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Abstract
This thesis focuses on the development of mobile tracking approaches in wireless sensor net-
works (WSNs) with correlated and sparse measurements. In wireless networks, devices have
the ability to transfer information over the network nodes via wireless signals. The strength of
a wireless signal at a receiver is referred as the received signal strength (RSS) and many wire-
less technologies such as Wi-Fi, ZigBee, the Global Positioning Systems (GPS), and other
Satellite systems provide the RSS measurements for signal transmission. Due to the availabil-
ity of RSS measurements, various tracking approaches in WSNs were developed based on the
RSS measurements.

Unfortunately, the feasibility of tracking using the RSS measurements is highly dependent
on the connectivity of the wireless signals. The existing connectivity may be intermittently
disrupted due to the low-battery status on the sensor node or temporarily sensor malfunction.
In ad-hoc networks, the number of observation of the RSS measurements rapidly changing
due to the movements of network nodes and mobile user. As a result, the tracking algorithms
have limited data to perform state inference and this prevents accurate tracking. Furthermore,
consecutive RSS measurements obtained from nearby sensor nodes exhibit spatio-temporal
correlation, which provides extra information to be exploited. Exploiting the statistical infor-
mation on the measurements noise covariance matrix increases the tracking accuracy. When
the number of observations is relatively large, estimating the measurement noise covariance
matrix is feasible. However, when they are relatively small, the covariance matrix estimation
becomes ill-conditioned and non-invertible. In situations where the RSS measurements are
corrupted by outliers, state inference can be misleading. Outliers can come from the sudden
environmental disturbances, temporary sensor failures or even from the intrinsic noise of the
sensor device. The outliers existence should be considered accordingly to avoid false and poor
estimates.

This thesis proposes first a shrinkage-based particle filter for mobile tracking in WSNs. It
estimates the correlation in the RSS measurement using the shrinkage estimator. The shrinkage
estimator overcomes the problems of ill-conditioned and non-invertibility of the measurement
noise covariance matrix. The estimated covariance matrix is then applied to the particle filter.
Secondly, it develops a robust shrinkage based particle filter for the problem of outliers in the
RSS measurements. The proposed algorithm provides a non-parametric shrinkage estimate
and represents a multiple model particle filter. The performances of both proposed filters are
demonstrated over challenging scenarios for mobile tracking.
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Chapter 1

Introduction

1.1 Wireless Sensor Networks

A wireless sensor network (WSN) consists of a group of sensors that can sense, measure, and
collect information about their surroundings (temperature, pressure, humidity, images, etc).
Wireless sensors are small, equipped with processing and computing capabilities but their op-
eration is suppress by having limited operating power. Sensors communicate wirelessly with
one another to perform monitoring tasks in an autonomous manner and can react to events in
a specific environment such as an explosion. These features enable sensors to operate on a
broad range of applications such as air quality monitoring [1], [2], [3], [4], forest fire detection
[5], [6], [7], [8], natural disaster prevention [9], [10], [11], traffic surveillance [12], [13], [14],
structural monitoring [15], [16], [17], [18], healthcare [19], [20], [21], [22], military surveil-
lance [23], [24], [25], etc. WSNs are also deployed in heavy industrial applications such as
power distribution [26], waste-water treatment [27], and specialized factory automation.

Every sensor hardware is equipped with a module comprised of a power unit (batteries
and/or solar cells), a sensing unit (sensors), a processing unit, and a transceiver unit (for com-
munication in the network). The sensor devices can be either passive or active sensors. The
passive sensors such as acoustic, humidity, and temperature sensors consumed lower power
than the active sensors such as radar and sonar. The sensor lifetime is limited due to the
dependency on a battery. In events such as detecting, processing, and transmitting raw or pro-
cessed data, more power is consumed compared to the normal operation, thus reducing the
lifetime of the sensors. Sensors are usually deployed in large quantities and it is challenging to
collect data from WSNs if there is no connectivity between sensors due to a low battery life.
Generally, sensors will send data to the central node, which then perform either computations
or transmitting information to a base station. Therefore, to support the sensor operation, it is
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important to have a continuous supply of power.

WSNs have the advantage over wired networks in term of implementation where they can
be deployed in remote, harsh and hostile geographic locations however collecting data from
the sensor networks is a challenging task. The communication between wireless sensors is
usually in a form of radio, infrared, and optical signals. Managing a high number of sensors
required standard operating and networking protocols. Some protocols may not well suit to
the unique features and requirements of sensor networks. In ad hoc networks, the network
topology may changes anytime after the sensor deployment and at some future time, additional
sensors may be added in the network. To manage the networks, open standards and protocols
are needed at the physical, link, network, and transport layers. The network protocols have
to be cost-effective, supports sufficient transmission of data rates, has low power-consumption
and guarantees security and reliability. Some examples of the applicable standard are the
IEEE 802.15.4 and IEEE 802.11. The IEEE 802.11 supports 1- or 2-Mbps transmission in
the 2.4-GHz band using either frequency-hopping spread spectrum or direct-sequence spread
spectrum. To provide up to 54 Mbps in the 5-GHz band by using orthogonal frequency-
division multiplexing encoding, the IEEE 802.11a is introduced. Other standards are such as
the IEEE 802.11b, IEEE 802.11g and IEEE 802.16.

The development of a standard operating system (OS) for WSNs is also important as the
OS-supported programming model has a significant impact on the application development.
Some of the basic library in the OS includes networks protocols, distributed services, sensor
drivers, and data acquisition tools. These features are optimized depending on a specific WSN
application. The size of memory in the sensor hardware is usually small, therefore developing
low-complexity algorithms are important when there is a need to install and run the algorithm
on the tiny sensor nodes. Low-complexity algorithms consume less processing time and power
when compared to high-complexity algorithms. The difference in the computation time and
power consumption become evident when dealing with a large number of sensor data. Conse-
quently, a trade-off between algorithm complexity, computation time, and power consumption
has to be accepted. Besides that, sensors must deliver data within a determined time window
so that data processing can be carried out as fast as possible. The transmission of data in in-
door environments is still quite unpredictable compared to the outdoor environments. As more
and more wireless systems are implemented, coexistence becomes a bigger issue. WSNs are
application-oriented and depending on the type of application, WSNs present different chal-
lenges and constraints, which required specific designs and solutions. Ideally, the solutions
should integrate well with the already established WSN systems in order to be practical. In
this thesis, the focus will be towards tracking applications of the WSNs.

2



1.2 Tracking in Wireless Sensor Networks

Tracking is one of WSN’s widely researched applications that deals with the state estimation
of a moving object based on the observable measurements. The state represents the physical
system of interest (position, velocity, etc.) and is normally described by means of a dynamic
model. Since the state is not directly observable, an observation model is required for the state
estimation. A widely used class of models that have been successfully applied in tracking is the
state-space models (SSMs). The SSM consists of the state transition equation which describes
the state behavior of the mobile user over time and the measurement equation which relates the
observed measurement to the hidden state. The process of extracting the state information from
the noisy measurements depends on the choice of motion models and filtering methods.

The challenges to track accurately in WSNs are highly influenced by factors such as the
dynamic of sensor allocation, communication between nodes, computation, and target behav-
ior. The sensor allocation determines the area of coverage and the probability that the sensor
will detect an event of a moving object. For optimal coverage, a numerous number of static
and/or mobile sensors were deployed to cover a wide range of area. Sensors have to be able
to maintain a reliable communication between the nodes to enable successful data sharing in
the network. Moreover, the ability of the sensor node to perform efficient computation by
running a low-complexity algorithm can help to reduce power consumption while maintaining
a satisfactory level of tracking accuracy. For the instant, to track a moving car accurately, its
dynamic/motion is modeled by physical laws which describes how the state changes over time.
Car driver actions such as steering movements and acceleration patterns were also considered.
These are usually unknown and can be modeled as a random input with a certain probabil-
ity distribution. Moreover, sensor measurements provide some information (distances, angles,
etc) about the moving car in which the sensor data itself also contains measurement errors.
Such errors can be accounted as another random input with a certain probability distribution.
Hence, both the state and measurement transition processes have to account the effect of the
random inputs. Therefore, the filtering process is carried out to extract information about the
system state by filtering out noises (undesired information) in the state transition and measure-
ment processes.

In the literature, tracking solutions in wireless systems is divided into two approaches:
methods in which point coordinates are estimated using global positioning system (GPS) de-
vices [28] and methods in which the coordinate and motion are estimated using SSM with
filtering algorithms [29]. GPS devices operate effectively in outdoor environments. However,
when operates in indoor environments, or in areas where there is an obstructed line of sight
to GPS satellites, e.g., in hills, high buildings, and dense forests, the GPS may not be able to
establish a connection with the satellites. Sensors equipped with GPS capabilities require the
installation of extra hardware making it costly to deploy. Assisted GPS (AGPS) devices [30]
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offer a better solution in situations where GPS devices have poor signal reception by estab-
lishing a communication with the satellite via cellular networks. Coordinates estimated using
AGPS devices are faster but less accurate when compared to GPS devices.

Alternatively, SSM with filtering algorithms can also be applied to estimate both the user
coordinate and the motion. Various mobility models have been developed such as random walk
based models [31], Gauss-Markov models, and Singer-type models [32], [33]. In [33], a dy-
namic mobility model that captures a wide range of vehicle maneuvering patterns is presented
and employed for tracking in tactical weapons systems. Liu et al. [34] use this mobility model
to estimate the trajectory of mobile users in wireless asynchronous transfer mode (ATM) net-
works. The Kalman filter (KF) is the optimal estimator, in the minimum mean square error
sense, for linear systems with observations corrupted by a Gaussian noise. However, when
the KF is applied to a non-linear system, the estimator faces difficulties. Zaidi et al. [35] de-
velop an extended Kalman filter (EKF), unfortunately, the EKF produces unreliable estimates
when the non-linearities in the system model and/or in the measurement model are severe. In
this case, measurement-conversion techniques are used to solve the non-linear equations and
improve the performance of the filter [36]. Filtering methods based on the random sampling
can also be applied in mobility tracking scenarios, such as the Ensemble Kalman filter (EnKF)
[37] and the Unscented Kalman filter (UKF) [38], [39]. The Particle filter (PF) [40] is often
used in non-linear and non-Gaussian filtering problems. In [41], a mobility model combined
with a PF is developed for mobile tracking in cellular networks.

Tracking based on the SSM and filtering methods depend on the sensor measurements.
Measurements or readings from sensors located approximately close to one another or in the
same geographical area is spatially correlated. Besides that, when a consecutive measurement
was obtained from the same sensors, it will also exhibit temporal correlation. The spatio-
temporal correlation presents in the sensor measurements provides extra information that can
be exploited to improve tracking accuracy. To exploit the correlation, a covariance matrix
is estimated from the sensor measurements. A common approach to estimate the covariance
matrix is by using a sample covariance estimator. However, the sample covariance matrix
estimate is ill-conditioned, non-invertible, and introduces a large estimation error when the
number of sensor measurement is sparse. In ad-hoc networks, signal connections between the
user and sensors are spontaneously established when the user is within the communication
range. The movement of user and sensors changes the network topology and results in a
disruption of the existing connections. This reduces the number of measurements that are
available in the network.

Moreover, the measurements obtained by sensors are also affected by random noises and
these noises were usually described in term of probabilistic descriptions. In filtering prob-
lems, the state and measurement noises are always represented by distributions rather than
single numbers. The measurement noise is often assumed to follow a Normal or Gaussian
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distribution. The Gaussian distribution is statistically convenient and it is the most common
distribution in nature. However, in practical applications, the distribution of measurement
noise does not exactly match the Gaussian distribution. The measurement noise can take a
non-Gaussian distribution when the data measurement is corrupted by the outliers. The outlier
is an observation that does not fit with the expected pattern of distribution based on the data.
Sensor measurements are difficult to interpret when the data is corrupted by the outliers. Out-
liers can come from sudden environmental disturbances, temporary sensor failures, and also
because of the intrinsic noise of the sensor device itself. Therefore, there is an urgent need to
develop filtering methods that work well beyond the assumption of Gaussian distribution of
noise models.

The main objective of this thesis is to develop tracking approaches to estimate the state of
a mobile user in the WSNs. The sensor measurements are spatio-temporally correlated and by
exploiting the correlation present in the measurements, the tracking accuracy is expected to
improve. However, exploiting the correlation in the measurements required the measurement
noise covariance matrix information which is not available. Hence, the measurement noise
covariance matrix has to be estimated. In situations where the number of observation is larger
than the dimensionality of the signal model, the estimation is carried out using the sample
estimator. However, when the number of observations is comparable or less than the dimen-
sionality of the signal model, estimating the measurement noise covariance matrix becomes
difficult due to the ill-posed problem of the covariance matrix. In this thesis, the number of
observation is defined as the total number of snapshots or observations that can be obtained at
one particular time instant. Meanwhile, the dimensional of the signal model is defined as the
total number of sensors deployed in the network. Apart from that, the sensor measurements are
also affected by the presence of outliers in the data measurements due to certain factors such as
the sudden environmental disturbances. Outliers are defined as the values in the measurements
that are numerically deviated from the expected Normal or Gaussian distribution of the sensor
measurements. To account for the effect of outliers in the sensor measurements, the measure-
ment noise is modeled in the form of Student’s t distribution instead of Gaussian distribution.
This method is analytically intractable and required some form of approximation.

In this thesis, two approaches are developed namely (1) a shrinkage-based particle filter,
and (2) a robust shrinkage-based particle filter. A shrinkage-based particle filter is developed
based on the idea of exploiting the correlation that presents in the sensor measurements. The
developed filter overcomes the problems of covariance matrix estimation with the small or
comparable number of observation when compared to the dimensionality of the signal model.
On the other hand, a robust shrinkage-based particle filter is the optimization version of the
first approach. The second filter is developed to make it more robust towards the effect of out-
liers in the sensor measurements. Throughout this thesis, vectors were denoted by lowercase
boldface letters, matrices by uppercase boldcase letters, (·)T is the transpose operator, E[·] is
the expectation operator, I denotes the identity matrix, [A]ij refers to the element at the i-th
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row and j-th column of matrix A, N (µ, σ2) represents a Gaussian distribution with mean µ
and variance σ2, ‖ · ‖2

F is the Frobenius norm, | · | is the matrix determinant, G(α, β) is a
Gamma distribution with shape parameter α and rate parameter β, Γ(·) is the gamma function,
St(µ, Σ̂, v) denotes a multivariate Student’s t distribution with mean µ, scale matrix Σ̂, and
degrees of freedom parameter v, [A]ij refers to the element at the i-th row and j-th column of
matrix A, ‖A‖2

F = tr(AAT )/n to denote the scale Frobenius norm of A where A is a n × n
matrix, and tr(A) to denote the trace of the matrix A, R is the set of real numbers, Rm×n is the
vector space of all m-by-n real matrices, and Ĉov(·) is the covariance operator.

1.3 Challenges

Developing approaches for mobile tracking in WSNs introduces many challenges such as:

Exploiting correlated sensor measurements. In wireless networks where sensors are densely
deployed, consecutive measurements obtained by sensors are spatio-temporally correlated.
The spatio-temporal correlation is a feature that can be exploited for localization and track-
ing purposes. To exploit the correlation, the measurement noise covariance matrix has to be
estimated. The estimated measurement noise covariance matrix has to remain positive defi-
nite and invertible otherwise any attempt to exploit the correlation in the sensor measurements
would result in an ill-posed problem.

Dealing with sparse sensor measurements. The number of observations or snapshots of the
sensor measurements at one particular time instant can change easily in ad-hoc networks due
to the sensor and user movements or sensor malfunction. In this thesis, two types of network
settings were considered in the simulation; (1) wireless networks comprises of mobile sensor
nodes (Chapter 4) and (2) wireless networks comprises of static sensor nodes (Chapter 5).
In the events, where the number of sensor measurement is sparse, due to the loss of signal
connectivity in the network, estimating the measurement noise covariance matrix is detrimen-
tal. Consequently, an approach that is able to exploit the correlated data is not feasible. The
sparsity in the measurements refers to situations where the total number of observations or
snapshots is comparable or less than the dimensionality of the signal model. The number of
connectivity in the networks can be increased by deploying more sensor nodes, however using
a large number of sensors can be very expensive to implement and in addition to that, they can
be a signal overlap and data redundancy problems.

Dealing with outliers in the sensor measurements. Sensor measurements are often difficult
to interpret due to the presence of noise and outliers in the data measurements. The measure-
ment noise is usually assumed to follow a Normal or Gaussian distribution. However, when
outliers present, the assumption of Gaussian distribution is no longer hold. The measurement
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noise can be non-Gaussianly distributed due to the presence of outliers. Outliers in the mea-
surements are recorded when there is a temporary malfunction of sensor nodes. The sensor
readings will numerically deviate from the expected Gaussian distribution of the data measure-
ment. Non-Gaussian distribution is difficult to model by an analytic function, and even if it can
be modeled, the function does not provide an easy mathematical solution. Therefore, making
a state inference based on the noisy and corrupted sensor measurements is challenging. Most
tracking methods operate with the assumption that the measurement noise follows a Gaussian
distribution but in practice, this is not always the case. Developing a tracking method that
works well with both the Gaussian and non-Gaussian probabilistic distributions is challenging
because of it is analytically intractable.

1.4 Thesis Outline

The current chapter serves as an introduction to the thesis, discussing the motivations and
challenges of the work presented in the thesis. The remainder of the thesis is organized into
the following chapters:

Chapter 2 presents a background overview of various components related to localization
and tracking methods. A classification and review of localization and tracking algorithms are
presented.

Chapter 3 provides the necessary mathematical backgrounds required to understand the
rest of the thesis and it has two main sections; the state space models and the filtering meth-
ods.

Chapter 4 proposes a tracking framework that works with correlated and sparse sensor
measurements. The chapter begins with the framework overview, the state space models, the
correlated shadowing noise model, the development of the proposed method, and the posterior
Cramer Rao lower bound. This is followed by the validation of the proposed method using
both simulation and experimental data.

Chapter 5 describes an extension to the work in Chapter 4, with an emphasis on the non-
Gaussianly distributed of measurement noise. This chapter considers a scenario where static
sensor nodes were deployed in a network, and provide measurements that are corrupted by the
outliers. A robust shrinkage-based particle filter for tracking problem with outliers is proposed
over a challenging tracking simulation with outliers.

Chapter 6 concludes the thesis by presenting the key contributions of the thesis, summary
of the thesis findings, and also makes recommendations for future work.
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1.5 Research Contributions

The main theme of this thesis revolves around the used of correlated and sparse wireless mea-
surements for mobile tracking. Two approaches have been developed to exploit the correlated
measurements that are (1) a shrinkage-based particle filter, and (2) a robust shrinkage-based
particle filter. These filters are able to overcome the problems of covariance matrix estima-
tion using sparse sensor measurements whereas the sparsity refers to situations where the total
number of observations or snapshots is comparable or less than the dimensionality of the sig-
nal model. The first approach is validated using both simulation and experimental data. In the
simulation settings, the sensor nodes are assumed to be mobile. When a target is detected in the
networks, the sensor nodes moved towards the target. However, the mobile sensors were only
able to move around their designated grid. On the other hand, the second approach is validated
using simulation data where static sensor nodes were considered in the simulation network.
It is developed to be more robust towards the presence of outliers in the data measurements.
Hence, a non-parametric shrinkage estimator is derived under the non-Gaussian distribution
of the measurement noise. The measurement noise is modeled in the form of the Student’s t
distribution instead of the Normal or Gaussian distribution in order to account for the effect
of outliers in the sensor measurements. The main contributions of this thesis are details as
follows and they are linked to the author’s relevant publications listed in Section 1.6.

Chapter 4 - Shrinkage based particle filter for tracking with correlated sparse measure-
ments [P1], [P2], [P3].

• A shrinkage-based particle filter is developed to exploit the correlation present in the
RSS measurements and achieve accurate mobile user tracking.

• The developed filter combined the shrinkage estimator and the particle filter to jointly
estimate the shadowing noise covariance matrix and the state of the mobile user.

• The shrinkage estimator is proposed to overcome the ill-posed problem of the covariance
matrix estimation by the sample estimator when estimating with the small or comparable
number of observation when compared to the dimensionality of the signal model.

• The developed filter is validated with both the simulation and experimental data whereby
the simulated wireless network comprises of mobile sensor nodes.

Chapter 5 - Robust shrinkage based particle filter for tracking with non-Gaussian shadow-
ing noise [P4].

• A robust shrinkage-based particle filter is developed to achieve accurate mobile user
tracking in the events of outliers presence in the sensor measurements.
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• The developed filter combined the non-parametric shrinkage estimator and the robust
particle filter to jointly estimate the shadowing noise covariance matrix corrupted by
outliers and the state of a mobile user.

• The non-parametric shrinkage estimator is derived to estimate the shadowing noise co-
variance matrix using the sensor measurements that are corrupted by the outliers.

• The developed filter is validated using a simulated wireless network comprises of static
sensor nodes and is compared with a state of the art particle filter.

1.6 Publications

Parts of the material in this thesis have been published by the author in:

Peer Reviewed Journal Article

P1. A. Kiring, N. Salman, C. Liu, I. Esnaola, and L. Mihaylova, “Tracking with sparse and
correlated measurements via a shrinkage-based particle filter,” IEEE Sensors Journal,
vol. 17, no. 10, pp. 3152-3164, May. 2017.

Peer Reviewed Conference Papers

P2. A. Kiring, N. Salman, C. Liu, I. Esnaola, and L. Mihaylova, “A shrinkage-based particle
filter for tracking with correlated measurements,” in Proc. Sensor Data Fusion: Trends,
Solutions, Applications (SDF), Oct. 2015, pp. 1-6.

P3. C. Liu, A. Kiring, N. Salman, I. Esnaola, and L. Mihaylova, ”A Kriging algorithm for
location fingerprinting based on received signal strength,” in Proc. Sensor Data Fusion:
Trends, Solutions, Applications (SDF), Oct. 2015, pp. 1-6.

Work from the jointly authored publication in [P3] is not directly presented in the thesis. How-
ever, work contained in the publication that is directly attributable to me is towards the discus-
sion of correlation data model and signal model.

Journal Publications Under Review

P4. A. Kiring, L. Yang, and L. Mihaylova, “Robust shrinkage based particle filter for track-
ing with non-Gaussian shadowing noise,” Submitted to IEEE Transactions on Vehicular
Technology, 2017.
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Chapter 2

Background Review

In this chapter, the background overview of the localization and tracking methods are pre-
sented. The first part of this chapter will focus on classifying the localization algorithms,
reviewed in Section 2.2 and the second part will focus on classifying the tracking algorithms,
reviewed in Section 2.3. Finally, a summary is present in Section 2.4.

2.1 Overview

By definition, localization is a process of finding the exact coordinates of static nodes and
tracking deals with the state estimation of a moving object based on the observable measure-
ments. In this chapter, nodes refer to the static users or devices and objects refer to the moving
users or devices. From an algorithmic perspective, localization is a one-time process for static
users, whereas tracking is the continuous localization of the moving users over time. Almost
all existing localization and tracking methods consist of two phases: distances/angles estima-
tion and coordinates computation. At first, the distance and angles between two sensor nodes
are estimated in the distance/angle estimation. Then, the coordinate of the unknown node is
computed based on the distance and angle information of several reference nodes. The local-
ization and tracking algorithms can be classified into few categories as follows:

2.2 Localization Algorithms in Wireless Sensor Networks

Localization algorithms in WSNs are divided into three categories; range based and range
free algorithms [42], [43], cooperative and non-cooperative algorithms [44], and centralized
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and non-centralized algorithms [44]. The range based and range free algorithms are differ-
entiated according to the dependency of range measurements techniques. In the range-based
technique, the algorithms have to first estimate the distance/angle between the unknown nodes
and reference node before its can performed the coordinates computation. The reference node
or also known as the anchor node refers to the sensor node with known coordinates in the
network. On the other hand, the range-free technique is those algorithms that perform coor-
dinates computational directly by using only the connectivity information between adjacent
sensors. The next classification is cooperative and non-cooperative algorithms. Cooperative
algorithms allow the exchange of information between all nodes in the network. Meanwhile,
the non-cooperative algorithms only allow non-located nodes to exchange information with
the anchor nodes. Finally, another classification subdivides the algorithms to centralized and
non-centralized. In centralized algorithms, all computation is carried out in the central node.
Conversely, in non-centralized algorithms, the computation is spread among the sensor nodes
in the network. The central node refers to the sensor node that is located at the most central
location of the cell network in relation to all the other sensor nodes.

2.2.1 Range-Based Localization

Range-based algorithms are those algorithms that have to first estimate the distance/angle be-
tween the unknown nodes and reference node before its can performed the coordinates com-
putation. Range-based algorithms are much more accurate for localization than range-free
algorithms but can required extra hardware for implementation and high power consumption
[43]. Range-based algorithms estimate the distance or angle between the unknown and refer-
ence nodes using several measurement techniques such as:

Received Signal Strength-based. The received signal strength (RSS) is a power measurement
present in a received signal. The RSS values are measured in dBm and they are usually very
noisy due to shadow fading and multipath effects, which are depending on the environment.
The RSS-based algorithms are the most common, cheapest, and simplest to implement since it
does not require an additional hardware to implement. The strength of the signal attenuates and
becomes weaker as the propagation distance increased. The signal strength is usually described
by using the radio propagation path loss model. Consider the transmitter is transmitting a
signal to the receiver. The received power is given by [45]

Pr =
Po
dα
, (2.1)

where Po is the received power at a reference distance from the transmitter, and d is the distance
between the transmitter and the receiver. It is shown that as the distance increases, the received
power decreased proportionally to the distance. The path loss exponent is denoted by α and

11



it is characterized the propagation of the transmitted signal. Normally, for a free-space path,
α = 2 whereas for urban areas, α ∈ [2.7, 3.5] [46]. When expressed as log-normal variables,
the power-distance relationships becomes

10log10Pr = 10log10Po − 10αlog10d, (2.2)

where 10log10Pr and 10log10Po represent the transmitted and received power, respectively,
at a reference distance of 1-meter. The term 10αlog10d indicates the power loss during the
transmission. Another convenient way to express power-distance relationship is by using path
loss rather than the signal power. Let the path loss in dB is given by

L = Lo + 10αlog10d+ w, (2.3)

where L is the total path loss between the transmitter and receiver, Lo is the path loss at a
reference distance of 1-meter, and w is the path loss due to shadow fading and multi-path
effects. The reference path loss is determined by Lo = 10log10Pt− 10log10Po, where Pt is the
transmitted signal power, and Po is the received signal power at 1-meter distance.

The path loss model described in (2.3) is the most common model used for distance esti-
mation. Hashemi [47] and Patwari [48] have collected real indoor RSS measurements to make
comparison and analyses of the distance estimation based on the path loss model. It is shown
that sufficient accuracy is achieved with the path loss model where the path loss exponent,
shadow fading, and multipath effects are highly dependent on the environments. In [49], an
analytical study of the path loss model had been carried out and the results showed that the
distance estimation accuracy reduces when the RSS measurement is not stable and contain
large power variations. Sucasas [50] investigated the applicability of the model in a dynamic
network environment and the findings showed that the network dynamic does not affect the
localization accuracy of the system if the nodes in the network are synchronized in broadcast-
ing their location information to the central unit. Furthermore, the accuracy of the system is
increased if more anchors are deployed in the network.

Besides using model-based, there is also a map-based RSS measurement. Localization
using map-based techniques required the construction of the RSS map for the network envi-
ronment. The constructed RSS map act as a comparison map to compared with the received
signal measurements. Bahl and Padmanabhan [51] constructed a radio map consists of RSS
measurements from an emanating beacon. The RSS measurements at various points in the
network are identified and collected to represent the network environments. The coordinate
of the mobile user is localized by mapping the received RSS with the constructed RSS map.
It is showed that the RSS maps able to increase the localization accuracy by using multiple
constructed maps. To maintain the feasibility of the method, the RSS maps have to be up-
dated regularly when there are changes made in the network environment [52]. In general, the
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RSS-based algorithms were chosen because of its low complexity and easy to implement for
practical applications. The RSS-based algorithms offer sufficient localization accuracy for a
broad range of wireless-based applications.

Timing-based. The timing-based approaches estimate the distance between the two nodes
by timing the flight of a received signal. Some examples of the methods developed based on
this approaches are the time of arrival (TOA) and the time difference of arrival (TDOA). In
TOA systems, the time taken for the transmitted signal to reach the receiver is given by [53],
[54],

τ = dc, (2.4)

where d is the distance between the two nodes, and c is the speed of light. This method requires
a highly synchronized clock between a transmitter and a receiver, thus a dedicated hardware is
needed. They have to be perfectly synchronized in order to achieve high accuracy estimation.
The timing flight is highly dependent on the line-of-sight of the signal. In TDOA systems,
the distance between the nodes is estimated by taking the time difference between the arrival
times of a signal sent by a transmitter at two receivers [55], [56]. The clock at the two receivers
needs to be synchronized as well.

Directionality-based. The directionality-based algorithms also refer as angle of arrival (AOA)
algorithms estimate the angle of the sender by using the directionality of the received signal
thus required the construction of antennas on the sensor nodes [57], [58]. For the instant,
beamforming methods used the anisotropic antenna to find the direction of the received signal
[55]. The antenna beam is rotated electronically or mechanically towards the direction of
the received power. Then an angle will be computed based on the highest received power
direction. When the transmitted signal consists of varying power, it can reduce the accuracy
of the inferred angle. Thus, a non-rotating omnidirectional antenna is used together with the
anisotropic antenna to normalize the received signal power at the receiver.

In addition, phase interferometry [55], another method based on AOA approach requires
the set-up of an antenna array. The angle of the received signal is determined by examining
the phase difference at each element of the array. Each antenna in the array is separated by a
fixed distance, d and the phase difference of the received signal is given by

2π
dcosθ
λ

, (2.5)

where θ is the direction of the transmitter and λ is the wavelength of the received signal. In
[59], the anchor uses an array of four antennas and the performance is analyzed. The results
reveal that heuristic weighting function is able to decrease the location errors in AOA measure-
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ments localization. The main challenges of AOA measurements localization with WSNs are
to maintain the acceptable accuracy while keeping the system simple and portable for practical
applications.

2.2.2 Range-Free Localization

Range-free algorithms are those algorithms that can perform directly the coordinates computa-
tion by just using the connectivity information or the exchanged multi-hop routing information
instead of the distance/angle information. Some common algorithms based on connectivity
information are Centroid algorithm and Distance Vector-HOP (DV-HOP) algorithm. In Cen-
troid algorithm [60], anchors broadcast their coordinates to all sensors in the network. The
non-anchor nodes listen the transmitted signal for a certain period of time. After that, the
non-anchor nodes computed their coordinates in the network by a centroid determination from
all positions of the anchors. In DV-HOP algorithm [61], a reference node (anchor) broadcast
their locations, counted by the number of hop to their neighbors. The nearest neighbors are
indicated by a small number of hop and contrarily, a large number of hop shows that the node
is located far from the anchors. Through this method, all nodes in the network will find a min-
imum possible number of hops to reach the anchor nodes. The minimum number of hops is
converted into distance metrics and using estimation method, the coordinates of non-anchors
are then computed. Other range-free algorithms including the approximate point in triangle
test (APIT) [62] and the amorphous [63].

2.2.3 Cooperative and Non-Cooperative Localization

The cooperative localization algorithms are the methods that required the collaboration be-
tween all the nodes inside the network. There is no communication restriction amongst all the
nodes. Therefore, the non-anchor node can cooperate with all the other nodes (either being
anchor or non-anchor) in making the estimation of their locations. The cooperative localiza-
tion is suitable to be used in a large-scale network as the accuracy and coverage depend on the
density of nodes.

Meanwhile, non-cooperative localization is a communication-restricted algorithm. Non-
anchor locates their position by established communication only with anchor nodes. Hence,
the number of anchor nodes must be sufficient to guarantee the accuracy of this approach. The
non-cooperative localization is suitable to be used on a small-scale network because they have
better direct communication between the nodes with the anchor nodes in the network.
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2.2.4 Centralized and Non-Centralized Localization

In centralized algorithms, one node is selected as a central unit and this unit will perform
the data collection and computation. The centralized algorithms have high accuracy because
the central unit has the entire network information. However, this increased the transmission
traffic to the central unit and hence reduces the scalability of the algorithm. A node that
located far from the central unit will consume more energy during communication with the
central unit.

In non-centralized algorithms, computation is distributed among anchors and non-anchors
nodes in the network and these nodes will act as the central unit. The central unit collects infor-
mation about their neighbors and used this information to perform coordinates estimates. After
that, the estimated coordinates by the central node will be shared with the rest of the nodes in
the network. The localization accuracy obtained by this method is less accurate when com-
pared to the centralized algorithms due to the error propagation. However, the non-centralized
algorithms are much more feasible to be implemented for a large scale sensor networks. Figure
2.1 summarises the localization algorithms classification in WSNs.
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Figure 2.1: Localization algorithms classification in WSNs.
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2.3 Tracking Algorithms in Wireless Sensor Networks

Mobile tracking in WSNs is generally carried out using the filtering methods such as the KF
and its variants, the EKF and its variants, the UKF and its variants, and the PF and its variants.
Unlike localization methods, the tracking methods have to consider all the possible motion sce-
narios. Tracking algorithms can be divided into few approaches such as [72], [73], [74]:

2.3.1 Cluster based Tracking

The cluster-based tracking is a method that divides the sensor nodes into a cluster head and
several cluster nodes. The type of cluster can be static, dynamic, and spatio-temporal. In static
clustering, clusters are formed statically thus it is not adaptable to dynamic scenarios. In a
case where the cluster head failed, the entire nodes in the cluster will not be able to commu-
nicate with another cluster. In dynamic clustering, the clusters are dynamically constructed
depending on different scenarios. When the nodes sense the mobile target, a cluster of nearby
nodes is formed. Hence only nodes that belong to the cluster are activated. The nodes can also
be member of different clusters at a different time. This reduced the energy consumption of
the nodes and at the same time increased the estimation by using only the best possible nodes
in the networks. Many clustering methods are formed based on the distance function but in
spatio-temporal clustering, the construction of cluster based on distance measure is extended
to the function of the position history of the mobile target. The spatio-temporal cluster based
tracking has higher accuracy than the static and dynamical cluster based tracking.

2.3.2 Tree based Tracking

The tree-based tracking is a method that organized a sensor network into a tree-like structure
where nodes that detect the mobile target are selected as the root node. When a mobile tar-
get detected in a network, the nearby node (root node) collect the sensed data, calculates the
mobile motion, and send a warning message to the node closest to the next estimated state.
The node that received this warning message will become the new root of the network that is
responsible to perform the next state estimation. Unfortunately, when the mobile target moves
at a high speed, it can pass several nodes without being detected. Therefore, to reduce miss-
ing coordinates, a recovery mechanism is required. However, using recovery mechanism fre-
quently can lead to significant energy consumption. In the existing methods, an optimization
is carried out revolves around the recovery mechanism such as query cost reduction, update
cost reduction, coverage area, lifetime, etc.
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2.3.3 Embedded Filter based Consensus

The cluster-based and tree-based tracking methods are based on the hierarchical architecture
where the state estimation is performed at a central or cluster node. To reduce the state es-
timation dependency over the central or cluster node, the embedded filter based consensus
is introduced. This method is based on peer-to-peer architecture, where the state estimation
process is distributed among all sensors in the network. Since the estimation process involves
many sensors, a set of rules is defined based on a specific consensus such as consensus on state,
measurement or information. For a standard KF, consensus strategies can be applied to update
step and/or prediction step without losing the filtering standard operation. In [75], a distributed
KF is proposed for distributed sensor networks. The filter operates based on two consensuses;
weighted measurements and inverse-covariance matrices. In [76], the problem of multi-target
tracking for distributed sensor networks is presented. A multi-target tracking algorithm that
utilized consensus over the estimated state and measurement information is proposed. Figures
2.2 summaries the tracking algorithms classification in WSNs.
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Consensus
[75], [84],
[76], [85]

Tree-based
[80], [81],
[82], [83]
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temporal [79]
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Static [77]

Figure 2.2: Tracking algorithms classification in WSNs.
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2.4 Summary

In this chapter, a background review covering the localization and tracking methods in WSNs
was presented. The chapter begins by identifying different type of measurements metrics that
are available for both range-based and range-free methods. Range-based methods estimate
the distance between nodes by the used of range information meanwhile range-free methods
perform distance estimation by connectivity information. The estimated distance between the
nodes can be highly erroneous thus filtering algorithms is adopted to reduce the error made
during distance estimation. Apart from that, the localization methods can be cooperative and
non-cooperative. In cooperative localization, all sensor nodes are able to communicate with
one another but in non-cooperative localization, only anchor nodes are able to communicate
with the rest of the nodes in the network. The coordinates computation by the filtering methods
can also be performed in centralized and non-centralized manners.

The background review then shifted towards the tracking algorithms. The solution of mo-
bile tracking can be mainly classified into schemes such as tree-based tracking, cluster-based
tracking and embedded filter based consensus. The tree-based and cluster-based approaches
belong to hierarchical networks. On the other hand, the embedded filter based consensus
approaches belong to peer-to-peer networks. To maintain tracking performances for hierarchi-
cal networks, a selection of other sensor node is required when the central or cluster node is
failed. In peer-to-peer networks, the most common approaches are the distributed KFs, which
are based on the KF and their variants. A distributed tracking algorithm (embedded filter based
consensus) has an advantage over the centralized distribution (tree-based and cluster-based) in
term of scalability. Other approaches to tracking algorithms are such as UKF [86], adaptively
robust UKF [87], sequential Markov chain Monte Carlo [88], etc. Some of the root causes
of tracking errors are including the sensor node failure, communication failures, target behav-
ior, energy consumption and tracking latency (computational time). In this thesis, a mobile
tracking approach based on the WSNs will be developed to exploit the correlated and sparse
wireless measurements.
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Chapter 3

State Space Models and Filtering

Methods

In this chapter, the theoretical concepts are presented for the problem of state estimation of a
dynamic system using noisy measurements. The outline of this chapter is as follows: First,
a general introduction to state space models is given in Section 3.1. Section 3.2 defines the
Bayesian filtering. Section 3.3 and 3.4 introduce methods for linear and nonlinear filtering
using the KF and its variants. Finally, Section 3.5 briefs the PF method which then becomes
the framework for all following chapters.

3.1 State Space Models

In dynamical systems, the state represents the quantity of interest which captures relevant
information about the system and typically changes over time. The way in which the state
changes is described by mathematical equations as a function of time or at discrete-time in-
stances. Typically, the state itself is not available instead they are manifested through a set of
observed measurements. A widely used class of models that have been successfully utilized in
tracking applications is the SSMs.

The SSM describes the behavior of the system state as a function of time using a series
of first-order differential or difference equations [89]. It consists of the state transition and
measurement equations. SSM can be a deterministic or stochastic model depending on the
complexity of the simulation problems. A deterministic model is determined solely by the
value of the parameters and the initial conditions. Meanwhile, the stochastic model has some
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random components that characterized the system output. In mobile tracking, the main goal is
to estimate the unknown state trajectory of the mobile users in a network. Often, the unknown
states consist of position and velocity. In WSNs, sensors are deployed to collect signal strength
transmitted by the mobile user. The collected signals are processed by the filtering methods
to make inference about the mobile states. To account for the uncertainties in the system, the
SSM is extended to include the process and the measurement noises. The SSM is assumed
to be available in a probabilistic form thus estimation is formulated based on the probabilistic
inference.

General Model

In general, the SSM is described as follows

xk+1 = fk(xk,wk), (3.1a)

zk = hk(xk, vk), (3.1b)

where xk represents the state vector, zk represents the measurement vector, and k represents
the time instant. The function fk(·) relates the previous state and its process noise wk to the up-
coming state xk+1. Meanwhile, the function hk(·) maps the state xk and its measurements noise
vk to the observed measurements of zk. Both functions fk(·) and hk(·) can be nonlinear func-
tions and all quantities xk, wk, zk, and vk are vectors with known dimensions. Moreover, the
process and measurement noises are characterized in term of probabilistic descriptions.

Linear Model

The most common SSM is the linear model, given by

xk+1 = Fkxk + wk, (3.2a)

zk = Hkxk + vk, (3.2b)

where xk represents the state vector, zk represents the measurement vector, and k represents
the time instant. The state transition matrix and the measurement matrix are denoted by Fk
and Hk, respectively, and they are expressed by linear functions. The structure and dimension
of the matrices are typically known. The process noise wk, and the measurement noise vk are
considered to be independent with known noise characteristics.
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Maneuvering Model

Consider the following system

xk+1 = Fkxk + Gkuk + wk, (3.3a)

zk = Hkxk + vk, (3.3b)

where Fk is the state transition matrix, Gk is the command matrix, Hk is the measurement
matrix, and k is the time instant. The matrices are typically known. The control input vector
denoted by uk is used to describe the uncertainties in the mobile user acceleration pattern or
behavior. The control input is unknown and hence modeled as a random process. In [90], the
random process can be in a form of white noise models, Markov process models, and semi-
Markov jump process models. Some of the models that are derived based on the white noise
models are including the constant velocity model, constant acceleration model, and polynomial
model. In [89], a control input based on the white noise models is presented to model the user
acceleration behavior. The maneuvering model is relatively simple and works well with less
harsh maneuvering process. To deal with more harsh maneuvering and acceleration behavior
of the mobile user, a maneuvering model with control input based on the Markov process
models is presented in [29]. Finally, in [91], a maneuvering model with control input based on
the semi-Markov jump process models is presented.

Correlated Process Noise (Singer) Model

A mobile user can move with a different acceleration levels at any time instants. The random
acceleration levels can affected the degrees of evasive maneuvering taken by the mobile user.
In [90], the mobile target acceleration levels are modeled by the control input. The control
input assumed the target acceleration a(t) is correlated with autocorrelation function given
by

Ra(τ) = E[a(t+ τ)a(t)] = σ2e−α|τ |, (3.4)

where the maneuvering is parameterized by an acceleration variance σ2 and a time constant
1/α. The process a(t) of continuous-time results from a linear system

ȧ(t) = −αa(t) + w(t), (3.5)

where w(t) is a zero-mean white noise. Similarly, the process acceleration in the discrete-time
equation is express in the form of

ak+1 = βak + wa
k, (3.6)

where wa
k is a zero-mean white noise with variance α2(1 − β2) and β = e−αT . Augmenting

the state with the target acceleration in one dimension of motion, the dynamical model for the
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maneuvering mobile user of continuous-time becomes

ẋ(t) =

0 1 0

0 0 1

0 0 −α

 x(t) +

0

0

1

w(t), (3.7)

and equivalently the maneuvering mobile user of discrete-time is given by

xk+1 = Fαxk + wk =

1 T (αT − 1 + e−αT )/α2

0 1 (1− e−αT )/α

0 0 e−αT

 xk + wk. (3.8)

where Fα is the transition matrix, xk is the mobile user state, and wk is the process noise. The
mobile user state is given by

xk =

xkẋk
ẍk

 , (3.9)

where xk is the mobile user coordinate, ẋk is the mobile user velocity, and ẍk is the mobile
user acceleration at time instant k. The process noise is a zero-mean white noise sequence
with covariance matrix Qk whose elements qij having the form

q11 = σ2(1− e−2αT + 2αT +
2

3
α3T 3 − 2α2T 2 − 4αTe−αT )/α4,

q12 = σ2(e−2αT + 1− 2e−αT + 2αTe−αT − 2αT + α2T 2)/α3,

q13 = σ2(1− e−2αT − 2αTe−αT )/α2,

q22 = σ2(4e−αT − 3− e−2αT + 2αT )/α2,

q23 = σ2(e−2αT + 1− 2e−αT )/α,

q33 = σ2(1− e−2αT )/α, (3.10)

where the maneuvering parameter α is chosen to indicate the type of maneuvering such as lazy
turn, evasive turn, etc. The transition matrix can be expanded for more than one dimension of
motion.
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Semi-Markov Correlated Process Noise Model

This model is based on the modified Singer model but instead of having a zero-mean value,
the model allows the target acceleration to have a random switching mean value thus a more
realistic model of maneuvering was obtained [90]. Let

xk+1 = Fkxk + Gkuk + wk, (3.11a)

zk = Hkxk + vk, (3.11b)

where Fk is the state transition matrix, Gk is the command matrix, Hk is the measurement
matrix, and k is the time instant. The matrices are typically known. The control input uk is
modeled as a finite-state semi-Markov jump process that takes values in a finite discrete set
{u1, . . . , uN} where u refers to the target acceleration state and N refers to the total number
of acceleration state. The correlated process noise is denoted by wk and vk is the measurement
noise. The process noise covariance and the measurement noise covariance are assumed to be
known. The possible values of uk are quantized into N known levels with known transition
probability given by

pij = Pr{uk+1 = uj|uk = ui}, (3.12)

where i, j = {1, . . . , N}. The transition probabilities tend to be sustained for a certain holding
time thus its probability distribution is defined by

pij(τ) = Pr{τij ≤ τ}, (3.13)

where τij = tk − tk−1 is the holding time, the time spend before the state transition occurred
from ui to uj . In order to simplify the semi-Markov jump process, the holding time probability
transition is described as having an exponential distribution so that a transition from maneuver
state ui becomes more likely as the time spent in ui increases. With the assumption, the input
process is no longer follow semi-Markov instead it is a Markov process [90].

The control input uk in (3.3a) is introduced into the state space form to sufficiently captured
the behavior of the system at all time. The state space model is assumed to be nonautonomous
(time-varying) when the control input depends upon time explicitly. Conversely, if the control
input does not depend upon time explicitly, the state space model is assumed to be autonomous
(time-variant). In the correlated process noise (Singer) model and semi-Markov correlated
process noise model, the control input described the different types of maneuver in which the
acceleration switches between possible levels according to given transition probabilities and
with given distributions governing the switching times for each level. Therefore, the control
input of the models did not depend upon the time explicitly but rather on the finite discrete set
of acceleration.
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3.2 Bayesian Filtering

The Tracking Problem
Consider a general SSM given by

xk = fk(xk−1,wk−1), (3.14)

where xk ∈ Rnx is a target state vector, nx is the dimension of the state vector, R is a set of
real numbers, k = {0, . . . , T} ∈ N is the time index with T is the final time, fk−1 is typically a
non-linear function, and wk−1 is the random process noise. At each time step k, an observation
of measurement vector zk ∈ Rnz with dimension nz is obtained, given by

zk = hk(xk, vk), (3.15)

where hk is typically a non-linear function, and vk is the measurement noise. A probabilistic
description of (3.14) and (3.15) is given by

xk ∼ p(xk|xk−1), (3.16)

zk ∼ p(zk|xk), (3.17)

where p(xk|xk−1) is the state transition density and p(zk|xk) is the likelihood function. The
filtering methods seek to estimate the hidden mobile state xk using all the observed measure-
ments z1:k = {z1, . . . , zk} up to time k.

To make inferences about xk based on z1:k, a joint probability distribution for the two pa-
rameters is constructed p(x|z1:k). Suppose that the joint probability distribution at the previous
time step is available p(xk−1|z1:k−1), the state predictive distribution can be obtained via the
Chapman-Kolmogorov equation, given by

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (3.18)

Next, by using Bayes rule, the filtering posterior state pdf is updated using

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(3.19)

where p(zk|z1:k−1) is a normalization constant, and p(zk|xk) is the likelihood function. The re-
cursive filtering operation of (3.18) and (3.19) form the basis of Bayesian filtering. A filtering
method is said to be optimal, in Bayesian filtering, when it obtains a complete characteri-
zation of p(xk|z1:k) in a recursive manner. Unfortunately, the optimal Bayesian solution is
hardly achieved. It is only achievable when the problems are linear and Gaussian distributed.
Otherwise, the filtering approaches have to resort to suboptimal methods.
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3.3 The Kalman Filter

3.3.1 Background

The KF was invented by R. E. Kalman over five decades ago, and early use of the filter was in
the navigation of the Apollo project going to the moon and back. Since then, many variants of
nonlinear filters based on the KF have been developed to improve estimation accuracy. Today,
KFs have been successfully applied in many applications [92], [93], [94], [95], [96], [97], [98],
[99], [100], [101] and they are proven effective and reliable. KFs are relatively easy to design
and implement but their performance is affected by several factors such as non-linearities of
the model problems, ill-conditioning of the covariance matrix, and inaccurate models of the
problem [102].

3.3.2 Basic Algorithm

Restate again the linear state space models (3.2) given by

xk+1 = Fkxk + wk, (3.20)

zk = Hkxk + vk, (3.21)

where xk represents the state vector, zk represents the measurement vector, k represents the
time instant, Fk represents the state transition matrix, and Hk represents the measurement
matrix. The transition matrix and measurement matrix are in a form of linear equations and
usually are known. The system state xk+1 is a Gaussian and Markov process. The process
noise is denoted by wk and the measurement noise is denoted by vk. Here, the following
assumptions are made for the noise processes.

Assumption 1. {wk} and {vk} are independent processes.

Assumption 2. {wk} and {vk} are uncorrelated, zero mean, Gaussian processes with known
covariance matrices, given by

E[wkwT
i ] =

Qk, if i = k

0, if i 6= j
, (3.22)

E[vkvTi ] =

Rk, if i = k

0, if i 6= j
, (3.23)

E[wkvTi ] = 0, for all k and i . (3.24)
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where Qk is the process noise covariance matrix, and Rk is the measurement noise covariance
matrix.

Initial state description.
Suppose that at time k = 0, the state vector initial estimate x̂0|0 and its covariance matrix P0|0

are available such that

x̂0|0 = E[x0], (3.25)

P0|0 = E[(x̂0|0 − x0)(x̂0|0 − x0)T ]. (3.26)

where x0 is a known mean.

Propagation of mean and covariances.
It is assumed that the state and measurement models are jointly Gaussian processes. Therefore,
their probabilistic properties are determined by their means and covariances. At time k, the
state and covariance estimates are given by

x̂k+1|k = Fkx̂k|k, (3.27)

Pk+1|k = FkPk|kFTk + Qk. (3.28)

The estimated x̂k+1|k and Pk+1|k are further improved using the observed sensor measurements
zk+1 in accordance with the equations

x̂k+1|k+1 = x̂k+1|k + Kk+1(zk+1 − ẑk+1|k), (3.29)

Pk+1|k+1 = Pk+1|k − Pk+1|kHT
k+1S−1

k+1Hk+1Pk+1|k, (3.30)

where ẑk+1|k = Hkx̂k+1|k is the estimated sensor measurements. The difference between the
true zk+1 and estimated ẑk+1|k measurements is called innovation process. The Kalman gain,
denoted by Kk+1 is derived by minimizing the expectation of (3.26), leads to

Kk+1 = Pk+1|kHT
k+1S−1

k+1, (3.31)

where

Sk+1 = Hk+1Pk+1|kHT
k+1 + Rk+1. (3.32)

Finally, the covariance update in (3.30) can be represented in several different ways [89].
The KF is the optimal estimator, in the minimum mean square error (MMSE) sense, for linear
systems with Gaussian random variables [103]. The KF only uses the propagation of mean and
covariance in the update steps, which is summarized into two stages, time update (3.27−3.28)

and measurement update (3.29 − 3.32). This makes KF fairly simple to design for practical
applications and often provides good estimation accuracy.
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3.4 Kalman Filters for Nonlinear Systems

The implementation of KF for nonlinear systems is important as most if not all real-world
problems are nonlinear. However, the direct implementation of KF is not always possible thus
required some form of approximation to the problems. The linearization process is the most
common approach that was used to approximate the nonlinear functions in the system. Unfor-
tunately, linearization process is only applicable if the error propagation can be approximated
well by the linear function and the Jacobian matrices are exists [104]. One of the widely used
KF-based estimators for the non-linear systems is the EKF.

3.4.1 Extended Kalman Filters

Consider the general form of SSM, given by

xk = fk−1(xk−1) + wk−1, (3.33)

zk = hk(xk) + vk, (3.34)

where f(·) and h(·) are nonlinear functions, wk−1 is the process noise, and vk is the measure-
ment noise. The measurement noise is Gaussianly distributed with known covariance matrices
Qk−1 and Rk. The nonlinear functions in (3.33) and (3.34) are approximated by the first order
Taylor series. The EKF estimates the state and its covariance matrix as follows:

x̂k|k−1 = fk−1(xk−1|k−1), (3.35)

Pk|k−1 = F̂k−1Pk−1|k−1F̂k−1 + Qk−1, (3.36)

x̂k|k = x̂k|k−1 + Kk(zk − hk(x̂k|k−1)), (3.37)

Pk|k = Pk|k−1 − Pk|k−1Ĥ
T

k S−1
k ĤkPk|k−1, (3.38)

where

Sk = ĤkPk|k−1Ĥ
T

k + Rk, (3.39)

Kk = Pk|k−1Ĥ
T

k S−1
k . (3.40)

The matrices F̂k−1 and Ĥ are the Jacobians, obtained by linearizing the nonlinear functions of
f(·) and h(·), respectively, given by

F̂k−1 = [∇k−1fTk−1(xk−1)]T |xk−1=x̂k−1|k−1
, (3.41)

Ĥk = [∇khTk (xk)]T |xk=x̂k|k−1
, (3.42)
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where ∇ is the first-order partial derivative operator. Note that equations (3.35) to (3.40) are
similar to the KF equations of (3.27) to (3.32). The only difference is that the EKF features the
Jacobian matrices F̂k−1 and Ĥk which are the linearized versions of the nonlinear functions of
fk−1(·) and hk(·), respectively. The EKF is based on quadratic approximations to all nonlin-
earities in the state space equations. When the degree of non-linearities in (3.33) and (3.34) are
severe, the tracking accuracy of EKF is reduced. To overcome the shortcoming, higher order
of EKF is proposed where the system approximations require calculation of second-order (or
higher order) Taylor series [105], [106]. By using the Taylor polynomial of a higher degree in
the EKF operation, the system non-linearities are approximated better. Thus, the tracking ac-
curacy achieved by the EKF is improved. Since the quadratic approximations in the state space
models required calculation of higher order partial derivatives, the time taken to perform the
computation is increased. Eventually, such higher order approximations increase the tracking
accuracy but at the expense of increasing the computational time taken to perform the tracking
process.

3.4.2 The Unscented Kalman Filters

The UKF is another popular variant of non-linear KF and it is developed to address the flaws
of the EKF by representing the state using a probability distribution. By assuming the state
is Gaussian distributed, a minimal set of sampling points, called sigma point is determined
such that their mean and covariance are the same as the probability distribution. Each sigma
points are propagated through the nonlinear system model, and the mean and covariance of
the nonlinear transform points are calculated using a method called unscented transformation
[39] which is then used to calculate the new state estimate. The UKF estimation accuracy is
shown to outperform the EKF, and in term of computational complexity, the UKF and EKF
required the same computational cost [102]. In [107], the summary of different UKF variants
is presented. Both UKF and EKF are still limited to the assumption of Gaussian noise.

3.5 Particle Filters

3.5.1 Background

A PF is another nonlinear state estimator that is based on the principle of using a probability
distribution. It uses sample points called particles to approximate any arbitrary distribution,
so it is not limited to a Gaussian assumption. A significant number of particles are required
to represent an arbitrary distribution of a system. PFs have existed since the 1950s but due
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to the lack of computational power at that time, it makes PF unfavorable [108]. Since the
introduction of a modern computing system, PFs have been applied to a wide range of fields
[109], [110].

3.5.2 Basic Algorithm

Restate again the general SSM, given by

xk+1 = fk(xk,wk), (3.43)

zk = hk(xk, vk), (3.44)

where xk is the state vector, zk is the measurement vector, wk is the process noise, and vk is
the measurement noise. The process and measurement noises admit arbitrary distributions are
described to be independent of each other. The functions fk(·) and hk(·) are nonlinear and k is
the time index.

Inference to Tracking.
To make inferences about the state vector xk based on the observed measurement vector z1:k,
the joint probability distribution is given by

p(xk|z1:k) ∝
∫
p(zk|xk)p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (3.45)

where p(zk|xk) is the likelihood function, p(xk|xk−1) is the state transition density, and p(xk−1|z1:k−1)

is the prior probability distribution. Solving the integral in (3.45) is intractable hence it is ap-
proximated by the used of the PF. Each particle weight is determined so that the sum of all
weight is equal to one.

Particle approximation to the posterior.
The PF approximate the filtering distribution of p(xk|z1:k) using a set of particles. Suppose
that the joint probability distribution at the previous time step p(xk−1|z1:k−1) is approximated
by a set of particles {x(i)

k , i = 1, . . . , Np} , given by

p(xk−1|z1:k−1) ≈
Np∑
i=1

w
(i)
k−1δ(xk−1 − x(i)

k−1), (3.46)

where {w(i)
k , i = 1, . . . , Np} is the particles weights, Np is the total number of particles, and

δ(·) is the Dirac delta function. Therefore, the integral in (3.45) is solved and becomes

p(xk|z1:k) ∝ p(zk|xk)
Np∑
i=1

w
(i)
k−1p(xk|x(i)

k−1). (3.47)
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Next, the particle weights are determined based on the principle of importance sampling [111].
Suppose that the particles is taken from a distribution x(i)

k ∼ q(xk|x(i)
k−1, zk), the weights are

computed according to

w
(i)
k ∝ w

(i)
k−1

p(zk|x(i)
k )p(x(i)

k |x
(i)
k−1)

q(x(i)
k |x

(i)
k−1, zk)

, (3.48)

where p(zk|x(i)
k ) is the likelihood function, p(x(i)

k |x
(i)
k−1) is the transition prior, and q(x(i)

k |x
(i)
k−1, zk)

is the proposal distribution. In [112], [113], [114], the proposal distribution is chosen such that
q(x(i)

k |x
(i)
k−1, zk) = p(x(i)

k |x
(i)
k−1), and the weight becomes

w
(i)
k ∝ w

(i)
k−1 p(zk|x(i)

k ), (3.49)

which then are normalized such that
∑Np

i=1w
(i)
k = 1. Finally, the posterior filtered density is

given by

p(xk|z1:k) ≈
Np∑
i=1

w
(i)
k δ(xk − x(i)

k ). (3.50)

The PF is affected by degeneracy phenomena [115], where the normalized weights tend to
concentrate onto some particles only, after a certain number of recursive steps, leaving the
other participle to be essentially degenerate. Therefore, resampling is carried out to reduce the
effect of particle degeneracy.

Resampling Methods.
Resampling step was introduced in [112] where particles are discarded or duplicated according
to their weights, either at each k or when required. The degree of particle degeneracy can be
computed by the effective sample size given by

Neff =
1∑Np

i=1(w
(i)
k )2

. (3.51)

By setting the threshold sample size value, resampling can be applied whenever Neff falls
below a threshold. Survey of resampling methods can be found in [115], [116], [117], [118].
The operation of the PF is illustrated in Algorithm 3.1.

31



Algorithm 3.1 The Particle Filter

1: (1) Input: Initialization
2: for k = 0 do
3: for i = 1, . . . , Np do
4: Samples: {x(i)

0 ∼ q(x0)} where q(·) is the proposal important density.
5: Set initial weights: w(i)

0 = 1/Np.
6: end for
7: end for
8:
9: for k = 1, . . . , endtime do

10: for i = 1, . . . , Np do
11: (2) Prediction Step
12: Propagate the particles xk+1 = fk(xk,wk) and the measurement noise wk, via
13: a function fk(·).
14:
15: (3) Measurement Update
16: Calculate the measurement likelihood function:
17: L

(
zk|x̂(i)

k

)
=
(
(2π)n|R̂k|

)− 1
2 exp

(
− 1

2
(z− ẑ)R̂

−1

k (z− ẑ)T
)
, where vk ∼ (0,Rk).

18: Update the weights: w(i)
k ∝ w

(i)
k−1L(zk|x̂(i)

k ).
19: end for

20: Normalize the weights: ŵ(i)
k = w

(i)
k /

Np∑
i=1

w
(i)
k .

21: The posterior mean: p(xk|z1:k) =
∑Np

i=1 ŵ
(i)
k δx̂(i)

k
.

22:
23: (4) Output: The estimated state: x̂k = p(xk|z1:k).

24: (5) Resampling Step
25: Set the threshold sample size: Nthresh = Np/10.
26: Calculate the effective sample size: Neff = 1/

∑Np

i=1(ŵ
(i)
k )2.

27: if Neff < Nthresh

28: Applied resampling methods.
29: end if
30: end for
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3.6 Summary

In this chapter, a theoretical review of the state space models and the filtering methods was
presented. The mobile user state is described in a vector form consisting of the coordinates,
velocity, and acceleration. On the other hand, the user motion model described the evolution
of the mobile user state with respect to time. Since the mobile user state cannot be observed
directly, the hidden state is manifested through a set of observed measurements given by the
measurement model. The mathematical models of maneuvering target tracking are more prac-
tical for implementation since it facilitates more information about the user movements. The
maneuver models relate the degree of maneuvering corresponding to the unknown accelera-
tion level of the mobile user. The user acceleration is accounted in the maneuver model by
using the control input variable. The control input is unknown and modeled as a random pro-
cess in a form of white noise models, Markov process models, and semi-Markov jump process
models.

The filtering methods make inference about the hidden state of a mobile user based on
the observed measurements. The filtering methods can be divided into linear and nonlinear
filters. The linear filters such as the KFs are implemented for tracking problems with linear
state space models. Meanwhile, the nonlinear filters such as the EKFs, the UKFs, and the
PFs are implemented for tracking problems with nonlinear state space models. Each filter has
advantages and disadvantages to offer and usually, the selection of filters depending on the
situation of tracking. Some of the approaches of using maneuvering model for target tracking
include the EKF [35], the two-level hierarchical location prediction algorithm [34]; where
the acceleration is modeled as semi-Markov processes, and the sequential Monte Carlo filters
[40], [119]; where the acceleration is modeled as a Markov chain with a finite number of
possible state. The key to successful target tracking depends on the feasibility of the state
space models and the performance of the filtering methods. In this thesis, a mobile tracking
approach based on the state space models will be developed to exploit the correlated and sparse
wireless measurements in the WSNs.
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Chapter 4

Shrinkage based Particle Filter for

Tracking with Correlated Sparse

Measurements

This chapter describes the development of a mobile tracking approach namely the shrinkage-
based particle filter to estimate the dynamic state of a mobile user in the WSNs with correlated
and sparse RSS measurements. The material in this chapter has been published in the papers
[P1] and [P2].

4.1 Introduction

In wireless networks where sensors are densely deployed, measurements obtained by sensors
are expected to be highly correlated in space and time domain. The readings from sensors
located approximately close to one another or in the same geographical area will be spatially
correlated. In addition to being spatially correlated, the sensor readings will also be tempo-
rally correlated due to the time correlation of the transmitted signal or oversampling of the
received measurements. The spatio-temporal correlation is a feature that can be exploited for
localization and tracking purposes. However, exploiting correlation is often makes it difficult
to achieve tractable solutions. The information of the measurement noise covariance matrix is
needed in order to exploit the correlation. The covariance matrix can be estimated from the
received sensor measurements by using a sample estimator. The sample estimator provides a
good estimate of the measurement noise covariance matrix but its performance highly depends
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on the number of observations of the sensor measurements. In situations where the number of
observation is larger than the dimensionality of the signal model, the sample estimator gives an
accurate estimate. However, when the number of observations is comparable or less than the
dimensionality of the signal model, the sample covariance matrix estimates become singular
and ill-conditioned. The number of observation in the networks is defined as the total number
of snapshots that can be obtained at one particular time instant. Meanwhile, the dimensional
of the signal model is defined as the total number of sensor nodes that were deployed in the
network.

A shrinkage-based particle filter is developed to improve the tracking accuracy of a mobile
user by exploiting the spatio-temporal correlation present in the sensor measurements. The de-
veloped filter overcomes the ill-problem of measurement noise covariance matrix estimation
with the small or comparable number of observation when compared to the dimensionality of
the signal model. The main objectives of this chapter are: (i) to exploit the spatial-temporal
correlation present in the RSS measurements; (ii) to estimate the measurement noise covari-
ance matrix with the small or comparable number of observation when compared to the di-
mensionality of the signal model; and (iii) to develop a tracking framework that works with
correlated and sparse RSS measurements. The outline of this chapter is as follows: Section 4.2
gives an overview of the proposed framework. Section 4.3 describes the mobile user model
and the measurement model. Section 4.4 formulas the spatial and temporal correlation mod-
els for generating the correlated sensor measurement in the simulated data. In section 4.5, a
shrinkage-based particle filter is developed to improve mobile tracking by exploiting the corre-
lation in the sensor measurements. Section 4.6 reviews the posterior Cramer Rao lower bound
for benchmarking purposes. Section 4.7 reports and discuss the results of the simulated and
experimental data. Finally, Section 4.8 presents the summary.

4.2 Framework Overview

In this section, the scenario of a wireless network problem is defined and a general overview
of the proposed tracking method is given based on which the problem framework is presented.
This chapter consider a two-dimensional network consisting of n mobile sensor nodes that are
uniformly deployed with known coordinates (xi, yi), i ∈ {1, . . . , n}. The mobile sensors are
uniformly deployed in a sense that they have the same range of radius between one another.
This placement enables a full coverage of the monitored area by the sensor nodes. When a
target (mobile user) is detected within the monitored area, the mobile sensors will move to-
wards the target. However, the mobile sensors do not cross their designated grid in order to
prevent collision with the target. The mobile user dynamic is modeled by the motion model
given in Section 4.3.1. This motion model is chosen because it can represent well any ma-
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neuvering patterns and has a time auto-correlation function. Once the target was detected, the
mobile sensors will generate measurements in the form of RSS as described by the measure-
ment model in Section 4.3.2. The RSS only provides range information between the sensors
and the target. Therefore, to compute the coordinate of the target based on the information
supplied by the RSS measurements, a filtering method is needed.

Let zk = [z1
k, z

2
k, . . . , z

n
k ]T be the vector of RSS measurements at time instant k and it is

assumed that at each time instant k, there is a P number of snapshots of vector measurements
were collected in the networks. The sensor measurements are spatially correlated due to the
proximity distance between the sensor nodes and the target. Meanwhile, the temporal corre-
lation is due to the total number of snapshots (oversampling) of the received measurements at
the sensor node. Section 4.4.3 described the correlation models that are designed to generate
spatio-temporally correlated measurements in the simulated data. A filtering method is devel-
oped in Section 4.5 to estimate the dynamic state of a mobile user X = {x1, x2, . . . , xk} from
the vector of RSS measurement. To exploit the correlated measurements, a measurement noise
covariance matrix is estimated from the received sensor measurements at every time instant k
using a data measurements consisting of a P number of snapshots of the RSS measurements.
The number of snapshots in the networks can be varied as a result of sensors and user move-
ments or sensor malfunctions. In situations where the number of P is larger than the number
of n, the sample estimator gives an accurate estimate. However, when the number of P is com-
parable or less than the number of n, the sample covariance matrix estimates become singular
and ill-conditioned.

4.3 State Space Models

4.3.1 Motion Model

Let the state vector at time instant k is defined by

xk = [xk, ẋk, ẍk, yk, ẏk, ÿk]
T , (4.1)

where (xk, yk), (ẋk, ẏk), and (ẍk, ÿk) represent the user coordinates, velocity, and acceleration,
respectively. The dynamics of the mobile user is described by a Singer model [34], [40] given
by

xk = A(T, α)xk−1 + Bu(T )uk(mk) + Bw(T )wk, (4.2)

where T is the discretization period, α = 1/τ is the reciprocal of the maneuvering time con-
stant τ , and uk = [ux,k, uy,k]

T is the control input. A mobile user is moving with a changing
speed and acceleration. They can move in the straight direction or take a right turn or/and left
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turn at any time instant. The control input is responsible to capture these uncertainties in the
mobile user behavior and it is usually unknown and modeled as a first-order Markov process
which takes value from a set of models, called system modes M = {m1, . . . ,mM}. Each of
the modes is designed to represent the dynamics in the user acceleration behaviors. The tran-
sition probabilities are given by πij = P (uk = mj|uk−1 = mi) for i, j = 1, . . . ,M and the
initial probabilities are given by µi,0 = p(m = mi) for modes mi ∈ M such that µi,0 ≥ 0 and∑M

i=1 µi,0 = 1. The matrix A(T, α) ∈ R6×6 is a state transition matrix, Bu(T ) ∈ R6×2 is the
command matrix and Bw(T ) ∈ R6×2 is the noise coefficient matrix. These are given by (4.3),
(4.4), and (4.5), respectively

A(T, α) =

[
Ã 03×3

03×3 Ã

]
, Ã =

1 T T 2/2

0 1 T

0 0 α

 , (4.3)

Bu(T ) =

[
B̃u 03×1

03×1 B̃u

]
, B̃u =

T 2/2

T

0

 , (4.4)

Bw(T ) =

[
B̃w 03×1

03×1 B̃w

]
, B̃w =

T 2/2

T

1

 . (4.5)

The process noise is denoted by wk = [wx,k, wy,k]
T and it is modeled as a multivariate Gaussian

random variable, with zero mean wk ∼ N (0,Qk) and covariance matrix Qk = E[wkwT
k ] =

σ2
wI where σ2

w is the process noise variance.

4.3.2 Measurement Model

The RSS is modeled as a function of distance using the path loss model [45] given by

z = z0 + 10βlog10(d) + v, (4.6)

where z0 is the signal power loss at a reference distance (usually 1-meter), z is the signal power
loss at distance d, where d refers to the distance between the sensor node and the mobile user,
and β is the path loss exponent which typically β ∈ [2, 4] for urban area. The measurement
noise is denoted by v ∼ N (0, σ2

v) and is accounted for the shadow fading. Shadow fading
is caused by obstacles such as trees, buildings, and walls along the propagation path and it is
found to be a zero mean, Gaussian random variable where σ2

v is the shadowing noise variance.
The path loss z0 is a constant and determined during system calibration and the total path loss
z = Pt−Pr can be determined by measuring the transmitted power Pt and the received power
Pr. A minimum of three sensor measurements is required to perform accurate estimation via
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a triangulation method. Therefore, (4.6) can be written in a vector form as

zk = h(xk) + vk, (4.7)

where zk ∈ Rn is the n sensor measurements at time instant k, i.e., zk = [z1
k, z

2
k, . . . , z

n
k ]T and

h(xk) = [h(x1
k), h(x2

k), . . . , h(xnk)]T for h(xnk) = z0
k + 10βlog10(dnk). Meanwhile, the shad-

owing noise component is given by vk = [v1
k, v

2
k, . . . , v

n
k ]T and having Gaussian distribution

vk ∼ N (0,Rk), with covariance matrix Rk = E[vkvTk ] = σ2
vI where σ2

v is the shadowing noise
variance. The shadowing noise is assumed to be spatio-temporally correlated. The measure-
ments only provide range information between the sensor nodes and the mobile user (target).
Thus, a filtering method is needed to estimate xk from measurements zk ∈ Rn.

4.4 Correlated Shadowing Noise Models

In practice, the correlation present in the RSS measurements is unknown. The shadow fading
component in the RSS measurement is spatially correlated due to the fact that the readings
from sensors located approximately close to one another or in the same geographical area
do not change abruptly. Apart from that, the consecutive measurements that were observed
from the same sensors also exhibit temporal correlation. In the simulation, the correlation is
induced in the sensor measurements by using the correlation models. The spatial and temporal
correlation models are given as follows:

4.4.1 Spatial Correlation

The spatial correlation implies that the readings from sensors located approximately close to
one another or in the same geographical area is correlated. Consider two sensors nodes, i-th
and j-th received the signals from the mobile user at time instant k, the spatial correlation
coefficient between the received signals by the two sensors is given by

ρi,jk = exp
(
− di,jk
Dc

)
, (4.8)

where di,jk is the relative distance between the two sensors and Dc is the decorrelation distance
which is assumed to be known [120]. Thus, the covariance between the measurements at the
two sensors is given by

Ci,j
k = ρi,jk σ

i
kσ

j
k, (4.9)

where σik and σjk are the shadowing noise standard deviations at the i-th and j-th sensor nodes,
respectively.
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4.4.2 Temporal Correlation

The temporal correlation implies that each consecutive observation of the sensor measurements
is correlated in time domain. Consider a sensor node i-th received a signal from the same
mobile user at two different time instants k and l, the temporal correlation coefficient [121]
between the received signals at two time instants is given by

ρ̃ik,l = exp
(
−
dik,l
Dc

ln 2

)
, (4.10)

where dik,l is the distance traveled by the mobile user from the time instant k, to the time instant
l, which is given by dik,l =

√
(xil − xik)2 + (yil − yik)2 where (xil, y

i
l) are the user coordinates

at time instant l and (xik, y
i
k) are the user coordinates at time instant k. Thus, the covariance

between the received signals at two time instants is given by

C̃i
k,l = ρ̃ik,lσ̃

i
kσ̃

i
l , (4.11)

where σ̃ik and σ̃il are the shadowing noise standard deviations at the time instant k and l, re-
spectively.

4.4.3 Spatio-Temporal Correlation

Let uk = [u1
k, u

2
k, . . . , u

n
k ]T be the uncorrelated shadowing noise from n sensor nodes at time

instant k. The variable vk = [v1
k, v

2
k, . . . , v

n
k ]T exhibits spatial correlation when

vk = Ckuk, (4.12)

where the covariance matrix Ck satisfied the spatial correlation matrix Γk at time instant k,
such that

Γk = CkCT
k , (4.13)

where

Γk =


1 ρ1,2

k . . . ρ1,n
k

ρ2,1
k 1 . . . ρ2,n

k
...

... . . . ...
ρn,1k ρn,2k . . . 1

 . (4.14)
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The spatial correlation coefficient between the two sensor measurements (links) is given in
(4.8). Thus, the covariance matrix that satisfied Γk is given by

Ck =


(σ1

k)
2 ρ1,2

k σ1
kσ

2
k · · · ρ1,n

k σ1
kσ

n
k

ρ2,1
k σ2

kσ
1
k (σ2

k)
2 · · · ρ2,n

k σ2
kσ

n
k

...
... . . . ...

ρn,1k σnkσ
1
k ρn,2k σnkσ

2
k · · · (σnk )2

 , (4.15)

where the matrix is formulated from (4.9). Both matrices determined the relationship and mea-
sured the dependency between two random variables. The correlation matrix Γk lies between
[−1, 1] and is the normalized version of the covariance matrix Ck. At the next time instant
k+ 1, the variable vk+1 = [v1

k+1, v
2
k+1, . . . , v

n
k+1]T exhibits temporal correlation. The temporal

correlation coefficient of the received measurements at two time instants is given in (4.10). Let
the time instant l = k + 1, the covariance matrix C̃k,l that exhibits temporal correlation can be
written as

Ck,l =


ρ̃1
k,lσ̃

1
kσ̃

1
l 0 · · · 0

0 ρ̃2
k,lσ̃

2
kσ̃

2
l · · · 0

...
... . . . ...

0 0 · · · ρ̃nk,lσ̃
n
k σ̃

n
l

 . (4.16)

where the matrix is formulated from (4.11), k refers to the previous time instant, and l refers
to the current time instant. To incorporate both spatio-temporal correlations in the shadowing
noise, the covariance matrix in (4.12) has to contain both spatial and temporal coefficients.
Therefore, the covariance matrix is constructed as given by

C =

Ck,Ck,l, . . .

Cl,k,Cl, . . .
...

... . . .

 , (4.17)

where the diagonal elements of the block covariance matrix are of the form of (5.6) which
captured the spatial coefficient and the off-diagonal elements of the block covariance matrix
are of the form of (4.16) which captured the temporal coefficient. The size of the covariance
matrix in (4.17) depends on the measurements retained from all the previous time instants.
When more measurement histories were retained, the strength of the temporal correlation is
increased. However, this caused the dimensionality of the resulting block covariance matrix
grows exponentially. The covariance matrix is required to be positive definite and invertible,
otherwise, no solution exists. Moreover, the large dimensionality of the covariance matrix
increases the computational cost in the filtering method. Thus, to limit the dimensionality of
the resulting covariance matrix, a restriction on the history of previous vector measurements
is imposed through a sliding window time.
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4.5 Filter Development

4.5.1 Shadowing Noise Covariance Matrix

In order to exploit the correlation present in the RSS measurements, we need the knowledge
of the shadowing noise covariance matrix. The estimation of the covariance matrix is not just
useful in localization and tracking applications but also in many applications such as finances
[122, 123], bioinformatics [124], engineering [125], and etc. A commonly used method to
compute a covariance matrix is by using a sample covariance estimator. In general, the sample
covariance estimator gives accurate estimates when the total number of parameters to estimate
N is less than the total number of data available P . However, when N ≥ P , the sample co-
variance matrix estimates becomes ill-conditioned and non-invertible. In the context of target
tracking in WSNs, estimating the shadowing noise covariance matrix can become detrimen-
tal when the number of observed measurements is less than the dimensionality of the signal
model.

To overcome these deficiencies, various methods have been proposed. One of the earliest
studies in computing a covariance matrix is of Stein [126]. Stein found that the sample covari-
ance matrix estimates from a zero mean multivariate normal distributions give inaccurate esti-
mates when N ≥ P , even though the sample estimator is unbiased and positive definite. The
largest eigenvalues in the sample covariance matrix tend to be biased upward and the smallest
eigenvalues tend to be biased downward. Stein introduces a shrinkage concept by shrinking
the eigenvalues in the sample covariance matrix towards a structured estimate. However, Stein
approach results in some of the eigenvalues become negative and not arranged in the correct
order. Choosing the suitable structure estimate has become basis in the later development of
the shrinkage approach.

Sharpe [127] introduces a single index covariance matrix estimator to estimate the covari-
ance matrix of stock returns and Frost and Savarino [128] suggested that the sample covariance
matrix is shrinking towards a structured matrix (also known as target matrix) which represents
a prior knowledge of stock returns but they did not consider the correlation that might exist
between the estimation error on the sample covariance matrix and the target matrix. Ledoit
and Wolf [129] proposed an improved version of shrinkage covariance matrix by choosing the
single index model to become the target matrix of their shrinkage estimator. The target ma-
trix is combined linearly with the sample covariance matrix by means of shrinkage intensity
(weight). The value of the weight is calculated by minimizing a risk function that employs the
mean square error between the estimated and true covariance matrices. The estimator is well
conditioned and invertible for problems of N ≥ P , however, when operates in high dimen-
sional matrix settings, the estimator become biased. In later works, Ledoit and Wolf [122, 130]
incorporated different types of target matrix to further improve their shrinkage estimator.
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Schaffer and Strimmer [124] extended the works of Ledoit and Wolf to the problem of in-
ferring large-scale gene association networks. The authors proposed six target matrices and
approaches to compute corresponding optimal shrinkage intensities. The formulated target
matrices are well conditioned, positive definite, and approximate well the true covariance ma-
trix. The variants of the target matrices guarantee a minimum mean square error between the
estimated and true covariance matrices is achievable. Meanwhile, Fisher and Sun [131] also
proposed shrinkage covariance matrix estimators with different variants of target matrices.
The estimators are derived based on the assumption that the observations of the random vec-
tors are drawn from the multivariate normal distribution with unknown mean and covariance
matrix.

4.5.2 Sample Estimator

Let Ĉ be the sample estimator of the true shadowing noise covariance matrix C, given by

Ĉ =
1

P − 1

P∑
p=1

(zp − z̄)(zp − z̄)T , (4.18)

where zp ∈ Rn is the vector of sensor measurements that is sampled or observed p = {1, . . . , P}
times, and z̄ = 1

P

∑P
p=1 zp is the sample mean. The estimated sample covariance matrix in

(4.18) is unbiased and provides accurate estimates in a case of P � n where n refers to the
total number of the sensor nodes. However, when there is only limited number of observation
P ≤ n, the sample covariance matrix estimate is ill-conditioned and not invertible. Therefore,
the sample estimator is no longer considered as a good approximation of the true shadowing
noise covariance matrix. An estimator for the shadowing noise covariance matrix is required
to be both well-conditioned and invertible for a case of P ≤ n.

4.5.3 Shrinkage Estimator

Let Ŝ be the shrinkage estimator of C, given by

Ŝ = λT + (1− λ)Ĉ, (4.19)

where Ĉ is the sample estimates, T is the target matrix, and λ ∈ [0, 1] is the shrinkage intensity
(weight). Noticed that the sample estimate in (4.18) is improved by ”shrinking the matrix
coefficients to” the value supplied by the target matrix. If λ = 1, the shrinkage estimate is
equivalent to the target matrix and the sample covariance estimate is given no weight. On the
other hand, if λ = 0, no shrinkage takes place and the sample covariance estimate dominates.
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Here two issues arise: (i) how should the target matrix be selected; and (ii) what value should
be given to the weight. Schafer and Strimmer summarized six commonly used target matrices
and associated estimators of the optimal weight. According to [120], the selection of target
matrix should be driven by the data. Thus, in this chapter, two types of target matrices are
selected to estimate the shadowing noise covariance matrix. The first target matrix is the
diagonal, unit variance shrinkage target matrix given by

T1 = I, (4.20)

with optimal weight determined by

λ̂T1 =

∑
ij V̂ar

([
Ĉ
]
ij

)
∑

i 6=j

[
Ĉ
]2

ij
+
∑

i

([
Ĉ
]
ii
− 1
)2 . (4.21)

The second target matrix is the constant correlation shrinkage target covariance matrix given
by

[
T2

]
ij

=



[
Ĉ
]
ii

, for i = j

ρ̄

√[
Ĉ
]
ii

[
Ĉ
]
jj
, for i 6= j

, (4.22)

with optimal weight determined by

λ̂T2 =

∑
i 6=j V̂ar

([
Ĉ
]
ij

)
− ρ̄fij∑

i 6=j

([
Ĉ
]
ij
− ρ̄
√[

Ĉ
]
ii

[
Ĉ
]
jj

)2
, (4.23)

where ρ̄ is the average correlation of the off-diagonal elements in the sample covariance matrix
estimate computed as

ρ̄ =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

[
Ĉ
]
ij[

Ĉ
]
ii

[
Ĉ
]
jj

, (4.24)

and fij is calculated by

fij =
1

2

{√√√√√√
[
Ĉ
]
jj[

Ĉ
]
ii

Ĉov
([

Ĉ
]
ii
,
[
Ĉ
]
ij

)
+

√√√√√√
[
Ĉ
]
ii[

Ĉ
]
jj

Ĉov
([

Ĉ
]
jj
,
[
Ĉ
]
ij

)}
. (4.25)

The expressions of T1, λ̂T1 , T2, and λ̂T2 are derived in the Appendix A.

43



4.5.4 The Shrinkage-based Particle Filter

The shrinkage-based particle filter (ShPF) combined the shrinkage estimator and the particle
filter to jointly estimate the shadowing noise covariance matrix and the state of the mobile
user. The shrinkage estimator overcomes the ill-posed problem of the shadowing noise covari-
ance matrix estimation by the sample estimator when estimating with the small or comparable
number of observation when compared to the dimensionality of the signal model. The devel-
oped PF employed in the ShPF is adapted from [41] and become the basis for developing the
ShPF algorithm. In [41], the PF is developed based on multiple models for the unknown user
acceleration behaviors. It is operated with the assumption of fixed shadowing noise covariance
matrix in the filter operations. The ShPF extended the filter operation by combining the PF
with the shrinkage estimator to exploit the correlation in the sensor measurements. Instead
of using a fixed shadowing noise covariance matrix, the ShPF has to estimate the shadowing
noise at every time instant k. Consider again the motion and measurement models in Section
(4.3), the state vector xk is estimated based on the observed sensor measurements z1:k up to
time k. The joint probability distribution of the state and measurement is given by

p(xk|z1:k) ∝
∫
p(zk|xk)p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (4.26)

where p(zk|xk) is the likelihood function, p(xk|xk−1) is the state transition density, and p(xk−1|z1:k−1)

is the prior probability distribution. Solving the integral in (4.26) is intractable hence it is ap-
proximated by the PF. Suppose that the joint probability distribution at the previous time step
p(xk−1|z1:k−1) is approximated by a set of particles {x(i)

k , i = 1, . . . , Np} , given by

p(xk−1|z1:k−1) ≈
Np∑
i=1

w
(i)
k−1δ(xk−1 − x(i)

k−1), (4.27)

where {w(i)
k , i = 1, . . . , Np} is the particles weights, Np is the total number of particles, and

δ(·) is the Dirac delta function. Therefore, the integral in (4.26) is solved and becomes

p(xk|z1:k) ∝ p(zk|xk)
Np∑
i=1

w
(i)
k−1p(xk|x(i)

k−1). (4.28)

Next, if x(i)
k ∼ q(xk|x(i)

k−1, zk), the weights can be computed according to

w
(i)
k ∝ w

(i)
k−1

p(zk|x(i)
k )p(x(i)

k |x
(i)
k−1)

q(x(i)
k |x

(i)
k−1, zk)

, (4.29)

where p(zk|x(i)
k ) is the likelihood function, p(x(i)

k |x
(i)
k−1) is the transition prior, and q(x(i)

k |x
(i)
k−1, zk)

is the proposal distribution. In [112], [113], [114], the proposal distribution is chosen such that
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q(x(i)
k |x

(i)
k−1, zk) = p(x(i)

k |x
(i)
k−1), and the weight becomes

w
(i)
k ∝ w

(i)
k−1 p(zk|x(i)

k ), (4.30)

which then are normalized such that
∑Np

i=1w
(i)
k = 1. The likelihood function in (4.30) is

computed by

p(zk|x̂(i)
k ) =

(
(2π)n|Sk|

)− 1
2
exp
(
− 1

2
(z− ẑ)S−1

k (z− ẑ)T
)
, (4.31)

where z and ẑ represent the actual and predicted RSS measurements, respectively, n is the
number of sensor nodes, and Sk ∈ Rn×n is the shadowing noise covariance matrix at time in-
stant k. Here, the shadowing noise covariance matrix is estimated by the shrinkage estimator in
(4.19). When dealing with a large dimensionality of the covariance matrix, the computational
time taken to compute the likelihood function will increase. Thus, to compute efficiently, the
size of the estimated shadowing noise covariance matrix is limit by defining the size of the
sliding window time, denoted as twindow. As a result, the computation of the likelihood func-
tion will involves a modified covariance matrix of size n(twindow + 1) × n(twindow + 1) [88].
Finally, the posterior filtered density is given by

p(xk|z1:k) ≈
Np∑
i=1

w
(i)
k δ(xk − x(i)

k ). (4.32)

The PF is affected by degeneracy phenomena [115], where the normalized weights tend to
concentrate onto some particles only, after a certain number of recursive steps, leaving the
other participle to be essentially degenerate. Therefore, resampling is carried out to reduce
the effect of particle degeneracy. In ShPF, the residual resampling algorithm [115], [132], is
applied. In a nutshell, the operation of the ShPF is divided into three stages; (i) the prediction
stage, (ii) the measurement update stage, and (iii) the resampling stage. At prediction stage,
particles are propagated according to the motion model. At the measurement update stage,
the particle weights are updated using the likelihood function of the measurements. Finally,
at the resampling stage, the samples with low important weights were eliminated and samples
with high importance weights were duplicated. Algorithm 4.1 describes the proposed ShPF
for tracking problems with correlated and sparse RSS measurements.
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Algorithm 4.1 The Shrinkage-based Particle Filter (ShPF)

1: (1) Input: Initialization
2: for k = 0 do
3: for i = 1, . . . , Np do
4: Samples: {x(i)

0 ∼ q(x0)} where q(·) is the proposal important density.
5: Set initial weights: w(i)

0 = 1/Np.
6: end for
7: end for
8:
9: for k = 1, . . . , endtime do

10: (2) Shrinkage Estimation Step
11: Estimates the shadowing noise covariance matrix by the shrinkage estimator:
12: Ŝ = λT + (1− λ)Ĉ for

13: T =

{
as given in (4.20), for T1

as given in (4.22), for T2

, and λ̂ =

{
as given in (4.21), for λT1

as given in (4.23), for λT2

.

14:
15: for i = 1, . . . , Np do
16: (2) Prediction Step
17: Propagate the particles x̂(i)

k = A(T, α)x̂(i)
k−1 + Bu(T )uk(mk)

(i) + Bw(T )w(i)
k

18: with the process noise w(i)
k ∼ N (0,Q),

19:
20: (3) Measurement Update
21: Calculate the measurement likelihood function:
22: p(zk|x̂(i)

k ) =
(
(2π)n|Sk|

)− 1
2 exp

(
− 1

2
(z− ẑ)S−1

k (z− ẑ)T
)
, where vk ∼ (0,Rk).

23: Update the weights: w(i)
k ∝ w

(i)
k−1 p(zk|x̂(i)

k ).
24: end for

25: Normalize the weights: ŵ(i)
k = w

(i)
k /

Np∑
i=1

w
(i)
k .

26: The posterior mean: p(xk|zk) =
∑Np

i=1 ŵ
(i)
k δx̂(i)

k
.

27:
28: (4) Output: The estimated state: x̂k = p(xk|zk).
29:
30: (5) Resampling Step
31: Set the threshold sample size: Nthresh = Np/10.
32: Calculate the effective sample size: Neff = 1/

∑Np

i=1(ŵ
(i)
k )2.

33: if Neff < Nthresh

34: The residual resampling method is applied. The method discarded particles with
35: low weights and replicated particles with high weights.
36: end if
37: end for
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4.6 The Posterior Cramer-Rao Lower Bound

The posterior Cramer-Rao lower bound (PCRLB) provides a lower bound on the mean square
error obtained with any non-linear filter and is equivalent to the inverse of the posterior Fisher
information matrix (PFIM) [133]. The implementation of the PCRLB requires knowledge of
the true state. However, the EKF and UKF based methods [134] can be applied to approximate
the PCRLB for the state error estimates [135]. In this section, theoretical PCRLB is derived
and implemented for the simulated trajectory which becomes the standard for benchmarking
the performance of the ShPF.

Let x̂k be an unbiased estimate of the mobile user state xk, computed from a set of RSS
measurements that are collected up to time k, i.e., Zk = {z1, . . . , zk}. The error covariance
matrix of x̂k is lower bounded by

Pk = E[(xk − x̂k)(xk − x̂k)T ] ≥ J−1
k , (4.33)

where Jk ∈ Rns×ns is the PFIM given by

Jk = E[[∇Xk
log p(Xk ,Zk)][∇Xk

log p(Xk ,Zk)]T ], (4.34)

or equivalently as
Jk = −E[∇Xk

[∇Xk
log p(Xk ,Zk)]T ], (4.35)

where∇Xk
is the first-order partial derivative operator with respect to Xk. The joint probability

distribution of Xk = {x0, x1, . . . , xk} and Zk = {z1, . . . , zk} is computed as [134]

p(Xk,Zk) = p(x0)
k∏
i=1

p(zi|xi)
k∏
j=1

p(xj|xj−1), (4.36)

where it is determined by the prior density function p(x0) of the target initial state x0 and the
conditional density functions of p(zi|xi) and p(xj|xj−1), respectively. Tichavsky et al. [135]
proposed a method of computing the PFIM recursively as

Jk+1 = D22
k − D21

k (Jk + D11
k )−1D12

k , (4.37)
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where the terms in (4.37) are defined as

D11
k = −E[∇xk [∇xk log p(xk+1|xk)]T], (4.38)

D21
k = −E[∇xk [∇xk+1

log p(xk+1|xk)]T], (4.39)

D12
k = −E[∇xk+1

[∇xk log p(xk+1|xk)]T] = [D21
k ]T, (4.40)

D22
k = −E[∇xk+1

[∇xk+1
log p(xk+1|xk)]T]

− E[∇xk+1
[∇xk+1

log p(zk+1|xk+1)]T]. (4.41)

Approximated the PFIM.
Consider the nonlinear filtering problems based on the Gaussian assumptions, the log-probability
density function of the state and measurement can be respectively formulated by

∇xk log p(xk+1|xk) = [∇xkfTk (xk)] Q−1
k [xk+1 − fk(xk)], (4.42)

∇xk log p(zk+1|xk+1) = [∇xk+1
hTk+1(xk)] R−1

k+1 [zk+1 − hk+1(xk+1)], (4.43)

where Qk and Rk+1 are the process noise covariance matrix and the measurement noise covari-
ance matrix, respectively. By assuming that the covariance matrices are invertible, the matrices
defined in (4.38)− (4.41) are simplified as follows

D11
k = E[[∇xk log p(xk+1|xk)][∇xk

log p(xk+1|xk)]T],

= E[[∇xkfTk (xk)] Q−1
k [∇xkfTk (xk)]T ],

= E[FTk Q−1
k Fk], (4.44)

D12
k = −E[FTk ]Q−1

k , (4.45)

D21
k = Q−1

k − E[Fk], (4.46)

D22
k = Q−1

k + E[[∇xkhTk (xk)] R−1
k+1 [∇xkhTk (xk)]T ],

= Q−1
k + E[HT

k+1R−1
k+1Hk+1], (4.47)

where Fk represents the state transition matrix and Hk+1 is the Jacobian matrix evaluated at
xk+1. Noted that all expressions involved in (4.44) − (4.47) can be evaluated by using the
mean and covariance of the state estimate instead of the true state.
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The PCRLB for a Deterministic Trajectory.
Consider the case in which the motion model is generated deterministically. Hence, the true
state is known and the process noise is zero. The expectation operator in (4.44) − (4.47) can
be dropped out. The recursive equation in (4.37) can be rewritten as

Jk+1 = Q−1
k + HT

k+1R−1
k+1Hk+1 −Q−1

k Fk
(

Jk + FTk Q−1
k Fk

)−1

FTk Q−1
k . (4.48)

By applying the matrix inversion lemma, it yields

Jk+1 =
(

Qk + FkJ−1
k FTk

)−1

+ HT
k+1R−1

k+1Hk+1. (4.49)

Since Qk = 0, (4.49) becomes

Jk+1 =
[
F−1
k

]T
JkF−1

k + HT
k+1R−1

k+1Hk+1. (4.50)

4.6.1 Approximation based on the Extended Kalman Filter

Given the motion model in (4.2) and the measurement model in (4.7), the EKF is applied to
estimate the state trajectory of a mobile user using the mean and covariance propagation. The
EKF estimates the mean x̂k and covariance matrix Pk at time k recursively as follows [136],
[137]. The prior state x̂k|k−1 and covariance Pk|k−1 estimate are given respectively by

x̂k|k−1 = Fkx̂k−1|k−1 + Buuk, (4.51)

Pk|k−1 = FkPk−1|k−1FTk + BuQkBT
u , (4.52)

where Fk is the state transition matrix, Bu is the command matrix, and uk is the control input.
Then, the posterior state x̂k|k and covariance Pk|k estimate are computed by

x̂k|k = x̂k|k−1 + Kk(zk − ẑk|k−1), (4.53)

Pk|k = Pk|k−1 −KkSkKT
k , (4.54)

where

Sk = HkPk|k−1HT
k + Rk, (4.55)

Kk = Pk|k−1HT
k S−1

k . (4.56)

The difference in the received and predicted RSS measurements (zk − ẑk|k−1) is called the
innovation process and this process improves the prior state estimates. The correction factor
is denoted by the Kalman gain Kk and the uncertainty of the predicted output is denoted by
Sk. The parameter Hk represents the Jacobian matrix of the expected measurements h(xk)
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of a mobile user from all sensors. The Jacobian matrix component is obtained by taking the
derivative of h(xk) with respect to the coordinates xk and yk and the matrix has a form

Hk =
10β

ln10


x̂−x1

(x̂−x1)2+(ŷ−y1)2 0 0 ŷ−y1

(x̂−x1)2+(ŷ−y1)2 0 0
...

...
...

...
...

...
x̂−xns

(x̂−xns )2+(ŷ−yns )2 0 0 ŷ−yns

(x̂−xns )2+(ŷ−yns )2 0 0

 . (4.57)

After comparing (4.50) with (4.54), by replacing Jk by P−1
k and by applying the matrix inver-

sion lemma, the following expression is obtained

P−1
k+1 =

(
FkPkFk

)−1

+ HT
k+1R−1

k+1Hk+1 . (4.58)

In (4.50), matrices Fk and Hk+1 are evaluated at the true state but in (4.58), the matrices are
evaluated at their estimated state. For a further derivation of the EKF concepts, the reader is
referred to Chapter 3, Section 3.4 of the thesis.

4.7 Performance Evaluation

In this section, a simulation and experiment were conducted to measure how well the ShPF
perform the task of tracking a mobile user based on the correlated and sparse RSS measure-
ments. The ShPF is expected to track accurately by exploiting the correlation in the shadowing
noise. The standard PF is compared against the proposed ShPF to validate the performance
of the ShPF in terms of tracking accuracy. The accuracy of state estimates is assessed by the
coordinates root mean square error (RMSE) given by

RMSE =

√√√√ 1

N

N∑
i=1

(x̂ik − xik)2 + (ŷik − yik)2 (4.59)

where {x̂k, ŷk} is the estimated trajectory and {xk, yk} is the actual trajectory, collected up to
time k, and N is the number of simulation runs.
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4.7.1 Simulation Results and Analysis

Table 4.1: Simulation Parameters for Tracking with Correlated and Sparse RSS Measurements

Comments Parameters
Minimum speed of a mobile user vmin = 0.3 ms−1

Maximum speed of a mobile user vmax = 5.4 ms−1

Number of Particles Np = 500
Standard deviations of the process noise σw = 0.25 ms−2

Standard deviations of the measurement noise σv = [0− 4] dB
Path loss exponent β = 3
Decorrelation distance Dc = 40 m
Number of snapshots/observations of sensor measurements P = {3, . . . , 10}
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Figure 4.1: Coordinate of the sensor nodes, actual trajectory of the mobile user, and estimated
trajectories by the ShPF from a single simulation run.

The simulated network comprises of nine mobile sensor nodes with a coverage radius of 5
meters was set-up as shown in Figure 4.1. The mobile sensors moved with varies speed,
specified in the range of (0.05 − 0.15) ms−1 and do not cross their designated grid in or-
der to prevent collision with the target. Given the mobile user (target) initial state x0 =

[1.3, 0.02, 0.0, 2.5, 0.02, 0.0]T , the trajectory is generated by (4.2) where T = 0.5 s, α = 0.6,
and k = {1, . . . , 10}. The control input uk in (4.2) is modeled as a Markov process which takes
values between the following modes M = {[0.0 0.0]T , [0.5 0.0]T , [0.0 0.8]T} in units of ms−2,
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with the transition probability matrix
∏

is defined by:
[∏]

ii
= 0.5, for i = 1, . . . , 3 (diag-

onal elements) and
[∏]

ij
= 0.25, for i, j = 1, . . . , 3 (off-diagonal elements). Meanwhile,

the initial mode probabilities are µ1,0 = 0.8 and µi,0 = 0.1 for i = 2, 3 such that the sum
of elements in each row of the matrix is equal to one. Sensor measurements are generated
according to (4.7) where the shadowing noise is Gaussian distributed and spatio-temporally
correlated. It is assumed at time instant k, there is a P number of snapshots of sensor mea-
surements are collected in the networks. During the snapshots or observations, the mobile user
is assumed static. This assumption is made because the shadowing noise covariance matrix is
estimated using the sensor measurements. If only a single observation of sensor measurement
is available, the shrinkage method does not have enough data to compute the shadowing noise
covariance matrix. At least, the minimum of a P = 3 number of snapshots or observations
are needed by the shrinkage estimator to estimate the shadowing noise covariance matrix ac-
curately. However, in practical applications, the numbers of snapshots (oversampling) of the
received measurements are usually generated during the mobile user movement at different
time instants. In this case, a concept of window time is considered to gather more snapshots
of the measurements at a predefined size of window time. By using this concept, only the
user state at the beginning and end of the window time is considered for the shadowing noise
covariance matrix and mobile user state estimation. The size of the window time affects the
strength of the temporal correlation between the received measurements.

Figure 4.2 shows the coordinates RMSE comparison of the PF and ShPF methods with
its numerical representation is given in Table 4.2. The filtering methods were executed to
estimate the mobile user state xk at time instant k based on the P number of snapshots of
sensor measurement zk. The simulation was repeated 100 times with random process noise
and measurement noise for each run. Thus, an average of the coordinates RMSE is calculated.
Table 4.1 shows the other parameter settings for the designed simulation. The PF is similar to
the PF developed in [41] where a fixed shadowing noise covariance matrix was assumed in the
filter operation. Here, the PF (C = I) is assumed to operate with the identity matrix because
it does not know the correlation that exists between the shadowing noise. Meanwhile, the PF
(C = C0) is assumed to operate with the true shadowing noise covariance matrix. On the
other hand, the ShPF (C = Ŝ(T1)) is the estimated shrinkage covariance matrix based on the
target matrix in (4.20) and the ShPF (C = Ŝ(T2)) is the estimated shrinkage covariance matrix
based on the target matrix in (4.22). It is shown that the ShPF (C = Ŝ(T1)) and ShPF (C =

Ŝ(T2)) have a smaller coordinates RMSE when compared to the PF (C = I) for all number of
observations or snapshots. This is because the ShPF has successfully exploited the correlated
measurements by utilizing the estimated shadowing noise covariance matrix in the likelihood
calculation of the filter operation. The PF (C = C0) is the best estimator by exhibits the
smallest coordinate RMSE for all number of observation. However, the assumption of using
the true representation of the shadowing noise covariance matrix is too optimistic. In practice,
it is impossible to know the true shadowing noise covariance matrix. The true shadowing
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Figure 4.2: Coordinate RMSE comparison of the PF and ShPF using the simulated RSS mea-
surements.

Table 4.2: Averaged coordinate RMSE of the PF and ShPF using the simulated RSS measure-
ments.

Number of observation PF (C = I) PF (C = C0) ShPF (C = Ŝ(T1)) ShPF (C = Ŝ(T2))
3 0.3014 0.1168 0.2190 0.2829
4 0.1305 0.0562 0.0888 0.1055
5 0.0765 0.0346 0.0491 0.0554
6 0.0545 0.0292 0.0329 0.0358
7 0.0401 0.0204 0.0245 0.0268
8 0.0315 0.0158 0.0191 0.0200
9 0.0260 0.0133 0.0157 0.0162
10 0.0220 0.0116 0.0133 0.0139
11 0.0187 0.0103 0.0110 0.0114
12 0.0161 0.0089 0.0097 0.0101

noise covariance matrix can only be constructed in a designed simulation setup. For that rea-
son, further analysis of the PF (C = C0) is not carried out in the rest of the results. The coor-
dinate RMSE of the ShPF (C = Ŝ(T1)) is smaller when compared to the ShPF (C = Ŝ(T2)),
especially when estimating the shadowing noise covariance matrix with a small number of
observations or snapshots, (P ≤ 5). This showed that the ShPF (C = Ŝ(T1)) gives a bet-
ter estimate of the shadowing noise covariance matrix than the ShPF (C = Ŝ(T2)). In ShPF
(C = Ŝ(T1)), the shrinkage estimator estimates the shadowing noise covariance matrix
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Figure 4.3: Coordinate RMSE comparison of the PF and ShPF for different values of shadow-
ing variance in the RSS measurements.

Table 4.3: Averaged coordinate RMSE of the PF and ShPF for differrent values of shadowing
variance in the RSS measurements.

Variance of shadowing PF (C = I) ShPF (C = Ŝ(T1)) ShPF (C = Ŝ(T2))
1 0.1640 0.1129 0.1276
2 0.2227 0.1414 0.1653
3 0.2682 0.1658 0.1888
4 0.3035 0.1886 0.2225
5 0.3274 0.2071 0.2448
6 0.3649 0.2290 0.2638
7 0.3981 0.2441 0.2935
8 0.4237 0.2664 0.3111
9 0.4461 0.2793 0.3303
10 0.4731 0.2886 0.3360

by assigning an equal weight terms towards both the matrix T1 and matrix Ĉ. By contrast, in
ShPF (C = Ŝ(T2)), the estimated shadowing noise covariance matrix is found to shrink more
towards the matrix T2 and less towards the matrix Ĉ. Moreover, the optimal weight determined
in ShPF (C = Ŝ(T1)) is calculated by taking all elements of the sample matrix Ĉ whereas the
optimal weight determined in ShPF (C = Ŝ(T2)) is computed by taking only the off-diagonal
elements of the sample matrix Ĉ. Intuitively, an optimal weight minimizes the risk function
between the shrinkage estimator and the true covariance matrix.
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Figure 4.4: Coordinate RMSE comparison of the PF and ShPF for different numbers of sensor
nodes in the network.

Table 4.4: Averaged coordinate RMSE of the PF and ShPF for differrent numbers of sensor
nodes in the network.

Number of sensor nodes PF (C = I) ShPF (C = Ŝ(T1)) ShPF (C = Ŝ(T2))
3 0.5923 0.5474 0.5645
4 0.4985 0.4230 0.4698
5 0.4826 0.4444 0.4550
6 0.3819 0.2688 0.2994
7 0.3229 0.2324 0.2527
8 0.2877 0.1997 0.2139
9 0.2208 0.1476 0.1573

Figure 4.3 shows the coordinate RMSE comparison of the PF and ShPF for different values
of shadowing variance in the RSS measurements with its numerical representation is given in
Table 4.3. It is showed that when the value of the shadowing variance increases, the tracking
accuracy decreases for both the PF and ShPF methods. The proposed ShPF gives a better
tracking accuracy than the standard PF for all shadowing variance. The ShPF (C = Ŝ(T1))

has a lower coordinate RMSE when compared to that with the ShPF (C = Ŝ(T2)).

Figure 4.4 shows the relationship between the number of sensor nodes and the tracking
accuracy with its numerical representation is given in Table 4.4. The tracking accuracy for both
PF and ShPF methods improves when the number of sensor nodes deployed increases.
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Figure 4.5: Coordinate RMSE comparison of the ShPF (C = Ŝ(T1))) with Np =
100, 300, 500 and 1000 particles.

Table 4.5: Averaged coordinate RMSE of the ShPF (C = Ŝ(T1))) with different number of
particles.

Number of observation Np = 100 Np = 300 Np = 500 Np = 1000
3 0.2875 0.2287 0.2058 0.1919
4 0.1252 0.0930 0.0832 0.0798
5 0.0786 0.0559 0.0534 0.0442
6 0.0538 0.0364 0.0344 0.0327
7 0.0436 0.0284 0.0263 0.0234
8 0.0335 0.0216 0.0185 0.0172

As a result, more RSS measurements were collected and available for the estimation process
by the filtering methods. The ShPF has a smaller coordinate RMSE when compared to the
PF.

Figure 4.5 shows the coordinate RMSE of the ShPF (C = Ŝ(T1)) with different number of
particles with its numerical representation is given in Table 4.5. On average, when the ShPF
(C = Ŝ(T1)) operates withNp = 100 particles, the tracking accuracy is reduced by almost 45%

when compared with the ShPF (C = Ŝ(T1)) with Np = 500 particles for (P = 3). However,
when the number of particles is increased toNp = 100 particles, the tracking accuracy increases
but at the expense of increasing the computation time. The time taken by the
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Figure 4.6: Coordinate RMSE comparison of the ShPF (C = Ŝ(T1))) with the correlation
between the RSS measurements is 0.3, 0.5 and 0.9.

Table 4.6: Averaged coordinate RMSE of the ShPF (C = Ŝ(T1))) with different number of
correlation between the RSS measurements.

Number of observation ρ̄ = 0.3 ρ̄ = 0.5 ρ̄ = 0.9
3 0.3195 0.2515 0.1800
4 0.1334 0.1181 0.0707
5 0.0754 0.0676 0.0411
6 0.0511 0.0482 0.0270
7 0.0358 0.0306 0.0220
8 0.0314 0.0268 0.0174

ShPF (C = Ŝ(T1)) to complete a single run in the simulation with Np = 500 particles is 1.37
seconds. The simulation process is executed by means of a desktop computer with an Intel
core 3.3 GHz processor, 4 GB RAM, and 465 GB hard drive.

Figure 4.6 displays the relationship between the coordinate RMSE and the measurement
correlation with its numerical representation is given in Table 4.6. The RSS measurement is
simulated with different correlation coefficients where the spatial coefficient in (4.8) and the
temporal coefficient in (4.10) are set to 0.3, 0.5 and 0.9, respectively. When the measurements
are highly correlated, the ShPF (C = Ŝ(T1)) displays the lowest coordinate RMSE. Contrary,
the tracking accuracy is reduced when the measurements are weakly correlated.
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Figure 4.7: Coordinate RMSE comparison of the ShPF (C = Ŝ(T1))) with window sizes
twindow = 1 and twindow = 10.

Table 4.7: Averaged coordinate RMSE of the ShPF (C = Ŝ(T1))) with different window sizes.

Time twindow = 1 twindow = 10
1 0.2716 0.1321
2 0.0312 0.0851
3 0.1248 0.0720
4 0.2535 0.2620
5 0.5110 0.2713
6 0.4663 0.3911
7 0.5321 0.1492
8 0.2480 0.1394
9 0.6173 0.0629
10 0.3577 0.2395
11 0.4093 0.1221
12 0.5945 0.1313
13 0.1380 0.0481
14 0.1182 0.4580
15 0.3128 0.4337
16 0.1810 0.1011
17 0.2326 0.1482
18 0.1681 0.0611
19 0.1910 0.1820
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Figure 4.7 analyzed the effects of temporal correlation with its numerical representation
is given in Table 4.7. The ShPF (C = Ŝ(T1)) with twindow = 1 is compared with the ShPF
(C = Ŝ(T1)) with twindow = 10. In the simulation, the measurements are generated every 0.01
seconds. Thus, every second approximately one hundred measurements are acquired. When
twindow = 1, only ten measurements are held per second, while for twindow = 10, the number
of measurements increases to one hundred. The ShPF (C = Ŝ(T1)) with twindow = 10 shows
a smaller coordinate RMSE than the ShPF (C = Ŝ(T1)) with twindow = 1. This showed that
when more measurement history was retained, better information could be extracted from the
shadowing noise covariance matrix. However, by doing so, the dimensionality of the covari-
ance matrix grows exponentially and consequently the time taken to compute the likelihood
function increases. The ShPF (C = Ŝ(T1)) with twindow = 10 takes 5.97 seconds to complete
a single simulation run. On the other hand, the ShPF (C = Ŝ(T1)) with twindow = 1 only
takes 2.33 seconds to complete. The sliding window time is set depends on the environment.
In urban environments, the correlation coefficient varies more than in suburban and rural en-
vironments. Thus, the ShPF (C = Ŝ(T1)) with twindow = 10 is useful. However, in suburban
and rural environments, the ShPF (C = Ŝ(T1)) with twindow = 1 is considered to be efficient.
The size of the sliding window imposes a trade-off between the tracking accuracy and the
computational complexity of the ShPF algorithm.

Finally, Figure 4.8 shows a comparison of the coordinate RMSE of the PF, ShPF, and
PCRLB at every time instant k with its numerical representation is given in Table 4.8. The
coordinate RMSE of the PF and the ShPF are measured using (4.59). Meanwhile, the PCRLB
is calculated using

RMSEPCRLB =
√

(Pk(1, 1) + Pk(4, 4)), (4.60)

where Pk is the covariance matrix of the EKF with the Jacobian evaluated at the true state
vector xk at time instant k. Here, the PCRLB is introduced as to provide a fundamental lower
bound on the variance of an unbiased estimator. The PCRLB sets a useful benchmark which
characterizes the lowest possible variance that can be achieved by any estimator. The imple-
mentation of the PCRLB requires knowledge of the true state which is not possible in practice.
The true state of the mobile user is only available through designed simulation setup. It is
shown that the ShPF (C = Ŝ(T1)) provides a smaller coordinate RMSE than the PF (C = I)
for most of the time. This shows that the ShPF (C = Ŝ(T1)) has successfully exploited the
correlation in the RSS measurements. On the other hand, the PCRLB sets the lowest theoret-
ical accuracy that can be achieved by any estimator, which is not always possible due to the
requirements of the true state. For that reason, the standard PF is considered as the baseline
method in this case.
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Figure 4.8: Coordinate RMSE comparison of the PF, ShPF, and PCRLB.

Table 4.8: Averaged coordinate RMSE of the PF, ShPF, and PCRLB.

Time PF (C = I) ShPF (C = Ŝ(T1)) PCRLB
1 0.1995 0.0917 0.0114
2 1.1810 0.3712 0.0237
3 0.1623 0.1352 0.0115
4 0.1410 0.2375 0.0108
5 0.1522 0.1512 0.0105
6 0.1513 0.2190 0.0327
7 0.2810 0.0711 0.0521
8 0.2800 0.2051 0.0137
9 0.4013 0.1906 0.0201
10 0.7989 1.1423 0.0411
11 0.3012 0.1731 0.0121
12 0.6014 0.1760 0.0011
13 0.1021 0.1321 0.0151
14 0.5011 0.6539 0.0271
15 0.3801 0.3497 0.0321
16 0.1121 0.1053 0.0199
17 0.1161 0.2367 0.0310
18 0.5287 0.4685 0.1010
19 0.5011 0.4643 0.0471
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4.7.2 Experimental Results and Analysis
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Figure 4.9: Experimental setup.

In this section, the PF and ShPF are validated with the real experimental data. Wi-Fi networks,
with Wi-Fi signal strengths, were collected from the D floor of the Amy Johnson Building,
at the University of Sheffield, United Kingdom. In the experimental set-up, a user carries
a mobile smartphone moving from one end of the corridor to the other end. Three Wi-Fi
access points were identified on the floor where the user moves. A Xiaomi mobile smartphone
running an Android 4.4.2 operating system is installed with the Sensor Fusion App and it is
used as a receiver to collect the transmitted Wi-Fi signals from all three access points. The
App is developed by Linköping University and can be downloaded for free on Google Play
[138].

Figure 4.9 displayed the true trajectory of a mobile user and the coordinates of the Wi-Fi
access points that are superimposed on the layout of the building floor. The size of the building
floor area is 414.74 square meters with the black diamonds represent the coordinates of the Wi-
Fi access points. A total of ten point coordinates have been identified in the user trajectory for
data collection, denoted by blue circles, and each point coordinate is separated by 2 meters. As
the user moves, the Wi-Fi signals are collected with their corresponding signal noises at each
point coordinate in the trajectory. The aim of the PF and ShPF were to estimate the coordinates
of the mobile user using the collected Wi-Fi signal strengths. Again, the tracking accuracy is
assessed by the coordinate RMSE to validate the performance of the PF and ShPF.

In the motion model, the following parameters were initialized. The user initial state is set
to x0 = [12, 2.00, 0, 6, 0.01, 0.0]T and the trajectory is simulated by (4.2) where T = 1.0

s, α = 0.6, and k = {1, . . . , 10}. The state variance is set to σ2
w = 1 and the control input is

set to uk = [0.0 0.0]T in units of ms−2 with the assumption of the mobile user is moving in a
straight direction with a constant velocity in a range of v = (0.32− 0.37) ms−1 and no
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Figure 4.10: The recorded Wi-Fi measurements from the testbed taken at Room D02, D06,
and D08 of the Amy Johnson Building.

Table 4.9: Averaged Wi-Fi measurements taken at the Amy Johnson Buildings.

Point coordinate of the mobile user Room D02 Room D06 Room D08
1 -51.22 -55.11 -73.55
2 -66.00 -54.00 -69.33
3 -62.00 -49.33 -65.55
4 -61.22 -51.11 -67.44
5 -70.77 -56.88 -57.33
6 -69.22 -61.11 -49.11
7 -80.77 -62.66 -44.66
8 -78.44 -71.88 -47.00
9 -79.55 -68.88 -55.33
10 -82.66 -71.44 -57.88

acceleration takes place. Meanwhile, in the measurement model, the parameters were initial-
ized as follows. The signal power loss at a 1-meter distance is set to z0 = −36 dBm and
the path loss exponent is set to β = 3. The actual value of β is usually varied depending
on the movements of people on the floor, the location of walls, doors, chairs and even by the
construction materials used in the building.

Figure 4.10 plots the transmitted Wi-Fi measurements from three Wi-Fi access points lo-
cated in three different rooms: room D02, D06, and D08 of the building floor with its
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Figure 4.11: Coordinate RMSE comparison of the PF and ShPF using the Wi-Fi measure-
ments.

Table 4.10: Coordinate RMSE of the PF and ShPF using the Wi-Fi measurements.

Point coordinate of the mobile user PF (C = I) ShPF (C = Ŝ(T1))
1 1.8673 1.7510
2 1.5109 1.1493
3 1.3578 1.5965
4 1.6690 1.5489
5 1.5132 1.2303
6 1.3576 1.0115
7 1.2909 1.3480
8 1.2732 1.4015
9 1.2191 1.1143
10 1.2009 1.4482

numerical representation is given in Table 4.9. These signals are received at ten different point
coordinates in the trajectory. At each point coordinate, there is a maximum of (P = 8) obser-
vations available to be processed by the PF and ShPF with their mean values indicated by the
plotted lines. The variations in the observations are due to the shadowing and multipath fading
effects. The Wi-Fi signal strength increases when the receiver approaches the transmitter (Wi-
Fi access points) and the signal strength decreases when the distance between the transmitter
and receiver increases.
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Finally, Figure 4.11 compares the coordinate RMSE of the PF (C = I) and ShPF (C =

Ŝ(T1)) at all point coordinates with its numerical representation is given in Table 4.10. Both
filtering algorithms are assumed to know the initial coordinate of the mobile user and used
the collected Wi-Fi measurements for estimation process. The PF (C = I) is deployed by
assuming the filter does not know the correlation between the Wi-Fi measurements. On the
other hand, the ShPF (C = Ŝ(T1)) uses the shrinkage estimator to exploit the correlation
that might exists between the Wi-Fi measurements. It shows that the ShPF (C = Ŝ(T1))

outperforms the tracking performance of the PF (C = I) for most of the coordinate estimates.
For some coordinates, the tracking accuracy of ShPF (C = Ŝ(T1)) increases by almost 26%

when compared with the PF (C = I). However, for some point coordinates, the improvement
is not significant because the correlation between the Wi-Fi measurements is less than 0.6.
Finally, it cannot be ruled out that other factors such as uncertainties in determining the exact
coordinates of mobile user and Wi-Fi access points in the building floor might also contribute
to the coordinate RMSE readings.

4.8 Summary

In this chapter, the challenging problem of tracking a mobile user using the correlated and
sparse RSS measurement was considered. In wireless networks where sensors are densely
deployed, measurements obtained by sensors exhibit spatial and temporal correlations. Ex-
ploiting the correlation provides extra information to enhance the performance of tracking.
However, it would result in an estimation of a covariance matrix that can be problematic when
the number of observations is comparable or less than the dimensionality of the signal model.
This can happen due to the sensor and user movements or sensor malfunctions in the networks.
The number of observation in the networks is defined as the total number of snapshots that can
be obtained at one particular time instant. Meanwhile, the dimensional of the signal model is
defined as the total number of sensor nodes that were deployed in the network.

A shrinkage-based particle filter (ShPF) was proposed for mobile tracking with correlated
and sparse RSS measurements. The method has successfully exploited the correlated measure-
ments by estimating the shadowing noise covariance matrix through the shrinkage estimator.
When more historical measurements were retained, the dimensionality of the shadowing noise
covariance matrix increases and caused the computational time to increase as well. Thus, to
compute efficiently and preserve positive definiteness and invertibility of the covariance ma-
trix, a sliding window time is imposed. The PCRLB is also calculated for simulated data to
compare it with the coordinate RMSE of the PF and ShPF. The performance of the ShPF has
been validated with the simulation and experimental data. Results from both data showed that
the ShPF works best when the RSS measurements are highly correlated and sparse.
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Chapter 5

Robust Shrinkage based Particle Filter for

Tracking with Non-Gaussian Shadowing

Noise

In the previous Chapter 4, the ShPF method had been developed to estimate the dynamic state
of a mobile user in the WSNs with correlated and sparse RSS measurements. The developed
filter able to track accurately by exploiting the correlated measurements. In this chapter, the
performance of the ShPF will be extending to the problems of outliers in the correlated RSS
measurements. This chapter describes the development of a robust shrinkage based particle
filter to estimate the dynamic state of a mobile user with correlated RSS measurements that are
corrupted by outliers. The material in this chapter has been submitted in a paper [P4].

5.1 Introduction

The state space approach to modeling dynamic systems consists of two parts; the state transi-
tion model and the measurement model. The system state cannot be observed directly, instead,
they are manifested through a set of observed measurements. In WSNs, sensors are deployed
to provide indirect observations about the system state. Sensors such as GPS receivers, radars,
visual sensing systems, and robotic sensing systems often provide measurements that are not
easily interpretable due to the presence of outliers. The outlier is an observation that does not
fit with the expected pattern of distribution (usually assumed to be Gaussian) based on the
available data. Outliers can come from sudden environmental disturbances, temporary sensor
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failures or from the intrinsic noise of the sensor device. The presence of outliers frequently
in the measurements can have serious consequences. For examples, the presence of outliers
in the dataset caused an inaccurate estimation of the static and moving objects [139], [140],
unreliable face recognition [141], imbalance robot controller [142], and damaging the system
identification in [143].

The traditional approach to deal with outliers is by using the rejection process [144]. The
data is first assumed to follow a Gaussian distribution and any observations that located out-
side the distribution are treated as residuals. The rejection process minimizes the number of
residuals however it creates bias in the parameter estimates. The KF is the optimal estimator
for linear Gaussian systems, giving the minimum mean squared error [145]. The performance
of KF deteriorates when the measurement is corrupted by outliers. To overcome the effect
of outliers, robust KFs were proposed [146], [147]. In [148], [149] a robust KF based on a
weighted least-squares approach is presented. Each observation is given a weight which in-
dicates the probability of its contribution towards the estimated state at each time step. The
method required the used of heuristics function and manual parameter tuning. A similar ap-
proach is adopted in [150] where the weight of observations and the system dynamics are
adjusted by using a variational Expectation-Maximization framework [151]. The approach
does not require manual parameter tuning however implicit assumptions about the noise dis-
tribution were made.

Apart from that, approaches based on resampling techniques [152] and numerical integra-
tion [153] were also developed to deal with outliers in the measurements. These methods are
complex and required more time to compute thus they are less favorable for real-time appli-
cations. Another popular approach is based on the non-parametric methods [154] which used
a probability of distribution to represent the state of interest. The non-parametric methods
have an advantage in overcoming the constraints of analytical intractable of non-linear models
however they are computationally expensive since they required a large number of particles to
approximate a state distribution. In [86], the UKF is proposed as the proposal distribution for
a PF. The UKF proposal distribution allows the samples in the prior distribution to move to
regions of a high likelihood that lies in the tails of the distribution. By doing so, the PF tracks
more accurately for the problems of non-Gaussian probability distributions.

Alternatively, the probabilistic description of the state noise and/or measurement noise can
be modeled using a Student’s t distribution instead of a Gaussian distribution to account for the
effects of outliers in the system models. In [155], the measurement noise is modeled to follow
a Student’s t distribution and the hidden state is approximated based on a structured variational
approach [156]. The method has been successfully tested on both simulated and real data and
has outperformed the filtering method developed in [150]. The structural variational approach
also adopted by [157] to develop a robust filter and smoother for filtering with non-linear state
space models. The method provides a good trade-off between accuracy and computational
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efficiency but it is less flexible when compared to [158]. In [159], an approach based on the
Student’s t noise model of both the state and measurement noises is presented. The method
is computational inexpensive since it is developed based on the KF framework. However, the
values of the degrees of freedom have to be approximated at every time steps to prevent the
Student’s t filter from converged to the standard KF. The Student’s t filter showed promising
results in challenging tracking scenarios.

In [160], the measurement noise is modeled using a skewed (asymmetric) and heavy-tailed
distributions to account the presence of outliers in the measurements. A skew-t Bayesian filter
and smoother were then developed to estimate the hidden state based on the skewed and heavy-
tailed distribution of the measurement noise. The method has the lowest root mean square error
when compared to the KF. However, as the number of estimated parameters increased, more
time is required in the computation process as compared to [157]. In [161], a robust PF is
presented which uses two type of Student’s t noise models with different degrees of freedom
to model the measurement noise. The robust PF is developed based on the Bayesian model
averaging approach [162]. The approach overcomes the uncertainty in model selection by
employing a number of different noise models instead of a single noise model. The robust PF
operates with the assumption of a fixed measurement noise covariance matrix. The method was
tested on simulated data and outperformed the standard PF. The robust PF is a recent method
which is developed based on an established benchmark method of a Bayesian model averaging
approach. Motivated by the work, the robust PF is extended in this chapter by introducing the
non-parametric shrinkage estimator.

Known as the robust shrinkage-based particle filter (RSPF), the filter is developed by com-
bining the non-parametric shrinkage estimator with the robust PF to jointly estimate the shad-
owing noise covariance matrix that is corrupted by the outliers and the state of a mobile user.
Therefore, instead of using a fixed and predefined value of the measurement noise covariance
matrix as in [161], the RSPF estimates the shadowing noise covariance matrix at every time
instants. By exploiting the statistical information on the estimated shadowing noise covariance
matrix, the accuracy of the mobile tracking is increased. The main objectives of this chapter
are: (i) to address the presence of outliers in the RSS measurements using the Student’s t
noise model; (ii) to formulate the non-parametric shrinkage estimator for robust estimation of
the shadowing noise covariance matrix using the RSS measurements with outliers; and (iii)
to develop a tracking framework that works with correlated RSS measurements that are cor-
rupted by outliers. The outline of this chapter is as follows: Section 5.2 give an overview of
the proposed framework. Section 5.3 describes the state space models. Section 5.4 formulas
the spatial and temporal correlation models. In section 5.5, the presence of outlier in the mea-
surement is addressed and the robust filtering method is developed. Section 5.6 validates the
performance of the developed filter and finally, Section 5.7 presents the summary.
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5.2 Framework Overview

In this section, the scenario of a wireless network problem is defined and a general overview
of the proposed tracking method is given based on which the problem framework is presented.
This chapter considers a two dimensional network consisting of n static sensor nodes that are
randomly deployed with known coordinates (xi, yi), i ∈ {1, . . . , n}. The static sensor nodes
have an unequal range of radius between one another and were deployed to give full coverage
of the mobile user movement. The mobile user dynamic is modeled by the Singer model
which can represent well any maneuvering patterns taken by the mobile user and has a time
auto-correlation function. When a target (mobile user) is detected within the monitored area
by the sensor nodes, the sensors will generate measurements in the form of signal strength.
The received signal strength (RSS) measurement at the sensor nodes is modeled as a function
of distance using the path loss model. The RSS measurements only provide range information
between the sensors and the target. Therefore, to compute the coordinate of the mobile user in
the wireless network using the RSS measurements, a filtering method is needed.

Let zk = [z1
k, z

2
k, . . . , z

n
k ]T be the vector of RSS measurements at time instant k and it is

assumed that at each time instant k, there is a P number of snapshots of vector measurements
were collected in the networks. The RSS measurements are spatio-temporally correlated and
corrupted by outliers where an outlier is the sensor readings that do not fit with the expected
pattern of a Gaussian distribution. To account for the effect of outliers in the RSS measure-
ments, the measurement noise is modeled using a Student’s t distribution instead of a Gaussian
distribution. The Student’s t distribution has much heavier tails than the Gaussian distribution.
The spatial correlation in the RSS measurements is due to the proximity distance between the
sensor nodes and the target and the temporal correlation is due to the total number of snap-
shots (oversampling) of the received measurements at the sensor node. Section 5.4 described
the correlation models that are designed to generate spatio-temporally correlated measure-
ments. The objective of our framework is to estimate the state trajectory of a mobile user
X = {x1, x2, . . . , xk} using the vector of correlated RSS measurements that are corrupted by
outliers. A filtering method is developed in Section 5.5 to estimate the dynamic state of a mo-
bile user based on the received sensor measurements. To exploit the correlated measurements,
a non-parametric shrinkage estimator is derived. The non-parametric shrinkage estimator esti-
mates the shadowing noise covariance matrix at every time instant k using a data measurements
consisting of a P number of snapshots of the RSS measurements. The number of snapshots in
the networks can be varied as a result of sensors and user movements or sensor malfunctions.
In situations where the number of snapshots P is larger than the number of sensor nodes n, the
sample estimator gives an accurate estimate. However, when the number of P is comparable
or less than the number of n, the sample covariance matrix estimates become singular and
ill-conditioned.
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5.3 State Space Models

5.3.1 Motion Model

Let the state vector at time instant k is defined by

xk = [xk, ẋk, ẍk, yk, ẏk, ÿk]
T , (5.1)

where (xk, yk), (ẋk, ẏk), and (ẍk, ÿk) represent the user coordinates, velocity, and acceleration,
respectively. The dynamics of the mobile user is described by a Singer model and it is chosen
because the model can represent well any maneuvering patterns of the mobile user and has a
time auto-correlation function. The process noise of the motion model wk ∈ Rnx admits a
zero mean multivariate Gaussian distribution, wk ∼ N (0,Qk) with covariance matrix Qk =

E[wkwT
k ] = σ2

wI where σ2
w is the process noise variance. Further detail of the Singer model is

given in Chapter 4, Section 4.3.1.

5.3.2 Measurement Model

The RSS measurements at the sensor nodes is modeled as a function of distance using the path
loss model where the shadowing component of the measurement noise model is assumed to
follow a zero mean multivariate Gaussian distribution, vk ∼ N (0,Rk) with covariance matrix
Rk = E[vkvTk ] = σ2

vI where σ2
v is the shadowing noise variance. The RSS only provides range

information between the sensors and the mobile user. Therefore, to compute the coordinate
of the mobile user in the wireless network using the RSS measurements, a filtering method is
needed. Further detail of the path loss model is given in Chapter 4, Section 4.3.2.

5.4 Correlated Shadowing Noise Models

The RSS measurements at the sensor nodes are assumed to be correlated in space and time. The
correlation comes from the shadowing noise component of the measurement model. Shadow-
ing noise is a result of attenuation signals due to obstacles such as trees, buildings, walls, etc.
Let uk = [u1

k, u
2
k, . . . , u

n
k ]T be the uncorrelated shadowing noise observed by n sensor nodes

at time instant k. The variable vk = [v1
k, v

2
k, . . . , v

n
k ]T exhibits spatial correlation when

vk = Ckuk, (5.2)
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where the covariance matrix Ck satisfied the correlation matrix Γk at time instant k, such
that

Γk = CkCT
k , (5.3)

where

Γk =


1 ρ1,2

k . . . ρ1,n
k

ρ2,1
k 1 . . . ρ2,n

k
...

... . . . ...
ρn,1k ρn,2k . . . 1

 . (5.4)

The spatial correlation coefficient between two sensor nodes (links) is given by [163]

ρk =

{
0.8− |θ|

150
, if θ ≤ 60◦

0.6 , if θ > 60◦
, (5.5)

where θ is the angle of arrival between two links. Thus, the covariance matrix that satisfied the
correlation matrix is given by

Ck =


(σ1

k)
2 ρ1,2

k σ1
kσ

2
k · · · ρ1,n

k σ1
kσ

n
k

ρ2,1
k σ2

kσ
1
k (σ2

k)
2 · · · ρ2,n

k σ2
kσ

n
k

...
... . . . ...

ρn,1k σnkσ
1
k ρn,2k σnkσ

2
k · · · (σnk )2

 , (5.6)

where the variance of the correlated random variables are the same as the variance of the
uncorrelated random variables, that is σ2

v = σ2
u. The correlation matrix Γk lies between [−1, 1]

and is the normalized version of the covariance matrix Ck. At the next time instant k + 1, the
shadowing noise exhibit temporal correlation, given by

v1
k+1

v2
k+1
...

vnk+1

 = γk+1(∆x)


v1
k

v2
k
...
vnk

+


u1
k+1

u2
k+1
...

unk+1

 , (5.7)

where γk+1(∆x) is the temporal correlation coefficient [121], given by

γk+1(∆x) = e−
|∆x|
Dc

ln2, (5.8)

and ∆x is the change in distance by the mobile user from the time instant k to the time instant
k + 1, and Dc is the decorrelation distance.
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5.5 Filter Development

5.5.1 Student’s t Distributions

The readings of the RSS measurements at the sensor nodes are easily corrupted by the presence
of outliers. An outlier is an observation that does not fit with the expected pattern of a Gaus-
sian distribution. Therefore, to account for the effect of outliers in the sensor measurements,
the shadowing noise component of the measurement model admits a Student’s t distribution
instead of a Gaussian distribution. Let vk ∈ Rn be a zero-mean multivariate Gaussian distri-
bution, vk ∼ N (0,Rk) with shadowing noise covariance matrix Rk. The probability density
function is given by

p(vk) =
1

(2π)
n
2

1√
|Rk|

exp(−1

2
(vk − v̄k)R−1

k (vk − v̄k)T ), (5.9)

where v̄k is the mean value. Let yk ∈ Rn be another random vector that have a Gamma
distribution, yk ∼ G(v

2
, v

2
). Then

zk = z̄k +
vk√yk

, (5.10)

follows a multivariate Student’s t distributions zk ∼ St(µ, Σ̂, v) with probability density func-
tion given by [164]

p(zk) =
Γ(v+n

2
)

Γ(v
2
)

1

(vπ)
n
2

1√
|Rk|

(
1 +

(zk − z̄k)TR−1
k (zk − z̄k)
v

)−n+v
2

, (5.11)

where z̄k is the mean, Rk is the scale matrix, and v is the degrees of freedom. The peak-
ness of (5.11) changes by varying the value of v. As v → ∞, the joint probability density
function becomes multivariate normal distribution. The covariance of a Student’s t random
variable is given by v

v−2
Rk for v > 2. The Student’s t distribution has much heavier tails than

the Gaussian distribution and are able to generate outliers for more accurate modeling of the
measurement noise.

5.5.2 Non-Parametric Shrinkage Estimator

To exploit the correlation in the RSS measurements, computing the shadowing noise covari-
ance matrix is essential. The non-parametric shrinkage estimator is derived to estimate the
shadowing noise covariance matrix using the correlated sensor measurements that are cor-
rupted by outliers. Let Ŝ be the shrinkage estimator of the true shadowing noise covariance
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matrix, given by
Ŝ = λT + (1− λ)Ĉ (5.12)

where Ĉ is the sample estimates, T is the target matrix, and λ ∈ [1, 0] is the shrinkage in-
tensity (weight). The estimated sample covariance matrix Ĉ in (5.12) is highly sensitive to
the effect of outliers in the measurements. To account for the outliers, an unbiased shrinkage
estimator is proposed under non-parametric setups. Suppose that the respective target matrix
is chosen

T =

{ [
Ĉ
]
ii
, if i = j

0 , if i 6= j
. (5.13)

Under a multivariate Gaussian distribution, the optimal weight is approximated by [124]

λ̂ =

∑
i 6=j V̂ar

([
Ĉ
]
ij

)
∑

i 6=j
[
Ĉ

2]
ij

, (5.14)

where the derivation of V̂ar
([

Ĉ
])

and Ĉ is given in Appendix A. In contrast, under non-
parametric setups, the optimal weight is approximated by

λ̂ =
tr[Ĉ2

]
n
− tr[ĈT]

n
− â1 + b̂1

tr[Ĉ2
]

n
− ĉ1

, (5.15)

where

â1 =
(P − 1)

P (P − 2)(P − 3)

(
(P − 1)(P − 2)

tr[Ĉ
2
]

n
+ nĉ1 −

PQ

n

)
, (5.16)

b̂1 =
P − 1

(P + 1)n
tr[T2]− 1

P + 1
b̂2, (5.17)

b̂2 =
−1

(P − 2)(P − 3)n
×
(

2(P − 1)2tr[Ĉ
2
] + (P − 1)2(tr[Ĉ])2 − P (P + 1)Q

)
, (5.18)

ĉ1 =
P − 1

P (P − 2)(P − 3)n2

(
2tr[Ĉ] + (P 2 − 3P + 1)(tr[Ĉ])2 − PQ

)
, (5.19)

(5.20)

and

Q : =
1

P − 1

P∑
p=1

(
(zp − z̄)T (zp − z̄)

)2

, (5.21)

is proposed by [165] as another statistics to solve the estimation of â1. The parameter n
refers to the number of sensor nodes and P refers to the total number of snapshots of the RSS
measurements. Further derivation of (5.15) is given in the Appendix B.

72



5.5.3 Multiple Models Particle Filter

In target tracking, the maneuvering patterns of the mobile user are not known. The maneuver-
ing patterns are assumed to follow a few possible patterns of operation based on some relevant
information such as velocity, driving situations, driving manners, routes, and etc. In [136],
the maneuvering patterns are grouped into a few possible patterns known as the modes (or
regimes) of operation. Let, the state dynamic and measurement model are given by

xk = fk−1(xk−1,mk,wk−1), (5.22)

zk = h(xk,mk, vk), (5.23)

where xk is the state vector, wk−1 is the process noise, zk is the measurement, vk is the mea-
surement noise, and mk is the modes (or regimes) that is in effect during the transition period
of the mobile user from the time instant k − 1 to the time instant k. The mode is commonly
modeled by a time-homogeneous m-state first-order Markov chain with transitional probabil-
ities given by

πij = p(mk = j|mk−1 = i) (i, j ∈M), (5.24)

whereM = {1, 2, . . . ,m} forM is the total number of modes. Thus, the transition probability
matrix πij is a matrix of size (M ×M) with each element of i, j ∈M satisfying

πij ≥ 0 and
s∑
j=1

πij = 1. (5.25)

The initial probabilities of the modes are given by

µi = p(m1 = i), (5.26)

for i ∈M, such that

µi ≥ 0 and
s∑
i=1

µi = 1. (5.27)

With the modes of operation, the state vector becomes an augmented hybrid state vector yk =

[xTk ,mk]
T with the recursive solution for the hybrid state estimation is given by

Prediction:

p(xk,mk = j|Zk−1) =
∑
i

πij

∫
p(xk|xk−1,mk = j) p(xk−1,mk−1 = i|Zk−1) dxk−1,

(5.28)

Update:

p(xk,mk = j|Zk) =
p(zk|xk,mk = j) p(xk,mk = j|Zk−1)∑

j

∫
p(zk|xk,mk = j) p(xk,mk = j|Zk−1)dxk

(5.29)
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where p(zk|xk,mk = j) is the likelihood function of the mode mk = j, p(xk|xk−1,mk = j)

is the state transition density of the mode mk = j, and p(xk−1,mk−1 = i|Zk−1) is the prior
probability distribution of the mode mk−1 = i based on the observed measurements Zk−1 up to
time k−1. The solution defined by (5.28) and (5.29) are quite similar with (3.46) and (3.50) of
the particle filters where the only difference being that the state vector is now yk = [xTk ,mk]

T

instead of yk = [xTk ]T .

5.5.4 Bayesian Model Averaging

The Bayesian model averaging approach [162] provides solutions to the model uncertainty
problems in selecting the best model for use at a given time. The shadowing component of the
measurement model given in Section 5.3.2 can admit either a Gaussian distribution or a Stu-
dent’s t distribution depending on whether an outlier is a presence or not in the measurement
data. If no outliers, the filtering method can assume that the measurement noise is Gaussian
distributed. Otherwise, when the outliers presence, it is best for the filtering method to as-
sume a Student’s t distribution instead of a Gaussian distribution. However, choosing which a
noise model to follow at a given time is heavily depends on the knowledge of the outlier in the
sensor measurements. Therefore, if the outlier is the quantity of interest which is not readily
available, then its posterior distribution given the measurement data D, is given by

p(o|D) =
S∑
s=1

p(o|Ms, D) p(Ms|D), (5.30)

where o is the outlier,Ms is the noise model, and s = {1, . . . , S} is the number of model; for S
is the total model. The posterior distribution in (5.30) gives an average of the posterior distri-
butions under the consideration of all the noise models. Furthermore, the posterior probability
for each model Ms is given by

p(Ms|D) =
p(D|Ms) p(Ms)∑S
l=1 p(D|Ml) p(Ml)

, (5.31)

where
p(D|Ms) =

∫
p(D|θs,Ms) p(θs|Ms) dθs (5.32)

is the integrated likelihood of the model Ms, θs is the vector parameters of the model Ms,
and p(Ms) is the prior probability that Ms is the true model. By averaging all the possible
distributions of measurement noise using the Bayesian model averaging approach, it provides
a better average prediction over the used of any single distribution of noise model.
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5.5.5 The Robust Shrinkage Particle Filter

The measurement noise is often assumed to follow a Gaussian distribution with a fixed and
predefined value of the shadowing noise covariance matrix. When the sensor measurements
are corrupted by outliers, the assumption of normal distribution is no longer hold. Moreover,
the elements of the shadowing noise covariance matrix are changing frequently due to the
movement of the mobile user in the networks. Thus, the assumption of a fixed shadowing
noise covariance matrix is only held true when dealing with a static user. Hence, a robust
shrinkage particle filter (RSPF) is developed to overcome the problems. Here two issues are
identified and tackled: (i) how to address the model noise uncertainty due to outliers; and (ii)
how to approximate the shadowing noise covariance matrix due to outliers. The first issue is
addressed by using multiple models particle filter and Bayesian model averaging approaches
as described in Section 5.5.3 and Section 5.5.4. The second issue is addressed by using the
non-parametric shrinkage estimator as described in Section 5.5.2.

Let S = {s1, s2} denotes the multiple noise models where s1 is based on the multivariate
Gaussian distribution and s2 is based on the multivariate Student’s t distribution. Let also
Hk = s denotes the event that the s-th noise model is chosen at time instant k. Suppose that at
time instant k − 1, the following distribution is obtained

p(xk−1|zk−1) =
S∑
s=1

p(xs,k−1|Hk−1 = s, zk−1) p(Hk−1 = s|zk−1),

=
S∑
s=1

ps(xs,k−1|zk−1) p(Hk−1 = s|zk−1), (5.33)

where (5.33) is approximated by a set of weighted particles {x(i)
k−1, w

(i)
k−1}, for i = 1, . . . , Np,

and a noise model transition probability πs,k−1, for s = {1, 2}, given by

p(xk−1|zk−1) ≈
Np∑
i=1

w
(i)
k−1δ(xk−1 − x(i)

k−1)
S∑
s=1

πs,k−1. (5.34)

At time instant k, the particles are drawn from a proposal distribution x(i)
k ∼ q(xk|x(i)

k−1, zk),
and under the hypothesisHk = s, the weights can be recursively computed according to

w
(i)
s,k ∝ w

(i)
k−1

ps(zk|x̂(i)
k )p(x̂(i)

k |x
(i)
k−1)

q(x̂(i)
k |x

(i)
k−1, zk)

, (5.35)

where ps(zk|x̂(i)
k ) denotes the likelihood function associated to the s-th noise model, given

by

ps(zk|x̂(i)
k ) =

{
eq. (5.9) for Gaussian distribution

eq. (5.11) for Student′s t distribution
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It is shown that the computation of the likelihood functions required information about the
shadowing noise covariance matrix, which is not available. Therefore, an approximation of the
shadowing noise covariance matrix is required to exploit the correlation in the measurements.
Suppose that the target matrix (5.13) is chosen, the optimal weight under non-parametric se-
tups is given in (5.15). Next, by choosing the proposal important density q(x̂(i)

k |x
(i)
k−1, zk) =

p(x̂(i)
k |x

(i)
k−1), the weights simplifies to

w
(i)
s,k ∝ w

(i)
k−1ps(zk|x̂(i)

k ), (5.36)

and normalized by

ŵ
(i)
s,k = w

(i)
s,k/

Np∑
i=1

w
(i)
s,k. (5.37)

On the other hand, the transition probability of the s-th noise model at time step k− 1 is given
by

πs,k−1 =
πϕ
s,k−1∑S

s=1 π
ϕ
s,k−1

, (5.38)

where ϕ ∈ [0, 1] denotes the forgetting factor [166]. By employing Bayes’ rule, the transition
probability of the s-th noise model is recursively computed by

πs,k =
πϕ
s,k−1 ps(zk|zk−1)∑S

s=1 π
ϕ
s,k−1 ps(zk|zk−1)

, (5.39)

where ps(zk|zk−1) is the marginal likelihood of the s-th noise model, defined by

ps(zk|zk−1) =

∫
ps(zk|xk)p(xk|zk−1)dxk. (5.40)

Since p(xk|zk−1) ≈
∑Np

i=1 w
(i)
k−1δx̂(i)

k
, the integral in (5.40) is approximated by

ps(zk|zk−1) ≈
Np∑
i=1

w
(i)
k−1 ps(zk|x̂(i)

k ). (5.41)

Finally, the posterior filtering density at time step k is formulated as

p(xk|zk) =
S∑
s=1

ps(xs,k|zk) πs,k, (5.42)

=
S∑
s=1

w
(i)
s,kδx̂(i)

k
πs,k. (5.43)

Algorithm 5.1 summarises the RSPF.
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Algorithm 5.1 The Robust Shrinkage Particle Filter (RSPF)

1: (1) Input: Initialization
2: for k = 0 do
3: for i = 1, . . . , Np do
4: Samples: {x(i)

0 ∼ q(x0),m(i)
0 ∼ P0(m)} where P0(m) are the initial mode probabilities

5: for m0. Set initial weights: w(i)
0 = 1/Np.

6: end for
7: Set initial noise models transition probabilities, πs,0 for s = {1, 2}.
8: end for
9:

10: for k = 1, . . . , endtime do
11: (2) Shrinkage Estimation Step
12: Shadowing noise covariance estimates: Ŝk = (1− λ̂k)Ĉk + λ̂kTk, for

13: Tk =

{
[Ĉ]ii, if i = j

0 , if i 6= j
, and λ̂k = as given in (5.15).

14:
15: for i = 1, . . . , Np do
16: (3) Prediction State
17: Propagate the particles x̂(i)

k according to the motion model.
18:
19: (4) Measurement Update

20: Calculate the likelihood functions: ps
(
zk|x̂(i)

k

)
=

{
as given in (5.9), for s1.

as given in (5.11), for s2.
.

21: Calculate the marginal likelihood of noise models:
22: ps(zk|zk−1) ≈

∑Np

i=1w
(i)
k−1 ps

(
zk|x̂(i)

k

)
.

23: Update the weights: w(i)
s,k ∝ w

(i)
k−1ps(zk|x̂(i)

k ).
24: end for

25: Normalize the weights: ŵ(i)
s,k = w

(i)
s,k/

Np∑
i=1

w
(i)
s,k.

26:
27: (5) Model Averaging Step
28: Specify noise models transition probabilities: πs,k−1 =

πϕ
s,k−1∑S

s=1 πϕ
s,k−1

, and ϕ ∈ [0, 1].

29: Update noise models transition probabilities: πs,k =
πs,k−1 ps(zk|zk−1)∑S
s=1 πs,k−1 ps(zk|zk−1)

.

30: The posterior mean: p(xk|zk) =
∑S

s=1 ŵ
(i)
s,kδx̂(i) πs,k.

31:
32: (6) Output: State estimates: x̂k
33:
34: (7) Resampling Step
35: Set the threshold sample size: Nthresh = Np/10.
36: Calculate the effective sample size:
37: Neff = 1/

∑Np

i=1(ŵ
(i)
k )2 where ŵ(i)

k =
∑S

s=1 ŵ
(i)
s,k πs,k.

38: if Neff < Nthresh

39: The residual resampling method is applied.
40: end if
41: end for
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5.6 Performance Validation

Table 5.1: Simulation Parameters for Tracking with Non-Gaussian Shadowing Noise

Comments Parameters
Minimum speed of a mobile user vmin = 3.53 ms−1

Maximum speed of a mobile user vmax = 17.67 ms−1

Number of Particles Np = 500
Standard deviation of the process noise σw = 0.25 ms−2

Standard deviation of the shadowing noise σv = [1− 4] dB
Path loss exponent β = 3
Decorrelation distance Dc = 10 m
Degree of freedom v = 3
Forgetting factor ϕ = 0.8
Initial probabilities of noise models πs,0 = 0.5
Number of snapshot/observed measurements P = 3
Window time twindow = 2
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Figure 5.1: Network deployment.

Given the initial state x0 = [100, 2.5, 0.0, 600, 2.5, 0.0]T , the mobile user trajectory in
Figure 5.1 is generated according to the motion model in (4.2) where T = 0.5 s, α = 0.6,
and k = {1, . . . , 150}. The control input uk in (4.2) is modeled as a Markov process which
takes values between the following modes M = {[0.0 0.0]T , [2.0 0.0]T , [0.0 2.0]T , [0.0 −
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2.0]T , [−2.0 0.0]T} in units of ms−2, with the transition probability matrix
∏

is defined by:[∏]
ii

= 0.7, for i = 1, . . . , 5 (diagonal elements) and
[∏]

ij
= 0.075, for i, j = 1, . . . , 5 (off-

diagonal elements). Meanwhile, the initial mode probabilities are µ1,0 = 0.8 and µi,0 = 0.05

for i = 2, . . . , 5 such that the sum of elements in each row of the matrix is equal to one. Sensor
measurements are generated according to measurement model in (4.7) where the shadowing
noise is spatio-temporally correlated and corrupted by outliers. When the outliers presence, the
shadowing noise is drawn from a Student’s t distribution vk ∼ St(0, R̂k, v) and the shadowing
noise is set to be heavily tailed with v = 3. Otherwise, if no outliers, the shadowing noise is
drawn from a zero-mean Gaussian distribution vk ∼ N (0,Rk). It is assumed at time instant
k, there is a P number of snapshots of sensor measurements are collected in the networks.
This assumption is made because the shadowing noise covariance matrix is estimated using
the sensor measurements. If only a single observation of sensor measurement is available, the
non-parametric shrinkage estimator does not have enough data to compute the shadowing noise
covariance matrix. At least, the minimum of a P = 3 number of snapshots or observations are
needed by the non-parametric shrinkage estimator to estimate the shadowing noise covariance
matrix accurately. To generate a multiple number of snapshots (oversampling) of the received
sensor measurements, a concept of time window is considered. By using this concept, only
the user state at the beginning and end of the window time is considered for the shadowing
noise covariance matrix and mobile user state estimation. The size of the window time affects
the strength of the temporal correlation between the received measurements. Moreover, the
estimated speed and acceleration are also imposed so that v̂ ∈ [0, 20] ms−1 and â ∈ [−2, 2]

ms−2, respectively. The particles x(i)
0 is drawn from an initial distribution x(i)

0 ∼ N (x0,P)

where P = diag{x2
0, ẋ

2
0, ẍ

2
0, y

2
0, ẏ

2
0, ÿ

2
0}. Table 5.1 shows the other parameter settings for the

designed simulation.

Case 1 Tracking with the true shadowing noise covariance matrix. First, considered the
case where the true value of the shadowing noise covariance matrix Rk is available during the
state estimation. The shadowing noise component of the measurement is drawn from a zero-
mean multivariate Gaussian distribution at all time except at time steps k = {50, . . . , 100},
where the shadowing noise component is drawn from a multivariate Student’s t distributions
to indicate that outlier is present in the sensor readings. Three different filtering methods were
investigated for performance comparison, namely the PF, TPF, and RPF, respectively. These
filtering methods are detailed as follows:

• PF - A Gaussian model based Particle filter.

• TPF - A Student’s t model based Particle filter (v = 3).

• RPF - A robust Particle filter.

The PF details are given in [41] but instead of using a fixed shadowing noise covariance
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Figure 5.2: Coordinate RMSE comparison of the PF, TPF, and RPF as a function of time.

matrix at every time instant k, the PF, in this case, is operated with the true shadowing noise
covariance matrix. The PF was a well-established method for state estimation and thus was
selected for comparison purposes. The TPF is basically a PF which only employs the Stu-
dent’s t model instead of the Gaussian model. On the contrary, the RPF is a combination
of the multiple models particle filter and the Bayesian model averaging methods which em-
ployed both the Gaussian and Student’s t models. The RPF is assumed to operate with the
true shadowing noise covariance matrix as with the PF and TPF. Here, all filtering methods
are aware of the true shadowing noise covariance matrix of the measurement noise. However,
they did not know when the measurement would be corrupted by the outliers. The PF oper-
ates by assuming no outliers presence in the measurements at all time and conversely, the TPF
assumed that the outliers always present in the measurements at all time. On the other hand,
the RPF operates by taking consideration that the outliers may be present at any time instants.
The performance of the different filters is summarized in Figure 5.2. It is shown that the RPF
exhibits the lowest coordinates RMSE better than the PF and TPF at most of the time. At time
instants, k = {1, . . . , 49} and k = {101, . . . , 150}, where the sensor measurements were not
corrupted by the outliers, the PF displayed a more accurate state estimates when compared to
the TPF. Conversely, when the sensor measurements were corrupted by the outliers that are at
time instants k = {50, . . . , 100}, the TPF showed a better coordinate estimated than the PF.
The coordinate RMSE is rapidly increased in the event of measurement with outliers and when
no outliers present, the coordinate RMSE is decreased. This is evident that outliers have dis-
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torted the accuracy of the state estimation by the filtering methods. The filtering method with
a Gaussian model operates the best when there is no outliers presence in the measurements.
However, when there is an outlier, the filtering method with a Student’s t model is shown to
perform well than with the Gaussian model. Instead of choosing between the two noise mod-
els, the RPF used both models to operate and gives a better state estimate when compared to
the PF and TPF.

Case 2 Tracking with the estimated shadowing noise covariance matrix. Next, considered
the case where the true value of the shadowing noise covariance matrix of the measurement
noise, Rk presented in Section 5.5.1 is not available. Hence, the shadowing noise covariance
matrix has to be estimated using the sensor measurements. Let the shadowing noise covariance
matrix is estimated by using the non-parametric shrinkage estimator Ŝk = Rk given in Section
5.5.2. The setting for the simulation outliers was the same as in Case 1. Here, an extension to
the filtering methods presented in Case 1 is proposed and investigated, namely, the SPF, TSPF,
and RSPF, respectively. These filtering methods are detailed as follows:

• SPF - A Gaussian model based shrinkage Particle filter.

• TSPF - A Student’s t model based shrinkage Particle filter (v = 3).

• RSPF - A robust shrinkage Particle filter.

The SPF details are given in Chapter 4, Section 4.5.4 of the thesis but instead of using the diag-
onal, unit variance target matrix and the constant correlation shrinkage target matrix, the SPF,
in this case, is operated with the diagonal, unequal variance target matrix [124]. The TSPF is
basically a SPF which only employs the Student’s t model instead of the Gaussian model. On
the contrary, the RSPF is developed using the multiple models particle filter, Bayesian model
averaging, and non-parametric shrinkage estimator which is details in Algorithm 5.1. The
RSPF jointly estimate the shadowing noise covariance matrix of the measurements that are
corrupted by the outliers as well as the state of a mobile user. In this case, all filtering methods
had to estimate the shadowing noise covariance matrix of the measurements in order to exploit
the correlation. They were also set to be blind to the occurrence of outliers in the measure-
ments. The SPF operates with the assumption of no outliers present in the measurement thus it
only employed a Gaussian-based model. Conversely, the TSPF operates with the assumption
of outliers are always present in the measurements thus only employed the Student’s t-based
model. On the other hand, the RSPF operates by taking into consideration that outliers can
exist at any time instants, therefore combined both the Gaussian and Student’s t models via a
Bayesian model averaging approach. Since the true shadowing noise covariance matrix is not
available, all the filtering methods used the non-parametric shrinkage estimator to estimate the
shadowing noise covariance matrix in its operation. Figure 5.3 shows the coordinate RMSE
comparison of the different filters. It is shown that the RSPF displayed the most accurate
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Figure 5.3: Coordinate RMSE comparison of the SPF, TSPF, and RSPF as a function of time.

coordinate estimates by exhibits the lowest coordinate RMSE at all time, followed by the TSPF
and finally the SPF. Since the true shadowing noise covariance matrix of the measurement is
not available and has to be estimated, the SPF, TSPF, and RSPF are exhibited higher coordinate
RMSE when compared to the PF, TPF, and RPF as displayed in Case 1.

To understand the effect of outliers in the sensor measurements, Figure 5.4 is plotted by
combining the results obtained in Figure 5.2 and Figure 5.3, respectively. The presence of
outliers in the measurements affected the tracking accuracy in two ways; (1) false estimation
of the shadowing noise covariance matrix, and (2) false estimation of the mobile state. When
the filtering methods (PF, TPF, and RPF) operated with the true shadowing noise covariance
matrix of the measurement, the outliers only affected the state estimation of the mobile user.
The PF, TPF, and RPF are still able to exploit the correlated measurement using the statistical
information provided by the true measurement noise covariance matrix. Conversely, when
the true shadowing noise covariance matrix of the measurement is not available and has to
be estimated in order to exploit the correlated measurements, the SPF, TSPF, and RSPF were
developed. The SPF, TSPF, and RSPF have to estimate the mobile user state accurately using
the corrupted measurements. The utilization of the non-parametric shrinkage estimator by the
SPF, TSPF, and RSPF in their operations provided a way to estimate the shadowing noise
covariance matrix that is more robust towards the effect of outliers in the measurements. By
comparing the two groups of filtering method, the RPF and RSPF indicated to be more accurate
compared to the others. For that reason, only RPF and RSPF estimators are further
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Figure 5.4: Coordinate RMSE comparison of the PF, TPF, RPF, SPF, TSPF, and RSPF as a
function of time.

analysis. However, a significant difference of coordinate RMSE is displayed when comparing
the RPF and the RSPF. In RPF, the outliers only distorted the state estimation of the mo-
bile user. Meanwhile, in RSPF the outliers have distorted both the state estimation and the
shadowing noise covariance matrix estimation. In practice, it is impossible to know the true
shadowing noise covariance matrix of the measurements except through a designed simulation
setup. Hence, the assumption of using the true representation of the shadowing noise covari-
ance matrix is too optimistic. The RSPF is more practical for implementation when compared
to the RPF and for that reason, the analysis of RPF is excluded and further analysis of the
RSPF is carried out.

Effects of temporal correlation on the RSPF tracking accuracy. Figure 5.5 displays the ef-
fects of temporal correlation with different window sizes of the RSPF. In RSPF with twindow =

4, only four measurements are held per second while in RSPF with twindow = 10, there are
ten measurements are held per second. The setting for the simulation outliers was the same
as in Case 1. The RSPF (twindow = 10) showed a better coordinate estimation than the RSPF
(twindow = 4) because of more measurement history was retained for the shadowing noise
covariance matrix estimation process. The strength of the temporal correlation increases when
more measurement history was retained thus a better statistical information can be extracted
from the measurements by the RSPF. However, when operated with a high number of snap-
shots/observations, the dimensionality of the estimated shadowing noise covariance
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Figure 5.5: Coordinate RMSE comparison of the RSPF with window sizes twindow = 4 and
twindow = 10.

matrix grows exponentially and thus increases the execution time of the RSPF.

Effects of forgetting factor on the RSPF noise models posterior probabilities. Next, the
effects of the forgetting factor on the RSPF noise models posterior probabilities are evaluated.
The value of the forgetting factor is set to ϕ = 0.9 and ϕ = 0.1, respectively and the average
posterior probability of each measurement noise model was recorded at every time instants. To
understand the effects of the forgetting factor, the RPF noise models posterior probabilities also
plotted and compared with the RSPF noise models posterior probabilities. Figures 5.6 and 5.7
show the average posterior probability of noise models by the RPF for ϕ = 0.9 and ϕ = 0.1,
respectively and Figures 5.8 and 5.9 show the average posterior probability of noise models by
the RSPF for ϕ = 0.9 and ϕ = 0.1, respectively. The setting for the simulation outliers was
the same as in Case 1. Intuitively, when no outliers present in the measurements that is at time
instants, k = {1, . . . , 49} and k = {101, . . . , 150}, the Gaussian noise model will dominate
the Student’s t noise model and vice verse when outliers present in the measurements that
is at time instants k = {50, . . . , 100}. This is true with the RPF of ϕ = 0.1 but when the
forgetting factor is increases to ϕ = 0.9, the posterior probabilities of the Student’s t noise
model will then dominate the posterior probabilities of the Gaussian noise model at all time
instants.
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Figure 5.6: Average posterior probability of noise models by RPF for ϕ = 0.9.
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Figure 5.7: Average posterior probability of noise models by RPF for ϕ = 0.1.
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Figure 5.8: Average posterior probability of noise models by RSPF for ϕ = 0.9.
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Figure 5.9: Average posterior probability of noise models by RSPF for ϕ = 0.1.
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Contrary, in the RSPF posterior probability of noise models, when no outliers present in the
measurements, the Student’s t noise model will always dominates the Gaussian noise model
as shown in Figures 5.8 and 5.9 at time instants k = {1, . . . , 49} and k = {101, . . . , 150}.
Comparing the two Figures at time instants k = {1, . . . , 49} and k = {101, . . . , 150}, when
the value of forgetting factor in the RSPF was decreased from ϕ = 0.9 to ϕ = 0.1, the gap of
the transition probabilities between the two noise models reduced significantly. This indicated
that when RSPF is operated with ϕ = 0.9, the transition probabilities between one noise model
to the other is less affected by the distribution of the shadowing noise thus the filter can hold the
previous information for much longer. However, when the RSPF is operated with ϕ = 0.1, the
transition probabilities are highly affected by the distribution of the shadowing noise. Hence,
the filter will update the noise distribution information frequently.

Furthermore, when there is outlier present in the measurements, the posterior probability
of the Gaussian noise model and the Student’s t noise model were equally distributed between
them as shown in Figures 5.8 and 5.9 at time instants k = {50, . . . , 100}. In RSPF, the
Gaussian noise model is given higher transition probability when compared to the Student’s
t noise model. In contrast, the Gaussian noise model is given less transition probability than
the Student’s t noise model by the RPF as shown in Figures 5.6 and 5.7 at time instants k =

{50, . . . , 100}. The posterior probability/transition probability of noise models depends on the
shadowing noise covariance matrix of the measurements. When estimated shadowing noise
covariance matrix was deployed instead of the true shadowing noise covariance matrix, the
transition probabilities are adjusted according to the statistical information of the covariance
matrix. In the events of outliers present in the measurements, the interpretation of the statistical
information of the covariance matrix can be misleading. Thus, choosing which noise models
to operate at a given time instants are heavily depended on the knowledge of outliers in the
measurements.

Effects of correlation in the shadowing noise. Finally, the effects of correlation in the shad-
owing noise of the measurements are evaluated. Let the true value of the shadowing noise
covariance matrix is available during the state estimation. Then, consider the setting for the
simulation outliers was the same as in Case 1. Figure 5.10 shows the coordinate RMSE of the
PF, TPF, and RPF with correlated shadowing noise and Figure 5.11 with uncorrelated shad-
owing noise. When there is a correlation between measurements, all the filtering methods
are converging more slowly between one another. This is indicated by comparing the coor-
dinate RMSE of the filters in Figures 5.10 and 5.11 at time instants t > 100 which is during
the transition period from outliers present in the measurements to no outliers present in the
measurements. On the other hand, when there is no correlation between measurements, the
filtering methods are converging more quickly between one another.

87



0 50 100 150
40

50

60

70

80

90

100

110

Time step, [s]

C
o

o
rd

in
a

te
 R

M
S

E
, 
[m

]

 

 

PF (corr)

TPF (corr)

RPF (corr)

Figure 5.10: Coordinate RMSE comparison of the filters with correlated shadowing noise.
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Figure 5.11: Coordinate RMSE comparison of the filters with uncorrelated shadowing noise.
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5.7 Summary

In this chapter, the challenging problem of tracking a mobile user with correlated RSS mea-
surements that are corrupted by outliers was considered. A heavy-tailed Student’s t noise
model is presented to simulate the RSS measurements with outliers. To exploit the corre-
lated measurement, a non-parametric shrinkage estimator is derived to estimate the shadowing
noise covariance matrix of the corrupted measurements. A robust shrinkage-based particle
filter (RSPF) was proposed to jointly estimate the shadowing noise covariance matrix and the
state of the mobile user. The RSPF is developed by combining the multiple models particle fil-
ter, Bayesian model averaging, and the non-parametric shrinkage estimator. The performance
of the RSPF is validated using the simulated data. The simulation results showed that the
RSPF is robust against the presence of outliers in the RSS measurements and capable to track
accurately the mobile user in the wireless networks.

However, the validation of the RSPF is not extended using the experimental data. Outliers
in the sensor readings can come from sudden environmental disturbances, temporary sensor
failures or from the intrinsic noise of the sensor device itself. In practice, it is impossible to
design an experimental setup that can guarantee outliers present in the sensor readings at a
given time instant. The sensor readings are affected by multipath and shadow fading effects
caused by obstacles along the signal propagation path which are usually assumed to follow
a Gaussian distribution instead of a Student’s t distribution. Unless there is knowledge of
the outlier in the measurements, the assumption of using the Student’s t distribution will not
be truly justified. However in the future, it is applicable for the RSPF to be tested using the
experimental data if the data are carefully designed to reflect the effects of the outliers present
in the sensor measurements.
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Chapter 6

Conclusion

6.1 Thesis Contributions

The aim of this thesis was to developed mobile tracking approach in WSNs with the correlated
and sparse measurements. The key contributions of this thesis are details as follows:

In Chapter 4, a ShPF for mobile tracking in WSNs was presented. The shadowing com-
ponent of the RSS measurements is assumed to be spatio-temporally correlated. Thus, a cor-
relation model is designed to generate correlated RSS in the simulated data. In practice, the
correlation present in the measurement is unknown. Modeling realistic correlated measure-
ments using correlation models may not be always feasible. In particular, when both spatial
and temporal correlation is incorporate in the correlation model, they may not be invertible and
well-conditioned. Next, a shrinkage estimator is proposed to estimate the shadowing noise co-
variance matrix of the RSS measurements. By exploiting the statistical information on the
shadowing noise covariance matrix, the correlation present in the measurement is successfully
extracted. The estimated shadowing noise covariance matrix is well-conditioned and invertible
even when the number of snapshots/observations of the RSS measurement is comparable or
less than the dimensionality of the signal model. After that, the estimated shadowing noise
covariance matrix is applied to the particle filter (PF). This information enhanced the statisti-
cal inference of the PF likelihood function. Thus, high tracking accuracy is achieved. Results
form both simulated and experimental data showed that the ShPF able to exploit the correlated
and sparse RSS measurement with high accuracy tracking.

In Chapter 5, a robust shrinkage-based particle filter (RSPF) for the problem of outliers in
the RSS measurements is presented. The shadowing component of the RSS measurement is
assumed to be spatio-temporally correlated. Hence, a correlation model is designed to generate
the correlated RSS measurements. When the outliers presence, the shadowing noise follows
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the Student’s t distributions. Otherwise, if no outliers, the shadowing noise is drawn from
the Gaussian distributions. A Student’s t noise model is proposed to indicate that the outliers
are present in the sensor readings. The magnitude of correlation in the RSS measurements
is unintentionally changed due to the presence of outliers. Since exploiting correlation in the
measurement increases the tracking accuracy, a non-parametric shrinkage estimator is derived
to robustly estimate the shadowing noise covariance matrix of the corrupted measurements.
The non-parametric shrinkage estimator is combined with the multiple models particle filter
to jointly estimate the shadowing noise covariance matrix and the state of the mobile user. To
address the state estimation error due to outliers, the Bayesian model averaging approach is
adopted. The approach combined both the Gaussian and heavier-tailed Student’s t noise mod-
els and dynamically adjusted the effects of each model in its operation. Results from the simu-
lated data showed that the RSPF is robust against the presence of outliers in the measurements
and capable to track accurately the mobile user using the corrupted RSS measurements.

6.2 Direction for Future Work

Mobile tracking with correlated and sparse measurements is still a challenging task to be
explored. Some directions for future works based on the findings in this thesis are as fol-
lows:

Exploring new shadowing noise correlation model.

In Chapter 4 and Chapter 5, the correlation models were developed to generate spatio-temporal
correlation in the shadowing noise of the RSS measurements. One disadvantage of using the
current shadowing correlation models is that they are designed based on the assumption that the
shadowing noise follows a lognormal distribution. The lognormal distribution is a probability
distribution of random variables whose logarithm has a Gaussian distribution. For the random
variables whose logarithm has a non-Gaussian distribution, the random variables are said to
follow a non-lognormal distribution. Future research could seek to design new correlation
models in a case of non-lognormal distribution of the shadowing noise.

Improving correlation extraction from the measurements.

In Chapter 4, the accuracy of mobile tracking is shown to improve by exploiting the statisti-
cal information on the shadowing noise covariance matrix. The shrinkage-based particle filter
used the shrinkage estimator to estimate the shadowing noise covariance matrix in its opera-
tion. The shrinkage estimator is developed by combining the sample covariance matrix with
the diagonal unit variance shrinkage target matrix or the constant correlation shrinkage target
matrix. Each target matrices are different in term of its structure as explained in [124]. The

91



shrinkage estimator operates by shrinking the value of the coefficients of the sample covari-
ance matrix to the value supplied by the target matrix. Future work could focus to design
new and flexible structure of target matrix using a best-suited representation of the correlation
problems in the wireless network settings.

Non-parametric shrinkage estimator.

In Chapter 5, the non-parametric shrinkage estimator is derived and proposed to robustly esti-
mate the shadowing noise covariance matrix of the corrupted RSS measurements by the out-
liers. The optimal shrinkage intensity (weight) of the non-parametric shrinkage estimator is
derived with the assumption of using a diagonal target matrix structure (target D in [124]) in
its operation. Future work could consider deriving the weight of the non-parametric shrinkage
estimators by using a much more flexible structure of the target matrix.

Extending to multiple mobile users tracking.

The proposed tracking algorithms that are presented in Chapter 4 and Chapter 5 of the thesis
are applied to the problem of single mobile user tracking in wireless sensor networks. Future
work could consider solutions for tracking multiple mobile users using the correlated and
sparse wireless measurements.
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Appendix A: The Shrinkage Derivation

for Tracking with Correlated Sparse

Measurements

Consider the problem of estimating the true covariance matrix C by a shrinkage estimator Ŝ,

where λ minimizes the risk function

R(C, Ŝ) = min
λ

E[‖Ŝ− C‖2],

= min
λ

E[‖Ŝ− E[Ŝ]‖2] + ‖E[Ŝ]− C‖2,

(6.1)

which is composed of a variance and squared bias. If Ŝ = λT + (1 − λ)Ĉ, this implies

that

R(λ) =
P∑
p=1

Var(Ŝp) + [E(Ŝp)− Cp]
2,

=
P∑
p=1

Var(λTp + (1− λ)Ĉp) + [E(λTp + (1− λ)Ĉp)− Cp]
2,

=
P∑
p=1

λ2Var(Tp) + (1− λ)2Var(Ĉp) + 2λ(1− λ)Cov(Ĉp,Tp) + [λE(Tp − Ĉp) + Bias(Ĉ)]2.

(6.2)
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Take derivative with respect to λ and set equal to zero yields

R′(λ) =
P∑
p=1

2λVar(Tp) + 2(1− λ)Var(Ĉp) + 2(1− 2λ)Cov(Ĉp,Tp)

+ 2[E(Tp − Ĉp)][λE(Tp − Ĉp) + Bias(Ĉ)],

(6.3)

which leads to the optimal shrinkage intensity given by

λ̂ =

∑P
p=1 Var(Ĉp)− Cov(Tp, Ĉp)− Bias(Ĉp)E(Tp − Ĉp)∑P

p=1 E[(Tp − Ĉp)2]
. (6.4)

If Ĉ is unbiased estimator of C, then λ̂ becomes

λ̂ =

∑P
p=1 Var(Ĉp)− Cov(Tp, Ĉp)∑P

p=1 E[(Tp − Ĉp)2]
, (6.5)

and if V̂ar(Ĉp) and Ĉov(Tp, Ĉp) are unbiased estimators of Var(Ĉp) and Cov(Tp, Ĉp), then

λ̂ =

∑P
p=1 V̂ar(Ĉp)− Ĉov(Tp, Ĉp)∑P

p=1 E[(Tp − Ĉp)2]
. (6.6)

To obtain the expressions of V̂ar(Ĉ) and Ĉov(T, Ĉ), the following were defined: For p =

{1, . . . , P} observations of RSS measurements zi for i = {1, . . . , n}, the sample mean is

given by z̄i = P−1
∑P

p=1 zip. Let the measurements be viewed as a random variable

vijp = (zip − z̄i)(zjp − z̄j), (6.7)

where i, j = {1, . . . , n} and v̄ij = P−1
∑P

p=1 vijp is a sample mean. Then, the sample covari-

ance matrix estimate is given by

[
Ĉ
]
ij

=
1

P − 1

P∑
p=1

(zip − z̄)(zjp − z̄). (6.8)
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The unbiased variance of individual elements of Ĉ is given by [123]

V̂ar
[
Ĉ
]
ij

=
P 2

(P − 1)2
V̂ar(v̄ij) (6.9)

=
P 2

(P − 1)2

[
1

P
V̂ar(vij)

]
(6.10)

=
P 2

(P − 1)2

[
1

P

[
1

P − 1

P∑
p=1

(vijp − v̄ij)2

]]
(6.11)

=
P

(P − 1)3

P∑
p=1

(vijp − v̄ij)2. (6.12)

Next, let vkl be another random variable where the sample mean of the variable is v̄kl. The

covariance elements are obtained as [123]

Ĉov
([

Ĉ
]
ij
,
[
Ĉ
]
kl

)
=

P

(P − 1)3

P∑
p=1

(vijp − v̄ij)(vklp − v̄kl). (6.13)

To determine λ̂ in (6.6) requires an expression for Ĉov(Tp, Ĉp). Now, consider a target matrix

of
[
T
]
ij

= ρ̄

√[
Ĉ
]
ii

[
Ĉ
]
jj

, for i 6= j and let
[
C̄
]
ii
,
[
C̄
]
jj

and
[
C̄
]
ij

be the point estimates

of
[
C
]
ii
,
[
C
]
jj

and
[
C
]
ij

, respectively. The point estimate here is refer to the elements of the

sample covariance which is also considered as a random variable. Then,
[
T
]
ij

is expands via

Taylor series such that

[
T
]
ij

= ρ̄

√[
C̄
]
ii

[
C̄
]
jj

+
ρ̄

2

√√√√√√
[
C̄
]
jj[

C̄
]
ii

([
C
]
ii
−
[
C̄
]
ii

)
+
ρ̄

2

√√√√√√
[
C̄
]
ii[

C̄
]
jj

([
C
]
jj
−
[
C̄
]
jj

)
, (6.14)

where ρ̄ is the average correlation of the off-diagonal elements in the sample covariance and is

obtained using

ρ̄ =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

[
Ĉ
]
ij[

Ĉ
]
ii

[
Ĉ
]
jj

, (6.15)
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for
[
C̄
]
ii
,
[
C̄
]
jj

and
[
C̄
]
ij

. Based on the definition of the covariance matrix, this implies

that

Ĉov
([

T
]
ij
,
[
Ĉ
]
ij

)
= E

[([
T
]
ij
− E

[[
T
]
ij

])([
C
]
ij
− E

[[
C
]
ij

])]
, (6.16)

and using (6.14) and (6.16) yields

Ĉov
([

T
]
ij
,
[
Ĉ
]
ij

)
=
ρ̄

2

{√√√√√√
[
C̄
]
jj[

C̄
]
ii

Ĉov
([

Ĉ
]
ii
,
[
Ĉ
]
ij

)
+

√√√√√√
[
C̄
]
ii[

C̄
]
jj

Ĉov
([

Ĉ
]
jj
,
[
Ĉ
]
ij

)}
.

(6.17)

Finally, using (6.7) and (6.13) the covariance elements are expressed as

Ĉov
([

Ĉ
]
ii
,
[
Ĉ
]
ij

)
=

P

(P − 1)3

P∑
p=1

[
(zip − z̄i)2 − v̄ii

][
(zip − z̄i)(zjp − z̄j)− v̄ij

]
, (6.18)

and similarly

Ĉov
([

Ĉ
]
jj
,
[
Ĉ
]
ij

)
=

P

(P − 1)3

P∑
p=1

[
(zjp− z̄j)2− v̄jj

][
(zip− z̄i)(zjp− z̄j)− v̄ij

]
. (6.19)

which completes the derivation.
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Target matrix should reflect the true characteristics of the quantity that being estimated. In

general, target matrix decreases the mean square errors of the sample covariance matrix. Six

types of target matrix structures are summarized in Table 6.1 along with its optimal weight

given by [124].

Table 6.1: Six commonly used shrinkage targets for the covariance matrix and its optimal
shrinkage intensity.

Target A: ”diagonal, unit variance” Target B: ”diagonal, common variance”

[
T
]
ij

=

{
1, if i = j
0, if i 6= j

[
T
]
ij

=

{
v = avg(Ĉii), if i = j
0, if i 6= j

λ̂ =
∑

i6=j V̂ar(Ĉij)+
∑

i V̂ar(Ĉii)∑
i 6=j Ĉ2

ij+
∑

i(Ĉii−1)2
λ̂ =

∑
i6=j V̂ar(Ĉij)+

∑
i V̂ar(Ĉii)∑

i 6=j Ĉ2
ij+

∑
i(Ĉii−v)2

Target C: ”common (co)variance” Target D: ”diagonal, unequal variance”

[
T
]
ij

=

{
v = avg(Ĉii), if i = j

c = avg(Ĉij), if i 6= j

[
T
]
ij

=

{
Ĉii, if i = j
0, if i 6= j

λ̂ =
∑

i6=j V̂ar(Ĉij)+
∑

i V̂ar(Ĉii)∑
i6=j(Ĉij−c)2+

∑
i(Ĉii−v)2

λ̂ =
∑

i 6=j V̂ar(Ĉij)∑
i 6=j Ĉ2

ij

Target E: ”perfect positive correlation” Target F: ”constant correlation”

[
T
]
ij

=

{
Ĉii, if i = j√

ĈiiĈjj, if i 6= j

[
T
]
ij

=

{
Ĉii, if i = j

ρ̄
√

ĈiiĈjj, if i 6= j

fij = 1
2

{√
Ĉjj

Ĉii
Ĉov(Ĉii, Ĉij) +

√
Ĉii

Ĉjj
Ĉov(Ĉjj, Ĉij)

}

λ̂ =
∑

i 6=j V̂ar(Ĉij)−fij∑
i6=j(Ĉij−

√
ĈiiĈjj)2

λ̂ =
∑

i 6=j V̂ar(Ĉij)−ρ̄fij∑
i 6=j(Ĉij−ρ̄

√
ĈiiĈjj)2
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Appendix B: The Non-Parametric

Shrinkage Derivation for Tracking with

Non-Gaussian Shadowing Noise

Consider the problem of estimating the true covariance matrix C0 by a shrinkage estimator

Ŝ = λT +(1−λ)Ĉ, where Ĉ is the estimated sample covariance matrix, T is the target matrix,

and λ̂ ∈ [0, 1] is the shrinkage intensity (weight). The sample covariance estimates is given

by

Ĉ =
1

P − 1

P∑
p=1

(zp − z̄p)(zp − z̄p)T , (6.20)

where zp ∈ Rn is the RSS measurements, z̄ = 1
P

∑P
p=1 zp is the sample mean, and p =

{1, . . . , P} is the number of observed measurements at one time instant. Suppose that the

respective target matrix is chosen

T =


[
Ĉ
]
ii
, if i = j

0 , if i 6= j
, (6.21)

then the optimal weight is determined by minimizing the Frobenius norm of difference be-

tween Ŝ and C0 with respect to λ given by

R(C0, Ŝ) = min
λ

E[‖Ŝ− C0‖2
F ]

= min
λ

E[‖(1− λ)Ĉ + λT− C0‖2
F ],

(6.22)
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and by expanding (6.22) gives

R(λ) = λ2E
[∥∥C0 − T

∥∥2

F

]
+ (1− λ)2E

[∥∥Ĉ− C0

∥∥2

F

]
+ 2λ(1− λ)E

[
〈C0 − T, Ĉ− C0〉

]
.

(6.23)

Taking derivative with respect to λ and equating to zero yields

2λE
[∥∥C0 − T

∥∥2

F

]
− 2(1 − λ)E

[∥∥Ĉ − C0

∥∥2

F

]
+ 2(1 − 2λ)E

[
〈C0 − T, Ĉ − C0〉

]
= 0.

(6.24)

Next the followings were defined

α2 = E
[∥∥C0 − T

∥∥2

F

]
,

β2 = E
[∥∥Ĉ− C0

∥∥2

F

]
,

γ2 = E
[
〈C0 − T, Ĉ− C0〉

]
, (6.25)

with decomposition [130]

δ2 = E
[∥∥Ĉ− T

∥∥2

F

]
= E

[∥∥C0 − T
∥∥2

F

]
+ E

[∥∥Ĉ− C0

∥∥2

F

]
+ 2E

[
〈C0 − T, Ĉ− C0〉

]
= α2 + β2 + 2γ2. (6.26)

By taking (6.25) and (6.26), equation (6.24) can be rewritten in the form of

2λα2 − 2(1− λ)β2 + 2γ2 − 4λγ2 = 0, (6.27)

and by utilizing E
[
〈T− C0, Ĉ− C0〉

]
= −γ2 yields

2λα2 − 2(1− λ)β2 − 2γ2 + 4λγ2 = 0, (6.28)
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where

λ =
β2 + γ2

δ2
,

=
E
[∥∥Ĉ− C0

∥∥2

F

]
+ E

[
〈C0 − T, Ĉ− C0〉

]
E
[∥∥Ĉ− T

∥∥2

F

] . (6.29)

Given the results in [131], the equation can be further simplified as follows

λ =
E
[
tr[Ĉ

2
]
]
− E

[
tr[ĈT]

]
− E

[
tr[C0Ĉ]

]
+ E

[
tr[C0T]

]
E
[∥∥Ĉ− T

∥∥2

F

] ,

=
E
[
tr[Ĉ(Ĉ− T)]

]
− E

[
tr[C0(Ĉ− T)]

]
E
[
tr[(Ĉ− T)2]

] . (6.30)

Let tr[Ĉ(Ĉ− T)] and tr[(Ĉ− T)2] are the exact unbiased estimators of E
[
tr[Ĉ(Ĉ− T)]

]
and

E
[
tr[(Ĉ− T)2]

]
, respectively, then

λ =
tr[Ĉ(Ĉ− T)]− Ĝ

tr[(Ĉ− T)2]
, (6.31)

for Ĝ = E
[
tr[C0(Ĉ−T)]

]
. Noted that E

[
Ĉ
]

= C0, the estimator of Ĝ can be further rewritten

as

Ĝ = tr[C2
0]− E

[
tr[C0T]

]
= â− b̂, (6.32)

for â = tr[C2
0] and b̂ = E

[
tr[C0T]

]
. Under non-normality, the exact unbiased estimator of â is

formulated as [165], [167]

â1 =
(P − 1)

P (P − 2)(P − 3)

(
(P − 1)(P − 2)

tr[Ĉ
2
]

n
+ nĉ1 −

PQ

n

)
, (6.33)

where

ĉ1 =
P − 1

P (P − 2)(P − 3)n2

(
2tr[Ĉ] + (P 2 − 3P + 1)(tr[Ĉ])2 − PQ

)
, (6.34)
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and

Q : =
1

P − 1

P∑
p=1

(
(zp − z̄)T (zp − z̄)

)2

. (6.35)

The equation (6.35) is proposed by [165] as another statistics to solve the estimation of â1.

Meanwhile, for the estimation of b̂, the exact unbiased estimator under non-normality is for-

mulated as [168]

b̂1 =
P − 1

(P + 1)n
tr[T2]− 1

P + 1
b̂2, (6.36)

where

b̂2 =
−1

(P − 2)(P − 3)n

(
2(P − 1)2tr[Ĉ

2
] + (P − 1)2(tr[Ĉ])2 − P (P + 1)Q

)
. (6.37)

Finally, by replacing estimators â = â1 and b̂ = b̂1, respectively, in (6.31) the shrinkage weight

under non-normality yields

λ̂ =
tr[Ĉ2

]
n
− tr[ĈT]

n
− â1 + b̂1

tr[Ĉ2
]

n
− tr[T2]

n

,

=
tr[Ĉ2

]
n
− tr[ĈT]

n
− â1 + b̂1

tr[Ĉ2
]

n
− ĉ1

, (6.38)

which completes the derivation.
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[52] C. Steiner, F. Althaus, F. Trösch, and A. Wittneben, “Ultra-wideband geo-regioning: A

novel clustering and localization technique,” EURASIP J. on Advances in Signal Pro-

cess., Special Issue on Signal Process. for Location Estimation and Tracking in Wireless

Environments, Nov. 2007.

[53] R. Li and Z. Fang, “LLA: a new high precision mobile node localization algorithm

based on toa,” J. of Commun., vol. 8, no. 5, pp. 604–611, Aug. 2010.

107



[54] K. Yu, Y. Guo, and M. Hedley, “Toa-based distributed localisation with unknown in-

ternal delays and clock frequency offsets in wireless sensor networks,” IET Signal Pro-

cess., vol. 3, no. 2, pp. 106–118, Mar. 2009.

[55] G. Mao, B. Fidan, and B. D. Anderson, “Wireless sensor network localization tech-

niques,” Computer Networks, vol. 51, no. 10, pp. 2529 – 2553, 2007.
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