9,771 research outputs found

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    Explicit Estimation of Magnitude and Phase Spectra in Parallel for High-Quality Speech Enhancement

    Full text link
    Phase information has a significant impact on speech perceptual quality and intelligibility. However, existing speech enhancement methods encounter limitations in explicit phase estimation due to the non-structural nature and wrapping characteristics of the phase, leading to a bottleneck in enhanced speech quality. To overcome the above issue, in this paper, we proposed MP-SENet, a novel Speech Enhancement Network which explicitly enhances Magnitude and Phase spectra in parallel. The proposed MP-SENet adopts a codec architecture in which the encoder and decoder are bridged by time-frequency Transformers along both time and frequency dimensions. The encoder aims to encode time-frequency representations derived from the input distorted magnitude and phase spectra. The decoder comprises dual-stream magnitude and phase decoders, directly enhancing magnitude and wrapped phase spectra by incorporating a magnitude estimation architecture and a phase parallel estimation architecture, respectively. To train the MP-SENet model effectively, we define multi-level loss functions, including mean square error and perceptual metric loss of magnitude spectra, anti-wrapping loss of phase spectra, as well as mean square error and consistency loss of short-time complex spectra. Experimental results demonstrate that our proposed MP-SENet excels in high-quality speech enhancement across multiple tasks, including speech denoising, dereverberation, and bandwidth extension. Compared to existing phase-aware speech enhancement methods, it successfully avoids the bidirectional compensation effect between the magnitude and phase, leading to a better harmonic restoration. Notably, for the speech denoising task, the MP-SENet yields a state-of-the-art performance with a PESQ of 3.60 on the public VoiceBank+DEMAND dataset.Comment: Submmited to IEEE Transactions on Audio, Speech and Language Processin

    The Data Big Bang and the Expanding Digital Universe: High-Dimensional, Complex and Massive Data Sets in an Inflationary Epoch

    Get PDF
    Recent and forthcoming advances in instrumentation, and giant new surveys, are creating astronomical data sets that are not amenable to the methods of analysis familiar to astronomers. Traditional methods are often inadequate not merely because of the size in bytes of the data sets, but also because of the complexity of modern data sets. Mathematical limitations of familiar algorithms and techniques in dealing with such data sets create a critical need for new paradigms for the representation, analysis and scientific visualization (as opposed to illustrative visualization) of heterogeneous, multiresolution data across application domains. Some of the problems presented by the new data sets have been addressed by other disciplines such as applied mathematics, statistics and machine learning and have been utilized by other sciences such as space-based geosciences. Unfortunately, valuable results pertaining to these problems are mostly to be found only in publications outside of astronomy. Here we offer brief overviews of a number of concepts, techniques and developments, some "old" and some new. These are generally unknown to most of the astronomical community, but are vital to the analysis and visualization of complex datasets and images. In order for astronomers to take advantage of the richness and complexity of the new era of data, and to be able to identify, adopt, and apply new solutions, the astronomical community needs a certain degree of awareness and understanding of the new concepts. One of the goals of this paper is to help bridge the gap between applied mathematics, artificial intelligence and computer science on the one side and astronomy on the other.Comment: 24 pages, 8 Figures, 1 Table. Accepted for publication: "Advances in Astronomy, special issue "Robotic Astronomy

    Advanced photonic and electronic systems - WILGA 2017

    Get PDF
    WILGA annual symposium on advanced photonic and electronic systems has been organized by young scientist for young scientists since two decades. It traditionally gathers more than 350 young researchers and their tutors. Ph.D students and graduates present their recent achievements during well attended oral sessions. Wilga is a very good digest of Ph.D. works carried out at technical universities in electronics and photonics, as well as information sciences throughout Poland and some neighboring countries. Publishing patronage over Wilga keep Elektronika technical journal by SEP, IJET by PAN and Proceedings of SPIE. The latter world editorial series publishes annually more than 200 papers from Wilga. Wilga 2017 was the XL edition of this meeting. The following topical tracks were distinguished: photonics, electronics, information technologies and system research. The article is a digest of some chosen works presented during Wilga 2017 symposium. WILGA 2017 works were published in Proc. SPIE vol.10445

    Integration and characterisation of the performance of fifth-generation mobile technology (5g) connectivity over the University of Oulu 5g test network (5gtn) for cognitive edge node based on fractal edge platform

    Get PDF
    Abstract. In recent years, there has been a growing interest in cognitive edge nodes, which are intelligent devices that can collect and process data at the edge of the network. These nodes are becoming increasingly important for various applications such as smart cities, industrial automation, and healthcare. However, implementing cognitive edge nodes requires a reliable and efficient communication network. Therefore, this thesis assesses the performance of direct cellular (5G) and IEEE 802.11-based Wireless Local Area Network (WLAN) technology for three network architectures, which has the potential to offer low-latency, high-throughput and energy-efficient communication, for cognitive edge nodes. The study focused on evaluating the network performance metrics of throughput, latency, and power consumption for three different FRACTAL-based network architectures. These architectures include IEEE 802.11-based last mile, direct cellular (5G) backbone, and IEEE 802.11-based last mile over cellular (5G) backbone topologies. This research aims to provide insights into the performance of 5G technology for cognitive edge nodes. The findings suggest that the power consumption of IEEE 802.11-enabled nodes was only slightly higher than the reference case, indicating that it is more energy-efficient than 5G-enabled nodes. Additionally, in terms of latency, IEEE 802.11 technology may be more favourable. The throughput tests revealed that the cellular (5G) connection exhibited high throughput for communication between a test node and an upper-tier node situated either on the internet or at the network edge. In addition, it was found that the FRACTAL edge platform is flexible and scalable, and it supports different wireless technologies, making it a suitable platform for implementing cognitive edge nodes. Overall, this study provides insights into the potential of 5G technology and the FRACTAL edge platform for implementing cognitive edge nodes. The results of this research can be valuable for researchers and practitioners working in the field of wireless communication and edge computing, as it sheds light on the feasibility and performance of these technologies for implementing cognitive edge nodes in various applications

    Motion clouds: model-based stimulus synthesis of natural-like random textures for the study of motion perception

    Full text link
    Choosing an appropriate set of stimuli is essential to characterize the response of a sensory system to a particular functional dimension, such as the eye movement following the motion of a visual scene. Here, we describe a framework to generate random texture movies with controlled information content, i.e., Motion Clouds. These stimuli are defined using a generative model that is based on controlled experimental parametrization. We show that Motion Clouds correspond to dense mixing of localized moving gratings with random positions. Their global envelope is similar to natural-like stimulation with an approximate full-field translation corresponding to a retinal slip. We describe the construction of these stimuli mathematically and propose an open-source Python-based implementation. Examples of the use of this framework are shown. We also propose extensions to other modalities such as color vision, touch, and audition

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits
    corecore