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ABSTRACT

Wireless sensor and actor networks (WSANs) are distributed systems of sensor nodes and

actors that are interconnected over the wireless medium. Sensor nodes collect information

about the physical world and transmit the data to actors by using one-hop or multi-hop

communications. Actors collect information from the sensor nodes, process the information,

take decisions and react to the events.

This dissertation presents contributions to the methods of routing, localization and po-

sitioning in WSANs for practical applications. We first propose a routing protocol with

service differentiation for WSANs with stationary nodes. In this setting, we also adapt a

sports ranking algorithm to dynamically prioritize the events in the environment depending

on the collected data. We extend this routing protocol for an application, in which sensor

nodes float in a river to gather observations and actors are deployed at accessible points on

the coastline. We develop a method with locally acting adaptive overlay network formation

to organize the network with actor areas and to collect data by using locality-preserving com-

munication. We also present a multi-hop localization approach for enriching the information

collected from the river with the estimated locations of mobile sensor nodes without using

positioning adapters. As an extension to this application, we model the movements of sen-

sor nodes by a subsurface meandering current mobility model with random surface motion.

Then we adapt the introduced routing and network organization methods to model a com-

plete primate monitoring system. A novel spatial cut-off preferential attachment model and
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center of mass concept are developed according to the characteristics of the primate groups.

We also present a role determination algorithm for primates, which uses the collection of

spatial-temporal relationships. We apply a similar approach to human social networks to

tackle the problem of automatic generation and organization of social networks by analyzing

and assessing interaction data. The introduced routing and localization protocols in this dis-

sertation are also extended with a novel three dimensional actor positioning strategy inspired

by the molecular geometry. Extensive simulations are conducted in OPNET simulation tool

for the performance evaluation of the proposed protocols.
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the sources of laughter and support for over twenty years and never let me feel alone.

I thank my fellow labmates, Drs. Swastik Brahma, Yi Luo, Wenjing Wang and Gürkan

Solmaz for their assistance and support over the years. I was lucky to meet Dr. Zubair

Ahmad as my first labmate. I have had his support both in research and in daily life

throughout my Ph.D. I would like to thank Dr. Tonguç Öztek, Fırat Şeker, Atilla Cingöz and
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ample in my life; I thank him, my sister-in-law Selvet Duygu and my nephew, Batuhan. I
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CHAPTER 1

INTRODUCTION

This dissertation presents contributions to the fields of routing, network organization, local-

ization and actor positioning in wireless sensor and actor networks (WSANs) [1,2]. The first

routing solution presented in this dissertation takes the properties of distinct node types as

a driving factor and provides service differentiation. This routing solution is also extended

with a ranking method to compare the performances of different types of traffic in terms

of the changes in observed values. The support for efficient resource utilization is a critical

part of WSAN routing protocols because of the limited node resources and the coexistence

of different node types. We then extend this routing protocol for WSANs with mobile sensor

nodes by introducing a locally acting adaptive overlay network formation. For the same

application scenario, a localization method is designed to augment the collected information

about the physical world by adding data to be used in the localization of the events. A real-

istic current mobility model is also adapted according to the requirements of the scenario to

analyze the accuracy of the localization algorithm. The network organization strategies for

routing and localization protocols focus on the topological requirements of the application

scenarios. We adapt these strategies to form the basis for an animal monitoring application.

In this application, the information gathered by the network organization is used to interpret

the social structure of a primate community. Then the approach used in primate monitor-

ing system is adapted for human social networks for friend ranking and social network map

generation. In the literature, the routing and localization protocols are improved by using
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node positioning strategies and most of the approaches are for two dimensional space. We

consider the problem of actor positioning in three dimensional space and apply the theory

of valence shell electron pair repulsion (VSEPR) theory for the solution.

The remainder of this chapter is organized as follows. We provide a brief introduction

to WSANs in Section 1.1. We motivate the development of novel routing, localization and

positioning methods in Section 1.2. Finally we present a summary of our contributions in

this research domain in Section 1.3.

1.1 Wireless sensor and actor networks

WSANs are distributed systems of sensor nodes and actors that are interconnected over the

wireless medium. Sensor nodes are small devices with limited data processing capabilities,

low transmission rates, small batteries, and short memories. Sensor nodes collect information

about the physical world and transmit the data to actors by using one-hop or multi-hop

communications. Actors on the other hand have better computation and communication

capabilities, larger memories and longer lasting batteries compared to the sensor nodes.

WSANs may also have sinks, which act as the leaders of the actors and take decisions about

the functions of the network.

In literature, there are different terms used for the nodes in a sensor network, which

have better capabilities than the sensor nodes. “Actuator” is a conventional term used for

this type of nodes. However an actuator is generally defined as a device to convert an
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electrical control signal to a physical action, and constitutes the mechanism by which a node

acts in the environment [3]. On the other hand, an actor can use one actuator or several

actuators to act on the environment. Additionally, an actor not only acts on the environment

but also performs networking related functionalities such as receiving, transmitting and

processing data. Hence, a panning camera collecting information from the environment and

processing the information to decide on the turning direction is an actor while the motor in

the camera can be considered as an actuator. The term “actor” is used in this dissertation

since the considered application scenarios include data collectors, which process the collected

information and use the results for decisions related to the presented protocols.

WSANs can be employed for various applications such as intelligent transportation, en-

vironmental monitoring, battlefield operations, healthcare monitoring, animal control and

so on. Conventional wireless sensor network (WSN) [4] applications are generally limited to

observation of the physical world. The heterogeneous structure of node types and resources

allows WSANs to deal with a wider range of possible applications.

1.2 Motivation

The heterogeneous node structure is one of the most important motivations when designing

the routing solutions in WSANs. The main characteristics of the communication in WSANs

are based on sensor-sensor, sensor-actor and actor-actor coordinations. The limited resources

of sensor nodes is already a critical constraint [5] as it is in WSNs, whereas actors generally
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form an overlay network with stronger resources. Therefore communication solutions applied

in traditional wired networks or the solutions in WSNs are generally not suitable for WSANs.

The main goals of our routing protocols are to provide coordination among nodes and have

the actors handle the computationally expensive tasks.

The development of a method for sensor nodes to affiliate with the actors forms an

important part of any WSAN application. We use clustering in network organization to

form actor areas. The clustering methods use various parameters in the affiliation process

such as distance, energy level, capabilities of the nodes and so on. The specifications of the

application scenario and the node properties are important parameters to choose the most

appropriate clustering protocol. There are generally multiple sensor nodes affiliated with

an actor. In some cases, such as in our localization approach, a single sensor node can be

affiliated with multiple actors. Another defining factor for the clustering methods is the

transmission from sensor nodes to actors, which can be restricted to a single hop or multi

hop communications.

The quality of service (QoS) support is a vital part of various WSAN applications [6]

to differentiate the resource usage in the network for different types of events. Similar to

communication and coordination approaches, WSANs cannot be simply regarded as WSNs

when aiming for QoS support in routing protocols because of the varying degree of node

resources. The collected information from the environment depends on the requirements

during the system deployment. The priority of different types of information depends on the

requirements of the system. Let us consider a fire alarm system. Information about a sharp
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temperature increase is high priority and must be transmitted by all the nodes in the system

without regards to the resources. Periodic reporting of normal temperatures on the other

hand is less critical. The network organization and routing strategies can also be combined

to offer service differentiation.

We use the term interest, popularized by the Directed Diffusion model [7], to define the

types of events in the system. In Directed Diffusion, the sink expresses a set of interests

regarding the information to be collected. In most of WSAN applications, the interests and

their requirements are predefined and remain at their initial values during the lifetime of

the network. However, the importance of the events observed by sensor nodes in response

to interests may change with the changing conditions of the network. The critical events for

most of the applications are the ones with fluctuating or changing observed values rather

than the events with constant values. Therefore the priorities of interests must be adjusted

according to the changes in the observed values in the network.

In WSANs with mobile nodes, most applications require location information to be associ-

ated with the collected data [8]. The sensor nodes can gather various kinds of location-related

information when equipped with appropriate measurement technologies [9]. The distance be-

tween two nodes, the network connectivity and the strength or angle of signal arrival are

widely used to support the estimation of the positions of nodes in the environment. The

localization methods generally use a priori information about the environment such as the

positions of some specific nodes or possible positions that the nodes can be located in the
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environment [10]. The use of a realistic mobility model is critical to analyze the accuracy of

the localization algorithms designed for WSANs with mobile sensor nodes.

We adapted the routing and network organization methods used for WSANs with mobile

nodes for an application of monitoring a group of animals with complex social structure such

as primates. Conventional approaches for wildlife monitoring require technically sophisti-

cated processes to overcome various complex issues such as the highly invasive structure of

most methods, the choice of correct sampling method or the effort to plan and execute a

monitoring project [11]. The latest advances in WSANs can be used to overcome many of

these drawbacks and challenges. Thus the monitoring of animal groups has been an appli-

cation area in WSNs and WSANs. However, the research has been mostly on animals with

simple social structures, whereas animals with more complex social dynamics such as pri-

mates is still an open research area in WSANs. Additionally, the available real life mobility

data for most of the animals with complex societies is very limited. Consequently, it is also

crucial to design a proper mobility model derived from the expected mobility patterns of the

animals under observation.

The routing and localization strategies presented in this dissertation can be improved by

efficient actor positioning. Most of the literature on dynamic node positioning strategies is

limited to two dimensional space. In recent years, there has been an increasing interest in

applications of sensor networks in three dimensional (3D) space such as space exploration,

airborne and underwater surveillance, oceanic studies, and storm tracking. The well-known

strategies designed for two dimensions become NP-hard in 3D space. The optimization
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strategies for 3D node positioning are important for efficient data collection. The existing

solutions are only preliminary and do not take into consideration the requirements of specific

scenarios. Therefore, simple yet effective strategies for 3D node positioning are needed in

WSANs.

1.3 Contributions

Our work is to design, implement, and evaluate protocols for routing, localization and po-

sitioning in WSANs. More specifically, the major contributions of this dissertation are as

follows:

• Routing and network organization. We present a lightweight routing protocol with QoS

support [12] for stationary WSANs. Our protocol provides QoS by differentiating the

rates among different types of interests with dynamic packet tagging at sensor nodes

and per flow management at actor nodes. In this setting, we also introduce a method

[13] to dynamically determine the weights of the interests by using a nonsensitive

ranking algorithm, which depends on the variation in the observed values of collected

data. We extend the lightweight routing protocol for WSANs with mobile sensor

nodes [14]. Then we integrate it with a network organization protocol [15], in which

the actor nodes are pre-assigned cluster heads and multi-hop clusters are formed as

the sensor nodes move in the environment.
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• Localization. We propose a novel approach for the localization of mobile sensor nodes

floating in a river [16, 17]. The sensor nodes communicate only with their neighbor

nodes. The collected information through this local communication is used to estimate

the locations of the events without any GPS receivers at the sensor nodes. To model

the movements of the sensor nodes, we adapt a realistic meandering current mobility

model [18]. The motion of the sensor nodes in this model follows the advection of

the fluid parcels, which is modeled as a combination of a central streamline with a

meandering motion around the surface. To the best of our knowledge, this is the first

example of using meandering current mobility model with random surface motion for

a WSAN operating on the surface of a river.

• Animal monitoring and role determination. We provide network formation and mo-

bility models [19] to model the mobility of a group of primates to be used for social

life monitoring. A novel spatial cut-off preferential attachment model and a center of

mass concept are used and extended for the models. Then we develop a social role

determination protocol [20, 21] for capturing and monitoring the social interactions of

primates. The nodes are intended to be attached to the primates forming a mobile

network. The local interaction patterns among the nodes are analyzed and the roles of

animals are determined based on the research on primate social structure. The results

of our approach is compared to real-life primate networks using various social network

metrics. The role determination approach is adapted to human networks to develop

an ego network generation and friend ranking protocol [22]. This protocol generates
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the social network of a person by using different sources of available interaction data

such as physical proximity, text messages, phone calls and video chats. The approach

is applied to a real-life dataset of a group of high school students.

• 3D Positioning. We develop an actor positioning strategy [23–25] for aerial WSANs

considering the scenario of toxic plume observation after a volcanic eruption. The po-

sitioning algorithm utilizes the Valence Shell Electron Pair Repulsion (VSEPR) theory

of chemistry, which is based on the correlation between molecular geometry and the

number of atoms in a molecule. We improve the positioning strategy for real-world

scenarios by utilizing a rotatable hybrid antenna model (O-BESPAR), which combines

the complimentary features of an isotropic omni radio and directional antennas [26].

The characteristics of different antenna modules are analyzed and the rotatable hy-

brid antenna model is utilized with actor-sink communication, actor rearrangement

algorithms, and beamforming.

1.4 Outline

This dissertation is organized as follows.

Chapter 1 presents the problem definitions. Chapter 2 conducts a literature review

covering the background knowledge for the remaining chapters.

Chapter 3 introduces the lightweight routing protocol with QoS support (LRP-QS) for

WSANs. We also present a variant of Colley ranking method as our dynamic interest ranking
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protocol for WSANs. Then, we present the results of the simulation study, in which LRP-

QS is compared with QoS Based Routing Protocol (QBRP) [27] and the proposed ranking

method is compared with win-percentage ranking method.

Chapter 4 describes Self Organized and Fair Routing Protocol (SOFROP), an integrated

solution of network organization and routing algorithms. We introduce the Amazon River

application scenario and discuss topology-related concepts. The system model is proposed

for wireless networks with mobile sensor nodes and stationary actors. We illustrate the

performance of SOFROP in a simulation study.

Chapter 5 describes the multi-hop localization protocol (MHOPLA) for the Amazon River

scenario. The network organization is described with an emphasis on its differences compared

to SOFROP. Then the localization method is presented, followed by the explanation on how

the location information is used for path estimation. Additionally, the mobility of the sensor

nodes are modeled by adapting a subsurface current mobility model. Finally, we present

a series of simulation studies investigating the precision of the proposed methods for the

targeted scenario.

Chapter 6 introduces network formation and mobility algorithms to provide a complete

model of a primate group for social life monitoring. These methods are based on the center

of mass and preferential attachment concepts. In addition, an algorithm for capturing the

social structure of an animal group is presented. This algorithm is also extended for human

networks. Simulation results show the outputs of the models and the performance of the

role determination algorithm for different metrics.
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Chapter 7 describes an actor positioning algorithm for aerial WSANs (APAWSAN). The

goal of the approach is to improve the on-site monitoring of the plume in a volcanic eruption

scenario. The application scenario is investigated as a 3D node positioning problem for an

aerial WSAN with a central node. Then the approach is improved by utilizing a rotatable

hybrid antenna model. The simulation study analyzes the performance of the protocol in

terms of packet reception ratio, network reorganization delay, coverage and cardinality of

actor nodes.

Chapter 8 concludes the dissertation while providing few possible extensions for future

work.
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CHAPTER 2

RELATED WORK

2.1 Network organization and routing

Clustering is employed frequently for network organization in wireless ad hoc networks.

The clustering algorithms in traditional sensor networks [28] are often used to create a

structure of an otherwise flat network topology [29], [30], [31]. The cluster heads have more

energy and computation power compared to the regular nodes in most of these protocols,

similar to the actors in WSANs (see [32], [33], [34], [35], [36]). The design of the routing

schemes proposed for clustered networks is based on the selection of cluster heads and the

network structure. The network organization of our protocol shares several aspects with

cluster-based routing schemes. The cluster head selection approach by Soro and Heinzelman

[33] favor nodes deployed in densely populated network areas to maintain the full network

coverage. Smaragdakis et al. [37] propose stable election protocol (SEP), a heterogeneous-

aware protocol to prolong the time interval before the death of the first node in a stationary

network. For the election of cluster head, SEP requires the energy levels of all nodes,

which is used as the metric for heterogeneity. Aslam et al. [38] finds optimal geographical

locations for actor nodes with respect to their associated cluster heads. Zhang et al. [39]

also use geographical locations of nodes and select cluster heads in adjacent groups of nodes

close to one another. This property of the network is used to reduce the average energy

consumption in the WSN. Chen et al. [40] introduce a dynamic clustering algorithm for
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target tracking, which creates a hierarchical network structure. Clustering Patch Hierarchical

Routing Protocol (CPHRP) by Lin and Liao [41] uses network coverage rate and effective

network lifetime to evaluate a WSN. The main objective of CPHRP is to optimize network

coverage rate through clustering patch by using these metrics and hierarchical multi-path

tree routing. The clustering routing protocol by Boukerche et al. [42] aims at optimizing

energy dissipation in the network while providing fault tolerance. The algorithm alternates

the inter-cluster communication nodes and possible routes to the sink to reduce energy

expenditure.

There are examples of clustering algorithms in mobile ad hoc networks [32], [43], [36], in

which the cluster heads are permanent. Thus cluster head election procedure is obsolete for

these algorithms. However, the network and the clustering algorithms must be designed in

such a way that the actor node is always the most attractive cluster head in its surrounding.

Furthermore, only a few clustering algorithms allow multi-hop clusters, i.e., clusters where

cluster members can potentially be several hops away from the cluster head [44]. Since actor

nodes are specially equipped nodes to aggregate and process data while delivering a long

life-time, the number of actor nodes must be minimized. This property of WSANs reduces

the number of cluster heads required by the network. This is also important when actors

cannot be deployed very close to each other due to restricted access to the environment.

Support for efficient resource utilization is an important part of WSAN network organi-

zation and routing protocols. Therefore QoS becomes a critical part of the communication

protocols used in WSANs [6], [45]. Throughput, delay, jitter, and packet loss are among
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the most fundamental QoS metrics used to measure the degree of efficiency in these ser-

vices [46], [40], [47].

The routing paradigm by Hu et al. [48] builds an anycast tree rooted at each event

source to reduce latency and energy consumption in communication. The dynamic behaviors

of the sinks for joining or leaving the system shape these anycast trees. Cañete et al.

[49] present a component-based framework, which combines macro-programming and node-

centric programming to develop applications over WSANs with the specification of real-

time constraints between services. Tao et al. [50] propose the flow-balanced routing (FBR)

protocol, which aims to achieve power efficiency and coverage preservation. FBR assigns

the transferred data over multiple paths from the sensor nodes to the sink to equalize the

power consumption of nodes. Melodia et al. [51] use an event-driven clustering paradigm

to design a sensor-actor coordination model and formulate the actor coordination as a task

assignment optimization problem. The real-time routing framework by Shah et al. [52]

addresses the coordination of sensor and actor nodes through the delay bound for distributed

routing. Another coordination algorithm among actors is introduced with the real-time

communication framework by Ngai et al. [53], where an event reporting algorithm for sensor-

actor communication is also given to minimize the transmission delay. Ad Hoc On Demand

Delay Constrained Distance Vector Routing (AOD2V) by Sama and Akkaya [54] also uses

delay as the main constraint. AOD2V uses delay-EDD at admission control and EDF is

used to determine the departure order of the packets at the intermediate nodes. The routing

algorithm by Hung et al. [55] determines the maximum amount of data each node can
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transmit by taking energy as the main parameter. The data transmission protocol by Morita

et al. [56] thrives to enhance reliability with redundancy. Xia et al. [6] apply feedback control

for dynamic bandwidth allocation, which uses deadline miss ratio control to improve QoS in

terms of reliability. Paruchi et al. [57] proposed a distributed and randomized communication

protocol with a fairness feature regarding power savings of the sensor nodes, which make

local decisions on whether to sleep, or be active based on the energy levels of their neighbors.

Energy-balanced routing method based on forward-aware factor (FAF-EBRM) by Zhang et

al. [58] uses the link weight and forward energy density to select the next-hop node. FAF-

EBRM also uses a spontaneous reconstruction mechanism for local topology to balance the

energy. In majority of these algorithms, the main objective is the energy efficiency at the

sensor nodes. Directed Diffusion (DD) by Intanagonwiwat et al. [7] achieves energy savings

by selecting empirically good paths and by data aggregation. The sink in DD expresses a set

of interests regarding the information to be collected and each node records the neighboring

node from which the interest is received.

QoSNET by Houngbadji and Pierre [59] takes the network lifetime as the main metric

and formulates the QoS routing in large scale wireless networks as an optimization problem

to extend the network lifetime. InRout [60] by Villaverde et al., a QoS aware route selection

algorithm for WSNs, enables distributed route selection by sharing the local information

among neighboring nodes and using Q-learning techniques. The management protocol for

reactive sensor and actor systems by Baunach [61] focuses on memory and offers a col-

laborative approach. Grid-based Multipath with Congestion Avoidance Routing protocol
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(GMCAR) [62] divides the network into grids and selects a master node in each grid. These

master nodes route packets using the grid densities and the hop count. Energy Efficient and

QoS aware multipath routing protocol (EQSR) by Ben-Othman and Yahya [63] maximizes

the network lifetime by balancing energy consumption across a set of available paths in the

network. The metrics used by EQSR to predict the next hop are residual energy, node avail-

able buffer size, and Signal-to-Noise Ratio (SNR). EQSR also employs a queuing model to

handle real-time and non-real-time traffic through service differentiation. Hammoudeh and

Newman [64] present cluster-based Route Optimisation and Load-balancing protocol (ROL)

and . an algorithm for load balancing, Nutrient-flow-based Distributed Clustering (NDC).

ROL/NDC uses a combination of routing metrics, which are configured according to the

priorities of user-level applications, to improve the network lifetime. Boukerche et al. [27]

proposed “QoS Based Routing Protocol” (QBRP), a protocol with service differentiation, in

which routes are generated at the actors by using the information collected from the sensor

nodes. The next hop for each type of packet is forwarded to the nodes based on the data,

which is centrally processed at the actor nodes.

According to the desired characteristics of LRP-QS, presented in chapter 3, a ranking

method is used to compare different types of interest traffic in terms of the changes in the

observed values. Ranking is an important part of sports. Therefore ranking methods in

sports are analyzed to be used in WSANs. Colley [65] and Massey [66] are two of the most

important linear algebra-based sports ranking methods with elegant formulations. Masseys

model depends on the rule that the difference in the ratings of two teams represents the
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point differential in a matchup of these two teams. Different than Colley method, Massey

method utilizes actual game scores and homefield advantage. There are also examples of

methods used in sports ranking, which use Markov methods ( [67], [68]). In a recent study,

Chartier et al. [69] analyzed Colley, Massey and Markov methods in terms of sensitivity.

The results of the analysis show that Colley and Massey methods are less sensitive than the

Markov ranking methods to small changes.

2.2 Localization

Localization in WSNs and WSANs has been attracting significant interest in the last decade

due to the realization of low-cost and multifunctional sensor nodes and their deployments

in both indoor and outdoor environments [70]. Although the localization is significantly

important in most of the deployed systems, implementation of the algorithms is challenging

since the localization techniques in WSANs have their particular constraints. For instance,

the deployment areas are generally complex and they have issues such as accessibility, line-

of sight, and so on. The measurement method for the positioning algorithm also needs to

be selected according to the environment, the limited capabilities of the sensor nodes and

the conditions of the scenario. The heterogeneous node structure of WSANs is yet another

challenge and requires a clear differentiation in the roles of the nodes in the network.

The localization methods in the literature generally use a priori information about the

network or the environment such as the positions of some specific nodes [71] or particular lo-
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cations in the environment where the nodes can be located at [10]. Localization algorithms

also make use of diverse scientific approaches such as graph theory [72, 73], multidimen-

sional scaling [74], sequencing [75], distance vectors (DV) [76], computational geometry [77],

particle and Kalman filters [10, 78, 79], Gauss-Markov parameter estimation [80], recursive

systems [81], sub-area localization [82], range-free schemes [83], viable kernel-based algo-

rithms [84] and distributed Bayesian algorithms [85].

The measurements of different types of sensors on the nodes can also be used by local-

ization algorithms. Sensor nodes can gather various kinds of information when equipped

with appropriate measurement technologies. The main types of sensor measurements used

in localization methods are time of arrival (ToA) [86], time difference of arrival (TDoA) [87],

angle of arrival (AoA) [88], received signal strength (RSS) [89, 90], and distance related

measurements [91]. The measurement technique is normally selected according to the re-

quirements of the environment and the scenario. Multiple techniques can also be utilized in

a single approach. Wang et al. [92] propose using multiple techniques for an unsupervised

indoor localization scheme, which identifies certain locations in an indoor environment with

signatures on multiple sensing dimensions. Michaelides and Panayiotou [93] use RSS at the

sensor nodes to report binary observations. The events are reported only when the measured

signal strengths are above a threshold. These binary observations are used in an estimation

algorithm to construct the likelihood matrix.

We adopt a multi-hop positioning approach for our localization algorithm. There are well

known multi-hop algorithms such as the distributed hop-by-hop positioning algorithm, APS,
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proposed by Niculescu and Nath [76]. APS works as an extension of distance vector routing

and GPS positioning to provide the approximate locations for all nodes in a network where

only a limited fraction of nodes have self location capabilities. An alternative approach by

Savvides et al. [94] uses the sensor nodes, after their positions are estimated, as the anchor

nodes in a multilateration algorithm. This process is called iterative multilateration, which

is also employed by Savarese et al. [95]. The critical observation in these algorithms, which

is also true for our algorithm, is that at least three actor nodes are needed to determine the

position of a sensor node. Nagpal et al. [96] organizes a global coordination system in the

network by estimating the Euclidian distance of a hop. The estimation algorithm uses the

number of communication hops of the sensor nodes and the position error is minimized with

imperfect distance estimates. The important theoretical results given by Nagpal et al. are

the critical minimum average neighborhood size for sufficient accuracy and the limit on the

resolution of a coordinate system determined by local communication.

There are also studies on computationally efficient sequential algorithms for localization.

In the sequential positioning algorithm for exact distance measurements by Anderson et

al. [72], the sensor nodes are processed in a predetermined order. Fang et al. [97] extended

this work in their algorithm “Sweeps” and showed that processing sensor nodes in a spe-

cific order can be used to characterize the graph theoretical properties of the network. The

Sweeps algorithm relies on the inter-sensor distances and works only with exact measure-

ments. Location estimation of sensor nodes is very critical especially when there is no GPS

positioning capability at sensor nodes. The Received Signal Strength Routing (RSSR) algo-
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rithm by Boukerche et al. [98] is a GPSless scheme, which makes use of greedy forwarding.

After receiving a query packet from the sink, a sensor node uses RSSI to forward the packet

to the neighbor that received the query with greater signal strength, essentially the neighbor

closest to the sink. Oliveira et al. [81] uses two reference points and the known direction

of the recursion for position estimation in their GPSless localization protocol. The protocol

works with low-density networks and also indicates the node position error based on the

distance to the recursion origin.

High mobility of sensor nodes with the currents in a river is a distinct constraint of our

localization scenario and it is considered as a challenge in most of the existing localization

methods. The realistic modeling of the river and therefore the mobility of sensor nodes is an

important part of our approach. There have been studies on the formulation of the current

mobility models. For subsurface ocean currents, Caruso et al. [99] proposed Meandering

Current Mobility (MCM) model, extended later by addition of random surface motion by

Erol et al. [100]. As an important difference compared to the ocean characteristics, the

subsurface currents have faster speeds. On the other hand, the force of the winds and the

shape of the terrain (rocks, depth/width variations) generate vortexes in a river, similar to

oceans where the particles meander similar to the meanders in the MCM model.
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2.3 Animal monitoring with WSANs

There are various studies on the deployment of sensor nodes for wild life animal monitoring

and animal tracking. Environmental scientists and zoologists have been increasingly using

these technologies to collect data from wild terrestrial areas and transmit them to the remote

databases [101]. In some of these applications, the sensor nodes are attached to the animals,

forming an ad hoc wireless network of mobile nodes [102].

ZebraNet [103] is one of the initial examples of such studies, in which the animals carry

custom tracking collars with GPS capability and form a mobile sensor network across a large

area. The collars include sensor nodes with global positioning system (GPS) capability, and

they form a WSN to monitor the area and record the data. Wark et al. [102] apply sen-

sor network technology to farming and their approach also includes collars worn by animals.

This system utilizes both static and mobile nodes measuring the state of a complex, dynamic

system comprising climate, soil, pasture, and animals. Naumowicz et al. [104] deployed a

WSN on Skomer Island, Wales to improve the investigation of the behavior and spatial ecol-

ogy of the Manx Shearwater seabirds. The system informs the scientists with high resolution

data about the arrival and departure of the birds and the environmental parameters such

as temperature or humidity. CraneTracker by Anthony et al. [105] is a sensor platform for

monitoring migratory birds and it is composed of a set of sensors, a multi-modal radio, and

power control circuitry. The system uses cellular networks during migration and short range,

ad-hoc networks in breeding and nesting grounds. Handcock et al. [106] uses a large cattle
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enterprise to demonstrate the potential for combining GPS collars and satellite images in a

WSN. The implemented WSN is used to monitor behavioral preferences and social behavior

of cattle in Northern Australia. The sensor nodes are also used to monitor the functioning

of the animal body or a particular organ [107]. In this type of applications, the sensors are

implanted within the animal body to collect and transmit information by forming a WSN.

Approaches currently used by biologists in ape and monkey monitoring employ wildlife

tracking collars [108], camera traps [109] and subcutaneous implants [110] for animal tag-

ging and data collection [111]. Collars and implants provide more granular data compared

to camera traps and tracking collars are the most widely used data collectors [111]. The

properties of collars vary according to the hardware they are equipped with, such as radio

transmitters, GPS receivers and activity sensors. VHF transmitters on these collars require

a short distance to transmit the collected data. Hence, personnel and time requirement

is high with the current technology used in the field to collect data. Additionally, collars

and implants require tranquilization of animals when attaching a data collector and when

gathering data from that data collector about the movement of a particular animal [108].

Therefore utilization of a WSAN improves data collection both in terms of time and also

effort despite the difficult constraints of natural environment. Another advantage of using

sensor networks is the reduced cost compared to other systems, particularly when sensor

nodes are equipped with solar technology [111].

Gathering real field data is challenging for studies on animal behaviors. For instance,

Fossey [112] conducted the initial studies on the home ranges of the mountain gorillas and
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their social interactions. Fossey’s observations include hand drawn maps of mountain gorilla

ranging paths that form the basis for movement patterns of the gorilla troops. The gorilla

behaviors and social interactions in troops are analyzed in a few studies [113], [114]. Due to

the absence of public domain real data in this area, models for the generation of movement

patterns must be developed and used.

A variety of mobility models have been proposed for simulations of animal groups. The

Reference Point Group Mobility (RPGM) [115] by Hong et al. describes mobility coherence

in the movement of a mobile host, i.e. hosts at different positions head towards the same

target. In RPGM each group has an own logical center and similar to the concept of center of

mass, the center’s motion defines the entire group’s motion behavior. The node deployment

in RPGM is usually uniformly at random, but any node deployment can be used to approach

the reference point. Nodes in RPGM have their own random movement in addition to the

group motion. In the Virtual Track model (VT model) [116] by Zhou et al., nodes follow

so called “switch stations” that are deployed in the map, creating virtual tracks. Group

nodes are distributed along the virtual tracks and the individual nodes are deployed in the

whole area. The switch stations have features allowing the nodes to split into several groups

after leaving the switch station. These aspects can be often found in the mobility of animal

groups such as birds or gorilla troops, which split when a new leader founds a new troop.

Musolesi et al. [117] proposes a model, which groups collection of nodes together based

on social relationships among the individuals. The groups are mapped to a topographical

space, including the strength of social ties. A node belonging to a group moves inside
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the corresponding group area towards a goal using the Random Waypoint model. Groups

also move towards randomly chosen goals with random speeds. As in the model of Hong

et al. [115], Musolesi et al. [117] also permits changes in the group affiliation based on a

particular parameter (sociability factor).

The deployment and mobility models introduced in this work use the “preferential at-

tachment” concept, which is implemented by Borrel et al. [118] for designing the mobility

model called Pragma. The preferential attachment was introduced by Barabási and Al-

bert [119] to explain a common property of many large networks, according to which the

vertex connectivity follow a scale-free power-law distribution. Pragma assumes preferential

attachment to centers of interest, considering that “individuals” move towards “attractors”,

which appear and disappear. Thus, the model describes independent nodes that exhibit a

collective behavior. The authors show that Pragma achieves a scale-free spatial distribution

in population growth.

Primate groups are considered as the monitored animal societies in our animal monitoring

application. Traditional primate relationship analyses focus on dyadic associations. However,

all of the members of primates and their interactions as a hierarchical group must be taken

into consideration for an efficient understanding of social structure in a primate society [120].

Some traditional studies provide important information on the roles of individuals in primate

groups [121, 122]. Results of these traditional studies started to be integrated with modern

social network analysis methods and improved by the utilization of extensive data analyses
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and quantification [123]. Recent studies show that the social network analysis is useful for

the interpretation of primate social structure and organization [124,125].

Kasper and Voelkl [124] emphasize the importance of the quality of relationships in pri-

mate social systems and discuss a set of network measures for social network organization.

The analysis includes results of 70 primate groups from 30 different species. Clark [125] stud-

ies the spatial association and social interaction data collected from a group of zoo-housed

primates. Results showed that social network analysis reveals important characteristics of

primate groups when proximity among individuals is not forced. Sueur and Petit [126] use

movement patterns along with network metrics such as centrality and clustering coefficient

to understand the roles, rankings and associations in the social group. Matsuda et al. [127]

use similar network parameters as Sueur and Petit [126] to compare the intra-group rela-

tionships in primates. Their results show the important potential of contribution that social

network analysis has for primate social bond analysis. Flack et al. [128] show the importance

of individuals with high clustering coefficient on group stability and conflict management.

They use experiment results to quantify instability of group structure in terms of reduced

mean degree, increased clustering, reduced reach, and increased assortativity.

2.4 Node positioning in aerial networks

The literature on 3D wireless sensor networking mostly focuses on coverage problems. In the

conventional 2D scenarios, a sensor coverage is generally modeled as a circle and the maximal
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coverage problem is mapped to a circle packing formulation which has a polynomial time

solution. This problem turns into the sphere packing problem in three dimensions. Given the

high complexity of the sphere packing problem for 3D coverage, Alam and Haas [129] argue

that space filling polyhedrons would be more suitable and try to fill the 3D application space

with the least number of polyhedrons in order to provide maximal coverage. Ravelomanana

[130] studies the properties of the network topologies that result from random deployment of

nodes in a 3D region of interest to provide theoretical bounds that can help in preliminary

design and feasibility studies of 3D WSNs. The author derives conditions for the node

transmission range r required for achieving a degree of connectivity d, where every node

has at least d neighbors. Pompili et al. [131] uses Ravelomanana’s bounds to validate the

effectiveness of their 3D random underwater node deployment scheme. Zhou et al. [132]

present two algorithms for discovering boundary nodes and constructing boundary surfaces

in 3D wireless networks. Bai et al. [133] designed and proved the optimality of one and

two connectivity patterns under any value of the ratio of communication range over sensing

range, among regular lattice deployment patterns. The authors also introduced three and

four connectivity patterns and investigated the evolutions among all of the proposed low-

connectivity patterns. Slab Routing by Chiang and Peng [134] adapts 2D geographic face

routing techniques to 3D space by dynamically creating a space partition and executing face

routing over the planar projected graph of nodes contained within.

There are aerial sensor network implementations for various applications concerning the

measure of air pollution and weather variables. Only just a few experiments for volcanic gas
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sampling exists in the literature, while the autonomous aerial system by Astuti et al. [135]

has a very similar application scenario with APAWSAN. In their system, there is no network

but a single UAV, which performs aerial surveillance of volcanic areas and to analyze the

composition of gases inside volcanic plumes. The SensorFly system [136] by Purohit and

Zhang is a mobile-controlled flying sensor network that monitors changes in a dangerous

environment such as an earthquake or fire. SensorFly uses a flying miniature sensor with

a weight of 30g and low mass production cost around $100. Elston and Frew [137] [138]

presents a hierarchical control architecture similar to APAWSAN with a mother-ship, which

acts as a distributed database and daughter-ship micro air vehicles, which use vector field

tracking. Autonomous Flying Robot MARVIN (Multipurpose aerial robot vehicles with

intelligent navigation) project [139] uses robots with the ability to coordinate with each

other to complete required tasks. SensorFlock by Allred et al. [140] is an airborne WSN

composed of bird-sized micro aerial vehicles (MAVs), with a focus on the design of the

MAVs and received signal strength indication (RSSI). Their WSN is composed of hundreds

of inexpensive, semiautonomous, and cooperating airborne vehicles making observations and

relaying data over a wireless communication mesh network.

We apply our positioning strategy to real-world scenarios by utilizing a rotatable hybrid

antenna model. The communication reliability advantages of directional antenna have been

discussed in literature (see [141]). Jiang et al. [142] demonstrate a localization scheme using

beacon nodes with directional antennas, which rotate regularly. After evaluating the received

signal strength indication (RSSI) values of the beacon signals, a sensor node estimates the
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orientation relative to the beacon node. However, this approach works for the 2D static or

mobile sensor networks but not for 3D space.

Beam steering based [143] and scan-based [144] algorithms with directional antenna are

also proposed. Beam steering works for infrastructure based networks. It is not practical for

UAV networks while scan-based approach requires all nodes to follow the same search se-

quence. Adaptive Medium Access Control protocol for UAV (AMAC UAV) [145] is designed

for a network of UAVs with directional antennas. Each UAV is equipped with two directional

antennas for data transmission and two omnidirectional antennas for location packets. Data

transmission via omni antenna is limited by the transmission range of the antenna. As the

number of antennas increases, the complexity of the algorithm and the power requirements

also increase. Moreover, the data transmitted by omni antenna has a high probability of

packet loss, especially when the node is mobile.

The sensor nodes and actors are positioned on UAVs in our application scenario for

3D positioning. UAVs are used for various purposes including military ( [146, 147]) and

science [148] applications as well as disaster monitoring ( [149–151]) while the industry is

growing fast and doubled in the last decade according to market studies. Furthermore, there

are companies and corporations providing custom-made vehicles with various capabilities.

In the survey of autopilot systems for small UAVs by Chao et al. [152], small-sized UAVs are

defined to be light-weight with shorter wingspans. However small-sized UAVs are also cheap

and expendable since their development and operation are easier compared to large UAVs.

Dempsey [153] grouped unmanned aircraft systems (UAS) into five categories according to
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their capabilities, advantages, and limitations. Group one UAS are typically hand-launched

small vehicles capable of altitudes less than 1200 feet above ground level, while Group five

UAS are the largest systems with extended capabilities in terms of endurance, air speed,

range, and altitude.

For 3D positioning, we make use of the VSEPR theory of chemistry, which is based on the

idea of a correlation between molecular geometry and the number of valence electrons around

a central atom. This concept was first presented by Sidgwick and Powell [154]. Gillespie and

Nyholm [155] refined it later and built the elaborate VSEPR theory, which states that the

maximum repulsion of the electron pairs or atoms defines the geometric optimum positions of

peripheral atoms or alone electron pairs that maximizes the distance between these entities.
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CHAPTER 3

LIGTHWEIGHT ROUTING WITH DYNAMIC INTERESTS

In this chapter, a lightweight routing protocol with QoS support (LRP-QS) [12], [13] is

introduced. The goal of the protocol is to provide the highest rate available for each flow

and to dynamically prioritize the interests according to the observed values in a WSAN.

WSAN considered in the application scenario consists of stationary sensor and actor nodes

distributed in an area. Actor nodes have no initial information on the positions of the sensor

nodes. Since the number of actors are low compared to the number of sensor nodes, the

sensor nodes, which are not directly connected to an actor, communicate with other nodes

according to the requirements of the network. Hence, the network is organized for an efficient

data transmission.

In the context of this work, QoS is defined as the assurance of services required by the

applications. The main optimization objectives are the packet transmission and loss rates.

At sensor nodes, our approach is lightweight and efficient in terms of memory and power

consumption as opposed to actors which have a more complicated task in accordance with

their capabilities. The sink expresses a set of interests regarding the information to be

collected. The interests are transmitted to the actors through the communication backbone

with initial weights, which define their rate requirements. According to the events observed,

these interests are ranked at each actor to adjust their weights according to the network

conditions. The application scenario also includes bursty data sources resulting in congestion
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at various points in the network from time to time, which increases the criticality of efficient

resource utilization in the network.

LRP-QS is motivated by QBRP [27] and shares several aspects with QBRP in network or-

ganization. We identify disadvantages of QBRP and aim to improve the routing performance

in LRP-QS. QBRP has a routing algorithm with a high computation and communication

cost. The data collection from the sensor nodes and updating them with path and interest

information require excessive energy and communication. Additionally, if there is no packet

transmission on a node, that node or the path cannot be updated. One of the main criteria

for routing in WSANs is energy consumption. QBRP aims to use less energy expensive path.

On the other hand, high memory usage and frequent updates result in high energy expen-

diture, which makes it very costly for implementation in WSANs. The LRP-QS overcomes

these problems as described in the following sections.

3.1 Network organization

3.1.1 Actor areas

The network configuration starts with the flooding of area configuration packets (ACP) by

the actor nodes. An ACP includes the actor’s ID and the number of hops the packet is

forwarded. Sensor nodes have actor ID and hop value attributes and neither of them has
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initial values. In other words, initially a sensor node knows neither the actor node it is

associated with nor the hop-distance to that actor node.

When a sensor node receives an ACP, it first checks the hop value. If the value is greater

than or equal to the node’s hop value, the packet is dropped. Otherwise the node updates

its attributes with the values in the related fields of the packet and retransmits the packet.

Thus, the sensor node keeps the information for only one actor node even when it receives

ACPs from multiple actor nodes. The node keeps the address of the neighbor node it received

its actor’s ID as the destination for its data packets. The node can keep multiple destinations

and this record can be leveraged to have more control on resources. However one of the main

objectives is to keep the protocol as lightweight as possible on sensor nodes. In addition,

the hop value of a sensor node automatically changes as one of its neighbors fails since all

communication is handled locally.

When the actor areas are formed, each sensor node is affiliated with an actor, has infor-

mation about its lower-hop neighbor(s) and the number of hops required to reach its actor.

Figure 3.1 shows the hypothetical view of the network with the connections after this phase,

where each actor area is presented with sensor-sensor and sensor-actor connections.
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Sensor node


Actor node


Sink


Figure 3.1: The network view after formation of actor areas.

3.1.2 Communication backbone

The actor areas must be connected to transmit the collected data to the sink. We define the

network formed by the links among actors and the sink as the “communication backbone”.

The sink starts formation of the communication backbone by sending an area integration

packet (AIP) with its ID in the source field.

The destination address for data packets (DAd) is an attribute of each actor. When an

actor receives an AIP from the sink, it saves the sink as the destination address for data

packets (DAd). Then the AIP is forwarded in the network among actors. Hence the sink

is positioned in the transmission range of at least one actor in order to prevent bottlenecks
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at the links close to the sink. Otherwise the sink would receive the collected data through

sensor nodes, which would create severe packet loss and delay.

If an actor doesn’t receive an AIP from a sink, the first actor from which it received the

AIP is recorded as the DAd. Then the actor places its ID on the AIP and retransmits it. If

an actor receives AIPs from multiple actors, it saves the extra actor IDs in the “redundancy

list” (Lr). This list is kept at an actor for future use in case of a change in the communication

backbone such as a dead actor node. A summary of the pseudocode of the algorithm used

at each actor node receiving an AIP is presented in Algorithm 1.

If each actor is guaranteed to be in the transmission range of at least one actor, i.e. the

network communication backbone is connected, then the AIPs do not need to be processed

at sensor nodes. Figure 3.2 shows the network view with actor areas and a connected

communication backbone.

Sink


Actor node


Sensor node


Links formed


in Phase-1


Links formed


in Phase-2


Figure 3.2: Network view after actor areas and network among actors are formed.
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Algorithm 1 Processing of AIP at an actor node

1: Check source address of AIP

2: Check DAd

3: if DAd is a sink then

4: drop AIP

5: else if AIP is received from a sink then

6: DAd = ID of the sink transmitted AIP

7: transmit AIP

8: else if AIP is received from an actor then

9: if DAd is an actor then

10: Put ID of the actor that transmitted AIP in Lr

11: else

12: set DAd = ID of the actor transmitted AIP

13: transmit AIP

14: end if

15: else if AIP is received from a sensor node then

16: if DAd is an actor then

17: drop AIP

18: else

19: DAd = ID of the actor on AIP

20: transmit AIP

21: end if

22: end if
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In the case when there is no actor nodes in the transmission range of an actor node,

sensor nodes, which receive AIP of this actor node, use a lightweight algorithm to process

these packets. The receiving sensor node checks if the actor ID on AIP is equal to the node’s

associated actor node ID. The packets with matching actor node ID are transmitted to the

sensor node’s higher-hop neighbor(s) and the first AIP from another actor is transmitted to

the lower-hop neighbors in order to guarantee the conveying of AIPs in the network. All

other AIPs are dropped by the sensor nodes.

3.2 Data collection

3.2.1 Interest subscription

The interests are distributed to the actors via the communication backbone. When an actor

receives an interest from the sink, it checks and updates its interest subscription table with

the received interest unless the interest is already included in the table. All the information

expressed in the interest packet such as type or time is stored in this table. Since actor

nodes have larger memory resources and processing capabilities compared to sensor nodes,

they keep the information received from the sink about an interest for certain periods.

Each actor transmits the interests to the closest sensor nodes to start the selective flooding

(i.e. forwarding only the packets from higher hop neighbors) of the interests in its area. When

a sensor node receives a new interest, it updates its subscription table. If the sensor node

observes an event that the sink is interested, then it will generate data packets. However if
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a node does not sense an event but it is only on the path of data transmission, then it will

keep the interest in its subscription table and use this information when routing the data

packets.

At the end of this phase, each sensor node knows which type of packets to generate

and which events to generate packets for. We define the interests, which the sensor nodes

generate packets for, as the active interests. Each sensor node also has the interests in their

subscription table for which they reside on the path from the reporting sensor node to the

actor. This type of interests is defined as passive interests and sensor nodes keep only on-off

information for these interests.

3.2.2 Ranking interests

The requirements of the network are distributed by using the interests. However this ap-

proach of Intanagonwiwat et al. [7] have disadvantages for a network deployed to collect

information from an environment for a long time. In this approach, the interests of the sink

can be changed only by sending new interests. Even if the collected values stay constant for

an event type with an initially high weight, that event type stays still important unless the

collected values are actively observed and the interests are changed.

We consider a more dynamic behavior to create a self-organizing protocol, in which the

change in the observed values for an interest defines the importance of the interest. Our

system changes the interests dynamically according to the events occurred. Therefore as the
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events are observed, our system also ranks the interests to increase the quality of observation

and to reduce the traffic and energy expenditure.

The ranking method of our approach is based on the amount of changes in the observed

values for events of interest. Consequently the importance of the interests is determined

according to the percentage changes in their values. For instance if the packets received

in response to interest A in a predefined period of time have high fluctuations in their

values compared to the constant values of interest B packets, then A is considered as more

important than B for that time period. It is important to note that rankings of interests will

differ at each actor area as the interests are ranked at each actor depending on the events

locally in that area.

3.2.2.1 Ranking requirements

An interest, which had no change in its observed values for a long time, must not gain high

importance suddenly when there are events with fluctuating values for that interest in only

one time period. In other words, a sudden increase in the value of a packet in response to

an interest must not be very effective on the ranking of the interests. In other words, the

ranking method must not be sensitive. Therefore the sensitivity of the method is critical

when choosing the method for ranking interests, which eliminates some of the most popular

ranking algorithms.
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Chartier et al. [69] analyzed the sensitivity of Colley, Massey and Markov methods to

small perturbations and determined how much the ranking is affected by these changes.

Similar discrepancies in the input and output ranking data showed instability of the ranking

methods. The authors concluded that while the Colley and Massey methods are insensitive

to small changes, the Page Rank method is highly sensitive to such changes, often resulting

in anomalies in rankings. While it is a desirable property in web page ranking, it does not

apply to sports or our approach. A single loose should not change the whole ranking list

or result in a rank jump. Colley and Massey methods have an isolated response, resulting

in changes to the rankings of only two objects in question. Colley method is based only on

results from the field, which is more appropriate for interests since metrics such as homefield

advantage have no correspondence in our approach. Therefore Colley method is chosen over

the Massey method for our application.

3.2.2.2 Ranking by Colley based method

The main goal of Colley Matrix Method [65] is producing “fair” rankings in sports. It has

been used as a part of Bowl Championship Series (BCS). Wins and losses of the teams

are the only input information used in this model. Mathematical fundamentals of Colley

method are described in this section. When describing the method, the parameters that our

approach used and their equivalent terms in sports are given.
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When the percentage change on the value of an interest is more than the change in another

interest, it will be considered as a win of the former over the later one and the number of

wins of an interest i is defined as nw,i. ntotal,i is the total number of comparisons made, which

corresponds to the number of games in sports. In traditional ranking methods, the winning

ratio, which is defined as
nw,i

ntotal,i
, is used. Colley method instead defines a modified rating of

ri for interests, which is defined as follows [156]:

ri =
1 + nw,i

2 + ntotal,i

(3.1)

The advantage of using this equation for the definition is to avoid the inconsistency in

comparison of interests in specific conditions. For instance, the interests with no changes or

the interests with changes in every time period would have values of 0 and 1 respectively if

traditional win ratio is used instead of defined ri. In our application, the interests can have

initial values or the weights of the interests can be initially zero and dynamically modifiable.

When interests have no initial weights after the first time period, the interest with a change is

“infinitely better” than the interest without a change. Using the Colley method, the former

interest (r = 2
3
) would have a twice the better score compared to the later interest (r = 1

3
).

Hence, the initial rating of any interest with no changes is equal to 1
2
, which is the median

value between 0 and 1. Depending on the comparisons, a win increases and loss decreases

the value of r. This approach results in a system less sensitive to changes. In order to adjust

the performance measure to the weight of the other interests, we transform the values of nw

as follows:
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nw =
(nw − nl)

2
+

ntotal

2
=

(nw − nl)

2
+

ntotal
∑

j=1

1

2
(3.2)

Instead of considering the actual number of wins, the effective number of wins neff
w,i w is

calculated by adjusting the second term of the expression, which represents the summation of

ntotal terms equal to 1
2
corresponding to the default rating of an interest without a comparison.

For taking the strength of the other interests into account, these terms are substituted by

actual ratings of the interests rj and the formula for the effective number of wins for an

interest i is as follows:

neff
w,i =

(nw,i − nl,i)

2
+

ntotal,i
∑

k=1

Xijkrj (3.3)

Combining these formulas, the linear equation relating the ratings of an interest and the

others is written as:

(2 + ntotal,i)ri −
ntotal,i
∑

j=1

Xijkrj =
(nw,i − nl,i)

2
(3.4)

If the total number of interests at an actor is equal to N , then the equations of this form

will be written for all of them, which results in the linear system with N equations and N

variables:

C~r = ~b (3.5)

where ~r and ~b and C (Colley matrix) are defined as follows:
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C = [cij]i,j = 1 . . . n (3.6)

The elements of Colley matrix are defined as follows:

cii = 2 + ntotal,i (3.7)

cij = −nj,i (3.8)

where nj,i is the number of times the interests i and j compared to each other.

The matrix C is positive definite [65], which allows the efficient solving of the linear

system of C, ~r and ~b using standard techniques. Cholesky decomposition can be used

with back-substitution to solve this linear system of equations. The solution of this system

would represent the vector of numbers corresponding to the ratings of all N interests, and

the resulting rankings are determined by sorting the elements of the solution vector r in

decreasing order.
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When adapting the Colley method for ranking interests, there are two important con-

straints: the duration of a period and the minimum change in the sensed values to update

weights.

Our system continuously collects information from the environment. The duration of the

time period, which will be used to compare interests, depends on the particular requirements

of the systems. Thus, the elements of Colley matrix become:

cii = 2 +
Tt

t
cij = −Tj,i

t
(3.9)

where Tt is the total time passed, Tj,i is the total time that both interest i and interest j are

active and t is the chosen time period.

The actors update the weights of the interests in its records according to their calculated

rankings. However if the weights are updated at the actor areas for every change in the

ranking values of the interests, these updates can create excessive network traffic. Therefore

a range (l) is defined to update the network as follows:

l =

N
∑

i=0

(

wi

(

T
t

)

− wi

(

T
t
− 1

))

N
(3.10)

where wi is the weight of the interest i.

There is a trade-off between the value of l and the number of updates for interests. If we

choose a very small value for l, there will be high responsiveness to the changes in observed

values with the requirement of frequent updates in each actor area. If l is chosen to be large,
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then the number of updates decreases. However, if l is very large, the responsiveness to

changes will be low and the system will essentially behave as if the weights are predefined.

3.2.3 Data transmission

Traditional approaches achieve QoS support in terms of rate guarantees provided to different

flows by keeping detailed state information for each flow. The state information includes the

expected rate of the flow, the real rate of the flow, update time for the information, and the

time window to make decisions. However, this approach is not feasible with low memory

and energy resources of sensor nodes. In order to eliminate the per-flow state and high

computation requirements, we use a method based on the approach of Stoica et al. [157],

which can be described as “having packets carry the state”.

The number of bits in the rate field of the packet denotes the rate of the packet Rp. There

are state encoding mechanisms in the literature by which large numbers can be represented by

small number of bits. Therefore each state variable can be restricted to a predefined number

of possible values to minimize the complexity of per packet processing. For instance, eight

bits ensure 256 (28) different values to assign for the rate of a packet at a sensor node.

When an event is captured by a sensor node, the node checks its subscription table. If

there is an active interest for that event, the sensor node generates a data packet to notify

the actor. The nodes, which capture events in the areas of interests, start the reporting of
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the events. The pseudocode of the routing algorithm at each sensor node is presented in

Algorithm 2.

Algorithm 2 Routing in a sensor node
1: Nf : Number of flows on the node

2: Ng : Number of greedy flows on the node

3: Cr: Remaining output capacity of the node

4: Cs: Output capacity used by the sharing flows

5: Re: Fair rate for flows on the node

6: Pd: Dropping probability of a packet

7: if a packet is received by a sensor node then

8: if the packet is a notification to an interest then

9: if it is the first packet for that interest then

10: set Fs for the interest

11: increment Nf by 1, reduce Cr by Rp

12: end if

13: if Cr > 0 then

14: forward the packet

15: else

16: if Rp > Re then

17: set the Fg of the interest

18: if the Fs of the interest is unset then

19: increase Cs by Rp, set Fs of the interest

20: end if

21: drop the packet with its Pd

22: if the packet is not dropped then

23: fill the rate field and forward the packet

24: end if

25: else

26: forward the packet

27: if the Fs of the interest is set then

28: reduce Cs by Rp

29: end if

30: unset Fg and Fs of the interest

31: end if

32: end if

33: else

34: if the packet is not in response to an interest then

35: drop the packet (unwanted packet)

36: end if

37: end if

38: end if
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Sensor nodes have a predefined maximum transmission capacity called “output capacity”

(Co). When an intermediate sensor node receives a data packet in response to a passive

interest, it switches this interest’s state to “on”. The total number of interests with state

“on”, (Nf ), represents the number of interests sharing the output capacity of this node. If

it is the first received packet for that interest, the output capacity is reduced by the rate of

the packet and saved as the remaining output capacity (Cr) of the node.

3.2.3.1 Packet processing

Cr > 0: The received packet doesn’t require any further processing or encoding unless the

output capacity is exceeded.

Cr < 0 and Rp > Re: Packet drops occur when Cr becomes negative. We define the

efficient rate (Re) as the amount of output capacity that the node can fairly employ for a

flow when Cr is negative. Re is formulated as follows:

Re =
Co

Nf

(3.11)

If the rate tag on a data packet is greater than Re, this means the packets of the interest

are received with a rate greater than the rate shared for that interest at that node. Hence

this interest will be tagged as “greedy” by setting the greedy flag (Fg) of the interest in the

subscription table. The number of packets to drop and the method to drop these packets
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must be determined in order to provide an efficient service to data traffic. It’s important to

note that Re is the maximum value a packet will be encoded with when all flows are received

with rates greater than the efficient rate.

There may be packets received with rate values lower than Re when Cr is negative. In

such a case, if all packets are encoded with rate values smaller than or equal to Re, there will

be an excess capacity that is not used. Our algorithm is designed to use this excess capacity

since efficient usage of resources is critical in QoS. Furthermore, our main constraint is

the rate of data flows and higher rates for flows can be achieved by employing the excess

bandwidth. Accordingly, we define the shared capacity Cs, the capacity shared among flows

that are received with rates greater than Re. The interests using Cs are defined as sharing

interests.

The inserted rate value represents the estimate of the flow’s incoming traffic at the next

node and it also depends on the importance of the packet. The priorities of interests are

specified by their weights. These values are expressed by the sink when registering the

interests and more important interests are registered with higher weights. Therefore the

new Rp depends on the weight of its interest wp and the number of sharing interests Ns and

it is calculated as:

Rp =
Cs · wp
∑Ns

i=0 wi

(3.12)
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Cr < 0 and Rp < Re: If Rp of a packet is lower than Re when Cr is negative, that packet is

forwarded without replacing its rate tag. The interest doesn’t share Cs with greedy interests,

so its flags are unset. An ungreedy interest can become greedy after new packets for different

interests are received by the node and since it uses Cs after that instant, its rate value is

added to Cs.

In order to insert an exact rate value in the packets, number of transmitted and dropped

packets must be recorded at the sensor node for a period of time, which is not efficient with

limited resources of the sensor nodes. Therefore packet dropping is done probabilistically at

sensor nodes using the rate tags, subscription tables and the output capacities. Dropping

probability of a packet increases as the difference between the calculated new rate and the

rate tag gets larger. The probability to drop a packet is defined as follows:

Dp = 1− Cs

Ns ·Rp

(3.13)

In contrast to sensors, actors keep state information for each flow. In order to estimate the

flow arrival rate, we use the following equation, which depends on the exponential averaging

formula in Stoica et al. [157].

Rnew
i = (1− e−T/K)

l

T
+ e−T/KRold

i (3.14)

where T is the time between the last two packets of the interest i, l is the packet length and

K is a constant. The actor nodes insert these flow rates on each packet they transmit. Using
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an exponential weight e−T k
i /K provides more reliable estimation for bursty traffic, even when

the packet inter-arrival time has significant variance.

Our application scenario is advantageous for using the approach of Stoica et al. [157]

compared to traditional internet routing scenarios. In traditional applications, packets are

labeled at the edges of the network by using an estimation algorithm and these labels are

updated at the core with a probabilistic approach until the packet reaches a boundary of the

network. However in our scenario, a packet is injected into the network with the exact rate

placed on its label. Then the tag is updated as the packet is transmitted to the closest actor.

An actor has information regarding the flows in its interest subscription table. There is no

extra need for exponential averaging to estimate the fair share rate at the actor node, which

is calculated using the rate and weight values expressed by the sink. By means of the high

transmission range of actor nodes, the data is transmitted to the sink via a path formed by

actor nodes.

3.3 Simulation study

3.3.1 Simulation environment

The simulations are carried out in OPNET modeler [158] to analyze the performance of

the protocol. All nodes in the system are stationary and in each simulation, a network

topology is generated with the a sink, and 60 sensor nodes distributed randomly over the

entire area (200x200m) with four actors at predefined locations. IEEE 802.11 is used as
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the underlying MAC layer with direct sequence physical characteristics, 8.02 · 10−6 Watts

transmission power, -95 dBm packet reception power threshold and auto assigned channel

settings of OPNET modeler. Transmission ranges of sensor and actor nodes are taken as 50

and 180 meters, respectively. The data packet size is constant and 256 bytes.

The performance of the protocol is evaluated by using the simulation metrics packet loss,

control overhead, memory consumption and end-to-end delay in the first set of experiments,

in which our protocol is compared to QBRP [27]. Simulation scenarios are chosen similar to

the ones used by Boukerche et al. [27] when evaluating the performance of QBRP. We also

have additional scenarios for evaluating the performance under certain conditions.

3.3.2 Simulation results

3.3.2.1 Packet loss

In order to create data traffic, eight event sources are placed in the field such that each

actor area has two event sources, producing interest 1 and 2 events with equal priorities.

Interest 2 packets are injected into the network five times more than interest 1 packets.

Since QBRP does not define a method for ranking interests, our protocol also worked with

constant interest weight values in these experiments.

Figure 3.3 denotes the packet loss with increasing event generation rates. Significantly

less number of packets are dropped compared to QBRP. As the number of dropped packets

decreases, the delivery rate and the reliability of the protocol increase. Additionally, Interest
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1 packets are protected while QBRP is not able to do so. Since both types of the traffic

have equal priorities, our algorithm tends to drop Interest 1 packets much less than greedy

Interest 2 packets. QBRP drops Interest 1 packets almost twice as much whereas the ratio

is much less when we compare dropped Interest 2 packets.

2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
0

2

4

6

8

10

12

14
x 10

4

Total event generation rate (bit/s)

N
u

m
b

e
r 

o
f 

d
ro

p
p

e
d

 p
a

ck
e

ts
 (

p
kt

s)

 

 

LRP − QS Interest−1 tra"c

LRP − QS Interest−2 tra"c

LRP − QS Total tra"c

QBRP − Interest−1 tra"c

QBRP − Interest−2 tra"c

QBRP − Total tra"c

Figure 3.3: Packet loss

3.3.2.2 Control overhead

Number of control packets is critical since increased traffic means more delay and energy

consumption. Boukerche et al. [27] showed that number of control packets used by QBRP

is not critically affected by the rate of packet generation. Hence we monitor the average

number of control packets used by the protocols with non-increasing packet generation rates
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but varying number of traffic types. Figure 3.4 shows that the proposed protocol outperforms

QBRP, by using 45 percent less control packets on average.
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Figure 3.4: Control overhead

3.3.2.3 Memory and energy consumption

The memory consumption is defined in the simulations as the total memory consumed by

all nodes. Figure 3.5 denotes memory consumption ratio of the protocols with increasing

number of interests. Sensor nodes are deployed randomly in the area in each scenario while

the positions of the sink and the actor nodes remain the same throughout the simulations.

Our protocol uses less than half of the memory used by QBRP in 95 percent of all cases

and also performs better with increasing number of interests. QBRP’s memory requirement

grows with an increasing rate with each additional interest type.

52



2 4 6 8 10 12 14 16 18 20
1

1.5

2

2.5

3

3.5

Random topology

M
e

m
o

ry
 u

sa
g

e
 r

a
ti

o
 (

Q
B

R
P

 /
 L

R
P

−
Q

S
)

 

 

No. of interests: 1

No. of interests: 2

No. of interests: 3

No. of interests: 4

Figure 3.5: Memory consumption

Figure 3.6 shows the mean of the ratio and the range for the ratio values observed in

the simulations for each number of interests. We find that our protocol uses less than half

of the memory used by QBRP in most cases and performs better with increasing number of

interests. As the number of interests exceeds two, the range between minimum and maximum

values for memory usage ratio increases.
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Figure 3.6: Memory consumption ratio

The memory consumption of QBRP depends highly on the locations of interests and the

sensor density in these locations. The probability of having different values for these metrics

increases with increasing number of interests. Therefore, the ranges for the ratios slightly

increase as the number of interests exceeds two. In correlation with the results on control

packets, the energy consumption of QBRP is greater than our protocol for all cases and the

ratio increases with the increasing number of interests as shown in Figure 3.7.
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Figure 3.7: Energy consumption ratio

3.3.2.4 End-to-end delay

Figure 3.8 shows end-to-end delay values with increasing number of events for our protocol

and QBRP for each number of events with 95% confidence interval. QBRP selects paths

efficiently with extensive data processing and memory consumption. However central pro-

cessing and the route configuration messages cause QBRP to generate extra traffic as we

have seen in previous simulation results. Our protocol achieves a delay performance similar

to QBRP without the increased control overhead, memory consumption or packet drop rate.
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Figure 3.8: End-to-end delay

Figure 3.9 presents the average end-to-end delay values with increasing number of sensor

nodes for LRP-QS and QBRP with a constant total event generation rate of 200 pkt/s. The

protocols have similar delay results for different network sizes and the delay performances of

both protocols improve as the number of sensor nodes increase. This result is due to the new

communication hops formed by the additional sensor nodes. LRP-QS dynamically adapts

to changes and performs better as the new paths are formed. The main sources of delay in

QBRP are central processing and route configuration messages, which create extra traffic

even when the network size is small. Therefore, the percentage change in the average delay

of our protocol is slightly higher than QBRP as the number of sensor nodes increase.
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3.3.2.5 Ranking

The main aim of ranking is assigning weights according to the changes in the values of the

collected data at the actor in response to the interests.

In the first set of experiments, performance of the ranking algorithm is evaluated in an

actor area. There are four types of interests, which have equal initial weights. The event

sources are placed in the area such that interest 1, interest 2 and interest 3 packets are

produced continuously with values in a range of ±50% of their initial values. On the other

hand, all events for interest 4 are produced with the constant initial value.
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Figure 3.10 shows the percentage changes of the collected values of interests compared to

the last value observed for the interests. Figure 3.10 denotes that interest 4 has the highest

fluctuation and interest 2 packets are produced with the least fluctuation.
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Figure 3.10: Percentage changes in the collected values for interests

Table 3.1 summarizes the rankings of interests and their percentages in the simulation.

Figure 3.10 and Table 3.1 show that Interest 1 and 2 have highest percentage changes. 58%

of the time Interest 1 and 32% of the time Interest 2 is the highest ranked interest. Since

Interest 4 has constant values, it always has the lowest ranking.
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Table 3.1: Interest ranks and percentages

Rank Interest 1 Interest 2 Interest 3 Interest 4

1st 58% 32% 10% 0%

2nd 36% 52% 12% 0%

3rd 6% 16% 78% 0%

4th 0% 0% 0% 100%

Figure 3.11 shows the calculated weight values for each interest during simulation. Inter-

est 1 has the highest ranking as the observed values for interest 1 has the highest changes.

Although interest 4 has the lowest ranking throughout the simulation, its weight is not re-

duced to zero in the system. Additionally, there are spikes in the values observed for Interest

3, which has otherwise small fluctuations. However these spikes do not affect the ranking of

the interest drastically, which shows the approach is not sensitive to abrupt changes.
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Figure 3.11: Weights of the interests
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As a comparative analysis, the weight values of each interest are also calculated according

to traditional sports ranking, which depends on the winning percentage. Figure 3.12 shows

that this method results in zero weight for the worst ranked interest in the experiment,

which prevents collecting information in response to that interest. Moreover the highest

fluctuations in one time period (wins) are more affective compared to results in Figure 3.11,

which provides a higher advantage for the winning interest, especially in the beginning of the

simulation. While Interest 1 gains approximately a weight of 0.5 with this ranking method

throughout the simulation, its average ranking is 0.38 in our protocol.
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Figure 3.12: Weights of the interests with win-ratio ranking

The dynamic ranking improves the performance of the network when the interest values

are updated according to the ranking. However frequent updates result in increased traffic

load and energy loss. Therefore the defined l value to update the network is critical. Table
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3.2 shows the required number of updates for different values of l. When l is set as 8x10−3

or higher, five updates are required in the actor’s area. In other words, only five updates are

required even if the actors are arranged to update the interests when sum of all changes in

the weights of interests is 3% or more.

Table 3.2: l values and required number of updates

l (×10−4) 288 250 225 200 175 75 63 50 38 25 13

Number of updates 1 2 3 4 5 6 7 8 11 21 33

In the next experiment, observed values for all interests fluctuate for first three time

periods. Then, only the collected values for interest 1 continue this behavior while the rest

of the observed values are stable for the remaining part of the simulation.

Figure 3.13 shows the calculated weight values for each interest during simulation. At

the end of third time period, interests 1, 2, 3 and 4 are ranked respectively. Ranking value

of Interest 2 is around 75% of the ranking value of Interest 1 whereas the ratio of Interests

4 and 3 ranking values is almost 50%. After the end of third time period, differences among

the weights of interests with stable observed values start to decrease. At the end of the

simulation they acquire very close values while preserving the same ranking order.

The behavior observed in Figure 3.13 shows that the main deciding factor of ranking

interests is the change in the observed values as it is one of the critical goals of its usage.

In addition, Interest 1 is not assigned with an extremely high weight although it is the only

interest with changing observed values. Therefore the system keeps the effect of changes in

the beginning of the simulation while giving more importance to fluctuating traffic type.
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Figure 3.13: Weights of the interests

Figure 3.14 shows that Interest 1 becomes very dominant when traditional win-ratio

ranking is used in the same conditions. Interest 2 and 3 lose half of their weights in 10 time

periods and the worst ranked interest is assigned with zero weight. Therefore there is no

protection for the traffic of interests other than Interest 1, which wouldn’t be acceptable to

collect periodical data even if the values do not change or slightly change.
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Figure 3.14: Weights of the interests with win-ratio rating
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CHAPTER 4

SELF ORGANIZED ROUTING

In this chapter, we consider a WSAN application scenario in Amazon rain-forest with a river

going through the forest (see Fig. 4.1). The actors are positioned at rare accessible parts

of the area, while the sensor nodes are thrown in the river for data collection. Equipped

with appropriate measurement technologies, sensor nodes are able to gather various kinds of

data while floating in the river. For instance, Regan et al. [9] deployed such a multi-sensor

system in the River Lee Co. Cork, Ireland to monitor water quality parameters such as pH,

temperature, conductivity, turbidity and dissolved oxygen. Although nodes move basically

in one direction in the river, they suffer from various peculiarities of the scenario such as

permanent velocity changes, sudden stops by obstacles, etc.

In summary, the circumstances of the application scenario rise the following challenges

for the design of an efficient routing protocol: (a) rapid changes of the neighborhood and

actor association demands an efficient and reliable transmission of data from sensor nodes

to the actors and (b) the dynamics of sensor nodes form a continuously varying topology

requiring a highly adaptive network organization.
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Figure 4.1: Amazon River application scenario.

In this chapter we propose Self-Organizing and Fair Routing Protocol (SOFROP) [15],

[14] to address in particular the following critical issues of the Amazon scenario:

Indeterministic dynamics: When deployed in the river, the sensor nodes are subject

to mobility. The sudden changes in current speed and direction combined with potential

obstacles makes connectivity crucial among the nodes and the mobility pattern predictable

only to a certain degree. Furthermore, the actor nodes can only be positioned on land and

the sparsely accessible environment often impedes deploying actor nodes according to an

ideal model, which would guarantee full connectivity at all times.

Restricted device deployment: Due to the node deployment restrictions the network

structure has to allow multi-hop communication, i.e., sensors that are not directly con-

nected to an actor should be allowed to communicate with other nodes to reach the actors.

However, due to the dynamics of the river, routing paths continuously change and network
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re-organization occurs frequently. Therefore, the network organization should be done lo-

cally, avoiding superfluous message exchange, and it also must enable efficient realization of

the routing protocol.

Effective data transmission: The QoS in WSANs is characterized according to the

employed applications, each of which has various constraints such as reliability, latency

and robustness. In SOFROP, we convey the QoS supporting characteristics of LRP-QS to

Amazon river scenario, in which the efficient utilization of the available bandwidth and the

minimization of packet drops are critical.

4.1 System model

The separation of the network organization from data transmission shows several benefits

since the network organization phase adjusts the topology of the sensor nodes to enable

efficient routing on the resulting overlay network. This separation reduces route failures and

packet delay, while increasing the network throughput [159]. Hence, SOFROP is divided into

two phases: the first phase is concerned with the network organization, where an overlay

network is formed and continuously adapted. The second phase is responsible for the data

transmission. In this section, the system model is explained briefly and the two phases of

SOFROP are described in detail.

We consider a wireless actor and sensor network N with the number of nodes |N | = n.

The wireless network N consists of a set of actor nodes A and a set of sensor nodes S,
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equipped with wireless communication capabilities. Our model also includes a sink node

responsible for data aggregation and enabling connectivity to a backbone network. Each

element in N is assigned to a transmission range r with a circular transmission area covering

a total area of r · π2. The sensor nodes and actors in S are assumed to have maximum

transmission ranges rs and ra, respectively, with circular transmission areas, where rs < ra

due to better computation and communication capabilities of the actors. For communication

between two nodes, a bidirectional connection must be established, i.e., a device s1 has to

be in the transmission range of s2, i.e d(s1, s2) ≤ rs.

4.1.1 Sensor nodes

For each sensor node s in S, we assume a neighboring listNeigh(s) ⊂ N , the set of nodes that

are directly connected to s, such that ∀u ∈ Neigh(s), d(s, u) ≤ rs. Neigh(s) is built initially

when a node enters the network and updated with an update frequency f or triggered by an

event.

Every node is able to communicate only with its current one-hop neighbors (a sensor

node or an actor), thus all communication in this model is locality preserving. Geographical

positions of the nodes are assumed to be unknown. Since data are transmitted in only one

direction and only local information is used, no multi-hop control communication need to be

applied. Communication links may fail or disappear from the network caused by obstacles
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for instance. Thus, the neighborhood of a node changes over time and nodes move with

random and nonconstant speed, acceleration and directions.

4.1.2 Actors and the sink

SOFROP manages actor-actor communication efficiently in order to save battery lifetime.

For this the actor nodes use their full transmission range in two cases only. One of these

cases is the time when the network is initialized, in which the actor nodes and the sink create

a network by using their full transmission ranges. In our particular application scenario, the

actor nodes are positioned such that each one has at least one actor or sink in its transmission

range. The sink communicates only with actors and it is also positioned in the transmission

range of at least one actor. Otherwise the sink would be required to receive the collected

data through the sensor nodes, which would create severe packet loss and delay conditions

in the network. Considering this layout and the small number of actor nodes, the following

steps are taken to form the links among actors and the sink:

• The sink starts the formation of links by flooding its ID and hop count (initialized as

1) encoded in a packet.

• This packet is forwarded in the network among actors and each actor saves the ID of

the actor from which it received the packet with the lowest hop count as the destination

for data traffic.
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• The packet is retransmitted with an incremented hop count only if its hop count is less

than the actor’s.

The other case when an actor uses its full transmission range is when it has data to

exchange, consolidate and transmit to the sink. Other than these two cases, actors use

the same transmission range as the sensor nodes in the network organization phase and

in communication with the sensor nodes. Although actor nodes typically have stronger

resources and more energy budget relative to sensor nodes, resource constraints apply to

both sensors and actor nodes [6]. Therefore this approach extends the lifetime of the actors,

which is an energy-efficient feature of SOFROP. However, it is important to note that the

actor-actor communication is not the main focus of SOFROP.

4.2 Self-organized and fair routing protocol

4.2.1 Network organization

The clustering is employed for the network organization in SOFROP. SOFROP must deal

with the fact that actor nodes are pre-assigned cluster heads and are not supposed to change

their status throughout the life-time of the network. Additionally, due to restrictions in the

deployment of actor nodes, multi-hop clusters must be created as a remedy and the number

of actor nodes must be minimized. The mobility of sensor nodes increases the number of

re-affiliations to the actors.
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4.2.1.1 SOFROP overlay network setting

The algorithm to create the overlay network does not require any initial configuration be-

sides that each node must choose a value between 1 and k, its weight. The weight 0 is

exclusively assigned to the actors. We assume that the only information available for a

sensor node s is the information of the direct neighbors Neigh(s) and their corresponding

weights w(Neigh(si)). The beaconing is most commonly used to provide this information.

However if beacon (or heartbeat) approach is used in the network, then the sensor nodes are

required to transmit a packet periodically even when there is no neighbor node to receive this

packet. Although beaconing is commonly used in sensor networks, it should be avoided when

possible due to the energy constraints of sensor nodes. To address the energy requirements

of the Amazon scenario, we propose a different approach to transfer the weight information:

• Only the actor nodes generate packets periodically, from the start of the network life-

time to the end. These packets are called Area Configuration Packets (ACP). An ACP

includes actor ID and hop value fields. The actor initializes these fields respectively

with its ID and hop value.

• A sensor node receiving the ACP drops the packet if the hop value on the packet

is greater than or equal to its own hop value. Otherwise the node stores the values

in actor ID and hop value fields of the packet and retransmits the packet with an

incremented hop value.
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• If a node loses its connection to the actors, it sets its hop value to the maximum hop

value defined for the network. A node loses its connection when it doesn’t receive

an ACP (either directly from an actor or by retransmission of other nodes) for the

predefined time defined for the network.

The nodes that lose the connection will be only in “listening” mode and they will not

transmit any packets while actor nodes periodically send ACPs. This structure is suitable

for WSANs since the complexity and resource requirement is focused on the actor nodes and

it requires less energy than beaconing for the sensor nodes.

4.2.1.2 SOFROP clustering algorithm

The network structure in SOFROP is formed and maintained by the state transitioning rules

of the clustering algorithm. Consider a node v with weight w(v). The state transition for

node v is given in Algorithm 3.

Algorithm 3 The state transitioning of a node v
1: min.weight= w(v)

2: for i ∈ Neigh(v) do

3: if w(i) < min.weight then

4: min.weight = w(i)

5: end if

6: end for

7: if min.weight < w(v) then

8: w(v) = min.weight+ 1

9: else if w(v)! = k then

10: w(v) = w(v) + 1

11: end if
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As each node applies Algorithm 3, the network structure is formed by copying the lowest

neighbor weight increased by one as the sensor nodes move into the transmission range of

the actors. This property is important in creation of a hierarchical structure. When a lower

weight node, which is not an actor attracts surrounding nodes with higher weights, this node

successively increases its weight to avoid a fragmented structure.

Isolated nodes with weight k are physically able to communicate with neighbors having

weight k, but according to our network organization phase no logical communication path is

built. In order to include the isolated nodes in the network, a solution could be to increase the

difference of 0 and k, forcing this phase to build longer communication paths. The network

designer, however, must consider the velocity and perturbations of the river affecting the

nodes. If the paths become extremely long, no effective routing can be conducted or the

messages from the most distant node may fail to reach the actor node. For that reason, the

difference between 0 and k must be chosen according to the environmental conditions. Thus,

sensor nodes outside the coverage area of the actor nodes are simply ignored and they do

not influence the remaining network due to their k-weight.

This phase uses only local information for the decision making process and all the nodes

rapidly update their data as the network structure changes. In SOFROP, sensor nodes use

only the information on the packets they receive; they do not keep any global data about

the network.

72



4.2.2 Data transmission

The network organization phase provides sensor nodes the information about lower hop

neighbors and the number of hops needed to reach the closest actor. The sensor nodes

collect information from the environment as they float in the river with the objective to

transfer data to the actor nodes.

“Interest” term is used in this protocol as in Chapter 3. Sensor nodes must be aware of the

sink’s interests in order to gather the required information from the environment while they

float in the river. One possible approach to this problem is conveying the interest information

to sensor nodes as they float in the river. This method allows a sink to dynamically distribute

or change its interests anytime in the network. However in our application scenario, the

sensor nodes are mobile and they move with the flow of the river, creating random and hard-

to-estimate paths. The current of Amazon River can reach up to a speed of 7 km/hr. Having

this speed and mobility pattern, some sensor nodes will be accessible for very short periods of

time, which may not be enough to convey the interests and collect data from the environment

according to these interests. Moreover, a sensor node may observe important events before it

receives the interests, which can result in data loss. This may be critical for the network since

the sensor nodes do not follow repeating paths. Changing interest distribution also requires

a high number of updates as the actor areas continuously change in SOFROP. Therefore

conveying the interests is feasible in a more stable scenario, for instance when the nodes are

stationary. In SOFROP, the interests are predefined at sensor nodes before they are thrown
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into the river. Each sensor has a predefined list of the information to be collected from the

environment, called the “interest table”.

As in Chapter 3, a node capturing an event encodes data packets with the rate it transmits

them (αp) and the interest (ip) that the packets belong to. The receiving node takes the

forwarding decision related to this packet based on the packet’s information. We use eight

bits to express the packet transmission rate and three bits to express the interest.

When an event is captured by a sensor node, the node checks its interest table to decide

whether the sink needs to be notified of this event or not. If there is an interest for that

event in the interest table, it is called an on interest for that node and the node generates

data packets to report the event to the closest actor. A sensor node keeps the total number

of on interests. The maximum packet transmission rate of a sensor node is called output

capacity (Co) in SOFROP. The rate field of the received packets is used to determine the

remaining output capacity (Cr) of the node. Co is reduced by the rate value on the first

packet of an interest and recorded as the remaining output capacity (Cr) of the node.

Sensor nodes have buffers with predefined sizes. The buffer acts as a temporary space

where the packets are held until the output link is available. Sensor buffers are simple in

SOFROP; they work in first in first out (FIFO) fashion, outputting packets in the order

they arrive. If we assume that the packet arrival process at each input link is a Bernoulli

process with success probability ps, the number of packet arrivals (A) at the buffer during a

given time window has the binomial probability mass function and the probability generating

function of the Bernoulli random variable with parameter ps is as follows:
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GA(z) =
n

∑

i=0

aiz
i = (1− ps + psz)

n (4.1)

A sensor node does not drop any packets when Cr ≥ 0, which means the sensor node’s

resources are adequate to serve the received packets. When Cr ≥ 0, the number of packets

in the buffer at the end of the kth time window (Bk) can be defined in terms of the number

of packets in the buffer at the end of the (k − 1)th time window and the number of packets

arriving during the kth time window (Ak) as follows:

Bk = max(0, Bk−1 + Ak − 1) (4.2)

The underlying stochastic process of Bk can be described by a Discrete Time Markov

Chain (DTMC) with states qi = P (N = i) [160]. The state diagram of the DTMC is shown

in Fig. 4.2.
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Figure 4.2: State diagram of the DTMC for the queue length of a sensor node.

If the sensor node does not drop any packets for a period of time, it means nps ≤ 1 in

one time window of this period. Then the steady-state of the number of packets in the buffer

exists. Consequently the buffer occupancy can be formulated as follows:
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Bk = max(0, B + A− 1) (4.3)

Then its probability generating function (pgf) is found as follows:

GB(z) =
∞
∑

j=0

P (B = j)zj

=
∞
∑

j=0

qjz
j

= a0q0 +
∞
∑

j=0

P (B + A− 1 = j)zj

= a0q0 +
GB(z)GA(z)− a0q0

z

=
a0q0(z − 1)

z −GA(z)
(4.4)

The probability generating function satisfies GB(1) = 1. Since limz→1 a0q0(z − 1) =

limz→1 z −GA(z) = 0, we can apply l’Hopital’s rule:

1 = GB(z) =
a0q0

1−G′
A(1)

=
a0q0

1− nps
(4.5)

Therefore a0q0 = 1− nps. After substitution,

GB(z) =
(1− nps)(1− z)

GA(z)− z

=
(1− nps)(1− z)

(1− ps + psz)n − z
(4.6)
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The expected value of GB(z) is equal to the mean steady-state queue size of the buffer.

It is found by differentiating GB(z) with respect to z and taking the limit as z → 1:

E(B) =
n(n− 1)p2s
2(1− nps)

=
(n− 1)

n

(nps)
2

2(1− nps)
(4.7)

The routing of the packets are handled as in Chapter 3, we define a fair rate (αf ) value

to forward/drop packets. The fair rate for a node depends on the number of on interests

(Ni) and defined as follows:

αf = Co/Ni (4.8)

It is important to note that if all the packets are received with rates greater than αf , αf

is the maximum rate value that a packet will be encoded with when Cr is negative. When

Cr is negative but the rate of the packet is smaller than αf , the packet is forwarded without

changing the values in its fields.

When a sensor node is not affiliated with an actor area, it waits for an area configuration

packet (ACP). The node does not transmit any packets while waiting for an ACP, but fills

its buffer with the packets it generated according to the sensed events. This is an efficient

and feasible approach since the topology of the network changes continuously and the node

can transmit the generated packets whenever it receives an ACP from a sensor node. If the

node cannot be affiliated to an actor area before its buffer becomes full, it keeps its buffer

updated with the latest observations.
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4.2.3 Illustration of SOFROP

An example sequence for network organization of four sensor nodes and one actor is demon-

strated in Fig. 5.1. At the beginning of the sequence, the actor node has a weight of zero

and all sensor nodes are initialized with the weight value k. The remaining sequence shows

how the network structure is formed. When the sensor nodes get into transmission range of

an actor, they start to take weights according to Algorithm 3.
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Figure 4.3: An example sequence of a small group of sensor nodes and an actor.

An example of a lower weight node attracting surrounding nodes is illustrated in Fig.

4.4, where one of the nodes is moving faster compared to the other nodes in the scenario.

This is a possible case due to potential obstacles and unpredictable flow rate changes in the

river. The fast-moving node initially has a weight of one since it is directly connected to the
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actor at the beginning, but it loses its connection to the actor after it moves further away.

However it still receives ACPs since it is in the transmission range of a node with weight

three. Then, it increases its weight to connect to the closest actor.
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Figure 4.4: An example sequence on avoidance of a fragmented structure.

A sequence of the dynamic overlay network produced by network organization is denoted

in Fig. 4.5. Three actors are deployed uniformly at random and remain static while 60

sensor nodes are flowing from left to right, where the maximum hop-count allowed by the

network organization is four. Note that Fig. 4.5 depicts only one of the different outcomes

possible due to asynchrony.
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t = 4 sec
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Sensor node


Actor node


Flow direction
 Flow direction


Flow direction
 Flow direction


Figure 4.5: A sequence of dynamic overlay network formation.

An example sequence of packet transmissions in a system of four sensor nodes is shown

in Fig. 4.6, 4.7 and 4.8. This system can be considered as a collection of any four sensor

nodes in a network where SOFROP is employed. The initial state of the system is shown in

Fig. 4.6. Nodes a and b have the hop-counts of three, node c and node d have hop-counts

of two and one respectively. All sensor nodes are assumed to have an output capacity of

ten packets per second. The packet type is presented in the packet header (T1: type-1 and

T2: type-2). The value of the packet’s rate field is shown with the numerical value and the

destination of the packet is presented as a letter, showing the destination sensor node.
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Figure 4.6: An example system for demonstration of routing and labeling.

Sensor node a has a packet with the rate field value of eight and sensor node b has a

packet with the rate field value of five. Both of these packets are destined for node c and

they belong to different interests. An important property of SOFROP is denoted in Fig.

4.7. Since b is in transmission range of a, it receives the packet from a. However the packet

is not processed and directly ignored at b since the destinations for data at sensor nodes are

determined during the network organization. The interest table of node c is also shown in

Fig. 4.7. The types of packets from a and b have the same priority and these priority levels

are predefined in the table of node c.
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Figure 4.7: An example system for demonstration of routing and labeling.

The node c receives the packets of two different types and these two flows share the output

capacity of node c. Since both of the interests have the same priority, they must share the

output capacity equally according to SOFROP. Since the output capacity of the node is ten

packets per second, the fair share of the bandwidth for two flows is five packets per second.

The node c drops packets from the flow, which are received from node a. Therefore the rate

values on the packets, which are received from a and forwarded to d, are updated according

to the calculated Pd and αp. In Fig. 4.8, the rate field of the forwarded packet, which was

received from a, is assumed to be changed to five, which would be the case in ideal conditions.
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Figure 4.8: An example system for demonstration of routing and labeling.

In Fig. 4.9 and 4.10, the same system of nodes as in Fig. 4.6 is used with different values

for the rate fields of the packets. The values of the rate fields are changed to six and two in

this example for the packets coming from nodes a and b respectively. All packets have the

same priority, which is predefined in the interest table of node c.

a


b


c
 d


hop count : 3


hop count : 3


hop count : 2


hop count : 1


Interest table


Type
 Pri.


1


T2
 6
 C


T1
 2
 C


T1


1
T2


Figure 4.9: An example system demonstrating bandwidth utilization.

According to the initial property of SOFROP, which is described in Fig. 4.6 to 4.8, flows

with equal priority share the output capacity of the transmitting node equally. Therefore if

only that rule is employed by SOFROP, then the type-1 packets transmitted by node c will
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have rate values of two. This means most of the type-1 packets will be dropped according

to Pd calculation although a big portion of output capacity of the node is not utilized. This

is not acceptable in Amazon scenario where QoS has high priority as explained in the initial

sections. Therefore in this scenario, packets of both flows are transmitted with unmodified

rate fields.
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Figure 4.10: Both of the packets are forwarded unmodified.

In Fig. 4.11 and 4.12, the same system of nodes as in Fig. 4.6 is used with different

rate fields of the packets to demonstrate that both packet priority and bandwidth utilization

have important effects in the decision making process of SOFROP. In this example, the rate

fields of the packets are changed to five and six. Different from the previous examples, the

packets received from nodes a and b have different priorities. The priority of the packets

from node b is twice the priority of the packets from node a.
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Figure 4.11: An example system for demonstration of routing and labeling.

The priorities of the flows are also important in this example when dropping the packets.

Since there are two active flows on the node and the priority of one is half of the other, there

will not be any packet drop from the flow with higher priority unless αp becomes greater

than Co · 2/3 according to SOFROP. Therefore packets from node b are forwarded without

modification whereas the packets from node a are dropped with the corresponding Pd and

the values of the rate fields of forwarded packets from node a are changed accordingly. In

Fig. 4.12, the rate field of the forwarded packet, which was received from node a, is changed

to four.
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Figure 4.12: An example system for demonstration of routing and labeling.

4.3 Simulation study

4.3.1 Simulation environment and metrics

The simulations are carried out by OPNET modeler [158]. The transmission range of a

sensor node is 40 meters, a realistic range for a sensor node (for instance Cerpa et al. [161]

finds the transmission range of second generation Mica-2 motes to be between 20 and 50

meters in an outdoor habitat). The assumptions include a queue size of 20 packets and a

data rate of 10 packets per second. The IEEE 802.11 is used as the underlying MAC layer

of the nodes and wireless LAN model in OPNET allows transmission power of a node to

be defined as an attribute by means of OPNET’s transceiver pipeline implementation. The

relation between the transmission power of a node (T in Watts) and its transmission range

(r) is defined as T =
(

4πr
0.12476

)2 · 10−12.5. Table 6.4 summarizes the simulation parameters

used in our experimental setup.
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Table 4.1: Simulation parameters

Number of sensor nodes 60

Total area 200x300

Sensor transmission range 40 (meters)

Number of actor nodes 4

Traffic type CBR

Data packet size 256 bytes

The communication graph is built according to the SOFROP system model. In each

simulation, a network topology is generated with the sink located at one side of the area and

actor located randomly either on the sides of the river or on the islands. The communication

links may fail or disappear from the network caused by several reasons such as obstacles in

the river. A random mobility profile is created in OPNET modeler for the sensor nodes so

that the nodes are moving in the watercourse with the settings given in Table 4.2.

Table 4.2: Mobility Settings

Starting point x= 0-10 m; y = 0-300 m

Destination point x= 100-200 m; y = 0-300 m

Pausing time 0-10 sec

Speed 0-3 m/sec

The protocol stack of the sensor node model is created in OPNET modeler as shown in

Fig. 4.13. Wireless local area network (WLAN) receiver and transmitter form the physical

layer of a sensor node model. WLAN MAC layer interface is the data link layer used in

OPNET 802.11 implementations and it is the interface between the routing layer and the

87



WLAN MAC layer. The attributes of underlying IEEE 802.11 MAC layer used are shown in

Table 4.3. The routing layer is where algorithm of SOFROP is mainly implemented. Sensor

sink and sensor source modules serve as an application layer for the sensor node model. The

source module is capable of creating packets when the sensor node is required to transmit

information about its conditions. The sink module is capable of generating responses for the

queries to the sensor node. It can also be used to collect necessary statistics.

sensor sink
 sensor source


routing


wlan_mac_interface


wlan_mac


wlan_port_rx_0_0
 wlan_port_tx_0_0


Figure 4.13: Sensor node model created in OPNET.
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Table 4.3: MAC layer attributes of sensor nodes

Physical characteristics Direct sequence

Transmit power (W) 8.02 · 10−6

Reception power threshold (dBm) -95

Channel settings Auto assigned

Short retry limit 7

Long retry limit 4

PCF Disabled

HCF Not supported

Amazon River is the second largest river in the world with islands on it and its width

ranges from a few hundred meters to 10 kilometers even at low season. The simulation

study does not reflect actual dimensions of the Amazon scenario since we concentrate on

the reproducibility of the results in the current work. As a part of the future work, we plan

to conduct simulations with exact dimensions and more complex mobility models, and real

world experiments on site.

4.3.2 Simulation results

We study the effect of the proposed algorithm with the following simulation metrics: fairness,

number of packets received, maximum hop value in the network and number of sensor and

actor nodes.
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4.3.2.1 Experiment 1

In order to create data traffic, twenty traffic sources are randomly placed in the network.

These event sources simulate the points where it is possible to make observation for the

sensor nodes in the network. They generate three different types of packets with constant

rate of 10 packets per second, which creates congestion and bottlenecks in the network from

time to time depending on the dynamic topology. All three of these traffic types have equal

priorities. While 50% of the produced packets are type-1, type-2 and type-3 traffic have 30%

and 20% allocations respectively. Twenty simulation runs were executed; the actor nodes

and event sources are distributed randomly in the area for each simulation run. In order to

see the effect of fairness, the same set of simulations is performed without using the fairness

property of SOFROP. In other words, the rates or priority fields of the packets are not taken

into account while taking routing decisions.

In Fig. 4.14, we can observe two important characteristics of SOFROP. First, the number

of received packets for each type is very close to each other. Since packets from each type are

produced at very large numbers, they create bottlenecks in the network. At these bottleneck

points, higher the rate on a packet, greater the chance of that packet being dropped according

to the routing principles of SOFROP. SOFROP drops more packets from the type of traffic

with higher rate among the types with same priorities in a congestion situation. This is a

desired property for the network since the sensor nodes are collecting information from the

network and information on a single traffic type should not suppress the others. However
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when we take fairness properties out of SOFROP, we cannot observe the same property.

Type-1 traffic receives more resources than for the other types in this case and additionally

the total number of received packets is smaller.
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Figure 4.14: Number of packets received by actors in Experiment 1.

4.3.2.2 Experiment 2

In order to test another property of SOFROP, the same set of simulations is run with different

settings. The first setting change is in the percentages of the produced traffic types. In this

experiment, 50 percent of the produced packets are type-1, 45 percent of them are type-2

and only 5 percent are type-3. As for the second change, we also include priorities in this

case. While type-1 and type-2 packets have the same priority, the priority of type-3 packets

is three times larger. This means that type-3 information is critical for the network. Fig.
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4.15 shows the number of packets of each type received by the actors. The results show that

SOFROP protects the critical type of traffic and drops a very small number of packets.
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Figure 4.15: Number of packets received by actors in Experiment 2.

4.3.2.3 Experiment 3

Another set of twenty simulations with the same settings in Experiment 1 is run without

using the bandwidth utilization property of SOFROP. In Fig. 4.16, the lines corresponding

to the runs with SOFROP are labeled as “SOFROP” and the lines corresponding to the

runs without the utilization property are labeled as “No BW Util.”. Therefore in these

experiments, the only constraint is fairness but the utilization of the resources is not taken

into account while taking routing decisions for “No Util.” cases.
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In Fig. 4.16 the number of received packets for each type of packets is very close to each

other in both cases. This is the property observed in Fig. 4.14, which is also expected in the

runs without utilization since the only constraint is fairness. However we also observe that

the number of received packets by actors without utilization property is less than SOFROP.

The output capacity of each sensor node in the network is used at most three times the rate

of the flow with the minimum rate since all flows have same priorities.
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Figure 4.16: Number of packets received by actors in Experiment 3.

4.3.2.4 Experiment 4

The delay characteristics of SOFROP are observed by using a simulation set similar to the

one in Experiment 2. Delay values depend fairly on topology in our application scenario

since the path of a packet changes with the topology and the number of actors. It is shown
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in Fig. 4.17 that SOFROP performs clearly better when it is fair, which is critical when

combined with the previous results. The results indicate that SOFROP not only protects

critical packets but also delivers packets with a low average delay, which is another main

QoS parameter.
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Figure 4.17: End-to-end delay in Experiment 4.

4.3.2.5 Experiment 5

The SOFROP’s coverage properties are investigated using the same simulation settings as

the previous experiment and the number of connected and unconnected nodes is observed in

this experiment. Besides we measured the hop distribution for k values in between 3 and 6.

The total of 25 simulations are run for each value of k, where each simulation period ends

as the first sensor node moves out of the area. The average numbers of sensor nodes with
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different hop-count values are presented in Fig. 4.18 for each k value. The results show that

number of unconnected nodes decreases by 20 to 30% as k is incremented by 1. The number

of nodes associated with an actor increases with increasing k; for example the average number

of unconnected nodes is 20 when k = 5. Fig. 4.18 also shows that at least 45% of the nodes

are in 2-hops distance for all values of k. Along with the other simulations, this experiment

also denotes high adaptability of SOFROP’s network organization to mobility.
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Figure 4.18: Number of sensor nodes and their hop values for different k values.
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CHAPTER 5

MULTI HOP LOCALIZATION

In Amazon rain forest scenario presented in Chapter 4, the sensor nodes collect information

about the environment while they move in the river and transmit the collected data to the

actors. The positioning process is critical in this environment to match the collected data

with the position of a sensor node at a given time of the observation. In many application

scenarios, the collected data can become unusable if not associated with the position and

the time.

The river scenario introduces particular challenges for localization such as a continuous

change of the communication topology. Interference techniques and time stamps are used

in order to overcome these challenges and to reveal the paths that the sensor nodes follow

through the river. Hence the main goal of the positioning algorithm is not creating a self-

awareness of locations at sensor nodes but enriching the collected data with positioning

information.

In addition to the specific locations, the paths of the nodes also deliver important infor-

mation about the nodes and the environment such as speed, direction or the structure of the

terrain. For instance, the detection of a significant change in the speed of a majority of the

nodes in a certain location of the river may indicate that either the terrain is more inclined

in that area or there exists a small waterfall. Another example would be that if at a certain

point of the river, the differences among the speeds of the nodes are large, some nodes may

have run into obstacles while the others flow through the river without any problems.
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The main contribution of this chapter is the multi-hop locality preserving localization

algorithm design, which enriches the collected environmental data with position informa-

tion [16–18]. For the creation of the hierarchical network structure of sensor nodes and

actors, a network organization algorithm is also designed and used along with lateration for

localization. The organization in the network is dynamically adapted with the continuous

change of the communication topology, turning mobility into an advantage for energy effi-

ciency by eliminating the requirement for extra control messages. The accuracy of the event

localization is improved by including path estimation in the algorithm.

The second contribution of this chapter includes the adaptation of a realistic mobility

model according to the requirements of the river scenario. Since the sensor nodes drift in

the river with the force of the current and the use of a realistic current mobility model is

critical to analyze the accuracy of the localization algorithm. Amazon river has a high water

load and low slopes over the river basin, resulting in a meandering structure (see [162]).

Therefore, a subsurface meandering current mobility model with random surface motion is

incorporated into our algorithm taking the requirements of our scenario into consideration.

To the best of our knowledge, this is the first example of using meandering current mobility

model with random surface motion for the simulation of sensor and actor networks operating

on the surface of a river.

Additionally, a basic directional mobility model is also created without considering the

any specific characteristics of the river. This basic model is used to analyze the effects of

the realistic mobility on the performance of the algorithm.

97



The system is not intended to detect a specific event (e.g. fire or an intruder); instead

it is used to monitor the river for a period of time and to create a detailed set of data for

a complete analysis of the river. Therefore, different than most of the existing localization

algorithms, the sensor nodes are not informed about their positions and no computation is

specifically required at the sensor nodes by the positioning algorithm.

5.1 Network organization

5.1.1 Network layout

We consider a wireless sensor and actor network N with the number of nodes |N | = n. N

consists of a set of actor nodes A and a set of sensor nodes S. Our model also includes a

sink node responsible for data aggregation and connection of the environmental monitoring

network to a backbone network. The sensor nodes and actors are assumed to have maximum

transmission ranges rs and ra, respectively, with circular transmission areas, where rs < ra

due to better computation and communication capabilities of the actors. Every node is

able to communicate only with its current one-hop neighbors, forming a locality preserving

communication system.

Sensor nodes in the application scenario are deployed without any positioning adaptors.

Positioning devices such as GPS receivers are avoided to enable longer network lifetime with

the limited resources of sensor nodes. Besides long life-time requirements, the thick forest
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structure of Amazon is also a disadvantage for satellite communication. Therefore obtaining

location information by GPS is not a viable option in Amazon river monitoring scenario.

In our system, sensor nodes do not keep position information and each sensor node directly

communicates only with its immediate neighboring nodes. The local information of a sensor

node is forwarded to the actors via intermediate nodes. The actors acquire their positions

either from an external source or the position information is encoded in the deployment

phase.

Actors are positioned on the coastline or on the islands of the river such that each one has

at least one actor in its transmission range. The selection of actor positions and the actor

network affects the performance of the localization approach. However, the main focus of this

work is localization; therefore, actor positioning is not analyzed in detail. Actors use their

full transmission ranges only when communicating with other actors. When communicating

with sensor nodes, the actor nodes use the same transmission range as the sensor nodes in

order to have a bidirectional connection and save energy. The network among the actors

serves as the layout network for the processing of the collected data. This layout network is

formed by selectively flooding the network formation packet. Each actor sets the neighboring

actor in which the first network formation packet is received from, as the destination for the

collected monitoring data. Then, an actor can receive additional network formation packets.

The actors, from which these packets are received from, are saved in a list to be used in

cases such as a change in the communication backbone.
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5.1.2 Weight assignment for nodes

The main goal of our location estimation approach is to enhance the environmental monitor-

ing information collected from the river and create a detailed set of data with location and

time information for a complete analysis of the river characteristics. Therefore, in contrast

to most of the existing localization algorithms, the sensor nodes are not informed about their

positions. This way, no computation is specifically required by the localization algorithm at

the sensor nodes.

The mechanism for actor affiliation utilizes the weight values of the nodes. Each actor is

assigned to a constant weight k, which is initialized with a value based on the characteristics

of the network such as the communication ranges of the nodes or the physical constraints

of the environment. Sensor nodes store weight values for the actors they are affiliated with.

There is no initial configuration on the sensor nodes to affiliate them with the actors. The

only data available for a sensor node s as it floats in the river are the direct neighbors

Neigh(s) and their corresponding weights, w(Neigh(si)).

The list of the weights for the actors, which a sensor is affiliated with, is stored in a

weight table. The sensor nodes initially take random weight values between 0 and k − 1.

The weight value of each affiliation is updated according to “hop distance”, h, of the node

to the actor in which it gets updates from. Therefore the weight wa(v) of a sensor node v

for an actor a is as follows:
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wa(v) = ka − ha(v) (5.1)

The actors exchange packets with the sensor nodes in their transmission ranges. Each

actor encodes the transmitted packets with its ID and weight k, denoting that the packet is

originated at an actor. Each sensor node updates the weight values in its record via local

updates. Thus the information about each actor is distributed and updated at the affiliation

area of that actor.

A sensor node is capable of being affiliated with multiple actors and keeps the maximum

weight for each actor it receives the packets from, as depicted in Fig. 5.1. The structure

of the network is created as the sensor node continuously adapts its weight according to its

local neighborhood. For each of its affiliated actor nodes, a sensor node’s weight depends on

the highest neighbor weight, M for that actor. The sensor node is assigned with the weight

value of M − 1 unless it already has the same weight value. Hereby a hierarchical structure

is dynamically formed and updated by creating an ordered tree structure. Therefore a

sensor retransmits a packet received from an actor only if the weight value is less than the

sensor node’s weight for that actor. Otherwise the sensor node drops the packet to avoid

unnecessary traffic and energy consumption in the network.
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Figure 5.1: Single sensor node affiliated with multiple actors.

The condition, in which a sensor node doesn’t receive any weight updates, is defined as

the “loss of connection” for the sensor node. In that case, the sensor node sets its hop value

to the minimum value defined for the network. Then it operates only in “listening” mode

and does not transmit any packets. Listening nodes are physically able to exchange packets

with neighbors having zero weight. However, there is no communication among these nodes.

Algorithm 4 describes the state transitions for the node v depending on its actor affili-

ation. The weight w of each affiliation corresponds to “k-hop distance” of a node v to an

actor a.

The hierarchical structure of the network is created with the step, by which a sensor node

continuously adapts its weight to its local neighborhood. For each of its affiliated actor node,

a sensor node changes its weight to “the highest neighbor weight – 1” unless it already has

the same weight value. Hereby a hierarchical structure is dynamically formed and updated.
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Algorithm 4 The state transitions of a node v.
1: wa(v): The weight of node v for actor a

2: max(w(Neigh(va))): M

3: if v is a sensor node then

4: if v is not affiliated with an actor node then

5: wa(v) = 0

6: else if M = k then

7: wa(v) = k − 1

8: else if M ! = k & M > wa(v) then

9: wa(v) = M − 1

10: else if M < wa(v) then

11: wa(v) = wa(v)− 1

12: else if Neigh(va) = Empty then

13: wa(v) = 0

14: end if

15: else

16: wa(v) = k

17: end if

When floating in the river, some sensor node groups can lose connection to the actors

and particular nodes in the group can have weights higher than all of their neighbors without

having any affiliations to the actors. According to the hierarchical clustering weight, these

nodes attract surrounding sensor nodes with lower weights, which would cause unnecessary

data traffic since nodes with lower weights would transmit monitoring data towards the

nodes with higher weights. This is prevented in the algorithm by successively reducing the

weight of a node when it has the highest weight among its neighbors. The weight adaptation

continues until connecting to an existing actor or until the weight of the node becomes the

minimum value for the network.

Fig. 5.2 shows an example of a sensor node’s weight adaptation according to the algorithm

described above. All the other nodes in this example are assumed to be stationary and k

value for the network is set to four. The mobile node in Fig. 5.2 is initially not affiliated to
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any actors, so its weight is zero. Then the node becomes directly connected to an actor and

its weight becomes k − 1. As the node moves away from the actor node and affiliates with

another actor node, its weight changes according to “the highest neighbor weight – 1” rule.

Finally, it ends up not being affiliated with any actor node, its weight is decreased until it

becomes zero and stays there as stated in the last step.
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Figure 5.2: Weight adaptation of a sensor node.

Fig. 5.3 shows another example of a group of listening sensor nodes and their weight

(depicted as w in Fig. 5.3) adaptation. All the nodes in this example are assumed to preserve

their hop-distance to their neighbors during the specified period of time and k value for the

network is set to five. The situation in Fig. 5.3 can be considered as the time when this

group of four nodes just lost connection to an actor. Therefore none of the nodes is affiliated

with an actor. As can be seen in Fig. 5.3 the weight adaptation terminates at sixth step

when all the nodes have w = 0. In a realistic river environment, the neighbors of the nodes

change continuously with mobility.
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Figure 5.3: Weight adaptation for a group of sensor nodes.

5.1.3 Adapting k

One of the characteristics of our algorithm is that the nodes use only local information. The

sensor nodes update their data locally as the network topology changes due to node mobility.

The sensor nodes affiliated with an actor form the “affiliation area” of that actor. In other

words, if the neighbors of a sensor node which are affiliated with an actor, have zero weights,

then that sensor node cannot be affiliated with that actor and it is out of the coverage area.

When a sensor node is outside of all the affiliation areas, it is called an “unconnected node”.

The selection of k value of the actors is critical for the traffic and the energy consump-

tion in the network. In our algorithm, actor nodes adapt their k values according to their

observations. In order to find k, each actor follows the following steps:
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• The k is initialized with a high value (depending on the size of the network area) at

the actors. If the k value of an actor changes, the actor announces this change to the

other actors via the backbone.

• As the sensor nodes float into the reception range of actor nodes, they start to form

and update their weight tables as shown in Fig. 5.4. Actors also keep weight values

for the other actors with the same method.
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Figure 5.4: The weight tables of sensor nodes affiliated with two actors.

• Each actor computes a ku value for all of its neighbor actors as follows:

ku =
kn − wn

2
(5.2)

where kn is the neighbor’s k value and wn is the weight value of the actor for that

neighbor actor. ku represents the minimum number of hops between two actors. The

ku values are updated continuously such that the minimum is kept in the records for

each neighbor actor.
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• The distances from the neighbor actors are calculated. Actors have their location

information, so the distance (d) between two actors, i = 1, 2, is calculated simply by

using the Pythagoras theorem:

(x1 − x2)
2 + (y1 − y2)

2 = d2 (5.3)

• The actor’s k value is updated with the maximum of the ku values.
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k  for A & B = 1

k   for A & C = 2

u

0

0

0

u

Actor Weight

    A      4

    B      2

    C      0

Figure 5.5: An example of finding ku in a network with kn = 4.

An example of deciding on ku vaues in a network with kn = 4 is given in Fig. 5.5. Actor

A calculates the ku values for actor B and actor C depending on the weights of these actors

at actor A gathered by the network organization. These are the minimum ku values kept in

the records for each neighbor actor.

There are several aspects of k-adaptation which are critical for the algorithm. First,

an actor’s affiliation area is limited by adapting k, which reduces the number of packets

that sensor nodes transmit as they update their weights since they have fewer actors to
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maintain. As the packet transmission drops, the energy consumption also decreases in the

network. The other important aspect of k-adaptation is the hop-distance estimation since

the values calculated with this method are used when estimating the locations of the sensor

nodes. Moreover, many multi-hop localization algorithms in the literature become ineffective

as the topology becomes irregular. Our algorithm’s adaptation of k forces sensor nodes to

be affiliated only with actors in close proximity which reduces the negative impacts of the

irregular topology.

The packets originated from a sensor node v are transmitted to an actor a over a path

of ha(v) hops. Hence the maximum number of transmissions in the actor area of a with n

sensor nodes would be defined as
∑n

i=1 ha(vi) when each sensor node transmits a packet.

Then the improvement of the consumed energy in an actor area can be defined as follows:

Ei =
n

∑

i=1

hi −
n

∑

j=ka

hj (5.4)

The number of nodes in an actor area (n) decreases as the k value is adapted according

to the neighbor actors. If the distance to the furthest neighbor actor is da, the adapted k

value (ka) can be assumed to be da
2
. Then the number of sensor nodes affiliated with an actor

can be approximated in proportion to the change in the actor area, as n da
2

4r2k2
improvement

of the consumed energy in an actor area is denoted as follows:

Ei = hav(n− n
da

2

4rs2k2
) (5.5)
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where hav is the average hop value of the sensor nodes, which are not affiliated with the actor

a with the adaptation of k. In a uniform distribution of the sensor nodes, hav is greater than

1
2
(̇ d
2rs

+ k). Hence the improvement in energy can be approximated as follows:

Ei =
1

2

(

da
2rs

+ k

)(

n− n
da

2

4rs2k2

)

(5.6)

=
nda
4rs

(

1− (
da
2rsk

)2 − da
rsk

)

+
nk

2

The adaptation of k is also important for the hop-distance estimation since the values

calculated with this method are used when estimating the locations of the sensor nodes. The

adaptation of k forces sensor nodes to be affiliated only with actors in close proximity which

reduces the negative impact of the dynamically changing topology.

An actor keeps different k values for all the other actors that they store weight values for.

These values are used in the calculation of “1-hop distance”. The average 1-hop-distance

value is estimated as d
2ku

and this calculated value is used for localization purposes. The

sensor nodes dynamically store and update their weights as they float in the network. Actors

collect weight information when the data packets are transmitted to the actors. Sensor nodes

piggyback their weight tables to the data packets and these tables are used to estimate the

distances of the nodes to the actors. The estimated distance of a sensor node to an actor A

is calculated as follows:

109



dA = (kA − wA) ∗ hA (5.7)

where dA is the estimated distance to the actor A, wA is the weight of the sensor node for

the actor A and hA is the average 1-hop distance of actor A.

5.1.4 Mobility

The monitoring network aims to collect data from the unreachable parts of a river by allowing

sensor nodes to drift with the force of the river currents. This uncontrolled motion of the

sensor nodes follow the trajectories of the fluid parcels, making the mobility pattern more

complex than the traditional random way point mobility or the group mobility models. The

behavior of the network in the natural conditions of the river cannot be modeled with an

assumption of a simple mobility pattern for the sensor nodes. Therefore, the movements of

the sensor nodes must be modeled according to the properties of the river currents.

The motion of the subsurface currents in a river has several characteristic features. The

advection in a river is affected from the variations in water depth, channel geometry, and

the surface conditions. In a relatively short section of the river, the terrain can be assumed

to force a higher volume of flow in the center line. Therefore, the velocity of the particles or

the sensor nodes at the central stream will be higher than the ones closer to the boundaries.

Furthermore, roughness of the surface may lead to eddies where the sensor nodes will be

captured for a while and then possibly released to join the remaining part of the network.
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To model these properties, we adopt the motion of the subsurface currents, initially employed

in [99,100].

The channel geometry of the river will mandate time varying meander amplitude which

is denoted as follows:.

B(t) = B0 + ǫ cos(ωt+ θ) (5.8)

Here, ǫ determines the degree of chaotic advection, where for relatively large ǫ, the

particles are able to cross the jet in north to south direction or vice versa [163]. To model

the currents in a river, we select ǫ such that the sensor nodes are allowed to mix with the

jet stream. The direction of flow is denoted by ζ and it is defined as follows:

ζ = tan−1{Ak cos[k(x− cxt)]} (5.9)

Then, the motion of the sensor nodes can be defined with the following standard stream

function [164]:

Γ(x, y, t) = Γ0

{

1− tanh

[

y − η

ξ/cos(ζ)

]}

(5.10)

where ξ is the width of the jet and 2Γ0 is the total eastward transport.

The time-varying central streamline is defined by η and it is given by the following

equation:
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η = B(t) sin[k(x− cxt)] (5.11)

where k is the wave number defined in relation to the wavelength L, as k = 2π/L, and cx is

the phase speed of the sinusoidal meander [165].

where ξ is the width of the jet and 2Γ0 is the total eastward transport.

Eq. (5.10) represents the velocity field for an isopycnal surface where it is relevant to

assume that sensor nodes can easily adapt to pressure changes since they already carry

pressure sensor nodes as part of their monitoring task. To obtain the non-dimensional

eastward moving frame, we substitute x′ = x− cxt in ξ and in Eq. (5.11). Thus, Eq. (5.10)

takes the following form:

Γ(x′, y′) = Γ0

{

1− tanh

[

y′ − η′

ξ/cos(ζ ′)

]}

+ cxy
′ (5.12)

From Eq. (5.12), the velocity of a sensor node is computed by a simple derivation as

follows:

u =
dx

dt
= −∂Γ

∂y
, v =

dy

dt
=

∂Γ

∂x
. (5.13)

In addition to the subsurface current mobility model, a basic directional mobility model

is used to investigate the performance of the localization algorithm in different mobility

conditions. In this second mobility model, each sensor node floats in the watercourse from a

predetermined origin on one side of the river to a randomly chosen destination on the other

side on a linear path.
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5.2 Localization

The distance estimation is based on the number of hops needed to reach from the sensor

nodes to the actor nodes. Therefore it’s similar to the distance vector (DV) based approach of

Niculescu and Nath’s model [76]. However, Niculescu and Nath’s model is designed for static

networks and additionally, in most of the DV-based solutions, sensor nodes need to assign a

fixed memory to save the locations of all the landmarks, hop-counts to these landmarks and

average hop-distance values. In our approach, a sensor node keeps only the weight values

for its affiliated actor nodes. All the other computation and memory requirements of the

algorithm are handled by the actors and the sink, which is a better-fit for WSAN structure in

terms of the usage of memory, computational resources and energy. Hereby, the information

flooding, which is common and intense in DV-based solutions, is also minimized.

When the sensing sensor node transmits its weight values for three actors, its distances

to these actors are estimated according to the “1-hop distance” value and the weights. Then,

its position is calculated based on the acquired distances and the localization information

obtained by the lateration.

The estimated distance of the sensor node is calculated for each of its affiliated actor and

then these values are plugged into the lateration operation for the estimation of the sensor

nodes position. When a sensor node is affiliated with multiple actor nodes, its position

estimation can be represented with a system of equations, written in matrix form as follows:
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(5.14)

where (xi),yi), i = 1, ...n, are the positions of the n actors and di, i = 1, ...n, are the estimated

distance values.

The solution pair of this system, (xs,ys),which minimizes ‖Ax − B‖2, is the pair that

minimizes the mean square error, where 0.5A is the left hand side matrix, B is the right

hand side matrix and x is the vector for (xs,ys) pair. Since ‖.‖2 is minimized, the system is

solved with minimum average error for all positions of the actors that the sensor is affiliated

with.

For any vector v, ‖v‖22 is equal to v
T
v, which can be used to find a solution for x.

Therefore, if the same expression is written for ‖Ax − B‖, an equation for x can be found:

‖Ax − B‖22 = x
T
A

T
Ax− 2xT

A
T
B +B

T
B (5.15)

This expression is minimized when the mean square error is minimized. Therefore, the

gradient of the expression has to be set to zero considering it as a function of x:

2AT
Ax− 2AT

B = 0 ⇔ A
T
Ax = A

T
B (5.16)
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This is the normal equation for the linear least squares problem and it has a unique

solution. We use the Cholesky factorization to solve this equation and to get the estimations

for x and y coordinates of the sensor nodes. Accordingly, the resulting matrix is given by:

x = A
T (AA

T )−1
B (5.17)

The estimations for the coordinates of the sensor nodes are calculated by this method for

each time instance and recorded. Since our goal is not an online location-awareness for the

sensor nodes, the path the nodes followed is estimated after all of these points are calculated.

Essentially, the paths are estimated using the interpolation of these coordinates. Hence, the

effect of the errors in the individual estimates to the paths of the sensor node is minimized.

5.3 Simulation study

5.3.1 Simulation environment

We evaluate our approach by measuring how the estimated location errors vary with different

network and algorithm characteristics. The number of the nodes and the value of k are used

as the simulation parameters in the experimental setup. The actor nodes are stationary,

deployed in the area uniformly at random with the constraint that they are able to form a

connected graph for communication among themselves. Sensor nodes are mobile and they

are flowing from left to right in the watercourse. The communication links among the sensor
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nodes are open to failure. Table 6.4 summarizes the simulation parameters used in our

simulation study.

Table 5.1: Simulation parameters

Parameter Value

Number of sensor nodes 1–25

Number of actor nodes 25–50

k value 1–5

Total area 250×250 meters

Sensor node transmission range 40 meters

Sensor node floating speed 1.25–1.5 m/s

Traffic type Constant rate

Data packet size 256 bytes

Transmit power (W) 5.13× 10−6

Reception power threshold (dBm) -95

Channel settings Auto assigned

Short retry limit 7

Long retry limit 4

5.3.2 Simulation results

5.3.2.1 Experiment 1

In order to investigate the effect of clustering on the performance of the proposed algorithm,

a scenario with only a single sensor node and 25 actor nodes is considered. The main

purpose of this experiment is to observe the performance difference between 1-hop clustering

and multi-hop clustering. In this scenario, a single sensor node floods from left to right

with a speed between 1.25 to 1.5 m/s and connects to the actor nodes whenever it is in
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the transmission range. Hence the sensor node can be connected to multiple actors and the

parameter k has no influence on the location estimation in this experiment.

Figures 5.6-5.19 show the exact trajectory of the node on the x and y coordinates re-

spectively. The x-axis of the figures represents the time steps. The node is moving from 0

to 250m in x coordinate and for y coordinate the node stays on the position around 110m.

The network density is sufficiently high enough that a position could be calculated for each

time step. In other words, the node was affiliated with four actors for most of the time. In

Figures 5.6-5.19, the estimated trajectory has been produced using linear regression over the

data set of the estimated positions. The estimated positions are with an error of 30 meters

according to the exact trajectory, but most estimated positions show much less error. The

error is as expected since the transmission range is 40 meters and the estimation is based

on the estimated hop-distance. However, the estimated trajectory of the considered sensor

nodes is within a range of at most 10 meters, but mainly within 5 meters or less.
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Figure 5.6: Estimated and real x-coordinates for 1 sensor node and k=1.
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Figure 5.7: Estimated and real y-coordinates for 1 sensor node and k=1.

The settings in the 1-hop clustering experiment have been modified such that 25 actors

and 25 sensor nodes are participating in the simulation area and the parameter k is set to

three. In this case, the maximum length from a sensor node to an actor node can be three
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hops. In similar illustrations as in Figures 5.6-5.19, the accuracy of the location estimation of

one of these 25 nodes under the use of local k-hop clustering information is shown in Figures

5.8-5.9. The sensor node is connected to the actor networks via intermediary nodes, where

k=3, for most of the time in this experiment. Therefore multi-hop information is used. The

applied algorithm estimated the hop-distances using far less accurate data. However the

results show that the estimated positions are very close to the exact trajectory. Compared

to the previous experiment, the error is only slightly higher. The main difference is that

there are more time steps where there is not enough information to estimate the position. It

should be noted that this result also depends on the real trajectory of the individual sensor

node.
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Figure 5.8: Estimated and real x-coordinates for the experiment with k=3.
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Figure 5.9: Estimated and real y-coordinates for the experiment with k=3.

5.3.2.2 Experiment 2

In this setting, the number of nodes is 50, 25 of which are the actors and 25 are the sensor

nodes. However, in order to get the accuracy for single hop settings, the parameter k is set to

1. The error distribution is illustrated in Fig. 5.10. The error has a normal distribution and

it ranges from -30 to 30 meters. Hence this error is for the x-coordinate estimation. Since

the nodes are floating almost horizontally, the accuracy on the y-coordinate is appropriate.

We can also observe that the number of estimated points is not as high as in the previous

experiment.
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Figure 5.10: The error distribution of the results for the experiment 3 with k=1.

5.3.2.3 Experiment 3

The multi-hop clustering approach for location estimation is a core part of the contribution of

the proposed localization algorithm. In this experiment, in order to investigate the usage of

multi-hop clustering, the number of sensor nodes is increased while the number of actor nodes

remains equal. Thus actors, which are not in the transmission range of a single mutual sensor

node, must make use of the multi-hop information provided by the passing sensor nodes.

The k parameter is set to three allowing the nodes to connect to an actor through another

sensor node. The resulting Fig. 5.11 shows that the error distribution is similar to the Fig.

5.10 where the sensor nodes were connected directly to the actor nodes. The error rate is

again normal distribution. However, there are two differences: (i) more positions could be

estimated which means that the local multi-hop approach applied in our algorithm is able
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to gather more localization estimation than it does with a traditional approach, and (ii) the

estimation accuracy is decreasing. Compared to the experiment 2, where the distribution

was in between -30 and 30 meters, the distribution is now in between -60 and 60 meters.

We observe that higher the value of k is, more positions can be estimated by our algo-

rithm. However, the accuracy decreases at the same time with the increasing k. Therefore

the selection of k is an important issue for the network, which depends on the number of

nodes, the environmental conditions and the application requirements.
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Figure 5.11: The error distribution of the results for the experiment 4 with k=3.

5.3.2.4 Experiment 4

In this experiment, the settings remained the same as the experiment 3 except for the value of

k. The value of k is increased to five, so clusters with more hops compared to the experiment

3 are allowed in the network. The error distribution of the experiment is given in Fig. 5.12.
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Similarly, Fig. 5.12 shows that as the value of k becomes higher, the accuracy decreases

further while the number of estimations increases due to further connection chains in the

network.
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Figure 5.12: The error distribution of the results for the experiment 5 with k=4.

5.3.2.5 Experiment 5

In the following experiments, sensor nodes are modeled to be flowing in the watercourse with

the basic directional mobility model and the meandering mobility model. The communica-

tion links among the sensor nodes are assumed to be prone to failures due to shadowing and

multipath caused by the river environment.

In the first set of experiments, the parameter k is set to a small value (k = 2) to observe

the performance of the algorithm in a low clustering scenario. This value minimizes the

influence of clustering by limiting the maximum number of hops between a sensor node and
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Table 5.2: Simulation parameters

Number of sensor nodes 100

Number of actor nodes 25

k value 1-5

Terrain size 200×1400 m

Sensor node transmission range 40 m

Average jet speed 1-7 m/s

Degree of chaotic advection 0.3

Frequency of time dependent meanders 0.4

Simulation time 3600 s

its affiliated actor node. Therefore, in this case, only the sensor nodes, which can reach the

actor through one or two hops are allowed for affiliation. The experiments are conducted for

both the meandering and the basic directional mobility models. The error distribution of

localization with the basic directional mobility (BDM) is illustrated in Fig. 5.13. The error

distribution when using meandering mobility (MM) model with average jet speed of 1.5 m/s

is shown in Fig. 5.14.
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Figure 5.13: The error distribution of the experiment 6 with BDM and k = 2.
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Figure 5.14: The error distribution of the experiment 6 with MM and k = 2.

In the second set of the experiments, the value of the parameter k is increased to five. The

goal of these experiments is to observe the influence of clustering in the location estimation

by comparing the results of the first set to the second set of experiments. The location
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estimation error distributions are illustrated in Fig. 5.15 and Fig. 5.16 for basic directional

and meandering mobility models, respectively.
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Figure 5.15: The error distribution of the experiment 6 with BDM and k = 5.
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Figure 5.16: The error distribution of the experiment 6 with MM and k = 5.
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The localization error has a normal distribution for both values of the parameter k. When

k = 2, the range of the error is between -25 and 25 meters for both mobility models. The

estimation errors are equal to or below 15 meters for ∼ 93% of the results in basic directional

mobility and ∼ 97% of the results in meandering mobility model. When k is increased to

five, the range of the error results is more than the results observed in the first experiment.

Since the number of affiliations increases as k increases, we also observe that the number

of estimated points is higher when k is five. When the meandering mobility model is used,

the error is below 40 meters for 73% of the results. These simulation results show that

as the length of communication paths are allowed to become larger, more positions can be

estimated with a cost on the accuracy. Therefore, the selection of the maximum hop number

depends on the requirements of the network under consideration and the scenario.

5.3.2.6 Experiment 6

In this experiment set, the impact of the mobility model on the performance of the localiza-

tion algorithm is evaluated. The movement of sensor nodes is modeled with meandering and

the basic mobility models, where the parameter k is set to three and the average jet speed

used is 1.5 m/s. The error distribution results are illustrated in Fig. 5.17 and Fig. 5.18 for

basic directional and meandering mobility models, respectively.
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Figure 5.17: The error distribution of the experiment 7 with BDM and k = 3.

−80 −60 −40 −20 0 20 40 60 80
0

20

40

60

80

100

120

140

160

Error (m)

N
u

m
b

e
r 

o
f 

d
a

ta
 p

o
in

ts

Figure 5.18: The error distribution of the experiment 7 with MM and k = 3.

Using the results of this experiment set and the previous one, from Fig. 5.13 to Fig. 5.18,

we observe that the error has a normal distribution for both models, while the number of

data points is larger for meandering mobility model. The difference in the number of data
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points is higher for low error values in favor of the experiments with meandering mobility

model, which shows that the accuracy of the algorithm is better with meandering mobility

model.

The location estimation is also demonstrated for particular sensor nodes in the experi-

ments to observe the accuracy of the algorithm. Fig. 5.19 and Fig. 5.20 show the exact

trajectory of one of the sensor nodes on the x coordinate and the estimations of our algo-

rithm for both mobility models. Fig. 5.21 and Fig. 5.29 show the results of the experiment

for y coordinate.
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Figure 5.19: Estimated and real x-coordinates of a sensor node with BMM.
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Figure 5.20: Estimated and real x-coordinates of a sensor node with MM.
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Figure 5.21: Estimated and real y-coordinates of a sensor node with BMM.
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Figure 5.22: Estimated and real y-coordinates of a sensor node with MM.

As it was observed with the error distribution results, the accuracy of the estimation

results is higher with meandering mobility model. This is because of a stretching topology

with correlated motion where some sensor nodes float behind others supplying reach for

more actors when compared to random floating of the nodes in basic directional mobility.

The localization algorithm gives better results when the sensor nodes move with meandering

mobility. This is an advantage of the localization algorithm and denotes that the algo-

rithm would have better performance in a real-life scenario compared to a random mobility

simulation due to realistic characteristics of the meandering mobility model.

The cost of our localization approach in terms of energy consumption is demonstrated

in Fig. 5.23 with 95% confidence interval for different values of k. The energy consumption

is observed for basic directional mobility model (BDM) and for meandering mobility model

with (MMk) and without (MM) k adaptation. The energy consumption parameters of this
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simulation set are chosen from the multi-sensor system, which was deployed in the River

Lee Co. Ireland [9]. Similar to our application scenario, this multi-sensor system is used to

monitor water quality parameters such as pH, temperature or dissolved oxygen. According

to the power consumption analysis of Regan et al. [9], the power consumption of a node in

the simulation is 96.2 mW when the transceiver is active and 0.054 mW when the transceiver

is not active.
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Figure 5.23: Energy consumption for the proposed models with different k values.

One of the important results denoted in Fig. 5.23 is the effect of k in the energy consump-

tion. The energy consumption increases with the increasing values of k. As shown in the

results of error distribution experiments, the collected data also increase with larger k val-

ues. Therefore, the number of data receptions and transmissions is larger for larger k values

with the cost of an increase in energy consumption. Additionally, the energy consumption

is higher for meandering mobility model and the difference accumulates as the value of k
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increases. Hence the higher clustered structure created by the meandering mobility model

results in more data transmission and more energy consumption. The improvement in energy

consumption by the adaptation of k is also observed in Fig. 5.23 and this effect becomes

more apparent as k increases.

5.3.2.7 Experiment 7

In the meandering mobility model, the average jet speed is an important factor to define

the characteristics of the meandering behavior of the river current. For a comprehensive

evaluation of the proposed localization approach, the average jet speed parameter of the

meandering mobility model is varied in the next set of simulations.
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(a) Average jet speed = 1 m/s (b) Average jet speed = 1 m/s

(c) Average jet speed = 3 m/s (d) Average jet speed = 3 m/s

(e) Average jet speed = 5 m/s (f) Average jet speed = 5 m/s

(g) Average jet speed = 7 m/s (h) Average jet speed = 7 m/s

Figure 5.24: Examples for the paths of 100 nodes with varying average jet speed values.

Fig. 5.24 shows the paths for all sensor nodes in two examples from each of the simulation

sets with average jet speed values varying from one to seven meters per second. Fig. 5.24

(a) and Fig. 5.24 (b) show the paths of nodes with the average jet speed of one meter per

second. When the average jet speed is increased to three meters per second as presented in
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Fig. 5.24 (c) and Fig. 5.24 (d), the effect of this increase can be observed particularly in

the meander amplitude. The jet speed is further increased to five meters per second in Fig.

5.24 (e) and Fig. 5.24 (f) and seven meters per second in Fig. 5.24 (g) and Fig. 5.24 (h).

The variance in the y-coordinates of the sensor node positions decreases as the jet speed

is increased. This characteristic of the mobility model can be used to adjust the values of

the localization algorithm parameters for the specific requirements of different application

scenarios.
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Figure 5.25: The error distribution with average jet speed = 1 m/s and k = 3.
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Figure 5.26: The error distribution with average jet speed = 3 m/s and k = 3.
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Figure 5.27: The error distribution with average jet speed = 5 m/s and k = 3.
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Figure 5.28: The error distribution with average jet speed = 7 m/s and k = 3.

Figs. 5.25-5.28 show the error distribution results of the location estimation for mean-

dering mobility with the average jet speed values 1m/s, 3m/s, 5m/s and 7m/s, respectively.

The localization errors collected for the experiments with different average jet speed

values have results close to each other. However the results also show that the accuracy of

the position estimation increases for these four values with the increasing jet speed. The

number of data points collected also increases as the meander amplitude decreases. This

result can be explained with the additional stretching in the topology when the meandering

jet amplitude decreases.

The effect of the variation in the average jet speed parameter of the meandering mobility

model is also tested for the energy consumption. Fig. 5.23 shows the average energy con-

sumption with 95% confidence interval for different values of average jet speed. When these

results are combined with the results in Fig. 5.23, we observe that the energy consumption
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increases with the increasing values of both k and jet speed, and the selection of k value is

more influential in terms of energy when utilizing the localization approach.
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Figure 5.29: Energy consumption for MM with different average jet speed values.

5.3.2.8 Experiment 8

The settings chosen in the above set of experiments are to match the requirements of the

Amazon scenario. Common settings, parameters and mobility models have been used to

guarantee the reproducibility of the results. This configuration is a subject of refinement

in future work. The Amazon scenario also puts restrictions in terms of node speed, node

direction, connection behavior and location of actor nodes on the simulation model. In the

next step, we strive to find out how far the introduced approach can be applied to other

monitoring scenarios such as animal monitoring.
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The scenario considered in the next set of experiments is an ape habitat. We assume that

each ape is equipped with a wireless sensor such as the ones used in the Amazon scenario.

However, a certain fraction of older and stronger apes are equipped with actors. On some

rare points in the tribe habitat, gateway nodes are installed to collect data from the actor

network when they are in the transmission range. In this new setting, the actors are mobile

and the directions of all of the nodes are subject to change arbitrarily within a given area.

We assume that the ape mobility pattern is described by the random waypoint model. More

realistic mobility patterns exist in the literature, but in this chapter we assume the affiliations

are interrupted permanently and we focus on the proposed localization approach.

An appropriate choice of the parameter k was important in the Amazon scenario. The

results show that higher the parameter k, more flowing nodes are affiliated to the clusters

and these nodes deliver more data. In the ape scenario, the simulation settings have been

changed in a way that the parameter k always remains the same but the fraction of actors

compared to the total number of nodes changes. Table 5.3 summarizes the results for suc-

cessful estimations for different experiments in our simulation study, where the transmission

range of a node is taken as 50 m and the distribution area is 300 m2.
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Table 5.3: Fraction of successful position estimation with respect to network density.

Total nodes Number of actors Fraction of actors Successful estimations

50 10 1/5 1372/10000

50 20 2/5 2821/10000

50 30 3/5 2882/10000

100 10 1/10 2687/10000

100 20 2/10 6015/10000

100 30 3/10 6249/10000

The results in the Amazon scenario indicate that the number of actors is critical for the

success of the estimation. However, Table 5.3 shows that a network configuration with even

a small ratio of actors is able to deliver an appropriate number of estimation results. We

understand this effect due to the increase of the network density implied by the increase

of the number of nodes. Comparing the results for the experiments “50/10” and “100/20”

for which the fraction of actor nodes is the same, we observe that the number of successful

position estimation increases drastically while k remains the same. Therefore the quality of

the estimation increases by increasing network density while keeping the number of actor

nodes constant. The positive effect of increase in the fraction of actor nodes saturates at one

point and do not result in a further increase in estimations. The influences of the network

density, fraction of actor nodes and k can be observed in Table 5.3. The parameter k and

the network density are identified as the factors behind the increased number of successful

estimations. The network density can be increased by either increasing the number of nodes

(while keeping the number actor nodes the same) or by reducing the distribution area. Two
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example trajectories and their estimations for a node are shown in Figures 5.30-5.31 and

Figures 5.32-5.33.
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Figure 5.30: Estimated and real x-coordinates for experiment 8 “50/10” case.
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Figure 5.31: Estimated and real y-coordinates for experiment 8 “50/10” case.
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Figure 5.32: Estimated and real x-coordinates for experiment 8 “100/30” case.
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Figure 5.33: Estimated and real y-coordinates for experiment 8 “100/30” case.

It can be observed that the estimation position for sparse networks (or networks with

low k) is often not possible, so the example with 50 sensor nodes shows only few successful

estimations, although 40% of all nodes are actors. By increasing the number of nodes, i.e.
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by increasing the network density, the number of successful estimations increase in spite of

the fact that the fraction of actor nodes has been reduced.

5.3.2.9 Experiment 9

In this experiment, the same setting as in the previous experiment is used and the effect of

the mobility of actors on the estimation accuracy is investigated.
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Figure 5.34: 30 sensor nodes with fluid mobility model and 20 static actors.
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Figure 5.35: 30 sensor nodes and 20 actors with random waypoint mobility model.

There are two cases with 30 sensor nodes, 20 actors, k = 4 and deployed into the same

simulation area of 300m2. In the first case, the fluid mobility mode is used with static actors

and in the second case the random waypoint model is applied for both sensor nodes and

actors. It can be observed in Figures 5.34-5.35 that most of the estimations are in between

-50 and 50 meters for both cases where the mobile setting gives a little less efficient results.

The accuracy of the estimation is more precise in the static setting while the estimation error

can be too large, making it unusable in the mobile setting. The more drastic changes observed

in the accuracy on neighboring positions is the result of the influence of mobile actors on the

estimation process. The actor mobility causes sudden changes in the information available

to estimate a nodes position, which affects the accuracy.
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5.3.2.10 Experiment 10

Although the accuracy changes drastically due to the mobile actors, the error behavior

of the estimation remains as a Gaussian distribution and similar to the error distribution

characteristics of the static experiment discussed above. Figures 5.36-5.37 show the error

distributions in position estimations for 100 mobile nodes with 30 actors.
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Figure 5.36: Error distribution in x-coordinates for “130/30” case.
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Figure 5.37: Error distribution in y-coordinates for “130/30” case.

Although the mobile actors have negative influence on the estimation accuracy, the drastic

changes in the estimation accuracy also provide changes for improvement. When a node is

affiliated with only three actors at time t, the estimation cannot be very accurate. The same

nodes position might have been estimated more accurately (i.e. more than 3 actors could

contribute information) at time t− 1. Due to the drastic changes in the position estimation,

it is feasible to detect less accurate estimation and correct them by using interpolation

considering the neighboring points. By this way, the mobile actors can contribute towards

making more accurate estimations.
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CHAPTER 6

ANIMAL MONITORING

In this chapter, we present data collection and evaluation algorithms to provide a complete

model of primate monitoring by using a WSAN. More specifically, we consider the modeling

and monitoring of the social life of primate groups [19–21]. We study two main problems.

First, we develop an algorithm for the determination of social roles in an animal society.

Second, we approach the problem of the absence of realistic data to model the movement

patterns from a social network perspective.

Animal monitoring becomes even more challenging when the observed species group pos-

sess a complex social structure as it requires simultaneous monitoring and assessment of

multiple individuals and their interactions. For instance, the complex social organization

of primates requires continuous and long-term monitoring to gather sufficient data [125].

Although various characteristics of primates have been analyzed in wildlife and lab experi-

ments [113], many more aspects of their social life remain unknown [120]. The lifespan and

reproduction cycle of primates can last up to 50 years. Most of the monitoring studies on

primates have been conducted by either long hours of video recording or direct observation,

and it remains a challenge for scientists to find out how they interact and how their social

affiliations might change in the long run in their natural habitats.

Making use of the most recent advances in wireless networks can overcome many of the

drawbacks and challenges in primate monitoring methods. Primates and their environment

can be equipped with wireless sensor and actor nodes for continuous data collection. These
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nodes form a wireless sensor and actor network (WSAN) [1], in which sensor nodes sense

events and a limited number of more powerful actors collect information from the sensor

nodes. The actor nodes process this information and react accordingly. Recent improvements

in size, weight, energy and sensing capabilities of sensor nodes as well as the self-organizing

aspects of the participating nodes make WSANs suitable for wildlife monitoring [104,106].

The evaluation of protocols using monitoring methods require efficient modeling of both

the monitoring system and also the animal group under consideration. Therefore, realistic

modeling of data collecting nodes and the behavior of primate network is critical. The

initial formation of the animal network and the movement of the animal group must be

modeled according to real-life observations and must reflect the social structure of the group.

The realistic and long term movement data is missing for most of the primates [112, 113].

Consequently, it is crucial to use a suitable mobility model derived from the expected and

observed mobility patterns.

The contributions of animal monitoring system are threefold. The first contribution is

the monitoring system composed of wireless sensor and actor nodes, which are modeled in

the OPNET simulation tool with a modular design. Then we approach the problem of the

absence of realistic data to model the movement patterns from a social network perspective.

The preferential attachment concept is used to introduce two network formation and mobility

models for primate groups. There is no limitation in the node degree of existing preferential

attachment models, which violates the known attachment limitations for different members in

a group. Thus, the second contribution is the cut-off preferential attachment model based on
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spatial relationship among the nodes. This model is integrated with the Lévy walk mobility

model [166] to define the foraging of primate groups. The third contribution is the role

determination algorithm, which uses the collection of the spatial-temporal relationships to

automatically and locally decide on the role of each animal in the society. The social network

characteristics of the primate groups created by the model are verified by comparisons with

the analyses conducted on real-life primate networks.

Natural extensions of our primate monitoring system would be the application of the

system to human social networks. Therefore in this chapter we also consider the problem of

generation of human social networks by using the interaction data such as physical proximity,

text messages, phone calls and video chats. We start our approach to this problem by

evaluating the interactions. The interactions are assigned weights according to their types.

The total value of the interactions between two users is evaluated by using the number

of communications and the weights of the interaction types. Since the interactions are

quantified by our approach, these values are used to rate and rank the friends of users and

to find the friendship levels in the social network of each user.
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6.1 Animal Monitoring

6.1.1 System Model

The proposed animal monitoring system aims to collect data from a primate society by

building a WSAN among nodes on apes and stationary nodes in the environment. For this

purpose, sensor nodes are attached to apes in the network and a selected member of each

group is equipped with an actor node. On particular locations in the habitat, additional

actors are installed at accessible points to collect data from the actor nodes when they are

in transmission range. These actors form the backbone of the network and work as the

gateways of the mobile network.

Fig. 6.1 shows a possible implementation of the system for a primate society. The

illustrated system captures and records movement and social interactions among primates

continuously as the individuals move in their natural social life.

Actor node
 Backbone


connections


Ape sensor


connections


Sink


Figure 6.1: Application scenario of primates.
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In our system model, each element has a transmission range r with a total transmission

area of π · r2. The sensor nodes and actors are assumed to have maximum transmission

ranges rs and ra, respectively, with circular transmission areas, where rs < ra due to better

computation and communication capabilities of the actors. For communication between two

nodes, a bidirectional connection must be established. Hence, a device s1 must be in the

transmission range of s2, fulfilling d(s1, s2) ≤ rs.

Communication links may fail or disappear from the network caused by constraints of the

environment such as obstacles or by social changes in the group such as a conflict between

two individuals. Additionally, nodes are mobile with variable speed and directions. Thus,

the neighborhood of a node changes over time. For each sensor node s in sensor set S, we

assume a neighboring list Neigh(s), the set of nodes that are directly connected to s, such

that ∀u ∈ Neigh(s), d(s, u) ≤ rs. Neigh(s) is built when the network is deployed and it is

updated with a certain frequency f if it is not triggered by an event.

All communication in our model is locality preserving. Hence, every node is restricted

to communicate with its current 1-hop neighbors (a sensor node or an actor). When com-

municating with sensor nodes and creating the affiliation areas, actor nodes use the same

transmission range rs as the sensor nodes. Each actor has a weight value k, which shows the

maximum hop count in the network. In other words, k is the maximum hop distance from

an actor to a leaf node and it can be arranged according to the requirements specific to the

observed animal group. Each actor encodes the transmitted packets with its ID and weight

value k.
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Since the collected data is transmitted in one direction and only local information is used,

the construction of our system model does not require any multi-hop control communication.

Stationary actor nodes use their full transmission range when the network is initialized to

create the backbone among actors and the sink. In our particular application scenario, actor

nodes are positioned such that each actor node has at least one actor or sink in its transmis-

sion range. Otherwise, the sink would be required to receive the collected data through the

sensor nodes, which would potentially create severe packet loss and delay conditions in the

network. Actor nodes use their full transmission range when they have data to exchange,

consolidate and transmit to the sink. Although actor nodes typically have more resources

than sensor nodes, resource constraints still apply to both sensors and actor nodes. Thus,

alternating the transmission range of actors extends the lifetime of the network. There are

various actor positioning strategies in literature, which can be integrated with our approach

to improve data collection, area coverage and energy savings.

6.1.2 Network formation and mobility

In this section, we introduce our network formation and mobility models for the primate

groups. The behaviors of primate societies and their social networks show great variety.

Primates have complex social lives with families, affections, and politics of their own. Den-

ham [167] presents a topology of primate societies according to social behaviors of different
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populations. According to this topology, a model is created for relations among environmen-

tal factors and primate social organization to define different types of primate societies.

The environmental inputs used in Denham’s model include multiple factors such as the

space and resource allocation, social motivations and mating strategies. After analyzing the

primates according to these factors, Denham specified three important parameters namely,

food predictability, food density and anti-predator strategy. Categorization of primates

according to these parameters results in eight possible groups.

Only five of the groups defined in Denham’s model are observed in nature and we con-

centrate on the group with the highest number of species including baboons, macaques,

langurs, howlers, gorillas and chimpanzees. This group is defined to be living in a low food

predictability, high food density environment and having an active anti-predator strategy.

The animals in this group stay close to each other while foraging and they are structured ei-

ther as one-male-several-female or multimale-multifemale groups [167]. The information and

assumptions used in our approach follow the general guidelines about this group. Accord-

ingly, the members of the group have different roles depending on the gender, age, strength

and affinity. These roles are listed as follows:

• Alpha male: Alpha male leads the group in daily travels and has exclusive breeding

rights to the females. Generally there is one leader alpha male in each troop.

• Adult female: Adult females usually compete to stay close to the alpha male. Generally

there are three or four adult females in each group.
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• Juvenile male: Juvenile males tend to stay not very close to alpha males since the

alpha male can see them as threats to its authority. Maturing males usually leave their

family groups to establish either their own band or to join a bachelor group.

• Juvenile female: A juvenile female stays closer to the troop compared to juvenile males

and may change family groups a number of times.

• Newborn and infant : A newborn forms a very close relationship to its mother, rarely

straying more than a few steps from her side for three to four years.

The roles and characteristics of the primate group are critical inputs for the introduced

network formation and mobility models. Different primate groups would exhibit different

social structures. The presented models provide a base model that can be adapted accord-

ingly.

6.1.2.1 Network formation

The initial distribution of nodes in the environment is important when modeling the struc-

ture of a society. We introduce two approaches for initial network formation. While both

approaches utilize the social structure information of the primate group under consideration,

the first approach is based on the preferential attachment method and the second approach

uses the center of mass concept.
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The result of the network formation according to preferential attachment approach is a

“scale-free” network [168]. In scale-free networks, the distribution of the number of node

connections follows a power law distribution [119].

The network formation is initialized by positioning two sensor nodes in the area such that

they are in transmission range of each other. Let Gn be the resulting graph of the network

when the nth node (vn) is added to the existing nodes in the network. When obtaining Gn

from Gn−1 according to preferential attachment, the probability of adding a link from vn to

vi, P (i), is proportional to the degree (di) of vi.

If the network is deployed solely according to preferential attachment, the resulting net-

work would be unrealistic in terms of the connections among the nodes. For instance, in a

network of n animals the preferential attachment method may result with a couple of nodes

having more than n
4
connections. This resulting structure may match only a few animal

societies, which do not have a complex social structure.

The network formation model of our protocol extends the preferential attachment to be

effectively used for animal societies. The social structure of most animals is clustered such

that there are subgroups in the entire animal group. For example the alpha male in an ape

society is generally accompanied by multiple females, which are surrounded by their offspring

almost all the time. A new parameter, called “maximum degree” (dmax), is introduced to

include these properties of the animal social structures.

The network is deployed according to the preferential attachment until one of the nodes

has the “maximum degree”. When a node has a degree of dmax, it becomes ineligible as a
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new deployed node for others to get connected. Therefore, the P (i) value of a node depends

not only on its degree but also on the dmax defined for the animal group. After the node

reaches dmax, the node’s P (i) is reduced to the value Pc, based on the characteristics of the

animal society. Hence the probability of adding a link from vn to vi is defined as follows:

P (i) =































dn∑N
i=1 di

if di < dmax

Pc if di ≥ dmax

(6.1)

where di is the degree of the node i. The decision process on the deployment of a new node

joining the network is given in Algorithm 5.

In our application scenario, we consider multi-male multi-female structure with one group

leader. Each ape in the network can be in the group of only one alpha male and there cannot

be a link between two alpha males. Hence the links, which are against these rules, are

removed as the networks are formed. The preferential attachment based network formation

method is extendable by adding more species-specific features. For instance, as an ape group

moves in its environment, the leader of the group avoids close encounters with other groups.

Therefore the links between groups with separate alpha males are removed after the nodes

are deployed and the roles are assigned.
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Algorithm 5 Deployment of a new node

1: S =
∑N

1 di

2: rs = Random number between 0 and S

3: da = Degree of node a

4: Nl = Number of leaders

5: Nmax = Maximum number of leaders

6: for Each node a in the area do

7: if (da > rs) & (da = dmax − 1) then

8: Connect the new node

9: if Nl < Nmax then

10: Nl = Nl + 1

11: end if

12: else if da > rs then

13: Connect the new node

14: end if

15: rs = rs − da

16: end for

17: if The node not deployed then

18: a is a solitary node

19: end if
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Fig. 6.2 shows an example sequence for network formation. In this scenario, dmax and

Pc are taken as five and zero respectively. Hence the nodes having a degree of dmax during

deployment are no longer candidates for new nodes to get connected. In Fig. 6.2(e), the

roles assigned to the nodes are shown. There are two alpha males in the society and it

can be seen in the previous frame that they are connected by a link (thicker line). This

link is removed after the roles are assigned according to the species specific rules under

consideration, observing that there cannot be a link between two alpha males.

n=2
 n=11
 n=21


n=30
 30 nodes with assigned roles


(a)
 (b)
 (c)


(d)
 (e)


Figure 6.2: Deployment of nodes by preferential attachment based method.

In center of mass based approach, the nodes are distributed in the area according to a

predefined structure. This structure depends on the type of the species under observation

and the distribution of roles in this species’ social network.

The center of mass concept is used in accordance with the hierarchy in the animal society.

The animal society is divided into subgroups such that each subgroup’s center of mass is
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their leader from the higher level group. For instance, the breeding females form a group

and their center of mass is taken as the alpha male. Similarly, a mother ape is chosen as the

center of mass for its offspring. This method can also be applied to other animal groups with

hierarchical social structures. According to the center of mass approach, the coordinates of

the nodes around the leader must satisfy the following equations:

xs =
N
∑

i=1

xi

N
ys =

N
∑

i=1

yi
N

(6.2)

where (xs, ys) is the position of the leader and N is the number of nodes in that subgroup.

This method is extendable for different scenarios. For instance if a mother has four infants,

the possible positions of these nodes can be limited depending on their ages so that two of

them will be very close to the mother whereas the others keep a larger distance from her.

6.1.2.2 Mobility model

Lévy walk is observed as the mobility model in most of the animal foraging patterns, such as

jackals [169] or spider monkeys [170] and it is recognized as an optimal way to find randomly

dispersed objects [171]. It is a random walk with step-lengths distributed according to a

heavy-tailed probability distribution. Lévy walks are Markov processes and after a large

number of steps, the distance from the origin of the random walk tends to reach stable

distribution. The Lévy distribution is the Fourier transformation of the moving distance of

a single random walk and Rhee et al. [172] gives its PDF as follows:
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fz,α(x) =
1

2π

∫ ∞

−∞
e−iztφ(t)dt (6.3)

where φ(t) = e−|Ct|α and C is a constant.

The distribution can be approximated by a power law of the form y = x−α where 0 < α <

2. Each step in Lévy walk can be expressed by a tuple L = (1, θ,∆tf ,∆tp). ∆tf indicates

the walking duration and it is chosen for each walk from a probability distribution P (l). ∆tp

specifies pause time at the end of a walk and θ is the random direction taken by a node.

A Lévy walk contains many short walks and a small number of long walks. The resulting

pattern depends heavily on the value of α used in the system. As α becomes greater, the

number of short walks increases.

One of the most common behaviors observed in diverse species is that they live in groups

and follow the leaders of their groups. Scientists have various explanations such as the

increased safety or breeding opportunities in a group for these behaviors. In nature, the

alpha male makes the decisions for the selection of paths that the group follows. The alpha

male role in a group is assigned to a node in the network formation phase of our scenario.

Similarly, the mobility model of the group depends on the movements of the alpha male in

both of the mobility models introduced. The alpha male moves according to Lévy walk and

the movements of other members of the group are directed mainly by the alpha male’s path.

This path is used as the main input when positioning the nodes at each time instant. Two

additional methods supplementary to Lévy walk are used to determine the mobility of each

node.
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Preferential attachment based method complements the preferential attachment based

formation. After the nodes are deployed, based on the moves of the nodes leading their

corresponding groups, the moving directions of the other nodes are probabilistically decided.

The probability is defined according to the nodes’ roles and levels of proximity to their group

leaders. Since the deployment attributes of nodes such as their assigned degrees and roles

determine their initial positions, these attributes and therefore the preferential attachment

method also affect the decisions on the movements of the nodes.

Each animal moves based on the mobility of its neighbor with highest degree, its distance

to this neighbor and this neighbor’s moving direction. This is a characteristic of the mobility

model, which matches with the hierarchical structure of animal swarms. Hence the mobility

of the offspring is based on the mobility of its mother, whose movement in turn depends on

the mobility of the alpha male. This structure also provides consistency with the approach

of utilizing Lévy walk for the alpha male in order to obtain a Lévy walk pattern for the

whole group.

When the group moves the animals close to their leaders tend to stay close to the same

position relative to such leaders. For instance, the newborns or infants are generally at

most only a few steps away from their mothers. However, juvenile animals forage in the

environment and may walk in other directions. As they become adults, they may leave the

group. In order to include these characteristics, the nodes in close proximity of their leaders

follow the leaders with a high probability, which decreases slowly as the distance of the node

to the leader increases. Consequently, the model provides a Lévy walk pattern to the group
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while providing possibilities for rare behaviors such as a bachelor male group formation. The

probability Pm(i) of a node to move in the same direction with its highest degree neighbor

with transmission range ra is as follows:

Pm(i) =

√

ra − di
ra

+ c1 + c2 (6.4)

where di is the distance between the nodes. The constants c1 and c2 are included to provide

the functionality of adjusting the probability calculation for different species types or network

requirements. The Fig. 6.3 demonstrates an example of two females 1 and 2 with their

corresponding probability values Pm(1) and Pm(2) to move in the same direction with the

alpha male, depending on their distances to the alpha male. They move in any other random

direction with probability 1− Pm(i).
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Figure 6.3: An example showing moving probabilities for females.

The ape scenario includes an additional feature such that the nodes from different groups

repel each other such that the groups are physically separated in the environment.

Center of mass based method is used to determine the positions of all animals at each

time instant after the network formation according to center of mass approach and the
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determination of the main path of the group. A node’s neighbors at hierarchically one lower

level move in a coordinated fashion to have that node’s position as their center of mass at

all times.

This method allows a more controlled mobile network compared to the preferential at-

tachment based method since the hierarchical structure of the system remains in its initial

format throughout the network lifetime.

6.1.3 Data Collection and Interpretation

6.1.3.1 Network structure

The data collection network considered in our approach is composed of actor and sensor

nodes. The actors distributed in the environment are ‘stationary’ whereas the actors attached

to the primates are considered as ‘mobile’ actors since the primates move in the environment.

The primates equipped with the actors are selected according to their roles in the social

structure of the group. The alpha males lead the primate group and they are accompanied

by adult females, which have continuous connections to the young members of the group.

Therefore we consider the alpha males as the cluster heads and equip them with actors. All

the other members of the group are equipped with sensor nodes.

The network structure is formed and maintained by the state-transition rules defined only

by local information. The nodes rapidly update their attributes as the network structure
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changes. A sensor node keeps a maximum weight value for each actor it receives packets

from and it does not build a state or history of the whole network. The sensor nodes are

affiliated with both stationary and mobile actors in the network.

When a sensor node receives a packet from an actor, the packet is retransmitted if its

weight is less than the sensor node’s weight for that actor. Otherwise, the sensor node

drops the packet to avoid unnecessary traffic and energy consumption in the network. The

weight WA(s) of each affiliation corresponds to k-hop distance of a node to an actor. The

condition, in which a sensor node does not receive any weight updates, is defined as the

loss of connection for the sensor node, which may refer to a solitary animal. In that case,

the sensor node sets its hop value to the minimum value defined for the network. Then it

operates only in ‘listening’ mode and does not transmit any packets.

Algorithm 6 utilizes the spatial proximity between two nodes to decide on the weights

of the sensor nodes. The weight information for the nodes in a group is collected at the

corresponding mobile actor and transferred to the backbone whenever it is possible. The

periods of time for specific weight values are also calculated and updated in Algorithm 6 to

be employed by actors as follows:

pwa(s)last = pwa(s)last + tcurrent − twa(s)lastchanged (6.5)

where pv is the time period for a node’s weight value v and wa(s) is the weight of node s for

actor a.
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Algorithm 6 The state transitions of a node s

1: wa(s): The weight of node s for actor a

2: pv: The time period for a node’s weight value v

3: max(w(Neigh(vs))): M

4: if Received a local update then

5: if s is not affiliated with an actor node then

6: wa(s) = 0

7: else if M = k then

8: wa(s) = k − 1

9: else if (M ! = k)&(M > wa(s)) then

10: wa(s) = M − 1

11: else if M < wa(s) then

12: wa(s) = wa(s)− 1

13: else if Neigh(va) = O then

14: wa(s) = 0

15: end if

16: if wa(s)last 6= wa(s) then

17: Update pwa(s)last

18: twa(s)changed = tcurrent

19: end if

20: end if
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Information about a group can be collected by more than one actor. All the collected

data are integrated at the sink to decide on the social structure of the ape population.

6.1.3.2 Role determination

Animals in a primate group have different roles depending on the gender, age, strength and

affinity. Algorithm 7 gives the basic role determination process and the utilized rules. The

transmission range, time and cardinality of the actor affiliation group are the parameters

defining the rules for role assignment of the animals. The thresholds of these values can be

generalized according to the animal group under observation while the rules are very specific

for the social network of primates.
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Algorithm 7 Determination of roles

1: wm(s) =Weight of node s for actor m

2: k =Actor weight

3: thp = Time for high proximity

4: tlp = Time for low proximity

5: if wm(s) 6= 0 then

6: if wm(s) = k − 1 > thp&wm(Neigh) = wm(s)− 1 then

7: s is on a Female

8: else if t(wm(s) = k − 1) > tlp then

9: if t(wm(s) = k − 2) > thp then

10: s is on an Infant

11: else

12: s is on a Juvenile female

13: end if

14: else

15: s is on a Juvenile male

16: end if

17: else if Neigh(s) 6= 0 then

18: s is on a bachelor group male

19: else

20: s is on a solitary animal

21: end if

Algorithm 7 uses the basic roles defined for all primate communities we focus on. The

individuals closest to the alpha male are the adult females. If a primate is determined as

an adult female with offspring, the distance analysis is executed with varying transmission

range in order to check the distances of the offspring. This is used as a method to decide
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on the ages of the primates since infants stay close to the mother ape for most of the day

as well as when they are sleeping. Additionally, this analysis helps to decide on the data

aggregation points in the network since mothers form perfect data aggregation points for

the data gathered from the offspring. Same type of a distance analysis can also be used for

juvenile male primates since generally as far a juvenile primate keeps himself from a group,

as it is likely for him to leave the group.

The feedback from the system is used to make new decisions. As the mobile actors collect

information from the network and bring it to the backbone, the sink will update the roles of

the apes depending on the feedback from the network. If the feedback shows that a group of

juvenile males form a bachelor group, one of these animals is chosen as the data collection

gateway for the group. This is efficient in terms of data collection and energy efficiency.

The determined roles of the nodes in the network must be combined with the social

network analysis methods to understand the characteristics of primate networks. Studies

on primate societies show the importance of social network analyses and different aspects of

network statistics [125] on understanding and identifying social structures of primates. One

of the most commonly used metrics in these studies is the clustering coefficient [124], used

to measure the extent to which vertices adjacent to any vertex v are also adjacent to each

other [173]. Another commonly used metric is the eigenvector centrality, which measures

the influence of nodes in the network by assigning relative scores to all nodes based on the

the number of edges such that a connection to a high-scoring node contributes more to the

score of a node than a connection to a low-scoring node.
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6.2 Ego network generation based on mobile phone data

In this section, inspired by our approach in primate monitoring system, we deal with the

problem of automatically generating the social network of a person by using different sources

of available interaction data such as physical proximity, text messages, phone calls and video

chats. The rating and friendship level of a user’s friend is determined by our approach as

shown in Fig. 6.4.

User User Interaction Time/Size

1 2 Text 2 kB

1 2 Call 2m12s

2 3 Skype 5m24s

3 4 Call 1m54s

3 4 Call 6m23s

3 1 Text 1kB

4 1 Call 1m38s

1 2 Skype 7m23s

User Value

5 12.6

7 11.2

2 10.3

1 10.1

User 1 friends

User Value

3 10.2

5 3.4
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User 2 friends
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Figure 6.4: Overview of social network generation for users.

There are various applications on smart phones, which allow us to trace multiple types

of interactions between a user and the members of the user’s social network. For instance,

text messages, call logs and e-mail conversations are stored as history on the device or in the

cloud. Moreover, smartphones are equipped with many sensors, which sense, evaluate and

record even more information about the user, the environment and contacts. For instance,

the proximity of two users is detected by acoustic sensors or by applications using Bluetooth.
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Most of the mobile phones are equipped with GPS receivers where the location information

can also be collected through them.

Usage of all available data on a mobile phone enables the interpretation of the social

network. However, one of the critical problems is that the generation of the network cannot

be measured in terms of accuracy or other measures that would allow us to state that the

collected data sufficiently describes the corresponding social network. The answers of the

questions related to social network dynamics are visible influences on models such as ours.

Our ego network generation approach is applied to a reallife dataset, which is collected

during the Nodobo project [1]. Nodobo is an experiment to gather communications metadata

from a group of high school students. For this purpose, each student is provided with an

Android cell phone. The collected interaction data of Nodobo project is analyzed in terms

of basic interaction information such as the identifications of the parties in the communi-

cation, the time of the communication and type of the communication method. Instead of

plainly reading and transforming the interaction data, these structural artifacts are used as

a structural framework. Additional to the information derived from the interaction data,

this framework gives information on how the nodes are socially located in the network and

how the links are created.
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6.2.1 Interaction evaluation

The interaction data derived from mobile devices and sensors need to be evaluated in terms

of their importance. The type of an interaction is an important factor to determine its

importance. Intuitively, an e-mail sent to a person appears to be more distant than calling

the same person. A phone call is shown to be less effective for personal relationships than

meeting with the other party in person [174]. Considering these differences, we suggest

assigning specific weights to different types of interactions. Weight assignment results in the

ability to change the weight according to experience or context and to include additional

interaction types as needed. The interaction values are defined in our approach as follows:

iA,B = α · F (T ) + β · V (T ) + γ · nP (T ) + δ · E(S) (6.6)

where P (T ), V (T ) and F (T ) denote the number of times a phone call, a video conference

and a face-to-face interaction occurred respectively for a particular amount of time, T . E(S)

denotes the number of e-mails or text messages with size S. The number and types of

interactions can be increased or decreased based on the capabilities of the mobile phone or

the application to collect the data.

Each interaction type has a different constant (α, β, γ, δ), which reflects the variety in

effects of different interaction types on personal relations. Formulation of this equation and

finding the exact values of constants is one of the next steps of our work. Due to the nature

of social sciences, these values may change depending on various factors such as the social
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group under investigation. Our approach provides the means to utilize results of works in

social sciences such as the study of Okdie et al. [175].

6.2.2 Ranking Friends

The interactions between friends correlate in number with the strength of friendship accord-

ing to Social Brain Hypothesis (SBH) [174]. Therefore, after determining the friends of a

person and evaluating the interactions, our system also ranks the friends to find different

levels of friendship in the social network of users.

6.2.2.1 Colley method based ranking

Similar to our approach in chapter 3, we define a sports competition style relationship among

users. The friend with a larger interaction value in a defined period of time has a win against

the friend with lower interaction value for the same time period. Therefore the sports ranking

methods, in which teams win or lose against each other, can be utilized to rank friends.

The most common sports ranking method utilizes the winning percentage to rank the

teams or individuals participating in the competition. The winning percentage is the ratio

of the games a team won to the total number of games played by that team. Hence this

method can be employed to find the rating of a friend i of a user u by using the following
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formula:

ri =
wi

(wi + li)
(6.7)

where wi and li are the number of wins and losses of the friend i of user u.

When the Winning Percentage method is used to calculate the ratings of friends, the

rating of a friend depends only on the number of times that friend has a better interaction

value than the other friends and the number of comparisons made. Win percentage generally

does not satisfy the particularities of sports organizations. Therefore, more complicated

ranking methods such as Colley [65] and Massey [66] are used in sports.

According to Chartier et al. [69], the insensitivity is a desirable property for a ranking

method in the social network analysis. For instance, when a person moves to another state

or starts to work in a new company, the social network of the user may be extended by new

friends. Then, the user may spend most of the time with one of these friends. If a sensitive

ranking algorithm is used, the new friend immediately becomes a strong tie of that person,

which rarely happens in real social networks.

Similar to our approach in chapter 3, we use the Colley method as the basis for ranking

friends of a person. The Colley method of sports ranking can be defined by a linear system

[156], C~r = ~b, where ~rn×1 is a column-vector of all the ratings, ~ri. The right-hand-side vector,

~b, is defined with the components as follows:

bi = 1 + (wi − li)/2 (6.8)
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Cn×n is called the Colley coefficient matrix and defined as follows:

Cij =



















2 + (wi + li) i = j

−nij i 6= j

(6.9)

The scalar nij is the number of times friends i and j are compared to each other. The

Colley system C~r = ~b always has a unique solution since Cn×n is invertible. Then the rating

of a friend of a user is defined as follows [69]:

ri =

1 + (wi−li)
2

+
∑

k∈Fu

rk

2 + (wi + li)
(6.10)

where Fu is the set of all contacts that user u communicated.

With this calculation method, the rating of a friend depends on the ratings of the other

friends of user u, which has an important reflection in the social networks. Hence interacting

with someone more than that person’s best (top ranked) friend has a high impact on the

friend rating. In contrast to traditional methods, the initial rating of any friend with no

changes is equal to 1
2
, which is the median value between 0 and 1. Depending on the

comparisons, a win increases and a loss reduces the value of r. This approach results in a

system less sensitive to changes. Therefore the communication between a user and a friend

needs to retain a high level for several ranking periods until it has a remarkable effect on the

friend’s rating. In other words, a friend of a user is not assigned with a high intimacy role

by Colley method by just having a high interaction value for a short amount time.
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After their ratings are calculated, the friends of a user can be sorted and assigned with

ranks. Generation of a complete list of friends for a user and their rankings depend on the

level of variety in the collected data, the weights assigned to different interaction types and

the length of the interval for the data collection. The weights and the length of the interval

must be chosen according to the sociological characteristics of the group under consideration.

The ratings calculated by the ranking method used in our approach depend on the ratings of

other users and the ratings are updated periodically. Therefore, the resulting friend network

for a user will have a pattern of discrete groups of ratings according to Dunbar et al. [174].

Then, the levels of the intimacy or the circles of friends are decided according to the ratings.

6.2.2.2 Trust based ranking

There is a strong correlation between the level of trust and the intimacy in a friendship [176].

Sutcliffe et al. [177] offered a trust based simulation model for the development of social

relationships, which reflects the social structure presented by SBH. This model focuses on

ego networks rather than complete social networks and bases the formation and development

of social relationships mainly on the interactions and a dynamically adjusted trust level

between people. In particular, frequency and history of interactions, current level of trust

and friendship maintaining strategy of people are defined as the factors determining the

intimacy levels of friendships in an ego network.
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According to Sutcliffe et al. [177], interactions may have positive or negative results

depending on whether they are collaborative or defective. Besides being one of the major

influences defining the intimacy level of friendships, trust also facilitates collaboration. Hence

the trust accumulates for collaborative interactions and weakens by defective interactions.

The change in trust is controlled by smoothing algorithms to implement distinct behaviors

of high-trust and low-trust relationships. Therefore accumulation or weakening rate and

amount of interactions are determined by the current level of trust.

To reflect influences on trust levels, Sutcliffe et al. [177] used the following model pa-

rameters: defect/cooperation rates for friends, waning rate of trust and linear/log functions

for trust increase and decay. Initially trust level between the ego and a friend increases

linearly according to the number of cooperative interactions. The rate of increase decreases

progressively as the value of trust increases. Therefore, log functions are applied for trust

levels instead of linear functions to reflect this behavior. Since the log function decreases the

rate both for positive and negative interactions, defections affect high-trust relationships less

compared to the low-trust relationships. For instance, a single non-collaborative interaction

with a best friend does not substantially affect the trust for that person whereas it may

seriously reduce trust in a new friendship. Additionally, there is a constant slow waning rate

for trust in relationships, which is independent of any interactions.

The model by Sutcliffe et al. [177] is proposed to simulate ego networks. This model uses

the interactions between two people to determine the trust level. Although an interaction

is defined in the model to be either collaborative or defective with a certain probability,
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the model does not include a differentiation method for different types of interactions. We

utilize its principles with integrations to our interaction evaluation method to determine ego

network characteristics of users in a given dataset. According to the results of the model

proposed by Sutcliffe et al. [177], social interaction strategies which favor interacting with

existing strong ties results better than strategies favoring more relationships with weak ties.

These strategies result in ego networks in compliance with SBH model.

Trust levels between individuals are built as they interact with each other. Fig. 6.5

summarizes the underlying process for calculating the trust level in a relationship. The total

data collection time is divided into equal portions. At each of these portions of time, if there

is an interaction between two users, the weight of interaction is applied according to its type.

Then the interaction is probabilistically classified on whether it is collaborative or not. If the

interaction is collaborative, the trust level between two individuals increase by the rate of

choosen method. Otherwise it is decreased by the same amount. In case of no interactions,

trust level decreases with a constant rate.
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Figure 6.5: System to change trust level of a relationship in a time instant.

Besides interaction prioritization, following three parameters are important to generate

trust levels for the process summarized in Fig. 6.5:

• Probability of an interaction to be collaborative (p).

• The rate of increase or decrease in trust with an interaction.

• Definition of strong, medium and weak ties.

Based on the model of Sutcliffe et al. [177] and SBH, logarithmic increase rate and linear

decrease rate give the best matching result with SBH distribution of ties. The probability

of collaborative interactions must be greater than 90% not to have an artificially high drop

in the trust levels. Trust distribution for friends of a person is divided in three main levels.

Strong ties are with the friends in the upper one third and weak ties are in the lower one

third of this distribution. Medium ties fall in between strong and weak ties.
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6.3 Simulation results

6.3.1 Animal monitoring

The performance analysis of our approach is carried out by extensive simulations in OPNET

modeler [158]. The Lévy walk mobility model is used with α = 1.9 and β = 1.6, which are the

values for the foraging pattern of the considered gorilla troup based on the observed values

in the nature [112,170]. The segment-based trajectory modeling is used to create Lévy walk

mobility. The trajectory consists of multiple points defined by Lévy walk with the given α

and β values. Trajectories for Lévy walk mobility models are created and assigned to nodes

as attribute values in OPNET. The random waypoint mobility model is also used in a group

of simulations with speed uniformly distributed between three and eight km/h interval and

pause time uniformly distributed between 50 and 150 seconds interval. The range of values

for these metrics are determined by using the documented observations on gorillas [112].

The primate type gorilla is chosen for simulation studies. Gorillas live in socially orga-

nized groups, which are called as “troops”. The roles of the individual animals in the society

build up a hierarchical structure, which is shown in Fig. 6.6 for our application scenario.
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Figure 6.6: Gorillas live in socially organized groups.

6.3.1.1 Network formation

The proposed network formation model is tested against the original preferential attachment

model in two sets of simulation studies. In the first set of simulations, the deployment of only

a single troop is considered. Gorilla troop populations in nature usually range from 2 to 12

members and the average troop size is 9. The total of 50 simulation runs are executed and

in each simulation, 11 nodes are deployed in the area. In Table 6.1, the average number of

nodes for each number of connections are presented for the original preferential attachment

and our preferential attachment based network formation and deployment model (PABD).

Table 6.1: Average number of nodes for each degree in 1st scenario

Degree 0 1 2 3 4 5 6 7 8 9

Pref. Att. 0 7.03 1.83 0.93 0.46 0.30 0.21 0.18 0.13 0.09

PABD 0.23 6.30 2.27 0.73 0.53 0.83 0 0 0 0
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There are 32 nodes deployed in the area for each simulation of the second set of network

formation experiments. Table 6.2 shows the average number of nodes for each number of

connections for the original preferential attachment and PABD.

Table 6.2: Average number of animals in 2nd deployment scenario

Degree 0 1 2 3 4 5 6 7 8 >8

Pref. Att. 0 20.33 5.97 2.11 1.20 0.60 0.47 0.33 0.20 0.79

PABD 0.66 17.45 5.17 2.93 2.03 3.03 0 0 0 0

The results given in Table 6.1 and Table 6.2 indicate that our network formation method

produces gorilla troops with social relational properties similar to the troops in nature. The

first result indicating this observation is that the degree distribution is more homogeneous

compared to network formation by original preferential attachment while not any of the

nodes exceeding a certain degree value. Another important result is that the solitary gorillas

can be observed only in some scenarios of our network formation method.

One of the network formation cases by PABD, which has number of connections close to

the average values, is presented in Fig. 6.7 to demonstrate the results visually. The figure

shows that most of the nodes are directly connected to only a few nodes in the preferential

attachment model, which is not a characteristic observed in a gorilla society [113].
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(a) Deployment by PABD. (b) Deployment by Pref. Attachment.

Figure 6.7: Network formation by our protocol and by preferential attachment.

Fig. 6.8 and Fig. 6.9 show the distributions of node degrees for preferential attachment

and our protocol in log scale. Even though the number of nodes is not very large, the

power law linearization in a log scale is observed. This behavior is not observed in PABD

as our network formation model extends the preferential attachment to be effectively used

for animal societies. When a node has the maximum degree (dmax) defined for the group in

consideration, it becomes ineligible for a new deployed node to get connected. Therefore,

Fig. 6.8 and 6.9 show that the probability of adding a link to a node in PABD depends not

only on its degree but also on the dmax defined for group in consideration.
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Figure 6.8: Degree distribution of 11 nodes for PABD and by Pref. attachment.
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Figure 6.9: Degree distribution of 32 nodes for PABD and by Pref. attachment.
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6.3.1.2 Roles

In the first set of experiments, nodes move according to the Random waypoint mobility

pattern. Twenty simulation runs were executed with the same initial conditions and the

average percentage of roles are determined by our role determination algorithm.

In Fig. 6.10, the percentages of the troop members over the simulation period are given.

The percentages of the animals, which are not members of the troop, are given in Fig. 6.11.
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Figure 6.10: Members of the troop in random walk.
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Figure 6.11: Non-members of the troop in random walk.

Fig. 6.10 and Fig. 6.11 show that the number of solitary males increase with the simula-

tion time and this role clearly becomes dominant in the society. The other roles have similar

shares, mostly depending on their initial conditions. The solitary males in the nature walk

alone in the environment and they generally get affiliated with multiple troops over time.

Hence this is an expected property for the society with random mobility with a starting

condition in which most of the nodes are close to each other. Most of the nodes get departed

from the troop as the time passes and the algorithms change their assigned roles to solitary

males as they start to range alone in the area.

In the second set of experiments, the nodes move with Lévy walk with center of mass

mobility pattern. The simulations are executed with the same conditions as in the initial

set of experiments and the average percentage of roles are determined by our approach. The
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change in the percentage of the members and the non-members of the troop over simulation

time are given in Fig. 6.12 and Fig. 6.13. Similar to the simulations with random walk, the

percentage of each role fluctuates at the beginning of the simulation. However the fluctuation

range is smaller and the fluctuation time is shorter compared to random walk. After the short

fluctuation period, the roles in Levy walk become stable and the roles match the starting

roles. In accordance with its design purpose, Lévy walk with center of mass mobility pattern

provides an animal group with a stable role distribution.
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Figure 6.12: Members of the troop in Lévy walk.
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Figure 6.13: Non-members of the troop in Lévy walk.

In the third set of experiments on roles, the mobility of the nodes is defined by the

Lévy walk with preferential attachment extension. The results of the simulation runs, which

show the percentage of members and non-members of the troop over time are given in Fig.

6.12 and Fig. 6.13. The results show that the percentage of each role fluctuates at the

beginning of the simulation similar to the initial experiment set with random mobility. This

characteristic demonstrates that the role decision process requires a period of time to assign

the correct roles to the animals. The experiment also shows that a Lévy walk with preferential

attachment extension is an appropriate choice for mobility model, since the resulting average

percentages of the roles match the observed structure of the gorilla societies [113].
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6.3.1.3 Rules

The introduced protocol for social role determination can be applied to any different types

of ape groups by modifying its rules or by creating new metrics. The graphs in Fig. 6.14

and Fig. 6.15 show results for two different metrics chosen for the simulation scenarios with

our preferential attachment based mobility (PABM), center of mass based mobility (CMBM)

and random walk (RW). For the first case, it is assumed that the role distribution of the

mobile society must be same as the role distribution in the stationary case. The metric

for Fig. 6.14 is the ratio of roles distributed in the mobile scenario to the roles distributed

in the stationary case. For Fig. 6.15, the metric is the ratio of solitary animals to all

animals in the society. These figures show that CMBM gives results according to its design

purpose such that the cluster structure remains same as the initial conditions. The results

also demonstrate the probabilistic nature of PABM since it differentiates from the initial

deployment with a certain probability.
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Figure 6.14: The ratio of roles in mobile scenario to stationary scenario.
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Figure 6.15: The ratio of solitary animals to all animals in the society.
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6.3.1.4 Network analyses

In this set of simulations, we compared our approach to real-life primate networks using

multiple social network metrics. We compare the characteristics of five real-life primate

networks to the primate networks created by our approach. Two of these five groups are

chimpanzees [125], two of them are macaques [123, 178] and one of them is a capuchin

group [179].

Fig. 6.16 shows the clustering coefficient and eigenvector centrality values for real-life

data and our simulations. The results show that our approach produces networks with sim-

ilar characteristics to real-life primate social networks. The calculated clustering coefficient

values are within the 10% variance of their mean and our simulation results are within the

5% variance of the mean. The values for eigenvector centrality are even closer to each other.

The difference between the eigenvector centrality values of our approach and chimpanzee

networks are less than 0.1%.
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Figure 6.16: CC and eigenvector centrality values for real-life data and our simulations.

The proximity of the individuals throughout the time is used to create the network graphs

of real-life primate data and our approach. When creating the graphs, the members of the

group form the nodes of the network while the edges are drawn according to the time spent

together. Edges are assigned with four different levels of weights to differentiate the strength

of ties. Fig. 6.17 shows the graph of a chimpanzee social network [125] formed by real-life

data and Fig. 6.18 shows the graph of a gorilla social network formed by our approach.
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Figure 6.17: Network graph formed by using data of a real-life chimpanzee group (1).

Figure 6.18: Network graph formed by using our simulations of a gorilla group.
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Figure 6.19: Network graph formed by using data of a real-life chimpanzee group (2).

Figure 6.20: Network graph formed by using data of a real-life macaque group.
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Figure 6.21: Network graph of a real-life wild capuchin monkey group.

Table 6.3 shows the values of edge count, vertex count and vertex degree for the social

networks of real-life primate groups and our simulations. Results show that the networks

created in the simulations have similar characteristics to the real-life primate networks also

in terms of these parameters. The mean for the ratio of edges to vertices is 3.77 with values

ranging from 3 to 4.08. The value of this ratio for our simulations is 3.83. Therefore the

density of the simulated social network is similar to the densities of real-life primate networks.

The vertex degree of our simulations is only 3% higher than the mean vertex degree, which

shows the realistic social interaction structure of the simulated primate network.
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Table 6.3: Network properties of analyzed ape groups

Parameter Chimp-1 Chimp-2 Simulation

results

Macaque-1 Macaque-2 Capuchin

Edge

Count

49 46 49 37 33 27

Vertex

Count

12 12 12 10 9 9

Vertex

Degree

8.17 7.67 8.17 7.4 7.33 6

6.3.1.5 Subgroups in the network

Modularity-based clustering is applied in this set of simulations. Networks with high mod-

ularity have dense connections between the nodes within modules but sparse connections

between nodes in different modules. Biological networks exhibit a high degree of modular-

ity [180]. The modularity can be used for detecting community structure in social networks

of primates.

Application of modularity-based clustering to the groups analyzed in simulation study

showed that each network has either two or three subgroups. The number of individuals

in these groups has a range between three and six. Fig. 6.22 shows two subgroups of the

chimpanzee social network depicted in Fig. 6.17.

Fig. 6.23 shows three subgroups of a gorilla social network, the graph of which is presented

in Fig. 6.18. There are subgroups in all primate social networks. For instance, a mother and
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her offspring would form a social subgroup. Essentially, the detection of these subgroups

improves the investigation of the groups.

Fig. 6.22 and Fig. 6.23 are important for the detection and presentation of primate

communities, which form small cohesive groups. Therefore, these small groups provide in-

formation on the community structure additional to the roles determined by our approach.

Subgroup information is also useful for the next installation or replacement of sensor and

actor nodes in the same network. For instance, the number of actor nodes can be arranged

according to the number of subgroups to improve data collection.

Figure 6.22: Subgroups of the chimpanzee network (1).
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Figure 6.23: Subgroups of the network created by our simulations.

Figure 6.24: Subgroups of the chimpanzee network (2).
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Figure 6.25: Subgroups of the macaque network.

Figure 6.26: Subgroups of the capuchin monkey network.

6.3.2 Social network and friend ranking

In this section, we evaluate our social network and friend ranking approach by measuring

how the patterns in the estimated friendship networks vary with the ranking algorithm and

interaction characteristics. The Nodobo study includes call, SMS and proximity records.
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The direction of the calls and messages are in the record along with the associated phone

number and the duration of the call or length of the message. The participants of the study

used provided mobile phones to communicate with their personal contacts as well as the

other participants of the study.

In our approach, we aim to generate the social network with all contacted friends for

each participant. Therefore, the data must be analyzed and used for all friends of each user.

Since the proximity data exist only for the current participants, it cannot be used in the same

analysis with the call and SMS records. Additionally, there are false positive ties formed in

the social graph when the proximities of the Nodobo dataset are used [181].

We use different weight values for calls and texts depending on the studies of Okdie

et al. [175] and Boucher et al. [182]. According to these studies, users declare a higher

satisfaction level in vocal communication compared to the communication based on texts.

Therefore, we assigned a higher weight to the calls, wc = 1.25, than SMS, ws = 1, in

our simulations. The data collection period is divided into intervals of one month and the

interactions of the users are compared for each month to calculate the wins and losses of the

friends. Table 6.4 summarizes the parameters used in the study.
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Table 6.4: Simulation parameters

Total time 4 months

Game period 1 month

Number of users 27

Call weight (wc) 1.25

SMS weight (ws) 1

Number of Calls 1309

Number of SMS 25,982

Fig. 6.27 shows the resulting ratings of friends with Colley method for nine of 27 users.

The friends of the users are numbered and sorted according to their ratings in the figures.

The pattern of the rating distribution reflects the discrete groups of friends for users. The

resulting rating graphs have the same concavity characteristics, which is an effect of the

nonsensitive Colley ranking method. This pattern also exists in the rating results of all

students which are not included in Fig. 6.27. For 20 users (≃ 74%), friends can be grouped

into three discrete groups such that friend with maximum rating in an intimacy group has

a rating at least 15% lower than the friend with the minimum rating in the higher intimacy

group.
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(a) User-1, Colley method (b) User-2, Colley method (c) User-3, Colley method
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(g) User-7, Colley method
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(h) User-8, Colley method
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(i) User-9, Colley method

Figure 6.27: Ratings of friends with Colley method for nine users.

In the second set of the analyses, the ratings are calculated by using the Winning Per-

centage method. The experiment interval is divided into periods of one month. Fig. 6.28

shows a comparison of ratings by Colley and Winning Percentage method for two users. Both

methods rank friends close to each other. However one of the main disadvantages of Winning

Percentage method is that some of the users are not included in the friend list. Although

the user communicated with these friends, they didn’t have an interaction value considered

as a win to be included in the friends list. Additionally, the pattern of discrete groups of
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friends cannot be observed in Winning Percentage method. The ratings of the friends are

distributed in a more continuous pattern compared to the ratings of Colley method.
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(a) User-1, Colley method (b) User-1, Win. perc. method

(c) User-2, Colley method (d) User-2, Win. perc. method

Figure 6.28: Friend ratings for two users.

In Fig. 6.29, the change in the ratings of a user’s friends is demonstrated for each month

during the four month interval. Since the number of communicated contacts increases over

time and the rankings change accordingly, the ratings are not sorted in Fig. 6.29 to keep

the order of friends. The user communicates at most with newly added friends after each

month, which can be observed in the results. However, the ratings do not change drastically

and Colley method generates a consistent friend network through four months.
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(a) Month 1 (b) Month 2

(c) Month 3 (d) Month 4

Figure 6.29: The change in friend ratings in four months.

6.3.3 Trust based social network

We use Reality Mining Database [183] to discuss the application of trust based ranking on

real data. Reality Mining is a mobile phone database, which represents over 350000 hours of

continuous data collected from 100 students for nine months. The information collected in

Reality Mining includes call logs, SMS messages, Bluetooth proximity information, cell tower

IDs, application usage, and phone status. Data also include durations and directions of calls
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and text messages. Hence the database incorporates detailed information on communication

among users in forms of text and voice. Data from Bluetooth devices and cell towers enable

approximation of face-to-face communication time and duration information. The number of

contacts is more than 50 for the majority of users in the study, which creates an appropriately

sized ego network for each person to analyze. The analysis is done using text messages, phone

calls and Bluetooth proximities as different types of interactions.

To comply with SBH model, a small portion of friends must have strong ties, a larger

number of friends must have medium ties and most of the friends must have weak ties with

the ego. Hence the distribution of relationship strength for each person must present a

power-law curve. As an initial test, we assigned higher weights to voice calls and proximities

when they last longer than average interaction durations. The analysis results show that

even with these conditions, we observe power-law distribution of interaction (friendship)

values for each ego network in the database. The overall distribution of interactions for all

users in the network is also power-law as shown in Fig. 6.30.
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Figure 6.30: Distribution of interaction values for the whole network.

In another simulation set, the weight values of the interactions are taken to be equal

and the interaction values calculated for four randomly selected users. Fig. 6.30 shows the

relations of these fours users and the interaction values for their relations. We observe a

similar distribution of interaction values for each individual. Another observation is that the

maximum interaction value changes from one person to another while the number of strong

ties stay in the range from one to three for all of the students. We also observed that the

number of very close friends is usually 2 or 3. For accurate social network interpretation and

generation of the circles, the range of all possible weight values must be determined. When

the voice and proximity are prioritized over text communication by taking the duration of

the interaction into account, the distinct friend groups of intimacy levels with power-law

distribution would become more apparent.
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Figure 6.31: The interaction values of the relations for four users.
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CHAPTER 7

ACTOR POSITIONING IN AERIAL SENSOR NETWORKS

In this chapter we present APAWSAN, an actor positioning strategy for aerial sensor and

actor networks (AWSANs) [23–26]. In AWSANs, UAVs have been equipped with additional

sensors for collecting environmental data. Therefore, UAVs have become popular in a wide

range of applications which benefit the environmental monitoring, air formation measure-

ment, search and rescue and so on. With the development of aerial networks with multiple

UAVs, some of these applications such as toxic plume observation or atmospheric sensing of

storm dynamics focus on continuous investigation of three dimensional (3D) space.

Although current approaches mostly use UAVs in solo flight, there are emerging concepts

for employing multi-UAV systems. Compared to single-UAV systems, multi-UAV systems

have several advantages such as scalability and survivability. Multi-UAV systems facilitating

the communication among UAVs are more flexible and can extend the coverage of the system.

These systems either act autonomously or depend on communication with an infrastructure

such as a satellite base or a ground station for the operation of the UAVs. There are several

approaches for multi-UAV systems with heterogeneous node structures ( [184], [185], [186]).

In AWSANs, UAVs acting as sensor nodes are generally smaller and they only collect data

from the environment. Some of these UAVs have the size of a fulmar and they are inexpensive

compared to fully equipped research aircrafts, which act as actor nodes. In addition to

data collection, actor nodes also act on the environment by using actuators such as servo-

mechanisms. For instance, low-flying helicopter platform by Thrun et al. [187] provides
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ground mapping and air-to-ground cooperation of autonomous robotic vehicles. Besides

acting on the environment and collecting data, actors perform networking functionalities such

as processing or relaying of data in multi-UAV solutions and they acquire a hierarchically

higher role in the network for these applications.

The formation and dynamic adaptation of the network topology in 3D space is important

for the coverage of 3D environment and the effective data collection. Sensor networks have

been utilized recently for applications in 3D space such as space exploration [185], airborne

[140] and underwater surveillance [131]. However, these solutions in different domains do

not directly apply to UAV systems, which have characteristic constraints. For instance, the

dynamic environmental conditions, node movements and terrain structures complicate the

maintenance of communication links. The nodes in AWSANs are mobile with higher speeds

compared to most other systems. Therefore, the topology changes are also more frequent.

The radio links and physical layer characteristics are also different in AWSANs since the

communication ranges are generally longer than underwater sensor networks or vehicular

networks. The communication range of each UAV is determined by the range of wireless

radio it is equipped with. Hence the network topology design affects the 3D coverage of the

network. The signal strengths of antennas depend on their orientations. Actor UAVs can

not have the same signal strength at every position even if they are dynamically positioned

in the network. Therefore, a positioning strategy for aerial WSANs must be able to attain

and maintain 3D coverage of the observed environment while taking these constraints into

account.
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The considered scenario in this chapter is a volcanic eruption such as the eruptions of

the volcano Eyjafjallajökull at Eyjafjöll in Iceland in the Spring of 2010. The erupting lava

of Eyjafjallajökull injected a cloud of ash into the Jet Stream. Even when the ashcloud

was carried away from the volcano with the wind, it was not possible to bring personnel

for close-up observation of the volcano or the plume. The UAV system we present here

consists of a central UAV acting as the sink, small UAVs with sensor nodes and larger

actor UAVs collecting the data. This system can form a unique three dimensional system

for environmental monitoring and can be used for high quality observation of toxic plume

behavior.

APAWSAN is presented to achieve effective 3D volume coverage while preserving 1-hop

connectivity from each actor UAV to a central sink UAV. Our positioning algorithm is based

on the Valence Shell Electron Pair Repulsion (VSEPR) theory [155]. VSEPR theory has

been used in chemistry to describe the atom alignments in a molecule around a central atom

and to develop molecular mechanics force fields [188]. We utilize VSEPR theory to define the

positions of actors with respect to the sink. Then we extend our approach for multiple sinks

using the VSEPR theory principles for multiple central nodes and the network among these

central nodes. The positioning strategy is adapted to the characteristics of UAV systems

and aforementioned constraints by using a rotatable hybrid antenna model (O-BESPAR),

which is chosen according to the real life experiments conducted for the possible antenna

modules [189]. The requirements of our approach such as efficient neighbor discovery and

non-interference communication are achieved by the (O-BESPAR) [189] and beamforming.
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Figure 7.1: Volcanic plume application scenario.

7.1 System model

The system consists of N nodes, with a set, S, of small UAVs, which have built-in sensor

nodes and a set, A, of more powerful UAVs with actor nodes. There is also a sink node

which is located on the largest sized UAV with the extended capabilities so that it is not

affected by the expected or unprecedented environmental conditions.

The formation of actor-sink backbone and affiliation of sensor nodes with the actors are

similar to SOFROP [14] and nodes do not follow any predetermined initial configuration.

Each sensor node s communicates only with direct neighbors Neigh(s) and keeps a “weight′′

value, which is “k − (hop value)′′ where k is the weight of the actor and hop value is the
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number of hops required to reach the affiliated actor. The sensor nodes and actors are

assumed to have transmission radii rs and ra, respectively, with spherical transmission ranges.

7.2 Actor positioning

7.2.1 VSEPR theory approach

Our positioning strategy preserves 1-hop connectivity between each actor and the sink by

using the VSEPR theory of chemistry. The VSEPR model is the most successful model for

the prediction of closed-shell molecule geometries. Laplacian of the charge density provides

the physical basis for the VSEPR model. VSEPR model is used for actor positioning in an

aerial wireless sensor and actor network.

According to VSEPR theory, the Laplacian of the electronic charge density exhibits

extrema in the valence shell of the central atom within a molecule. These extrema indicate

the presence of localized concentrations of electronic charge. The spherical surface on which

the electron pairs are assumed to be localized is identified with the sphere of maximum charge

concentration in the valence-shell charge concentration and the localized pairs of electrons

are identified with the local maxima.

VSEPR theory uses the “AXE method” of electron counting, in which A is the number of

central atoms, X is the number of sigma bonds between the central atom and the surrounding

atoms and E is the number of lone electron pairs. The geometry predictions depend on the
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steric number, which is the sum of X and E. E is used particularly for deciding the positions

of the actors in systems with multiple sinks in our approach.

VSEPR theory is applied such that the possible actor positions for different number of

actors are determined according to VSEPR theory geometries, which are given in Fig. 7.2.

Then these locations are converted into positions with respect to the sink. The number

of actors (n) and the communication ranges of the nodes are the most important factors

defining the locations of actors.

Figure 7.2: VSEPR theory geometries.
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7.2.1.1 VSEPR theory geometries of WSAN

The geometries formed by the UAVs using the VSEPR theory are identified by creating a

coordinate system and taking the position of the sink, pS, as the origin of this coordinate

system. The main direction in the flight plan of sink forms the x-coordinate and the positions

of the actors during the flight are defined with respect to the sink and its flight direction.

The formulation of geometries is important for the definition of positions that the actors

can be located and for the definition of transitions between geometries. The locations of the

actors according to the defined coordinate system. The peripheral atoms in VSEPR theory

are mapped to the actors and the central atom is mapped to the sink. The possible actor

positions for different number of actors are found and these positions are converted into

positions with respect to the sink in order to be used during flight. A designed algorithm

allows the actors to position during the flight and for the transitions from one geometry to the

other. Hence both for increasing and decreasing number of actors, there is a self-organizing

system of UAVs handling sudden failures or temporary communication loss.

When there is a single actor, it takes a position with a predefined distance of r to the

sink. Similarly in the case with two actors, the sink and actors are arranged during the flight

with an expected connection angle of 180◦. This geometrical arrangement is called “Linear”

geometry (Fig. 7.3). The positions of the actors in Linear geometry are as follows:

pa1
(x, y, z) = (r, 0, 0) pa2

(x, y, z) = (−r, 0, 0) (7.1)
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Figure 7.3: VSEPR theory linear geometry.

The flight model when there are three actors around the sink is determined by the

molecular geometry model with a single atom at the center and three peripheral atoms at

the corners of a triangle all in one plane. This is called as “Trigonal planar” (Fig. 7.4) and

its characteristic property is the connection angles of 120◦ between two actors. These actors

are at identical distances to the sink with positions given as follows:

pa1
(x, y, z) = (r, 0, 0),

pa2
(x, y, z) = (−r.sin(30◦), r.sin(60◦), 0)

pa3
(x, y, z) = (−r.sin(30◦),−r.sin(60◦), 0)

(7.2)
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Figure 7.4: VSEPR theory trigonal planar geometry.
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When there are four peripheral actor UAVs, the sink is located at the center with four

substituents that are located at the corners of a tetrahedron. This geometry is called “Tetra-

hedral” (Fig. 7.5) and the connection angles are cos−1(−1/3) ≈ 109.5◦ when all four actors

are located at the positions calculated according to tetrahedral geometry.

pa1
(x, y, z) = (0, 0, r), pa2

(x, y, z) = (−r.a,−r.b, r.cos(109.5◦))

pa3
(x, y, z) = (−r.sin(109.5◦), 0, r.cos(109.5◦)

pa4
(x, y, z) = (−r.a, r.b, r.cos(109.5◦))

(7.3)

where a = sin(109.5◦).sin(30◦), b = sin(109.5◦).cos(30◦)
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Figure 7.5: VSEPR theory tetrahedron geometry.

When there are five actors surrounding the sink, they take positions during the flight with

non-identical connection angles relative to the sink. There is no geometrical arrangement

for one sink and five actors, which results in five equally sized connection angles in three

dimensions. In trigonal bipyramid geometry, three actors are positioned on the y = 0 plane

with connection angles of 120◦ whereas the other two actors take positions on y-axis with
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angles of 90◦ to the y = 0 plane. Hence the geometry formed with each actor at a corner of

this geometry is a “Trigonal bipyramid” (Fig. 7.6).

pa1
(x, y, z) = (r, 0, 0), pa2

(x, y, z) = (−r.sin(30◦), r.sin(60◦), 0)

pa4
(x, y, z) = (0, 0, r), pa3

(x, y, z) = (−r.sin(30◦),−r.sin(60◦), 0)

pa5
(x, y, z) = (0, 0,−r)

(7.4)
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Figure 7.6: VSEPR theory tetrahedron geometry.

When there are six actors, they are arranged around the sink symmetrically, defining the

vertices of an octahedron as given in Fig. 7.7. The octahedron has eight faces as its prefix

implies and the final geometry is an Octahedral with an actor at each corner.

pa1
(x, y, z) = (r, 0, 0) pa2

(x, y, z) = (0, r, 0)

pa3
(x, y, z) = (r, 0, 0) pa4

(x, y, z) = (0,−r, 0)

pa5
(x, y, z) = (0, 0, r) pa6

(x, y, z) = (0, 0,−r)

(7.5)
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Figure 7.7: VSEPR theory octahedron geometry.

There are several possible geometries when seven actors exist in the network such as the

mono-capped octahedron, mono-capped trigonal prism and the pentagonal bipyramid (or

dipyramid). “Pentagonal bipyramid” (Fig. 7.8) is the chosen geometry since its suitable for

transition between geometries in cases such as the loss or an addition of an actor. Pentagonal

bipyramid defines the molecular geometry with one atom at the center with seven ligands

at the corners of a pentagonal dipyramid. The connection angles are not identical for actors

in this geometry.

pa1
(x, y, z) = (r, 0, 0), pa2

(x, y, z) = (r.cos72◦, r.sin72◦, 0)

pa4
(x, y, z) = (0, 0, r), pa3

(x, y, z) = (−r.cos36◦, r.sin36◦, 0)

pa7
(x, y, z) = (0, 0,−r), pa5

(x, y, z) = (r.cos72◦,−r.sin72◦, 0)

pa6
(x, y, z) = (−r.cos36◦,−r.sin36◦, 0)

(7.6)
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Figure 7.8: VSEPR theory pentagonal bipyramid geometry.

There are examples in VSEPR theory with eight surrounding nodes, which maximize

the distance to the nearest point, or use electrons to maximize the sum of all reciprocals of

squares of distances. According to the VSEPR theory, the square antiprism (See Fig. 7.9)

is the favored geometry among the possible geometries with eight surrounding atoms. A

square anti-prism corresponds to the shape when eight points are distributed on the surface

of a sphere with the aim of maximizing the distance between each pair.

pa1
(x, y, z) = (r.a

√
2

2
, 0, r.h

2
) pa2

(x, y, z) = (0, r.a
√
2

2
, r.h

2
)

pa3
(x, y, z) = (−r.a

√
2

2
, 0, r.h

2
) pa4

(x, y, z) = (0,−r.a
√
2

2
, r.h

2
)

pa5
(x, y, z) = (r.a, r.a,−r.h

2
) pa6

(x, y, z) = (−r.a, r.a,−r.h
2
)

pa7
(x, y, z) = (−r.a,−r.a,−r.h

2
) pa8

(x, y, z) = (r.a,−r.a,−r.h
2
)

(7.7)
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Figure 7.9: VSEPR theory square antiprism geometry.

where a and h are constants used in pentagonal bipyramid geometry to simplify the tran-

sitions. h/2 ≈ 0.5237 represents the positive and negative z values for the planes that the

actors are located at and a ≈ 1.2156.

The positioning algorithm for actors, which is designed according to VSEPR theory prin-

ciples and these calculated positions, is given in Algorithm 8. The positioning calculations

assume spherical transmission and reception ranges with identical RSSI and loss rates at

every communication angle. However, these factors are very important and effective in the

performance of real life UAV systems. The real-life challenges of UAV systems must be taken

into consideration when designing a positioning model. Therefore the characteristics of the

antennas used on the actors and the sink are critical. We improved the positioning method

by extending it with a realistic antenna model and by modifying the positioning algorithm

accordingly.
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Algorithm 8 Actor positioning
1: r: Distance from an actor to the sink, ~p: Position vector of a node,

2: Θ: Angle between ~ps and ~pi, (xsink, ysink, zsink): Coordinates of the sink

3: if n < 4 then

4: One actor is positioned at (xsink + r, ysink, zsink)

5: i = Θ

6: while i < 360◦ do

7: Next actor is positioned at (xsink + r.cos(Θ), ysink, zsink)

8: i = i+Θ

9: end while

10: else if n = 4 then

11: One actor is positioned at (xsink, ysink, zsink + r)

12: i = 0◦, Φ = −19.471◦

13: while i < 360◦ do

14: xa = r.cos(i).cos(Φ) + xsink, ya = r.sin(i).cos(Φ) + ysink

15: za = r.sin(Φ) + zsink

16: i = i+ 120◦

17: end while

18: else if 8 > n > 4 then

19: Two actors are positioned on (xsink, ysink) line

20: One of remaining actors is positioned at (xsink + r, ysink, zsink)

21: Θ = 360
n−2

on z = 0 plane, i = Θ

22: while i < 360◦ do

23: Next actor is positioned at (xsink + r.cos(i), ysink + r.sini, zsink)

24: i = i+Θ

25: end while

26: else if n = 8 then

27: h
2
= 0.5237, a = 1.2156:

28: xsink ± r.a, ysink ± r.a, zsink − r.h
2

for first four actors

29: xsink ± r. a√
2
, ysink, zsink + r.h

2
for two actors

30: xsink, ysink ± r. a√
2
, zsink + r.h

2
for remaining actors

31: end if
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7.2.2 O-BESPAR antenna model

Omni Bi-directional ESPAR (O-BESPAR) antenna model, which leverages the complemen-

tary properties of omni-directional and directional antennas. While omni-directional an-

tennas enable 360 degrees of coverage when needed, the directional antennas provide high

throughput and low interference. In addition to this important unifying characteristic, O-

BESPAR is utilized for our flight model based on its several other properties, which can be

summarized in three main parts as follows:

• Utilization of two independent directional beams permit a node to transmit and receive

simultaneously.

• The lightweight and small size of the module make it rotatable so that the beamforming

can be steered to any direction in 3D.

• Cooperation of omni-directional and beamforming antennas permits capability changes

for data transferring.

Our communication protocol incorporates an efficient neighbor discovery mechanism,

which not only allows UAVs to discover each other rapidly but also enables quick alignment

of directional beams to maximize the data transfer opportunities. According to our com-

munication protocol, sender UAV broadcasts control messages through the omni module in

order to exchange location information with receiver. After both beams are steered to each

other, the data transmission commences over the directional module. However, the trans-
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mission range of the omni antenna is much smaller than the directional ESPAR module.

Therefore if no neighbor is found by the broadcast of the omni module, the communication

protocol uses the directional module to perform bi-directional beam sweeping. Each beam

covers 180 degrees so that the scanning delay is minimized.

GPS receiver and altitude sensor are commonly used as built-on equipments for UAVs

nowadays. After using omni-directional antenna module to locate the sender UAV, sink UAV

has to calculate the angle difference to steer one of its directional beams to the sink. The

angle, (φ, θ)A,S, between the sink, S, and an actor, A, is calculated as follows:

(φ, θ)A,S = arctan
( zA − zS
√

(xA − xS)2 + (yA − yS)2

)

φ and θ stand for the angle of beamforming in horizontal and vertical plane separately.

We utilize two-ray ground path loss as the propagation model. According to this model,

the receiving power Pr depends on the transmission power Pt, antenna gain of transmitter

Gt, antenna gain of receiver Gr, distance between the actor and sink dA,S, the wavelength λ

and the antenna positions Ht and Hr. The calculation of the receiving power Pr is given as

follows:

Pr =
PtGtGrλ

2

(4πd)2
[4 sin(

πHtHr

λd
)]2

The effect of omni antenna orientation on the RSSI value is demonstrated with experi-

ments [190]. Thus, the omnidirectional antenna is not completely isotropic in a 3D network.
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In particular, the measurement of RSSI is extremely important for the positioning schemes

for two reasons. First, the neighbor discovery packets are sent from the omni antenna mod-

ule. If the RSSI value is too low, actor UAV has to sacrifice the coverage to fly closer to the

sink. Second, the actor UAVs fly around the sink and keep their positions in the flight. If

the sink UAV does not receive the beacon messages from some actor for time out, that actor

UAV is assumed to be lost and the network topology is changed to a non-optimal geometry.

7.2.3 Communication and rearrangement protocols

We propose two protocols for the communication between the sink UAV and actor UAVs.

Particularly, there are three main objectives of these protocols. First, the control packets

(Beacon and ACK) and data packets are transmitted by the omni and directional module

separately. Thus, omni module performs fast neighbor discovery and directional module

guarantees successful data delivery. Second, the protocol works with our actor positioning

algorithm to form and change the VSEPR geometries. In other words, the sink UAV achieves

dynamic positioning for the actor nodes. Third, during the flight, the sink UAV must

respond to the change of VSEPR geometry efficiently. Since some actors may leave or join

the network, the protocol includes a repositioning mechanism which rearranges the actors

and updates the beamforming direction.

The main algorithm for the communication between actor and sink UAVs is presented

in Algorithm 9. Before transmitting the collected data to the sink, an actor node uses
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omni antenna module to broadcast beacon messages, which contain its identification (id)

and current 3D location, (x,y,z) coordinates. When the sink receives the beacon messages,

it checks the actor‘s connection record. If it is not found, the sink updates the number of

neighbor actors and decides on the VSEPR geometry to be used by using Algorithm 10. Then

the actors start changing their positions relative to the sink and create a new beamforming.

The communication links of omni module may fail occasionally due to various reasons

such as obstacles, interference or low RSSI value caused by its orientation. Therefore, we

also propose Algorithm 10 to make O-BESPAR antenna model adaptable to the dynamics

of geometrical flight model. If the sink does not receive any beacon from an actor, which has

been connected for Ttimeout, the sink assumes that the actor has left the geometry. The sink

sends out Position Update Message (PUM) to rearrange actors’ positions with the purpose

of maximizing network coverage.
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Algorithm 9 Actor-Sink UAVs Communication Protocol
1: Uactor: actor UAV, Usink: sink UAV, n: number of actor UAVs, (φ, θ)A,S : the angle between actor and sink UAVs

2: if Uactor has data to transmit then

3: Broadcast Beacon through omni module

4: if Usink received Beacon through omni module then

5: Extract UAVId

6: if UAVId had been recorded by Usink then

7: Reply ACK through omni module and direct one beam to Uactor

8: else

9: Update n, operate Algorithm 7, Calculate (φ, θ)A,S

10: Reply ACK through omni module and direct one beam to Uactor

11: end if

12: if ACK is received by omni module of Uactor then

13: Calculate (φ, θ)A,S , direct one beam to Usink, Start transmitting data through directional module

14: end if

15: else if Uactor does not receive ACK then

16: Uactor sends out Beacon through directional module

17: if Usink receives Beacon through directional module then

18: Update n, operate Algorithm 7, Reply ACK message through omni module and direct one beam to Uactor

19: end if

20: if ACK is received by Uactor then

21: Start transmitting data through directional module

22: else

23: Sweep the beam to another direction

24: end if

25: if No ACK is received by both antenna modules then

26: Uactor stores the data into a buffer

27: end if

28: else if Usink does not receive Beacon from Uactor for Ttimeout then

29: Uactor is lost, Sink UAV runs Algorithm 9 to update flight geometry

30: end if

31: end if
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Algorithm 10 UAVs Geometrical Rearrangement

Usink broadcasts Position Update Message (PUM) through omni module

Usink calculates (φpum, θpum)UAV and directs one beam to the new position

if Uactor receives PUM then

Change the position and calculate (φpum, θpum)UAV

Direct one beam to the Usink

end if

7.2.4 Extension of VSEPR theory approach

We extended our initial approach by using an approach from molecular geometry. The

compounds in nature have less than eight peripheral atoms. Therefore the initial VSEPR

theory was presented for one central atom and at most eight surrounding atoms. Most of

the current applications of UAV systems are composed of less number of actor UAVs [184].

Therefore APAWSAN [23] employed only the basic VSEPR theory for actor positioning.

However the number of nodes in the network and the total covered volume can be increased

if this approach is improved by including more actor nodes. Gillespie [191] applied the rules

of VSEPR theory for up to twelve actors and presented an application of the theory for

these higher number of surrounding nodes around a central node. These geometries are

formed depending on the same repulsion force rules used in initial VSEPR theory. Hence we

226



extended our approach by utilizing VSEPR theory principles to allow deployment of more

than eight actors.

The geometries for nine to twelve actors, shown in Fig. 7.10, are monocapped square

antiprism, bicapped square antiprism, icosahedron minus one apex and icosahedron. The

monocapped square anti-prism in our approach corresponds to the geometry with the one

more actor location pa9(x, y, z) = (0, 0, r) additional to square anti-prism. For bicapped

square anti-prism, there is one more actor positioned at pa9(x, y, z) = (0, 0, r). The icosa-

hedron is a geometrical shape composed of twenty triangular faces, thirty edges and twelve

vertices. Icosahedron minus one apex is an icosahedron with one missing vertex. The favored

geometry for twelve actor geometry is a regular icosahedron with identical equilateral faces

and following actor positions:
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Figure 7.10: Geometries of nine to twelve actors.

The positioning algorithm for extended geometries is given in Algorithm 11. The sim-

ilarities of the geometries are used in the algorithm to define the locations. According to

the Algorithm 11, in geometries with even number of actors, two actors are positioned on

(xsink, ysink) line with r distance from the sink. If the number of actors is odd, a single actor

will be positioned on (xsink, ysink, zsink). The rest of the actors are positioned on two planes

such as zsink ± h, where h is calculated according to the geometry. On these planes, the

actors are distributed with equal angles and two planes are positioned with and angle of 360
n−2

between them for even number actors and 360
n−1

between them for odd number of actors.

Kettle [192] showed that the usual molecular orbitals which are used to describe the bond-

ing in the metal cluster may be transformed into the localized two-center and three-center

molecular orbitals described by VSEPR theory. When there are more than twelve actors,

our system requires multiple sinks to form the actor geometries. Therefore the requirement

of our approach is the deployment of more than one sink as the number of actors exceeds

twelve.
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Algorithm 11 Actor positioning for extended geometries
1: n: Number of actors

2: ai: Actor i

3: if n is even then

4: Two actors are positioned on (xsink, ysink, zsink ± r) line

5: else

6: One actor is positioned on (xsink, ysink, zsink + r)

7: end if

8: if n < 11 then

9: h
2
= 0.5237, a = 1.2156:

10: for i = 1 → 4 do

11: xsink ± r.a, ysink ± r.a, zsink − r.h
2

12: end for

13: for i = 5 → 6 do

14: xsink ± r. a√
2
, ysink, zsink + r.h

2

15: end for

16: For remaining actors: xsink, ysink ± r. a√
2
, zsink + r.h

2

17: else

18: Φ = 26.565 and Θ = 0◦

19: for i = 1 → 5 do

20: xa = r.cos(Θ).cos(Φ), ya = r.sin(Θ).cos(Φ), za = r.sin(Φ)

21: Θ = Θ+ 72◦

22: end for

23: Θ = 36◦

24: for i = 6 → 10 do

25: xa = r.cos(Θ).cos(−Φ), ya = r.sin(Θ).cos(−Φ), za = r.sin(−Φ)

26: Θ = Θ+ 72◦

27: end for

28: end if
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7.2.5 Multiple sinks

The scalability of our approach is improved by using multiple sink nodes as another extension

of VSEPR theory based method in our system. It has been shown in molecular geometry that

the molecules containing multiple central atoms and bonds conform to the general rule of the

repulsion among the electron pairs around any central atom. The multiple sink scenario of

our approach is modeled as the case with multiple central atoms in the molecular geometries.

Utilization of multiple sinks extends the endurance and scalability of the operation of

multiple UAV systems. Since the scenarios with a single sink node use VSEPR theory by

forming an analogy to a molecule with a central atom, scenarios with multiple sinks utilize

VSEPR theory with an analogy to the connection of multiple molecules. Sinks are larger

UAVs with higher payload capacities compared to actors and they are less prone to issues

related to weight. While actors are capable of carrying relatively heavier communication

hardware as a result of these properties, the lighter payload means the higher altitude and

the longer endurance for smaller UAVs [193]. Therefore sinks are used in the aerial network

to form the backbone, which is composed of longer communication links. The actors operate

with lighter communication hardware by affiliating with a sink and positioning themselves

according to VSEPR theory around this sink.

The network of sinks form one of the favored geometries of basic VSEPR theory. For

instance, if there are six sinks in an aerial WSAN, they are positioned as the vertices of

octahedral without a central node. An example of multiple sink geometries is given in
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Fig. 7.11. Four sinks form the tetrahedral geometry with an actor connected to each sink.

The sinks are positioned according to the VSEPR theory rules such that each one forming

tetrahedral geometries with three actors and a sink.

Figure 7.11: An example of multiple sink geometries.

There are three main objectives for excluding the central node in formation of the VSEPR

geometries with sinks. First, the communication ranges of sink nodes are larger compared

to the actor nodes. Therefore sinks can form a mesh network among themselves, covering

an adequately large volume for the mission, without the requirement of a central node

with stronger capabilities. Second, introduction of another node type would increase the

complexity of the heterogeneous network. Third, the utilization of multiple sinks divides

the role of the sink in multiple nodes and prevents the single point of failure. Systems with

multiple UAVs operate in highly dynamic environments. The conditions at the beginning

of a mission may change during the operation. Therefore the system’s ability of adapting

to changes in the number of sinks is an important advantage as the number of nodes in the

system increases.
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The positioning of sinks according to VSEPR theory rules is both challenging and differ-

ent compared to actor positioning around a central sink. The sinks form a mesh network,

which act as the core of the overall UAV system. The defined flight route determines the

central point of the geometries and this is shared by all of the sinks. The distances between

the sinks change according to the geometries. The edge distances for sink geometries are

given in Table 7.1. The transmission range of each sink must be larger than longest edge in

the network for a mesh network of sinks.

The sinks form the network by sharing their information with each other. Each of the

sinks transmits a network formation packet (NFP) with its ID in the source field and the

number of actors connected to it in the payload. The processing of NFP at a sink a is given

in Algorithm 12. The sinks record the IDs of the sinks, which they received NFP from, and

they calculate the number of the sinks using this information. The sink list is used at a sink

for positioning. This list is also saved and updated for future use in case of a change in the

sink network such as a dead or an additional sink node. If an NFP is received from a sink,

which has a number of actors less than the average, next NFP is loaded with a query for

update to this sink. By this way, sinks with less number of actors employ actors from other

sinks. Hence, our approach keeps a balanced sink network in terms of the number of actors.
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Algorithm 12 Processing of NFP message at sink a
1: ns: Number of actors for a sink s

2: S: Sink list kept at the sink a

3: E: List for unbalanced sinks

4: Update S

5: for Each sink i in S do

6: Update ni

7: if ni < ⌊
∑n(S)

i=1 ni

n(S)
⌋ then

8: Add i in E

9: else if i ∈ E then

10: Remove i from E

11: end if

12: end for

13: if na >
∑ns

i=1 ni

ns
then

14: if E 6= ∅ then

15: for Each sink j ∈ S do

16: Send NFP with query for update

17: end for

18: end if

19: end if
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Table 7.1: Distances between edges for sink networks

Geometry Sink edge distances

Linear R

Trigonal planar R
√
3

Tetrahedron R 4√
6

Trigonal bipyramid R
√
3, R

√
2, 2R

Octahedron R
√
2, 2R

Pentagonal dipyramid R
√
2, 2R, R

√

(5−
√
5)/2,R

√

(5 +
√
5)/2

Square anti-prism R 1
1.645

(2+ 1√
2
), R 1

1.645
(2+ 1√

2
)
√
2, R 1

1.645

√

1 +
√
3 + 2

√
2

7.3 Simulation study

7.3.1 Simulation environment

The evaluation of the proposed system is conducted in OPNET modeler [158] by extending

the node models created in SOFROP [14]. The transmission radius of a node is taken as

40 meters. There are 30 sensor nodes with IEEE 802.11 MAC layer and random mobility

profile.
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7.3.2 Simulation results for positioning

7.3.2.1 Coverage

When sensor nodes collect information from the environment, there must be at least one actor

in a sensor node’s transmission range, which makes the coverage of the network backbone

important for the system. The inputs for the volume calculation of actor coverage are the

number of spherical coverage volumes, coordinates of the actors, the reception range and

expected memory usage by matrix used for modeling spheres. Using these inputs, the union

volume of actor coverage is calculated by a numerical approach, which first finds the most

distant point in the coordinate system. Then, the real coordinate system is projected to a

boolean 3D matrix. The boundary points are found for each sphere and points fitting into

the sphere are used to calculate the final volume.

Fig. 7.12 shows coverage for geometries with one sink, two sinks and “3D Deployment”

by Lee et al. [194]. Our approach outperforms “3D Deployment” with an average volume

difference of 22%. As the number of actors increases up to nine, the coverage of the basic

VSEPR theory geometries increase. However it can be observed that the bicapped square

antiprism, icosahedron minus one apex and icosahedron are not as effective as the geometries

with less actors. Additionally, it is observed that the coverage of 1-sink and 2-sink geometries

are similar unless the number of data collectors exceeds seven. Therefore, the number of sinks

must be increased to change the geometry of the actors for a more effective coverage when

the number of actors exceeds seven.
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Figure 7.12: 1-hop coverage for different geometries.

In the second set of experiments, the coverage of the proposed VSEPR theory based

positioning (VTBP) approach is compared to a partially random positioning (PRP) method.

PRP method is designed such that it includes the same number of the sink nodes for each

geometry to compare and each actor node is at the same distance to retain the properties

of network structure. Fig. 7.13 and Fig. 7.14 show the coverage for a single sink and two

sinks geometries of both methods, respectively. The coverage characteristic of our method

outperforms PRB in both cases and the performance difference becomes higher as the number

of actors increase.
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Figure 7.13: 1-hop coverage for our protocol vs. random positioning with 1 sink.
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Figure 7.14: 1-hop coverage for our protocol vs. random positioning with 2 sinks.

Fig. 7.15 show the coverage for VSEPR theory based positioning (VTBP) and VSEPR

theory based positioning with preferential attachment based actor deployment (VTPA) for

increasing number of actors up to eight sinks. In this experiment, the main objective is to see
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the effects of balanced and preferential attachment based actor deployment in total covered

volume for multiple sink geometries. The topologies with the balanced actor deployment

have significantly larger coverage as the number of actors is below 50. After the number of

actors exceeds 50, the performances of the approaches are very close to each other since the

probability of forming different geometries decreases and the topologies become very similar.
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Figure 7.15: 1-hop coverage for VTBP vs. VTPA.

7.3.2.2 Weight

The weight of a sensor UAV decreases by one with each hop it gets further from the actor.

The collected information on a sensor UAV can be transmitted to an actor through the

path of the sensor UAVs with increasing weight values. Therefore, in contrast to many of

the 3D positioning approaches in literature, the coverage of the 3D space is not the only
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critical criterion to measure the performance of our approach. The sensor measurements

can be collected from a large volume of space by utilizing the weight attribute of the sensor

nodes. Therefore, we use another metric, average weight value, instead of coverage for the

performance assessment of our protocol.

Fig. 7.16 shows the maximum and the minimum weight values averaged over the nodes

for all possible geometries. The geometries formed by more actors result in higher average

weight values in the network, which means less number of hops for the sensor nodes to

transmit the collected information to the actors. The number of unconnected nodes is also

decreasing as the geometries become larger. An interesting characteristic of the graph in

Fig. 7.16 is the high difference in the average weight between trigonal planar geometry to

tetrahedral geometry. Thus, it shows that the geometry gives better performance when more

than one plane of actors are used.

The dynamic topology is a fundamental characteristic of our application scenario. Sensor

UAVs fly continuously with perturbations in their main flight paths. While the average

weight value is critical, the maximum and minimum weight values are also important to assess

the suitability of our positioning approach to the mobility of the nodes in our application

scenario. The maximum and the minimum hop number of the sensor nodes must not vary

among actor areas in a network where the sensor nodes are shared efficiently among actors.

Fig. 7.16 shows that the sensor UAVs are affiliated with the actor UAVs within a smaller

range of possible weight values as the number of actor UAVs increase. When the difference

between the values of average minimum weight and the average weight values is high, it
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indicates an ineffective sharing of the nodes as they move in the network. It can be observed

that as the geometries evolve, the average minimum weight value increases and the range of

weight values that the nodes acquire becomes smaller. Additionally, the performance of the

system improves considerably from the trigonal planar geometry to tetrahedral geometry.

Therefore the results show that the performance improvement is not only affected by the

increase in the number of actors but it also depends on the geometries used.

Figure 7.16: Average maximum, minimum and average weight values for all geometries.

7.3.2.3 Cardinality

While using multiple actors, the concurrency becomes essential for an effective utilization of

the system. As a result, cardinality is chosen as the metric to evaluate the performance of the

system in distributing the actor affiliations. For these scenarios, the sensor nodes move with
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random mobility in the environment. The average cardinality of the actors are shown in Fig.

7.17 with the range of the collected values. The results show that the average cardinality

increases as the number of actors increases. The percentage variation in the cardinalities

takes values from 10 to 20% for different geometries. Low fluctuation in the observed values

is a result of a balanced sharing of the sensor nodes by the actors in the network.

Figure 7.17: Cardinality of actors for different geometries.

7.3.2.4 Betweenness centrality

VSEPR theory is the most successful approach for molecular geometry predictions. Our

previous simulations show that our adoption of VSEPR theory results in high performance

in coverage. However VSPER theory is not analyzed in terms of the network characteristics

of the created geometries. For this analysis, we first use the betweenness centrality, which

represents a measure of positional importance. When a node a is in the shortest path between
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two other nodes, these two nodes depend on the node a for communication. Betweenness

centrality values in our application scenario is more important for sinks since all of the actors

are the leaves of the network. The betweenness centrality for a sink is the sum of the fraction

of all shortest path pairs passing through the sink a, defined as follows:

cB(a) =
∑

s,t=V

σ(s, t | a)
σ(s, t)

where V is the set of nodes, σ(s, t) is the number of shortest (s, t) paths, and σ(s, t | a) is

the number of those paths passing through a.

We compare the performances for the cases, where the actors are deployed by random

deployment, preferential attachment based approach and our balanced approach. Fig. 7.18

shows the average betweenness centrality values of the sinks for geometries with different

number of sinks and Fig. 7.19 presents the average deviation of betweenness centrality for

the sink nodes. The results given in Fig. 7.18 and Fig. 7.19 show that the preferential

attachment based approach has higher values both for average betweenness centrality and

the average deviation in betweenness centrality of sink nodes. Fig. 7.19 shows that the

average deviation in betweenness centrality decreases for all methods as the number of sinks

exceeds three. The value for our approach decreases to one third of its value as the number

of sinks increases from three to eight whereas the change in other approaches is about 10%

under the same conditions. VSEPR theory based balanced approach provides larger coverage

values for all of cases. Therefore, the average deviation in betweenness centrality must be

smaller for a better coverage performance in our approach.
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Figure 7.18: Average betweenness centrality of sink nodes.
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Figure 7.19: Average deviation in betweenness centrality of sink nodes.
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7.3.2.5 Clustering coefficient

Another metric we use to analyze the network characteristics of our approach is the clus-

tering coefficient (CC). We compare the CC values of the sinks for the geometries formed

by the deployment of actors based on random deployment, preferential attachment based

approach and our balanced approach. The network graph formed by the VSEPR topologies

are unweighted. Thus, the CC of a node u is the fraction of possible triangles through that

node, which is defined as follows:

cu =
2T (u)

deg(u)(deg(u)− 1)

where T (u) is the number of triangles through node u and deg(u) is the degree of u.

Fig. 7.20 shows the average sink CC for different number of sinks. The sink CC increases

as the number of sinks in the geometry is increased. The preferential attachment based

approach has the highest and the VSPER-based balanced approach has the lowest sink CC

values for all of the geometries whereas the values for random positioning are in between the

other two approaches.
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Figure 7.20: Average sink clustering coefficient for different number of sinks.

Fig. 7.21 shows the average CC values of actors for different number of sinks. For all of

the cases, balanced VSEPR-based approach has smaller average CC compared to preferential

attachment based approach. Random positioning method has values in between the other

two approaches most of the time.
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(a) Topologies with five sinks.
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(b) Topologies with six sinks.
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(c) Topologies with seven sinks.
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(d) Topologies with eight sinks.

Figure 7.21: CC values of actors for different number of sinks.

The results given in Fig. 7.20 and Fig. 7.21 show that the preferential attachment based

approach has higher CC values both for actors and the sinks. However VSEPR theory based

balanced approach has a larger coverage for all of different cases. Therefore, the results

indicate that the coverage of UAV network is inversely proportional to the clustering in our

approach.
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7.3.3 Simulation results for positioning with hybrid antenna

The simulation study is conducted in the ns-2 simulator. The O-BESPAR antenna model,

VSEPR theory flight structures, the communication and flight control protocols are imple-

mented and tested. The performance of Packet Reception Ratio (PRR), actors’ reorganiza-

tion delay, and RSSI are evaluated to show the efficiency of the algorithm. The relationship

between RSSI and coverage by two antenna models is also discussed.

There are 30 UAVs in the simulation, two to eight of which are actors and one of which

is the sink. Zigbee [195] which has been integrated in many off-the-shelf sensors on UAV is

implemented for MAC and physical layer communications. The target area size is 1000m×

1000m. According to the specs of UAVs [196], the simulation time is set to 15 minutes

and the flying speed of actor and sink is 1 m/s. The sink and actors fly with a predefined

plan while maintaining the geometry. We assume the sensor UAVs fly at altitudes different

from the actors and the sink. Their flying speed and movements are random and their

communications cause interference to the UAVs in geometrical flight. Five beacons per

second are sent out by the actor to search for the sink. Each UAV includes a queue of 50

packets.

The omni-directional and O-BESPAR models work in 2.4GHz frequency band. The sink

and actor UAVs have the same antenna structures. The transmission radius of omnidirec-

tional antenna on each UAV is 10 meters. According to the transmission range, relationship
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between omni and directional modules [189], the transmission distance of the beamforming

is 28 meters.

For bi-directional beam sweeping, the beamwidth is 60◦. Therefore the angle of each

sweeping is 60◦ and the beam hops from 0 to 180◦.

7.3.3.1 Packet transmission experiment

The PRR of two antennas are evaluated for all of the VSEPR geometries. Fig. 7.22 and 7.23

show the PRR performance of the omni and O-BESPAR antennas in different geometries

when the number of actors increases from two to eight. When the number of actors are

lower than six, the PRR of omni antenna is between 50% and 60%. The PRR of O-BESPAR

antenna varied between 97% and 99%. In pentagonal bipyramid and square antiprismatic

geometries, the PRR of actor UAVs drops between 40% and 50% by using omni antenna.

Meanwhile, O-BESPAR antenna guarantees the PRR of AWSANs higher than 95%. The

packet loss of omnidirectional antenna increases as more actors transmit packets to the sink.

There are two fundamental reasons for packet loss. Due to the interference from other non-

actor UAVs in flight, omni antenna has much more transmission collisions than O-BESPAR

antenna. In addition, the actor has varied link quality values as the RSSI is affected by

antenna orientation. The PRR of actor 1 drops in square antiprismatic geometry because

of the poor RSSI at that orientation. For O-BESPAR antenna, the increase of number of
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actors makes directional module of the sink busy. The data packet is lost if the buffer is full

or the timestamp is expired.

Figure 7.22: PRR of Omni-directional antenna model in different geometries.

Figure 7.23: PRR of O-BESPAR antenna model in different geometries.
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7.3.3.2 Reorganization experiment

The actor-sink link is prone to failure due to flying path dynamics and interference. Then

the sink repositions actors and updates the geometry for a better coverage. This process is

called reorganization. In this experiment, UAV actor 1 leaves the network during the flight.

Then, sink uses Algorithm 10 and changes the flight geometry. The positions of the actors

must be updated with the PUM message for transitioning to the new geometry. The time

delay is defined as the duration between the actor 1 leaving and all actors receiving PUM

message.

Fig. 7.24 presents the reorganization time delay of omni and O-BESPAR antennas in

different geometries.

Figure 7.24: Reorganization time delay of antenna models

As Fig. 7.24 shows, larger number of actors results in longer reorganization delay. Gen-

erally, the time delay of both antenna models is similar since O-BESPAR also uses omni

antenna module to search neighboring UAVs. However, there is a time gap between two
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models. For omni antenna, as a result of transmission of both control and data packets,

either actor or sink does not exchange beacons until the end of data transmission. It causes

a long reception delay of control packets. For O-BESPAR antenna, only the beacon packets

are sent through omni module, which minimizes the time delay of actor relocation.

7.3.3.3 Antenna orientation and coverage

As discussed in the previous section, the orientation of omni antenna module causes poor

RSSI which decreases PRR at some positions. The loss of beacon messages increases reor-

ganization time delay of UAVs. Therefore, those UAVs with poor RSSI need to fly closer to

the sink in order to guarantee the RSSI. However, as distance between the actor and the sink

becomes shorter, network coverage becomes smaller. As a result, there is a tradeoff between

coverage and RSSI of UAVs.

Fig. 7.25 shows the RSSI of each actor UAV in the geometry flight.

Figure 7.25: RSSI values of the omni antenna in different geometry
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Most of actors maintain the RSSI in each geometry, however, some actors have higher

beacon packet loss due to poor RSSI of the orientation. Based on the RSSI values in different

geometries, the actor whose RSSI is smaller than the original flies closer to the sink to achieve

the same RSSI.

When the actors fly closer to the sink, the coverage of network is changed. The coverage

is measured by the volume covered by the network geometry in the air. Fig. 7.26 presents

the original and updated network coverage values. Total coverage of the network is critical

since when it increases, the data sensing range of the actors also increases. The network

has to sacrifice at most 13% of coverage to fulfill the RSSI requirement of omni antenna. In

particular, this tradeoff between RSSI and network coverage can be used as an indication of

the network design, such as the requirements of delay tolerant UAV networks.

Figure 7.26: The UAV coverage of each geometry flight
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

The work described in this dissertation presents our contributions to the fields of routing,

localization and positioning in WSANs, focusing on particular application scenarios. The

proposed approaches are evaluated in the OPNET modeler by designing wireless sensor and

actor node models.

We first introduced LRP-QS, a routing protocol providing service differentiation in sta-

tionary WSANs with a low computational complexity at sensor nodes. In LRP-QS, the

network is organized so that each actor forms an actor area composed of multiple sensor

nodes. Sensor nodes collect information from the environment, the type and importance

of which depend on the interests distributed by the sink. The interests have initial weight

values, which is dynamically updated according to the changes in the observed values of the

events of interest as they occur. Data packets carry rate values on their path to the actors

and they are dropped probabilistically at sensor nodes. The results of the simulation study

verify the effectiveness of the proposed scheme compared to QBRP in terms of packet loss,

memory consumption and control overhead. We also used a nonsensitive ranking method

for dynamic weight assignment to the interests and modified the method according to our

requirements. The weights of the interests in LRP-QS are altered according to the changes

in the observed values of the events. The simulations show that LRP-QS can dynamically

prioritize the interests with a relatively low number of updates in the network.
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As a future extension of LRP-QS, the effects of the ranking parameters on the routing

protocol can be analyzed in more detail to tailor the algorithm for other possible scenarios.

The trade-off between the range for producing an update and the number of updates for

interests depends on the network type and the requirements. Formulization of the relation

of these two parameters is another possible extension.

We integrated the routing strategy of LRP-QS with a hierarchical network organization

method and proposed SOFROP for routing in WSANs with mobile sensor nodes. SOFROP

is designed for Amazon scenario, which has peculiarities such as the actor nodes remain

static but irregularly deployed while the sensor nodes are moving in an unpredictable pat-

tern. SOFROP network organization builds a structured network topology that permanently

adapts according to the river dynamics. Simulation results verify the effectiveness of the pro-

posed scheme in keeping the service differentiation behavior of LRP-QS in the unprecedented

conditions of the chosen scenario.

Additional application scenario specific characteristics, such as the direction of the river,

can be incorporated into the network organization algorithm as a future direction. Another

possible extension of the same idea would be increasing the energy-efficiency of actors by

sleep and active cycles, depending on the location of majority of sensor nodes in the river.

Although the initial assumption is actors are more powerful, they can be also on batteries,

which would require efficient energy utilization.

For localization of events in Amazon river scenario, we adapted the network organization

in SOFROP for affiliation of sensor nodes with multiple actors. The multi hop localization
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protocol aim to improve the on-site monitoring with a scalable approach. The particular

scenario has its own challenges, which require high adaptability to failures and high mobility

of sensor nodes. The proposed localization algorithm overcomes these challenges by a locality

preserving approach complemented with an idea that benefits from the motion pattern of

the sensors. The algorithm aims to retrieve location information at the actors rather than

the sensor nodes and it adopts 1-hop localization approach in order to address the limited

lifetime of the WSAN. The selection of a realistic mobility model is critical for performance

evaluation of a localization algorithm. Therefore, a subsurface current mobility model is

adopted and tailored according to the requirements of the scenario. Through extensive

simulations, we have shown that the localization estimation can be realized using local

multi-hop information. In overall, as the multi-hop chains are allowed to become longer,

more positions can be estimated with the cost of lower accuracy. The selection of the

maximum hop number is therefore an issue depending on the requirements of network.

As future work, our localization approach can be integrated with an actor positioning

strategy since the actor positions and the communication in the network among actors affect

the performance of localization. Additionally, the routing and energy consumption can be

improved by using the localization information for data aggregation and dissemination. The

accuracy of the proposed algorithm can be further improved with RSS or other measurement

techniques at the expense of increased energy consumption.

After the Amazon River scenario, we explored an animal monitoring application and

introduced new network formation, mobility and role determination algorithms to provide a
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complete primate group model. These methods are based on Lévy walk, center of mass and

preferential attachment concepts. The preferential attachment model is extended for the

formation and mobility models according to the characteristics of the animal groups. These

models are also extendible with properties specific to observed animal species. The social

monitoring algorithm for deciding on the roles of primates uses the observed spatial-temporal

interaction patterns. In the application scenario, each animal is equipped with a sensor node

for the monitoring of the social system. In the case of gorillas, it is shown how the data

about the social structure in general aids in the design of an efficient protocol for capturing

the social network of a group. Simulation results show that the outputs of preferential

attachment based node formation and mobility models match with the characteristics of

the animal groups under consideration. The approach in primate role determination is also

adapted for a similar problem in networks of human beings. An interaction evaluation

function, a ranking and a grouping method are designed to automatically generate the social

network of an individual by analyzing and assessing smartphone usage and interaction data.

Natural extensions of our primate monitoring system include application and modifica-

tion of the proposed algorithms to different animal groups. As another future direction,

role determination algorithm can be extended for human social networks with hierarchical

structures such as an office environment. The future direction for social network generation

approach would be the determination of specific interaction weight values for specific social

groups.
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A possible extension to the proposed protocols would be integrating them with an actor

positioning approach. Since positioning has been frequently studied in 2D, we explored

a relatively unexplored topic and proposed APAWSAN, an actor positioning method for

aerial WSANs. APAWSAN is designed to improve the on-site monitoring of the plume in a

volcanic eruption. In this scenario, the VSEPR theory is utilized to position one central and

multiple peripheral actors. The basic rules of VSEPR theory are extended to overcome the

limitation on the number of actors and only local communication is used for actor positioning.

The dynamic positioning requirement, defective signal strength of omnidirectional antenna

and unreliability of links pose challenges for AWSANs. Our algorithms take advantage of

the hybrid antenna model to improve the efficiency and availability. We present extensive

simulations with 3D radio characterization to demonstrate the improvement of PRR and

network reorganization delay. The variance of network coverage caused by omnidirectional

antenna orientation is also discussed. The experiments show that the system provides better

coverage than a partially random positioning while keeping 1-hop connectivity between each

actor and the sink.

As future work, O-BESPAR antenna module can be built to test and observe the per-

formance of our approach in a real 3D testbed. Another possible future work would be

the extension of the application of molecular geometry to the actor positioning. Molecular

structure formations can be analyzed for large clusters of atoms to improve the scalability

of APAWSAN.

257



LIST OF REFERENCES

[1] R. Verdone, D. Dardari, G. Mazzini, and A. Conti, Wireless Sensor and Actuator
Networks: Technologies, Analysis and Design. Academic Press, January 2008.

[2] I. F. Akyildiz and I. H. Kasimoglu, “Wireless sensor and actor networks: research
challenges,” Ad Hoc Networks, vol. 2, pp. 351–367, October 2004.

[3] M. C. Vuran, D. Pompili, and T. Melodia, Future Trends in Wireless Sensor Networks.
John Wiley and Sons, Inc., 2008.

[4] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Computer
Networks, vol. 52, pp. 2292–2330, August 2008.

[5] D. Peleg, Distributed computing: A locality-sensitive approach. Society for Industrial
and Applied Mathematics, 2000.

[6] F. Xia, “QoS Challenges and Opportunities in Wireless Sensor/Actuator Networks,”
Sensors, vol. 8, pp. 1099–1110, June 2008.

[7] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, “Directed
Diffusion for Wireless Sensor Networking,” IEEE/ACM Transactions on Networking,
vol. 11, pp. 2–16, Feb. 2003.

[8] N. Patwari, J. Ash, S. Kyperountas, A. O. Hero III, R. L. Moses, and N. S. Correal,
“Locating the Nodes: Cooperative Localization in Wireless Sensor Networks,” in IEEE
Signal Processing Magazine, vol. 22, pp. 54–69, 2005.

[9] F. Regan, A. Lawlor, B. Flynn, J. Torres, R. Martinez-Catala, C. O’Mathuna, and
J. Wallace, “A demonstration of wireless sensing for long term monitoring of water
quality,” in Proceedings of the IEEE Conference on Local Computer Networks (LCN),
pp. 819–825, December 2009.

[10] B. Turgut and R. P. Martin, “Using a-priori information to improve the accuracy of
indoor dynamic localization,” in Proceedings of the ACM International Conference
on Modeling, Analysis, and Simulation of Wireless and Mobile Systems (MSWiM),
pp. 394–404, October 2009.

[11] M. L. Morrison, Wildlife restoration: techniques for habitat analysis and animal mon-
itoring. Island Press, 2002.
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