
Configurable and Scalable Turbo Configurable and Scalable Turbo Configurable and Scalable Turbo Configurable and Scalable Turbo

Decoder for 4G Wireless Decoder for 4G Wireless Decoder for 4G Wireless Decoder for 4G Wireless ReceiversReceiversReceiversReceivers

Yang Sun
Rice University, USA

Joseph R. Cavallaro
Rice University, USA

Yuming Zhu
Texas Instruments, USA

Manish Goel
Texas Instruments, USA

ABSTRACT

The increasing requirements of high data rates and quality of service (QoS) in fourth-generation (4G)
wireless communication require the implementation of practical capacity approaching codes. In this
chapter, the application of Turbo coding schemes that have recently been adopted in the IEEE 802.16e
WiMax standard and 3GPP Long Term Evolution (LTE) standard are reviewed. In order to process
several 4G wireless standards with a common hardware module, a reconfigurable and scalable Turbo
decoder architecture is presented. A parallel Turbo decoding scheme with scalable parallelism tailored to
the target throughput is applied to support high data rates in 4G applications. High-level decoding
parallelism is achieved by employing contention-free interleavers. A multi-banked memory structure and
routing network among memories and MAP decoders are designed to operate at full speed with parallel
interleavers. A new on-line address generation technique is introduced to support multiple Turbo
interleaving patterns, which avoids the interleaver address memory that is typically necessary in the
traditional designs. Design trade-offs in terms of area and power efficiency are analyzed for different
parallelism and clock frequency goals.

KEYWORDS

Error Correction Codes, Turbo Codes, MAP Algorithm, BCJR Algorithm, Turbo Decoder, Interleaver,
Wireless PHY, 4G Receiver, VLSI Architecture

INTRODUCTION

The approaching fourth-generation (4G) wireless systems are promising to support very high data rates
from 100 Mbps to 1 Gbps. This consequently leads to orders of complexity increases in a 4G wireless
receiver. The high performance convolutional Turbo codes are employed in many 4G wireless standards
such as IEEE 802.16e WiMax and 3GPP Long Term Evolution (LTE).

cavallar
Text Box
Fourth-Generation (4G) Wireless Networks: Applications and Innovations, IGI-Global Press. (S. Adibi, A. Mobasher, and T. Tofigh, Eds.) 2010, pp. 622-643

A Turbo decoder is typically one of the most computation-intensive parts in a 4G wireless receiver.
Increased complexity and performance requirements and the need to reduce power and area are
significant challenges for Turbo decoder hardware implementation. The push for multi-mode wireless
physical layer (PHY) brings additional challenges for Turbo decoder design. While programmable
DSP/SIMD/VLIW processors can offer great flexibility in supporting different types of Turbo codes, they
have several drawbacks notably higher power consumption and lower throughput than the ASIC
solutions, which make them unsuitable for handheld devices. The commonalities between these Turbo
codes in 4G wireless standards allow resources to be shared thus reducing hardware area and making
more efficient use of the data path. However, there are differences in the exact Turbo decoder
implementations. In order to meet high-speed multiple 4G standards, a reconfigurable and scalable Turbo
decoder (or coprocessor) is necessary. From an implementation point of view, there are many aspects of
Turbo codes that make them still a very hot research topic. First, the original MAP algorithm is of great
complexity, so it is impractical to implement it in hardware. So the Log-MAP and Max-Log-MAP
algorithms were proposed later to reduce the arithmetic complexity while still maintaining good decoding
performance. The long latency of MAP decoding has prevented it from being used in the real-time
systems. One effective solution is to apply a sliding window algorithm to reduce the decoding latency.
The scheduling of parallel sliding windows becomes the main challenge in parallel Turbo decoder design.
Second, the non-binary Turbo codes are proven to have better performance than the binary Turbo codes.
An area-efficient high-radix Turbo decoder architecture poses another design challenge. Finally, the new
contention-free interleaver enables a very high level of parallelism in Turbo decoding, but on the other
hand it creates an obstacle for the internal memory structure. The memories need to be partitioned and
managed properly to avoid memory access conflicts introduced by the interleaver.

This chapter discusses several types of Turbo coding schemes that have recently been approved in
IEEE 802.16e WiMax, 3GPP LTE, and some other 3G/4G standards. It describes a high-throughput, area-
and power- efficient VLSI architecture for multi-mode Turbo decoders. A multi-banked memory structure
and routing network between memories and MAP decoder cores are also introduced. Simulation and
implementation results are presented which show that, with the aid of a unified trellis structure, a
configurable and scalable Turbo decoder architecture provides a practical solution to the requirements of
flexible and high data-rate reliable transmission for 4G wireless networks.

BACKGROUND

The Turbo code (Berrou et al., 1993; Berrou et al., 1996) has become one of the most important research
topics in coding theory since its discovery in 1993. The astounding performance of Turbo code has
attracted a great deal of interest in the research activity in the area of iterative error correction codes. Due
to its excellent error correction performance, many communication standards have chosen Turbo codes as
the Forward Error Correction (FEC) codes, such as CDMA-2000, W-CDMA, DVB-RCS, HSDPA,
UMTS, IEEE 802.16e WiMax, and 3GPP LTE. Turbo codes can be categorized into two classes: binary
Turbo codes and non-binary Turbo codes. For example, Turbo codes in CDMA, HSDPA, UMTS and
3GPP LTE are binary types of Turbo codes, whereas Turbo codes in IEEE 802.16e and DVB-RCS are
double-binary types of Turbo codes. Table 1 summarizes some of the Turbo codes in practice (Berrou,
2003). As we can see, there are many similarities between the Turbo codes employed in different
standards. This motivates the design of a unified and flexible Turbo decoder which can support multiple
standards. Without loss of generality, we will mainly focus on the Turbo codes defined in 3GPP LTE and
WiMax in the following analysis. Note that these analyses can be applied to other systems directly
because the encoder polynomials are same.

Table1. Some applications of Turbo codes
Application Code structure Polynomials

CDMA, WCDMA, UMTS, LTE 8-state binary 13, 15, 17
WiMax, DVB-RCS 8-state double-binary 15, 13

Binary Turbo Code in 3GPP LTE Standard

Turbo coding scheme in 3GPP LTE standard (3GPP TS 36.212, 2008) is a parallel concatenated
convolutional code (PCCC) with two 8-state constituent encoders and one quadratic permutation
polynomial (QPP) interleaver. The coding rate of the Turbo code is 1/3. The structure of the Turbo
encoder is shown in Figure 1.

QPP

Interleaver

D D D

D D D

Binary data

X

Y1

Y2

Figure 1. Structure of rate 1/3 Turbo encoder in 3GPP LTE

As seen in the figure, a Turbo encoder consists of two binary convolutional encoders connected by an
interleaver. The basic coding rate is 1/3 which means N data bits will be coded into 3N data bits. The
transfer function of the 8-state constituent code for PCCC is:

=

)(
)(

,1)(
0

1

Dg

Dg
DG ,

where
32

0 1)(DDDg ++= ,
3

1 1)(DDDg ++= .

The initial value of the shift registers of the 8-state constituent encoders shall be all zeros when

starting to encode the input bits. Trellis termination is performed by taking the tail bits from the shift
register feedback after all information bits are encoded. Tail bits are padded after the encoding of
information bits.

The function of the Interleaver is to take each incoming block of N data bits and shuffle them in a
pseudo-random manner. One of the new features in the 3GPP LTE Turbo encoder is its quadratic
permutation polynomial (QPP) internal interleaver. We will see later that this QPP interleaver is the key
component enabling parallel decoding of Turbo codes.

Double Binary Turbo Code in IEEE 802.16e WiMax Standard

The convolutional Turbo encoder for the IEEE 802.16e standard (IEEE Std 802.16, 2004) is depicted

in Figure 2. It uses a double binary circular recursive systematic convolutional code. Data couples (A, B),
rather than a single bit sequence, are fed to the circular recursive systematic convolutional encoder twice,
and four parity bits (Y1,W1) and (Y2, W2) are generated in the natural order and the interleaved order,
respectively. The encoder polynomials are described in binary symbol notation as follows:

- For the feedback branch: 31 DD ++ ,

- For the Y parity bit:
321 DD ++ ,

- For the W parity bit:
31 D+ .

The tail-biting Trellis termination scheme is used as opposed to inserting extra tail bits. In this

termination scheme, the start state of the trellis equals to the end state of the trellis. Therefore, a pre-
encoding operation has to be performed to determine the start state. This is not a complex problem
because the encoding process can be performed at a much higher rate. A symbol-wise almost regular
permutation (ARP) interleaver is used in the WiMax standard, which can enable parallel decoding of
double binary Turbo codes.

2

1

+ D D D+ +

+

+

A

B

A

B

Y1 / Y2

W1 / W2

Switch

ARP

interleaver

Figure 2. Structure of rate 1/3 double binary Turbo encoder in IEEE 802.16e

Decoding Algorithm

The decoding algorithm employed in the Turbo decoders is the maximum a posteriori (MAP)
algorithm proposed by Bahl et al. in 1974 and is also called the BCJR algorithm (Bahl et al., 1974). The
high complexity and long latency of the original MAP algorithm has made high-speed VLSI
implementations extremely difficult to realize. Fortunately, many simplifications have been applied to the
original MAP algorithm in order to reduce the implementation complexity.

The Turbo decoding concept is functionally illustrated in Figure 3. As discussed before, the decoding
is based on the MAP algorithm and is usually calculated in the log domain (Robertson et al., 1995) to
avoid multiplications and divisions. During the decoding process, each soft-in soft-output (SISO) decoder
receives the intrinsic log-likelihood ratios (LLRs) from the channel and the extrinsic LLRs from the other

constituent SISO decoder through interleaving (П) or deinterleaving (П-1). The main task of the Turbo
internal interleaver is to generate a permutation of the input data sequence that is as uncorrelated as
possible. The randomness of the interleaver not only affects the decoding performance, but also leads to
decoding latency because one SISO decoder must wait for the other SISO decoder to finish decoding
before it can start the next iteration.

N
o

is
y

 C
h

an
n
el

1−∏∏∏
∏

Figure 3. Basic structure of Turbo encoder and decoder

An efficient representation of the Turbo decoding process is the trellis diagram which describes all
the possible state transitions through a graph representation. Figure 4 shows a section of the trellis
diagram for an 8-state binary Turbo code, where the dashed edges correspond to input bit uk=0, and solid
edges correspond to uk=1.

ks 1+ks 2+ks 3+ks 4+ks
kk cu ,

0=ku
1=ku

Figure 4. Trellis diagram for an 8-state binary Turbo code

The MAP algorithm is an optimal symbol decoding algorithm that minimizes the probability of a
symbol error. It computes the a posteriori probabilities (APPs) of the information bits given the received
sequence. The MAP algorithm can be summarized as follows (Soleymani, 2002, pp. 25-38; Moon, 2005,
pp. 588-597):

∑ ==
∑ ==

=
−=
+==

−= −

+= −

1 1

1 1

),,'(

),,'(
log

)|1(

)|1(
log)ˆ(

k

k

u kk

u kk

k

k
k yssssP

yssssP

yuP

yuP
uL .

For computing P(sk-1=s’, sk=s, y), BCJR algorithm (Bahl et al., 1974) can be applied:

)(),'()'(),,'(11 ssssyssssP kkkkk βγα ⋅⋅=== −− ,

where kα and kβ are referred to forward and backward metrics and are computed as:

∑ ⋅=

∑ ⋅=

+

−

s
kkk

s
kkk

ssss

ssss

)(),'()'(

)'(),'()(

1

'
1

βγβ

αγα
.

In the above equations, γ is the state transition probability and is computed as:

()

 ++=

==

p
k

p
kc

s
kckkk

kkkkk

xyLyLuLu C

uyPuPssyPssPss

2
1

)(
2
1

exp

)|()(),'|()'|(),'(γ
,

where Ck is a constant and will not affect the calculation of L(uk). Lc = 4Es/N0. L(uk) is the log-likelihood
ratio of uk defined as:

)1(

)1(
log)(

−=
+==

k

k
k uP

uP
uL .

Now the a posteriori probability (APP) log-likelihood ratio (LLR) of the information bits can be
expressed as:

∑ ⋅⋅
∑ ⋅⋅

=
−=
+==

−= −

+= −

1 1

1 1

)(),'()'(

)(),'()'(
log

)|1(

)|1(
log)ˆ(

k

k

u kkk

u kkk

k

k
k ssss

ssss

yuP

yuP
uL

βγα
βγα

.

MULTI-STANDARD TURBO DECODER ARCHITECTURE

Related Research on Flexible Turbo Decoder Architectures

The ability to support multi-mode Turbo decoding is necessary for a multi-mode baseband physical

layer (PHY) receiver. As some 3G/4G systems use different types of Turbo coding schemes (e.g. binary
codes in CDMA, UMTS, HSDPA, and 3GPP LTE and double binary codes in WiMax), a general solution
to supporting multiple code types is to use programmable processors. For example, a 2 Mbps Turbo
decoder implemented on a DSP processor is proposed by Lin et al., (2007). Also, Shin & Park (2007) and
Muller et al. (2006) develop a multi-mode Turbo decoder based on SIMD processors, where a 5.48 Mbps
data rate is achieved by Shin & Park (2007) and a 100 Mbps data rate is achieved by Muller et al. (2006)
at a cost of 16 processors. While these programmable SIMD/VLIW processors offer great flexibilities,
they have several drawbacks, notably higher power consumption and lower throughput than ASIC

solutions. A Turbo decoder is typically one of the most computation-intensive parts in a 4G receiver,
therefore it is essential to design an area and power efficient flexible Turbo decoder in ASIC.

Due to the many commonalities between different Turbo coding schemes employed in 4G wireless
standards, we will present a configurable VLSI architecture for multi-standard Turbo decoding. This
architecture can be reconfigured to support both simple and double binary Turbo codes with up to eight
states. The memory collision problem is addressed by applying contention-free parallel interleavers. The
MAP decoder, memory structure and routing network are designed to operate at full speed with the
parallel interleaver. The proposed architecture meets the challenge of multi-standard Turbo decoding at
very high data rates.

Radix-2 Decoding of Binary Turbo Codes in the Log Domain

The original MAP algorithm is too complex for implementation in a practical system. To avoid the

complicated multiplications and solve the numerical instability issues, one can calculate the MAP
algorithm in the log domain. To explain the Log-MAP decoding algorithm, we first introduce the max*
function which is defined as (Robertson et al., 1995):

)1log(),max(}log{),(max ||
*

baba ebaeeba −−++=+= .

Consider the decoding process of a simple binary Turbo code, let sk be the trellis state at time k, then

the MAP decoder computes the LLR of the a posteriori probability (APP) of each information bit uk by

)},(),()({max

)}(),()({max)ˆ(

111

*

0

111

*

1

kkkkkkk
u

kkkkkkk
u

k

ssss

ssssu

k

k

βγα

βγα

++−

++=Λ

−−−
=

−−−
=

where kα and kβ are the forward and backward state metrics, respectively, and are computed as follows:

)},()({max)(111

*

1

kkkkk
s

kk ssss
k

−−− +=
−

γαα ,

)},()({max)(111

*

1

+++ +=
+

kkkkk
s

kk ssss
k

γββ ,

where kγ is the branch transition probability introduced earlier and is usually referred to as a branch

metric (BM). To extract the extrinsic information,)ˆ(kuΛ can be split into three terms: extrinsic

LLR)(ke uL , a priori LLR)(ka uL and systematic LLR)(s
kc yL as:

)()()()ˆ(s
kckakek yLuLuLu ++=Λ .

Radix-4 Decoding via One-Level Look-ahead Transform

For binary Turbo codes, the trellis cycles can be reduced 50% by applying a one-level look-ahead
transform (Bickerstaff et al., 2003; Zhang & Parhi, 2006) as illustrated in Figure 5. Since two stages of
the trellis can be processed at each time step, this process is referred to as the Radix-4 transform. For
instance, the Radix-4 α recursion can be expressed as:

{ }

{ },),()(max

),(),()(maxmax)(

222

*

,

112122

**

12

21

 kkkkk
ss

kkkkkkkk
ss

kk

sss

ssssss

kk

kk

−−−

−−−−−−

+

++=

−−

−−

= γα

γγαα

where),(2 kkk ss −γ is the merged branch metric for the two-bit vector { uk-1, uk} connecting state sk-2 and

sk:

),(),(),(11212 kkkkkkkkk ssssss −−−−− += γγγ .

Similarly, the Radix-4 transform can be applied to theβ recursion:

)},()({max)(222

*

, 12

+++ +=
++

kkkkk
ss

kk ssss
kk

γββ .

Because this Radix-4 algorithm is based on the symbol level, we need to define the symbol reliability as:

)}()({max)(22

*

,2

kk
ij

kkk
ss

ij ssL
kk

βγαϕ ++= −−
−

,

where
ij

kγ is the symbol branch transition probability with iuk =−1 and juk = . After knowing the

symbol probabilities, the bit LLRs can be computed as:

)}.(),({max)}(),({max)ˆ(

)}(),({max)}(),({max)ˆ(

1000

*

1101

*

0100

*

1110

*

1

ϕϕϕϕ

ϕϕϕϕ

LLLLu

LLLLu

k

k

−=Λ

−=Λ −

kβ1−kγ kγ

2−ks
1−ks ks

2−ks ks

2−kα kβ),(2 kkk ss −γ2−kα

Figure 5. An example of one-level look ahead transform of a 4-state trellis (From Sun, Y. et al., IEEE
International Conference on Application-Specific Systems, Architectures and Processors (ASAP), pp.
209-214, July 2008. © [2008] IEEE. Used with permission.)

Radix-4 Decoding of Double Binary Turbo Codes

The double binary Turbo codes were adopted in the IEEE 802.16e WiMax standard due to their
better error correction performance than the binary codes. For double binary codes, the main difference

with ordinary binary codes is the trellis termination scheme and the symbol-wise decoding scheme (Zhan,
2006). The double binary trellis is closed as a circle with the start state equal to the end state. This is also
referred to as a tail-biting termination scheme, which is shown in Figure 6. The symbol wise MAP
algorithm is applied with an anti-clockwise process for α state metrics update and clockwise process for β
state metrics update. As shown in Figure 6, four branch transitions are associated with each α/β state
update. The decoding algorithm for double binary codes is inherently based on the Radix-4 algorithm
(Zhan, 2006), hence the same Radix-4 α, β and L(φ) function units as used in the binary codes can be
applied to the double binary codes in a straightforward manner. The only different parts are the branch
metrics γij calculations and the tail-biting trellis termination scheme. Three LLRs must be calculated for
double binary codes:

).()()ˆ(

)()()ˆ(

)()()ˆ(

0011
3

0010
2

0001
1

ϕϕ

ϕϕ

ϕϕ

kkk

kkk

kkk

LLu

LLu

LLu

−=Λ

−=Λ

−=Λ

1−kα
kβ

1−ks kγ ks

}11,10,01,00{∈ku

Figure 6. Circular trellis for double binary Turbo code (From Sun, Y. et al., IEEE International
Conference on Application-Specific Systems, Architectures and Processors (ASAP), pp. 209-214, July
2008. © [2008] IEEE. Used with permission.)

Figure 7 compares the trellis structures (in their Radix-4 format) of IEEE 802.16e WiMax and 3GPP
LTE standards. As can be seen, 25% of the trellis structures are identical. The similarities between these
two trellis structure representations imply that a generic Turbo decoder can be efficiently designed to
support multiple wireless standards with low hardware overhead.

Figure 7. Trellis structures of IEEE 802.16e WiMax and 3GPP LTE Turbo codes

Unified Log-MAP Decoder Architecture

Based on the observation that both binary and double binary codes can be decoded in a unified way,
we introduce a flexible Radix-4 Log-MAP decoder architecture to support both types of decoding
operations. To efficiently implement the Log-MAP algorithm in hardware, the sliding window technique
(Masera, 1999) is adopted.

The two types of decoding operations can be generalized into one unified flow which is shown in
Figure 8. Let us first use the binary Turbo codes as an example to explain the decoding process. In Figure
8(a), suppose a data sequence is divided into sliding blocks with a sliding window length of W. At the
first time slot, the first sliding block I0 is fed into the decoder and stored in scratch RAM 0. At the second
time slot, sliding block I1 is stored in scratch RAM 1; dummy β0 recursion is executed on sliding block I1;
and simultaneously α recursion is executed on sliding block I0 and the results are stored into the α-RAM
(LIFO). Starting from the third time slot, α unit (working in the forward order), dummy β0 unit (in the
reverse order), effective β1 unit (in the reverse order) and Λ unit (in the reverse order) are working in
parallel to provide real-time decoding with a latency of 2W. This decoding operation is based on three
recursion units, two used for the backward recursions (dummy β0 and effective β1), and one for forward
recursion (α). Each recursion unit contains full-parallel ACSA (Add-Compare-Select-Add) operators. To
reduce decoding latency, data in a sliding window is fed into the decoder in the reverse order; α unit is
working in the forward order; dummy β0, effective β1 and Λ units are working in the reverse order as
shown in Figure 8. This leads to a decoding latency of 2W for binary codes and 3W for double binary
codes. Double binary codes have an additional W delay because an additional acquisition is needed to
obtain the initial α state metrics.

Trellis

Time

W 2W 3W 4W 5W

W

2W

3W

4W

5W

6W

W

2W

3W

4W

5W

6W

Time

(a) Binary tailing (b) Double binary tail-biting

0
β Data input

αdummy calculation

dummy

α Tail-biting only

7W

6W

7W

1
& βΛ calculation

I 0

I 1

I 3

I 3

I 0

I 0

I 3

I 1I 2

I 2

O 0

O 1

O 3

O 2

O 0

O 1

O 3

O 2

W 2W 3W 4W 5W 6WTrellis

Figure 8. Sliding window tile chart for simple and double binary Turbo codes (From Sun, Y. et al., IEEE
International Conference on Application-Specific Systems, Architectures and Processors (ASAP), pp.
209-214, July 2008. © [2008] IEEE. Used with permission.)

Figure 9 shows a multi-mode Radix-4 Log-MAP decoder ASIC architecture. Three scratch RAMs
(with a depth of W) were required to buffer the input systematic, parity and a priori LLRs. And three
branch metric calculation (BMC) units are used to compute the branch metrics for α, β0 and β1 function
units. To support multiple Turbo codes, the decoder employs configurable BMCs and configurable α and
β function units which can support multiple transfer functions by configuring the routing blocks. The
routing block can be reconfigured to support different encoder polynomials. Each α and β unit consists of
fully parallel ACSA units so the architecture can support up to 8-state Turbo decoding. The Radix-4
ACSA unit is implemented with four parallel adders followed by three max* units. In order to generate
LLRs for both binary and double binary codes, the extrinsic Λ function unit implements both bit LLR and
symbol LLR generation. In order to save logic, four max* trees were shared by both types of operations.
The Λ unit can generate soft bit LLRs and symbol LLRs in real time with a fixed latency of 2W for binary
codes or 3W for double binary codes.

Scratch

RAM

α -BMC

1β -BMC

-BMC

α-Unit

1β -Unit

-Unit

α -RAM

Λ-Unit

û

0β

Top Level MAP Decoder

M

U

X

M

U

X

0β

Lc (y
s)

Lc (y
p1,2)

La (u)

)(00ϕL
Max Tree

)(01ϕL

)(10ϕL

)(11ϕL

-)ˆ(12 −Λ ku

)ˆ(2kuΛ

-

-

-

)ˆ(1
kuΛ

)ˆ(2
kuΛ

)ˆ(3
kuΛ

Bit LLR

Symbol

LLR

*

Max Tree*

Max Tree*

Max Tree*

1−kα
kβ
kγ

-

Max*

Max*

Max*

Max*

ACSA 0 ACSA 7

Routing Routing

. . .

. . .
BMs

+

0
1

0/ +kka β
0
kγ

+1
kγ

+2
kγ

+3
kγ

Max
*

1
1

1/ +kka β

2
1

2/ +kka β

3
1

3/ +kka β

kka β/1+

s7][s0/1 −+ kka βUnit
Radix-4 ACSA

β/a
Max

*

Max
*

 max(x, y)

= max(x,y) +LUT(x-y)

*

0β : Dummy backward

: Efective backward1β
Λ : LLR and extrinsics

α : Forward

)ˆ(uLe

Figure 9. Unified Log-MAP decoder architecture (From Sun, Y. et al., IEEE International Conference on
Application-Specific Systems, Architectures and Processors (ASAP), pp. 209-214, July 2008. © [2008]
IEEE. Used with permission.)

In this architecture, many blocks can be shared between two decoding operations. For example, the
α, β and L(φ) units, the α RAMs, and scratch RAMs can be easily shared between two decoding
operations. Table 2 compares the resource usage for a multi-mode decoder architecture with a single-
mode decoder architecture (Sun, 2008). In Table 2, M is the number of trellis states, W is the sliding
window length, Bm, Bb, Bc and Be are the precisions of state metrics, branch metrics, channel LLRs and
extrinsic LLRs, respectively. From table 2, we can see that the overhead for adding flexibility is very
small, which is only about 7%. This overhead mainly comes from the multiplexers that were used in the
routing networks in the recursion function units. Table 2 indicates that a configurable VLSI architecture is
a promising solution to multi-standard Turbo decoder. As a proof of concept, the decoder has been
synthesized for a 65nm CMOS technology. Table 3 summarizes the synthesis results at a 200MHz clock
frequency which is a typical clock speed in an ASIC design (Sun, 2008).

Table 2. Complexity comparison
 Multi-mode Single-mode

Storage (bits) (9Be+12Bc + MBm)W (9Be + 12Bc + MBm)W
Bm-bit max* (25/2)M + 4 (25/2)M
1-bit adder 16MBm + 10MBb 16MBm + 10MBb

1-bit flip-flop 5MBm + 2MBb 5MBm + 2MBb
1-bit mux 16MBm + 16MBb 3MBm

Normalized area 1.0 0.93
 1 four-input max4* is counted as 3 two-input max*
 1 eight-input max8* is counted as 7 two-input max*

Table 3. Area distribution
Blocks Gate count

α unit (including α BMU) 30.8K gates

β unit x 2 (including β BMUs) 66.2K gates

Λ unit 37.3K gates

α RAM 2560 bits
Scratch RAMs x 3 4224 bits

Control logic 13.4K gates

Area Optimization

Although the multi-mode MAP decoder was designed with limited overhead, we investigated

additional techniques to achieve further area-saving. When the MAP decoding kernel is designed, there

are several implementation options for the)log(beae + function. We considered two options: Log-MAP

where Cbabeae +≈+),max()log(, C is a correction factor, and max-Log-MAP where

),max()log(babeae ≈+ . If max-Log-MAP is used, the performance loss in comparison with Log-MAP is
about 0.3 dB with about 15% logic area saving. To reduce the performance gap with the log-MAP
decoder, we introduced a scaling factor applied to the extrinsic LLR values (Vogt & Finger, 2000) as
shown in Figure 10 resulting in 0.1 dB loss with 15% logic area saving. With this optimization for the
multi-mode MAP decoder using max-Log-MAP, the silicon area is comparable to the Log-MAP single-
mode MAP decoder.

MAP Decoder 1

MAP Decoder 2

Le

Xs

La

X s

Figure 10. Extrinsic log-likelihood ratio (LLR) scaling method

TURBO INTERNAL INTERLEAVER ARCHITECTURE

Interleaving has been frequently used in a variety of communication systems. Generally, an interleaver
was used to randomize the error locations to combat with the fading or burst error channels. The Turbo
internal interleaver is a device that takes its input bit sequence and produces an output sequence that is as
uncorrelated as possible. Since this randomness directly affects the decoding performance, the best choice
would be the random interleaver. However, the random interelaver is not only difficult to implement, but
also is an obstacle to parallel Turbo decoding due to the memory access collision problem. Therefore, the
search for a structured interleaver, especially a contention-free interleaver, remains an active research
topic in the coding community. Traditionally, memory collisions which occur due to interleaving are
solved by having additional write buffers (Salmela, 2007). Recently, new contention-free interleavers
have been adopted for the next-generation wireless standards, such as the quadratic polynomial
permutation (QPP) interleaver (Sun & Takeshita, 2005) in the 3GPP LTE standard and the almost regular
permutation (ARP) interleaver (Berrou, 2004) in the IEEE 802.16e WiMax standard.

Contention-Free Interleavers

An interleaver π(i), 0 ≤ i < K, is said to be contention-free for a window size W if and only if it
satisfies the following constraint for both ψ = π (interleaver) and ψ = π-1 (deinterleaver) (Nimbalker et
al., 2008).

() ()

 +≠

 +
W

vWj

W

tWj ψψ

where 0 ≤ j < W, 0 ≤ t; v < M (=K/W), and t ≠ v. The terms in the above equation are essentially the
memory bank indices that are concurrently accessed by the M processors. If these memory bank addresses
are all unique during each read and write operations, then there are no contentions in memory access.

QPP Interleaver in the 3GPP LTE Standard

Given an information block length N, the x-th interleaved output position is given by (3GPP TS
36.212, 2008)

Nxfxfx mod)()(1
2

2 +=Π ,

where f1 and f2 are integers and depend on the block length N (Nffx <≤ 21,,0). The block length N
defined in the 3GPP LTE standard ranges from 40 to 6144. Figure 11 depicts the bit error rate (BER)
simulation result of the 3GPP LTE Turbo code for block lengths of 40, 240, 1024, and 6144. In Figure 11,
both floating (corresponds to “opt” in Figure 11) and fixed point simulation results are shown. Parameters
used in the fixed point simulation are as follows: channel input LLR bit precision = 6 (with 2 bit
fractional bits), bit precision of the internal state metrics = 12, sliding window length = 64, parallel sliding
window = 1, MAP decoding algorithm = 4-entry lookup table based Log-MAP, and maximum iteration =
6.

Figure 11. Floating point and fixed point simulation result for 3GPP LTE Turbo codes

Hardware Implementation of QPP Interleaver

The direct computation of QPP interleaving is difficult due to the multiplication and modulo
operations. A more efficient address generation method is to compute)(xΠ recursively:

NxxNffxfxfxfx mod))()((mod))2()(()1(2121
2

2 Γ+Π=++++=+Π ,

where
Nffxfx mod)2()(212 ++=Γ ,

and)(xΓ can also be computed recursively as:

.mod)2)(()1(2 Nfxx +Γ=+Γ

Since)(xΠ ,)(xΓ and 2 f2 are all smaller than N, the modulo operation can be efficiently implemented
with adders and multiplexers. To implement the QPP interleaver in hardware, we introduce an address
generation circuit by cascading two Add-Compare-Choose (ACC) units as shown in Figure 12. As can be
seen, no multipliers and dividers are required in this architecture. The critical path of this circuit only
contains two adders and two multiplexers. After setting an initial value for)(xΠ and)(xΓ at x = x0, the

circuit will continuously generate the interleaving address)(xΠ for x = x0+1, x0+2, x0+3, … at each
cycle. Although the simplest approach to implement an interleaver is to store all the interleaving patterns
in ROMs, this approach becomes almost impractical for a Turbo decoder supporting multiple block sizes.

For instance, the 3GPP LTE has defined 188 different Turbo code sizes, which makes the ROM based
interleaver implementation very inefficient.

+

+

Figure 12. QPP interleaver architecture (From Sun, Y. et al., IEEE International Conference on
Application-Specific Systems, Architectures and Processors (ASAP), pp. 209-214, July 2008. © [2008]
IEEE. Used with permission.)

ARP Interleaver in IEEE 802.16e WiMax Standard

The interleaver adopted by the WiMax standard is called the almost regular permutation (ARP)
interleaver which is also contention-free. The ARP interleaver employs a two-step interleaving process
(IEEE Std 802.16, 2004). The first step switches the alternate couples as

],[],[xxxx BAAB = , if x mod 2 = 1.

In the second step, the ARP interleaver computes

=+++
=++

=+++
=+

=Π

34mod,2/1

24mod,1

14mod,2/1

04mod,1

)(

30

20

10

0

xifPNxP

xifPxP

xifPNxP

xifxP

x ,

where parameters P0, P1, P2 and P3 are constants and depend on N.

Hardware Implementation of ARP Interleaver

The ARP interleaver can be also computed recursively. What is more interesting is that the ARP
interleaver can be implemented in a similar manner as the QPP interleaver by reusing the same two ACC

units, as shown in Figure 13. Let xPx 0)(=λ , Q0=1, Q1=1+N/2+P1, Q2=1+P2, Q3=1+N/2+P3.

After setting an initial value for)(0xx =λ , this circuit will then continuously generate the interleaving

address)(xΠ for x = x0+1, x0+2, x0+3, … at each clock cycle.
If we compare these two circuits shown in Figure 12 and Figure 13, both interleavers have the same

logic structure. The differences between these two circuits are the initial values for the ACC units. As can
be seen, this unified architecture only requires a few adders and multiplexers which leads to very low

complexity and can support all QPP/ARP Turbo interleaving patterns. Compared to the traditional
interleaver implementations, which need complex arithmetic units and/or RAMs/ROMs, the proposed
QPP/ARP interleaver provides an efficient solution for supporting multi-standard Turbo interleaving.

++

Figure 13. ARP interleaver architecture (From Sun, Y. et al., IEEE International Conference on
Application-Specific Systems, Architectures and Processors (ASAP), pp. 209-214, July 2008. © [2008]
IEEE. Used with permission.)

PARALLEL TURBO DECODING

In this section, we present the architecture challenges to design a high throughput parallel Turbo decoder
for multi-mode functionality with small overhead. Due to the property of the convolutional trellis
structure, one long trellis can be divided into P smaller trellises. Then, each smaller trellis is processed
independently by a dedicated MAP decoder (Thul1 et al., 2005; Bougard et al., 2003; Prescher, 2005;
Lee, 2005). Ignoring the small overhead introduced by the parallel MAP algorithm, the throughput can be
increased almost by a factor of P. For example, Bougard et al. (2003) achieved a 75.6 Mbps data rate by
employing 7 SISO decoders running at 160 MHz clock rate.

Scalable Turbo Decoder Architecture

The main issue in designing parallel Turbo decoder architecture is known to be the interleaver
parallelism due to the memory access collision problem. To address the data channel decoding throughput
issue, both 3GPP LTE and IEEE 802.16e WiMAX employ contention-free interleavers. One codeword
can be divided into P sub-codewords and P maximum a posteriori (MAP) decoders can be employed to
decode each sub-codeword concurrently which leads to P-level parallelism architecture. Figure 14(a)
shows the proposed parallel decoder architecture based on contention-free 4G interleavers (Sun et al.,
2008). This architecture is flexible in that it employs both intra-codeword and inter-codeword parallel
decoding schemes to improve the overall efficiency and throughput. The intra-codeword mode is used for
the decoding of large-size codewords. The parallelism is achieved by dividing the whole block N into P
sub-blocks (SBs) and assigning P MAP decoders working in parallel to reduce the latency down to
O(N/P). The inter-codeword mode is used for small-size codewords by having P small codewords being
decoded simultaneously and independently, so that the overall latency is reduced down to O(N/P) as well.

The memory structure is designed to support concurrent access of LLRs by multiple MAP decoders
in both linear addressing and interleaved addressing modes (Sun, 2008). This is achieved by partitioning
the memory into P individual banks. Each bank has the same size and can be independently accessed.
Because P MAP decoders always access data simultaneously at a particular offset x, it guarantees that no
memory access conflicts occur due to the contention-free property of

 MkMxMjMx /)(/)(+Π≠+Π , where x is the offset in the sub-block j and k (Pkj <<≤0),

and M is the sub-block length (M=N/P). A full crossbar is used for routing data between P MAP decoders

and P memory banks. A parallel decoding example (in intra-codeword mode) for double binary codes is
shown in Figure 14(b). Note that this concept holds for binary codes as well.

... ...

Extrinsic Buffer

MAP 1

Bank 2

Bank Q

MAP 2

MAP P

Bank 1

...

Input Buffer

Bank 2

Bank Q

Bank 1

QPP/ARP Interleaver Address Generators П

Lc Le

Input

LLRs

...
Tail

biting
SB 1 SB 2 SB P

(a) Multi-MAP turbo decoder architecture

(b) Parallel MAP decoding

...

One decoding block �W
MAP 1 MAP PW

. . .
.

Figure 14. Parallel decoder architecture (From Sun, Y. et al., IEEE International Conference on
Application-Specific Systems, Architectures and Processors (ASAP), pp. 209-214, July 2008. © [2008]
IEEE. Used with permission.)

Case Study: 100 Mbps Turbo Decoder for Category-3 3GPP LTE Device

The parallelism level P can be tailored to a given codeword size. For smaller codewords, it was
found that P=1 decoding meets the throughput requirement with less logic complexity. There are several
P values that can achieve contention-free memory access across all large codeword sizes. To support the
category-3 3GPP LTE data rate of ~100 Mbps, we set the maximum parallelism to be P=4. As shown in
Figure 15, we have P=4 memory banks and depending upon the codeword size, we configure P=4 MAP
decoders accordingly to meet the throughput requirement for different codeword sizes.

MAP

0

MAP

1

MAP

2

MAP

3

MEM

0

MEM

1

MEM

2

MEM

3

Large FEC block size

Single FEC block

MAP

0

MAP

1

MAP

2

MAP

3

MEM

0

MEM

1

MEM

2

MEM

3

Small FEC block size

FEC 1 FEC 2 FEC 3 FEC 4

Figure 15. Codeword-size scalable parallel Turbo decoder

Architecture Trade-off Analysis

From the above descriptions, we know that high throughput can be achieved by using multiple MAP
decoders and multiple memory banks. However, the throughput can not always increase linearly with the
parallelism level. As SRAMs are getting smaller and smaller, the area efficiency will decrease. Also,
there will be a fixed latency overhead for the sliding-window MAP decoding. In this section, we will
analyze the impact of parallelism on throughput, area and power consumption. The maximum throughput
is estimated as (Sun, 2008)

)
~

3
~

(2
Time Decoding

Throughput

W
P

N
I

fNN

+⋅⋅

⋅≈= ,

where 2/
~

NN = is the code length (in Radix-4), I is the number of iterations (contains two half

iterations), W
~

3 is the decoding latency for each MAP decoder, and f is the clock frequency. The total area
is estimated as (Sun, 2008)

),(),()(Area fPANPAfAP routememmap ++⋅≈ ,

where: Amap is one MAP decoder’s area which will increase with f, Amem is the memory area which will
increase with both N and P, and Aroute is the routing cost (crossbars plus interleavers) which will increase
with both P and f. Note that the complexity of the full crossbar actually increases with P2. To perform the
area and power trade-off analysis, the decoder was described in Verilog RTL and synthesized for a 65 nm
technology using Synopsys Design Compiler. The area tradeoff analysis is given in Figure 16 which plots
the normalized area versus throughput for different parallelism levels and clock frequency goals (80-200
MHz, at a step of 20 MHz). Figure 17 shows the dynamic power tradeoff analysis. As can be seen, for a
given throughput there might be multiple configurations, not surprisingly higher parallelism (hence
requiring lower frequency) is advantageous to the energy savings but unfavorable to the area utilization,
and vice versa.

Table 4 compares the architecture flexibility and the decoding performance of the proposed decoder
with existing state-of-the-art Turbo decoders. In Lin et al. (2007), Muller et al. (2006), and Ituero &
Lopez-Vallejo, (2006), programmable VLIW/SIMD processors are designed to support the decoding of
multiple Turbo codes. In Thul et al.(2005) and Bougard et al.(2003), hardware ASIC architectures are
proposed for simple binary Turbo codes based on the Log-MAP algorithm. In Prescher et al. (2005), a

757 Mbps decoding throughput is achieved by employing 64 sub-optimal Constant-Log-MAP SISO
decoders. Though the decoder in Prescher et al. (2005) achieves high throughput at low cost, it has some
limitations, i.e. the interleaver is non-standard compliant and it can not support double binary Turbo
codes. The comparisons in Table 4 show that our proposed architecture not only has flexibility in
supporting multiple Turbo codes (simple binary + double binary) but also achieves a very high throughput
(Sun, 2008). It is also scalable in terms of parallelism and data rates.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput (Mbps)

N
o

rm
a
li

ze
d

 a
re

a

P=1

P=2

P=4

P=8

P=16

P=32

f = 200 MHz

f = 80 MHz

Clock frequency range
(80 :20: 200 MHz)

f = 100 MHz

f = 180 MHz

Figure 16. Normalized area versus throughput (N=6144, I=6, W=32). (From Sun, Y. et al., IEEE
International Conference on Application-Specific Systems, Architectures and Processors (ASAP), pp.
209-214, July 2008. © [2008] IEEE. Used with permission.)

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput (Mbps)

N
o
rm

a
li

ze
d

 p
o
w

er

P=1

P=2

P=4

P=8

P=16

P=32

f = 80 MHz

f = 200 MHz

Clock frequency range
(80 :20: 200) MHz

f = 100 MHz

f = 180 MHz

Figure 17. Normalized power versus throughput (N=6144, I=6, W=32). (From Sun, Y. et al., IEEE
International Conference on Application-Specific Systems, Architectures and Processors (ASAP), pp.
209-214, July 2008. © [2008] IEEE. Used with permission.)

Table 4. Comparison with existing Turbo decoder architectures
Work Architectures Flexibility Algorithm Parallelism Frequency Throughput
Lin, 2006 32-wide SIMD Multi-code Max-LogMap 4 window 400 MHz 2.08 Mbps
Ituero, 2006 Cluster VLIW Multi-code LogMap Dual cluster 80 MHz 10 Mbps
Muller, 2006 ASIP SIMD Multi-code Max-LogMap 16 ASIP 335 MHz 100 Mbps
Thul, 2006 ASIC Single-code LogMap 6 SISO 166 MHz 59.6 Mbps
Bougard, 2003 ASIC Single-code LogMap 7 SISO 160 MHz 75.6 Mbps
Prescher, 2005 ASIC Single-code Const-LogMap 64 SISO 256 MHz 758 Mbps
Our work ASIC Multi-code LogMap 32 SISO 200 MHz 711 Mbps

FUTURE RESEARCH DIRECTIONS

One of the key challenges in developing 4G mobile devices is low power design. The Turbo decoder is
typically one of the most power consuming blocks in a 4G wireless PHY receiver. New techniques to
dynamically configure the Turbo decoder hardware to achieve minimum energy consumption while
guaranteeing quality of service (QoS) are extremely important for 4G wireless PHY design. Besides the
semiconductor optimizations, algorithmic and architectural innovations are also required to reduce the
power dissipation of the Turbo decoder. Thus, energy efficient Turbo decoder VLSI design is a very
important future research topic.

Another key challenge in developing 4G mobile devices is to simultaneously support multiple
wireless standards, which all employ forward error correction (FEC) coding schemes. Among these FEC
code families, low-density parity-check (LDPC) codes and Turbo codes have received tremendous
attention in the coding community. The success of LDPC and Turbo codes is mainly due to the efficient
iterative decoding algorithm. Many efficient VLSI architectures for LDPC decoders have been
investigated as well as for Turbo decoders. It is known that these two families of codes have similarities.
For example, they can both be represented as codes on graphs which define the constraints satisfied by
code-words. Both families of codes are decoded in an iterative way by using the sum-product algorithm
or belief propagation algorithm. A few researchers have tried to connect these two codes by applying
Turbo-like decoding algorithm for LDPC codes. Since both LDPC decoder and Turbo decoder will
consume a significant amount of power and occupy a large portion of the silicon area in the wireless
receiver PHY, a flexible VLSI decoder architecture supporting both LDPC and Turbo codes is very
attractive. In our initial work, we have shown that a generic decoder that supports both LDPC and Turbo
decoding is feasible and efficient (Sun & Cavallaro, 2008).

CONCLUSION

In this chapter we have introduced a flexible multi-mode Turbo decoder architecture together with a low-
complexity contention-free interleaver. We have shown how to decode simple and double binary Turbo
codes in a unified way by employing a Radix-4 Log-MAP decoding algorithm. Then based on the unified
Radix-4 trellis, a multi-mode Log-MAP decoder is presented with a low area overhead. This multi-mode
Log-MAP (constituent) decoder is the key component in the Turbo decoder architecture. We have shown
that by employing certain area optimization techniques, the area of the multi-mode Log-Map decoder is
comparable to that of the single-mode Log-Map decoder.

The interleaver parallelism is the key challenge in designing parallel Turbo decoder architectures due
to the memory access collision issue. We have given a solution to generate the interleaving patterns in
real time by designing low-complexity high-speed interleaver circuits. This circuit can be reconfigured to
support both 3GPP LTE and IEEE 802.16e WiMax standards with negligible hardware overhead.

Based on the contention-free interleaver, we have shown a multi-MAP multi-memory parallel Turbo
decoder architecture to support high data rates. The decoder parallelism is tailored to the given
applications and is scalable for different code sizes. For large code sizes, multiple MAP decoders will be
used to reduce the decoding latency and increase the decoding throughput, we called this scheme intra-
codeword parallelism. For small code sizes, P small codewords are decoded simultaneously and
independently, and we called this scheme inter-codeword parallelism. Given a target throughput, there are
multiple choices of decoding parallelism levels. From the energy savings point of view, we tend to use a
parallelism level that is as large as possible. However, large parallelism implies more MAP decoders
which will therefore occupy more silicon area. We have shown a trade-off analysis of area and power
versus decoder parallelism.

The major advantage of using configurable and scalable ASIC architectures is that the area and
power are much lower than those of programmable DSP processors. Moreover, a configurable multi-
mode decoder is more area and power efficient than multiple single-mode decoders.

Based on the fact that the Turbo decoder has a very regular datapath and there are many similarities
among different Turbo code families, a flexible multi-mode Turbo decoder ASIC can be considered a
key component toward of multi-mode 4G wireless modem design.

REFERENCES

Berrou, C., Glavieux, A., & Thitimajshima, P. (1993, May). Near Shannon Limit Error-Correcting
Coding and Decoding: Turbo-Codes. IEEE International Conference on Communications. Vol. 2 (pp.
1064-1070).

Berrou, C. and Glavieux, A. (1996, October). Near Optimum Error Correcting Coding and Decoding:
Turbo-Codes. IEEE Transaction on Communications, pp. 1261-1271

Berrou, C. (2003, Aug.). The Ten-Year-Old Turbo Codes are Entering into Service. IEEE
Communications Magazine, Vol. 41(pp. 110-116).

Hagenauer, J., Offer, E., & Papke, L. (1996, March) Iterative Decoding of Binary Block and
Convolutional Codes, IEEE Transactions on Information Theory, Vol. 42(pp. 429-445)

Bahl, L., Cocke, J., Jelinek, F., & Raviv, J. (1974). Optimal Decoding of Linear Codes for Minimizing
Symbol Error Rate. IEEE Transaction on Information Theory, Vol.IT-20 (pp. 284-287).

Robertson, P., Villebrun, E., & Hoeher, P. (1995, June). A Comparison of Optimal and Sub-optimal MAP
Decoding Algorithm Operating in The Log Domain. IEEE International Conference on Communications,
Vol.2 (pp. 1009-1013).

Soleymani, M.R., Gao, Y., & Vilaipornsawai, U. (2002). Turbo Coding for Satellite and Wireless
Communications. Norwell, Massachusetts, Kluwer Academic.

Moon, T.K. (2005). Error Correction Coding. Hoboken, New Jersey, John Wiley & Sons.

3GPP TS 36.212 (2008, September), Evolved Universal Terrestrial Radio Access (E-UTRA):
Mutiplexing and Channel Coding, version 8.4.0.

IEEE Standard for Local and Metropolitan Area Networks Part 16 (2004): Air Interface for Fixed
Broadband Wireless Access Systems, IEEE Std 802.16-2004.

Lin, Y., Mahlke, S., Mudge, T., Chakrabarti, C., Reid, A., & Flautner, K. (2007, October). Design and
Implementation of Turbo Decoders for Software Defined Radio. IEEE Workshop on Signal Processing
Design and Implementation (SIPS) (pp. 22-27).

Shin, M.C., & Park, I.C. (2007, June). SIMD Processor-based Turbo Decoder Supporting Multiple Third-
Generation Wireless Standards. IEEE Transactions on Very Large Scale Integration (VLSI), Vol. 15 (pp.
801-810).

Muller, O., Baghdadi, A., & Jezequel, M. (2006, March). ASIP-Based Multiprocessor SoC Design for
Simple and Double Binary Turbo Decoding. IEEE Design, Automation and Test in Europe, Vol. 1 (pp. 1-
6).

Bickerstaff, M., Davis, L., Thomas, C., Garrett, D., & Nicol, C. (2003). A 24Mb/s Radix-4 LogMAP
Turbo Decoder for 3GPP-HSDPA Mobile Wireless. IEEE International Solid-State Circuits Conference
(ISSCC).

Zhang, Y., & Parhi, K.K. (2006, October). High-Throughput Radix-4 LogMAP Turbo Decoder
Architecture. IEEE Asilomar Conference on Signals, Systems and Computers (pp. 1711-1715).

Zhan, C., Arslan, T., Erdogan, A.T., & MacDougall, S. (2006, May). An Efficient Decoder Scheme for
Double Binary Circular Turbo Codes. IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Vol. 4 (pp. 14-19).

Masera, G., Piccinini, G., Roch, M., & Zamboni, M. (1999). VLSI architecture for turbo codes. IEEE
Transactions on Very Large Scale Integration (VLSI), Vol. 7 (pp. 369-3797).

Vogt, J. & Finger, A. (2000) Improving the Max-Log-MAP Turbo Decoder. Electronics Letter (pp. 1937-
1939).

Salmela, P., Gu, R., Bhattacharyya, S.S. & Takala, J. (2007, September). Efficient Parallel Memory
Organization for Turbo Decoders. European Signal Processing Conference (EURASIP) (pp. 209-214).

Sun, J. & Takeshita, O.Y. (2005). Interleavers for Turbo Codes Using Permutation Polynomials Over
Integer Rings. IEEE Transaction on Information Theory, Vol. 51 (pp. 101-119).

Berrou, C., Saouter, Y., Douillard, C., Kerouedan, S., & Jezequel, M. (2004, June). Designing Good
Permutations for Turbo Codes: Towards A Single Model. IEEE International Conference on
Communications Vol. 1(pp. 341-345).

Nimbalker, A., Blankenship, Y., Classon, B., & Blankenship, T.K. (2008, March). ARP and QPP
Interleavers for LTE Turbo Coding. IEEE Wireless Communications and Networking Conference (pp.
1032-1037).

Thul1, M. J., Gilbert1, F., Vogt1, T., Kreiselmaier1, G., & Wehn1, N (2005). A Scalable System
Architecture for High-Throughput Turbo-Decoders. The Journal of VLSI Signal Processing (Springer),
Vol.39 (pp. 63-67).

Bougard, B., Giulietti, A., Derudder, V., Weijers, J.-W., Dupont, S., Hollevoet, L., Catthoor, F., Van der
Perre, L., De Man, H., Lauwereins, R. (2003). A Scalable 8.7-nJ/bit 75.6-Mb/s Parallel Concatenated
Convolutional (Turbo-) Codec. IEEE International Solid-State Circuits Conference Vol.1 (pp. 152-484).

Prescher, G., Gemmeke, T., & Noll, T.G. (2005, March). A Parametrizable Low-Power High-Throughput
Turbo-Decoder. IEEE Internationa Conference on Acoustics, Speech, and Signal Processing (ICASSP
Vol.5 (pp. 25-28).

Lee, S-J., Shanbhag, N.R., & Singer, A.C. (2005) Area-Efficient High-Throughput MAP Decoder
Architectures. IEEE Transactions on Very Large Scale Integration (VLSI), Vol. 13 (pp. 921-933).

Sun, Y., Zhu, Y., Goel, M., & Cavallaro, J.R. (2008, July). Configurable and Scalable High Throughput
Turbo Decoder Architecture for Multiple 4G Wireless Standards. IEEE International Conference on
Application-Specific Systems, Architectures and Processors (ASAP) (pp. 209-214).

Ituero, P., & Lopez-Vallejo, M. (2006, September). New Schemes in Clustered VLIW Processors Applied
to Turbo Decoding. IEEE International Conference on Application-Specific Systems, Architectures and
Processors (pp. 291-296).

Sun, Y. & Cavallaro, J.R. (2008, October). Unified Decoder Architecture for LDPC/TURBO Codes.
IEEE Workshop on Signal Processing Systems (SIPS) (pp. 13-18).

