect these two codes by applying 
Turbo-like decoding algorithm for LDPC codes. Since both LDPC decoder and Turbo decoder will 
consume a significant amount of power and occupy a large portion of the silicon area in the wireless 
receiver PHY, a flexible VLSI decoder architecture supporting both LDPC and Turbo codes is very 
attractive. In our initial work, we have shown that a generic decoder that supports both LDPC and Turbo 
decoding is feasible and efficient (Sun & Cavallaro, 2008). 

 

CONCLUSION 
 
In this chapter we have introduced a flexible multi-mode Turbo decoder architecture together with a low-
complexity contention-free interleaver. We have shown how to decode simple and double binary Turbo 
codes in a unified way by employing a Radix-4 Log-MAP decoding algorithm. Then based on the unified 
Radix-4 trellis, a multi-mode Log-MAP decoder is presented with a low area overhead. This multi-mode 
Log-MAP (constituent) decoder is the key component in the Turbo decoder architecture. We have shown 
that by employing certain area optimization techniques, the area of the multi-mode Log-Map decoder is 
comparable to that of the single-mode Log-Map decoder. 

The interleaver parallelism is the key challenge in designing parallel Turbo decoder architectures due 
to the memory access collision issue. We have given a solution to generate the interleaving patterns in 
real time by designing low-complexity high-speed interleaver circuits. This circuit can be reconfigured to 
support both 3GPP LTE and IEEE 802.16e WiMax standards with negligible hardware overhead.  

Based on the contention-free interleaver, we have shown a multi-MAP multi-memory parallel Turbo 
decoder architecture to support high data rates. The decoder parallelism is tailored to the given 
applications and is scalable for different code sizes. For large code sizes, multiple MAP decoders will be 
used to reduce the decoding latency and increase the decoding throughput, we called this scheme intra-
codeword parallelism. For small code sizes, P small codewords are decoded simultaneously and 
independently, and we called this scheme inter-codeword parallelism. Given a target throughput, there are 
multiple choices of decoding parallelism levels. From the energy savings point of view, we tend to use a 
parallelism level that is as large as possible. However, large parallelism implies more MAP decoders 
which will therefore occupy more silicon area. We have shown a trade-off analysis of area and power 
versus decoder parallelism. 

The major advantage of using configurable and scalable ASIC architectures is that the area and 
power are much lower than those of programmable DSP processors. Moreover, a configurable multi-
mode decoder is more area and power efficient than multiple single-mode decoders. 

Based on the fact that the Turbo decoder has a very regular datapath and there are many similarities 
among different Turbo code families, a flexible multi-mode Turbo decoder ASIC can be considered a 
key component toward of multi-mode 4G wireless modem design. 
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