21 research outputs found

    Data and resource management in wireless networks via data compression, GPS-free dissemination, and learning

    Get PDF
    “This research proposes several innovative approaches to collect data efficiently from large scale WSNs. First, a Z-compression algorithm has been proposed which exploits the temporal locality of the multi-dimensional sensing data and adapts the Z-order encoding algorithm to map multi-dimensional data to a one-dimensional data stream. The extended version of Z-compression adapts itself to working in low power WSNs running under low power listening (LPL) mode, and comprehensively analyzes its performance compressing both real-world and synthetic datasets. Second, it proposed an efficient geospatial based data collection scheme for IoTs that reduces redundant rebroadcast of up to 95% by only collecting the data of interest. As most of the low-cost wireless sensors won’t be equipped with a GPS module, the virtual coordinates are used to estimate the locations. The proposed work utilizes the anchor-based virtual coordinate system and DV-Hop (Distance vector of hops to anchors) to estimate the relative location of nodes to anchors. Also, it uses circle and hyperbola constraints to encode the position of interest (POI) and any user-defined trajectory into a data request message which allows only the sensors in the POI and routing trajectory to collect and route. It also provides location anonymity by avoiding using and transmitting GPS location information. This has been extended also for heterogeneous WSNs and refined the encoding algorithm by replacing the circle constraints with the ellipse constraints. Last, it proposes a framework that predicts the trajectory of the moving object using a Sequence-to-Sequence learning (Seq2Seq) model and only wakes-up the sensors that fall within the predicted trajectory of the moving object with a specially designed control packet. It reduces the computation time of encoding geospatial trajectory by more than 90% and preserves the location anonymity for the local edge servers”--Abstract, page iv

    Challenges and Solutions for Location-based Routing in Wireless Sensor Networks with Complex Network Topology

    Get PDF
    Complex Network Topologies (CNTs)–network holes and cuts–often occur in practical WSN deployments. Many researchers have acknowledged that CNTs adversely affect the performance of location-based routing and proposed various CNT- aware location-based routing protocols. However, although they aim to address practical issues caused by CNTs, many proposed protocols are either based on idealistic assumptions, require too much resources, or have poor performance. Additionally, proposed protocols are designed only for a single routing primitive–either unicast, multicast, or convergecast. However, as recent WSN applications require diverse traffic patterns, the need for an unified routing framework has ever increased. In this dissertation, we address these main weaknesses in the research on location- based routing. We first propose efficient algorithms for detecting and abstracting CNTs in the network. Using these algorithms, we present our CNT-aware location- based unicast routing protocol that achieves the guaranteed small path stretch with significantly reduced communication overhead. We then present our location-based multicast routing protocol that finds near optimal routing paths from a source node to multicast member nodes, with efficient mechanisms for controllable packet header size and energy-efficient recovery from packet losses. Our CNT-aware convergecast routing protocol improves the network lifetime by identifying network regions with concentrated network traffic and distributing the traffic by using the novel concept of virtual boundaries. Finally, we present the design and implementation details of our unified routing framework that seamlessly integrates proposed unicast, multicast, and convergecast routing protocols. Specifically, we discuss the issues regarding the implementation of our routing protocols on real hardware, and the design of the framework that significantly reduces the code and memory size to fit in a resource constrained sensor mote. We conclude with a proactive solution designed to cope with CNTs, where mobile nodes are used for “patching” CNTs to restore the network connectivity and to optimize the network performance

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Improving quality of service in wireless sensor networks interconnected with the internet of things

    Get PDF

    Routing, Localization And Positioning Protocols For Wireless Sensor And Actor Networks

    Get PDF
    Wireless sensor and actor networks (WSANs) are distributed systems of sensor nodes and actors that are interconnected over the wireless medium. Sensor nodes collect information about the physical world and transmit the data to actors by using one-hop or multi-hop communications. Actors collect information from the sensor nodes, process the information, take decisions and react to the events. This dissertation presents contributions to the methods of routing, localization and positioning in WSANs for practical applications. We first propose a routing protocol with service differentiation for WSANs with stationary nodes. In this setting, we also adapt a sports ranking algorithm to dynamically prioritize the events in the environment depending on the collected data. We extend this routing protocol for an application, in which sensor nodes float in a river to gather observations and actors are deployed at accessible points on the coastline. We develop a method with locally acting adaptive overlay network formation to organize the network with actor areas and to collect data by using locality-preserving communication. We also present a multi-hop localization approach for enriching the information collected from the river with the estimated locations of mobile sensor nodes without using positioning adapters. As an extension to this application, we model the movements of sensor nodes by a subsurface meandering current mobility model with random surface motion. Then we adapt the introduced routing and network organization methods to model a complete primate monitoring system. A novel spatial cut-off preferential attachment model and iii center of mass concept are developed according to the characteristics of the primate groups. We also present a role determination algorithm for primates, which uses the collection of spatial-temporal relationships. We apply a similar approach to human social networks to tackle the problem of automatic generation and organization of social networks by analyzing and assessing interaction data. The introduced routing and localization protocols in this dissertation are also extended with a novel three dimensional actor positioning strategy inspired by the molecular geometry. Extensive simulations are conducted in OPNET simulation tool for the performance evaluation of the proposed protocol

    Advances in Computer Science and Engineering

    Get PDF
    The book Advances in Computer Science and Engineering constitutes the revised selection of 23 chapters written by scientists and researchers from all over the world. The chapters cover topics in the scientific fields of Applied Computing Techniques, Innovations in Mechanical Engineering, Electrical Engineering and Applications and Advances in Applied Modeling

    Wireless Sensor Data Transport, Aggregation and Security

    Get PDF
    abstract: Wireless sensor networks (WSN) and the communication and the security therein have been gaining further prominence in the tech-industry recently, with the emergence of the so called Internet of Things (IoT). The steps from acquiring data and making a reactive decision base on the acquired sensor measurements are complex and requires careful execution of several steps. In many of these steps there are still technological gaps to fill that are due to the fact that several primitives that are desirable in a sensor network environment are bolt on the networks as application layer functionalities, rather than built in them. For several important functionalities that are at the core of IoT architectures we have developed a solution that is analyzed and discussed in the following chapters. The chain of steps from the acquisition of sensor samples until these samples reach a control center or the cloud where the data analytics are performed, starts with the acquisition of the sensor measurements at the correct time and, importantly, synchronously among all sensors deployed. This synchronization has to be network wide, including both the wired core network as well as the wireless edge devices. This thesis studies a decentralized and lightweight solution to synchronize and schedule IoT devices over wireless and wired networks adaptively, with very simple local signaling. Furthermore, measurement results have to be transported and aggregated over the same interface, requiring clever coordination among all nodes, as network resources are shared, keeping scalability and fail-safe operation in mind. Furthermore ensuring the integrity of measurements is a complicated task. On the one hand Cryptography can shield the network from outside attackers and therefore is the first step to take, but due to the volume of sensors must rely on an automated key distribution mechanism. On the other hand cryptography does not protect against exposed keys or inside attackers. One however can exploit statistical properties to detect and identify nodes that send false information and exclude these attacker nodes from the network to avoid data manipulation. Furthermore, if data is supplied by a third party, one can apply automated trust metric for each individual data source to define which data to accept and consider for mentioned statistical tests in the first place. Monitoring the cyber and physical activities of an IoT infrastructure in concert is another topic that is investigated in this thesis.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Shrinkage Based Particle Filters for Tracking in Wireless Sensor Networks with Correlated Sparse Measurements

    Get PDF
    This thesis focuses on the development of mobile tracking approaches in wireless sensor networks (WSNs) with correlated and sparse measurements. In wireless networks, devices have the ability to transfer information over the network nodes via wireless signals. The strength of a wireless signal at a receiver is referred as the received signal strength (RSS) and many wireless technologies such as Wi-Fi, ZigBee, the Global Positioning Systems (GPS), and other Satellite systems provide the RSS measurements for signal transmission. Due to the availability of RSS measurements, various tracking approaches in WSNs were developed based on the RSS measurements. Unfortunately, the feasibility of tracking using the RSS measurements is highly dependent on the connectivity of the wireless signals. The existing connectivity may be intermittently disrupted due to the low-battery status on the sensor node or temporarily sensor malfunction. In ad-hoc networks, the number of observation of the RSS measurements rapidly changing due to the movements of network nodes and mobile user. As a result, the tracking algorithms have limited data to perform state inference and this prevents accurate tracking. Furthermore, consecutive RSS measurements obtained from nearby sensor nodes exhibit spatio-temporal correlation, which provides extra information to be exploited. Exploiting the statistical information on the measurements noise covariance matrix increases the tracking accuracy. When the number of observations is relatively large, estimating the measurement noise covariance matrix is feasible. However, when they are relatively small, the covariance matrix estimation becomes ill-conditioned and non-invertible. In situations where the RSS measurements are corrupted by outliers, state inference can be misleading. Outliers can come from the sudden environmental disturbances, temporary sensor failures or even from the intrinsic noise of the sensor device. The outliers existence should be considered accordingly to avoid false and poor estimates. This thesis proposes first a shrinkage-based particle filter for mobile tracking in WSNs. It estimates the correlation in the RSS measurement using the shrinkage estimator. The shrinkage estimator overcomes the problems of ill-conditioned and non-invertibility of the measurement noise covariance matrix. The estimated covariance matrix is then applied to the particle filter. Secondly, it develops a robust shrinkage based particle filter for the problem of outliers in the RSS measurements. The proposed algorithm provides a non-parametric shrinkage estimate and represents a multiple model particle filter. The performances of both proposed filters are demonstrated over challenging scenarios for mobile tracking

    Design and Evaluation of a Traffic Safety System based on Vehicular Networks for the Next Generation of Intelligent Vehicles

    Get PDF
    La integración de las tecnologías de las telecomunicaciones en el sector del automóvil permitirá a los vehículos intercambiar información mediante Redes Vehiculares, ofreciendo numerosas posibilidades. Esta tesis se centra en la mejora de la seguridad vial y la reducción de la siniestralidad mediante Sistemas Inteligentes de Transporte (ITS). El primer paso consiste en obtener una difusión eficiente de los mensajes de advertencia sobre situaciones potencialmente peligrosas. Hemos desarrollado un marco para simular el intercambio de mensajes entre vehículos, utilizado para proponer esquemas eficientes de difusión. También demostramos que la disposición de las calles tiene gran influencia sobre la eficiencia del proceso. Nuestros algoritmos de difusión son parte de una arquitectura más amplia (e-NOTIFY) capaz de detectar accidentes de tráfico e informar a los servicios de emergencia. El desarrollo y evaluación de un prototipo demostró la viabilidad del sistema y cómo podría ayudar a reducir el número de víctimas en carretera

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms
    corecore